]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - sim/ft32/interp.c
Add myself as ft32 maintainer for sim.
[thirdparty/binutils-gdb.git] / sim / ft32 / interp.c
CommitLineData
f46e4eb7
JB
1/* Simulator for the FT32 processor
2
61baf725 3 Copyright (C) 2008-2017 Free Software Foundation, Inc.
f46e4eb7
JB
4 Contributed by FTDI <support@ftdichip.com>
5
6 This file is part of simulators.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21#include "config.h"
22#include <fcntl.h>
23#include <signal.h>
24#include <stdlib.h>
25#include <stdint.h>
26
27#include "bfd.h"
28#include "gdb/callback.h"
29#include "libiberty.h"
30#include "gdb/remote-sim.h"
31
32#include "sim-main.h"
33#include "sim-options.h"
34
35#include "opcode/ft32.h"
36
37/*
38 * FT32 is a Harvard architecture: RAM and code occupy
39 * different address spaces.
40 *
41 * sim and gdb model FT32 memory by adding 0x800000 to RAM
42 * addresses. This means that sim/gdb can treat all addresses
43 * similarly.
44 *
45 * The address space looks like:
46 *
47 * 00000 start of code memory
48 * 3ffff end of code memory
49 * 800000 start of RAM
50 * 80ffff end of RAM
51 */
52
53#define RAM_BIAS 0x800000 /* Bias added to RAM addresses. */
54
55static unsigned long
56ft32_extract_unsigned_integer (unsigned char *addr, int len)
57{
58 unsigned long retval;
59 unsigned char *p;
60 unsigned char *startaddr = (unsigned char *) addr;
61 unsigned char *endaddr = startaddr + len;
62
63 /* Start at the most significant end of the integer, and work towards
64 the least significant. */
65 retval = 0;
66
67 for (p = endaddr; p > startaddr;)
68 retval = (retval << 8) | * -- p;
69
70 return retval;
71}
72
73static void
74ft32_store_unsigned_integer (unsigned char *addr, int len, unsigned long val)
75{
76 unsigned char *p;
77 unsigned char *startaddr = (unsigned char *)addr;
78 unsigned char *endaddr = startaddr + len;
79
80 for (p = startaddr; p < endaddr; p++)
81 {
82 *p = val & 0xff;
83 val >>= 8;
84 }
85}
86
87/*
88 * Align EA according to its size DW.
89 * The FT32 ignores the low bit of a 16-bit addresss,
90 * and the low two bits of a 32-bit address.
91 */
92static uint32_t ft32_align (uint32_t dw, uint32_t ea)
93{
94 switch (dw)
95 {
96 case 1:
97 ea &= ~1;
98 break;
99 case 2:
100 ea &= ~3;
101 break;
102 default:
103 break;
104 }
105 return ea;
106}
107
108/* Read an item from memory address EA, sized DW. */
109static uint32_t
110ft32_read_item (SIM_DESC sd, int dw, uint32_t ea)
111{
112 sim_cpu *cpu = STATE_CPU (sd, 0);
034685f9 113 address_word cia = CPU_PC_GET (cpu);
f46e4eb7
JB
114 uint8_t byte[4];
115 uint32_t r;
116
117 ea = ft32_align (dw, ea);
118
119 switch (dw) {
120 case 0:
121 return sim_core_read_aligned_1 (cpu, cia, read_map, ea);
122 case 1:
123 return sim_core_read_aligned_2 (cpu, cia, read_map, ea);
124 case 2:
125 return sim_core_read_aligned_4 (cpu, cia, read_map, ea);
126 default:
127 abort ();
128 }
129}
130
131/* Write item V to memory address EA, sized DW. */
132static void
133ft32_write_item (SIM_DESC sd, int dw, uint32_t ea, uint32_t v)
134{
135 sim_cpu *cpu = STATE_CPU (sd, 0);
034685f9 136 address_word cia = CPU_PC_GET (cpu);
f46e4eb7
JB
137 uint8_t byte[4];
138
139 ea = ft32_align (dw, ea);
140
141 switch (dw) {
142 case 0:
143 sim_core_write_aligned_1 (cpu, cia, write_map, ea, v);
144 break;
145 case 1:
146 sim_core_write_aligned_2 (cpu, cia, write_map, ea, v);
147 break;
148 case 2:
149 sim_core_write_aligned_4 (cpu, cia, write_map, ea, v);
150 break;
151 default:
152 abort ();
153 }
154}
155
156#define ILLEGAL() \
157 sim_engine_halt (sd, cpu, NULL, insnpc, sim_signalled, SIM_SIGILL)
158
159static uint32_t cpu_mem_read (SIM_DESC sd, uint32_t dw, uint32_t ea)
160{
161 sim_cpu *cpu = STATE_CPU (sd, 0);
162 uint32_t insnpc = cpu->state.pc;
163 uint32_t r;
164 uint8_t byte[4];
165
166 ea &= 0x1ffff;
167 if (ea & ~0xffff)
168 {
169 /* Simulate some IO devices */
170 switch (ea)
171 {
bcd68f9e
JB
172 case 0x10000:
173 return getchar ();
f46e4eb7
JB
174 case 0x1fff4:
175 /* Read the simulator cycle timer. */
176 return cpu->state.cycles / 100;
177 default:
178 sim_io_eprintf (sd, "Illegal IO read address %08x, pc %#x\n",
179 ea, insnpc);
180 ILLEGAL ();
181 }
182 }
183 return ft32_read_item (sd, dw, RAM_BIAS + ea);
184}
185
186static void cpu_mem_write (SIM_DESC sd, uint32_t dw, uint32_t ea, uint32_t d)
187{
188 sim_cpu *cpu = STATE_CPU (sd, 0);
189 ea &= 0x1ffff;
190 if (ea & 0x10000)
191 {
192 /* Simulate some IO devices */
193 switch (ea)
194 {
195 case 0x10000:
196 /* Console output */
197 putchar (d & 0xff);
198 break;
199 case 0x1fc80:
200 /* Unlock the PM write port */
201 cpu->state.pm_unlock = (d == 0x1337f7d1);
202 break;
203 case 0x1fc84:
204 /* Set the PM write address register */
205 cpu->state.pm_addr = d;
206 break;
207 case 0x1fc88:
71c34ca7
JB
208 if (cpu->state.pm_unlock)
209 {
210 /* Write to PM. */
211 ft32_write_item (sd, dw, cpu->state.pm_addr, d);
212 cpu->state.pm_addr += 4;
213 }
f46e4eb7
JB
214 break;
215 case 0x1fffc:
216 /* Normal exit. */
217 sim_engine_halt (sd, cpu, NULL, cpu->state.pc, sim_exited, cpu->state.regs[0]);
218 break;
219 case 0x1fff8:
220 sim_io_printf (sd, "Debug write %08x\n", d);
221 break;
222 default:
223 sim_io_eprintf (sd, "Unknown IO write %08x to to %08x\n", d, ea);
224 }
225 }
226 else
227 ft32_write_item (sd, dw, RAM_BIAS + ea, d);
228}
229
230#define GET_BYTE(ea) cpu_mem_read (sd, 0, (ea))
231#define PUT_BYTE(ea, d) cpu_mem_write (sd, 0, (ea), (d))
232
233/* LSBS (n) is a mask of the least significant N bits. */
234#define LSBS(n) ((1U << (n)) - 1)
235
236static void ft32_push (SIM_DESC sd, uint32_t v)
237{
238 sim_cpu *cpu = STATE_CPU (sd, 0);
239 cpu->state.regs[FT32_HARD_SP] -= 4;
240 cpu->state.regs[FT32_HARD_SP] &= 0xffff;
241 cpu_mem_write (sd, 2, cpu->state.regs[FT32_HARD_SP], v);
242}
243
244static uint32_t ft32_pop (SIM_DESC sd)
245{
246 sim_cpu *cpu = STATE_CPU (sd, 0);
247 uint32_t r = cpu_mem_read (sd, 2, cpu->state.regs[FT32_HARD_SP]);
248 cpu->state.regs[FT32_HARD_SP] += 4;
249 cpu->state.regs[FT32_HARD_SP] &= 0xffff;
250 return r;
251}
252
253/* Extract the low SIZ bits of N as an unsigned number. */
254static int nunsigned (int siz, int n)
255{
256 return n & LSBS (siz);
257}
258
259/* Extract the low SIZ bits of N as a signed number. */
260static int nsigned (int siz, int n)
261{
262 int shift = (sizeof (int) * 8) - siz;
263 return (n << shift) >> shift;
264}
265
266/* Signed division N / D, matching hw behavior for (MIN_INT, -1). */
267static uint32_t ft32sdiv (uint32_t n, uint32_t d)
268{
269 if (n == 0x80000000UL && d == 0xffffffffUL)
270 return 0x80000000UL;
271 else
272 return (uint32_t)((int)n / (int)d);
273}
274
275/* Signed modulus N % D, matching hw behavior for (MIN_INT, -1). */
276static uint32_t ft32smod (uint32_t n, uint32_t d)
277{
278 if (n == 0x80000000UL && d == 0xffffffffUL)
279 return 0;
280 else
281 return (uint32_t)((int)n % (int)d);
282}
283
284/* Circular rotate right N by B bits. */
285static uint32_t ror (uint32_t n, uint32_t b)
286{
287 b &= 31;
288 return (n >> b) | (n << (32 - b));
289}
290
291/* Implement the BINS machine instruction.
292 See FT32 Programmer's Reference for details. */
293static uint32_t bins (uint32_t d, uint32_t f, uint32_t len, uint32_t pos)
294{
295 uint32_t bitmask = LSBS (len) << pos;
296 return (d & ~bitmask) | ((f << pos) & bitmask);
297}
298
299/* Implement the FLIP machine instruction.
300 See FT32 Programmer's Reference for details. */
301static uint32_t flip (uint32_t x, uint32_t b)
302{
303 if (b & 1)
304 x = (x & 0x55555555) << 1 | (x & 0xAAAAAAAA) >> 1;
305 if (b & 2)
306 x = (x & 0x33333333) << 2 | (x & 0xCCCCCCCC) >> 2;
307 if (b & 4)
308 x = (x & 0x0F0F0F0F) << 4 | (x & 0xF0F0F0F0) >> 4;
309 if (b & 8)
310 x = (x & 0x00FF00FF) << 8 | (x & 0xFF00FF00) >> 8;
311 if (b & 16)
312 x = (x & 0x0000FFFF) << 16 | (x & 0xFFFF0000) >> 16;
313 return x;
314}
315
316static void
317step_once (SIM_DESC sd)
318{
319 sim_cpu *cpu = STATE_CPU (sd, 0);
034685f9 320 address_word cia = CPU_PC_GET (cpu);
f46e4eb7
JB
321 uint32_t inst;
322 uint32_t dw;
323 uint32_t cb;
324 uint32_t r_d;
325 uint32_t cr;
326 uint32_t cv;
327 uint32_t bt;
328 uint32_t r_1;
329 uint32_t rimm;
330 uint32_t r_2;
331 uint32_t k20;
332 uint32_t pa;
333 uint32_t aa;
334 uint32_t k16;
335 uint32_t k8;
336 uint32_t al;
337 uint32_t r_1v;
338 uint32_t rimmv;
339 uint32_t bit_pos;
340 uint32_t bit_len;
341 uint32_t upper;
342 uint32_t insnpc;
343
344 if (cpu->state.cycles >= cpu->state.next_tick_cycle)
345 {
346 cpu->state.next_tick_cycle += 100000;
347 ft32_push (sd, cpu->state.pc);
348 cpu->state.pc = 12; /* interrupt 1. */
349 }
350 inst = ft32_read_item (sd, 2, cpu->state.pc);
351 cpu->state.cycles += 1;
352
353 /* Handle "call 8" (which is FT32's "break" equivalent) here. */
354 if (inst == 0x00340002)
355 {
356 sim_engine_halt (sd, cpu, NULL,
357 cpu->state.pc,
358 sim_stopped, SIM_SIGTRAP);
359 goto escape;
360 }
361
362 dw = (inst >> FT32_FLD_DW_BIT) & LSBS (FT32_FLD_DW_SIZ);
363 cb = (inst >> FT32_FLD_CB_BIT) & LSBS (FT32_FLD_CB_SIZ);
364 r_d = (inst >> FT32_FLD_R_D_BIT) & LSBS (FT32_FLD_R_D_SIZ);
365 cr = (inst >> FT32_FLD_CR_BIT) & LSBS (FT32_FLD_CR_SIZ);
366 cv = (inst >> FT32_FLD_CV_BIT) & LSBS (FT32_FLD_CV_SIZ);
367 bt = (inst >> FT32_FLD_BT_BIT) & LSBS (FT32_FLD_BT_SIZ);
368 r_1 = (inst >> FT32_FLD_R_1_BIT) & LSBS (FT32_FLD_R_1_SIZ);
369 rimm = (inst >> FT32_FLD_RIMM_BIT) & LSBS (FT32_FLD_RIMM_SIZ);
370 r_2 = (inst >> FT32_FLD_R_2_BIT) & LSBS (FT32_FLD_R_2_SIZ);
371 k20 = nsigned (20, (inst >> FT32_FLD_K20_BIT) & LSBS (FT32_FLD_K20_SIZ));
372 pa = (inst >> FT32_FLD_PA_BIT) & LSBS (FT32_FLD_PA_SIZ);
373 aa = (inst >> FT32_FLD_AA_BIT) & LSBS (FT32_FLD_AA_SIZ);
374 k16 = (inst >> FT32_FLD_K16_BIT) & LSBS (FT32_FLD_K16_SIZ);
375 k8 = nsigned (8, (inst >> FT32_FLD_K8_BIT) & LSBS (FT32_FLD_K8_SIZ));
376 al = (inst >> FT32_FLD_AL_BIT) & LSBS (FT32_FLD_AL_SIZ);
377
378 r_1v = cpu->state.regs[r_1];
379 rimmv = (rimm & 0x400) ? nsigned (10, rimm) : cpu->state.regs[rimm & 0x1f];
380
381 bit_pos = rimmv & 31;
382 bit_len = 0xf & (rimmv >> 5);
383 if (bit_len == 0)
384 bit_len = 16;
385
386 upper = (inst >> 27);
387
388 insnpc = cpu->state.pc;
389 cpu->state.pc += 4;
390 switch (upper)
391 {
392 case FT32_PAT_TOC:
393 case FT32_PAT_TOCI:
394 {
395 int take = (cr == 3) || ((1 & (cpu->state.regs[28 + cr] >> cb)) == cv);
396 if (take)
397 {
398 cpu->state.cycles += 1;
399 if (bt)
400 ft32_push (sd, cpu->state.pc); /* this is a call. */
401 if (upper == FT32_PAT_TOC)
402 cpu->state.pc = pa << 2;
403 else
404 cpu->state.pc = cpu->state.regs[r_2];
405 if (cpu->state.pc == 0x8)
406 goto escape;
407 }
408 }
409 break;
410
411 case FT32_PAT_ALUOP:
412 case FT32_PAT_CMPOP:
413 {
414 uint32_t result;
415 switch (al)
416 {
417 case 0x0: result = r_1v + rimmv; break;
418 case 0x1: result = ror (r_1v, rimmv); break;
419 case 0x2: result = r_1v - rimmv; break;
420 case 0x3: result = (r_1v << 10) | (1023 & rimmv); break;
421 case 0x4: result = r_1v & rimmv; break;
422 case 0x5: result = r_1v | rimmv; break;
423 case 0x6: result = r_1v ^ rimmv; break;
424 case 0x7: result = ~(r_1v ^ rimmv); break;
425 case 0x8: result = r_1v << rimmv; break;
426 case 0x9: result = r_1v >> rimmv; break;
427 case 0xa: result = (int32_t)r_1v >> rimmv; break;
428 case 0xb: result = bins (r_1v, rimmv >> 10, bit_len, bit_pos); break;
429 case 0xc: result = nsigned (bit_len, r_1v >> bit_pos); break;
430 case 0xd: result = nunsigned (bit_len, r_1v >> bit_pos); break;
431 case 0xe: result = flip (r_1v, rimmv); break;
432 default:
433 sim_io_eprintf (sd, "Unhandled alu %#x\n", al);
434 ILLEGAL ();
435 }
436 if (upper == FT32_PAT_ALUOP)
437 cpu->state.regs[r_d] = result;
438 else
439 {
440 uint32_t dwmask = 0;
441 int dwsiz = 0;
442 int zero;
443 int sign;
444 int ahi;
445 int bhi;
446 int overflow;
447 int carry;
448 int bit;
449 uint64_t ra;
450 uint64_t rb;
451 int above;
452 int greater;
453 int greatereq;
454
455 switch (dw)
456 {
457 case 0: dwsiz = 7; dwmask = 0xffU; break;
458 case 1: dwsiz = 15; dwmask = 0xffffU; break;
459 case 2: dwsiz = 31; dwmask = 0xffffffffU; break;
460 }
461
462 zero = (0 == (result & dwmask));
463 sign = 1 & (result >> dwsiz);
464 ahi = 1 & (r_1v >> dwsiz);
465 bhi = 1 & (rimmv >> dwsiz);
466 overflow = (sign != ahi) & (ahi == !bhi);
467 bit = (dwsiz + 1);
468 ra = r_1v & dwmask;
469 rb = rimmv & dwmask;
470 switch (al)
471 {
472 case 0x0: carry = 1 & ((ra + rb) >> bit); break;
473 case 0x2: carry = 1 & ((ra - rb) >> bit); break;
474 default: carry = 0; break;
475 }
476 above = (!carry & !zero);
477 greater = (sign == overflow) & !zero;
478 greatereq = (sign == overflow);
479
480 cpu->state.regs[r_d] = (
481 (above << 6) |
482 (greater << 5) |
483 (greatereq << 4) |
484 (sign << 3) |
485 (overflow << 2) |
486 (carry << 1) |
487 (zero << 0));
488 }
489 }
490 break;
491
492 case FT32_PAT_LDK:
493 cpu->state.regs[r_d] = k20;
494 break;
495
496 case FT32_PAT_LPM:
497 cpu->state.regs[r_d] = ft32_read_item (sd, dw, pa << 2);
498 cpu->state.cycles += 1;
499 break;
500
501 case FT32_PAT_LPMI:
502 cpu->state.regs[r_d] = ft32_read_item (sd, dw, cpu->state.regs[r_1] + k8);
503 cpu->state.cycles += 1;
504 break;
505
506 case FT32_PAT_STA:
507 cpu_mem_write (sd, dw, aa, cpu->state.regs[r_d]);
508 break;
509
510 case FT32_PAT_STI:
511 cpu_mem_write (sd, dw, cpu->state.regs[r_d] + k8, cpu->state.regs[r_1]);
512 break;
513
514 case FT32_PAT_LDA:
515 cpu->state.regs[r_d] = cpu_mem_read (sd, dw, aa);
516 cpu->state.cycles += 1;
517 break;
518
519 case FT32_PAT_LDI:
520 cpu->state.regs[r_d] = cpu_mem_read (sd, dw, cpu->state.regs[r_1] + k8);
521 cpu->state.cycles += 1;
522 break;
523
524 case FT32_PAT_EXA:
525 {
526 uint32_t tmp;
527 tmp = cpu_mem_read (sd, dw, aa);
528 cpu_mem_write (sd, dw, aa, cpu->state.regs[r_d]);
529 cpu->state.regs[r_d] = tmp;
530 cpu->state.cycles += 1;
531 }
532 break;
533
534 case FT32_PAT_EXI:
535 {
536 uint32_t tmp;
537 tmp = cpu_mem_read (sd, dw, cpu->state.regs[r_1] + k8);
538 cpu_mem_write (sd, dw, cpu->state.regs[r_1] + k8, cpu->state.regs[r_d]);
539 cpu->state.regs[r_d] = tmp;
540 cpu->state.cycles += 1;
541 }
542 break;
543
544 case FT32_PAT_PUSH:
545 ft32_push (sd, r_1v);
546 break;
547
548 case FT32_PAT_LINK:
549 ft32_push (sd, cpu->state.regs[r_d]);
550 cpu->state.regs[r_d] = cpu->state.regs[FT32_HARD_SP];
551 cpu->state.regs[FT32_HARD_SP] -= k16;
552 cpu->state.regs[FT32_HARD_SP] &= 0xffff;
553 break;
554
555 case FT32_PAT_UNLINK:
556 cpu->state.regs[FT32_HARD_SP] = cpu->state.regs[r_d];
557 cpu->state.regs[FT32_HARD_SP] &= 0xffff;
558 cpu->state.regs[r_d] = ft32_pop (sd);
559 break;
560
561 case FT32_PAT_POP:
562 cpu->state.cycles += 1;
563 cpu->state.regs[r_d] = ft32_pop (sd);
564 break;
565
566 case FT32_PAT_RETURN:
567 cpu->state.pc = ft32_pop (sd);
568 break;
569
570 case FT32_PAT_FFUOP:
571 switch (al)
572 {
573 case 0x0:
574 cpu->state.regs[r_d] = r_1v / rimmv;
575 break;
576 case 0x1:
577 cpu->state.regs[r_d] = r_1v % rimmv;
578 break;
579 case 0x2:
580 cpu->state.regs[r_d] = ft32sdiv (r_1v, rimmv);
581 break;
582 case 0x3:
583 cpu->state.regs[r_d] = ft32smod (r_1v, rimmv);
584 break;
585
586 case 0x4:
587 {
588 /* strcmp instruction. */
589 uint32_t a = r_1v;
590 uint32_t b = rimmv;
591 uint32_t i = 0;
592 while ((GET_BYTE (a + i) != 0) &&
593 (GET_BYTE (a + i) == GET_BYTE (b + i)))
594 i++;
595 cpu->state.regs[r_d] = GET_BYTE (a + i) - GET_BYTE (b + i);
596 }
597 break;
598
599 case 0x5:
600 {
601 /* memcpy instruction. */
602 uint32_t src = r_1v;
603 uint32_t dst = cpu->state.regs[r_d];
604 uint32_t i;
395b0d8a 605 for (i = 0; i < (rimmv & 0x7fff); i++)
f46e4eb7
JB
606 PUT_BYTE (dst + i, GET_BYTE (src + i));
607 }
608 break;
609 case 0x6:
610 {
611 /* strlen instruction. */
612 uint32_t src = r_1v;
613 uint32_t i;
614 for (i = 0; GET_BYTE (src + i) != 0; i++)
615 ;
616 cpu->state.regs[r_d] = i;
617 }
618 break;
619 case 0x7:
620 {
621 /* memset instruction. */
622 uint32_t dst = cpu->state.regs[r_d];
623 uint32_t i;
395b0d8a 624 for (i = 0; i < (rimmv & 0x7fff); i++)
f46e4eb7
JB
625 PUT_BYTE (dst + i, r_1v);
626 }
627 break;
628 case 0x8:
629 cpu->state.regs[r_d] = r_1v * rimmv;
630 break;
631 case 0x9:
632 cpu->state.regs[r_d] = ((uint64_t)r_1v * (uint64_t)rimmv) >> 32;
633 break;
634 case 0xa:
635 {
636 /* stpcpy instruction. */
637 uint32_t src = r_1v;
638 uint32_t dst = cpu->state.regs[r_d];
639 uint32_t i;
640 for (i = 0; GET_BYTE (src + i) != 0; i++)
641 PUT_BYTE (dst + i, GET_BYTE (src + i));
642 PUT_BYTE (dst + i, 0);
643 cpu->state.regs[r_d] = dst + i;
644 }
645 break;
646 case 0xe:
647 {
648 /* streamout instruction. */
649 uint32_t i;
650 uint32_t src = cpu->state.regs[r_1];
651 for (i = 0; i < rimmv; i += (1 << dw))
652 {
653 cpu_mem_write (sd,
654 dw,
655 cpu->state.regs[r_d],
656 cpu_mem_read (sd, dw, src));
657 src += (1 << dw);
658 }
659 }
660 break;
661 default:
662 sim_io_eprintf (sd, "Unhandled ffu %#x at %08x\n", al, insnpc);
663 ILLEGAL ();
664 }
665 break;
666
667 default:
668 sim_io_eprintf (sd, "Unhandled pattern %d at %08x\n", upper, insnpc);
669 ILLEGAL ();
670 }
671 cpu->state.num_i++;
672
673escape:
674 ;
675}
676
677void
678sim_engine_run (SIM_DESC sd,
679 int next_cpu_nr, /* ignore */
680 int nr_cpus, /* ignore */
681 int siggnal) /* ignore */
682{
683 sim_cpu *cpu;
684
685 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
686
687 cpu = STATE_CPU (sd, 0);
688
689 while (1)
690 {
691 step_once (sd);
692 if (sim_events_tick (sd))
693 sim_events_process (sd);
694 }
695}
696
f46e4eb7
JB
697static uint32_t *
698ft32_lookup_register (SIM_CPU *cpu, int nr)
699{
700 /* Handle the register number translation here.
701 * Sim registers are 0-31.
702 * Other tools (gcc, gdb) use:
703 * 0 - fp
704 * 1 - sp
705 * 2 - r0
706 * 31 - cc
707 */
708
709 if ((nr < 0) || (nr > 32))
710 {
711 sim_io_eprintf (CPU_STATE (cpu), "unknown register %i\n", nr);
712 abort ();
713 }
714
715 switch (nr)
716 {
717 case FT32_FP_REGNUM:
718 return &cpu->state.regs[FT32_HARD_FP];
719 case FT32_SP_REGNUM:
720 return &cpu->state.regs[FT32_HARD_SP];
721 case FT32_CC_REGNUM:
722 return &cpu->state.regs[FT32_HARD_CC];
723 case FT32_PC_REGNUM:
724 return &cpu->state.pc;
725 default:
726 return &cpu->state.regs[nr - 2];
727 }
728}
729
730static int
731ft32_reg_store (SIM_CPU *cpu,
732 int rn,
733 unsigned char *memory,
734 int length)
735{
736 if (0 <= rn && rn <= 32)
737 {
738 if (length == 4)
739 *ft32_lookup_register (cpu, rn) = ft32_extract_unsigned_integer (memory, 4);
740
741 return 4;
742 }
743 else
744 return 0;
745}
746
747static int
748ft32_reg_fetch (SIM_CPU *cpu,
749 int rn,
750 unsigned char *memory,
751 int length)
752{
753 if (0 <= rn && rn <= 32)
754 {
755 if (length == 4)
756 ft32_store_unsigned_integer (memory, 4, *ft32_lookup_register (cpu, rn));
757
758 return 4;
759 }
760 else
761 return 0;
762}
763
764static sim_cia
765ft32_pc_get (SIM_CPU *cpu)
766{
65f90968 767 return cpu->state.pc;
f46e4eb7
JB
768}
769
770static void
771ft32_pc_set (SIM_CPU *cpu, sim_cia newpc)
772{
773 cpu->state.pc = newpc;
774}
775
776/* Cover function of sim_state_free to free the cpu buffers as well. */
777
778static void
779free_state (SIM_DESC sd)
780{
781 if (STATE_MODULES (sd) != NULL)
782 sim_module_uninstall (sd);
783 sim_cpu_free_all (sd);
784 sim_state_free (sd);
785}
786
787SIM_DESC
788sim_open (SIM_OPEN_KIND kind,
789 host_callback *cb,
790 struct bfd *abfd,
2e3d4f4d 791 char * const *argv)
f46e4eb7
JB
792{
793 char c;
794 size_t i;
795 SIM_DESC sd = sim_state_alloc (kind, cb);
796
797 /* The cpu data is kept in a separately allocated chunk of memory. */
798 if (sim_cpu_alloc_all (sd, 1, /*cgen_cpu_max_extra_bytes ()*/0) != SIM_RC_OK)
799 {
800 free_state (sd);
801 return 0;
802 }
803
804 if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
805 {
806 free_state (sd);
807 return 0;
808 }
809
77cf2ef5 810 /* The parser will print an error message for us, so we silently return. */
f46e4eb7
JB
811 if (sim_parse_args (sd, argv) != SIM_RC_OK)
812 {
813 free_state (sd);
814 return 0;
815 }
816
817 /* Allocate external memory if none specified by user.
818 Use address 4 here in case the user wanted address 0 unmapped. */
819 if (sim_core_read_buffer (sd, NULL, read_map, &c, 4, 1) == 0)
820 {
821 sim_do_command (sd, "memory region 0x00000000,0x40000");
822 sim_do_command (sd, "memory region 0x800000,0x10000");
823 }
824
825 /* Check for/establish the reference program image. */
826 if (sim_analyze_program (sd,
827 (STATE_PROG_ARGV (sd) != NULL
828 ? *STATE_PROG_ARGV (sd)
829 : NULL), abfd) != SIM_RC_OK)
830 {
831 free_state (sd);
832 return 0;
833 }
834
835 /* Configure/verify the target byte order and other runtime
836 configuration options. */
837 if (sim_config (sd) != SIM_RC_OK)
838 {
839 free_state (sd);
840 return 0;
841 }
842
843 if (sim_post_argv_init (sd) != SIM_RC_OK)
844 {
845 free_state (sd);
846 return 0;
847 }
848
849 /* CPU specific initialization. */
850 for (i = 0; i < MAX_NR_PROCESSORS; ++i)
851 {
852 SIM_CPU *cpu = STATE_CPU (sd, i);
853
854 CPU_REG_FETCH (cpu) = ft32_reg_fetch;
855 CPU_REG_STORE (cpu) = ft32_reg_store;
856 CPU_PC_FETCH (cpu) = ft32_pc_get;
857 CPU_PC_STORE (cpu) = ft32_pc_set;
858 }
859
860 return sd;
861}
862
f46e4eb7
JB
863SIM_RC
864sim_create_inferior (SIM_DESC sd,
865 struct bfd *abfd,
2e3d4f4d
MF
866 char * const *argv,
867 char * const *env)
f46e4eb7
JB
868{
869 uint32_t addr;
870 sim_cpu *cpu = STATE_CPU (sd, 0);
871
872 /* Set the PC. */
873 if (abfd != NULL)
874 addr = bfd_get_start_address (abfd);
875 else
876 addr = 0;
877
0e967299
MF
878 /* Standalone mode (i.e. `run`) will take care of the argv for us in
879 sim_open() -> sim_parse_args(). But in debug mode (i.e. 'target sim'
880 with `gdb`), we need to handle it because the user can change the
881 argv on the fly via gdb's 'run'. */
882 if (STATE_PROG_ARGV (sd) != argv)
f46e4eb7
JB
883 {
884 freeargv (STATE_PROG_ARGV (sd));
885 STATE_PROG_ARGV (sd) = dupargv (argv);
886 }
887 cpu->state.regs[FT32_HARD_SP] = addr;
888 cpu->state.num_i = 0;
889 cpu->state.cycles = 0;
890 cpu->state.next_tick_cycle = 100000;
891
892 return SIM_RC_OK;
893}