]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - sim/h8300/compile.c
2000-06-13 H.J. Lu <hjl@gnu.org>
[thirdparty/binutils-gdb.git] / sim / h8300 / compile.c
CommitLineData
c906108c
SS
1/*
2 * Simulator for the Hitachi H8/300 architecture.
3 *
4 * Written by Steve Chamberlain of Cygnus Support. sac@cygnus.com
5 *
6 * This file is part of H8/300 sim
7 *
8 *
9 * THIS SOFTWARE IS NOT COPYRIGHTED
10 *
11 * Cygnus offers the following for use in the public domain. Cygnus makes no
12 * warranty with regard to the software or its performance and the user
13 * accepts the software "AS IS" with all faults.
14 *
15 * CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS
16 * SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
17 * AND FITNESS FOR A PARTICULAR PURPOSE.
18 */
19
20#include "config.h"
21
22#include <stdio.h>
23#include <signal.h>
24#ifdef HAVE_TIME_H
25#include <time.h>
26#endif
27#ifdef HAVE_STDLIB_H
28#include <stdlib.h>
29#endif
30#ifdef HAVE_SYS_PARAM_H
31#include <sys/param.h>
32#endif
33#include "wait.h"
34#include "ansidecl.h"
35#include "bfd.h"
36#include "callback.h"
37#include "remote-sim.h"
38
39#ifndef SIGTRAP
40# define SIGTRAP 5
41#endif
42
43int debug;
44
45host_callback *sim_callback;
46
47static SIM_OPEN_KIND sim_kind;
48static char *myname;
49
50/* FIXME: Needs to live in header file.
51 This header should also include the things in remote-sim.h.
52 One could move this to remote-sim.h but this function isn't needed
53 by gdb. */
54void sim_set_simcache_size PARAMS ((int));
55
56#define X(op, size) op*4+size
57
58#define SP (h8300hmode ? SL:SW)
59#define SB 0
60#define SW 1
61#define SL 2
62#define OP_REG 1
63#define OP_DEC 2
64#define OP_DISP 3
65#define OP_INC 4
66#define OP_PCREL 5
67#define OP_MEM 6
68#define OP_CCR 7
69#define OP_IMM 8
70#define OP_ABS 10
71#define h8_opcodes ops
72#define DEFINE_TABLE
73#include "opcode/h8300.h"
74
75#include "inst.h"
76
7a292a7a
SS
77/* The rate at which to call the host's poll_quit callback. */
78
79#define POLL_QUIT_INTERVAL 0x80000
80
c906108c
SS
81#define LOW_BYTE(x) ((x) & 0xff)
82#define HIGH_BYTE(x) (((x)>>8) & 0xff)
83#define P(X,Y) ((X<<8) | Y)
84
85#define BUILDSR() cpu.ccr = (N << 3) | (Z << 2) | (V<<1) | C;
86
87#define GETSR() \
88 c = (cpu.ccr >> 0) & 1;\
89 v = (cpu.ccr >> 1) & 1;\
90 nz = !((cpu.ccr >> 2) & 1);\
91 n = (cpu.ccr >> 3) & 1;
92
93#ifdef __CHAR_IS_SIGNED__
94#define SEXTCHAR(x) ((char)(x))
95#endif
96
97#ifndef SEXTCHAR
98#define SEXTCHAR(x) ((x & 0x80) ? (x | ~0xff): x & 0xff)
99#endif
100
101#define UEXTCHAR(x) ((x) & 0xff)
102#define UEXTSHORT(x) ((x) & 0xffff)
103#define SEXTSHORT(x) ((short)(x))
104
105static cpu_state_type cpu;
106
107int h8300hmode = 0;
108int h8300smode = 0;
109
110static int memory_size;
111
112
113static int
114get_now ()
115{
116#ifndef WIN32
117 return time (0);
118#endif
119 return 0;
120}
121
122static int
123now_persec ()
124{
125 return 1;
126}
127
128
129static int
130bitfrom (x)
131{
132 switch (x & SIZE)
133 {
134 case L_8:
135 return SB;
136 case L_16:
137 return SW;
138 case L_32:
139 return SL;
140 case L_P:
141 return h8300hmode ? SL : SW;
142 }
143}
144
145static
146unsigned int
147lvalue (x, rn)
148{
149 switch (x / 4)
150 {
151 case OP_DISP:
152 if (rn == 8)
153 {
154 return X (OP_IMM, SP);
155 }
156 return X (OP_REG, SP);
157
158 case OP_MEM:
159
160 return X (OP_MEM, SP);
161 default:
162 abort ();
163 }
164}
165
166static unsigned int
167decode (addr, data, dst)
168 int addr;
169 unsigned char *data;
170 decoded_inst *dst;
171
172{
173 int rs = 0;
174 int rd = 0;
175 int rdisp = 0;
176 int abs = 0;
177 int plen = 0;
178 int bit = 0;
179
180 struct h8_opcode *q = h8_opcodes;
181 int size = 0;
182 dst->dst.type = -1;
183 dst->src.type = -1;
184 /* Find the exact opcode/arg combo */
185 while (q->name)
186 {
187 op_type *nib;
188 unsigned int len = 0;
189
190 nib = q->data.nib;
191
192 while (1)
193 {
194 op_type looking_for = *nib;
195 int thisnib = data[len >> 1];
196
197 thisnib = (len & 1) ? (thisnib & 0xf) : ((thisnib >> 4) & 0xf);
198
199 if (looking_for < 16 && looking_for >= 0)
200 {
201 if (looking_for != thisnib)
202 goto fail;
203 }
204 else
205 {
206 if ((int) looking_for & (int) B31)
207 {
208 if (!(((int) thisnib & 0x8) != 0))
209 goto fail;
210 looking_for = (op_type) ((int) looking_for & ~(int)
211 B31);
212 thisnib &= 0x7;
213 }
214 if ((int) looking_for & (int) B30)
215 {
216 if (!(((int) thisnib & 0x8) == 0))
217 goto fail;
218 looking_for = (op_type) ((int) looking_for & ~(int) B30);
219 }
220 if (looking_for & DBIT)
221 {
222 if ((looking_for & 5) != (thisnib & 5))
223 goto fail;
224 abs = (thisnib & 0x8) ? 2 : 1;
225 }
226 else if (looking_for & (REG | IND | INC | DEC))
227 {
228 if (looking_for & REG)
229 {
230 /*
231 * Can work out size from the
232 * register
233 */
234 size = bitfrom (looking_for);
235 }
236 if (looking_for & SRC)
237 {
238 rs = thisnib;
239 }
240 else
241 {
242 rd = thisnib;
243 }
244 }
245 else if (looking_for & L_16)
246 {
247 abs = (data[len >> 1]) * 256 + data[(len + 2) >> 1];
248 plen = 16;
249 if (looking_for & (PCREL | DISP))
250 {
251 abs = (short) (abs);
252 }
253 }
254 else if (looking_for & ABSJMP)
255 {
256 abs =
257 (data[1] << 16)
258 | (data[2] << 8)
259 | (data[3]);
260 }
261 else if (looking_for & MEMIND)
262 {
263 abs = data[1];
264 }
265 else if (looking_for & L_32)
266 {
267 int i = len >> 1;
268 abs = (data[i] << 24)
269 | (data[i + 1] << 16)
270 | (data[i + 2] << 8)
271 | (data[i + 3]);
272
273 plen = 32;
274 }
275 else if (looking_for & L_24)
276 {
277 int i = len >> 1;
278 abs = (data[i] << 16) | (data[i + 1] << 8) | (data[i + 2]);
279 plen = 24;
280 }
281 else if (looking_for & IGNORE)
282 {
283 /* nothing to do */
284 }
285 else if (looking_for & DISPREG)
286 {
287 rdisp = thisnib & 0x7;
288 }
289 else if (looking_for & KBIT)
290 {
291 switch (thisnib)
292 {
293 case 9:
294 abs = 4;
295 break;
296 case 8:
297 abs = 2;
298 break;
299 case 0:
300 abs = 1;
301 break;
302 }
303 }
304 else if (looking_for & L_8)
305 {
306 plen = 8;
307
308 if (looking_for & PCREL)
309 {
310 abs = SEXTCHAR (data[len >> 1]);
311 }
312 else if (looking_for & ABS8MEM)
313 {
314 plen = 8;
315 abs = h8300hmode ? ~0xff0000ff : ~0xffff00ff;
316 abs |= data[len >> 1] & 0xff ;
317 }
318 else
319 {
320 abs = data[len >> 1] & 0xff;
321 }
322 }
323 else if (looking_for & L_3)
324 {
325 plen = 3;
326
327 bit = thisnib;
328 }
329 else if (looking_for == E)
330 {
331 dst->op = q;
332
333 /* Fill in the args */
334 {
335 op_type *args = q->args.nib;
336 int hadone = 0;
337
338 while (*args != E)
339 {
340 int x = *args;
341 int rn = (x & DST) ? rd : rs;
342 ea_type *p;
343
344 if (x & DST)
345 {
346 p = &(dst->dst);
347 }
348 else
349 {
350 p = &(dst->src);
351 }
352
353 if (x & (L_3))
354 {
355 p->type = X (OP_IMM, size);
356 p->literal = bit;
357 }
358 else if (x & (IMM | KBIT | DBIT))
359 {
360 p->type = X (OP_IMM, size);
361 p->literal = abs;
362 }
363 else if (x & REG)
364 {
365 /* Reset the size, some
366 ops (like mul) have two sizes */
367
368 size = bitfrom (x);
369 p->type = X (OP_REG, size);
370 p->reg = rn;
371 }
372 else if (x & INC)
373 {
374 p->type = X (OP_INC, size);
375 p->reg = rn & 0x7;
376 }
377 else if (x & DEC)
378 {
379 p->type = X (OP_DEC, size);
380 p->reg = rn & 0x7;
381 }
382 else if (x & IND)
383 {
384 p->type = X (OP_DISP, size);
385 p->reg = rn & 0x7;
386 p->literal = 0;
387 }
388 else if (x & (ABS | ABSJMP | ABS8MEM))
389 {
390 p->type = X (OP_DISP, size);
391 p->literal = abs;
392 p->reg = 8;
393 }
394 else if (x & MEMIND)
395 {
396 p->type = X (OP_MEM, size);
397 p->literal = abs;
398 }
399 else if (x & PCREL)
400 {
401 p->type = X (OP_PCREL, size);
402 p->literal = abs + addr + 2;
403 if (x & L_16)
404 p->literal += 2;
405 }
406 else if (x & ABSJMP)
407 {
408 p->type = X (OP_IMM, SP);
409 p->literal = abs;
410 }
411 else if (x & DISP)
412 {
413 p->type = X (OP_DISP, size);
414 p->literal = abs;
415 p->reg = rdisp & 0x7;
416 }
417 else if (x & CCR)
418 {
419 p->type = OP_CCR;
420 }
421 else
422 printf ("Hmmmm %x", x);
423
424 args++;
425 }
426 }
427
428 /*
429 * But a jmp or a jsr gets
430 * automagically lvalued, since we
431 * branch to their address not their
432 * contents
433 */
434 if (q->how == O (O_JSR, SB)
435 || q->how == O (O_JMP, SB))
436 {
437 dst->src.type = lvalue (dst->src.type, dst->src.reg);
438 }
439
440 if (dst->dst.type == -1)
441 dst->dst = dst->src;
442
443 dst->opcode = q->how;
444 dst->cycles = q->time;
445
446 /* And a jsr to 0xc4 is turned into a magic trap */
447
448 if (dst->opcode == O (O_JSR, SB))
449 {
450 if (dst->src.literal == 0xc4)
451 {
452 dst->opcode = O (O_SYSCALL, SB);
453 }
454 }
455
456 dst->next_pc = addr + len / 2;
457 return;
458 }
459 else
460 {
461 printf ("Dont understand %x \n", looking_for);
462 }
463 }
464
465 len++;
466 nib++;
467 }
468
469 fail:
470 q++;
471 }
472
473 dst->opcode = O (O_ILL, SB);
474}
475
476
477static void
478compile (pc)
479{
480 int idx;
481
482 /* find the next cache entry to use */
483
484 idx = cpu.cache_top + 1;
485 cpu.compiles++;
486 if (idx >= cpu.csize)
487 {
488 idx = 1;
489 }
490 cpu.cache_top = idx;
491
492 /* Throw away its old meaning */
493 cpu.cache_idx[cpu.cache[idx].oldpc] = 0;
494
495 /* set to new address */
496 cpu.cache[idx].oldpc = pc;
497
498 /* fill in instruction info */
499 decode (pc, cpu.memory + pc, cpu.cache + idx);
500
501 /* point to new cache entry */
502 cpu.cache_idx[pc] = idx;
503}
504
505
506static unsigned char *breg[18];
507static unsigned short *wreg[18];
508static unsigned int *lreg[18];
509
510#define GET_B_REG(x) *(breg[x])
511#define SET_B_REG(x,y) (*(breg[x])) = (y)
512#define GET_W_REG(x) *(wreg[x])
513#define SET_W_REG(x,y) (*(wreg[x])) = (y)
514
515#define GET_L_REG(x) *(lreg[x])
516#define SET_L_REG(x,y) (*(lreg[x])) = (y)
517
518#define GET_MEMORY_L(x) \
519 (x < memory_size \
520 ? ((cpu.memory[x+0] << 24) | (cpu.memory[x+1] << 16) \
521 | (cpu.memory[x+2] << 8) | cpu.memory[x+3]) \
522 : ((cpu.eightbit[(x+0) & 0xff] << 24) | (cpu.eightbit[(x+1) & 0xff] << 16) \
523 | (cpu.eightbit[(x+2) & 0xff] << 8) | cpu.eightbit[(x+3) & 0xff]))
524
525#define GET_MEMORY_W(x) \
526 (x < memory_size \
527 ? ((cpu.memory[x+0] << 8) | (cpu.memory[x+1] << 0)) \
528 : ((cpu.eightbit[(x+0) & 0xff] << 8) | (cpu.eightbit[(x+1) & 0xff] << 0)))
529
530
531#define GET_MEMORY_B(x) \
532 (x < memory_size ? (cpu.memory[x]) : (cpu.eightbit[x & 0xff]))
533
534#define SET_MEMORY_L(x,y) \
535{ register unsigned char *_p; register int __y = y; \
536 _p = (x < memory_size ? cpu.memory+x : cpu.eightbit + (x & 0xff)); \
537 _p[0] = (__y)>>24; _p[1] = (__y)>>16; \
538 _p[2] = (__y)>>8; _p[3] = (__y)>>0;}
539
540#define SET_MEMORY_W(x,y) \
541{ register unsigned char *_p; register int __y = y; \
542 _p = (x < memory_size ? cpu.memory+x : cpu.eightbit + (x & 0xff)); \
543 _p[0] = (__y)>>8; _p[1] =(__y);}
544
545#define SET_MEMORY_B(x,y) \
546 (x < memory_size ? (cpu.memory[(x)] = y) : (cpu.eightbit[x & 0xff] = y))
547
548int
549fetch (arg, n)
550 ea_type *arg;
551{
552 int rn = arg->reg;
553 int abs = arg->literal;
554 int r;
555 int t;
556
557 switch (arg->type)
558 {
559 case X (OP_REG, SB):
560 return GET_B_REG (rn);
561 case X (OP_REG, SW):
562 return GET_W_REG (rn);
563 case X (OP_REG, SL):
564 return GET_L_REG (rn);
565 case X (OP_IMM, SB):
566 case X (OP_IMM, SW):
567 case X (OP_IMM, SL):
568 return abs;
569 case X (OP_DEC, SB):
570 abort ();
571
572 case X (OP_INC, SB):
573 t = GET_L_REG (rn);
574 t &= cpu.mask;
575 r = GET_MEMORY_B (t);
576 t++;
577 t = t & cpu.mask;
578 SET_L_REG (rn, t);
579 return r;
580 break;
581 case X (OP_INC, SW):
582 t = GET_L_REG (rn);
583 t &= cpu.mask;
584 r = GET_MEMORY_W (t);
585 t += 2;
586 t = t & cpu.mask;
587 SET_L_REG (rn, t);
588 return r;
589 case X (OP_INC, SL):
590 t = GET_L_REG (rn);
591 t &= cpu.mask;
592 r = GET_MEMORY_L (t);
593
594 t += 4;
595 t = t & cpu.mask;
596 SET_L_REG (rn, t);
597 return r;
598
599 case X (OP_DISP, SB):
600 t = GET_L_REG (rn) + abs;
601 t &= cpu.mask;
602 return GET_MEMORY_B (t);
603
604 case X (OP_DISP, SW):
605 t = GET_L_REG (rn) + abs;
606 t &= cpu.mask;
607 return GET_MEMORY_W (t);
608
609 case X (OP_DISP, SL):
610 t = GET_L_REG (rn) + abs;
611 t &= cpu.mask;
612 return GET_MEMORY_L (t);
613
614 case X (OP_MEM, SL):
615 t = GET_MEMORY_L (abs);
616 t &= cpu.mask;
617 return t;
618
619 case X (OP_MEM, SW):
620 t = GET_MEMORY_W (abs);
621 t &= cpu.mask;
622 return t;
623
624 default:
625 abort ();
626
627 }
628}
629
630
631static
632void
633store (arg, n)
634 ea_type *arg;
635 int n;
636{
637 int rn = arg->reg;
638 int abs = arg->literal;
639 int t;
640
641 switch (arg->type)
642 {
643 case X (OP_REG, SB):
644 SET_B_REG (rn, n);
645 break;
646 case X (OP_REG, SW):
647 SET_W_REG (rn, n);
648 break;
649 case X (OP_REG, SL):
650 SET_L_REG (rn, n);
651 break;
652
653 case X (OP_DEC, SB):
654 t = GET_L_REG (rn) - 1;
655 t &= cpu.mask;
656 SET_L_REG (rn, t);
657 SET_MEMORY_B (t, n);
658
659 break;
660 case X (OP_DEC, SW):
661 t = (GET_L_REG (rn) - 2) & cpu.mask;
662 SET_L_REG (rn, t);
663 SET_MEMORY_W (t, n);
664 break;
665
666 case X (OP_DEC, SL):
667 t = (GET_L_REG (rn) - 4) & cpu.mask;
668 SET_L_REG (rn, t);
669 SET_MEMORY_L (t, n);
670 break;
671
672 case X (OP_DISP, SB):
673 t = GET_L_REG (rn) + abs;
674 t &= cpu.mask;
675 SET_MEMORY_B (t, n);
676 break;
677
678 case X (OP_DISP, SW):
679 t = GET_L_REG (rn) + abs;
680 t &= cpu.mask;
681 SET_MEMORY_W (t, n);
682 break;
683
684 case X (OP_DISP, SL):
685 t = GET_L_REG (rn) + abs;
686 t &= cpu.mask;
687 SET_MEMORY_L (t, n);
688 break;
689 default:
690 abort ();
691 }
692}
693
694
695static union
696{
697 short int i;
698 struct
699 {
700 char low;
701 char high;
702 }
703 u;
704}
705
706littleendian;
707
708static
709void
710init_pointers ()
711{
712 static int init;
713
714 if (!init)
715 {
716 int i;
717
718 init = 1;
719 littleendian.i = 1;
720
721 if (h8300hmode)
722 memory_size = H8300H_MSIZE;
723 else
724 memory_size = H8300_MSIZE;
725 cpu.memory = (unsigned char *) calloc (sizeof (char), memory_size);
726 cpu.cache_idx = (unsigned short *) calloc (sizeof (short), memory_size);
727 cpu.eightbit = (unsigned char *) calloc (sizeof (char), 256);
728
729 /* `msize' must be a power of two */
730 if ((memory_size & (memory_size - 1)) != 0)
731 abort ();
732 cpu.mask = memory_size - 1;
733
734 for (i = 0; i < 9; i++)
735 {
736 cpu.regs[i] = 0;
737 }
738
739 for (i = 0; i < 8; i++)
740 {
741 unsigned char *p = (unsigned char *) (cpu.regs + i);
742 unsigned char *e = (unsigned char *) (cpu.regs + i + 1);
743 unsigned short *q = (unsigned short *) (cpu.regs + i);
744 unsigned short *u = (unsigned short *) (cpu.regs + i + 1);
745 cpu.regs[i] = 0x00112233;
746 while (p < e)
747 {
748 if (*p == 0x22)
749 {
750 breg[i] = p;
751 }
752 if (*p == 0x33)
753 {
754 breg[i + 8] = p;
755 }
756 p++;
757 }
758 while (q < u)
759 {
760 if (*q == 0x2233)
761 {
762 wreg[i] = q;
763 }
764 if (*q == 0x0011)
765 {
766 wreg[i + 8] = q;
767 }
768 q++;
769 }
770 cpu.regs[i] = 0;
771 lreg[i] = &cpu.regs[i];
772 }
773
774 lreg[8] = &cpu.regs[8];
775
776 /* initialize the seg registers */
777 if (!cpu.cache)
778 sim_set_simcache_size (CSIZE);
779 }
780}
781
782static void
783control_c (sig, code, scp, addr)
784 int sig;
785 int code;
786 char *scp;
787 char *addr;
788{
789 cpu.state = SIM_STATE_STOPPED;
790 cpu.exception = SIGINT;
791}
792
793#define C (c != 0)
794#define Z (nz == 0)
795#define V (v != 0)
796#define N (n != 0)
797
798static int
799mop (code, bsize, sign)
800 decoded_inst *code;
801 int bsize;
802 int sign;
803{
804 int multiplier;
805 int multiplicand;
806 int result;
807 int n, nz;
808
809 if (sign)
810 {
811 multiplicand =
812 bsize ? SEXTCHAR (GET_W_REG (code->dst.reg)) :
813 SEXTSHORT (GET_W_REG (code->dst.reg));
814 multiplier =
815 bsize ? SEXTCHAR (GET_B_REG (code->src.reg)) :
816 SEXTSHORT (GET_W_REG (code->src.reg));
817 }
818 else
819 {
820 multiplicand = bsize ? UEXTCHAR (GET_W_REG (code->dst.reg)) :
821 UEXTSHORT (GET_W_REG (code->dst.reg));
822 multiplier =
823 bsize ? UEXTCHAR (GET_B_REG (code->src.reg)) :
824 UEXTSHORT (GET_W_REG (code->src.reg));
825
826 }
827 result = multiplier * multiplicand;
828
829 if (sign)
830 {
831 n = result & (bsize ? 0x8000 : 0x80000000);
832 nz = result & (bsize ? 0xffff : 0xffffffff);
833 }
834 if (bsize)
835 {
836 SET_W_REG (code->dst.reg, result);
837 }
838 else
839 {
840 SET_L_REG (code->dst.reg, result);
841 }
842/* return ((n==1) << 1) | (nz==1); */
843
844}
845
846#define ONOT(name, how) \
847case O(name, SB): \
848{ \
849 int t; \
850 int hm = 0x80; \
851 rd = GET_B_REG (code->src.reg); \
852 how; \
853 goto shift8; \
854} \
855case O(name, SW): \
856{ \
857 int t; \
858 int hm = 0x8000; \
859 rd = GET_W_REG (code->src.reg); \
860 how; \
861 goto shift16; \
862} \
863case O(name, SL): \
864{ \
865 int t; \
866 int hm = 0x80000000; \
867 rd = GET_L_REG (code->src.reg); \
868 how; \
869 goto shift32; \
870}
871
872#define OSHIFTS(name, how1, how2) \
873case O(name, SB): \
874{ \
875 int t; \
876 int hm = 0x80; \
877 rd = GET_B_REG (code->src.reg); \
878 if ((GET_MEMORY_B (pc + 1) & 0x40) == 0) \
879 { \
880 how1; \
881 } \
882 else \
883 { \
884 how2; \
885 } \
886 goto shift8; \
887} \
888case O(name, SW): \
889{ \
890 int t; \
891 int hm = 0x8000; \
892 rd = GET_W_REG (code->src.reg); \
893 if ((GET_MEMORY_B (pc + 1) & 0x40) == 0) \
894 { \
895 how1; \
896 } \
897 else \
898 { \
899 how2; \
900 } \
901 goto shift16; \
902} \
903case O(name, SL): \
904{ \
905 int t; \
906 int hm = 0x80000000; \
907 rd = GET_L_REG (code->src.reg); \
908 if ((GET_MEMORY_B (pc + 1) & 0x40) == 0) \
909 { \
910 how1; \
911 } \
912 else \
913 { \
914 how2; \
915 } \
916 goto shift32; \
917}
918
919#define OBITOP(name,f, s, op) \
920case O(name, SB): \
921{ \
922 int m; \
923 int b; \
924 if (f) ea = fetch (&code->dst); \
925 m=1<< fetch(&code->src); \
926 op; \
927 if(s) store (&code->dst,ea); goto next; \
928}
929
930int
931sim_stop (sd)
932 SIM_DESC sd;
933{
934 cpu.state = SIM_STATE_STOPPED;
935 cpu.exception = SIGINT;
936 return 1;
937}
938
939void
940sim_resume (sd, step, siggnal)
941 SIM_DESC sd;
942{
943 static int init1;
944 int cycles = 0;
945 int insts = 0;
946 int tick_start = get_now ();
947 void (*prev) ();
948 int poll_count = 0;
949 int res;
950 int tmp;
951 int rd;
952 int ea;
953 int bit;
954 int pc;
955 int c, nz, v, n;
956 int oldmask;
957 init_pointers ();
958
959 prev = signal (SIGINT, control_c);
960
961 if (step)
962 {
963 cpu.state = SIM_STATE_STOPPED;
964 cpu.exception = SIGTRAP;
965 }
966 else
967 {
968 cpu.state = SIM_STATE_RUNNING;
969 cpu.exception = 0;
970 }
971
972 pc = cpu.pc;
973
974 /* The PC should never be odd. */
975 if (pc & 0x1)
976 abort ();
977
978 GETSR ();
979 oldmask = cpu.mask;
980 if (!h8300hmode)
981 cpu.mask = 0xffff;
982 do
983 {
984 int cidx;
985 decoded_inst *code;
986
987 top:
988 cidx = cpu.cache_idx[pc];
989 code = cpu.cache + cidx;
990
991
992#define ALUOP(STORE, NAME, HOW) \
993 case O(NAME,SB): HOW; if(STORE)goto alu8;else goto just_flags_alu8; \
994 case O(NAME, SW): HOW; if(STORE)goto alu16;else goto just_flags_alu16; \
995 case O(NAME,SL): HOW; if(STORE)goto alu32;else goto just_flags_alu32;
996
997
998#define LOGOP(NAME, HOW) \
999 case O(NAME,SB): HOW; goto log8;\
1000 case O(NAME, SW): HOW; goto log16;\
1001 case O(NAME,SL): HOW; goto log32;
1002
1003
1004
1005#if ADEBUG
1006 if (debug)
1007 {
1008 printf ("%x %d %s\n", pc, code->opcode,
1009 code->op ? code->op->name : "**");
1010 }
1011 cpu.stats[code->opcode]++;
1012
1013#endif
1014
1015 cycles += code->cycles;
1016 insts++;
1017 switch (code->opcode)
1018 {
1019 case 0:
1020 /*
1021 * This opcode is a fake for when we get to an
1022 * instruction which hasnt been compiled
1023 */
1024 compile (pc);
1025 goto top;
1026 break;
1027
1028
1029 case O (O_SUBX, SB):
1030 rd = fetch (&code->dst);
1031 ea = fetch (&code->src);
1032 ea = -(ea + C);
1033 res = rd + ea;
1034 goto alu8;
1035
1036 case O (O_ADDX, SB):
1037 rd = fetch (&code->dst);
1038 ea = fetch (&code->src);
1039 ea = C + ea;
1040 res = rd + ea;
1041 goto alu8;
1042
1043#define EA ea = fetch(&code->src);
1044#define RD_EA ea = fetch(&code->src); rd = fetch(&code->dst);
1045
1046 ALUOP (1, O_SUB, RD_EA;
1047 ea = -ea;
1048 res = rd + ea);
1049 ALUOP (1, O_NEG, EA;
1050 ea = -ea;
1051 rd = 0;
1052 res = rd + ea);
1053
1054 case O (O_ADD, SB):
1055 rd = GET_B_REG (code->dst.reg);
1056 ea = fetch (&code->src);
1057 res = rd + ea;
1058 goto alu8;
1059 case O (O_ADD, SW):
1060 rd = GET_W_REG (code->dst.reg);
1061 ea = fetch (&code->src);
1062 res = rd + ea;
1063 goto alu16;
1064 case O (O_ADD, SL):
1065 rd = GET_L_REG (code->dst.reg);
1066 ea = fetch (&code->src);
1067 res = rd + ea;
1068 goto alu32;
1069
1070
1071 LOGOP (O_AND, RD_EA;
1072 res = rd & ea);
1073
1074 LOGOP (O_OR, RD_EA;
1075 res = rd | ea);
1076
1077 LOGOP (O_XOR, RD_EA;
1078 res = rd ^ ea);
1079
1080
1081 case O (O_MOV_TO_MEM, SB):
1082 res = GET_B_REG (code->src.reg);
1083 goto log8;
1084 case O (O_MOV_TO_MEM, SW):
1085 res = GET_W_REG (code->src.reg);
1086 goto log16;
1087 case O (O_MOV_TO_MEM, SL):
1088 res = GET_L_REG (code->src.reg);
1089 goto log32;
1090
1091
1092 case O (O_MOV_TO_REG, SB):
1093 res = fetch (&code->src);
1094 SET_B_REG (code->dst.reg, res);
1095 goto just_flags_log8;
1096 case O (O_MOV_TO_REG, SW):
1097 res = fetch (&code->src);
1098 SET_W_REG (code->dst.reg, res);
1099 goto just_flags_log16;
1100 case O (O_MOV_TO_REG, SL):
1101 res = fetch (&code->src);
1102 SET_L_REG (code->dst.reg, res);
1103 goto just_flags_log32;
1104
1105
1106 case O (O_ADDS, SL):
1107 SET_L_REG (code->dst.reg,
1108 GET_L_REG (code->dst.reg)
1109 + code->src.literal);
1110
1111 goto next;
1112
1113 case O (O_SUBS, SL):
1114 SET_L_REG (code->dst.reg,
1115 GET_L_REG (code->dst.reg)
1116 - code->src.literal);
1117 goto next;
1118
1119 case O (O_CMP, SB):
1120 rd = fetch (&code->dst);
1121 ea = fetch (&code->src);
1122 ea = -ea;
1123 res = rd + ea;
1124 goto just_flags_alu8;
1125
1126 case O (O_CMP, SW):
1127 rd = fetch (&code->dst);
1128 ea = fetch (&code->src);
1129 ea = -ea;
1130 res = rd + ea;
1131 goto just_flags_alu16;
1132
1133 case O (O_CMP, SL):
1134 rd = fetch (&code->dst);
1135 ea = fetch (&code->src);
1136 ea = -ea;
1137 res = rd + ea;
1138 goto just_flags_alu32;
1139
1140
1141 case O (O_DEC, SB):
1142 rd = GET_B_REG (code->src.reg);
1143 ea = -1;
1144 res = rd + ea;
1145 SET_B_REG (code->src.reg, res);
1146 goto just_flags_inc8;
1147
1148 case O (O_DEC, SW):
1149 rd = GET_W_REG (code->dst.reg);
1150 ea = -code->src.literal;
1151 res = rd + ea;
1152 SET_W_REG (code->dst.reg, res);
1153 goto just_flags_inc16;
1154
1155 case O (O_DEC, SL):
1156 rd = GET_L_REG (code->dst.reg);
1157 ea = -code->src.literal;
1158 res = rd + ea;
1159 SET_L_REG (code->dst.reg, res);
1160 goto just_flags_inc32;
1161
1162
1163 case O (O_INC, SB):
1164 rd = GET_B_REG (code->src.reg);
1165 ea = 1;
1166 res = rd + ea;
1167 SET_B_REG (code->src.reg, res);
1168 goto just_flags_inc8;
1169
1170 case O (O_INC, SW):
1171 rd = GET_W_REG (code->dst.reg);
1172 ea = code->src.literal;
1173 res = rd + ea;
1174 SET_W_REG (code->dst.reg, res);
1175 goto just_flags_inc16;
1176
1177 case O (O_INC, SL):
1178 rd = GET_L_REG (code->dst.reg);
1179 ea = code->src.literal;
1180 res = rd + ea;
1181 SET_L_REG (code->dst.reg, res);
1182 goto just_flags_inc32;
1183
1184
1185#define GET_CCR(x) BUILDSR();x = cpu.ccr
1186
1187 case O (O_ANDC, SB):
1188 GET_CCR (rd);
1189 ea = code->src.literal;
1190 res = rd & ea;
1191 goto setc;
1192
1193 case O (O_ORC, SB):
1194 GET_CCR (rd);
1195 ea = code->src.literal;
1196 res = rd | ea;
1197 goto setc;
1198
1199 case O (O_XORC, SB):
1200 GET_CCR (rd);
1201 ea = code->src.literal;
1202 res = rd ^ ea;
1203 goto setc;
1204
1205
1206 case O (O_BRA, SB):
1207 if (1)
1208 goto condtrue;
1209 goto next;
1210
1211 case O (O_BRN, SB):
1212 if (0)
1213 goto condtrue;
1214 goto next;
1215
1216 case O (O_BHI, SB):
1217 if ((C || Z) == 0)
1218 goto condtrue;
1219 goto next;
1220
1221
1222 case O (O_BLS, SB):
1223 if ((C || Z))
1224 goto condtrue;
1225 goto next;
1226
1227 case O (O_BCS, SB):
1228 if ((C == 1))
1229 goto condtrue;
1230 goto next;
1231
1232 case O (O_BCC, SB):
1233 if ((C == 0))
1234 goto condtrue;
1235 goto next;
1236
1237 case O (O_BEQ, SB):
1238 if (Z)
1239 goto condtrue;
1240 goto next;
1241 case O (O_BGT, SB):
1242 if (((Z || (N ^ V)) == 0))
1243 goto condtrue;
1244 goto next;
1245
1246
1247 case O (O_BLE, SB):
1248 if (((Z || (N ^ V)) == 1))
1249 goto condtrue;
1250 goto next;
1251
1252 case O (O_BGE, SB):
1253 if ((N ^ V) == 0)
1254 goto condtrue;
1255 goto next;
1256 case O (O_BLT, SB):
1257 if ((N ^ V))
1258 goto condtrue;
1259 goto next;
1260 case O (O_BMI, SB):
1261 if ((N))
1262 goto condtrue;
1263 goto next;
1264 case O (O_BNE, SB):
1265 if ((Z == 0))
1266 goto condtrue;
1267 goto next;
1268
1269 case O (O_BPL, SB):
1270 if (N == 0)
1271 goto condtrue;
1272 goto next;
1273 case O (O_BVC, SB):
1274 if ((V == 0))
1275 goto condtrue;
1276 goto next;
1277 case O (O_BVS, SB):
1278 if ((V == 1))
1279 goto condtrue;
1280 goto next;
1281
1282 case O (O_SYSCALL, SB):
1283 {
1284 char c = cpu.regs[2];
1285 sim_callback->write_stdout (sim_callback, &c, 1);
1286 }
1287 goto next;
1288
1289 ONOT (O_NOT, rd = ~rd; v = 0;);
1290 OSHIFTS (O_SHLL,
1291 c = rd & hm; v = 0; rd <<= 1,
1292 c = rd & (hm >> 1); v = 0; rd <<= 2);
1293 OSHIFTS (O_SHLR,
1294 c = rd & 1; v = 0; rd = (unsigned int) rd >> 1,
1295 c = rd & 2; v = 0; rd = (unsigned int) rd >> 2);
1296 OSHIFTS (O_SHAL,
1297 c = rd & hm; v = (rd & hm) != ((rd & (hm >> 1)) << 1); rd <<= 1,
1298 c = rd & (hm >> 1); v = (rd & (hm >> 1)) != ((rd & (hm >> 2)) << 2); rd <<= 2);
1299 OSHIFTS (O_SHAR,
1300 t = rd & hm; c = rd & 1; v = 0; rd >>= 1; rd |= t,
1301 t = rd & hm; c = rd & 2; v = 0; rd >>= 2; rd |= t | t >> 1 );
1302 OSHIFTS (O_ROTL,
1303 c = rd & hm; v = 0; rd <<= 1; rd |= C,
1304 c = rd & hm; v = 0; rd <<= 1; rd |= C; c = rd & hm; rd <<= 1; rd |= C);
1305 OSHIFTS (O_ROTR,
1306 c = rd & 1; v = 0; rd = (unsigned int) rd >> 1; if (c) rd |= hm,
1307 c = rd & 1; v = 0; rd = (unsigned int) rd >> 1; if (c) rd |= hm; c = rd & 1; rd = (unsigned int) rd >> 1; if (c) rd |= hm);
1308 OSHIFTS (O_ROTXL,
1309 t = rd & hm; rd <<= 1; rd |= C; c = t; v = 0,
1310 t = rd & hm; rd <<= 1; rd |= C; c = t; v = 0; t = rd & hm; rd <<= 1; rd |= C; c = t);
1311 OSHIFTS (O_ROTXR,
1312 t = rd & 1; rd = (unsigned int) rd >> 1; if (C) rd |= hm; c = t; v = 0,
1313 t = rd & 1; rd = (unsigned int) rd >> 1; if (C) rd |= hm; c = t; v = 0; t = rd & 1; rd = (unsigned int) rd >> 1; if (C) rd |= hm; c = t);
1314
1315 case O (O_JMP, SB):
1316 {
1317 pc = fetch (&code->src);
1318 goto end;
1319
1320 }
1321
1322 case O (O_JSR, SB):
1323 {
1324 int tmp;
1325 pc = fetch (&code->src);
1326 call:
1327 tmp = cpu.regs[7];
1328
1329 if (h8300hmode)
1330 {
1331 tmp -= 4;
1332 SET_MEMORY_L (tmp, code->next_pc);
1333 }
1334 else
1335 {
1336 tmp -= 2;
1337 SET_MEMORY_W (tmp, code->next_pc);
1338 }
1339 cpu.regs[7] = tmp;
1340
1341 goto end;
1342 }
1343 case O (O_BSR, SB):
1344 pc = code->src.literal;
1345 goto call;
1346
1347 case O (O_RTS, SN):
1348 {
1349 int tmp;
1350
1351 tmp = cpu.regs[7];
1352
1353 if (h8300hmode)
1354 {
1355 pc = GET_MEMORY_L (tmp);
1356 tmp += 4;
1357 }
1358 else
1359 {
1360 pc = GET_MEMORY_W (tmp);
1361 tmp += 2;
1362 }
1363
1364 cpu.regs[7] = tmp;
1365 goto end;
1366 }
1367
1368 case O (O_ILL, SB):
1369 cpu.state = SIM_STATE_STOPPED;
1370 cpu.exception = SIGILL;
1371 goto end;
1372 case O (O_SLEEP, SN):
1373 /* The format of r0 is defined by devo/include/wait.h. */
1374#if 0 /* FIXME: Ugh. A breakpoint is the sleep insn. */
1375 if (WIFEXITED (cpu.regs[0]))
1376 {
1377 cpu.state = SIM_STATE_EXITED;
1378 cpu.exception = WEXITSTATUS (cpu.regs[0]);
1379 }
1380 else if (WIFSTOPPED (cpu.regs[0]))
1381 {
1382 cpu.state = SIM_STATE_STOPPED;
1383 cpu.exception = WSTOPSIG (cpu.regs[0]);
1384 }
1385 else
1386 {
1387 cpu.state = SIM_STATE_SIGNALLED;
1388 cpu.exception = WTERMSIG (cpu.regs[0]);
1389 }
1390#else
1391 /* FIXME: Doesn't this break for breakpoints when r0
1392 contains just the right (er, wrong) value? */
1393 cpu.state = SIM_STATE_STOPPED;
1394 if (! WIFEXITED (cpu.regs[0]) && WIFSIGNALED (cpu.regs[0]))
1395 cpu.exception = SIGILL;
1396 else
1397 cpu.exception = SIGTRAP;
1398#endif
1399 goto end;
1400 case O (O_BPT, SN):
1401 cpu.state = SIM_STATE_STOPPED;
1402 cpu.exception = SIGTRAP;
1403 goto end;
1404
1405 OBITOP (O_BNOT, 1, 1, ea ^= m);
1406 OBITOP (O_BTST, 1, 0, nz = ea & m);
1407 OBITOP (O_BCLR, 1, 1, ea &= ~m);
1408 OBITOP (O_BSET, 1, 1, ea |= m);
1409 OBITOP (O_BLD, 1, 0, c = ea & m);
1410 OBITOP (O_BILD, 1, 0, c = !(ea & m));
1411 OBITOP (O_BST, 1, 1, ea &= ~m;
1412 if (C) ea |= m);
1413 OBITOP (O_BIST, 1, 1, ea &= ~m;
1414 if (!C) ea |= m);
1415 OBITOP (O_BAND, 1, 0, c = (ea & m) && C);
1416 OBITOP (O_BIAND, 1, 0, c = !(ea & m) && C);
1417 OBITOP (O_BOR, 1, 0, c = (ea & m) || C);
1418 OBITOP (O_BIOR, 1, 0, c = !(ea & m) || C);
1419 OBITOP (O_BXOR, 1, 0, c = (ea & m) != C);
1420 OBITOP (O_BIXOR, 1, 0, c = !(ea & m) != C);
1421
1422
1423#define MOP(bsize, signed) mop(code, bsize,signed); goto next;
1424
1425 case O (O_MULS, SB):
1426 MOP (1, 1);
1427 break;
1428 case O (O_MULS, SW):
1429 MOP (0, 1);
1430 break;
1431 case O (O_MULU, SB):
1432 MOP (1, 0);
1433 break;
1434 case O (O_MULU, SW):
1435 MOP (0, 0);
1436 break;
1437
1438
1439 case O (O_DIVU, SB):
1440 {
1441 rd = GET_W_REG (code->dst.reg);
1442 ea = GET_B_REG (code->src.reg);
1443 if (ea)
1444 {
1445 tmp = (unsigned)rd % ea;
1446 rd = (unsigned)rd / ea;
1447 }
1448 SET_W_REG (code->dst.reg, (rd & 0xff) | (tmp << 8));
1449 n = ea & 0x80;
1450 nz = ea & 0xff;
1451
1452 goto next;
1453 }
1454 case O (O_DIVU, SW):
1455 {
1456 rd = GET_L_REG (code->dst.reg);
1457 ea = GET_W_REG (code->src.reg);
1458 n = ea & 0x8000;
1459 nz = ea & 0xffff;
1460 if (ea)
1461 {
1462 tmp = (unsigned)rd % ea;
1463 rd = (unsigned)rd / ea;
1464 }
1465 SET_L_REG (code->dst.reg, (rd & 0xffff) | (tmp << 16));
1466 goto next;
1467 }
1468
1469 case O (O_DIVS, SB):
1470 {
1471
1472 rd = SEXTSHORT (GET_W_REG (code->dst.reg));
1473 ea = SEXTCHAR (GET_B_REG (code->src.reg));
1474 if (ea)
1475 {
1476 tmp = (int) rd % (int) ea;
1477 rd = (int) rd / (int) ea;
1478 n = rd & 0x8000;
1479 nz = 1;
1480 }
1481 else
1482 nz = 0;
1483 SET_W_REG (code->dst.reg, (rd & 0xff) | (tmp << 8));
1484 goto next;
1485 }
1486 case O (O_DIVS, SW):
1487 {
1488 rd = GET_L_REG (code->dst.reg);
1489 ea = SEXTSHORT (GET_W_REG (code->src.reg));
1490 if (ea)
1491 {
1492 tmp = (int) rd % (int) ea;
1493 rd = (int) rd / (int) ea;
1494 n = rd & 0x80000000;
1495 nz = 1;
1496 }
1497 else
1498 nz = 0;
1499 SET_L_REG (code->dst.reg, (rd & 0xffff) | (tmp << 16));
1500 goto next;
1501 }
1502 case O (O_EXTS, SW):
1503 rd = GET_B_REG (code->src.reg + 8) & 0xff; /* Yes, src, not dst. */
1504 ea = rd & 0x80 ? -256 : 0;
1505 res = rd + ea;
1506 goto log16;
1507 case O (O_EXTS, SL):
1508 rd = GET_W_REG (code->src.reg) & 0xffff;
1509 ea = rd & 0x8000 ? -65536 : 0;
1510 res = rd + ea;
1511 goto log32;
1512 case O (O_EXTU, SW):
1513 rd = GET_B_REG (code->src.reg + 8) & 0xff;
1514 ea = 0;
1515 res = rd + ea;
1516 goto log16;
1517 case O (O_EXTU, SL):
1518 rd = GET_W_REG (code->src.reg) & 0xffff;
1519 ea = 0;
1520 res = rd + ea;
1521 goto log32;
1522
1523 case O (O_NOP, SN):
1524 goto next;
1525
1526 case O (O_STM, SL):
1527 {
1528 int nregs, firstreg, i;
1529
1530 nregs = GET_MEMORY_B (pc + 1);
1531 nregs >>= 4;
1532 nregs &= 0xf;
1533 firstreg = GET_MEMORY_B (pc + 3);
1534 firstreg &= 0xf;
1535 for (i = firstreg; i <= firstreg + nregs; i++)
1536 {
1537 cpu.regs[7] -= 4;
1538 SET_MEMORY_L (cpu.regs[7], cpu.regs[i]);
1539 }
1540 }
1541 goto next;
1542
1543 case O (O_LDM, SL):
1544 {
1545 int nregs, firstreg, i;
1546
1547 nregs = GET_MEMORY_B (pc + 1);
1548 nregs >>= 4;
1549 nregs &= 0xf;
1550 firstreg = GET_MEMORY_B (pc + 3);
1551 firstreg &= 0xf;
1552 for (i = firstreg; i >= firstreg - nregs; i--)
1553 {
1554 cpu.regs[i] = GET_MEMORY_L (cpu.regs[7]);
1555 cpu.regs[7] += 4;
1556 }
1557 }
1558 goto next;
1559
1560 default:
1561 cpu.state = SIM_STATE_STOPPED;
1562 cpu.exception = SIGILL;
1563 goto end;
1564
1565 }
1566 abort ();
1567
1568 setc:
1569 cpu.ccr = res;
1570 GETSR ();
1571 goto next;
1572
1573 condtrue:
1574 /* When a branch works */
1575 pc = code->src.literal;
1576 goto end;
1577
1578 /* Set the cond codes from res */
1579 bitop:
1580
1581 /* Set the flags after an 8 bit inc/dec operation */
1582 just_flags_inc8:
1583 n = res & 0x80;
1584 nz = res & 0xff;
1585 v = (rd & 0x7f) == 0x7f;
1586 goto next;
1587
1588
1589 /* Set the flags after an 16 bit inc/dec operation */
1590 just_flags_inc16:
1591 n = res & 0x8000;
1592 nz = res & 0xffff;
1593 v = (rd & 0x7fff) == 0x7fff;
1594 goto next;
1595
1596
1597 /* Set the flags after an 32 bit inc/dec operation */
1598 just_flags_inc32:
1599 n = res & 0x80000000;
1600 nz = res & 0xffffffff;
1601 v = (rd & 0x7fffffff) == 0x7fffffff;
1602 goto next;
1603
1604
1605 shift8:
1606 /* Set flags after an 8 bit shift op, carry,overflow set in insn */
1607 n = (rd & 0x80);
1608 nz = rd & 0xff;
1609 SET_B_REG (code->src.reg, rd);
1610 goto next;
1611
1612 shift16:
1613 /* Set flags after an 16 bit shift op, carry,overflow set in insn */
1614 n = (rd & 0x8000);
1615 nz = rd & 0xffff;
1616 SET_W_REG (code->src.reg, rd);
1617 goto next;
1618
1619 shift32:
1620 /* Set flags after an 32 bit shift op, carry,overflow set in insn */
1621 n = (rd & 0x80000000);
1622 nz = rd & 0xffffffff;
1623 SET_L_REG (code->src.reg, rd);
1624 goto next;
1625
1626 log32:
1627 store (&code->dst, res);
1628 just_flags_log32:
1629 /* flags after a 32bit logical operation */
1630 n = res & 0x80000000;
1631 nz = res & 0xffffffff;
1632 v = 0;
1633 goto next;
1634
1635 log16:
1636 store (&code->dst, res);
1637 just_flags_log16:
1638 /* flags after a 16bit logical operation */
1639 n = res & 0x8000;
1640 nz = res & 0xffff;
1641 v = 0;
1642 goto next;
1643
1644
1645 log8:
1646 store (&code->dst, res);
1647 just_flags_log8:
1648 n = res & 0x80;
1649 nz = res & 0xff;
1650 v = 0;
1651 goto next;
1652
1653 alu8:
1654 SET_B_REG (code->dst.reg, res);
1655 just_flags_alu8:
1656 n = res & 0x80;
1657 nz = res & 0xff;
1658 c = (res & 0x100);
1659 switch (code->opcode / 4)
1660 {
1661 case O_ADD:
1662 v = ((rd & 0x80) == (ea & 0x80)
1663 && (rd & 0x80) != (res & 0x80));
1664 break;
1665 case O_SUB:
1666 case O_CMP:
1667 v = ((rd & 0x80) != (-ea & 0x80)
1668 && (rd & 0x80) != (res & 0x80));
1669 break;
1670 case O_NEG:
1671 v = (rd == 0x80);
1672 break;
1673 }
1674 goto next;
1675
1676 alu16:
1677 SET_W_REG (code->dst.reg, res);
1678 just_flags_alu16:
1679 n = res & 0x8000;
1680 nz = res & 0xffff;
1681 c = (res & 0x10000);
1682 switch (code->opcode / 4)
1683 {
1684 case O_ADD:
1685 v = ((rd & 0x8000) == (ea & 0x8000)
1686 && (rd & 0x8000) != (res & 0x8000));
1687 break;
1688 case O_SUB:
1689 case O_CMP:
1690 v = ((rd & 0x8000) != (-ea & 0x8000)
1691 && (rd & 0x8000) != (res & 0x8000));
1692 break;
1693 case O_NEG:
1694 v = (rd == 0x8000);
1695 break;
1696 }
1697 goto next;
1698
1699 alu32:
1700 SET_L_REG (code->dst.reg, res);
1701 just_flags_alu32:
1702 n = res & 0x80000000;
1703 nz = res & 0xffffffff;
1704 switch (code->opcode / 4)
1705 {
1706 case O_ADD:
1707 v = ((rd & 0x80000000) == (ea & 0x80000000)
1708 && (rd & 0x80000000) != (res & 0x80000000));
1709 c = ((unsigned) res < (unsigned) rd) || ((unsigned) res < (unsigned) ea);
1710 break;
1711 case O_SUB:
1712 case O_CMP:
1713 v = ((rd & 0x80000000) != (-ea & 0x80000000)
1714 && (rd & 0x80000000) != (res & 0x80000000));
1715 c = (unsigned) rd < (unsigned) -ea;
1716 break;
1717 case O_NEG:
1718 v = (rd == 0x80000000);
1719 c = res != 0;
1720 break;
1721 }
1722 goto next;
1723
1724 next:;
1725 pc = code->next_pc;
1726
1727 end:
1728 ;
1729 /* if (cpu.regs[8] ) abort(); */
1730
1731 if (--poll_count < 0)
1732 {
7a292a7a 1733 poll_count = POLL_QUIT_INTERVAL;
c906108c
SS
1734 if ((*sim_callback->poll_quit) != NULL
1735 && (*sim_callback->poll_quit) (sim_callback))
1736 sim_stop (sd);
1737 }
1738
1739 }
1740 while (cpu.state == SIM_STATE_RUNNING);
1741 cpu.ticks += get_now () - tick_start;
1742 cpu.cycles += cycles;
1743 cpu.insts += insts;
1744
1745 cpu.pc = pc;
1746 BUILDSR ();
1747 cpu.mask = oldmask;
1748 signal (SIGINT, prev);
1749}
1750
1751int
1752sim_trace (sd)
1753 SIM_DESC sd;
1754{
1755 /* FIXME: unfinished */
1756 abort ();
1757}
1758
1759int
1760sim_write (sd, addr, buffer, size)
1761 SIM_DESC sd;
1762 SIM_ADDR addr;
1763 unsigned char *buffer;
1764 int size;
1765{
1766 int i;
1767
1768 init_pointers ();
1769 if (addr < 0)
1770 return 0;
1771 for (i = 0; i < size; i++)
1772 {
1773 if (addr < memory_size)
1774 {
1775 cpu.memory[addr + i] = buffer[i];
1776 cpu.cache_idx[addr + i] = 0;
1777 }
1778 else
1779 cpu.eightbit[(addr + i) & 0xff] = buffer[i];
1780 }
1781 return size;
1782}
1783
1784int
1785sim_read (sd, addr, buffer, size)
1786 SIM_DESC sd;
1787 SIM_ADDR addr;
1788 unsigned char *buffer;
1789 int size;
1790{
1791 init_pointers ();
1792 if (addr < 0)
1793 return 0;
1794 if (addr < memory_size)
1795 memcpy (buffer, cpu.memory + addr, size);
1796 else
1797 memcpy (buffer, cpu.eightbit + (addr & 0xff), size);
1798 return size;
1799}
1800
1801
1802#define R0_REGNUM 0
1803#define R1_REGNUM 1
1804#define R2_REGNUM 2
1805#define R3_REGNUM 3
1806#define R4_REGNUM 4
1807#define R5_REGNUM 5
1808#define R6_REGNUM 6
1809#define R7_REGNUM 7
1810
1811#define SP_REGNUM R7_REGNUM /* Contains address of top of stack */
1812#define FP_REGNUM R6_REGNUM /* Contains address of executing
1813 * stack frame */
1814
1815#define CCR_REGNUM 8 /* Contains processor status */
1816#define PC_REGNUM 9 /* Contains program counter */
1817
1818#define CYCLE_REGNUM 10
1819#define INST_REGNUM 11
1820#define TICK_REGNUM 12
1821
1822
1823int
1824sim_store_register (sd, rn, value, length)
1825 SIM_DESC sd;
1826 int rn;
1827 unsigned char *value;
1828 int length;
1829{
1830 int longval;
1831 int shortval;
1832 int intval;
1833 longval = (value[0] << 24) | (value[1] << 16) | (value[2] << 8) | value[3];
1834 shortval = (value[0] << 8) | (value[1]);
1835 intval = h8300hmode ? longval : shortval;
1836
1837 init_pointers ();
1838 switch (rn)
1839 {
1840 case PC_REGNUM:
1841 cpu.pc = intval;
1842 break;
1843 default:
1844 abort ();
1845 case R0_REGNUM:
1846 case R1_REGNUM:
1847 case R2_REGNUM:
1848 case R3_REGNUM:
1849 case R4_REGNUM:
1850 case R5_REGNUM:
1851 case R6_REGNUM:
1852 case R7_REGNUM:
1853 cpu.regs[rn] = intval;
1854 break;
1855 case CCR_REGNUM:
1856 cpu.ccr = intval;
1857 break;
1858 case CYCLE_REGNUM:
1859 cpu.cycles = longval;
1860 break;
1861
1862 case INST_REGNUM:
1863 cpu.insts = longval;
1864 break;
1865
1866 case TICK_REGNUM:
1867 cpu.ticks = longval;
1868 break;
1869 }
1870 return -1;
1871}
1872
1873int
1874sim_fetch_register (sd, rn, buf, length)
1875 SIM_DESC sd;
1876 int rn;
1877 unsigned char *buf;
1878 int length;
1879{
1880 int v;
1881 int longreg = 0;
1882
1883 init_pointers ();
1884
1885 switch (rn)
1886 {
1887 default:
1888 abort ();
1889 case 8:
1890 v = cpu.ccr;
1891 break;
1892 case 9:
1893 v = cpu.pc;
1894 break;
1895 case R0_REGNUM:
1896 case R1_REGNUM:
1897 case R2_REGNUM:
1898 case R3_REGNUM:
1899 case R4_REGNUM:
1900 case R5_REGNUM:
1901 case R6_REGNUM:
1902 case R7_REGNUM:
1903 v = cpu.regs[rn];
1904 break;
1905 case 10:
1906 v = cpu.cycles;
1907 longreg = 1;
1908 break;
1909 case 11:
1910 v = cpu.ticks;
1911 longreg = 1;
1912 break;
1913 case 12:
1914 v = cpu.insts;
1915 longreg = 1;
1916 break;
1917 }
1918 if (h8300hmode || longreg)
1919 {
1920 buf[0] = v >> 24;
1921 buf[1] = v >> 16;
1922 buf[2] = v >> 8;
1923 buf[3] = v >> 0;
1924 }
1925 else
1926 {
1927 buf[0] = v >> 8;
1928 buf[1] = v;
1929 }
1930 return -1;
1931}
1932
1933void
1934sim_stop_reason (sd, reason, sigrc)
1935 SIM_DESC sd;
1936 enum sim_stop *reason;
1937 int *sigrc;
1938{
1939#if 0 /* FIXME: This should work but we can't use it.
1940 grep for SLEEP above. */
1941 switch (cpu.state)
1942 {
1943 case SIM_STATE_EXITED : *reason = sim_exited; break;
1944 case SIM_STATE_SIGNALLED : *reason = sim_signalled; break;
1945 case SIM_STATE_STOPPED : *reason = sim_stopped; break;
1946 default : abort ();
1947 }
1948#else
1949 *reason = sim_stopped;
1950#endif
1951 *sigrc = cpu.exception;
1952}
1953
1954/* FIXME: Rename to sim_set_mem_size. */
1955
1956void
1957sim_size (n)
1958 int n;
1959{
1960 /* Memory size is fixed. */
1961}
1962
1963void
1964sim_set_simcache_size (n)
1965{
1966 if (cpu.cache)
1967 free (cpu.cache);
1968 if (n < 2)
1969 n = 2;
1970 cpu.cache = (decoded_inst *) malloc (sizeof (decoded_inst) * n);
1971 memset (cpu.cache, 0, sizeof (decoded_inst) * n);
1972 cpu.csize = n;
1973}
1974
1975
1976void
1977sim_info (sd, verbose)
1978 SIM_DESC sd;
1979 int verbose;
1980{
1981 double timetaken = (double) cpu.ticks / (double) now_persec ();
1982 double virttime = cpu.cycles / 10.0e6;
1983
1984 (*sim_callback->printf_filtered) (sim_callback,
1985 "\n\n#instructions executed %10d\n",
1986 cpu.insts);
1987 (*sim_callback->printf_filtered) (sim_callback,
1988 "#cycles (v approximate) %10d\n",
1989 cpu.cycles);
1990 (*sim_callback->printf_filtered) (sim_callback,
1991 "#real time taken %10.4f\n",
1992 timetaken);
1993 (*sim_callback->printf_filtered) (sim_callback,
1994 "#virtual time taked %10.4f\n",
1995 virttime);
1996 if (timetaken != 0.0)
1997 (*sim_callback->printf_filtered) (sim_callback,
1998 "#simulation ratio %10.4f\n",
1999 virttime / timetaken);
2000 (*sim_callback->printf_filtered) (sim_callback,
2001 "#compiles %10d\n",
2002 cpu.compiles);
2003 (*sim_callback->printf_filtered) (sim_callback,
2004 "#cache size %10d\n",
2005 cpu.csize);
2006
2007#ifdef ADEBUG
2008 /* This to be conditional on `what' (aka `verbose'),
2009 however it was never passed as non-zero. */
2010 if (1)
2011 {
2012 int i;
2013 for (i = 0; i < O_LAST; i++)
2014 {
2015 if (cpu.stats[i])
2016 (*sim_callback->printf_filtered) (sim_callback,
2017 "%d: %d\n", i, cpu.stats[i]);
2018 }
2019 }
2020#endif
2021}
2022
2023/* Indicate whether the cpu is an h8/300 or h8/300h.
2024 FLAG is non-zero for the h8/300h. */
2025
2026void
2027set_h8300h (flag)
2028 int flag;
2029{
2030 /* FIXME: Much of the code in sim_load can be moved to sim_open.
2031 This function being replaced by a sim_open:ARGV configuration
2032 option */
2033 h8300hmode = flag;
2034}
2035
2036SIM_DESC
2037sim_open (kind, ptr, abfd, argv)
2038 SIM_OPEN_KIND kind;
2039 struct host_callback_struct *ptr;
2040 struct _bfd *abfd;
2041 char **argv;
2042{
2043 /* FIXME: Much of the code in sim_load can be moved here */
2044
2045 sim_kind = kind;
2046 myname = argv[0];
2047 sim_callback = ptr;
2048 /* fudge our descriptor */
2049 return (SIM_DESC) 1;
2050}
2051
2052void
2053sim_close (sd, quitting)
2054 SIM_DESC sd;
2055 int quitting;
2056{
2057 /* nothing to do */
2058}
2059
2060/* Called by gdb to load a program into memory. */
2061
2062SIM_RC
2063sim_load (sd, prog, abfd, from_tty)
2064 SIM_DESC sd;
2065 char *prog;
2066 bfd *abfd;
2067 int from_tty;
2068{
2069 bfd *prog_bfd;
2070
2071 /* FIXME: The code below that sets a specific variant of the h8/300
2072 being simulated should be moved to sim_open(). */
2073
2074 /* See if the file is for the h8/300 or h8/300h. */
2075 /* ??? This may not be the most efficient way. The z8k simulator
2076 does this via a different mechanism (INIT_EXTRA_SYMTAB_INFO). */
2077 if (abfd != NULL)
2078 prog_bfd = abfd;
2079 else
2080 prog_bfd = bfd_openr (prog, "coff-h8300");
2081 if (prog_bfd != NULL)
2082 {
2083 /* Set the cpu type. We ignore failure from bfd_check_format
2084 and bfd_openr as sim_load_file checks too. */
2085 if (bfd_check_format (prog_bfd, bfd_object))
2086 {
2087 unsigned long mach = bfd_get_mach (prog_bfd);
2088 set_h8300h (mach == bfd_mach_h8300h
2089 || mach == bfd_mach_h8300s);
2090 }
2091 }
2092
2093 /* If we're using gdb attached to the simulator, then we have to
2094 reallocate memory for the simulator.
2095
2096 When gdb first starts, it calls fetch_registers (among other
2097 functions), which in turn calls init_pointers, which allocates
2098 simulator memory.
2099
2100 The problem is when we do that, we don't know whether we're
2101 debugging an h8/300 or h8/300h program.
2102
2103 This is the first point at which we can make that determination,
2104 so we just reallocate memory now; this will also allow us to handle
2105 switching between h8/300 and h8/300h programs without exiting
2106 gdb. */
2107 if (h8300hmode)
2108 memory_size = H8300H_MSIZE;
2109 else
2110 memory_size = H8300_MSIZE;
2111
2112 if (cpu.memory)
2113 free (cpu.memory);
2114 if (cpu.cache_idx)
2115 free (cpu.cache_idx);
2116 if (cpu.eightbit)
2117 free (cpu.eightbit);
2118
2119 cpu.memory = (unsigned char *) calloc (sizeof (char), memory_size);
2120 cpu.cache_idx = (unsigned short *) calloc (sizeof (short), memory_size);
2121 cpu.eightbit = (unsigned char *) calloc (sizeof (char), 256);
2122
2123 /* `msize' must be a power of two */
2124 if ((memory_size & (memory_size - 1)) != 0)
2125 abort ();
2126 cpu.mask = memory_size - 1;
2127
2128 if (sim_load_file (sd, myname, sim_callback, prog, prog_bfd,
2129 sim_kind == SIM_OPEN_DEBUG,
2130 0, sim_write)
2131 == NULL)
2132 {
2133 /* Close the bfd if we opened it. */
2134 if (abfd == NULL && prog_bfd != NULL)
2135 bfd_close (prog_bfd);
2136 return SIM_RC_FAIL;
2137 }
2138
2139 /* Close the bfd if we opened it. */
2140 if (abfd == NULL && prog_bfd != NULL)
2141 bfd_close (prog_bfd);
2142 return SIM_RC_OK;
2143}
2144
2145SIM_RC
2146sim_create_inferior (sd, abfd, argv, env)
2147 SIM_DESC sd;
2148 struct _bfd *abfd;
2149 char **argv;
2150 char **env;
2151{
2152 if (abfd != NULL)
2153 cpu.pc = bfd_get_start_address (abfd);
2154 else
2155 cpu.pc = 0;
2156 return SIM_RC_OK;
2157}
2158
2159void
2160sim_do_command (sd, cmd)
2161 SIM_DESC sd;
2162 char *cmd;
2163{
2164 (*sim_callback->printf_filtered) (sim_callback,
2165 "This simulator does not accept any commands.\n");
2166}
2167
2168void
2169sim_set_callbacks (ptr)
2170 struct host_callback_struct *ptr;
2171{
2172 sim_callback = ptr;
2173}