]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame_incremental - bfd/elf.c
PR 6585
[thirdparty/binutils-gdb.git] / bfd / elf.c
... / ...
CommitLineData
1/* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23
24/*
25SECTION
26 ELF backends
27
28 BFD support for ELF formats is being worked on.
29 Currently, the best supported back ends are for sparc and i386
30 (running svr4 or Solaris 2).
31
32 Documentation of the internals of the support code still needs
33 to be written. The code is changing quickly enough that we
34 haven't bothered yet. */
35
36/* For sparc64-cross-sparc32. */
37#define _SYSCALL32
38#include "sysdep.h"
39#include "bfd.h"
40#include "bfdlink.h"
41#include "libbfd.h"
42#define ARCH_SIZE 0
43#include "elf-bfd.h"
44#include "libiberty.h"
45#include "safe-ctype.h"
46
47static int elf_sort_sections (const void *, const void *);
48static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
49static bfd_boolean prep_headers (bfd *);
50static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
51static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
52static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
53 file_ptr offset);
54
55/* Swap version information in and out. The version information is
56 currently size independent. If that ever changes, this code will
57 need to move into elfcode.h. */
58
59/* Swap in a Verdef structure. */
60
61void
62_bfd_elf_swap_verdef_in (bfd *abfd,
63 const Elf_External_Verdef *src,
64 Elf_Internal_Verdef *dst)
65{
66 dst->vd_version = H_GET_16 (abfd, src->vd_version);
67 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
68 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
69 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
70 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
71 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
72 dst->vd_next = H_GET_32 (abfd, src->vd_next);
73}
74
75/* Swap out a Verdef structure. */
76
77void
78_bfd_elf_swap_verdef_out (bfd *abfd,
79 const Elf_Internal_Verdef *src,
80 Elf_External_Verdef *dst)
81{
82 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
83 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
84 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
85 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
86 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
87 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
88 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
89}
90
91/* Swap in a Verdaux structure. */
92
93void
94_bfd_elf_swap_verdaux_in (bfd *abfd,
95 const Elf_External_Verdaux *src,
96 Elf_Internal_Verdaux *dst)
97{
98 dst->vda_name = H_GET_32 (abfd, src->vda_name);
99 dst->vda_next = H_GET_32 (abfd, src->vda_next);
100}
101
102/* Swap out a Verdaux structure. */
103
104void
105_bfd_elf_swap_verdaux_out (bfd *abfd,
106 const Elf_Internal_Verdaux *src,
107 Elf_External_Verdaux *dst)
108{
109 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
110 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
111}
112
113/* Swap in a Verneed structure. */
114
115void
116_bfd_elf_swap_verneed_in (bfd *abfd,
117 const Elf_External_Verneed *src,
118 Elf_Internal_Verneed *dst)
119{
120 dst->vn_version = H_GET_16 (abfd, src->vn_version);
121 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
122 dst->vn_file = H_GET_32 (abfd, src->vn_file);
123 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
124 dst->vn_next = H_GET_32 (abfd, src->vn_next);
125}
126
127/* Swap out a Verneed structure. */
128
129void
130_bfd_elf_swap_verneed_out (bfd *abfd,
131 const Elf_Internal_Verneed *src,
132 Elf_External_Verneed *dst)
133{
134 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
135 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
136 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
137 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
138 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
139}
140
141/* Swap in a Vernaux structure. */
142
143void
144_bfd_elf_swap_vernaux_in (bfd *abfd,
145 const Elf_External_Vernaux *src,
146 Elf_Internal_Vernaux *dst)
147{
148 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
149 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
150 dst->vna_other = H_GET_16 (abfd, src->vna_other);
151 dst->vna_name = H_GET_32 (abfd, src->vna_name);
152 dst->vna_next = H_GET_32 (abfd, src->vna_next);
153}
154
155/* Swap out a Vernaux structure. */
156
157void
158_bfd_elf_swap_vernaux_out (bfd *abfd,
159 const Elf_Internal_Vernaux *src,
160 Elf_External_Vernaux *dst)
161{
162 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
163 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
164 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
165 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
166 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
167}
168
169/* Swap in a Versym structure. */
170
171void
172_bfd_elf_swap_versym_in (bfd *abfd,
173 const Elf_External_Versym *src,
174 Elf_Internal_Versym *dst)
175{
176 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
177}
178
179/* Swap out a Versym structure. */
180
181void
182_bfd_elf_swap_versym_out (bfd *abfd,
183 const Elf_Internal_Versym *src,
184 Elf_External_Versym *dst)
185{
186 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
187}
188
189/* Standard ELF hash function. Do not change this function; you will
190 cause invalid hash tables to be generated. */
191
192unsigned long
193bfd_elf_hash (const char *namearg)
194{
195 const unsigned char *name = (const unsigned char *) namearg;
196 unsigned long h = 0;
197 unsigned long g;
198 int ch;
199
200 while ((ch = *name++) != '\0')
201 {
202 h = (h << 4) + ch;
203 if ((g = (h & 0xf0000000)) != 0)
204 {
205 h ^= g >> 24;
206 /* The ELF ABI says `h &= ~g', but this is equivalent in
207 this case and on some machines one insn instead of two. */
208 h ^= g;
209 }
210 }
211 return h & 0xffffffff;
212}
213
214/* DT_GNU_HASH hash function. Do not change this function; you will
215 cause invalid hash tables to be generated. */
216
217unsigned long
218bfd_elf_gnu_hash (const char *namearg)
219{
220 const unsigned char *name = (const unsigned char *) namearg;
221 unsigned long h = 5381;
222 unsigned char ch;
223
224 while ((ch = *name++) != '\0')
225 h = (h << 5) + h + ch;
226 return h & 0xffffffff;
227}
228
229/* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
230 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
231bfd_boolean
232bfd_elf_allocate_object (bfd *abfd,
233 size_t object_size,
234 enum elf_object_id object_id)
235{
236 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
237 abfd->tdata.any = bfd_zalloc (abfd, object_size);
238 if (abfd->tdata.any == NULL)
239 return FALSE;
240
241 elf_object_id (abfd) = object_id;
242 elf_program_header_size (abfd) = (bfd_size_type) -1;
243 return TRUE;
244}
245
246
247bfd_boolean
248bfd_elf_make_generic_object (bfd *abfd)
249{
250 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
251 GENERIC_ELF_TDATA);
252}
253
254bfd_boolean
255bfd_elf_mkcorefile (bfd *abfd)
256{
257 /* I think this can be done just like an object file. */
258 return bfd_elf_make_generic_object (abfd);
259}
260
261char *
262bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
263{
264 Elf_Internal_Shdr **i_shdrp;
265 bfd_byte *shstrtab = NULL;
266 file_ptr offset;
267 bfd_size_type shstrtabsize;
268
269 i_shdrp = elf_elfsections (abfd);
270 if (i_shdrp == 0
271 || shindex >= elf_numsections (abfd)
272 || i_shdrp[shindex] == 0)
273 return NULL;
274
275 shstrtab = i_shdrp[shindex]->contents;
276 if (shstrtab == NULL)
277 {
278 /* No cached one, attempt to read, and cache what we read. */
279 offset = i_shdrp[shindex]->sh_offset;
280 shstrtabsize = i_shdrp[shindex]->sh_size;
281
282 /* Allocate and clear an extra byte at the end, to prevent crashes
283 in case the string table is not terminated. */
284 if (shstrtabsize + 1 <= 1
285 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
286 || bfd_seek (abfd, offset, SEEK_SET) != 0)
287 shstrtab = NULL;
288 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
289 {
290 if (bfd_get_error () != bfd_error_system_call)
291 bfd_set_error (bfd_error_file_truncated);
292 shstrtab = NULL;
293 /* Once we've failed to read it, make sure we don't keep
294 trying. Otherwise, we'll keep allocating space for
295 the string table over and over. */
296 i_shdrp[shindex]->sh_size = 0;
297 }
298 else
299 shstrtab[shstrtabsize] = '\0';
300 i_shdrp[shindex]->contents = shstrtab;
301 }
302 return (char *) shstrtab;
303}
304
305char *
306bfd_elf_string_from_elf_section (bfd *abfd,
307 unsigned int shindex,
308 unsigned int strindex)
309{
310 Elf_Internal_Shdr *hdr;
311
312 if (strindex == 0)
313 return "";
314
315 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
316 return NULL;
317
318 hdr = elf_elfsections (abfd)[shindex];
319
320 if (hdr->contents == NULL
321 && bfd_elf_get_str_section (abfd, shindex) == NULL)
322 return NULL;
323
324 if (strindex >= hdr->sh_size)
325 {
326 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
327 (*_bfd_error_handler)
328 (_("%B: invalid string offset %u >= %lu for section `%s'"),
329 abfd, strindex, (unsigned long) hdr->sh_size,
330 (shindex == shstrndx && strindex == hdr->sh_name
331 ? ".shstrtab"
332 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
333 return "";
334 }
335
336 return ((char *) hdr->contents) + strindex;
337}
338
339/* Read and convert symbols to internal format.
340 SYMCOUNT specifies the number of symbols to read, starting from
341 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
342 are non-NULL, they are used to store the internal symbols, external
343 symbols, and symbol section index extensions, respectively.
344 Returns a pointer to the internal symbol buffer (malloced if necessary)
345 or NULL if there were no symbols or some kind of problem. */
346
347Elf_Internal_Sym *
348bfd_elf_get_elf_syms (bfd *ibfd,
349 Elf_Internal_Shdr *symtab_hdr,
350 size_t symcount,
351 size_t symoffset,
352 Elf_Internal_Sym *intsym_buf,
353 void *extsym_buf,
354 Elf_External_Sym_Shndx *extshndx_buf)
355{
356 Elf_Internal_Shdr *shndx_hdr;
357 void *alloc_ext;
358 const bfd_byte *esym;
359 Elf_External_Sym_Shndx *alloc_extshndx;
360 Elf_External_Sym_Shndx *shndx;
361 Elf_Internal_Sym *isym;
362 Elf_Internal_Sym *isymend;
363 const struct elf_backend_data *bed;
364 size_t extsym_size;
365 bfd_size_type amt;
366 file_ptr pos;
367
368 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
369 abort ();
370
371 if (symcount == 0)
372 return intsym_buf;
373
374 /* Normal syms might have section extension entries. */
375 shndx_hdr = NULL;
376 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
377 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
378
379 /* Read the symbols. */
380 alloc_ext = NULL;
381 alloc_extshndx = NULL;
382 bed = get_elf_backend_data (ibfd);
383 extsym_size = bed->s->sizeof_sym;
384 amt = symcount * extsym_size;
385 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
386 if (extsym_buf == NULL)
387 {
388 alloc_ext = bfd_malloc2 (symcount, extsym_size);
389 extsym_buf = alloc_ext;
390 }
391 if (extsym_buf == NULL
392 || bfd_seek (ibfd, pos, SEEK_SET) != 0
393 || bfd_bread (extsym_buf, amt, ibfd) != amt)
394 {
395 intsym_buf = NULL;
396 goto out;
397 }
398
399 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
400 extshndx_buf = NULL;
401 else
402 {
403 amt = symcount * sizeof (Elf_External_Sym_Shndx);
404 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
405 if (extshndx_buf == NULL)
406 {
407 alloc_extshndx = bfd_malloc2 (symcount,
408 sizeof (Elf_External_Sym_Shndx));
409 extshndx_buf = alloc_extshndx;
410 }
411 if (extshndx_buf == NULL
412 || bfd_seek (ibfd, pos, SEEK_SET) != 0
413 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
414 {
415 intsym_buf = NULL;
416 goto out;
417 }
418 }
419
420 if (intsym_buf == NULL)
421 {
422 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
423 if (intsym_buf == NULL)
424 goto out;
425 }
426
427 /* Convert the symbols to internal form. */
428 isymend = intsym_buf + symcount;
429 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
430 isym < isymend;
431 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
432 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
433 {
434 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
435 (*_bfd_error_handler) (_("%B symbol number %lu references "
436 "nonexistent SHT_SYMTAB_SHNDX section"),
437 ibfd, (unsigned long) symoffset);
438 intsym_buf = NULL;
439 goto out;
440 }
441
442 out:
443 if (alloc_ext != NULL)
444 free (alloc_ext);
445 if (alloc_extshndx != NULL)
446 free (alloc_extshndx);
447
448 return intsym_buf;
449}
450
451/* Look up a symbol name. */
452const char *
453bfd_elf_sym_name (bfd *abfd,
454 Elf_Internal_Shdr *symtab_hdr,
455 Elf_Internal_Sym *isym,
456 asection *sym_sec)
457{
458 const char *name;
459 unsigned int iname = isym->st_name;
460 unsigned int shindex = symtab_hdr->sh_link;
461
462 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
463 /* Check for a bogus st_shndx to avoid crashing. */
464 && isym->st_shndx < elf_numsections (abfd))
465 {
466 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
467 shindex = elf_elfheader (abfd)->e_shstrndx;
468 }
469
470 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
471 if (name == NULL)
472 name = "(null)";
473 else if (sym_sec && *name == '\0')
474 name = bfd_section_name (abfd, sym_sec);
475
476 return name;
477}
478
479/* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
480 sections. The first element is the flags, the rest are section
481 pointers. */
482
483typedef union elf_internal_group {
484 Elf_Internal_Shdr *shdr;
485 unsigned int flags;
486} Elf_Internal_Group;
487
488/* Return the name of the group signature symbol. Why isn't the
489 signature just a string? */
490
491static const char *
492group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
493{
494 Elf_Internal_Shdr *hdr;
495 unsigned char esym[sizeof (Elf64_External_Sym)];
496 Elf_External_Sym_Shndx eshndx;
497 Elf_Internal_Sym isym;
498
499 /* First we need to ensure the symbol table is available. Make sure
500 that it is a symbol table section. */
501 if (ghdr->sh_link >= elf_numsections (abfd))
502 return NULL;
503 hdr = elf_elfsections (abfd) [ghdr->sh_link];
504 if (hdr->sh_type != SHT_SYMTAB
505 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
506 return NULL;
507
508 /* Go read the symbol. */
509 hdr = &elf_tdata (abfd)->symtab_hdr;
510 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
511 &isym, esym, &eshndx) == NULL)
512 return NULL;
513
514 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
515}
516
517/* Set next_in_group list pointer, and group name for NEWSECT. */
518
519static bfd_boolean
520setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
521{
522 unsigned int num_group = elf_tdata (abfd)->num_group;
523
524 /* If num_group is zero, read in all SHT_GROUP sections. The count
525 is set to -1 if there are no SHT_GROUP sections. */
526 if (num_group == 0)
527 {
528 unsigned int i, shnum;
529
530 /* First count the number of groups. If we have a SHT_GROUP
531 section with just a flag word (ie. sh_size is 4), ignore it. */
532 shnum = elf_numsections (abfd);
533 num_group = 0;
534
535#define IS_VALID_GROUP_SECTION_HEADER(shdr) \
536 ( (shdr)->sh_type == SHT_GROUP \
537 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
538 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
539 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
540
541 for (i = 0; i < shnum; i++)
542 {
543 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
544
545 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
546 num_group += 1;
547 }
548
549 if (num_group == 0)
550 {
551 num_group = (unsigned) -1;
552 elf_tdata (abfd)->num_group = num_group;
553 }
554 else
555 {
556 /* We keep a list of elf section headers for group sections,
557 so we can find them quickly. */
558 bfd_size_type amt;
559
560 elf_tdata (abfd)->num_group = num_group;
561 elf_tdata (abfd)->group_sect_ptr
562 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
563 if (elf_tdata (abfd)->group_sect_ptr == NULL)
564 return FALSE;
565
566 num_group = 0;
567 for (i = 0; i < shnum; i++)
568 {
569 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
570
571 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
572 {
573 unsigned char *src;
574 Elf_Internal_Group *dest;
575
576 /* Add to list of sections. */
577 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
578 num_group += 1;
579
580 /* Read the raw contents. */
581 BFD_ASSERT (sizeof (*dest) >= 4);
582 amt = shdr->sh_size * sizeof (*dest) / 4;
583 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
584 sizeof (*dest) / 4);
585 /* PR binutils/4110: Handle corrupt group headers. */
586 if (shdr->contents == NULL)
587 {
588 _bfd_error_handler
589 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
590 bfd_set_error (bfd_error_bad_value);
591 return FALSE;
592 }
593
594 memset (shdr->contents, 0, amt);
595
596 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
597 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
598 != shdr->sh_size))
599 return FALSE;
600
601 /* Translate raw contents, a flag word followed by an
602 array of elf section indices all in target byte order,
603 to the flag word followed by an array of elf section
604 pointers. */
605 src = shdr->contents + shdr->sh_size;
606 dest = (Elf_Internal_Group *) (shdr->contents + amt);
607 while (1)
608 {
609 unsigned int idx;
610
611 src -= 4;
612 --dest;
613 idx = H_GET_32 (abfd, src);
614 if (src == shdr->contents)
615 {
616 dest->flags = idx;
617 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
618 shdr->bfd_section->flags
619 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
620 break;
621 }
622 if (idx >= shnum)
623 {
624 ((*_bfd_error_handler)
625 (_("%B: invalid SHT_GROUP entry"), abfd));
626 idx = 0;
627 }
628 dest->shdr = elf_elfsections (abfd)[idx];
629 }
630 }
631 }
632 }
633 }
634
635 if (num_group != (unsigned) -1)
636 {
637 unsigned int i;
638
639 for (i = 0; i < num_group; i++)
640 {
641 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
642 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
643 unsigned int n_elt = shdr->sh_size / 4;
644
645 /* Look through this group's sections to see if current
646 section is a member. */
647 while (--n_elt != 0)
648 if ((++idx)->shdr == hdr)
649 {
650 asection *s = NULL;
651
652 /* We are a member of this group. Go looking through
653 other members to see if any others are linked via
654 next_in_group. */
655 idx = (Elf_Internal_Group *) shdr->contents;
656 n_elt = shdr->sh_size / 4;
657 while (--n_elt != 0)
658 if ((s = (++idx)->shdr->bfd_section) != NULL
659 && elf_next_in_group (s) != NULL)
660 break;
661 if (n_elt != 0)
662 {
663 /* Snarf the group name from other member, and
664 insert current section in circular list. */
665 elf_group_name (newsect) = elf_group_name (s);
666 elf_next_in_group (newsect) = elf_next_in_group (s);
667 elf_next_in_group (s) = newsect;
668 }
669 else
670 {
671 const char *gname;
672
673 gname = group_signature (abfd, shdr);
674 if (gname == NULL)
675 return FALSE;
676 elf_group_name (newsect) = gname;
677
678 /* Start a circular list with one element. */
679 elf_next_in_group (newsect) = newsect;
680 }
681
682 /* If the group section has been created, point to the
683 new member. */
684 if (shdr->bfd_section != NULL)
685 elf_next_in_group (shdr->bfd_section) = newsect;
686
687 i = num_group - 1;
688 break;
689 }
690 }
691 }
692
693 if (elf_group_name (newsect) == NULL)
694 {
695 (*_bfd_error_handler) (_("%B: no group info for section %A"),
696 abfd, newsect);
697 }
698 return TRUE;
699}
700
701bfd_boolean
702_bfd_elf_setup_sections (bfd *abfd)
703{
704 unsigned int i;
705 unsigned int num_group = elf_tdata (abfd)->num_group;
706 bfd_boolean result = TRUE;
707 asection *s;
708
709 /* Process SHF_LINK_ORDER. */
710 for (s = abfd->sections; s != NULL; s = s->next)
711 {
712 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
713 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
714 {
715 unsigned int elfsec = this_hdr->sh_link;
716 /* FIXME: The old Intel compiler and old strip/objcopy may
717 not set the sh_link or sh_info fields. Hence we could
718 get the situation where elfsec is 0. */
719 if (elfsec == 0)
720 {
721 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
722 if (bed->link_order_error_handler)
723 bed->link_order_error_handler
724 (_("%B: warning: sh_link not set for section `%A'"),
725 abfd, s);
726 }
727 else
728 {
729 asection *link = NULL;
730
731 if (elfsec < elf_numsections (abfd))
732 {
733 this_hdr = elf_elfsections (abfd)[elfsec];
734 link = this_hdr->bfd_section;
735 }
736
737 /* PR 1991, 2008:
738 Some strip/objcopy may leave an incorrect value in
739 sh_link. We don't want to proceed. */
740 if (link == NULL)
741 {
742 (*_bfd_error_handler)
743 (_("%B: sh_link [%d] in section `%A' is incorrect"),
744 s->owner, s, elfsec);
745 result = FALSE;
746 }
747
748 elf_linked_to_section (s) = link;
749 }
750 }
751 }
752
753 /* Process section groups. */
754 if (num_group == (unsigned) -1)
755 return result;
756
757 for (i = 0; i < num_group; i++)
758 {
759 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
760 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
761 unsigned int n_elt = shdr->sh_size / 4;
762
763 while (--n_elt != 0)
764 if ((++idx)->shdr->bfd_section)
765 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
766 else if (idx->shdr->sh_type == SHT_RELA
767 || idx->shdr->sh_type == SHT_REL)
768 /* We won't include relocation sections in section groups in
769 output object files. We adjust the group section size here
770 so that relocatable link will work correctly when
771 relocation sections are in section group in input object
772 files. */
773 shdr->bfd_section->size -= 4;
774 else
775 {
776 /* There are some unknown sections in the group. */
777 (*_bfd_error_handler)
778 (_("%B: unknown [%d] section `%s' in group [%s]"),
779 abfd,
780 (unsigned int) idx->shdr->sh_type,
781 bfd_elf_string_from_elf_section (abfd,
782 (elf_elfheader (abfd)
783 ->e_shstrndx),
784 idx->shdr->sh_name),
785 shdr->bfd_section->name);
786 result = FALSE;
787 }
788 }
789 return result;
790}
791
792bfd_boolean
793bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
794{
795 return elf_next_in_group (sec) != NULL;
796}
797
798/* Make a BFD section from an ELF section. We store a pointer to the
799 BFD section in the bfd_section field of the header. */
800
801bfd_boolean
802_bfd_elf_make_section_from_shdr (bfd *abfd,
803 Elf_Internal_Shdr *hdr,
804 const char *name,
805 int shindex)
806{
807 asection *newsect;
808 flagword flags;
809 const struct elf_backend_data *bed;
810
811 if (hdr->bfd_section != NULL)
812 {
813 BFD_ASSERT (strcmp (name,
814 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
815 return TRUE;
816 }
817
818 newsect = bfd_make_section_anyway (abfd, name);
819 if (newsect == NULL)
820 return FALSE;
821
822 hdr->bfd_section = newsect;
823 elf_section_data (newsect)->this_hdr = *hdr;
824 elf_section_data (newsect)->this_idx = shindex;
825
826 /* Always use the real type/flags. */
827 elf_section_type (newsect) = hdr->sh_type;
828 elf_section_flags (newsect) = hdr->sh_flags;
829
830 newsect->filepos = hdr->sh_offset;
831
832 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
833 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
834 || ! bfd_set_section_alignment (abfd, newsect,
835 bfd_log2 (hdr->sh_addralign)))
836 return FALSE;
837
838 flags = SEC_NO_FLAGS;
839 if (hdr->sh_type != SHT_NOBITS)
840 flags |= SEC_HAS_CONTENTS;
841 if (hdr->sh_type == SHT_GROUP)
842 flags |= SEC_GROUP | SEC_EXCLUDE;
843 if ((hdr->sh_flags & SHF_ALLOC) != 0)
844 {
845 flags |= SEC_ALLOC;
846 if (hdr->sh_type != SHT_NOBITS)
847 flags |= SEC_LOAD;
848 }
849 if ((hdr->sh_flags & SHF_WRITE) == 0)
850 flags |= SEC_READONLY;
851 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
852 flags |= SEC_CODE;
853 else if ((flags & SEC_LOAD) != 0)
854 flags |= SEC_DATA;
855 if ((hdr->sh_flags & SHF_MERGE) != 0)
856 {
857 flags |= SEC_MERGE;
858 newsect->entsize = hdr->sh_entsize;
859 if ((hdr->sh_flags & SHF_STRINGS) != 0)
860 flags |= SEC_STRINGS;
861 }
862 if (hdr->sh_flags & SHF_GROUP)
863 if (!setup_group (abfd, hdr, newsect))
864 return FALSE;
865 if ((hdr->sh_flags & SHF_TLS) != 0)
866 flags |= SEC_THREAD_LOCAL;
867
868 if ((flags & SEC_ALLOC) == 0)
869 {
870 /* The debugging sections appear to be recognized only by name,
871 not any sort of flag. Their SEC_ALLOC bits are cleared. */
872 static const struct
873 {
874 const char *name;
875 int len;
876 } debug_sections [] =
877 {
878 { STRING_COMMA_LEN ("debug") }, /* 'd' */
879 { NULL, 0 }, /* 'e' */
880 { NULL, 0 }, /* 'f' */
881 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
882 { NULL, 0 }, /* 'h' */
883 { NULL, 0 }, /* 'i' */
884 { NULL, 0 }, /* 'j' */
885 { NULL, 0 }, /* 'k' */
886 { STRING_COMMA_LEN ("line") }, /* 'l' */
887 { NULL, 0 }, /* 'm' */
888 { NULL, 0 }, /* 'n' */
889 { NULL, 0 }, /* 'o' */
890 { NULL, 0 }, /* 'p' */
891 { NULL, 0 }, /* 'q' */
892 { NULL, 0 }, /* 'r' */
893 { STRING_COMMA_LEN ("stab") } /* 's' */
894 };
895
896 if (name [0] == '.')
897 {
898 int i = name [1] - 'd';
899 if (i >= 0
900 && i < (int) ARRAY_SIZE (debug_sections)
901 && debug_sections [i].name != NULL
902 && strncmp (&name [1], debug_sections [i].name,
903 debug_sections [i].len) == 0)
904 flags |= SEC_DEBUGGING;
905 }
906 }
907
908 /* As a GNU extension, if the name begins with .gnu.linkonce, we
909 only link a single copy of the section. This is used to support
910 g++. g++ will emit each template expansion in its own section.
911 The symbols will be defined as weak, so that multiple definitions
912 are permitted. The GNU linker extension is to actually discard
913 all but one of the sections. */
914 if (CONST_STRNEQ (name, ".gnu.linkonce")
915 && elf_next_in_group (newsect) == NULL)
916 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
917
918 bed = get_elf_backend_data (abfd);
919 if (bed->elf_backend_section_flags)
920 if (! bed->elf_backend_section_flags (&flags, hdr))
921 return FALSE;
922
923 if (! bfd_set_section_flags (abfd, newsect, flags))
924 return FALSE;
925
926 /* We do not parse the PT_NOTE segments as we are interested even in the
927 separate debug info files which may have the segments offsets corrupted.
928 PT_NOTEs from the core files are currently not parsed using BFD. */
929 if (hdr->sh_type == SHT_NOTE)
930 {
931 char *contents;
932
933 contents = bfd_malloc (hdr->sh_size);
934 if (!contents)
935 return FALSE;
936
937 if (!bfd_get_section_contents (abfd, hdr->bfd_section, contents, 0,
938 hdr->sh_size)
939 || !elf_parse_notes (abfd, contents, hdr->sh_size, -1))
940 {
941 free (contents);
942 return FALSE;
943 }
944
945 free (contents);
946 }
947
948 if ((flags & SEC_ALLOC) != 0)
949 {
950 Elf_Internal_Phdr *phdr;
951 unsigned int i, nload;
952
953 /* Some ELF linkers produce binaries with all the program header
954 p_paddr fields zero. If we have such a binary with more than
955 one PT_LOAD header, then leave the section lma equal to vma
956 so that we don't create sections with overlapping lma. */
957 phdr = elf_tdata (abfd)->phdr;
958 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
959 if (phdr->p_paddr != 0)
960 break;
961 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
962 ++nload;
963 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
964 return TRUE;
965
966 phdr = elf_tdata (abfd)->phdr;
967 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
968 {
969 /* This section is part of this segment if its file
970 offset plus size lies within the segment's memory
971 span and, if the section is loaded, the extent of the
972 loaded data lies within the extent of the segment.
973
974 Note - we used to check the p_paddr field as well, and
975 refuse to set the LMA if it was 0. This is wrong
976 though, as a perfectly valid initialised segment can
977 have a p_paddr of zero. Some architectures, eg ARM,
978 place special significance on the address 0 and
979 executables need to be able to have a segment which
980 covers this address. */
981 if (phdr->p_type == PT_LOAD
982 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
983 && (hdr->sh_offset + hdr->sh_size
984 <= phdr->p_offset + phdr->p_memsz)
985 && ((flags & SEC_LOAD) == 0
986 || (hdr->sh_offset + hdr->sh_size
987 <= phdr->p_offset + phdr->p_filesz)))
988 {
989 if ((flags & SEC_LOAD) == 0)
990 newsect->lma = (phdr->p_paddr
991 + hdr->sh_addr - phdr->p_vaddr);
992 else
993 /* We used to use the same adjustment for SEC_LOAD
994 sections, but that doesn't work if the segment
995 is packed with code from multiple VMAs.
996 Instead we calculate the section LMA based on
997 the segment LMA. It is assumed that the
998 segment will contain sections with contiguous
999 LMAs, even if the VMAs are not. */
1000 newsect->lma = (phdr->p_paddr
1001 + hdr->sh_offset - phdr->p_offset);
1002
1003 /* With contiguous segments, we can't tell from file
1004 offsets whether a section with zero size should
1005 be placed at the end of one segment or the
1006 beginning of the next. Decide based on vaddr. */
1007 if (hdr->sh_addr >= phdr->p_vaddr
1008 && (hdr->sh_addr + hdr->sh_size
1009 <= phdr->p_vaddr + phdr->p_memsz))
1010 break;
1011 }
1012 }
1013 }
1014
1015 return TRUE;
1016}
1017
1018/*
1019INTERNAL_FUNCTION
1020 bfd_elf_find_section
1021
1022SYNOPSIS
1023 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
1024
1025DESCRIPTION
1026 Helper functions for GDB to locate the string tables.
1027 Since BFD hides string tables from callers, GDB needs to use an
1028 internal hook to find them. Sun's .stabstr, in particular,
1029 isn't even pointed to by the .stab section, so ordinary
1030 mechanisms wouldn't work to find it, even if we had some.
1031*/
1032
1033struct elf_internal_shdr *
1034bfd_elf_find_section (bfd *abfd, char *name)
1035{
1036 Elf_Internal_Shdr **i_shdrp;
1037 char *shstrtab;
1038 unsigned int max;
1039 unsigned int i;
1040
1041 i_shdrp = elf_elfsections (abfd);
1042 if (i_shdrp != NULL)
1043 {
1044 shstrtab = bfd_elf_get_str_section (abfd,
1045 elf_elfheader (abfd)->e_shstrndx);
1046 if (shstrtab != NULL)
1047 {
1048 max = elf_numsections (abfd);
1049 for (i = 1; i < max; i++)
1050 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
1051 return i_shdrp[i];
1052 }
1053 }
1054 return 0;
1055}
1056
1057const char *const bfd_elf_section_type_names[] = {
1058 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1059 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1060 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1061};
1062
1063/* ELF relocs are against symbols. If we are producing relocatable
1064 output, and the reloc is against an external symbol, and nothing
1065 has given us any additional addend, the resulting reloc will also
1066 be against the same symbol. In such a case, we don't want to
1067 change anything about the way the reloc is handled, since it will
1068 all be done at final link time. Rather than put special case code
1069 into bfd_perform_relocation, all the reloc types use this howto
1070 function. It just short circuits the reloc if producing
1071 relocatable output against an external symbol. */
1072
1073bfd_reloc_status_type
1074bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1075 arelent *reloc_entry,
1076 asymbol *symbol,
1077 void *data ATTRIBUTE_UNUSED,
1078 asection *input_section,
1079 bfd *output_bfd,
1080 char **error_message ATTRIBUTE_UNUSED)
1081{
1082 if (output_bfd != NULL
1083 && (symbol->flags & BSF_SECTION_SYM) == 0
1084 && (! reloc_entry->howto->partial_inplace
1085 || reloc_entry->addend == 0))
1086 {
1087 reloc_entry->address += input_section->output_offset;
1088 return bfd_reloc_ok;
1089 }
1090
1091 return bfd_reloc_continue;
1092}
1093\f
1094/* Copy the program header and other data from one object module to
1095 another. */
1096
1097bfd_boolean
1098_bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1099{
1100 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1101 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1102 return TRUE;
1103
1104 BFD_ASSERT (!elf_flags_init (obfd)
1105 || (elf_elfheader (obfd)->e_flags
1106 == elf_elfheader (ibfd)->e_flags));
1107
1108 elf_gp (obfd) = elf_gp (ibfd);
1109 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1110 elf_flags_init (obfd) = TRUE;
1111
1112 /* Copy object attributes. */
1113 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1114
1115 return TRUE;
1116}
1117
1118static const char *
1119get_segment_type (unsigned int p_type)
1120{
1121 const char *pt;
1122 switch (p_type)
1123 {
1124 case PT_NULL: pt = "NULL"; break;
1125 case PT_LOAD: pt = "LOAD"; break;
1126 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1127 case PT_INTERP: pt = "INTERP"; break;
1128 case PT_NOTE: pt = "NOTE"; break;
1129 case PT_SHLIB: pt = "SHLIB"; break;
1130 case PT_PHDR: pt = "PHDR"; break;
1131 case PT_TLS: pt = "TLS"; break;
1132 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1133 case PT_GNU_STACK: pt = "STACK"; break;
1134 case PT_GNU_RELRO: pt = "RELRO"; break;
1135 default: pt = NULL; break;
1136 }
1137 return pt;
1138}
1139
1140/* Print out the program headers. */
1141
1142bfd_boolean
1143_bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1144{
1145 FILE *f = farg;
1146 Elf_Internal_Phdr *p;
1147 asection *s;
1148 bfd_byte *dynbuf = NULL;
1149
1150 p = elf_tdata (abfd)->phdr;
1151 if (p != NULL)
1152 {
1153 unsigned int i, c;
1154
1155 fprintf (f, _("\nProgram Header:\n"));
1156 c = elf_elfheader (abfd)->e_phnum;
1157 for (i = 0; i < c; i++, p++)
1158 {
1159 const char *pt = get_segment_type (p->p_type);
1160 char buf[20];
1161
1162 if (pt == NULL)
1163 {
1164 sprintf (buf, "0x%lx", p->p_type);
1165 pt = buf;
1166 }
1167 fprintf (f, "%8s off 0x", pt);
1168 bfd_fprintf_vma (abfd, f, p->p_offset);
1169 fprintf (f, " vaddr 0x");
1170 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1171 fprintf (f, " paddr 0x");
1172 bfd_fprintf_vma (abfd, f, p->p_paddr);
1173 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1174 fprintf (f, " filesz 0x");
1175 bfd_fprintf_vma (abfd, f, p->p_filesz);
1176 fprintf (f, " memsz 0x");
1177 bfd_fprintf_vma (abfd, f, p->p_memsz);
1178 fprintf (f, " flags %c%c%c",
1179 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1180 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1181 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1182 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1183 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1184 fprintf (f, "\n");
1185 }
1186 }
1187
1188 s = bfd_get_section_by_name (abfd, ".dynamic");
1189 if (s != NULL)
1190 {
1191 unsigned int elfsec;
1192 unsigned long shlink;
1193 bfd_byte *extdyn, *extdynend;
1194 size_t extdynsize;
1195 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1196
1197 fprintf (f, _("\nDynamic Section:\n"));
1198
1199 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1200 goto error_return;
1201
1202 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1203 if (elfsec == SHN_BAD)
1204 goto error_return;
1205 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1206
1207 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1208 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1209
1210 extdyn = dynbuf;
1211 extdynend = extdyn + s->size;
1212 for (; extdyn < extdynend; extdyn += extdynsize)
1213 {
1214 Elf_Internal_Dyn dyn;
1215 const char *name = "";
1216 char ab[20];
1217 bfd_boolean stringp;
1218 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1219
1220 (*swap_dyn_in) (abfd, extdyn, &dyn);
1221
1222 if (dyn.d_tag == DT_NULL)
1223 break;
1224
1225 stringp = FALSE;
1226 switch (dyn.d_tag)
1227 {
1228 default:
1229 if (bed->elf_backend_get_target_dtag)
1230 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1231
1232 if (!strcmp (name, ""))
1233 {
1234 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1235 name = ab;
1236 }
1237 break;
1238
1239 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1240 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1241 case DT_PLTGOT: name = "PLTGOT"; break;
1242 case DT_HASH: name = "HASH"; break;
1243 case DT_STRTAB: name = "STRTAB"; break;
1244 case DT_SYMTAB: name = "SYMTAB"; break;
1245 case DT_RELA: name = "RELA"; break;
1246 case DT_RELASZ: name = "RELASZ"; break;
1247 case DT_RELAENT: name = "RELAENT"; break;
1248 case DT_STRSZ: name = "STRSZ"; break;
1249 case DT_SYMENT: name = "SYMENT"; break;
1250 case DT_INIT: name = "INIT"; break;
1251 case DT_FINI: name = "FINI"; break;
1252 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1253 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1254 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1255 case DT_REL: name = "REL"; break;
1256 case DT_RELSZ: name = "RELSZ"; break;
1257 case DT_RELENT: name = "RELENT"; break;
1258 case DT_PLTREL: name = "PLTREL"; break;
1259 case DT_DEBUG: name = "DEBUG"; break;
1260 case DT_TEXTREL: name = "TEXTREL"; break;
1261 case DT_JMPREL: name = "JMPREL"; break;
1262 case DT_BIND_NOW: name = "BIND_NOW"; break;
1263 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1264 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1265 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1266 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1267 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1268 case DT_FLAGS: name = "FLAGS"; break;
1269 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1270 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1271 case DT_CHECKSUM: name = "CHECKSUM"; break;
1272 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1273 case DT_MOVEENT: name = "MOVEENT"; break;
1274 case DT_MOVESZ: name = "MOVESZ"; break;
1275 case DT_FEATURE: name = "FEATURE"; break;
1276 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1277 case DT_SYMINSZ: name = "SYMINSZ"; break;
1278 case DT_SYMINENT: name = "SYMINENT"; break;
1279 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1280 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1281 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1282 case DT_PLTPAD: name = "PLTPAD"; break;
1283 case DT_MOVETAB: name = "MOVETAB"; break;
1284 case DT_SYMINFO: name = "SYMINFO"; break;
1285 case DT_RELACOUNT: name = "RELACOUNT"; break;
1286 case DT_RELCOUNT: name = "RELCOUNT"; break;
1287 case DT_FLAGS_1: name = "FLAGS_1"; break;
1288 case DT_VERSYM: name = "VERSYM"; break;
1289 case DT_VERDEF: name = "VERDEF"; break;
1290 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1291 case DT_VERNEED: name = "VERNEED"; break;
1292 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1293 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1294 case DT_USED: name = "USED"; break;
1295 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1296 case DT_GNU_HASH: name = "GNU_HASH"; break;
1297 }
1298
1299 fprintf (f, " %-20s ", name);
1300 if (! stringp)
1301 {
1302 fprintf (f, "0x");
1303 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1304 }
1305 else
1306 {
1307 const char *string;
1308 unsigned int tagv = dyn.d_un.d_val;
1309
1310 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1311 if (string == NULL)
1312 goto error_return;
1313 fprintf (f, "%s", string);
1314 }
1315 fprintf (f, "\n");
1316 }
1317
1318 free (dynbuf);
1319 dynbuf = NULL;
1320 }
1321
1322 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1323 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1324 {
1325 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1326 return FALSE;
1327 }
1328
1329 if (elf_dynverdef (abfd) != 0)
1330 {
1331 Elf_Internal_Verdef *t;
1332
1333 fprintf (f, _("\nVersion definitions:\n"));
1334 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1335 {
1336 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1337 t->vd_flags, t->vd_hash,
1338 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1339 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1340 {
1341 Elf_Internal_Verdaux *a;
1342
1343 fprintf (f, "\t");
1344 for (a = t->vd_auxptr->vda_nextptr;
1345 a != NULL;
1346 a = a->vda_nextptr)
1347 fprintf (f, "%s ",
1348 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1349 fprintf (f, "\n");
1350 }
1351 }
1352 }
1353
1354 if (elf_dynverref (abfd) != 0)
1355 {
1356 Elf_Internal_Verneed *t;
1357
1358 fprintf (f, _("\nVersion References:\n"));
1359 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1360 {
1361 Elf_Internal_Vernaux *a;
1362
1363 fprintf (f, _(" required from %s:\n"),
1364 t->vn_filename ? t->vn_filename : "<corrupt>");
1365 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1366 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1367 a->vna_flags, a->vna_other,
1368 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1369 }
1370 }
1371
1372 return TRUE;
1373
1374 error_return:
1375 if (dynbuf != NULL)
1376 free (dynbuf);
1377 return FALSE;
1378}
1379
1380/* Display ELF-specific fields of a symbol. */
1381
1382void
1383bfd_elf_print_symbol (bfd *abfd,
1384 void *filep,
1385 asymbol *symbol,
1386 bfd_print_symbol_type how)
1387{
1388 FILE *file = filep;
1389 switch (how)
1390 {
1391 case bfd_print_symbol_name:
1392 fprintf (file, "%s", symbol->name);
1393 break;
1394 case bfd_print_symbol_more:
1395 fprintf (file, "elf ");
1396 bfd_fprintf_vma (abfd, file, symbol->value);
1397 fprintf (file, " %lx", (long) symbol->flags);
1398 break;
1399 case bfd_print_symbol_all:
1400 {
1401 const char *section_name;
1402 const char *name = NULL;
1403 const struct elf_backend_data *bed;
1404 unsigned char st_other;
1405 bfd_vma val;
1406
1407 section_name = symbol->section ? symbol->section->name : "(*none*)";
1408
1409 bed = get_elf_backend_data (abfd);
1410 if (bed->elf_backend_print_symbol_all)
1411 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1412
1413 if (name == NULL)
1414 {
1415 name = symbol->name;
1416 bfd_print_symbol_vandf (abfd, file, symbol);
1417 }
1418
1419 fprintf (file, " %s\t", section_name);
1420 /* Print the "other" value for a symbol. For common symbols,
1421 we've already printed the size; now print the alignment.
1422 For other symbols, we have no specified alignment, and
1423 we've printed the address; now print the size. */
1424 if (symbol->section && bfd_is_com_section (symbol->section))
1425 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1426 else
1427 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1428 bfd_fprintf_vma (abfd, file, val);
1429
1430 /* If we have version information, print it. */
1431 if (elf_tdata (abfd)->dynversym_section != 0
1432 && (elf_tdata (abfd)->dynverdef_section != 0
1433 || elf_tdata (abfd)->dynverref_section != 0))
1434 {
1435 unsigned int vernum;
1436 const char *version_string;
1437
1438 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1439
1440 if (vernum == 0)
1441 version_string = "";
1442 else if (vernum == 1)
1443 version_string = "Base";
1444 else if (vernum <= elf_tdata (abfd)->cverdefs)
1445 version_string =
1446 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1447 else
1448 {
1449 Elf_Internal_Verneed *t;
1450
1451 version_string = "";
1452 for (t = elf_tdata (abfd)->verref;
1453 t != NULL;
1454 t = t->vn_nextref)
1455 {
1456 Elf_Internal_Vernaux *a;
1457
1458 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1459 {
1460 if (a->vna_other == vernum)
1461 {
1462 version_string = a->vna_nodename;
1463 break;
1464 }
1465 }
1466 }
1467 }
1468
1469 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1470 fprintf (file, " %-11s", version_string);
1471 else
1472 {
1473 int i;
1474
1475 fprintf (file, " (%s)", version_string);
1476 for (i = 10 - strlen (version_string); i > 0; --i)
1477 putc (' ', file);
1478 }
1479 }
1480
1481 /* If the st_other field is not zero, print it. */
1482 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1483
1484 switch (st_other)
1485 {
1486 case 0: break;
1487 case STV_INTERNAL: fprintf (file, " .internal"); break;
1488 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1489 case STV_PROTECTED: fprintf (file, " .protected"); break;
1490 default:
1491 /* Some other non-defined flags are also present, so print
1492 everything hex. */
1493 fprintf (file, " 0x%02x", (unsigned int) st_other);
1494 }
1495
1496 fprintf (file, " %s", name);
1497 }
1498 break;
1499 }
1500}
1501
1502/* Allocate an ELF string table--force the first byte to be zero. */
1503
1504struct bfd_strtab_hash *
1505_bfd_elf_stringtab_init (void)
1506{
1507 struct bfd_strtab_hash *ret;
1508
1509 ret = _bfd_stringtab_init ();
1510 if (ret != NULL)
1511 {
1512 bfd_size_type loc;
1513
1514 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1515 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1516 if (loc == (bfd_size_type) -1)
1517 {
1518 _bfd_stringtab_free (ret);
1519 ret = NULL;
1520 }
1521 }
1522 return ret;
1523}
1524\f
1525/* ELF .o/exec file reading */
1526
1527/* Create a new bfd section from an ELF section header. */
1528
1529bfd_boolean
1530bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1531{
1532 Elf_Internal_Shdr *hdr;
1533 Elf_Internal_Ehdr *ehdr;
1534 const struct elf_backend_data *bed;
1535 const char *name;
1536
1537 if (shindex >= elf_numsections (abfd))
1538 return FALSE;
1539
1540 hdr = elf_elfsections (abfd)[shindex];
1541 ehdr = elf_elfheader (abfd);
1542 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1543 hdr->sh_name);
1544 if (name == NULL)
1545 return FALSE;
1546
1547 bed = get_elf_backend_data (abfd);
1548 switch (hdr->sh_type)
1549 {
1550 case SHT_NULL:
1551 /* Inactive section. Throw it away. */
1552 return TRUE;
1553
1554 case SHT_PROGBITS: /* Normal section with contents. */
1555 case SHT_NOBITS: /* .bss section. */
1556 case SHT_HASH: /* .hash section. */
1557 case SHT_NOTE: /* .note section. */
1558 case SHT_INIT_ARRAY: /* .init_array section. */
1559 case SHT_FINI_ARRAY: /* .fini_array section. */
1560 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1561 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1562 case SHT_GNU_HASH: /* .gnu.hash section. */
1563 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1564
1565 case SHT_DYNAMIC: /* Dynamic linking information. */
1566 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1567 return FALSE;
1568 if (hdr->sh_link > elf_numsections (abfd)
1569 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1570 return FALSE;
1571 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1572 {
1573 Elf_Internal_Shdr *dynsymhdr;
1574
1575 /* The shared libraries distributed with hpux11 have a bogus
1576 sh_link field for the ".dynamic" section. Find the
1577 string table for the ".dynsym" section instead. */
1578 if (elf_dynsymtab (abfd) != 0)
1579 {
1580 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1581 hdr->sh_link = dynsymhdr->sh_link;
1582 }
1583 else
1584 {
1585 unsigned int i, num_sec;
1586
1587 num_sec = elf_numsections (abfd);
1588 for (i = 1; i < num_sec; i++)
1589 {
1590 dynsymhdr = elf_elfsections (abfd)[i];
1591 if (dynsymhdr->sh_type == SHT_DYNSYM)
1592 {
1593 hdr->sh_link = dynsymhdr->sh_link;
1594 break;
1595 }
1596 }
1597 }
1598 }
1599 break;
1600
1601 case SHT_SYMTAB: /* A symbol table */
1602 if (elf_onesymtab (abfd) == shindex)
1603 return TRUE;
1604
1605 if (hdr->sh_entsize != bed->s->sizeof_sym)
1606 return FALSE;
1607 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1608 elf_onesymtab (abfd) = shindex;
1609 elf_tdata (abfd)->symtab_hdr = *hdr;
1610 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1611 abfd->flags |= HAS_SYMS;
1612
1613 /* Sometimes a shared object will map in the symbol table. If
1614 SHF_ALLOC is set, and this is a shared object, then we also
1615 treat this section as a BFD section. We can not base the
1616 decision purely on SHF_ALLOC, because that flag is sometimes
1617 set in a relocatable object file, which would confuse the
1618 linker. */
1619 if ((hdr->sh_flags & SHF_ALLOC) != 0
1620 && (abfd->flags & DYNAMIC) != 0
1621 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1622 shindex))
1623 return FALSE;
1624
1625 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1626 can't read symbols without that section loaded as well. It
1627 is most likely specified by the next section header. */
1628 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1629 {
1630 unsigned int i, num_sec;
1631
1632 num_sec = elf_numsections (abfd);
1633 for (i = shindex + 1; i < num_sec; i++)
1634 {
1635 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1636 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1637 && hdr2->sh_link == shindex)
1638 break;
1639 }
1640 if (i == num_sec)
1641 for (i = 1; i < shindex; i++)
1642 {
1643 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1644 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1645 && hdr2->sh_link == shindex)
1646 break;
1647 }
1648 if (i != shindex)
1649 return bfd_section_from_shdr (abfd, i);
1650 }
1651 return TRUE;
1652
1653 case SHT_DYNSYM: /* A dynamic symbol table */
1654 if (elf_dynsymtab (abfd) == shindex)
1655 return TRUE;
1656
1657 if (hdr->sh_entsize != bed->s->sizeof_sym)
1658 return FALSE;
1659 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1660 elf_dynsymtab (abfd) = shindex;
1661 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1662 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1663 abfd->flags |= HAS_SYMS;
1664
1665 /* Besides being a symbol table, we also treat this as a regular
1666 section, so that objcopy can handle it. */
1667 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1668
1669 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1670 if (elf_symtab_shndx (abfd) == shindex)
1671 return TRUE;
1672
1673 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1674 elf_symtab_shndx (abfd) = shindex;
1675 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1676 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1677 return TRUE;
1678
1679 case SHT_STRTAB: /* A string table */
1680 if (hdr->bfd_section != NULL)
1681 return TRUE;
1682 if (ehdr->e_shstrndx == shindex)
1683 {
1684 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1685 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1686 return TRUE;
1687 }
1688 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1689 {
1690 symtab_strtab:
1691 elf_tdata (abfd)->strtab_hdr = *hdr;
1692 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1693 return TRUE;
1694 }
1695 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1696 {
1697 dynsymtab_strtab:
1698 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1699 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1700 elf_elfsections (abfd)[shindex] = hdr;
1701 /* We also treat this as a regular section, so that objcopy
1702 can handle it. */
1703 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1704 shindex);
1705 }
1706
1707 /* If the string table isn't one of the above, then treat it as a
1708 regular section. We need to scan all the headers to be sure,
1709 just in case this strtab section appeared before the above. */
1710 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1711 {
1712 unsigned int i, num_sec;
1713
1714 num_sec = elf_numsections (abfd);
1715 for (i = 1; i < num_sec; i++)
1716 {
1717 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1718 if (hdr2->sh_link == shindex)
1719 {
1720 /* Prevent endless recursion on broken objects. */
1721 if (i == shindex)
1722 return FALSE;
1723 if (! bfd_section_from_shdr (abfd, i))
1724 return FALSE;
1725 if (elf_onesymtab (abfd) == i)
1726 goto symtab_strtab;
1727 if (elf_dynsymtab (abfd) == i)
1728 goto dynsymtab_strtab;
1729 }
1730 }
1731 }
1732 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1733
1734 case SHT_REL:
1735 case SHT_RELA:
1736 /* *These* do a lot of work -- but build no sections! */
1737 {
1738 asection *target_sect;
1739 Elf_Internal_Shdr *hdr2;
1740 unsigned int num_sec = elf_numsections (abfd);
1741
1742 if (hdr->sh_entsize
1743 != (bfd_size_type) (hdr->sh_type == SHT_REL
1744 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1745 return FALSE;
1746
1747 /* Check for a bogus link to avoid crashing. */
1748 if (hdr->sh_link >= num_sec)
1749 {
1750 ((*_bfd_error_handler)
1751 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1752 abfd, hdr->sh_link, name, shindex));
1753 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1754 shindex);
1755 }
1756
1757 /* For some incomprehensible reason Oracle distributes
1758 libraries for Solaris in which some of the objects have
1759 bogus sh_link fields. It would be nice if we could just
1760 reject them, but, unfortunately, some people need to use
1761 them. We scan through the section headers; if we find only
1762 one suitable symbol table, we clobber the sh_link to point
1763 to it. I hope this doesn't break anything. */
1764 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1765 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1766 {
1767 unsigned int scan;
1768 int found;
1769
1770 found = 0;
1771 for (scan = 1; scan < num_sec; scan++)
1772 {
1773 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1774 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1775 {
1776 if (found != 0)
1777 {
1778 found = 0;
1779 break;
1780 }
1781 found = scan;
1782 }
1783 }
1784 if (found != 0)
1785 hdr->sh_link = found;
1786 }
1787
1788 /* Get the symbol table. */
1789 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1790 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1791 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1792 return FALSE;
1793
1794 /* If this reloc section does not use the main symbol table we
1795 don't treat it as a reloc section. BFD can't adequately
1796 represent such a section, so at least for now, we don't
1797 try. We just present it as a normal section. We also
1798 can't use it as a reloc section if it points to the null
1799 section, an invalid section, or another reloc section. */
1800 if (hdr->sh_link != elf_onesymtab (abfd)
1801 || hdr->sh_info == SHN_UNDEF
1802 || hdr->sh_info >= num_sec
1803 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1804 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1805 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1806 shindex);
1807
1808 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1809 return FALSE;
1810 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1811 if (target_sect == NULL)
1812 return FALSE;
1813
1814 if ((target_sect->flags & SEC_RELOC) == 0
1815 || target_sect->reloc_count == 0)
1816 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1817 else
1818 {
1819 bfd_size_type amt;
1820 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1821 amt = sizeof (*hdr2);
1822 hdr2 = bfd_alloc (abfd, amt);
1823 if (hdr2 == NULL)
1824 return FALSE;
1825 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1826 }
1827 *hdr2 = *hdr;
1828 elf_elfsections (abfd)[shindex] = hdr2;
1829 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1830 target_sect->flags |= SEC_RELOC;
1831 target_sect->relocation = NULL;
1832 target_sect->rel_filepos = hdr->sh_offset;
1833 /* In the section to which the relocations apply, mark whether
1834 its relocations are of the REL or RELA variety. */
1835 if (hdr->sh_size != 0)
1836 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1837 abfd->flags |= HAS_RELOC;
1838 return TRUE;
1839 }
1840
1841 case SHT_GNU_verdef:
1842 elf_dynverdef (abfd) = shindex;
1843 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1844 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1845
1846 case SHT_GNU_versym:
1847 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1848 return FALSE;
1849 elf_dynversym (abfd) = shindex;
1850 elf_tdata (abfd)->dynversym_hdr = *hdr;
1851 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1852
1853 case SHT_GNU_verneed:
1854 elf_dynverref (abfd) = shindex;
1855 elf_tdata (abfd)->dynverref_hdr = *hdr;
1856 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1857
1858 case SHT_SHLIB:
1859 return TRUE;
1860
1861 case SHT_GROUP:
1862 /* We need a BFD section for objcopy and relocatable linking,
1863 and it's handy to have the signature available as the section
1864 name. */
1865 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1866 return FALSE;
1867 name = group_signature (abfd, hdr);
1868 if (name == NULL)
1869 return FALSE;
1870 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1871 return FALSE;
1872 if (hdr->contents != NULL)
1873 {
1874 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1875 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1876 asection *s;
1877
1878 if (idx->flags & GRP_COMDAT)
1879 hdr->bfd_section->flags
1880 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1881
1882 /* We try to keep the same section order as it comes in. */
1883 idx += n_elt;
1884 while (--n_elt != 0)
1885 {
1886 --idx;
1887
1888 if (idx->shdr != NULL
1889 && (s = idx->shdr->bfd_section) != NULL
1890 && elf_next_in_group (s) != NULL)
1891 {
1892 elf_next_in_group (hdr->bfd_section) = s;
1893 break;
1894 }
1895 }
1896 }
1897 break;
1898
1899 default:
1900 /* Possibly an attributes section. */
1901 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1902 || hdr->sh_type == bed->obj_attrs_section_type)
1903 {
1904 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1905 return FALSE;
1906 _bfd_elf_parse_attributes (abfd, hdr);
1907 return TRUE;
1908 }
1909
1910 /* Check for any processor-specific section types. */
1911 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1912 return TRUE;
1913
1914 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1915 {
1916 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1917 /* FIXME: How to properly handle allocated section reserved
1918 for applications? */
1919 (*_bfd_error_handler)
1920 (_("%B: don't know how to handle allocated, application "
1921 "specific section `%s' [0x%8x]"),
1922 abfd, name, hdr->sh_type);
1923 else
1924 /* Allow sections reserved for applications. */
1925 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1926 shindex);
1927 }
1928 else if (hdr->sh_type >= SHT_LOPROC
1929 && hdr->sh_type <= SHT_HIPROC)
1930 /* FIXME: We should handle this section. */
1931 (*_bfd_error_handler)
1932 (_("%B: don't know how to handle processor specific section "
1933 "`%s' [0x%8x]"),
1934 abfd, name, hdr->sh_type);
1935 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1936 {
1937 /* Unrecognised OS-specific sections. */
1938 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1939 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1940 required to correctly process the section and the file should
1941 be rejected with an error message. */
1942 (*_bfd_error_handler)
1943 (_("%B: don't know how to handle OS specific section "
1944 "`%s' [0x%8x]"),
1945 abfd, name, hdr->sh_type);
1946 else
1947 /* Otherwise it should be processed. */
1948 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1949 }
1950 else
1951 /* FIXME: We should handle this section. */
1952 (*_bfd_error_handler)
1953 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1954 abfd, name, hdr->sh_type);
1955
1956 return FALSE;
1957 }
1958
1959 return TRUE;
1960}
1961
1962/* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1963 Return SEC for sections that have no elf section, and NULL on error. */
1964
1965asection *
1966bfd_section_from_r_symndx (bfd *abfd,
1967 struct sym_sec_cache *cache,
1968 asection *sec,
1969 unsigned long r_symndx)
1970{
1971 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1972 asection *s;
1973
1974 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
1975 {
1976 Elf_Internal_Shdr *symtab_hdr;
1977 unsigned char esym[sizeof (Elf64_External_Sym)];
1978 Elf_External_Sym_Shndx eshndx;
1979 Elf_Internal_Sym isym;
1980
1981 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1982 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1983 &isym, esym, &eshndx) == NULL)
1984 return NULL;
1985
1986 if (cache->abfd != abfd)
1987 {
1988 memset (cache->indx, -1, sizeof (cache->indx));
1989 cache->abfd = abfd;
1990 }
1991 cache->indx[ent] = r_symndx;
1992 cache->shndx[ent] = isym.st_shndx;
1993 }
1994
1995 s = bfd_section_from_elf_index (abfd, cache->shndx[ent]);
1996 if (s != NULL)
1997 return s;
1998
1999 return sec;
2000}
2001
2002/* Given an ELF section number, retrieve the corresponding BFD
2003 section. */
2004
2005asection *
2006bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2007{
2008 if (index >= elf_numsections (abfd))
2009 return NULL;
2010 return elf_elfsections (abfd)[index]->bfd_section;
2011}
2012
2013static const struct bfd_elf_special_section special_sections_b[] =
2014{
2015 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2016 { NULL, 0, 0, 0, 0 }
2017};
2018
2019static const struct bfd_elf_special_section special_sections_c[] =
2020{
2021 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2022 { NULL, 0, 0, 0, 0 }
2023};
2024
2025static const struct bfd_elf_special_section special_sections_d[] =
2026{
2027 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2028 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2029 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2030 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2031 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2032 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2033 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2034 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2035 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2036 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2037 { NULL, 0, 0, 0, 0 }
2038};
2039
2040static const struct bfd_elf_special_section special_sections_f[] =
2041{
2042 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2043 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2044 { NULL, 0, 0, 0, 0 }
2045};
2046
2047static const struct bfd_elf_special_section special_sections_g[] =
2048{
2049 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2050 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2051 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2052 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2053 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2054 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2055 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2056 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2057 { NULL, 0, 0, 0, 0 }
2058};
2059
2060static const struct bfd_elf_special_section special_sections_h[] =
2061{
2062 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2063 { NULL, 0, 0, 0, 0 }
2064};
2065
2066static const struct bfd_elf_special_section special_sections_i[] =
2067{
2068 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2069 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2070 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2071 { NULL, 0, 0, 0, 0 }
2072};
2073
2074static const struct bfd_elf_special_section special_sections_l[] =
2075{
2076 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2077 { NULL, 0, 0, 0, 0 }
2078};
2079
2080static const struct bfd_elf_special_section special_sections_n[] =
2081{
2082 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2083 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2084 { NULL, 0, 0, 0, 0 }
2085};
2086
2087static const struct bfd_elf_special_section special_sections_p[] =
2088{
2089 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2090 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2091 { NULL, 0, 0, 0, 0 }
2092};
2093
2094static const struct bfd_elf_special_section special_sections_r[] =
2095{
2096 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2097 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2098 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2099 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2100 { NULL, 0, 0, 0, 0 }
2101};
2102
2103static const struct bfd_elf_special_section special_sections_s[] =
2104{
2105 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2106 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2107 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2108 /* See struct bfd_elf_special_section declaration for the semantics of
2109 this special case where .prefix_length != strlen (.prefix). */
2110 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2111 { NULL, 0, 0, 0, 0 }
2112};
2113
2114static const struct bfd_elf_special_section special_sections_t[] =
2115{
2116 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2117 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2118 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2119 { NULL, 0, 0, 0, 0 }
2120};
2121
2122static const struct bfd_elf_special_section *special_sections[] =
2123{
2124 special_sections_b, /* 'b' */
2125 special_sections_c, /* 'c' */
2126 special_sections_d, /* 'd' */
2127 NULL, /* 'e' */
2128 special_sections_f, /* 'f' */
2129 special_sections_g, /* 'g' */
2130 special_sections_h, /* 'h' */
2131 special_sections_i, /* 'i' */
2132 NULL, /* 'j' */
2133 NULL, /* 'k' */
2134 special_sections_l, /* 'l' */
2135 NULL, /* 'm' */
2136 special_sections_n, /* 'n' */
2137 NULL, /* 'o' */
2138 special_sections_p, /* 'p' */
2139 NULL, /* 'q' */
2140 special_sections_r, /* 'r' */
2141 special_sections_s, /* 's' */
2142 special_sections_t, /* 't' */
2143};
2144
2145const struct bfd_elf_special_section *
2146_bfd_elf_get_special_section (const char *name,
2147 const struct bfd_elf_special_section *spec,
2148 unsigned int rela)
2149{
2150 int i;
2151 int len;
2152
2153 len = strlen (name);
2154
2155 for (i = 0; spec[i].prefix != NULL; i++)
2156 {
2157 int suffix_len;
2158 int prefix_len = spec[i].prefix_length;
2159
2160 if (len < prefix_len)
2161 continue;
2162 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2163 continue;
2164
2165 suffix_len = spec[i].suffix_length;
2166 if (suffix_len <= 0)
2167 {
2168 if (name[prefix_len] != 0)
2169 {
2170 if (suffix_len == 0)
2171 continue;
2172 if (name[prefix_len] != '.'
2173 && (suffix_len == -2
2174 || (rela && spec[i].type == SHT_REL)))
2175 continue;
2176 }
2177 }
2178 else
2179 {
2180 if (len < prefix_len + suffix_len)
2181 continue;
2182 if (memcmp (name + len - suffix_len,
2183 spec[i].prefix + prefix_len,
2184 suffix_len) != 0)
2185 continue;
2186 }
2187 return &spec[i];
2188 }
2189
2190 return NULL;
2191}
2192
2193const struct bfd_elf_special_section *
2194_bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2195{
2196 int i;
2197 const struct bfd_elf_special_section *spec;
2198 const struct elf_backend_data *bed;
2199
2200 /* See if this is one of the special sections. */
2201 if (sec->name == NULL)
2202 return NULL;
2203
2204 bed = get_elf_backend_data (abfd);
2205 spec = bed->special_sections;
2206 if (spec)
2207 {
2208 spec = _bfd_elf_get_special_section (sec->name,
2209 bed->special_sections,
2210 sec->use_rela_p);
2211 if (spec != NULL)
2212 return spec;
2213 }
2214
2215 if (sec->name[0] != '.')
2216 return NULL;
2217
2218 i = sec->name[1] - 'b';
2219 if (i < 0 || i > 't' - 'b')
2220 return NULL;
2221
2222 spec = special_sections[i];
2223
2224 if (spec == NULL)
2225 return NULL;
2226
2227 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2228}
2229
2230bfd_boolean
2231_bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2232{
2233 struct bfd_elf_section_data *sdata;
2234 const struct elf_backend_data *bed;
2235 const struct bfd_elf_special_section *ssect;
2236
2237 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2238 if (sdata == NULL)
2239 {
2240 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2241 if (sdata == NULL)
2242 return FALSE;
2243 sec->used_by_bfd = sdata;
2244 }
2245
2246 /* Indicate whether or not this section should use RELA relocations. */
2247 bed = get_elf_backend_data (abfd);
2248 sec->use_rela_p = bed->default_use_rela_p;
2249
2250 /* When we read a file, we don't need to set ELF section type and
2251 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2252 anyway. We will set ELF section type and flags for all linker
2253 created sections. If user specifies BFD section flags, we will
2254 set ELF section type and flags based on BFD section flags in
2255 elf_fake_sections. */
2256 if ((!sec->flags && abfd->direction != read_direction)
2257 || (sec->flags & SEC_LINKER_CREATED) != 0)
2258 {
2259 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2260 if (ssect != NULL)
2261 {
2262 elf_section_type (sec) = ssect->type;
2263 elf_section_flags (sec) = ssect->attr;
2264 }
2265 }
2266
2267 return _bfd_generic_new_section_hook (abfd, sec);
2268}
2269
2270/* Create a new bfd section from an ELF program header.
2271
2272 Since program segments have no names, we generate a synthetic name
2273 of the form segment<NUM>, where NUM is generally the index in the
2274 program header table. For segments that are split (see below) we
2275 generate the names segment<NUM>a and segment<NUM>b.
2276
2277 Note that some program segments may have a file size that is different than
2278 (less than) the memory size. All this means is that at execution the
2279 system must allocate the amount of memory specified by the memory size,
2280 but only initialize it with the first "file size" bytes read from the
2281 file. This would occur for example, with program segments consisting
2282 of combined data+bss.
2283
2284 To handle the above situation, this routine generates TWO bfd sections
2285 for the single program segment. The first has the length specified by
2286 the file size of the segment, and the second has the length specified
2287 by the difference between the two sizes. In effect, the segment is split
2288 into its initialized and uninitialized parts.
2289
2290 */
2291
2292bfd_boolean
2293_bfd_elf_make_section_from_phdr (bfd *abfd,
2294 Elf_Internal_Phdr *hdr,
2295 int index,
2296 const char *typename)
2297{
2298 asection *newsect;
2299 char *name;
2300 char namebuf[64];
2301 size_t len;
2302 int split;
2303
2304 split = ((hdr->p_memsz > 0)
2305 && (hdr->p_filesz > 0)
2306 && (hdr->p_memsz > hdr->p_filesz));
2307
2308 if (hdr->p_filesz > 0)
2309 {
2310 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2311 len = strlen (namebuf) + 1;
2312 name = bfd_alloc (abfd, len);
2313 if (!name)
2314 return FALSE;
2315 memcpy (name, namebuf, len);
2316 newsect = bfd_make_section (abfd, name);
2317 if (newsect == NULL)
2318 return FALSE;
2319 newsect->vma = hdr->p_vaddr;
2320 newsect->lma = hdr->p_paddr;
2321 newsect->size = hdr->p_filesz;
2322 newsect->filepos = hdr->p_offset;
2323 newsect->flags |= SEC_HAS_CONTENTS;
2324 newsect->alignment_power = bfd_log2 (hdr->p_align);
2325 if (hdr->p_type == PT_LOAD)
2326 {
2327 newsect->flags |= SEC_ALLOC;
2328 newsect->flags |= SEC_LOAD;
2329 if (hdr->p_flags & PF_X)
2330 {
2331 /* FIXME: all we known is that it has execute PERMISSION,
2332 may be data. */
2333 newsect->flags |= SEC_CODE;
2334 }
2335 }
2336 if (!(hdr->p_flags & PF_W))
2337 {
2338 newsect->flags |= SEC_READONLY;
2339 }
2340 }
2341
2342 if (hdr->p_memsz > hdr->p_filesz)
2343 {
2344 bfd_vma align;
2345
2346 sprintf (namebuf, "%s%d%s", typename, index, split ? "b" : "");
2347 len = strlen (namebuf) + 1;
2348 name = bfd_alloc (abfd, len);
2349 if (!name)
2350 return FALSE;
2351 memcpy (name, namebuf, len);
2352 newsect = bfd_make_section (abfd, name);
2353 if (newsect == NULL)
2354 return FALSE;
2355 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2356 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2357 newsect->size = hdr->p_memsz - hdr->p_filesz;
2358 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2359 align = newsect->vma & -newsect->vma;
2360 if (align == 0 || align > hdr->p_align)
2361 align = hdr->p_align;
2362 newsect->alignment_power = bfd_log2 (align);
2363 if (hdr->p_type == PT_LOAD)
2364 {
2365 /* Hack for gdb. Segments that have not been modified do
2366 not have their contents written to a core file, on the
2367 assumption that a debugger can find the contents in the
2368 executable. We flag this case by setting the fake
2369 section size to zero. Note that "real" bss sections will
2370 always have their contents dumped to the core file. */
2371 if (bfd_get_format (abfd) == bfd_core)
2372 newsect->size = 0;
2373 newsect->flags |= SEC_ALLOC;
2374 if (hdr->p_flags & PF_X)
2375 newsect->flags |= SEC_CODE;
2376 }
2377 if (!(hdr->p_flags & PF_W))
2378 newsect->flags |= SEC_READONLY;
2379 }
2380
2381 return TRUE;
2382}
2383
2384bfd_boolean
2385bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2386{
2387 const struct elf_backend_data *bed;
2388
2389 switch (hdr->p_type)
2390 {
2391 case PT_NULL:
2392 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2393
2394 case PT_LOAD:
2395 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2396
2397 case PT_DYNAMIC:
2398 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2399
2400 case PT_INTERP:
2401 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2402
2403 case PT_NOTE:
2404 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2405 return FALSE;
2406 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2407 return FALSE;
2408 return TRUE;
2409
2410 case PT_SHLIB:
2411 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2412
2413 case PT_PHDR:
2414 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2415
2416 case PT_GNU_EH_FRAME:
2417 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2418 "eh_frame_hdr");
2419
2420 case PT_GNU_STACK:
2421 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2422
2423 case PT_GNU_RELRO:
2424 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2425
2426 default:
2427 /* Check for any processor-specific program segment types. */
2428 bed = get_elf_backend_data (abfd);
2429 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2430 }
2431}
2432
2433/* Initialize REL_HDR, the section-header for new section, containing
2434 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2435 relocations; otherwise, we use REL relocations. */
2436
2437bfd_boolean
2438_bfd_elf_init_reloc_shdr (bfd *abfd,
2439 Elf_Internal_Shdr *rel_hdr,
2440 asection *asect,
2441 bfd_boolean use_rela_p)
2442{
2443 char *name;
2444 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2445 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2446
2447 name = bfd_alloc (abfd, amt);
2448 if (name == NULL)
2449 return FALSE;
2450 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2451 rel_hdr->sh_name =
2452 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2453 FALSE);
2454 if (rel_hdr->sh_name == (unsigned int) -1)
2455 return FALSE;
2456 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2457 rel_hdr->sh_entsize = (use_rela_p
2458 ? bed->s->sizeof_rela
2459 : bed->s->sizeof_rel);
2460 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2461 rel_hdr->sh_flags = 0;
2462 rel_hdr->sh_addr = 0;
2463 rel_hdr->sh_size = 0;
2464 rel_hdr->sh_offset = 0;
2465
2466 return TRUE;
2467}
2468
2469/* Set up an ELF internal section header for a section. */
2470
2471static void
2472elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2473{
2474 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2475 bfd_boolean *failedptr = failedptrarg;
2476 Elf_Internal_Shdr *this_hdr;
2477 unsigned int sh_type;
2478
2479 if (*failedptr)
2480 {
2481 /* We already failed; just get out of the bfd_map_over_sections
2482 loop. */
2483 return;
2484 }
2485
2486 this_hdr = &elf_section_data (asect)->this_hdr;
2487
2488 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2489 asect->name, FALSE);
2490 if (this_hdr->sh_name == (unsigned int) -1)
2491 {
2492 *failedptr = TRUE;
2493 return;
2494 }
2495
2496 /* Don't clear sh_flags. Assembler may set additional bits. */
2497
2498 if ((asect->flags & SEC_ALLOC) != 0
2499 || asect->user_set_vma)
2500 this_hdr->sh_addr = asect->vma;
2501 else
2502 this_hdr->sh_addr = 0;
2503
2504 this_hdr->sh_offset = 0;
2505 this_hdr->sh_size = asect->size;
2506 this_hdr->sh_link = 0;
2507 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2508 /* The sh_entsize and sh_info fields may have been set already by
2509 copy_private_section_data. */
2510
2511 this_hdr->bfd_section = asect;
2512 this_hdr->contents = NULL;
2513
2514 /* If the section type is unspecified, we set it based on
2515 asect->flags. */
2516 if ((asect->flags & SEC_GROUP) != 0)
2517 sh_type = SHT_GROUP;
2518 else if ((asect->flags & SEC_ALLOC) != 0
2519 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2520 || (asect->flags & SEC_NEVER_LOAD) != 0))
2521 sh_type = SHT_NOBITS;
2522 else
2523 sh_type = SHT_PROGBITS;
2524
2525 if (this_hdr->sh_type == SHT_NULL)
2526 this_hdr->sh_type = sh_type;
2527 else if (this_hdr->sh_type == SHT_NOBITS
2528 && sh_type == SHT_PROGBITS
2529 && (asect->flags & SEC_ALLOC) != 0)
2530 {
2531 /* Warn if we are changing a NOBITS section to PROGBITS, but
2532 allow the link to proceed. This can happen when users link
2533 non-bss input sections to bss output sections, or emit data
2534 to a bss output section via a linker script. */
2535 (*_bfd_error_handler)
2536 (_("warning: section `%A' type changed to PROGBITS"), asect);
2537 this_hdr->sh_type = sh_type;
2538 }
2539
2540 switch (this_hdr->sh_type)
2541 {
2542 default:
2543 break;
2544
2545 case SHT_STRTAB:
2546 case SHT_INIT_ARRAY:
2547 case SHT_FINI_ARRAY:
2548 case SHT_PREINIT_ARRAY:
2549 case SHT_NOTE:
2550 case SHT_NOBITS:
2551 case SHT_PROGBITS:
2552 break;
2553
2554 case SHT_HASH:
2555 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2556 break;
2557
2558 case SHT_DYNSYM:
2559 this_hdr->sh_entsize = bed->s->sizeof_sym;
2560 break;
2561
2562 case SHT_DYNAMIC:
2563 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2564 break;
2565
2566 case SHT_RELA:
2567 if (get_elf_backend_data (abfd)->may_use_rela_p)
2568 this_hdr->sh_entsize = bed->s->sizeof_rela;
2569 break;
2570
2571 case SHT_REL:
2572 if (get_elf_backend_data (abfd)->may_use_rel_p)
2573 this_hdr->sh_entsize = bed->s->sizeof_rel;
2574 break;
2575
2576 case SHT_GNU_versym:
2577 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2578 break;
2579
2580 case SHT_GNU_verdef:
2581 this_hdr->sh_entsize = 0;
2582 /* objcopy or strip will copy over sh_info, but may not set
2583 cverdefs. The linker will set cverdefs, but sh_info will be
2584 zero. */
2585 if (this_hdr->sh_info == 0)
2586 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2587 else
2588 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2589 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2590 break;
2591
2592 case SHT_GNU_verneed:
2593 this_hdr->sh_entsize = 0;
2594 /* objcopy or strip will copy over sh_info, but may not set
2595 cverrefs. The linker will set cverrefs, but sh_info will be
2596 zero. */
2597 if (this_hdr->sh_info == 0)
2598 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2599 else
2600 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2601 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2602 break;
2603
2604 case SHT_GROUP:
2605 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2606 break;
2607
2608 case SHT_GNU_HASH:
2609 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2610 break;
2611 }
2612
2613 if ((asect->flags & SEC_ALLOC) != 0)
2614 this_hdr->sh_flags |= SHF_ALLOC;
2615 if ((asect->flags & SEC_READONLY) == 0)
2616 this_hdr->sh_flags |= SHF_WRITE;
2617 if ((asect->flags & SEC_CODE) != 0)
2618 this_hdr->sh_flags |= SHF_EXECINSTR;
2619 if ((asect->flags & SEC_MERGE) != 0)
2620 {
2621 this_hdr->sh_flags |= SHF_MERGE;
2622 this_hdr->sh_entsize = asect->entsize;
2623 if ((asect->flags & SEC_STRINGS) != 0)
2624 this_hdr->sh_flags |= SHF_STRINGS;
2625 }
2626 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2627 this_hdr->sh_flags |= SHF_GROUP;
2628 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2629 {
2630 this_hdr->sh_flags |= SHF_TLS;
2631 if (asect->size == 0
2632 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2633 {
2634 struct bfd_link_order *o = asect->map_tail.link_order;
2635
2636 this_hdr->sh_size = 0;
2637 if (o != NULL)
2638 {
2639 this_hdr->sh_size = o->offset + o->size;
2640 if (this_hdr->sh_size != 0)
2641 this_hdr->sh_type = SHT_NOBITS;
2642 }
2643 }
2644 }
2645
2646 /* Check for processor-specific section types. */
2647 sh_type = this_hdr->sh_type;
2648 if (bed->elf_backend_fake_sections
2649 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2650 *failedptr = TRUE;
2651
2652 if (sh_type == SHT_NOBITS && asect->size != 0)
2653 {
2654 /* Don't change the header type from NOBITS if we are being
2655 called for objcopy --only-keep-debug. */
2656 this_hdr->sh_type = sh_type;
2657 }
2658
2659 /* If the section has relocs, set up a section header for the
2660 SHT_REL[A] section. If two relocation sections are required for
2661 this section, it is up to the processor-specific back-end to
2662 create the other. */
2663 if ((asect->flags & SEC_RELOC) != 0
2664 && !_bfd_elf_init_reloc_shdr (abfd,
2665 &elf_section_data (asect)->rel_hdr,
2666 asect,
2667 asect->use_rela_p))
2668 *failedptr = TRUE;
2669}
2670
2671/* Fill in the contents of a SHT_GROUP section. */
2672
2673void
2674bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2675{
2676 bfd_boolean *failedptr = failedptrarg;
2677 unsigned long symindx;
2678 asection *elt, *first;
2679 unsigned char *loc;
2680 bfd_boolean gas;
2681
2682 /* Ignore linker created group section. See elfNN_ia64_object_p in
2683 elfxx-ia64.c. */
2684 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2685 || *failedptr)
2686 return;
2687
2688 symindx = 0;
2689 if (elf_group_id (sec) != NULL)
2690 symindx = elf_group_id (sec)->udata.i;
2691
2692 if (symindx == 0)
2693 {
2694 /* If called from the assembler, swap_out_syms will have set up
2695 elf_section_syms; If called for "ld -r", use target_index. */
2696 if (elf_section_syms (abfd) != NULL)
2697 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2698 else
2699 symindx = sec->target_index;
2700 }
2701 elf_section_data (sec)->this_hdr.sh_info = symindx;
2702
2703 /* The contents won't be allocated for "ld -r" or objcopy. */
2704 gas = TRUE;
2705 if (sec->contents == NULL)
2706 {
2707 gas = FALSE;
2708 sec->contents = bfd_alloc (abfd, sec->size);
2709
2710 /* Arrange for the section to be written out. */
2711 elf_section_data (sec)->this_hdr.contents = sec->contents;
2712 if (sec->contents == NULL)
2713 {
2714 *failedptr = TRUE;
2715 return;
2716 }
2717 }
2718
2719 loc = sec->contents + sec->size;
2720
2721 /* Get the pointer to the first section in the group that gas
2722 squirreled away here. objcopy arranges for this to be set to the
2723 start of the input section group. */
2724 first = elt = elf_next_in_group (sec);
2725
2726 /* First element is a flag word. Rest of section is elf section
2727 indices for all the sections of the group. Write them backwards
2728 just to keep the group in the same order as given in .section
2729 directives, not that it matters. */
2730 while (elt != NULL)
2731 {
2732 asection *s;
2733 unsigned int idx;
2734
2735 loc -= 4;
2736 s = elt;
2737 if (!gas)
2738 s = s->output_section;
2739 idx = 0;
2740 if (s != NULL)
2741 idx = elf_section_data (s)->this_idx;
2742 H_PUT_32 (abfd, idx, loc);
2743 elt = elf_next_in_group (elt);
2744 if (elt == first)
2745 break;
2746 }
2747
2748 if ((loc -= 4) != sec->contents)
2749 abort ();
2750
2751 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2752}
2753
2754/* Assign all ELF section numbers. The dummy first section is handled here
2755 too. The link/info pointers for the standard section types are filled
2756 in here too, while we're at it. */
2757
2758static bfd_boolean
2759assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2760{
2761 struct elf_obj_tdata *t = elf_tdata (abfd);
2762 asection *sec;
2763 unsigned int section_number, secn;
2764 Elf_Internal_Shdr **i_shdrp;
2765 struct bfd_elf_section_data *d;
2766
2767 section_number = 1;
2768
2769 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2770
2771 /* SHT_GROUP sections are in relocatable files only. */
2772 if (link_info == NULL || link_info->relocatable)
2773 {
2774 /* Put SHT_GROUP sections first. */
2775 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2776 {
2777 d = elf_section_data (sec);
2778
2779 if (d->this_hdr.sh_type == SHT_GROUP)
2780 {
2781 if (sec->flags & SEC_LINKER_CREATED)
2782 {
2783 /* Remove the linker created SHT_GROUP sections. */
2784 bfd_section_list_remove (abfd, sec);
2785 abfd->section_count--;
2786 }
2787 else
2788 d->this_idx = section_number++;
2789 }
2790 }
2791 }
2792
2793 for (sec = abfd->sections; sec; sec = sec->next)
2794 {
2795 d = elf_section_data (sec);
2796
2797 if (d->this_hdr.sh_type != SHT_GROUP)
2798 d->this_idx = section_number++;
2799 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2800 if ((sec->flags & SEC_RELOC) == 0)
2801 d->rel_idx = 0;
2802 else
2803 {
2804 d->rel_idx = section_number++;
2805 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2806 }
2807
2808 if (d->rel_hdr2)
2809 {
2810 d->rel_idx2 = section_number++;
2811 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2812 }
2813 else
2814 d->rel_idx2 = 0;
2815 }
2816
2817 t->shstrtab_section = section_number++;
2818 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2819 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2820
2821 if (bfd_get_symcount (abfd) > 0)
2822 {
2823 t->symtab_section = section_number++;
2824 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2825 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2826 {
2827 t->symtab_shndx_section = section_number++;
2828 t->symtab_shndx_hdr.sh_name
2829 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2830 ".symtab_shndx", FALSE);
2831 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2832 return FALSE;
2833 }
2834 t->strtab_section = section_number++;
2835 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2836 }
2837
2838 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2839 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2840
2841 elf_numsections (abfd) = section_number;
2842 elf_elfheader (abfd)->e_shnum = section_number;
2843
2844 /* Set up the list of section header pointers, in agreement with the
2845 indices. */
2846 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
2847 if (i_shdrp == NULL)
2848 return FALSE;
2849
2850 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2851 if (i_shdrp[0] == NULL)
2852 {
2853 bfd_release (abfd, i_shdrp);
2854 return FALSE;
2855 }
2856
2857 elf_elfsections (abfd) = i_shdrp;
2858
2859 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2860 if (bfd_get_symcount (abfd) > 0)
2861 {
2862 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2863 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
2864 {
2865 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2866 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2867 }
2868 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2869 t->symtab_hdr.sh_link = t->strtab_section;
2870 }
2871
2872 for (sec = abfd->sections; sec; sec = sec->next)
2873 {
2874 struct bfd_elf_section_data *d = elf_section_data (sec);
2875 asection *s;
2876 const char *name;
2877
2878 i_shdrp[d->this_idx] = &d->this_hdr;
2879 if (d->rel_idx != 0)
2880 i_shdrp[d->rel_idx] = &d->rel_hdr;
2881 if (d->rel_idx2 != 0)
2882 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2883
2884 /* Fill in the sh_link and sh_info fields while we're at it. */
2885
2886 /* sh_link of a reloc section is the section index of the symbol
2887 table. sh_info is the section index of the section to which
2888 the relocation entries apply. */
2889 if (d->rel_idx != 0)
2890 {
2891 d->rel_hdr.sh_link = t->symtab_section;
2892 d->rel_hdr.sh_info = d->this_idx;
2893 }
2894 if (d->rel_idx2 != 0)
2895 {
2896 d->rel_hdr2->sh_link = t->symtab_section;
2897 d->rel_hdr2->sh_info = d->this_idx;
2898 }
2899
2900 /* We need to set up sh_link for SHF_LINK_ORDER. */
2901 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2902 {
2903 s = elf_linked_to_section (sec);
2904 if (s)
2905 {
2906 /* elf_linked_to_section points to the input section. */
2907 if (link_info != NULL)
2908 {
2909 /* Check discarded linkonce section. */
2910 if (elf_discarded_section (s))
2911 {
2912 asection *kept;
2913 (*_bfd_error_handler)
2914 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2915 abfd, d->this_hdr.bfd_section,
2916 s, s->owner);
2917 /* Point to the kept section if it has the same
2918 size as the discarded one. */
2919 kept = _bfd_elf_check_kept_section (s, link_info);
2920 if (kept == NULL)
2921 {
2922 bfd_set_error (bfd_error_bad_value);
2923 return FALSE;
2924 }
2925 s = kept;
2926 }
2927
2928 s = s->output_section;
2929 BFD_ASSERT (s != NULL);
2930 }
2931 else
2932 {
2933 /* Handle objcopy. */
2934 if (s->output_section == NULL)
2935 {
2936 (*_bfd_error_handler)
2937 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2938 abfd, d->this_hdr.bfd_section, s, s->owner);
2939 bfd_set_error (bfd_error_bad_value);
2940 return FALSE;
2941 }
2942 s = s->output_section;
2943 }
2944 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2945 }
2946 else
2947 {
2948 /* PR 290:
2949 The Intel C compiler generates SHT_IA_64_UNWIND with
2950 SHF_LINK_ORDER. But it doesn't set the sh_link or
2951 sh_info fields. Hence we could get the situation
2952 where s is NULL. */
2953 const struct elf_backend_data *bed
2954 = get_elf_backend_data (abfd);
2955 if (bed->link_order_error_handler)
2956 bed->link_order_error_handler
2957 (_("%B: warning: sh_link not set for section `%A'"),
2958 abfd, sec);
2959 }
2960 }
2961
2962 switch (d->this_hdr.sh_type)
2963 {
2964 case SHT_REL:
2965 case SHT_RELA:
2966 /* A reloc section which we are treating as a normal BFD
2967 section. sh_link is the section index of the symbol
2968 table. sh_info is the section index of the section to
2969 which the relocation entries apply. We assume that an
2970 allocated reloc section uses the dynamic symbol table.
2971 FIXME: How can we be sure? */
2972 s = bfd_get_section_by_name (abfd, ".dynsym");
2973 if (s != NULL)
2974 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2975
2976 /* We look up the section the relocs apply to by name. */
2977 name = sec->name;
2978 if (d->this_hdr.sh_type == SHT_REL)
2979 name += 4;
2980 else
2981 name += 5;
2982 s = bfd_get_section_by_name (abfd, name);
2983 if (s != NULL)
2984 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2985 break;
2986
2987 case SHT_STRTAB:
2988 /* We assume that a section named .stab*str is a stabs
2989 string section. We look for a section with the same name
2990 but without the trailing ``str'', and set its sh_link
2991 field to point to this section. */
2992 if (CONST_STRNEQ (sec->name, ".stab")
2993 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2994 {
2995 size_t len;
2996 char *alc;
2997
2998 len = strlen (sec->name);
2999 alc = bfd_malloc (len - 2);
3000 if (alc == NULL)
3001 return FALSE;
3002 memcpy (alc, sec->name, len - 3);
3003 alc[len - 3] = '\0';
3004 s = bfd_get_section_by_name (abfd, alc);
3005 free (alc);
3006 if (s != NULL)
3007 {
3008 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3009
3010 /* This is a .stab section. */
3011 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3012 elf_section_data (s)->this_hdr.sh_entsize
3013 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3014 }
3015 }
3016 break;
3017
3018 case SHT_DYNAMIC:
3019 case SHT_DYNSYM:
3020 case SHT_GNU_verneed:
3021 case SHT_GNU_verdef:
3022 /* sh_link is the section header index of the string table
3023 used for the dynamic entries, or the symbol table, or the
3024 version strings. */
3025 s = bfd_get_section_by_name (abfd, ".dynstr");
3026 if (s != NULL)
3027 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3028 break;
3029
3030 case SHT_GNU_LIBLIST:
3031 /* sh_link is the section header index of the prelink library
3032 list used for the dynamic entries, or the symbol table, or
3033 the version strings. */
3034 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3035 ? ".dynstr" : ".gnu.libstr");
3036 if (s != NULL)
3037 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3038 break;
3039
3040 case SHT_HASH:
3041 case SHT_GNU_HASH:
3042 case SHT_GNU_versym:
3043 /* sh_link is the section header index of the symbol table
3044 this hash table or version table is for. */
3045 s = bfd_get_section_by_name (abfd, ".dynsym");
3046 if (s != NULL)
3047 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3048 break;
3049
3050 case SHT_GROUP:
3051 d->this_hdr.sh_link = t->symtab_section;
3052 }
3053 }
3054
3055 for (secn = 1; secn < section_number; ++secn)
3056 if (i_shdrp[secn] == NULL)
3057 i_shdrp[secn] = i_shdrp[0];
3058 else
3059 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3060 i_shdrp[secn]->sh_name);
3061 return TRUE;
3062}
3063
3064/* Map symbol from it's internal number to the external number, moving
3065 all local symbols to be at the head of the list. */
3066
3067static bfd_boolean
3068sym_is_global (bfd *abfd, asymbol *sym)
3069{
3070 /* If the backend has a special mapping, use it. */
3071 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3072 if (bed->elf_backend_sym_is_global)
3073 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3074
3075 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3076 || bfd_is_und_section (bfd_get_section (sym))
3077 || bfd_is_com_section (bfd_get_section (sym)));
3078}
3079
3080/* Don't output section symbols for sections that are not going to be
3081 output. */
3082
3083static bfd_boolean
3084ignore_section_sym (bfd *abfd, asymbol *sym)
3085{
3086 return ((sym->flags & BSF_SECTION_SYM) != 0
3087 && !(sym->section->owner == abfd
3088 || (sym->section->output_section->owner == abfd
3089 && sym->section->output_offset == 0)));
3090}
3091
3092static bfd_boolean
3093elf_map_symbols (bfd *abfd)
3094{
3095 unsigned int symcount = bfd_get_symcount (abfd);
3096 asymbol **syms = bfd_get_outsymbols (abfd);
3097 asymbol **sect_syms;
3098 unsigned int num_locals = 0;
3099 unsigned int num_globals = 0;
3100 unsigned int num_locals2 = 0;
3101 unsigned int num_globals2 = 0;
3102 int max_index = 0;
3103 unsigned int idx;
3104 asection *asect;
3105 asymbol **new_syms;
3106
3107#ifdef DEBUG
3108 fprintf (stderr, "elf_map_symbols\n");
3109 fflush (stderr);
3110#endif
3111
3112 for (asect = abfd->sections; asect; asect = asect->next)
3113 {
3114 if (max_index < asect->index)
3115 max_index = asect->index;
3116 }
3117
3118 max_index++;
3119 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3120 if (sect_syms == NULL)
3121 return FALSE;
3122 elf_section_syms (abfd) = sect_syms;
3123 elf_num_section_syms (abfd) = max_index;
3124
3125 /* Init sect_syms entries for any section symbols we have already
3126 decided to output. */
3127 for (idx = 0; idx < symcount; idx++)
3128 {
3129 asymbol *sym = syms[idx];
3130
3131 if ((sym->flags & BSF_SECTION_SYM) != 0
3132 && sym->value == 0
3133 && !ignore_section_sym (abfd, sym))
3134 {
3135 asection *sec = sym->section;
3136
3137 if (sec->owner != abfd)
3138 sec = sec->output_section;
3139
3140 sect_syms[sec->index] = syms[idx];
3141 }
3142 }
3143
3144 /* Classify all of the symbols. */
3145 for (idx = 0; idx < symcount; idx++)
3146 {
3147 if (ignore_section_sym (abfd, syms[idx]))
3148 continue;
3149 if (!sym_is_global (abfd, syms[idx]))
3150 num_locals++;
3151 else
3152 num_globals++;
3153 }
3154
3155 /* We will be adding a section symbol for each normal BFD section. Most
3156 sections will already have a section symbol in outsymbols, but
3157 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3158 at least in that case. */
3159 for (asect = abfd->sections; asect; asect = asect->next)
3160 {
3161 if (sect_syms[asect->index] == NULL)
3162 {
3163 if (!sym_is_global (abfd, asect->symbol))
3164 num_locals++;
3165 else
3166 num_globals++;
3167 }
3168 }
3169
3170 /* Now sort the symbols so the local symbols are first. */
3171 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3172
3173 if (new_syms == NULL)
3174 return FALSE;
3175
3176 for (idx = 0; idx < symcount; idx++)
3177 {
3178 asymbol *sym = syms[idx];
3179 unsigned int i;
3180
3181 if (ignore_section_sym (abfd, sym))
3182 continue;
3183 if (!sym_is_global (abfd, sym))
3184 i = num_locals2++;
3185 else
3186 i = num_locals + num_globals2++;
3187 new_syms[i] = sym;
3188 sym->udata.i = i + 1;
3189 }
3190 for (asect = abfd->sections; asect; asect = asect->next)
3191 {
3192 if (sect_syms[asect->index] == NULL)
3193 {
3194 asymbol *sym = asect->symbol;
3195 unsigned int i;
3196
3197 sect_syms[asect->index] = sym;
3198 if (!sym_is_global (abfd, sym))
3199 i = num_locals2++;
3200 else
3201 i = num_locals + num_globals2++;
3202 new_syms[i] = sym;
3203 sym->udata.i = i + 1;
3204 }
3205 }
3206
3207 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3208
3209 elf_num_locals (abfd) = num_locals;
3210 elf_num_globals (abfd) = num_globals;
3211 return TRUE;
3212}
3213
3214/* Align to the maximum file alignment that could be required for any
3215 ELF data structure. */
3216
3217static inline file_ptr
3218align_file_position (file_ptr off, int align)
3219{
3220 return (off + align - 1) & ~(align - 1);
3221}
3222
3223/* Assign a file position to a section, optionally aligning to the
3224 required section alignment. */
3225
3226file_ptr
3227_bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3228 file_ptr offset,
3229 bfd_boolean align)
3230{
3231 if (align && i_shdrp->sh_addralign > 1)
3232 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3233 i_shdrp->sh_offset = offset;
3234 if (i_shdrp->bfd_section != NULL)
3235 i_shdrp->bfd_section->filepos = offset;
3236 if (i_shdrp->sh_type != SHT_NOBITS)
3237 offset += i_shdrp->sh_size;
3238 return offset;
3239}
3240
3241/* Compute the file positions we are going to put the sections at, and
3242 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3243 is not NULL, this is being called by the ELF backend linker. */
3244
3245bfd_boolean
3246_bfd_elf_compute_section_file_positions (bfd *abfd,
3247 struct bfd_link_info *link_info)
3248{
3249 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3250 bfd_boolean failed;
3251 struct bfd_strtab_hash *strtab = NULL;
3252 Elf_Internal_Shdr *shstrtab_hdr;
3253
3254 if (abfd->output_has_begun)
3255 return TRUE;
3256
3257 /* Do any elf backend specific processing first. */
3258 if (bed->elf_backend_begin_write_processing)
3259 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3260
3261 if (! prep_headers (abfd))
3262 return FALSE;
3263
3264 /* Post process the headers if necessary. */
3265 if (bed->elf_backend_post_process_headers)
3266 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3267
3268 failed = FALSE;
3269 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3270 if (failed)
3271 return FALSE;
3272
3273 if (!assign_section_numbers (abfd, link_info))
3274 return FALSE;
3275
3276 /* The backend linker builds symbol table information itself. */
3277 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3278 {
3279 /* Non-zero if doing a relocatable link. */
3280 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3281
3282 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3283 return FALSE;
3284 }
3285
3286 if (link_info == NULL)
3287 {
3288 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3289 if (failed)
3290 return FALSE;
3291 }
3292
3293 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3294 /* sh_name was set in prep_headers. */
3295 shstrtab_hdr->sh_type = SHT_STRTAB;
3296 shstrtab_hdr->sh_flags = 0;
3297 shstrtab_hdr->sh_addr = 0;
3298 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3299 shstrtab_hdr->sh_entsize = 0;
3300 shstrtab_hdr->sh_link = 0;
3301 shstrtab_hdr->sh_info = 0;
3302 /* sh_offset is set in assign_file_positions_except_relocs. */
3303 shstrtab_hdr->sh_addralign = 1;
3304
3305 if (!assign_file_positions_except_relocs (abfd, link_info))
3306 return FALSE;
3307
3308 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3309 {
3310 file_ptr off;
3311 Elf_Internal_Shdr *hdr;
3312
3313 off = elf_tdata (abfd)->next_file_pos;
3314
3315 hdr = &elf_tdata (abfd)->symtab_hdr;
3316 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3317
3318 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3319 if (hdr->sh_size != 0)
3320 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3321
3322 hdr = &elf_tdata (abfd)->strtab_hdr;
3323 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3324
3325 elf_tdata (abfd)->next_file_pos = off;
3326
3327 /* Now that we know where the .strtab section goes, write it
3328 out. */
3329 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3330 || ! _bfd_stringtab_emit (abfd, strtab))
3331 return FALSE;
3332 _bfd_stringtab_free (strtab);
3333 }
3334
3335 abfd->output_has_begun = TRUE;
3336
3337 return TRUE;
3338}
3339
3340/* Make an initial estimate of the size of the program header. If we
3341 get the number wrong here, we'll redo section placement. */
3342
3343static bfd_size_type
3344get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3345{
3346 size_t segs;
3347 asection *s;
3348 const struct elf_backend_data *bed;
3349
3350 /* Assume we will need exactly two PT_LOAD segments: one for text
3351 and one for data. */
3352 segs = 2;
3353
3354 s = bfd_get_section_by_name (abfd, ".interp");
3355 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3356 {
3357 /* If we have a loadable interpreter section, we need a
3358 PT_INTERP segment. In this case, assume we also need a
3359 PT_PHDR segment, although that may not be true for all
3360 targets. */
3361 segs += 2;
3362 }
3363
3364 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3365 {
3366 /* We need a PT_DYNAMIC segment. */
3367 ++segs;
3368 }
3369
3370 if (info->relro)
3371 {
3372 /* We need a PT_GNU_RELRO segment. */
3373 ++segs;
3374 }
3375
3376 if (elf_tdata (abfd)->eh_frame_hdr)
3377 {
3378 /* We need a PT_GNU_EH_FRAME segment. */
3379 ++segs;
3380 }
3381
3382 if (elf_tdata (abfd)->stack_flags)
3383 {
3384 /* We need a PT_GNU_STACK segment. */
3385 ++segs;
3386 }
3387
3388 for (s = abfd->sections; s != NULL; s = s->next)
3389 {
3390 if ((s->flags & SEC_LOAD) != 0
3391 && CONST_STRNEQ (s->name, ".note"))
3392 {
3393 /* We need a PT_NOTE segment. */
3394 ++segs;
3395 /* Try to create just one PT_NOTE segment
3396 for all adjacent loadable .note* sections.
3397 gABI requires that within a PT_NOTE segment
3398 (and also inside of each SHT_NOTE section)
3399 each note is padded to a multiple of 4 size,
3400 so we check whether the sections are correctly
3401 aligned. */
3402 if (s->alignment_power == 2)
3403 while (s->next != NULL
3404 && s->next->alignment_power == 2
3405 && (s->next->flags & SEC_LOAD) != 0
3406 && CONST_STRNEQ (s->next->name, ".note"))
3407 s = s->next;
3408 }
3409 }
3410
3411 for (s = abfd->sections; s != NULL; s = s->next)
3412 {
3413 if (s->flags & SEC_THREAD_LOCAL)
3414 {
3415 /* We need a PT_TLS segment. */
3416 ++segs;
3417 break;
3418 }
3419 }
3420
3421 /* Let the backend count up any program headers it might need. */
3422 bed = get_elf_backend_data (abfd);
3423 if (bed->elf_backend_additional_program_headers)
3424 {
3425 int a;
3426
3427 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3428 if (a == -1)
3429 abort ();
3430 segs += a;
3431 }
3432
3433 return segs * bed->s->sizeof_phdr;
3434}
3435
3436/* Find the segment that contains the output_section of section. */
3437
3438Elf_Internal_Phdr *
3439_bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3440{
3441 struct elf_segment_map *m;
3442 Elf_Internal_Phdr *p;
3443
3444 for (m = elf_tdata (abfd)->segment_map,
3445 p = elf_tdata (abfd)->phdr;
3446 m != NULL;
3447 m = m->next, p++)
3448 {
3449 int i;
3450
3451 for (i = m->count - 1; i >= 0; i--)
3452 if (m->sections[i] == section)
3453 return p;
3454 }
3455
3456 return NULL;
3457}
3458
3459/* Create a mapping from a set of sections to a program segment. */
3460
3461static struct elf_segment_map *
3462make_mapping (bfd *abfd,
3463 asection **sections,
3464 unsigned int from,
3465 unsigned int to,
3466 bfd_boolean phdr)
3467{
3468 struct elf_segment_map *m;
3469 unsigned int i;
3470 asection **hdrpp;
3471 bfd_size_type amt;
3472
3473 amt = sizeof (struct elf_segment_map);
3474 amt += (to - from - 1) * sizeof (asection *);
3475 m = bfd_zalloc (abfd, amt);
3476 if (m == NULL)
3477 return NULL;
3478 m->next = NULL;
3479 m->p_type = PT_LOAD;
3480 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3481 m->sections[i - from] = *hdrpp;
3482 m->count = to - from;
3483
3484 if (from == 0 && phdr)
3485 {
3486 /* Include the headers in the first PT_LOAD segment. */
3487 m->includes_filehdr = 1;
3488 m->includes_phdrs = 1;
3489 }
3490
3491 return m;
3492}
3493
3494/* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3495 on failure. */
3496
3497struct elf_segment_map *
3498_bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3499{
3500 struct elf_segment_map *m;
3501
3502 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3503 if (m == NULL)
3504 return NULL;
3505 m->next = NULL;
3506 m->p_type = PT_DYNAMIC;
3507 m->count = 1;
3508 m->sections[0] = dynsec;
3509
3510 return m;
3511}
3512
3513/* Possibly add or remove segments from the segment map. */
3514
3515static bfd_boolean
3516elf_modify_segment_map (bfd *abfd,
3517 struct bfd_link_info *info,
3518 bfd_boolean remove_empty_load)
3519{
3520 struct elf_segment_map **m;
3521 const struct elf_backend_data *bed;
3522
3523 /* The placement algorithm assumes that non allocated sections are
3524 not in PT_LOAD segments. We ensure this here by removing such
3525 sections from the segment map. We also remove excluded
3526 sections. Finally, any PT_LOAD segment without sections is
3527 removed. */
3528 m = &elf_tdata (abfd)->segment_map;
3529 while (*m)
3530 {
3531 unsigned int i, new_count;
3532
3533 for (new_count = 0, i = 0; i < (*m)->count; i++)
3534 {
3535 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3536 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3537 || (*m)->p_type != PT_LOAD))
3538 {
3539 (*m)->sections[new_count] = (*m)->sections[i];
3540 new_count++;
3541 }
3542 }
3543 (*m)->count = new_count;
3544
3545 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3546 *m = (*m)->next;
3547 else
3548 m = &(*m)->next;
3549 }
3550
3551 bed = get_elf_backend_data (abfd);
3552 if (bed->elf_backend_modify_segment_map != NULL)
3553 {
3554 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3555 return FALSE;
3556 }
3557
3558 return TRUE;
3559}
3560
3561/* Set up a mapping from BFD sections to program segments. */
3562
3563bfd_boolean
3564_bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3565{
3566 unsigned int count;
3567 struct elf_segment_map *m;
3568 asection **sections = NULL;
3569 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3570 bfd_boolean no_user_phdrs;
3571
3572 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3573 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3574 {
3575 asection *s;
3576 unsigned int i;
3577 struct elf_segment_map *mfirst;
3578 struct elf_segment_map **pm;
3579 asection *last_hdr;
3580 bfd_vma last_size;
3581 unsigned int phdr_index;
3582 bfd_vma maxpagesize;
3583 asection **hdrpp;
3584 bfd_boolean phdr_in_segment = TRUE;
3585 bfd_boolean writable;
3586 int tls_count = 0;
3587 asection *first_tls = NULL;
3588 asection *dynsec, *eh_frame_hdr;
3589 bfd_size_type amt;
3590
3591 /* Select the allocated sections, and sort them. */
3592
3593 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3594 if (sections == NULL)
3595 goto error_return;
3596
3597 i = 0;
3598 for (s = abfd->sections; s != NULL; s = s->next)
3599 {
3600 if ((s->flags & SEC_ALLOC) != 0)
3601 {
3602 sections[i] = s;
3603 ++i;
3604 }
3605 }
3606 BFD_ASSERT (i <= bfd_count_sections (abfd));
3607 count = i;
3608
3609 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3610
3611 /* Build the mapping. */
3612
3613 mfirst = NULL;
3614 pm = &mfirst;
3615
3616 /* If we have a .interp section, then create a PT_PHDR segment for
3617 the program headers and a PT_INTERP segment for the .interp
3618 section. */
3619 s = bfd_get_section_by_name (abfd, ".interp");
3620 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3621 {
3622 amt = sizeof (struct elf_segment_map);
3623 m = bfd_zalloc (abfd, amt);
3624 if (m == NULL)
3625 goto error_return;
3626 m->next = NULL;
3627 m->p_type = PT_PHDR;
3628 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3629 m->p_flags = PF_R | PF_X;
3630 m->p_flags_valid = 1;
3631 m->includes_phdrs = 1;
3632
3633 *pm = m;
3634 pm = &m->next;
3635
3636 amt = sizeof (struct elf_segment_map);
3637 m = bfd_zalloc (abfd, amt);
3638 if (m == NULL)
3639 goto error_return;
3640 m->next = NULL;
3641 m->p_type = PT_INTERP;
3642 m->count = 1;
3643 m->sections[0] = s;
3644
3645 *pm = m;
3646 pm = &m->next;
3647 }
3648
3649 /* Look through the sections. We put sections in the same program
3650 segment when the start of the second section can be placed within
3651 a few bytes of the end of the first section. */
3652 last_hdr = NULL;
3653 last_size = 0;
3654 phdr_index = 0;
3655 maxpagesize = bed->maxpagesize;
3656 writable = FALSE;
3657 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3658 if (dynsec != NULL
3659 && (dynsec->flags & SEC_LOAD) == 0)
3660 dynsec = NULL;
3661
3662 /* Deal with -Ttext or something similar such that the first section
3663 is not adjacent to the program headers. This is an
3664 approximation, since at this point we don't know exactly how many
3665 program headers we will need. */
3666 if (count > 0)
3667 {
3668 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3669
3670 if (phdr_size == (bfd_size_type) -1)
3671 phdr_size = get_program_header_size (abfd, info);
3672 if ((abfd->flags & D_PAGED) == 0
3673 || sections[0]->lma < phdr_size
3674 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3675 phdr_in_segment = FALSE;
3676 }
3677
3678 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3679 {
3680 asection *hdr;
3681 bfd_boolean new_segment;
3682
3683 hdr = *hdrpp;
3684
3685 /* See if this section and the last one will fit in the same
3686 segment. */
3687
3688 if (last_hdr == NULL)
3689 {
3690 /* If we don't have a segment yet, then we don't need a new
3691 one (we build the last one after this loop). */
3692 new_segment = FALSE;
3693 }
3694 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3695 {
3696 /* If this section has a different relation between the
3697 virtual address and the load address, then we need a new
3698 segment. */
3699 new_segment = TRUE;
3700 }
3701 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3702 < BFD_ALIGN (hdr->lma, maxpagesize))
3703 {
3704 /* If putting this section in this segment would force us to
3705 skip a page in the segment, then we need a new segment. */
3706 new_segment = TRUE;
3707 }
3708 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3709 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3710 {
3711 /* We don't want to put a loadable section after a
3712 nonloadable section in the same segment.
3713 Consider .tbss sections as loadable for this purpose. */
3714 new_segment = TRUE;
3715 }
3716 else if ((abfd->flags & D_PAGED) == 0)
3717 {
3718 /* If the file is not demand paged, which means that we
3719 don't require the sections to be correctly aligned in the
3720 file, then there is no other reason for a new segment. */
3721 new_segment = FALSE;
3722 }
3723 else if (! writable
3724 && (hdr->flags & SEC_READONLY) == 0
3725 && (((last_hdr->lma + last_size - 1)
3726 & ~(maxpagesize - 1))
3727 != (hdr->lma & ~(maxpagesize - 1))))
3728 {
3729 /* We don't want to put a writable section in a read only
3730 segment, unless they are on the same page in memory
3731 anyhow. We already know that the last section does not
3732 bring us past the current section on the page, so the
3733 only case in which the new section is not on the same
3734 page as the previous section is when the previous section
3735 ends precisely on a page boundary. */
3736 new_segment = TRUE;
3737 }
3738 else
3739 {
3740 /* Otherwise, we can use the same segment. */
3741 new_segment = FALSE;
3742 }
3743
3744 /* Allow interested parties a chance to override our decision. */
3745 if (last_hdr && info->callbacks->override_segment_assignment)
3746 new_segment = info->callbacks->override_segment_assignment (info, abfd, hdr, last_hdr, new_segment);
3747
3748 if (! new_segment)
3749 {
3750 if ((hdr->flags & SEC_READONLY) == 0)
3751 writable = TRUE;
3752 last_hdr = hdr;
3753 /* .tbss sections effectively have zero size. */
3754 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3755 != SEC_THREAD_LOCAL)
3756 last_size = hdr->size;
3757 else
3758 last_size = 0;
3759 continue;
3760 }
3761
3762 /* We need a new program segment. We must create a new program
3763 header holding all the sections from phdr_index until hdr. */
3764
3765 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3766 if (m == NULL)
3767 goto error_return;
3768
3769 *pm = m;
3770 pm = &m->next;
3771
3772 if ((hdr->flags & SEC_READONLY) == 0)
3773 writable = TRUE;
3774 else
3775 writable = FALSE;
3776
3777 last_hdr = hdr;
3778 /* .tbss sections effectively have zero size. */
3779 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3780 last_size = hdr->size;
3781 else
3782 last_size = 0;
3783 phdr_index = i;
3784 phdr_in_segment = FALSE;
3785 }
3786
3787 /* Create a final PT_LOAD program segment. */
3788 if (last_hdr != NULL)
3789 {
3790 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3791 if (m == NULL)
3792 goto error_return;
3793
3794 *pm = m;
3795 pm = &m->next;
3796 }
3797
3798 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3799 if (dynsec != NULL)
3800 {
3801 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3802 if (m == NULL)
3803 goto error_return;
3804 *pm = m;
3805 pm = &m->next;
3806 }
3807
3808 /* For each batch of consecutive loadable .note sections,
3809 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3810 because if we link together nonloadable .note sections and
3811 loadable .note sections, we will generate two .note sections
3812 in the output file. FIXME: Using names for section types is
3813 bogus anyhow. */
3814 for (s = abfd->sections; s != NULL; s = s->next)
3815 {
3816 if ((s->flags & SEC_LOAD) != 0
3817 && CONST_STRNEQ (s->name, ".note"))
3818 {
3819 asection *s2;
3820 unsigned count = 1;
3821 amt = sizeof (struct elf_segment_map);
3822 if (s->alignment_power == 2)
3823 for (s2 = s; s2->next != NULL; s2 = s2->next)
3824 {
3825 if (s2->next->alignment_power == 2
3826 && (s2->next->flags & SEC_LOAD) != 0
3827 && CONST_STRNEQ (s2->next->name, ".note")
3828 && align_power (s2->vma + s2->size, 2)
3829 == s2->next->vma)
3830 count++;
3831 else
3832 break;
3833 }
3834 amt += (count - 1) * sizeof (asection *);
3835 m = bfd_zalloc (abfd, amt);
3836 if (m == NULL)
3837 goto error_return;
3838 m->next = NULL;
3839 m->p_type = PT_NOTE;
3840 m->count = count;
3841 while (count > 1)
3842 {
3843 m->sections[m->count - count--] = s;
3844 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3845 s = s->next;
3846 }
3847 m->sections[m->count - 1] = s;
3848 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3849 *pm = m;
3850 pm = &m->next;
3851 }
3852 if (s->flags & SEC_THREAD_LOCAL)
3853 {
3854 if (! tls_count)
3855 first_tls = s;
3856 tls_count++;
3857 }
3858 }
3859
3860 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3861 if (tls_count > 0)
3862 {
3863 int i;
3864
3865 amt = sizeof (struct elf_segment_map);
3866 amt += (tls_count - 1) * sizeof (asection *);
3867 m = bfd_zalloc (abfd, amt);
3868 if (m == NULL)
3869 goto error_return;
3870 m->next = NULL;
3871 m->p_type = PT_TLS;
3872 m->count = tls_count;
3873 /* Mandated PF_R. */
3874 m->p_flags = PF_R;
3875 m->p_flags_valid = 1;
3876 for (i = 0; i < tls_count; ++i)
3877 {
3878 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3879 m->sections[i] = first_tls;
3880 first_tls = first_tls->next;
3881 }
3882
3883 *pm = m;
3884 pm = &m->next;
3885 }
3886
3887 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3888 segment. */
3889 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3890 if (eh_frame_hdr != NULL
3891 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3892 {
3893 amt = sizeof (struct elf_segment_map);
3894 m = bfd_zalloc (abfd, amt);
3895 if (m == NULL)
3896 goto error_return;
3897 m->next = NULL;
3898 m->p_type = PT_GNU_EH_FRAME;
3899 m->count = 1;
3900 m->sections[0] = eh_frame_hdr->output_section;
3901
3902 *pm = m;
3903 pm = &m->next;
3904 }
3905
3906 if (elf_tdata (abfd)->stack_flags)
3907 {
3908 amt = sizeof (struct elf_segment_map);
3909 m = bfd_zalloc (abfd, amt);
3910 if (m == NULL)
3911 goto error_return;
3912 m->next = NULL;
3913 m->p_type = PT_GNU_STACK;
3914 m->p_flags = elf_tdata (abfd)->stack_flags;
3915 m->p_flags_valid = 1;
3916
3917 *pm = m;
3918 pm = &m->next;
3919 }
3920
3921 if (info->relro)
3922 {
3923 for (m = mfirst; m != NULL; m = m->next)
3924 {
3925 if (m->p_type == PT_LOAD)
3926 {
3927 asection *last = m->sections[m->count - 1];
3928 bfd_vma vaddr = m->sections[0]->vma;
3929 bfd_vma filesz = last->vma - vaddr + last->size;
3930
3931 if (vaddr < info->relro_end
3932 && vaddr >= info->relro_start
3933 && (vaddr + filesz) >= info->relro_end)
3934 break;
3935 }
3936 }
3937
3938 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
3939 if (m != NULL)
3940 {
3941 amt = sizeof (struct elf_segment_map);
3942 m = bfd_zalloc (abfd, amt);
3943 if (m == NULL)
3944 goto error_return;
3945 m->next = NULL;
3946 m->p_type = PT_GNU_RELRO;
3947 m->p_flags = PF_R;
3948 m->p_flags_valid = 1;
3949
3950 *pm = m;
3951 pm = &m->next;
3952 }
3953 }
3954
3955 free (sections);
3956 elf_tdata (abfd)->segment_map = mfirst;
3957 }
3958
3959 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
3960 return FALSE;
3961
3962 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3963 ++count;
3964 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
3965
3966 return TRUE;
3967
3968 error_return:
3969 if (sections != NULL)
3970 free (sections);
3971 return FALSE;
3972}
3973
3974/* Sort sections by address. */
3975
3976static int
3977elf_sort_sections (const void *arg1, const void *arg2)
3978{
3979 const asection *sec1 = *(const asection **) arg1;
3980 const asection *sec2 = *(const asection **) arg2;
3981 bfd_size_type size1, size2;
3982
3983 /* Sort by LMA first, since this is the address used to
3984 place the section into a segment. */
3985 if (sec1->lma < sec2->lma)
3986 return -1;
3987 else if (sec1->lma > sec2->lma)
3988 return 1;
3989
3990 /* Then sort by VMA. Normally the LMA and the VMA will be
3991 the same, and this will do nothing. */
3992 if (sec1->vma < sec2->vma)
3993 return -1;
3994 else if (sec1->vma > sec2->vma)
3995 return 1;
3996
3997 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3998
3999#define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4000
4001 if (TOEND (sec1))
4002 {
4003 if (TOEND (sec2))
4004 {
4005 /* If the indicies are the same, do not return 0
4006 here, but continue to try the next comparison. */
4007 if (sec1->target_index - sec2->target_index != 0)
4008 return sec1->target_index - sec2->target_index;
4009 }
4010 else
4011 return 1;
4012 }
4013 else if (TOEND (sec2))
4014 return -1;
4015
4016#undef TOEND
4017
4018 /* Sort by size, to put zero sized sections
4019 before others at the same address. */
4020
4021 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4022 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4023
4024 if (size1 < size2)
4025 return -1;
4026 if (size1 > size2)
4027 return 1;
4028
4029 return sec1->target_index - sec2->target_index;
4030}
4031
4032/* Ian Lance Taylor writes:
4033
4034 We shouldn't be using % with a negative signed number. That's just
4035 not good. We have to make sure either that the number is not
4036 negative, or that the number has an unsigned type. When the types
4037 are all the same size they wind up as unsigned. When file_ptr is a
4038 larger signed type, the arithmetic winds up as signed long long,
4039 which is wrong.
4040
4041 What we're trying to say here is something like ``increase OFF by
4042 the least amount that will cause it to be equal to the VMA modulo
4043 the page size.'' */
4044/* In other words, something like:
4045
4046 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4047 off_offset = off % bed->maxpagesize;
4048 if (vma_offset < off_offset)
4049 adjustment = vma_offset + bed->maxpagesize - off_offset;
4050 else
4051 adjustment = vma_offset - off_offset;
4052
4053 which can can be collapsed into the expression below. */
4054
4055static file_ptr
4056vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4057{
4058 return ((vma - off) % maxpagesize);
4059}
4060
4061static void
4062print_segment_map (const struct elf_segment_map *m)
4063{
4064 unsigned int j;
4065 const char *pt = get_segment_type (m->p_type);
4066 char buf[32];
4067
4068 if (pt == NULL)
4069 {
4070 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4071 sprintf (buf, "LOPROC+%7.7x",
4072 (unsigned int) (m->p_type - PT_LOPROC));
4073 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4074 sprintf (buf, "LOOS+%7.7x",
4075 (unsigned int) (m->p_type - PT_LOOS));
4076 else
4077 snprintf (buf, sizeof (buf), "%8.8x",
4078 (unsigned int) m->p_type);
4079 pt = buf;
4080 }
4081 fprintf (stderr, "%s:", pt);
4082 for (j = 0; j < m->count; j++)
4083 fprintf (stderr, " %s", m->sections [j]->name);
4084 putc ('\n',stderr);
4085}
4086
4087/* Assign file positions to the sections based on the mapping from
4088 sections to segments. This function also sets up some fields in
4089 the file header. */
4090
4091static bfd_boolean
4092assign_file_positions_for_load_sections (bfd *abfd,
4093 struct bfd_link_info *link_info)
4094{
4095 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4096 struct elf_segment_map *m;
4097 Elf_Internal_Phdr *phdrs;
4098 Elf_Internal_Phdr *p;
4099 file_ptr off;
4100 bfd_size_type maxpagesize;
4101 unsigned int alloc;
4102 unsigned int i, j;
4103
4104 if (link_info == NULL
4105 && !elf_modify_segment_map (abfd, link_info, FALSE))
4106 return FALSE;
4107
4108 alloc = 0;
4109 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4110 ++alloc;
4111
4112 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4113 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4114 elf_elfheader (abfd)->e_phnum = alloc;
4115
4116 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4117 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4118 else
4119 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4120 >= alloc * bed->s->sizeof_phdr);
4121
4122 if (alloc == 0)
4123 {
4124 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4125 return TRUE;
4126 }
4127
4128 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4129 elf_tdata (abfd)->phdr = phdrs;
4130 if (phdrs == NULL)
4131 return FALSE;
4132
4133 maxpagesize = 1;
4134 if ((abfd->flags & D_PAGED) != 0)
4135 maxpagesize = bed->maxpagesize;
4136
4137 off = bed->s->sizeof_ehdr;
4138 off += alloc * bed->s->sizeof_phdr;
4139
4140 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4141 m != NULL;
4142 m = m->next, p++, j++)
4143 {
4144 asection **secpp;
4145 bfd_vma off_adjust;
4146 bfd_boolean no_contents;
4147
4148 /* If elf_segment_map is not from map_sections_to_segments, the
4149 sections may not be correctly ordered. NOTE: sorting should
4150 not be done to the PT_NOTE section of a corefile, which may
4151 contain several pseudo-sections artificially created by bfd.
4152 Sorting these pseudo-sections breaks things badly. */
4153 if (m->count > 1
4154 && !(elf_elfheader (abfd)->e_type == ET_CORE
4155 && m->p_type == PT_NOTE))
4156 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4157 elf_sort_sections);
4158
4159 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4160 number of sections with contents contributing to both p_filesz
4161 and p_memsz, followed by a number of sections with no contents
4162 that just contribute to p_memsz. In this loop, OFF tracks next
4163 available file offset for PT_LOAD and PT_NOTE segments. */
4164 p->p_type = m->p_type;
4165 p->p_flags = m->p_flags;
4166
4167 if (m->count == 0)
4168 p->p_vaddr = 0;
4169 else
4170 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4171
4172 if (m->p_paddr_valid)
4173 p->p_paddr = m->p_paddr;
4174 else if (m->count == 0)
4175 p->p_paddr = 0;
4176 else
4177 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4178
4179 if (p->p_type == PT_LOAD
4180 && (abfd->flags & D_PAGED) != 0)
4181 {
4182 /* p_align in demand paged PT_LOAD segments effectively stores
4183 the maximum page size. When copying an executable with
4184 objcopy, we set m->p_align from the input file. Use this
4185 value for maxpagesize rather than bed->maxpagesize, which
4186 may be different. Note that we use maxpagesize for PT_TLS
4187 segment alignment later in this function, so we are relying
4188 on at least one PT_LOAD segment appearing before a PT_TLS
4189 segment. */
4190 if (m->p_align_valid)
4191 maxpagesize = m->p_align;
4192
4193 p->p_align = maxpagesize;
4194 }
4195 else if (m->p_align_valid)
4196 p->p_align = m->p_align;
4197 else if (m->count == 0)
4198 p->p_align = 1 << bed->s->log_file_align;
4199 else
4200 p->p_align = 0;
4201
4202 no_contents = FALSE;
4203 off_adjust = 0;
4204 if (p->p_type == PT_LOAD
4205 && m->count > 0)
4206 {
4207 bfd_size_type align;
4208 unsigned int align_power = 0;
4209
4210 if (m->p_align_valid)
4211 align = p->p_align;
4212 else
4213 {
4214 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4215 {
4216 unsigned int secalign;
4217
4218 secalign = bfd_get_section_alignment (abfd, *secpp);
4219 if (secalign > align_power)
4220 align_power = secalign;
4221 }
4222 align = (bfd_size_type) 1 << align_power;
4223 if (align < maxpagesize)
4224 align = maxpagesize;
4225 }
4226
4227 for (i = 0; i < m->count; i++)
4228 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4229 /* If we aren't making room for this section, then
4230 it must be SHT_NOBITS regardless of what we've
4231 set via struct bfd_elf_special_section. */
4232 elf_section_type (m->sections[i]) = SHT_NOBITS;
4233
4234 /* Find out whether this segment contains any loadable
4235 sections. If the first section isn't loadable, the same
4236 holds for any other sections. */
4237 i = 0;
4238 while (elf_section_type (m->sections[i]) == SHT_NOBITS)
4239 {
4240 /* If a segment starts with .tbss, we need to look
4241 at the next section to decide whether the segment
4242 has any loadable sections. */
4243 if ((elf_section_flags (m->sections[i]) & SHF_TLS) == 0
4244 || ++i >= m->count)
4245 {
4246 no_contents = TRUE;
4247 break;
4248 }
4249 }
4250
4251 off_adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4252 off += off_adjust;
4253 if (no_contents)
4254 {
4255 /* We shouldn't need to align the segment on disk since
4256 the segment doesn't need file space, but the gABI
4257 arguably requires the alignment and glibc ld.so
4258 checks it. So to comply with the alignment
4259 requirement but not waste file space, we adjust
4260 p_offset for just this segment. (OFF_ADJUST is
4261 subtracted from OFF later.) This may put p_offset
4262 past the end of file, but that shouldn't matter. */
4263 }
4264 else
4265 off_adjust = 0;
4266 }
4267 /* Make sure the .dynamic section is the first section in the
4268 PT_DYNAMIC segment. */
4269 else if (p->p_type == PT_DYNAMIC
4270 && m->count > 1
4271 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4272 {
4273 _bfd_error_handler
4274 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4275 abfd);
4276 bfd_set_error (bfd_error_bad_value);
4277 return FALSE;
4278 }
4279 /* Set the note section type to SHT_NOTE. */
4280 else if (p->p_type == PT_NOTE)
4281 for (i = 0; i < m->count; i++)
4282 elf_section_type (m->sections[i]) = SHT_NOTE;
4283
4284 p->p_offset = 0;
4285 p->p_filesz = 0;
4286 p->p_memsz = 0;
4287
4288 if (m->includes_filehdr)
4289 {
4290 if (!m->p_flags_valid)
4291 p->p_flags |= PF_R;
4292 p->p_filesz = bed->s->sizeof_ehdr;
4293 p->p_memsz = bed->s->sizeof_ehdr;
4294 if (m->count > 0)
4295 {
4296 BFD_ASSERT (p->p_type == PT_LOAD);
4297
4298 if (p->p_vaddr < (bfd_vma) off)
4299 {
4300 (*_bfd_error_handler)
4301 (_("%B: Not enough room for program headers, try linking with -N"),
4302 abfd);
4303 bfd_set_error (bfd_error_bad_value);
4304 return FALSE;
4305 }
4306
4307 p->p_vaddr -= off;
4308 if (!m->p_paddr_valid)
4309 p->p_paddr -= off;
4310 }
4311 }
4312
4313 if (m->includes_phdrs)
4314 {
4315 if (!m->p_flags_valid)
4316 p->p_flags |= PF_R;
4317
4318 if (!m->includes_filehdr)
4319 {
4320 p->p_offset = bed->s->sizeof_ehdr;
4321
4322 if (m->count > 0)
4323 {
4324 BFD_ASSERT (p->p_type == PT_LOAD);
4325 p->p_vaddr -= off - p->p_offset;
4326 if (!m->p_paddr_valid)
4327 p->p_paddr -= off - p->p_offset;
4328 }
4329 }
4330
4331 p->p_filesz += alloc * bed->s->sizeof_phdr;
4332 p->p_memsz += alloc * bed->s->sizeof_phdr;
4333 }
4334
4335 if (p->p_type == PT_LOAD
4336 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4337 {
4338 if (!m->includes_filehdr && !m->includes_phdrs)
4339 p->p_offset = off;
4340 else
4341 {
4342 file_ptr adjust;
4343
4344 adjust = off - (p->p_offset + p->p_filesz);
4345 if (!no_contents)
4346 p->p_filesz += adjust;
4347 p->p_memsz += adjust;
4348 }
4349 }
4350
4351 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4352 maps. Set filepos for sections in PT_LOAD segments, and in
4353 core files, for sections in PT_NOTE segments.
4354 assign_file_positions_for_non_load_sections will set filepos
4355 for other sections and update p_filesz for other segments. */
4356 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4357 {
4358 asection *sec;
4359 bfd_size_type align;
4360 Elf_Internal_Shdr *this_hdr;
4361
4362 sec = *secpp;
4363 this_hdr = &elf_section_data (sec)->this_hdr;
4364 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4365
4366 if ((p->p_type == PT_LOAD
4367 || p->p_type == PT_TLS)
4368 && (this_hdr->sh_type != SHT_NOBITS
4369 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4370 && ((this_hdr->sh_flags & SHF_TLS) == 0
4371 || p->p_type == PT_TLS))))
4372 {
4373 bfd_signed_vma adjust = sec->vma - (p->p_vaddr + p->p_memsz);
4374
4375 if (adjust < 0)
4376 {
4377 (*_bfd_error_handler)
4378 (_("%B: section %A vma 0x%lx overlaps previous sections"),
4379 abfd, sec, (unsigned long) sec->lma);
4380 adjust = 0;
4381 }
4382 p->p_memsz += adjust;
4383
4384 if (this_hdr->sh_type != SHT_NOBITS)
4385 {
4386 off += adjust;
4387 p->p_filesz += adjust;
4388 }
4389 }
4390
4391 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4392 {
4393 /* The section at i == 0 is the one that actually contains
4394 everything. */
4395 if (i == 0)
4396 {
4397 this_hdr->sh_offset = sec->filepos = off;
4398 off += this_hdr->sh_size;
4399 p->p_filesz = this_hdr->sh_size;
4400 p->p_memsz = 0;
4401 p->p_align = 1;
4402 }
4403 else
4404 {
4405 /* The rest are fake sections that shouldn't be written. */
4406 sec->filepos = 0;
4407 sec->size = 0;
4408 sec->flags = 0;
4409 continue;
4410 }
4411 }
4412 else
4413 {
4414 if (p->p_type == PT_LOAD)
4415 {
4416 this_hdr->sh_offset = sec->filepos = off;
4417 if (this_hdr->sh_type != SHT_NOBITS)
4418 off += this_hdr->sh_size;
4419 }
4420
4421 if (this_hdr->sh_type != SHT_NOBITS)
4422 {
4423 p->p_filesz += this_hdr->sh_size;
4424 /* A load section without SHF_ALLOC is something like
4425 a note section in a PT_NOTE segment. These take
4426 file space but are not loaded into memory. */
4427 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4428 p->p_memsz += this_hdr->sh_size;
4429 }
4430 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4431 {
4432 if (p->p_type == PT_TLS)
4433 p->p_memsz += this_hdr->sh_size;
4434
4435 /* .tbss is special. It doesn't contribute to p_memsz of
4436 normal segments. */
4437 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4438 p->p_memsz += this_hdr->sh_size;
4439 }
4440
4441 if (align > p->p_align
4442 && !m->p_align_valid
4443 && (p->p_type != PT_LOAD
4444 || (abfd->flags & D_PAGED) == 0))
4445 p->p_align = align;
4446 }
4447
4448 if (!m->p_flags_valid)
4449 {
4450 p->p_flags |= PF_R;
4451 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4452 p->p_flags |= PF_X;
4453 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4454 p->p_flags |= PF_W;
4455 }
4456 }
4457 off -= off_adjust;
4458
4459 /* Check that all sections are in a PT_LOAD segment.
4460 Don't check funky gdb generated core files. */
4461 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4462 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4463 {
4464 Elf_Internal_Shdr *this_hdr;
4465 asection *sec;
4466
4467 sec = *secpp;
4468 this_hdr = &(elf_section_data(sec)->this_hdr);
4469 if (this_hdr->sh_size != 0
4470 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
4471 {
4472 (*_bfd_error_handler)
4473 (_("%B: section `%A' can't be allocated in segment %d"),
4474 abfd, sec, j);
4475 print_segment_map (m);
4476 bfd_set_error (bfd_error_bad_value);
4477 return FALSE;
4478 }
4479 }
4480 }
4481
4482 elf_tdata (abfd)->next_file_pos = off;
4483 return TRUE;
4484}
4485
4486/* Assign file positions for the other sections. */
4487
4488static bfd_boolean
4489assign_file_positions_for_non_load_sections (bfd *abfd,
4490 struct bfd_link_info *link_info)
4491{
4492 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4493 Elf_Internal_Shdr **i_shdrpp;
4494 Elf_Internal_Shdr **hdrpp;
4495 Elf_Internal_Phdr *phdrs;
4496 Elf_Internal_Phdr *p;
4497 struct elf_segment_map *m;
4498 bfd_vma filehdr_vaddr, filehdr_paddr;
4499 bfd_vma phdrs_vaddr, phdrs_paddr;
4500 file_ptr off;
4501 unsigned int num_sec;
4502 unsigned int i;
4503 unsigned int count;
4504
4505 i_shdrpp = elf_elfsections (abfd);
4506 num_sec = elf_numsections (abfd);
4507 off = elf_tdata (abfd)->next_file_pos;
4508 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4509 {
4510 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4511 Elf_Internal_Shdr *hdr;
4512
4513 hdr = *hdrpp;
4514 if (hdr->bfd_section != NULL
4515 && (hdr->bfd_section->filepos != 0
4516 || (hdr->sh_type == SHT_NOBITS
4517 && hdr->contents == NULL)))
4518 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4519 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4520 {
4521 if (hdr->sh_size != 0)
4522 ((*_bfd_error_handler)
4523 (_("%B: warning: allocated section `%s' not in segment"),
4524 abfd,
4525 (hdr->bfd_section == NULL
4526 ? "*unknown*"
4527 : hdr->bfd_section->name)));
4528 /* We don't need to page align empty sections. */
4529 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4530 off += vma_page_aligned_bias (hdr->sh_addr, off,
4531 bed->maxpagesize);
4532 else
4533 off += vma_page_aligned_bias (hdr->sh_addr, off,
4534 hdr->sh_addralign);
4535 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4536 FALSE);
4537 }
4538 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4539 && hdr->bfd_section == NULL)
4540 || hdr == i_shdrpp[tdata->symtab_section]
4541 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4542 || hdr == i_shdrpp[tdata->strtab_section])
4543 hdr->sh_offset = -1;
4544 else
4545 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4546 }
4547
4548 /* Now that we have set the section file positions, we can set up
4549 the file positions for the non PT_LOAD segments. */
4550 count = 0;
4551 filehdr_vaddr = 0;
4552 filehdr_paddr = 0;
4553 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4554 phdrs_paddr = 0;
4555 phdrs = elf_tdata (abfd)->phdr;
4556 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4557 m != NULL;
4558 m = m->next, p++)
4559 {
4560 ++count;
4561 if (p->p_type != PT_LOAD)
4562 continue;
4563
4564 if (m->includes_filehdr)
4565 {
4566 filehdr_vaddr = p->p_vaddr;
4567 filehdr_paddr = p->p_paddr;
4568 }
4569 if (m->includes_phdrs)
4570 {
4571 phdrs_vaddr = p->p_vaddr;
4572 phdrs_paddr = p->p_paddr;
4573 if (m->includes_filehdr)
4574 {
4575 phdrs_vaddr += bed->s->sizeof_ehdr;
4576 phdrs_paddr += bed->s->sizeof_ehdr;
4577 }
4578 }
4579 }
4580
4581 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4582 m != NULL;
4583 m = m->next, p++)
4584 {
4585 if (m->count != 0)
4586 {
4587 if (p->p_type != PT_LOAD
4588 && (p->p_type != PT_NOTE
4589 || bfd_get_format (abfd) != bfd_core))
4590 {
4591 Elf_Internal_Shdr *hdr;
4592 asection *sect;
4593
4594 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4595
4596 sect = m->sections[m->count - 1];
4597 hdr = &elf_section_data (sect)->this_hdr;
4598 p->p_filesz = sect->filepos - m->sections[0]->filepos;
4599 if (hdr->sh_type != SHT_NOBITS)
4600 p->p_filesz += hdr->sh_size;
4601
4602 if (p->p_type == PT_GNU_RELRO)
4603 {
4604 /* When we get here, we are copying executable
4605 or shared library. But we need to use the same
4606 linker logic. */
4607 Elf_Internal_Phdr *lp;
4608
4609 for (lp = phdrs; lp < phdrs + count; ++lp)
4610 {
4611 if (lp->p_type == PT_LOAD
4612 && lp->p_paddr == p->p_paddr)
4613 break;
4614 }
4615
4616 if (lp < phdrs + count)
4617 {
4618 /* We should use p_size if it is valid since it
4619 may contain the first few bytes of the next
4620 SEC_ALLOC section. */
4621 if (m->p_size_valid)
4622 p->p_filesz = m->p_size;
4623 else
4624 abort ();
4625 p->p_vaddr = lp->p_vaddr;
4626 p->p_offset = lp->p_offset;
4627 p->p_memsz = p->p_filesz;
4628 p->p_align = 1;
4629 }
4630 else
4631 abort ();
4632 }
4633 else
4634 p->p_offset = m->sections[0]->filepos;
4635 }
4636 }
4637 else
4638 {
4639 if (m->includes_filehdr)
4640 {
4641 p->p_vaddr = filehdr_vaddr;
4642 if (! m->p_paddr_valid)
4643 p->p_paddr = filehdr_paddr;
4644 }
4645 else if (m->includes_phdrs)
4646 {
4647 p->p_vaddr = phdrs_vaddr;
4648 if (! m->p_paddr_valid)
4649 p->p_paddr = phdrs_paddr;
4650 }
4651 else if (p->p_type == PT_GNU_RELRO)
4652 {
4653 Elf_Internal_Phdr *lp;
4654
4655 for (lp = phdrs; lp < phdrs + count; ++lp)
4656 {
4657 if (lp->p_type == PT_LOAD
4658 && lp->p_vaddr <= link_info->relro_end
4659 && lp->p_vaddr >= link_info->relro_start
4660 && (lp->p_vaddr + lp->p_filesz
4661 >= link_info->relro_end))
4662 break;
4663 }
4664
4665 if (lp < phdrs + count
4666 && link_info->relro_end > lp->p_vaddr)
4667 {
4668 p->p_vaddr = lp->p_vaddr;
4669 p->p_paddr = lp->p_paddr;
4670 p->p_offset = lp->p_offset;
4671 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4672 p->p_memsz = p->p_filesz;
4673 p->p_align = 1;
4674 p->p_flags = (lp->p_flags & ~PF_W);
4675 }
4676 else
4677 {
4678 memset (p, 0, sizeof *p);
4679 p->p_type = PT_NULL;
4680 }
4681 }
4682 }
4683 }
4684
4685 elf_tdata (abfd)->next_file_pos = off;
4686
4687 return TRUE;
4688}
4689
4690/* Work out the file positions of all the sections. This is called by
4691 _bfd_elf_compute_section_file_positions. All the section sizes and
4692 VMAs must be known before this is called.
4693
4694 Reloc sections come in two flavours: Those processed specially as
4695 "side-channel" data attached to a section to which they apply, and
4696 those that bfd doesn't process as relocations. The latter sort are
4697 stored in a normal bfd section by bfd_section_from_shdr. We don't
4698 consider the former sort here, unless they form part of the loadable
4699 image. Reloc sections not assigned here will be handled later by
4700 assign_file_positions_for_relocs.
4701
4702 We also don't set the positions of the .symtab and .strtab here. */
4703
4704static bfd_boolean
4705assign_file_positions_except_relocs (bfd *abfd,
4706 struct bfd_link_info *link_info)
4707{
4708 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4709 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4710 file_ptr off;
4711 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4712
4713 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4714 && bfd_get_format (abfd) != bfd_core)
4715 {
4716 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4717 unsigned int num_sec = elf_numsections (abfd);
4718 Elf_Internal_Shdr **hdrpp;
4719 unsigned int i;
4720
4721 /* Start after the ELF header. */
4722 off = i_ehdrp->e_ehsize;
4723
4724 /* We are not creating an executable, which means that we are
4725 not creating a program header, and that the actual order of
4726 the sections in the file is unimportant. */
4727 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4728 {
4729 Elf_Internal_Shdr *hdr;
4730
4731 hdr = *hdrpp;
4732 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4733 && hdr->bfd_section == NULL)
4734 || i == tdata->symtab_section
4735 || i == tdata->symtab_shndx_section
4736 || i == tdata->strtab_section)
4737 {
4738 hdr->sh_offset = -1;
4739 }
4740 else
4741 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4742 }
4743 }
4744 else
4745 {
4746 unsigned int alloc;
4747
4748 /* Assign file positions for the loaded sections based on the
4749 assignment of sections to segments. */
4750 if (!assign_file_positions_for_load_sections (abfd, link_info))
4751 return FALSE;
4752
4753 /* And for non-load sections. */
4754 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4755 return FALSE;
4756
4757 if (bed->elf_backend_modify_program_headers != NULL)
4758 {
4759 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4760 return FALSE;
4761 }
4762
4763 /* Write out the program headers. */
4764 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4765 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4766 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4767 return FALSE;
4768
4769 off = tdata->next_file_pos;
4770 }
4771
4772 /* Place the section headers. */
4773 off = align_file_position (off, 1 << bed->s->log_file_align);
4774 i_ehdrp->e_shoff = off;
4775 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4776
4777 tdata->next_file_pos = off;
4778
4779 return TRUE;
4780}
4781
4782static bfd_boolean
4783prep_headers (bfd *abfd)
4784{
4785 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4786 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4787 struct elf_strtab_hash *shstrtab;
4788 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4789
4790 i_ehdrp = elf_elfheader (abfd);
4791
4792 shstrtab = _bfd_elf_strtab_init ();
4793 if (shstrtab == NULL)
4794 return FALSE;
4795
4796 elf_shstrtab (abfd) = shstrtab;
4797
4798 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4799 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4800 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4801 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4802
4803 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4804 i_ehdrp->e_ident[EI_DATA] =
4805 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4806 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4807
4808 if ((abfd->flags & DYNAMIC) != 0)
4809 i_ehdrp->e_type = ET_DYN;
4810 else if ((abfd->flags & EXEC_P) != 0)
4811 i_ehdrp->e_type = ET_EXEC;
4812 else if (bfd_get_format (abfd) == bfd_core)
4813 i_ehdrp->e_type = ET_CORE;
4814 else
4815 i_ehdrp->e_type = ET_REL;
4816
4817 switch (bfd_get_arch (abfd))
4818 {
4819 case bfd_arch_unknown:
4820 i_ehdrp->e_machine = EM_NONE;
4821 break;
4822
4823 /* There used to be a long list of cases here, each one setting
4824 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4825 in the corresponding bfd definition. To avoid duplication,
4826 the switch was removed. Machines that need special handling
4827 can generally do it in elf_backend_final_write_processing(),
4828 unless they need the information earlier than the final write.
4829 Such need can generally be supplied by replacing the tests for
4830 e_machine with the conditions used to determine it. */
4831 default:
4832 i_ehdrp->e_machine = bed->elf_machine_code;
4833 }
4834
4835 i_ehdrp->e_version = bed->s->ev_current;
4836 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4837
4838 /* No program header, for now. */
4839 i_ehdrp->e_phoff = 0;
4840 i_ehdrp->e_phentsize = 0;
4841 i_ehdrp->e_phnum = 0;
4842
4843 /* Each bfd section is section header entry. */
4844 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4845 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4846
4847 /* If we're building an executable, we'll need a program header table. */
4848 if (abfd->flags & EXEC_P)
4849 /* It all happens later. */
4850 ;
4851 else
4852 {
4853 i_ehdrp->e_phentsize = 0;
4854 i_phdrp = 0;
4855 i_ehdrp->e_phoff = 0;
4856 }
4857
4858 elf_tdata (abfd)->symtab_hdr.sh_name =
4859 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4860 elf_tdata (abfd)->strtab_hdr.sh_name =
4861 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4862 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4863 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4864 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4865 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4866 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4867 return FALSE;
4868
4869 return TRUE;
4870}
4871
4872/* Assign file positions for all the reloc sections which are not part
4873 of the loadable file image. */
4874
4875void
4876_bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4877{
4878 file_ptr off;
4879 unsigned int i, num_sec;
4880 Elf_Internal_Shdr **shdrpp;
4881
4882 off = elf_tdata (abfd)->next_file_pos;
4883
4884 num_sec = elf_numsections (abfd);
4885 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4886 {
4887 Elf_Internal_Shdr *shdrp;
4888
4889 shdrp = *shdrpp;
4890 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4891 && shdrp->sh_offset == -1)
4892 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4893 }
4894
4895 elf_tdata (abfd)->next_file_pos = off;
4896}
4897
4898bfd_boolean
4899_bfd_elf_write_object_contents (bfd *abfd)
4900{
4901 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4902 Elf_Internal_Ehdr *i_ehdrp;
4903 Elf_Internal_Shdr **i_shdrp;
4904 bfd_boolean failed;
4905 unsigned int count, num_sec;
4906
4907 if (! abfd->output_has_begun
4908 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4909 return FALSE;
4910
4911 i_shdrp = elf_elfsections (abfd);
4912 i_ehdrp = elf_elfheader (abfd);
4913
4914 failed = FALSE;
4915 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4916 if (failed)
4917 return FALSE;
4918
4919 _bfd_elf_assign_file_positions_for_relocs (abfd);
4920
4921 /* After writing the headers, we need to write the sections too... */
4922 num_sec = elf_numsections (abfd);
4923 for (count = 1; count < num_sec; count++)
4924 {
4925 if (bed->elf_backend_section_processing)
4926 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4927 if (i_shdrp[count]->contents)
4928 {
4929 bfd_size_type amt = i_shdrp[count]->sh_size;
4930
4931 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4932 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4933 return FALSE;
4934 }
4935 }
4936
4937 /* Write out the section header names. */
4938 if (elf_shstrtab (abfd) != NULL
4939 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4940 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4941 return FALSE;
4942
4943 if (bed->elf_backend_final_write_processing)
4944 (*bed->elf_backend_final_write_processing) (abfd,
4945 elf_tdata (abfd)->linker);
4946
4947 if (!bed->s->write_shdrs_and_ehdr (abfd))
4948 return FALSE;
4949
4950 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
4951 if (elf_tdata (abfd)->after_write_object_contents)
4952 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
4953
4954 return TRUE;
4955}
4956
4957bfd_boolean
4958_bfd_elf_write_corefile_contents (bfd *abfd)
4959{
4960 /* Hopefully this can be done just like an object file. */
4961 return _bfd_elf_write_object_contents (abfd);
4962}
4963
4964/* Given a section, search the header to find them. */
4965
4966unsigned int
4967_bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4968{
4969 const struct elf_backend_data *bed;
4970 unsigned int index;
4971
4972 if (elf_section_data (asect) != NULL
4973 && elf_section_data (asect)->this_idx != 0)
4974 return elf_section_data (asect)->this_idx;
4975
4976 if (bfd_is_abs_section (asect))
4977 index = SHN_ABS;
4978 else if (bfd_is_com_section (asect))
4979 index = SHN_COMMON;
4980 else if (bfd_is_und_section (asect))
4981 index = SHN_UNDEF;
4982 else
4983 index = SHN_BAD;
4984
4985 bed = get_elf_backend_data (abfd);
4986 if (bed->elf_backend_section_from_bfd_section)
4987 {
4988 int retval = index;
4989
4990 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4991 return retval;
4992 }
4993
4994 if (index == SHN_BAD)
4995 bfd_set_error (bfd_error_nonrepresentable_section);
4996
4997 return index;
4998}
4999
5000/* Given a BFD symbol, return the index in the ELF symbol table, or -1
5001 on error. */
5002
5003int
5004_bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5005{
5006 asymbol *asym_ptr = *asym_ptr_ptr;
5007 int idx;
5008 flagword flags = asym_ptr->flags;
5009
5010 /* When gas creates relocations against local labels, it creates its
5011 own symbol for the section, but does put the symbol into the
5012 symbol chain, so udata is 0. When the linker is generating
5013 relocatable output, this section symbol may be for one of the
5014 input sections rather than the output section. */
5015 if (asym_ptr->udata.i == 0
5016 && (flags & BSF_SECTION_SYM)
5017 && asym_ptr->section)
5018 {
5019 asection *sec;
5020 int indx;
5021
5022 sec = asym_ptr->section;
5023 if (sec->owner != abfd && sec->output_section != NULL)
5024 sec = sec->output_section;
5025 if (sec->owner == abfd
5026 && (indx = sec->index) < elf_num_section_syms (abfd)
5027 && elf_section_syms (abfd)[indx] != NULL)
5028 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5029 }
5030
5031 idx = asym_ptr->udata.i;
5032
5033 if (idx == 0)
5034 {
5035 /* This case can occur when using --strip-symbol on a symbol
5036 which is used in a relocation entry. */
5037 (*_bfd_error_handler)
5038 (_("%B: symbol `%s' required but not present"),
5039 abfd, bfd_asymbol_name (asym_ptr));
5040 bfd_set_error (bfd_error_no_symbols);
5041 return -1;
5042 }
5043
5044#if DEBUG & 4
5045 {
5046 fprintf (stderr,
5047 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5048 (long) asym_ptr, asym_ptr->name, idx, flags,
5049 elf_symbol_flags (flags));
5050 fflush (stderr);
5051 }
5052#endif
5053
5054 return idx;
5055}
5056
5057/* Rewrite program header information. */
5058
5059static bfd_boolean
5060rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5061{
5062 Elf_Internal_Ehdr *iehdr;
5063 struct elf_segment_map *map;
5064 struct elf_segment_map *map_first;
5065 struct elf_segment_map **pointer_to_map;
5066 Elf_Internal_Phdr *segment;
5067 asection *section;
5068 unsigned int i;
5069 unsigned int num_segments;
5070 bfd_boolean phdr_included = FALSE;
5071 bfd_boolean p_paddr_valid;
5072 bfd_vma maxpagesize;
5073 struct elf_segment_map *phdr_adjust_seg = NULL;
5074 unsigned int phdr_adjust_num = 0;
5075 const struct elf_backend_data *bed;
5076
5077 bed = get_elf_backend_data (ibfd);
5078 iehdr = elf_elfheader (ibfd);
5079
5080 map_first = NULL;
5081 pointer_to_map = &map_first;
5082
5083 num_segments = elf_elfheader (ibfd)->e_phnum;
5084 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5085
5086 /* Returns the end address of the segment + 1. */
5087#define SEGMENT_END(segment, start) \
5088 (start + (segment->p_memsz > segment->p_filesz \
5089 ? segment->p_memsz : segment->p_filesz))
5090
5091#define SECTION_SIZE(section, segment) \
5092 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5093 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5094 ? section->size : 0)
5095
5096 /* Returns TRUE if the given section is contained within
5097 the given segment. VMA addresses are compared. */
5098#define IS_CONTAINED_BY_VMA(section, segment) \
5099 (section->vma >= segment->p_vaddr \
5100 && (section->vma + SECTION_SIZE (section, segment) \
5101 <= (SEGMENT_END (segment, segment->p_vaddr))))
5102
5103 /* Returns TRUE if the given section is contained within
5104 the given segment. LMA addresses are compared. */
5105#define IS_CONTAINED_BY_LMA(section, segment, base) \
5106 (section->lma >= base \
5107 && (section->lma + SECTION_SIZE (section, segment) \
5108 <= SEGMENT_END (segment, base)))
5109
5110 /* Handle PT_NOTE segment. */
5111#define IS_NOTE(p, s) \
5112 (p->p_type == PT_NOTE \
5113 && elf_section_type (s) == SHT_NOTE \
5114 && (bfd_vma) s->filepos >= p->p_offset \
5115 && ((bfd_vma) s->filepos + s->size \
5116 <= p->p_offset + p->p_filesz))
5117
5118 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5119 etc. */
5120#define IS_COREFILE_NOTE(p, s) \
5121 (IS_NOTE (p, s) \
5122 && bfd_get_format (ibfd) == bfd_core \
5123 && s->vma == 0 \
5124 && s->lma == 0)
5125
5126 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5127 linker, which generates a PT_INTERP section with p_vaddr and
5128 p_memsz set to 0. */
5129#define IS_SOLARIS_PT_INTERP(p, s) \
5130 (p->p_vaddr == 0 \
5131 && p->p_paddr == 0 \
5132 && p->p_memsz == 0 \
5133 && p->p_filesz > 0 \
5134 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5135 && s->size > 0 \
5136 && (bfd_vma) s->filepos >= p->p_offset \
5137 && ((bfd_vma) s->filepos + s->size \
5138 <= p->p_offset + p->p_filesz))
5139
5140 /* Decide if the given section should be included in the given segment.
5141 A section will be included if:
5142 1. It is within the address space of the segment -- we use the LMA
5143 if that is set for the segment and the VMA otherwise,
5144 2. It is an allocated section or a NOTE section in a PT_NOTE
5145 segment.
5146 3. There is an output section associated with it,
5147 4. The section has not already been allocated to a previous segment.
5148 5. PT_GNU_STACK segments do not include any sections.
5149 6. PT_TLS segment includes only SHF_TLS sections.
5150 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5151 8. PT_DYNAMIC should not contain empty sections at the beginning
5152 (with the possible exception of .dynamic). */
5153#define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5154 ((((segment->p_paddr \
5155 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5156 : IS_CONTAINED_BY_VMA (section, segment)) \
5157 && (section->flags & SEC_ALLOC) != 0) \
5158 || IS_NOTE (segment, section)) \
5159 && segment->p_type != PT_GNU_STACK \
5160 && (segment->p_type != PT_TLS \
5161 || (section->flags & SEC_THREAD_LOCAL)) \
5162 && (segment->p_type == PT_LOAD \
5163 || segment->p_type == PT_TLS \
5164 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5165 && (segment->p_type != PT_DYNAMIC \
5166 || SECTION_SIZE (section, segment) > 0 \
5167 || (segment->p_paddr \
5168 ? segment->p_paddr != section->lma \
5169 : segment->p_vaddr != section->vma) \
5170 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5171 == 0)) \
5172 && !section->segment_mark)
5173
5174/* If the output section of a section in the input segment is NULL,
5175 it is removed from the corresponding output segment. */
5176#define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5177 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5178 && section->output_section != NULL)
5179
5180 /* Returns TRUE iff seg1 starts after the end of seg2. */
5181#define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5182 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5183
5184 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5185 their VMA address ranges and their LMA address ranges overlap.
5186 It is possible to have overlapping VMA ranges without overlapping LMA
5187 ranges. RedBoot images for example can have both .data and .bss mapped
5188 to the same VMA range, but with the .data section mapped to a different
5189 LMA. */
5190#define SEGMENT_OVERLAPS(seg1, seg2) \
5191 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5192 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5193 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5194 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5195
5196 /* Initialise the segment mark field. */
5197 for (section = ibfd->sections; section != NULL; section = section->next)
5198 section->segment_mark = FALSE;
5199
5200 /* The Solaris linker creates program headers in which all the
5201 p_paddr fields are zero. When we try to objcopy or strip such a
5202 file, we get confused. Check for this case, and if we find it
5203 don't set the p_paddr_valid fields. */
5204 p_paddr_valid = FALSE;
5205 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5206 i < num_segments;
5207 i++, segment++)
5208 if (segment->p_paddr != 0)
5209 {
5210 p_paddr_valid = TRUE;
5211 break;
5212 }
5213
5214 /* Scan through the segments specified in the program header
5215 of the input BFD. For this first scan we look for overlaps
5216 in the loadable segments. These can be created by weird
5217 parameters to objcopy. Also, fix some solaris weirdness. */
5218 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5219 i < num_segments;
5220 i++, segment++)
5221 {
5222 unsigned int j;
5223 Elf_Internal_Phdr *segment2;
5224
5225 if (segment->p_type == PT_INTERP)
5226 for (section = ibfd->sections; section; section = section->next)
5227 if (IS_SOLARIS_PT_INTERP (segment, section))
5228 {
5229 /* Mininal change so that the normal section to segment
5230 assignment code will work. */
5231 segment->p_vaddr = section->vma;
5232 break;
5233 }
5234
5235 if (segment->p_type != PT_LOAD)
5236 {
5237 /* Remove PT_GNU_RELRO segment. */
5238 if (segment->p_type == PT_GNU_RELRO)
5239 segment->p_type = PT_NULL;
5240 continue;
5241 }
5242
5243 /* Determine if this segment overlaps any previous segments. */
5244 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5245 {
5246 bfd_signed_vma extra_length;
5247
5248 if (segment2->p_type != PT_LOAD
5249 || !SEGMENT_OVERLAPS (segment, segment2))
5250 continue;
5251
5252 /* Merge the two segments together. */
5253 if (segment2->p_vaddr < segment->p_vaddr)
5254 {
5255 /* Extend SEGMENT2 to include SEGMENT and then delete
5256 SEGMENT. */
5257 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5258 - SEGMENT_END (segment2, segment2->p_vaddr));
5259
5260 if (extra_length > 0)
5261 {
5262 segment2->p_memsz += extra_length;
5263 segment2->p_filesz += extra_length;
5264 }
5265
5266 segment->p_type = PT_NULL;
5267
5268 /* Since we have deleted P we must restart the outer loop. */
5269 i = 0;
5270 segment = elf_tdata (ibfd)->phdr;
5271 break;
5272 }
5273 else
5274 {
5275 /* Extend SEGMENT to include SEGMENT2 and then delete
5276 SEGMENT2. */
5277 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5278 - SEGMENT_END (segment, segment->p_vaddr));
5279
5280 if (extra_length > 0)
5281 {
5282 segment->p_memsz += extra_length;
5283 segment->p_filesz += extra_length;
5284 }
5285
5286 segment2->p_type = PT_NULL;
5287 }
5288 }
5289 }
5290
5291 /* The second scan attempts to assign sections to segments. */
5292 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5293 i < num_segments;
5294 i++, segment++)
5295 {
5296 unsigned int section_count;
5297 asection **sections;
5298 asection *output_section;
5299 unsigned int isec;
5300 bfd_vma matching_lma;
5301 bfd_vma suggested_lma;
5302 unsigned int j;
5303 bfd_size_type amt;
5304 asection *first_section;
5305 bfd_boolean first_matching_lma;
5306 bfd_boolean first_suggested_lma;
5307
5308 if (segment->p_type == PT_NULL)
5309 continue;
5310
5311 first_section = NULL;
5312 /* Compute how many sections might be placed into this segment. */
5313 for (section = ibfd->sections, section_count = 0;
5314 section != NULL;
5315 section = section->next)
5316 {
5317 /* Find the first section in the input segment, which may be
5318 removed from the corresponding output segment. */
5319 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5320 {
5321 if (first_section == NULL)
5322 first_section = section;
5323 if (section->output_section != NULL)
5324 ++section_count;
5325 }
5326 }
5327
5328 /* Allocate a segment map big enough to contain
5329 all of the sections we have selected. */
5330 amt = sizeof (struct elf_segment_map);
5331 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5332 map = bfd_zalloc (obfd, amt);
5333 if (map == NULL)
5334 return FALSE;
5335
5336 /* Initialise the fields of the segment map. Default to
5337 using the physical address of the segment in the input BFD. */
5338 map->next = NULL;
5339 map->p_type = segment->p_type;
5340 map->p_flags = segment->p_flags;
5341 map->p_flags_valid = 1;
5342
5343 /* If the first section in the input segment is removed, there is
5344 no need to preserve segment physical address in the corresponding
5345 output segment. */
5346 if (!first_section || first_section->output_section != NULL)
5347 {
5348 map->p_paddr = segment->p_paddr;
5349 map->p_paddr_valid = p_paddr_valid;
5350 }
5351
5352 /* Determine if this segment contains the ELF file header
5353 and if it contains the program headers themselves. */
5354 map->includes_filehdr = (segment->p_offset == 0
5355 && segment->p_filesz >= iehdr->e_ehsize);
5356 map->includes_phdrs = 0;
5357
5358 if (!phdr_included || segment->p_type != PT_LOAD)
5359 {
5360 map->includes_phdrs =
5361 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5362 && (segment->p_offset + segment->p_filesz
5363 >= ((bfd_vma) iehdr->e_phoff
5364 + iehdr->e_phnum * iehdr->e_phentsize)));
5365
5366 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5367 phdr_included = TRUE;
5368 }
5369
5370 if (section_count == 0)
5371 {
5372 /* Special segments, such as the PT_PHDR segment, may contain
5373 no sections, but ordinary, loadable segments should contain
5374 something. They are allowed by the ELF spec however, so only
5375 a warning is produced. */
5376 if (segment->p_type == PT_LOAD)
5377 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5378 " detected, is this intentional ?\n"),
5379 ibfd);
5380
5381 map->count = 0;
5382 *pointer_to_map = map;
5383 pointer_to_map = &map->next;
5384
5385 continue;
5386 }
5387
5388 /* Now scan the sections in the input BFD again and attempt
5389 to add their corresponding output sections to the segment map.
5390 The problem here is how to handle an output section which has
5391 been moved (ie had its LMA changed). There are four possibilities:
5392
5393 1. None of the sections have been moved.
5394 In this case we can continue to use the segment LMA from the
5395 input BFD.
5396
5397 2. All of the sections have been moved by the same amount.
5398 In this case we can change the segment's LMA to match the LMA
5399 of the first section.
5400
5401 3. Some of the sections have been moved, others have not.
5402 In this case those sections which have not been moved can be
5403 placed in the current segment which will have to have its size,
5404 and possibly its LMA changed, and a new segment or segments will
5405 have to be created to contain the other sections.
5406
5407 4. The sections have been moved, but not by the same amount.
5408 In this case we can change the segment's LMA to match the LMA
5409 of the first section and we will have to create a new segment
5410 or segments to contain the other sections.
5411
5412 In order to save time, we allocate an array to hold the section
5413 pointers that we are interested in. As these sections get assigned
5414 to a segment, they are removed from this array. */
5415
5416 sections = bfd_malloc2 (section_count, sizeof (asection *));
5417 if (sections == NULL)
5418 return FALSE;
5419
5420 /* Step One: Scan for segment vs section LMA conflicts.
5421 Also add the sections to the section array allocated above.
5422 Also add the sections to the current segment. In the common
5423 case, where the sections have not been moved, this means that
5424 we have completely filled the segment, and there is nothing
5425 more to do. */
5426 isec = 0;
5427 matching_lma = 0;
5428 suggested_lma = 0;
5429 first_matching_lma = TRUE;
5430 first_suggested_lma = TRUE;
5431
5432 for (section = ibfd->sections;
5433 section != NULL;
5434 section = section->next)
5435 if (section == first_section)
5436 break;
5437
5438 for (j = 0; section != NULL; section = section->next)
5439 {
5440 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5441 {
5442 output_section = section->output_section;
5443
5444 sections[j++] = section;
5445
5446 /* The Solaris native linker always sets p_paddr to 0.
5447 We try to catch that case here, and set it to the
5448 correct value. Note - some backends require that
5449 p_paddr be left as zero. */
5450 if (!p_paddr_valid
5451 && segment->p_vaddr != 0
5452 && !bed->want_p_paddr_set_to_zero
5453 && isec == 0
5454 && output_section->lma != 0
5455 && output_section->vma == (segment->p_vaddr
5456 + (map->includes_filehdr
5457 ? iehdr->e_ehsize
5458 : 0)
5459 + (map->includes_phdrs
5460 ? (iehdr->e_phnum
5461 * iehdr->e_phentsize)
5462 : 0)))
5463 map->p_paddr = segment->p_vaddr;
5464
5465 /* Match up the physical address of the segment with the
5466 LMA address of the output section. */
5467 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5468 || IS_COREFILE_NOTE (segment, section)
5469 || (bed->want_p_paddr_set_to_zero
5470 && IS_CONTAINED_BY_VMA (output_section, segment)))
5471 {
5472 if (first_matching_lma || output_section->lma < matching_lma)
5473 {
5474 matching_lma = output_section->lma;
5475 first_matching_lma = FALSE;
5476 }
5477
5478 /* We assume that if the section fits within the segment
5479 then it does not overlap any other section within that
5480 segment. */
5481 map->sections[isec++] = output_section;
5482 }
5483 else if (first_suggested_lma)
5484 {
5485 suggested_lma = output_section->lma;
5486 first_suggested_lma = FALSE;
5487 }
5488
5489 if (j == section_count)
5490 break;
5491 }
5492 }
5493
5494 BFD_ASSERT (j == section_count);
5495
5496 /* Step Two: Adjust the physical address of the current segment,
5497 if necessary. */
5498 if (isec == section_count)
5499 {
5500 /* All of the sections fitted within the segment as currently
5501 specified. This is the default case. Add the segment to
5502 the list of built segments and carry on to process the next
5503 program header in the input BFD. */
5504 map->count = section_count;
5505 *pointer_to_map = map;
5506 pointer_to_map = &map->next;
5507
5508 if (p_paddr_valid
5509 && !bed->want_p_paddr_set_to_zero
5510 && matching_lma != map->p_paddr
5511 && !map->includes_filehdr
5512 && !map->includes_phdrs)
5513 /* There is some padding before the first section in the
5514 segment. So, we must account for that in the output
5515 segment's vma. */
5516 map->p_vaddr_offset = matching_lma - map->p_paddr;
5517
5518 free (sections);
5519 continue;
5520 }
5521 else
5522 {
5523 if (!first_matching_lma)
5524 {
5525 /* At least one section fits inside the current segment.
5526 Keep it, but modify its physical address to match the
5527 LMA of the first section that fitted. */
5528 map->p_paddr = matching_lma;
5529 }
5530 else
5531 {
5532 /* None of the sections fitted inside the current segment.
5533 Change the current segment's physical address to match
5534 the LMA of the first section. */
5535 map->p_paddr = suggested_lma;
5536 }
5537
5538 /* Offset the segment physical address from the lma
5539 to allow for space taken up by elf headers. */
5540 if (map->includes_filehdr)
5541 map->p_paddr -= iehdr->e_ehsize;
5542
5543 if (map->includes_phdrs)
5544 {
5545 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5546
5547 /* iehdr->e_phnum is just an estimate of the number
5548 of program headers that we will need. Make a note
5549 here of the number we used and the segment we chose
5550 to hold these headers, so that we can adjust the
5551 offset when we know the correct value. */
5552 phdr_adjust_num = iehdr->e_phnum;
5553 phdr_adjust_seg = map;
5554 }
5555 }
5556
5557 /* Step Three: Loop over the sections again, this time assigning
5558 those that fit to the current segment and removing them from the
5559 sections array; but making sure not to leave large gaps. Once all
5560 possible sections have been assigned to the current segment it is
5561 added to the list of built segments and if sections still remain
5562 to be assigned, a new segment is constructed before repeating
5563 the loop. */
5564 isec = 0;
5565 do
5566 {
5567 map->count = 0;
5568 suggested_lma = 0;
5569 first_suggested_lma = TRUE;
5570
5571 /* Fill the current segment with sections that fit. */
5572 for (j = 0; j < section_count; j++)
5573 {
5574 section = sections[j];
5575
5576 if (section == NULL)
5577 continue;
5578
5579 output_section = section->output_section;
5580
5581 BFD_ASSERT (output_section != NULL);
5582
5583 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5584 || IS_COREFILE_NOTE (segment, section))
5585 {
5586 if (map->count == 0)
5587 {
5588 /* If the first section in a segment does not start at
5589 the beginning of the segment, then something is
5590 wrong. */
5591 if (output_section->lma
5592 != (map->p_paddr
5593 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5594 + (map->includes_phdrs
5595 ? iehdr->e_phnum * iehdr->e_phentsize
5596 : 0)))
5597 abort ();
5598 }
5599 else
5600 {
5601 asection *prev_sec;
5602
5603 prev_sec = map->sections[map->count - 1];
5604
5605 /* If the gap between the end of the previous section
5606 and the start of this section is more than
5607 maxpagesize then we need to start a new segment. */
5608 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5609 maxpagesize)
5610 < BFD_ALIGN (output_section->lma, maxpagesize))
5611 || (prev_sec->lma + prev_sec->size
5612 > output_section->lma))
5613 {
5614 if (first_suggested_lma)
5615 {
5616 suggested_lma = output_section->lma;
5617 first_suggested_lma = FALSE;
5618 }
5619
5620 continue;
5621 }
5622 }
5623
5624 map->sections[map->count++] = output_section;
5625 ++isec;
5626 sections[j] = NULL;
5627 section->segment_mark = TRUE;
5628 }
5629 else if (first_suggested_lma)
5630 {
5631 suggested_lma = output_section->lma;
5632 first_suggested_lma = FALSE;
5633 }
5634 }
5635
5636 BFD_ASSERT (map->count > 0);
5637
5638 /* Add the current segment to the list of built segments. */
5639 *pointer_to_map = map;
5640 pointer_to_map = &map->next;
5641
5642 if (isec < section_count)
5643 {
5644 /* We still have not allocated all of the sections to
5645 segments. Create a new segment here, initialise it
5646 and carry on looping. */
5647 amt = sizeof (struct elf_segment_map);
5648 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5649 map = bfd_alloc (obfd, amt);
5650 if (map == NULL)
5651 {
5652 free (sections);
5653 return FALSE;
5654 }
5655
5656 /* Initialise the fields of the segment map. Set the physical
5657 physical address to the LMA of the first section that has
5658 not yet been assigned. */
5659 map->next = NULL;
5660 map->p_type = segment->p_type;
5661 map->p_flags = segment->p_flags;
5662 map->p_flags_valid = 1;
5663 map->p_paddr = suggested_lma;
5664 map->p_paddr_valid = p_paddr_valid;
5665 map->includes_filehdr = 0;
5666 map->includes_phdrs = 0;
5667 }
5668 }
5669 while (isec < section_count);
5670
5671 free (sections);
5672 }
5673
5674 elf_tdata (obfd)->segment_map = map_first;
5675
5676 /* If we had to estimate the number of program headers that were
5677 going to be needed, then check our estimate now and adjust
5678 the offset if necessary. */
5679 if (phdr_adjust_seg != NULL)
5680 {
5681 unsigned int count;
5682
5683 for (count = 0, map = map_first; map != NULL; map = map->next)
5684 count++;
5685
5686 if (count > phdr_adjust_num)
5687 phdr_adjust_seg->p_paddr
5688 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5689 }
5690
5691#undef SEGMENT_END
5692#undef SECTION_SIZE
5693#undef IS_CONTAINED_BY_VMA
5694#undef IS_CONTAINED_BY_LMA
5695#undef IS_NOTE
5696#undef IS_COREFILE_NOTE
5697#undef IS_SOLARIS_PT_INTERP
5698#undef IS_SECTION_IN_INPUT_SEGMENT
5699#undef INCLUDE_SECTION_IN_SEGMENT
5700#undef SEGMENT_AFTER_SEGMENT
5701#undef SEGMENT_OVERLAPS
5702 return TRUE;
5703}
5704
5705/* Copy ELF program header information. */
5706
5707static bfd_boolean
5708copy_elf_program_header (bfd *ibfd, bfd *obfd)
5709{
5710 Elf_Internal_Ehdr *iehdr;
5711 struct elf_segment_map *map;
5712 struct elf_segment_map *map_first;
5713 struct elf_segment_map **pointer_to_map;
5714 Elf_Internal_Phdr *segment;
5715 unsigned int i;
5716 unsigned int num_segments;
5717 bfd_boolean phdr_included = FALSE;
5718 bfd_boolean p_paddr_valid;
5719
5720 iehdr = elf_elfheader (ibfd);
5721
5722 map_first = NULL;
5723 pointer_to_map = &map_first;
5724
5725 /* If all the segment p_paddr fields are zero, don't set
5726 map->p_paddr_valid. */
5727 p_paddr_valid = FALSE;
5728 num_segments = elf_elfheader (ibfd)->e_phnum;
5729 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5730 i < num_segments;
5731 i++, segment++)
5732 if (segment->p_paddr != 0)
5733 {
5734 p_paddr_valid = TRUE;
5735 break;
5736 }
5737
5738 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5739 i < num_segments;
5740 i++, segment++)
5741 {
5742 asection *section;
5743 unsigned int section_count;
5744 bfd_size_type amt;
5745 Elf_Internal_Shdr *this_hdr;
5746 asection *first_section = NULL;
5747 asection *lowest_section = NULL;
5748
5749 /* Compute how many sections are in this segment. */
5750 for (section = ibfd->sections, section_count = 0;
5751 section != NULL;
5752 section = section->next)
5753 {
5754 this_hdr = &(elf_section_data(section)->this_hdr);
5755 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5756 {
5757 if (!first_section)
5758 first_section = lowest_section = section;
5759 if (section->lma < lowest_section->lma)
5760 lowest_section = section;
5761 section_count++;
5762 }
5763 }
5764
5765 /* Allocate a segment map big enough to contain
5766 all of the sections we have selected. */
5767 amt = sizeof (struct elf_segment_map);
5768 if (section_count != 0)
5769 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5770 map = bfd_zalloc (obfd, amt);
5771 if (map == NULL)
5772 return FALSE;
5773
5774 /* Initialize the fields of the output segment map with the
5775 input segment. */
5776 map->next = NULL;
5777 map->p_type = segment->p_type;
5778 map->p_flags = segment->p_flags;
5779 map->p_flags_valid = 1;
5780 map->p_paddr = segment->p_paddr;
5781 map->p_paddr_valid = p_paddr_valid;
5782 map->p_align = segment->p_align;
5783 map->p_align_valid = 1;
5784 map->p_vaddr_offset = 0;
5785
5786 if (map->p_type == PT_GNU_RELRO
5787 && segment->p_filesz == segment->p_memsz)
5788 {
5789 /* The PT_GNU_RELRO segment may contain the first a few
5790 bytes in the .got.plt section even if the whole .got.plt
5791 section isn't in the PT_GNU_RELRO segment. We won't
5792 change the size of the PT_GNU_RELRO segment. */
5793 map->p_size = segment->p_filesz;
5794 map->p_size_valid = 1;
5795 }
5796
5797 /* Determine if this segment contains the ELF file header
5798 and if it contains the program headers themselves. */
5799 map->includes_filehdr = (segment->p_offset == 0
5800 && segment->p_filesz >= iehdr->e_ehsize);
5801
5802 map->includes_phdrs = 0;
5803 if (! phdr_included || segment->p_type != PT_LOAD)
5804 {
5805 map->includes_phdrs =
5806 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5807 && (segment->p_offset + segment->p_filesz
5808 >= ((bfd_vma) iehdr->e_phoff
5809 + iehdr->e_phnum * iehdr->e_phentsize)));
5810
5811 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5812 phdr_included = TRUE;
5813 }
5814
5815 if (!map->includes_phdrs
5816 && !map->includes_filehdr
5817 && map->p_paddr_valid)
5818 /* There is some other padding before the first section. */
5819 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
5820 - segment->p_paddr);
5821
5822 if (section_count != 0)
5823 {
5824 unsigned int isec = 0;
5825
5826 for (section = first_section;
5827 section != NULL;
5828 section = section->next)
5829 {
5830 this_hdr = &(elf_section_data(section)->this_hdr);
5831 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5832 {
5833 map->sections[isec++] = section->output_section;
5834 if (isec == section_count)
5835 break;
5836 }
5837 }
5838 }
5839
5840 map->count = section_count;
5841 *pointer_to_map = map;
5842 pointer_to_map = &map->next;
5843 }
5844
5845 elf_tdata (obfd)->segment_map = map_first;
5846 return TRUE;
5847}
5848
5849/* Copy private BFD data. This copies or rewrites ELF program header
5850 information. */
5851
5852static bfd_boolean
5853copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5854{
5855 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5856 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5857 return TRUE;
5858
5859 if (elf_tdata (ibfd)->phdr == NULL)
5860 return TRUE;
5861
5862 if (ibfd->xvec == obfd->xvec)
5863 {
5864 /* Check to see if any sections in the input BFD
5865 covered by ELF program header have changed. */
5866 Elf_Internal_Phdr *segment;
5867 asection *section, *osec;
5868 unsigned int i, num_segments;
5869 Elf_Internal_Shdr *this_hdr;
5870 const struct elf_backend_data *bed;
5871
5872 bed = get_elf_backend_data (ibfd);
5873
5874 /* Regenerate the segment map if p_paddr is set to 0. */
5875 if (bed->want_p_paddr_set_to_zero)
5876 goto rewrite;
5877
5878 /* Initialize the segment mark field. */
5879 for (section = obfd->sections; section != NULL;
5880 section = section->next)
5881 section->segment_mark = FALSE;
5882
5883 num_segments = elf_elfheader (ibfd)->e_phnum;
5884 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5885 i < num_segments;
5886 i++, segment++)
5887 {
5888 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5889 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5890 which severly confuses things, so always regenerate the segment
5891 map in this case. */
5892 if (segment->p_paddr == 0
5893 && segment->p_memsz == 0
5894 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
5895 goto rewrite;
5896
5897 for (section = ibfd->sections;
5898 section != NULL; section = section->next)
5899 {
5900 /* We mark the output section so that we know it comes
5901 from the input BFD. */
5902 osec = section->output_section;
5903 if (osec)
5904 osec->segment_mark = TRUE;
5905
5906 /* Check if this section is covered by the segment. */
5907 this_hdr = &(elf_section_data(section)->this_hdr);
5908 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5909 {
5910 /* FIXME: Check if its output section is changed or
5911 removed. What else do we need to check? */
5912 if (osec == NULL
5913 || section->flags != osec->flags
5914 || section->lma != osec->lma
5915 || section->vma != osec->vma
5916 || section->size != osec->size
5917 || section->rawsize != osec->rawsize
5918 || section->alignment_power != osec->alignment_power)
5919 goto rewrite;
5920 }
5921 }
5922 }
5923
5924 /* Check to see if any output section do not come from the
5925 input BFD. */
5926 for (section = obfd->sections; section != NULL;
5927 section = section->next)
5928 {
5929 if (section->segment_mark == FALSE)
5930 goto rewrite;
5931 else
5932 section->segment_mark = FALSE;
5933 }
5934
5935 return copy_elf_program_header (ibfd, obfd);
5936 }
5937
5938rewrite:
5939 return rewrite_elf_program_header (ibfd, obfd);
5940}
5941
5942/* Initialize private output section information from input section. */
5943
5944bfd_boolean
5945_bfd_elf_init_private_section_data (bfd *ibfd,
5946 asection *isec,
5947 bfd *obfd,
5948 asection *osec,
5949 struct bfd_link_info *link_info)
5950
5951{
5952 Elf_Internal_Shdr *ihdr, *ohdr;
5953 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5954
5955 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5956 || obfd->xvec->flavour != bfd_target_elf_flavour)
5957 return TRUE;
5958
5959 /* Don't copy the output ELF section type from input if the
5960 output BFD section flags have been set to something different.
5961 elf_fake_sections will set ELF section type based on BFD
5962 section flags. */
5963 if (elf_section_type (osec) == SHT_NULL
5964 && (osec->flags == isec->flags || !osec->flags))
5965 elf_section_type (osec) = elf_section_type (isec);
5966
5967 /* FIXME: Is this correct for all OS/PROC specific flags? */
5968 elf_section_flags (osec) |= (elf_section_flags (isec)
5969 & (SHF_MASKOS | SHF_MASKPROC));
5970
5971 /* Set things up for objcopy and relocatable link. The output
5972 SHT_GROUP section will have its elf_next_in_group pointing back
5973 to the input group members. Ignore linker created group section.
5974 See elfNN_ia64_object_p in elfxx-ia64.c. */
5975 if (need_group)
5976 {
5977 if (elf_sec_group (isec) == NULL
5978 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5979 {
5980 if (elf_section_flags (isec) & SHF_GROUP)
5981 elf_section_flags (osec) |= SHF_GROUP;
5982 elf_next_in_group (osec) = elf_next_in_group (isec);
5983 elf_group_name (osec) = elf_group_name (isec);
5984 }
5985 }
5986
5987 ihdr = &elf_section_data (isec)->this_hdr;
5988
5989 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5990 don't use the output section of the linked-to section since it
5991 may be NULL at this point. */
5992 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5993 {
5994 ohdr = &elf_section_data (osec)->this_hdr;
5995 ohdr->sh_flags |= SHF_LINK_ORDER;
5996 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5997 }
5998
5999 osec->use_rela_p = isec->use_rela_p;
6000
6001 return TRUE;
6002}
6003
6004/* Copy private section information. This copies over the entsize
6005 field, and sometimes the info field. */
6006
6007bfd_boolean
6008_bfd_elf_copy_private_section_data (bfd *ibfd,
6009 asection *isec,
6010 bfd *obfd,
6011 asection *osec)
6012{
6013 Elf_Internal_Shdr *ihdr, *ohdr;
6014
6015 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6016 || obfd->xvec->flavour != bfd_target_elf_flavour)
6017 return TRUE;
6018
6019 ihdr = &elf_section_data (isec)->this_hdr;
6020 ohdr = &elf_section_data (osec)->this_hdr;
6021
6022 ohdr->sh_entsize = ihdr->sh_entsize;
6023
6024 if (ihdr->sh_type == SHT_SYMTAB
6025 || ihdr->sh_type == SHT_DYNSYM
6026 || ihdr->sh_type == SHT_GNU_verneed
6027 || ihdr->sh_type == SHT_GNU_verdef)
6028 ohdr->sh_info = ihdr->sh_info;
6029
6030 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6031 NULL);
6032}
6033
6034/* Copy private header information. */
6035
6036bfd_boolean
6037_bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6038{
6039 asection *isec;
6040
6041 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6042 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6043 return TRUE;
6044
6045 /* Copy over private BFD data if it has not already been copied.
6046 This must be done here, rather than in the copy_private_bfd_data
6047 entry point, because the latter is called after the section
6048 contents have been set, which means that the program headers have
6049 already been worked out. */
6050 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6051 {
6052 if (! copy_private_bfd_data (ibfd, obfd))
6053 return FALSE;
6054 }
6055
6056 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6057 but this might be wrong if we deleted the group section. */
6058 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6059 if (elf_section_type (isec) == SHT_GROUP
6060 && isec->output_section == NULL)
6061 {
6062 asection *first = elf_next_in_group (isec);
6063 asection *s = first;
6064 while (s != NULL)
6065 {
6066 if (s->output_section != NULL)
6067 {
6068 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6069 elf_group_name (s->output_section) = NULL;
6070 }
6071 s = elf_next_in_group (s);
6072 if (s == first)
6073 break;
6074 }
6075 }
6076
6077 return TRUE;
6078}
6079
6080/* Copy private symbol information. If this symbol is in a section
6081 which we did not map into a BFD section, try to map the section
6082 index correctly. We use special macro definitions for the mapped
6083 section indices; these definitions are interpreted by the
6084 swap_out_syms function. */
6085
6086#define MAP_ONESYMTAB (SHN_HIOS + 1)
6087#define MAP_DYNSYMTAB (SHN_HIOS + 2)
6088#define MAP_STRTAB (SHN_HIOS + 3)
6089#define MAP_SHSTRTAB (SHN_HIOS + 4)
6090#define MAP_SYM_SHNDX (SHN_HIOS + 5)
6091
6092bfd_boolean
6093_bfd_elf_copy_private_symbol_data (bfd *ibfd,
6094 asymbol *isymarg,
6095 bfd *obfd,
6096 asymbol *osymarg)
6097{
6098 elf_symbol_type *isym, *osym;
6099
6100 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6101 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6102 return TRUE;
6103
6104 isym = elf_symbol_from (ibfd, isymarg);
6105 osym = elf_symbol_from (obfd, osymarg);
6106
6107 if (isym != NULL
6108 && isym->internal_elf_sym.st_shndx != 0
6109 && osym != NULL
6110 && bfd_is_abs_section (isym->symbol.section))
6111 {
6112 unsigned int shndx;
6113
6114 shndx = isym->internal_elf_sym.st_shndx;
6115 if (shndx == elf_onesymtab (ibfd))
6116 shndx = MAP_ONESYMTAB;
6117 else if (shndx == elf_dynsymtab (ibfd))
6118 shndx = MAP_DYNSYMTAB;
6119 else if (shndx == elf_tdata (ibfd)->strtab_section)
6120 shndx = MAP_STRTAB;
6121 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6122 shndx = MAP_SHSTRTAB;
6123 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6124 shndx = MAP_SYM_SHNDX;
6125 osym->internal_elf_sym.st_shndx = shndx;
6126 }
6127
6128 return TRUE;
6129}
6130
6131/* Swap out the symbols. */
6132
6133static bfd_boolean
6134swap_out_syms (bfd *abfd,
6135 struct bfd_strtab_hash **sttp,
6136 int relocatable_p)
6137{
6138 const struct elf_backend_data *bed;
6139 int symcount;
6140 asymbol **syms;
6141 struct bfd_strtab_hash *stt;
6142 Elf_Internal_Shdr *symtab_hdr;
6143 Elf_Internal_Shdr *symtab_shndx_hdr;
6144 Elf_Internal_Shdr *symstrtab_hdr;
6145 bfd_byte *outbound_syms;
6146 bfd_byte *outbound_shndx;
6147 int idx;
6148 bfd_size_type amt;
6149 bfd_boolean name_local_sections;
6150
6151 if (!elf_map_symbols (abfd))
6152 return FALSE;
6153
6154 /* Dump out the symtabs. */
6155 stt = _bfd_elf_stringtab_init ();
6156 if (stt == NULL)
6157 return FALSE;
6158
6159 bed = get_elf_backend_data (abfd);
6160 symcount = bfd_get_symcount (abfd);
6161 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6162 symtab_hdr->sh_type = SHT_SYMTAB;
6163 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6164 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6165 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6166 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6167
6168 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6169 symstrtab_hdr->sh_type = SHT_STRTAB;
6170
6171 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6172 if (outbound_syms == NULL)
6173 {
6174 _bfd_stringtab_free (stt);
6175 return FALSE;
6176 }
6177 symtab_hdr->contents = outbound_syms;
6178
6179 outbound_shndx = NULL;
6180 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6181 if (symtab_shndx_hdr->sh_name != 0)
6182 {
6183 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6184 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6185 sizeof (Elf_External_Sym_Shndx));
6186 if (outbound_shndx == NULL)
6187 {
6188 _bfd_stringtab_free (stt);
6189 return FALSE;
6190 }
6191
6192 symtab_shndx_hdr->contents = outbound_shndx;
6193 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6194 symtab_shndx_hdr->sh_size = amt;
6195 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6196 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6197 }
6198
6199 /* Now generate the data (for "contents"). */
6200 {
6201 /* Fill in zeroth symbol and swap it out. */
6202 Elf_Internal_Sym sym;
6203 sym.st_name = 0;
6204 sym.st_value = 0;
6205 sym.st_size = 0;
6206 sym.st_info = 0;
6207 sym.st_other = 0;
6208 sym.st_shndx = SHN_UNDEF;
6209 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6210 outbound_syms += bed->s->sizeof_sym;
6211 if (outbound_shndx != NULL)
6212 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6213 }
6214
6215 name_local_sections
6216 = (bed->elf_backend_name_local_section_symbols
6217 && bed->elf_backend_name_local_section_symbols (abfd));
6218
6219 syms = bfd_get_outsymbols (abfd);
6220 for (idx = 0; idx < symcount; idx++)
6221 {
6222 Elf_Internal_Sym sym;
6223 bfd_vma value = syms[idx]->value;
6224 elf_symbol_type *type_ptr;
6225 flagword flags = syms[idx]->flags;
6226 int type;
6227
6228 if (!name_local_sections
6229 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6230 {
6231 /* Local section symbols have no name. */
6232 sym.st_name = 0;
6233 }
6234 else
6235 {
6236 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6237 syms[idx]->name,
6238 TRUE, FALSE);
6239 if (sym.st_name == (unsigned long) -1)
6240 {
6241 _bfd_stringtab_free (stt);
6242 return FALSE;
6243 }
6244 }
6245
6246 type_ptr = elf_symbol_from (abfd, syms[idx]);
6247
6248 if ((flags & BSF_SECTION_SYM) == 0
6249 && bfd_is_com_section (syms[idx]->section))
6250 {
6251 /* ELF common symbols put the alignment into the `value' field,
6252 and the size into the `size' field. This is backwards from
6253 how BFD handles it, so reverse it here. */
6254 sym.st_size = value;
6255 if (type_ptr == NULL
6256 || type_ptr->internal_elf_sym.st_value == 0)
6257 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6258 else
6259 sym.st_value = type_ptr->internal_elf_sym.st_value;
6260 sym.st_shndx = _bfd_elf_section_from_bfd_section
6261 (abfd, syms[idx]->section);
6262 }
6263 else
6264 {
6265 asection *sec = syms[idx]->section;
6266 unsigned int shndx;
6267
6268 if (sec->output_section)
6269 {
6270 value += sec->output_offset;
6271 sec = sec->output_section;
6272 }
6273
6274 /* Don't add in the section vma for relocatable output. */
6275 if (! relocatable_p)
6276 value += sec->vma;
6277 sym.st_value = value;
6278 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6279
6280 if (bfd_is_abs_section (sec)
6281 && type_ptr != NULL
6282 && type_ptr->internal_elf_sym.st_shndx != 0)
6283 {
6284 /* This symbol is in a real ELF section which we did
6285 not create as a BFD section. Undo the mapping done
6286 by copy_private_symbol_data. */
6287 shndx = type_ptr->internal_elf_sym.st_shndx;
6288 switch (shndx)
6289 {
6290 case MAP_ONESYMTAB:
6291 shndx = elf_onesymtab (abfd);
6292 break;
6293 case MAP_DYNSYMTAB:
6294 shndx = elf_dynsymtab (abfd);
6295 break;
6296 case MAP_STRTAB:
6297 shndx = elf_tdata (abfd)->strtab_section;
6298 break;
6299 case MAP_SHSTRTAB:
6300 shndx = elf_tdata (abfd)->shstrtab_section;
6301 break;
6302 case MAP_SYM_SHNDX:
6303 shndx = elf_tdata (abfd)->symtab_shndx_section;
6304 break;
6305 default:
6306 break;
6307 }
6308 }
6309 else
6310 {
6311 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6312
6313 if (shndx == SHN_BAD)
6314 {
6315 asection *sec2;
6316
6317 /* Writing this would be a hell of a lot easier if
6318 we had some decent documentation on bfd, and
6319 knew what to expect of the library, and what to
6320 demand of applications. For example, it
6321 appears that `objcopy' might not set the
6322 section of a symbol to be a section that is
6323 actually in the output file. */
6324 sec2 = bfd_get_section_by_name (abfd, sec->name);
6325 if (sec2 == NULL)
6326 {
6327 _bfd_error_handler (_("\
6328Unable to find equivalent output section for symbol '%s' from section '%s'"),
6329 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6330 sec->name);
6331 bfd_set_error (bfd_error_invalid_operation);
6332 _bfd_stringtab_free (stt);
6333 return FALSE;
6334 }
6335
6336 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6337 BFD_ASSERT (shndx != SHN_BAD);
6338 }
6339 }
6340
6341 sym.st_shndx = shndx;
6342 }
6343
6344 if ((flags & BSF_THREAD_LOCAL) != 0)
6345 type = STT_TLS;
6346 else if ((flags & BSF_FUNCTION) != 0)
6347 type = STT_FUNC;
6348 else if ((flags & BSF_OBJECT) != 0)
6349 type = STT_OBJECT;
6350 else if ((flags & BSF_RELC) != 0)
6351 type = STT_RELC;
6352 else if ((flags & BSF_SRELC) != 0)
6353 type = STT_SRELC;
6354 else
6355 type = STT_NOTYPE;
6356
6357 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6358 type = STT_TLS;
6359
6360 /* Processor-specific types. */
6361 if (type_ptr != NULL
6362 && bed->elf_backend_get_symbol_type)
6363 type = ((*bed->elf_backend_get_symbol_type)
6364 (&type_ptr->internal_elf_sym, type));
6365
6366 if (flags & BSF_SECTION_SYM)
6367 {
6368 if (flags & BSF_GLOBAL)
6369 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6370 else
6371 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6372 }
6373 else if (bfd_is_com_section (syms[idx]->section))
6374 {
6375#ifdef USE_STT_COMMON
6376 if (type == STT_OBJECT)
6377 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6378 else
6379#else
6380 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6381#endif
6382 }
6383 else if (bfd_is_und_section (syms[idx]->section))
6384 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6385 ? STB_WEAK
6386 : STB_GLOBAL),
6387 type);
6388 else if (flags & BSF_FILE)
6389 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6390 else
6391 {
6392 int bind = STB_LOCAL;
6393
6394 if (flags & BSF_LOCAL)
6395 bind = STB_LOCAL;
6396 else if (flags & BSF_WEAK)
6397 bind = STB_WEAK;
6398 else if (flags & BSF_GLOBAL)
6399 bind = STB_GLOBAL;
6400
6401 sym.st_info = ELF_ST_INFO (bind, type);
6402 }
6403
6404 if (type_ptr != NULL)
6405 sym.st_other = type_ptr->internal_elf_sym.st_other;
6406 else
6407 sym.st_other = 0;
6408
6409 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6410 outbound_syms += bed->s->sizeof_sym;
6411 if (outbound_shndx != NULL)
6412 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6413 }
6414
6415 *sttp = stt;
6416 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6417 symstrtab_hdr->sh_type = SHT_STRTAB;
6418
6419 symstrtab_hdr->sh_flags = 0;
6420 symstrtab_hdr->sh_addr = 0;
6421 symstrtab_hdr->sh_entsize = 0;
6422 symstrtab_hdr->sh_link = 0;
6423 symstrtab_hdr->sh_info = 0;
6424 symstrtab_hdr->sh_addralign = 1;
6425
6426 return TRUE;
6427}
6428
6429/* Return the number of bytes required to hold the symtab vector.
6430
6431 Note that we base it on the count plus 1, since we will null terminate
6432 the vector allocated based on this size. However, the ELF symbol table
6433 always has a dummy entry as symbol #0, so it ends up even. */
6434
6435long
6436_bfd_elf_get_symtab_upper_bound (bfd *abfd)
6437{
6438 long symcount;
6439 long symtab_size;
6440 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6441
6442 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6443 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6444 if (symcount > 0)
6445 symtab_size -= sizeof (asymbol *);
6446
6447 return symtab_size;
6448}
6449
6450long
6451_bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6452{
6453 long symcount;
6454 long symtab_size;
6455 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6456
6457 if (elf_dynsymtab (abfd) == 0)
6458 {
6459 bfd_set_error (bfd_error_invalid_operation);
6460 return -1;
6461 }
6462
6463 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6464 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6465 if (symcount > 0)
6466 symtab_size -= sizeof (asymbol *);
6467
6468 return symtab_size;
6469}
6470
6471long
6472_bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6473 sec_ptr asect)
6474{
6475 return (asect->reloc_count + 1) * sizeof (arelent *);
6476}
6477
6478/* Canonicalize the relocs. */
6479
6480long
6481_bfd_elf_canonicalize_reloc (bfd *abfd,
6482 sec_ptr section,
6483 arelent **relptr,
6484 asymbol **symbols)
6485{
6486 arelent *tblptr;
6487 unsigned int i;
6488 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6489
6490 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6491 return -1;
6492
6493 tblptr = section->relocation;
6494 for (i = 0; i < section->reloc_count; i++)
6495 *relptr++ = tblptr++;
6496
6497 *relptr = NULL;
6498
6499 return section->reloc_count;
6500}
6501
6502long
6503_bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6504{
6505 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6506 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6507
6508 if (symcount >= 0)
6509 bfd_get_symcount (abfd) = symcount;
6510 return symcount;
6511}
6512
6513long
6514_bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6515 asymbol **allocation)
6516{
6517 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6518 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6519
6520 if (symcount >= 0)
6521 bfd_get_dynamic_symcount (abfd) = symcount;
6522 return symcount;
6523}
6524
6525/* Return the size required for the dynamic reloc entries. Any loadable
6526 section that was actually installed in the BFD, and has type SHT_REL
6527 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6528 dynamic reloc section. */
6529
6530long
6531_bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6532{
6533 long ret;
6534 asection *s;
6535
6536 if (elf_dynsymtab (abfd) == 0)
6537 {
6538 bfd_set_error (bfd_error_invalid_operation);
6539 return -1;
6540 }
6541
6542 ret = sizeof (arelent *);
6543 for (s = abfd->sections; s != NULL; s = s->next)
6544 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6545 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6546 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6547 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6548 * sizeof (arelent *));
6549
6550 return ret;
6551}
6552
6553/* Canonicalize the dynamic relocation entries. Note that we return the
6554 dynamic relocations as a single block, although they are actually
6555 associated with particular sections; the interface, which was
6556 designed for SunOS style shared libraries, expects that there is only
6557 one set of dynamic relocs. Any loadable section that was actually
6558 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6559 dynamic symbol table, is considered to be a dynamic reloc section. */
6560
6561long
6562_bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6563 arelent **storage,
6564 asymbol **syms)
6565{
6566 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6567 asection *s;
6568 long ret;
6569
6570 if (elf_dynsymtab (abfd) == 0)
6571 {
6572 bfd_set_error (bfd_error_invalid_operation);
6573 return -1;
6574 }
6575
6576 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6577 ret = 0;
6578 for (s = abfd->sections; s != NULL; s = s->next)
6579 {
6580 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6581 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6582 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6583 {
6584 arelent *p;
6585 long count, i;
6586
6587 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6588 return -1;
6589 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6590 p = s->relocation;
6591 for (i = 0; i < count; i++)
6592 *storage++ = p++;
6593 ret += count;
6594 }
6595 }
6596
6597 *storage = NULL;
6598
6599 return ret;
6600}
6601\f
6602/* Read in the version information. */
6603
6604bfd_boolean
6605_bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6606{
6607 bfd_byte *contents = NULL;
6608 unsigned int freeidx = 0;
6609
6610 if (elf_dynverref (abfd) != 0)
6611 {
6612 Elf_Internal_Shdr *hdr;
6613 Elf_External_Verneed *everneed;
6614 Elf_Internal_Verneed *iverneed;
6615 unsigned int i;
6616 bfd_byte *contents_end;
6617
6618 hdr = &elf_tdata (abfd)->dynverref_hdr;
6619
6620 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6621 sizeof (Elf_Internal_Verneed));
6622 if (elf_tdata (abfd)->verref == NULL)
6623 goto error_return;
6624
6625 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6626
6627 contents = bfd_malloc (hdr->sh_size);
6628 if (contents == NULL)
6629 {
6630error_return_verref:
6631 elf_tdata (abfd)->verref = NULL;
6632 elf_tdata (abfd)->cverrefs = 0;
6633 goto error_return;
6634 }
6635 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6636 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6637 goto error_return_verref;
6638
6639 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6640 goto error_return_verref;
6641
6642 BFD_ASSERT (sizeof (Elf_External_Verneed)
6643 == sizeof (Elf_External_Vernaux));
6644 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6645 everneed = (Elf_External_Verneed *) contents;
6646 iverneed = elf_tdata (abfd)->verref;
6647 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6648 {
6649 Elf_External_Vernaux *evernaux;
6650 Elf_Internal_Vernaux *ivernaux;
6651 unsigned int j;
6652
6653 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6654
6655 iverneed->vn_bfd = abfd;
6656
6657 iverneed->vn_filename =
6658 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6659 iverneed->vn_file);
6660 if (iverneed->vn_filename == NULL)
6661 goto error_return_verref;
6662
6663 if (iverneed->vn_cnt == 0)
6664 iverneed->vn_auxptr = NULL;
6665 else
6666 {
6667 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6668 sizeof (Elf_Internal_Vernaux));
6669 if (iverneed->vn_auxptr == NULL)
6670 goto error_return_verref;
6671 }
6672
6673 if (iverneed->vn_aux
6674 > (size_t) (contents_end - (bfd_byte *) everneed))
6675 goto error_return_verref;
6676
6677 evernaux = ((Elf_External_Vernaux *)
6678 ((bfd_byte *) everneed + iverneed->vn_aux));
6679 ivernaux = iverneed->vn_auxptr;
6680 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6681 {
6682 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6683
6684 ivernaux->vna_nodename =
6685 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6686 ivernaux->vna_name);
6687 if (ivernaux->vna_nodename == NULL)
6688 goto error_return_verref;
6689
6690 if (j + 1 < iverneed->vn_cnt)
6691 ivernaux->vna_nextptr = ivernaux + 1;
6692 else
6693 ivernaux->vna_nextptr = NULL;
6694
6695 if (ivernaux->vna_next
6696 > (size_t) (contents_end - (bfd_byte *) evernaux))
6697 goto error_return_verref;
6698
6699 evernaux = ((Elf_External_Vernaux *)
6700 ((bfd_byte *) evernaux + ivernaux->vna_next));
6701
6702 if (ivernaux->vna_other > freeidx)
6703 freeidx = ivernaux->vna_other;
6704 }
6705
6706 if (i + 1 < hdr->sh_info)
6707 iverneed->vn_nextref = iverneed + 1;
6708 else
6709 iverneed->vn_nextref = NULL;
6710
6711 if (iverneed->vn_next
6712 > (size_t) (contents_end - (bfd_byte *) everneed))
6713 goto error_return_verref;
6714
6715 everneed = ((Elf_External_Verneed *)
6716 ((bfd_byte *) everneed + iverneed->vn_next));
6717 }
6718
6719 free (contents);
6720 contents = NULL;
6721 }
6722
6723 if (elf_dynverdef (abfd) != 0)
6724 {
6725 Elf_Internal_Shdr *hdr;
6726 Elf_External_Verdef *everdef;
6727 Elf_Internal_Verdef *iverdef;
6728 Elf_Internal_Verdef *iverdefarr;
6729 Elf_Internal_Verdef iverdefmem;
6730 unsigned int i;
6731 unsigned int maxidx;
6732 bfd_byte *contents_end_def, *contents_end_aux;
6733
6734 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6735
6736 contents = bfd_malloc (hdr->sh_size);
6737 if (contents == NULL)
6738 goto error_return;
6739 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6740 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6741 goto error_return;
6742
6743 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6744 goto error_return;
6745
6746 BFD_ASSERT (sizeof (Elf_External_Verdef)
6747 >= sizeof (Elf_External_Verdaux));
6748 contents_end_def = contents + hdr->sh_size
6749 - sizeof (Elf_External_Verdef);
6750 contents_end_aux = contents + hdr->sh_size
6751 - sizeof (Elf_External_Verdaux);
6752
6753 /* We know the number of entries in the section but not the maximum
6754 index. Therefore we have to run through all entries and find
6755 the maximum. */
6756 everdef = (Elf_External_Verdef *) contents;
6757 maxidx = 0;
6758 for (i = 0; i < hdr->sh_info; ++i)
6759 {
6760 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6761
6762 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6763 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6764
6765 if (iverdefmem.vd_next
6766 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6767 goto error_return;
6768
6769 everdef = ((Elf_External_Verdef *)
6770 ((bfd_byte *) everdef + iverdefmem.vd_next));
6771 }
6772
6773 if (default_imported_symver)
6774 {
6775 if (freeidx > maxidx)
6776 maxidx = ++freeidx;
6777 else
6778 freeidx = ++maxidx;
6779 }
6780 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6781 sizeof (Elf_Internal_Verdef));
6782 if (elf_tdata (abfd)->verdef == NULL)
6783 goto error_return;
6784
6785 elf_tdata (abfd)->cverdefs = maxidx;
6786
6787 everdef = (Elf_External_Verdef *) contents;
6788 iverdefarr = elf_tdata (abfd)->verdef;
6789 for (i = 0; i < hdr->sh_info; i++)
6790 {
6791 Elf_External_Verdaux *everdaux;
6792 Elf_Internal_Verdaux *iverdaux;
6793 unsigned int j;
6794
6795 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6796
6797 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6798 {
6799error_return_verdef:
6800 elf_tdata (abfd)->verdef = NULL;
6801 elf_tdata (abfd)->cverdefs = 0;
6802 goto error_return;
6803 }
6804
6805 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6806 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6807
6808 iverdef->vd_bfd = abfd;
6809
6810 if (iverdef->vd_cnt == 0)
6811 iverdef->vd_auxptr = NULL;
6812 else
6813 {
6814 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6815 sizeof (Elf_Internal_Verdaux));
6816 if (iverdef->vd_auxptr == NULL)
6817 goto error_return_verdef;
6818 }
6819
6820 if (iverdef->vd_aux
6821 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6822 goto error_return_verdef;
6823
6824 everdaux = ((Elf_External_Verdaux *)
6825 ((bfd_byte *) everdef + iverdef->vd_aux));
6826 iverdaux = iverdef->vd_auxptr;
6827 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6828 {
6829 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6830
6831 iverdaux->vda_nodename =
6832 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6833 iverdaux->vda_name);
6834 if (iverdaux->vda_nodename == NULL)
6835 goto error_return_verdef;
6836
6837 if (j + 1 < iverdef->vd_cnt)
6838 iverdaux->vda_nextptr = iverdaux + 1;
6839 else
6840 iverdaux->vda_nextptr = NULL;
6841
6842 if (iverdaux->vda_next
6843 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6844 goto error_return_verdef;
6845
6846 everdaux = ((Elf_External_Verdaux *)
6847 ((bfd_byte *) everdaux + iverdaux->vda_next));
6848 }
6849
6850 if (iverdef->vd_cnt)
6851 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6852
6853 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6854 iverdef->vd_nextdef = iverdef + 1;
6855 else
6856 iverdef->vd_nextdef = NULL;
6857
6858 everdef = ((Elf_External_Verdef *)
6859 ((bfd_byte *) everdef + iverdef->vd_next));
6860 }
6861
6862 free (contents);
6863 contents = NULL;
6864 }
6865 else if (default_imported_symver)
6866 {
6867 if (freeidx < 3)
6868 freeidx = 3;
6869 else
6870 freeidx++;
6871
6872 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6873 sizeof (Elf_Internal_Verdef));
6874 if (elf_tdata (abfd)->verdef == NULL)
6875 goto error_return;
6876
6877 elf_tdata (abfd)->cverdefs = freeidx;
6878 }
6879
6880 /* Create a default version based on the soname. */
6881 if (default_imported_symver)
6882 {
6883 Elf_Internal_Verdef *iverdef;
6884 Elf_Internal_Verdaux *iverdaux;
6885
6886 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6887
6888 iverdef->vd_version = VER_DEF_CURRENT;
6889 iverdef->vd_flags = 0;
6890 iverdef->vd_ndx = freeidx;
6891 iverdef->vd_cnt = 1;
6892
6893 iverdef->vd_bfd = abfd;
6894
6895 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6896 if (iverdef->vd_nodename == NULL)
6897 goto error_return_verdef;
6898 iverdef->vd_nextdef = NULL;
6899 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6900 if (iverdef->vd_auxptr == NULL)
6901 goto error_return_verdef;
6902
6903 iverdaux = iverdef->vd_auxptr;
6904 iverdaux->vda_nodename = iverdef->vd_nodename;
6905 iverdaux->vda_nextptr = NULL;
6906 }
6907
6908 return TRUE;
6909
6910 error_return:
6911 if (contents != NULL)
6912 free (contents);
6913 return FALSE;
6914}
6915\f
6916asymbol *
6917_bfd_elf_make_empty_symbol (bfd *abfd)
6918{
6919 elf_symbol_type *newsym;
6920 bfd_size_type amt = sizeof (elf_symbol_type);
6921
6922 newsym = bfd_zalloc (abfd, amt);
6923 if (!newsym)
6924 return NULL;
6925 else
6926 {
6927 newsym->symbol.the_bfd = abfd;
6928 return &newsym->symbol;
6929 }
6930}
6931
6932void
6933_bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6934 asymbol *symbol,
6935 symbol_info *ret)
6936{
6937 bfd_symbol_info (symbol, ret);
6938}
6939
6940/* Return whether a symbol name implies a local symbol. Most targets
6941 use this function for the is_local_label_name entry point, but some
6942 override it. */
6943
6944bfd_boolean
6945_bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6946 const char *name)
6947{
6948 /* Normal local symbols start with ``.L''. */
6949 if (name[0] == '.' && name[1] == 'L')
6950 return TRUE;
6951
6952 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6953 DWARF debugging symbols starting with ``..''. */
6954 if (name[0] == '.' && name[1] == '.')
6955 return TRUE;
6956
6957 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6958 emitting DWARF debugging output. I suspect this is actually a
6959 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6960 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6961 underscore to be emitted on some ELF targets). For ease of use,
6962 we treat such symbols as local. */
6963 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6964 return TRUE;
6965
6966 return FALSE;
6967}
6968
6969alent *
6970_bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6971 asymbol *symbol ATTRIBUTE_UNUSED)
6972{
6973 abort ();
6974 return NULL;
6975}
6976
6977bfd_boolean
6978_bfd_elf_set_arch_mach (bfd *abfd,
6979 enum bfd_architecture arch,
6980 unsigned long machine)
6981{
6982 /* If this isn't the right architecture for this backend, and this
6983 isn't the generic backend, fail. */
6984 if (arch != get_elf_backend_data (abfd)->arch
6985 && arch != bfd_arch_unknown
6986 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6987 return FALSE;
6988
6989 return bfd_default_set_arch_mach (abfd, arch, machine);
6990}
6991
6992/* Find the function to a particular section and offset,
6993 for error reporting. */
6994
6995static bfd_boolean
6996elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6997 asection *section,
6998 asymbol **symbols,
6999 bfd_vma offset,
7000 const char **filename_ptr,
7001 const char **functionname_ptr)
7002{
7003 const char *filename;
7004 asymbol *func, *file;
7005 bfd_vma low_func;
7006 asymbol **p;
7007 /* ??? Given multiple file symbols, it is impossible to reliably
7008 choose the right file name for global symbols. File symbols are
7009 local symbols, and thus all file symbols must sort before any
7010 global symbols. The ELF spec may be interpreted to say that a
7011 file symbol must sort before other local symbols, but currently
7012 ld -r doesn't do this. So, for ld -r output, it is possible to
7013 make a better choice of file name for local symbols by ignoring
7014 file symbols appearing after a given local symbol. */
7015 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7016
7017 filename = NULL;
7018 func = NULL;
7019 file = NULL;
7020 low_func = 0;
7021 state = nothing_seen;
7022
7023 for (p = symbols; *p != NULL; p++)
7024 {
7025 elf_symbol_type *q;
7026
7027 q = (elf_symbol_type *) *p;
7028
7029 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7030 {
7031 default:
7032 break;
7033 case STT_FILE:
7034 file = &q->symbol;
7035 if (state == symbol_seen)
7036 state = file_after_symbol_seen;
7037 continue;
7038 case STT_NOTYPE:
7039 case STT_FUNC:
7040 if (bfd_get_section (&q->symbol) == section
7041 && q->symbol.value >= low_func
7042 && q->symbol.value <= offset)
7043 {
7044 func = (asymbol *) q;
7045 low_func = q->symbol.value;
7046 filename = NULL;
7047 if (file != NULL
7048 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7049 || state != file_after_symbol_seen))
7050 filename = bfd_asymbol_name (file);
7051 }
7052 break;
7053 }
7054 if (state == nothing_seen)
7055 state = symbol_seen;
7056 }
7057
7058 if (func == NULL)
7059 return FALSE;
7060
7061 if (filename_ptr)
7062 *filename_ptr = filename;
7063 if (functionname_ptr)
7064 *functionname_ptr = bfd_asymbol_name (func);
7065
7066 return TRUE;
7067}
7068
7069/* Find the nearest line to a particular section and offset,
7070 for error reporting. */
7071
7072bfd_boolean
7073_bfd_elf_find_nearest_line (bfd *abfd,
7074 asection *section,
7075 asymbol **symbols,
7076 bfd_vma offset,
7077 const char **filename_ptr,
7078 const char **functionname_ptr,
7079 unsigned int *line_ptr)
7080{
7081 bfd_boolean found;
7082
7083 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7084 filename_ptr, functionname_ptr,
7085 line_ptr))
7086 {
7087 if (!*functionname_ptr)
7088 elf_find_function (abfd, section, symbols, offset,
7089 *filename_ptr ? NULL : filename_ptr,
7090 functionname_ptr);
7091
7092 return TRUE;
7093 }
7094
7095 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7096 filename_ptr, functionname_ptr,
7097 line_ptr, 0,
7098 &elf_tdata (abfd)->dwarf2_find_line_info))
7099 {
7100 if (!*functionname_ptr)
7101 elf_find_function (abfd, section, symbols, offset,
7102 *filename_ptr ? NULL : filename_ptr,
7103 functionname_ptr);
7104
7105 return TRUE;
7106 }
7107
7108 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7109 &found, filename_ptr,
7110 functionname_ptr, line_ptr,
7111 &elf_tdata (abfd)->line_info))
7112 return FALSE;
7113 if (found && (*functionname_ptr || *line_ptr))
7114 return TRUE;
7115
7116 if (symbols == NULL)
7117 return FALSE;
7118
7119 if (! elf_find_function (abfd, section, symbols, offset,
7120 filename_ptr, functionname_ptr))
7121 return FALSE;
7122
7123 *line_ptr = 0;
7124 return TRUE;
7125}
7126
7127/* Find the line for a symbol. */
7128
7129bfd_boolean
7130_bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7131 const char **filename_ptr, unsigned int *line_ptr)
7132{
7133 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7134 filename_ptr, line_ptr, 0,
7135 &elf_tdata (abfd)->dwarf2_find_line_info);
7136}
7137
7138/* After a call to bfd_find_nearest_line, successive calls to
7139 bfd_find_inliner_info can be used to get source information about
7140 each level of function inlining that terminated at the address
7141 passed to bfd_find_nearest_line. Currently this is only supported
7142 for DWARF2 with appropriate DWARF3 extensions. */
7143
7144bfd_boolean
7145_bfd_elf_find_inliner_info (bfd *abfd,
7146 const char **filename_ptr,
7147 const char **functionname_ptr,
7148 unsigned int *line_ptr)
7149{
7150 bfd_boolean found;
7151 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7152 functionname_ptr, line_ptr,
7153 & elf_tdata (abfd)->dwarf2_find_line_info);
7154 return found;
7155}
7156
7157int
7158_bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7159{
7160 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7161 int ret = bed->s->sizeof_ehdr;
7162
7163 if (!info->relocatable)
7164 {
7165 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7166
7167 if (phdr_size == (bfd_size_type) -1)
7168 {
7169 struct elf_segment_map *m;
7170
7171 phdr_size = 0;
7172 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7173 phdr_size += bed->s->sizeof_phdr;
7174
7175 if (phdr_size == 0)
7176 phdr_size = get_program_header_size (abfd, info);
7177 }
7178
7179 elf_tdata (abfd)->program_header_size = phdr_size;
7180 ret += phdr_size;
7181 }
7182
7183 return ret;
7184}
7185
7186bfd_boolean
7187_bfd_elf_set_section_contents (bfd *abfd,
7188 sec_ptr section,
7189 const void *location,
7190 file_ptr offset,
7191 bfd_size_type count)
7192{
7193 Elf_Internal_Shdr *hdr;
7194 bfd_signed_vma pos;
7195
7196 if (! abfd->output_has_begun
7197 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7198 return FALSE;
7199
7200 hdr = &elf_section_data (section)->this_hdr;
7201 pos = hdr->sh_offset + offset;
7202 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7203 || bfd_bwrite (location, count, abfd) != count)
7204 return FALSE;
7205
7206 return TRUE;
7207}
7208
7209void
7210_bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7211 arelent *cache_ptr ATTRIBUTE_UNUSED,
7212 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7213{
7214 abort ();
7215}
7216
7217/* Try to convert a non-ELF reloc into an ELF one. */
7218
7219bfd_boolean
7220_bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7221{
7222 /* Check whether we really have an ELF howto. */
7223
7224 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7225 {
7226 bfd_reloc_code_real_type code;
7227 reloc_howto_type *howto;
7228
7229 /* Alien reloc: Try to determine its type to replace it with an
7230 equivalent ELF reloc. */
7231
7232 if (areloc->howto->pc_relative)
7233 {
7234 switch (areloc->howto->bitsize)
7235 {
7236 case 8:
7237 code = BFD_RELOC_8_PCREL;
7238 break;
7239 case 12:
7240 code = BFD_RELOC_12_PCREL;
7241 break;
7242 case 16:
7243 code = BFD_RELOC_16_PCREL;
7244 break;
7245 case 24:
7246 code = BFD_RELOC_24_PCREL;
7247 break;
7248 case 32:
7249 code = BFD_RELOC_32_PCREL;
7250 break;
7251 case 64:
7252 code = BFD_RELOC_64_PCREL;
7253 break;
7254 default:
7255 goto fail;
7256 }
7257
7258 howto = bfd_reloc_type_lookup (abfd, code);
7259
7260 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7261 {
7262 if (howto->pcrel_offset)
7263 areloc->addend += areloc->address;
7264 else
7265 areloc->addend -= areloc->address; /* addend is unsigned!! */
7266 }
7267 }
7268 else
7269 {
7270 switch (areloc->howto->bitsize)
7271 {
7272 case 8:
7273 code = BFD_RELOC_8;
7274 break;
7275 case 14:
7276 code = BFD_RELOC_14;
7277 break;
7278 case 16:
7279 code = BFD_RELOC_16;
7280 break;
7281 case 26:
7282 code = BFD_RELOC_26;
7283 break;
7284 case 32:
7285 code = BFD_RELOC_32;
7286 break;
7287 case 64:
7288 code = BFD_RELOC_64;
7289 break;
7290 default:
7291 goto fail;
7292 }
7293
7294 howto = bfd_reloc_type_lookup (abfd, code);
7295 }
7296
7297 if (howto)
7298 areloc->howto = howto;
7299 else
7300 goto fail;
7301 }
7302
7303 return TRUE;
7304
7305 fail:
7306 (*_bfd_error_handler)
7307 (_("%B: unsupported relocation type %s"),
7308 abfd, areloc->howto->name);
7309 bfd_set_error (bfd_error_bad_value);
7310 return FALSE;
7311}
7312
7313bfd_boolean
7314_bfd_elf_close_and_cleanup (bfd *abfd)
7315{
7316 if (bfd_get_format (abfd) == bfd_object)
7317 {
7318 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7319 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7320 _bfd_dwarf2_cleanup_debug_info (abfd);
7321 }
7322
7323 return _bfd_generic_close_and_cleanup (abfd);
7324}
7325
7326/* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7327 in the relocation's offset. Thus we cannot allow any sort of sanity
7328 range-checking to interfere. There is nothing else to do in processing
7329 this reloc. */
7330
7331bfd_reloc_status_type
7332_bfd_elf_rel_vtable_reloc_fn
7333 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7334 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7335 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7336 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7337{
7338 return bfd_reloc_ok;
7339}
7340\f
7341/* Elf core file support. Much of this only works on native
7342 toolchains, since we rely on knowing the
7343 machine-dependent procfs structure in order to pick
7344 out details about the corefile. */
7345
7346#ifdef HAVE_SYS_PROCFS_H
7347# include <sys/procfs.h>
7348#endif
7349
7350/* FIXME: this is kinda wrong, but it's what gdb wants. */
7351
7352static int
7353elfcore_make_pid (bfd *abfd)
7354{
7355 return ((elf_tdata (abfd)->core_lwpid << 16)
7356 + (elf_tdata (abfd)->core_pid));
7357}
7358
7359/* If there isn't a section called NAME, make one, using
7360 data from SECT. Note, this function will generate a
7361 reference to NAME, so you shouldn't deallocate or
7362 overwrite it. */
7363
7364static bfd_boolean
7365elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7366{
7367 asection *sect2;
7368
7369 if (bfd_get_section_by_name (abfd, name) != NULL)
7370 return TRUE;
7371
7372 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7373 if (sect2 == NULL)
7374 return FALSE;
7375
7376 sect2->size = sect->size;
7377 sect2->filepos = sect->filepos;
7378 sect2->alignment_power = sect->alignment_power;
7379 return TRUE;
7380}
7381
7382/* Create a pseudosection containing SIZE bytes at FILEPOS. This
7383 actually creates up to two pseudosections:
7384 - For the single-threaded case, a section named NAME, unless
7385 such a section already exists.
7386 - For the multi-threaded case, a section named "NAME/PID", where
7387 PID is elfcore_make_pid (abfd).
7388 Both pseudosections have identical contents. */
7389bfd_boolean
7390_bfd_elfcore_make_pseudosection (bfd *abfd,
7391 char *name,
7392 size_t size,
7393 ufile_ptr filepos)
7394{
7395 char buf[100];
7396 char *threaded_name;
7397 size_t len;
7398 asection *sect;
7399
7400 /* Build the section name. */
7401
7402 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7403 len = strlen (buf) + 1;
7404 threaded_name = bfd_alloc (abfd, len);
7405 if (threaded_name == NULL)
7406 return FALSE;
7407 memcpy (threaded_name, buf, len);
7408
7409 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7410 SEC_HAS_CONTENTS);
7411 if (sect == NULL)
7412 return FALSE;
7413 sect->size = size;
7414 sect->filepos = filepos;
7415 sect->alignment_power = 2;
7416
7417 return elfcore_maybe_make_sect (abfd, name, sect);
7418}
7419
7420/* prstatus_t exists on:
7421 solaris 2.5+
7422 linux 2.[01] + glibc
7423 unixware 4.2
7424*/
7425
7426#if defined (HAVE_PRSTATUS_T)
7427
7428static bfd_boolean
7429elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7430{
7431 size_t size;
7432 int offset;
7433
7434 if (note->descsz == sizeof (prstatus_t))
7435 {
7436 prstatus_t prstat;
7437
7438 size = sizeof (prstat.pr_reg);
7439 offset = offsetof (prstatus_t, pr_reg);
7440 memcpy (&prstat, note->descdata, sizeof (prstat));
7441
7442 /* Do not overwrite the core signal if it
7443 has already been set by another thread. */
7444 if (elf_tdata (abfd)->core_signal == 0)
7445 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7446 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7447
7448 /* pr_who exists on:
7449 solaris 2.5+
7450 unixware 4.2
7451 pr_who doesn't exist on:
7452 linux 2.[01]
7453 */
7454#if defined (HAVE_PRSTATUS_T_PR_WHO)
7455 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7456#endif
7457 }
7458#if defined (HAVE_PRSTATUS32_T)
7459 else if (note->descsz == sizeof (prstatus32_t))
7460 {
7461 /* 64-bit host, 32-bit corefile */
7462 prstatus32_t prstat;
7463
7464 size = sizeof (prstat.pr_reg);
7465 offset = offsetof (prstatus32_t, pr_reg);
7466 memcpy (&prstat, note->descdata, sizeof (prstat));
7467
7468 /* Do not overwrite the core signal if it
7469 has already been set by another thread. */
7470 if (elf_tdata (abfd)->core_signal == 0)
7471 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7472 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7473
7474 /* pr_who exists on:
7475 solaris 2.5+
7476 unixware 4.2
7477 pr_who doesn't exist on:
7478 linux 2.[01]
7479 */
7480#if defined (HAVE_PRSTATUS32_T_PR_WHO)
7481 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7482#endif
7483 }
7484#endif /* HAVE_PRSTATUS32_T */
7485 else
7486 {
7487 /* Fail - we don't know how to handle any other
7488 note size (ie. data object type). */
7489 return TRUE;
7490 }
7491
7492 /* Make a ".reg/999" section and a ".reg" section. */
7493 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7494 size, note->descpos + offset);
7495}
7496#endif /* defined (HAVE_PRSTATUS_T) */
7497
7498/* Create a pseudosection containing the exact contents of NOTE. */
7499static bfd_boolean
7500elfcore_make_note_pseudosection (bfd *abfd,
7501 char *name,
7502 Elf_Internal_Note *note)
7503{
7504 return _bfd_elfcore_make_pseudosection (abfd, name,
7505 note->descsz, note->descpos);
7506}
7507
7508/* There isn't a consistent prfpregset_t across platforms,
7509 but it doesn't matter, because we don't have to pick this
7510 data structure apart. */
7511
7512static bfd_boolean
7513elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7514{
7515 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7516}
7517
7518/* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7519 type of NT_PRXFPREG. Just include the whole note's contents
7520 literally. */
7521
7522static bfd_boolean
7523elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7524{
7525 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7526}
7527
7528static bfd_boolean
7529elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7530{
7531 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7532}
7533
7534
7535#if defined (HAVE_PRPSINFO_T)
7536typedef prpsinfo_t elfcore_psinfo_t;
7537#if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7538typedef prpsinfo32_t elfcore_psinfo32_t;
7539#endif
7540#endif
7541
7542#if defined (HAVE_PSINFO_T)
7543typedef psinfo_t elfcore_psinfo_t;
7544#if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7545typedef psinfo32_t elfcore_psinfo32_t;
7546#endif
7547#endif
7548
7549/* return a malloc'ed copy of a string at START which is at
7550 most MAX bytes long, possibly without a terminating '\0'.
7551 the copy will always have a terminating '\0'. */
7552
7553char *
7554_bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7555{
7556 char *dups;
7557 char *end = memchr (start, '\0', max);
7558 size_t len;
7559
7560 if (end == NULL)
7561 len = max;
7562 else
7563 len = end - start;
7564
7565 dups = bfd_alloc (abfd, len + 1);
7566 if (dups == NULL)
7567 return NULL;
7568
7569 memcpy (dups, start, len);
7570 dups[len] = '\0';
7571
7572 return dups;
7573}
7574
7575#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7576static bfd_boolean
7577elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7578{
7579 if (note->descsz == sizeof (elfcore_psinfo_t))
7580 {
7581 elfcore_psinfo_t psinfo;
7582
7583 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7584
7585 elf_tdata (abfd)->core_program
7586 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7587 sizeof (psinfo.pr_fname));
7588
7589 elf_tdata (abfd)->core_command
7590 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7591 sizeof (psinfo.pr_psargs));
7592 }
7593#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7594 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7595 {
7596 /* 64-bit host, 32-bit corefile */
7597 elfcore_psinfo32_t psinfo;
7598
7599 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7600
7601 elf_tdata (abfd)->core_program
7602 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7603 sizeof (psinfo.pr_fname));
7604
7605 elf_tdata (abfd)->core_command
7606 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7607 sizeof (psinfo.pr_psargs));
7608 }
7609#endif
7610
7611 else
7612 {
7613 /* Fail - we don't know how to handle any other
7614 note size (ie. data object type). */
7615 return TRUE;
7616 }
7617
7618 /* Note that for some reason, a spurious space is tacked
7619 onto the end of the args in some (at least one anyway)
7620 implementations, so strip it off if it exists. */
7621
7622 {
7623 char *command = elf_tdata (abfd)->core_command;
7624 int n = strlen (command);
7625
7626 if (0 < n && command[n - 1] == ' ')
7627 command[n - 1] = '\0';
7628 }
7629
7630 return TRUE;
7631}
7632#endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7633
7634#if defined (HAVE_PSTATUS_T)
7635static bfd_boolean
7636elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7637{
7638 if (note->descsz == sizeof (pstatus_t)
7639#if defined (HAVE_PXSTATUS_T)
7640 || note->descsz == sizeof (pxstatus_t)
7641#endif
7642 )
7643 {
7644 pstatus_t pstat;
7645
7646 memcpy (&pstat, note->descdata, sizeof (pstat));
7647
7648 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7649 }
7650#if defined (HAVE_PSTATUS32_T)
7651 else if (note->descsz == sizeof (pstatus32_t))
7652 {
7653 /* 64-bit host, 32-bit corefile */
7654 pstatus32_t pstat;
7655
7656 memcpy (&pstat, note->descdata, sizeof (pstat));
7657
7658 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7659 }
7660#endif
7661 /* Could grab some more details from the "representative"
7662 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7663 NT_LWPSTATUS note, presumably. */
7664
7665 return TRUE;
7666}
7667#endif /* defined (HAVE_PSTATUS_T) */
7668
7669#if defined (HAVE_LWPSTATUS_T)
7670static bfd_boolean
7671elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7672{
7673 lwpstatus_t lwpstat;
7674 char buf[100];
7675 char *name;
7676 size_t len;
7677 asection *sect;
7678
7679 if (note->descsz != sizeof (lwpstat)
7680#if defined (HAVE_LWPXSTATUS_T)
7681 && note->descsz != sizeof (lwpxstatus_t)
7682#endif
7683 )
7684 return TRUE;
7685
7686 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7687
7688 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7689 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7690
7691 /* Make a ".reg/999" section. */
7692
7693 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7694 len = strlen (buf) + 1;
7695 name = bfd_alloc (abfd, len);
7696 if (name == NULL)
7697 return FALSE;
7698 memcpy (name, buf, len);
7699
7700 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7701 if (sect == NULL)
7702 return FALSE;
7703
7704#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7705 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7706 sect->filepos = note->descpos
7707 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7708#endif
7709
7710#if defined (HAVE_LWPSTATUS_T_PR_REG)
7711 sect->size = sizeof (lwpstat.pr_reg);
7712 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7713#endif
7714
7715 sect->alignment_power = 2;
7716
7717 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7718 return FALSE;
7719
7720 /* Make a ".reg2/999" section */
7721
7722 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7723 len = strlen (buf) + 1;
7724 name = bfd_alloc (abfd, len);
7725 if (name == NULL)
7726 return FALSE;
7727 memcpy (name, buf, len);
7728
7729 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7730 if (sect == NULL)
7731 return FALSE;
7732
7733#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7734 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7735 sect->filepos = note->descpos
7736 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7737#endif
7738
7739#if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7740 sect->size = sizeof (lwpstat.pr_fpreg);
7741 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7742#endif
7743
7744 sect->alignment_power = 2;
7745
7746 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7747}
7748#endif /* defined (HAVE_LWPSTATUS_T) */
7749
7750static bfd_boolean
7751elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7752{
7753 char buf[30];
7754 char *name;
7755 size_t len;
7756 asection *sect;
7757 int type;
7758 int is_active_thread;
7759 bfd_vma base_addr;
7760
7761 if (note->descsz < 728)
7762 return TRUE;
7763
7764 if (! CONST_STRNEQ (note->namedata, "win32"))
7765 return TRUE;
7766
7767 type = bfd_get_32 (abfd, note->descdata);
7768
7769 switch (type)
7770 {
7771 case 1 /* NOTE_INFO_PROCESS */:
7772 /* FIXME: need to add ->core_command. */
7773 /* process_info.pid */
7774 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
7775 /* process_info.signal */
7776 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
7777 break;
7778
7779 case 2 /* NOTE_INFO_THREAD */:
7780 /* Make a ".reg/999" section. */
7781 /* thread_info.tid */
7782 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
7783
7784 len = strlen (buf) + 1;
7785 name = bfd_alloc (abfd, len);
7786 if (name == NULL)
7787 return FALSE;
7788
7789 memcpy (name, buf, len);
7790
7791 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7792 if (sect == NULL)
7793 return FALSE;
7794
7795 /* sizeof (thread_info.thread_context) */
7796 sect->size = 716;
7797 /* offsetof (thread_info.thread_context) */
7798 sect->filepos = note->descpos + 12;
7799 sect->alignment_power = 2;
7800
7801 /* thread_info.is_active_thread */
7802 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
7803
7804 if (is_active_thread)
7805 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7806 return FALSE;
7807 break;
7808
7809 case 3 /* NOTE_INFO_MODULE */:
7810 /* Make a ".module/xxxxxxxx" section. */
7811 /* module_info.base_address */
7812 base_addr = bfd_get_32 (abfd, note->descdata + 4);
7813 sprintf (buf, ".module/%08lx", (long) base_addr);
7814
7815 len = strlen (buf) + 1;
7816 name = bfd_alloc (abfd, len);
7817 if (name == NULL)
7818 return FALSE;
7819
7820 memcpy (name, buf, len);
7821
7822 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7823
7824 if (sect == NULL)
7825 return FALSE;
7826
7827 sect->size = note->descsz;
7828 sect->filepos = note->descpos;
7829 sect->alignment_power = 2;
7830 break;
7831
7832 default:
7833 return TRUE;
7834 }
7835
7836 return TRUE;
7837}
7838
7839static bfd_boolean
7840elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7841{
7842 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7843
7844 switch (note->type)
7845 {
7846 default:
7847 return TRUE;
7848
7849 case NT_PRSTATUS:
7850 if (bed->elf_backend_grok_prstatus)
7851 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7852 return TRUE;
7853#if defined (HAVE_PRSTATUS_T)
7854 return elfcore_grok_prstatus (abfd, note);
7855#else
7856 return TRUE;
7857#endif
7858
7859#if defined (HAVE_PSTATUS_T)
7860 case NT_PSTATUS:
7861 return elfcore_grok_pstatus (abfd, note);
7862#endif
7863
7864#if defined (HAVE_LWPSTATUS_T)
7865 case NT_LWPSTATUS:
7866 return elfcore_grok_lwpstatus (abfd, note);
7867#endif
7868
7869 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7870 return elfcore_grok_prfpreg (abfd, note);
7871
7872 case NT_WIN32PSTATUS:
7873 return elfcore_grok_win32pstatus (abfd, note);
7874
7875 case NT_PRXFPREG: /* Linux SSE extension */
7876 if (note->namesz == 6
7877 && strcmp (note->namedata, "LINUX") == 0)
7878 return elfcore_grok_prxfpreg (abfd, note);
7879 else
7880 return TRUE;
7881
7882 case NT_PPC_VMX:
7883 if (note->namesz == 6
7884 && strcmp (note->namedata, "LINUX") == 0)
7885 return elfcore_grok_ppc_vmx (abfd, note);
7886 else
7887 return TRUE;
7888
7889 case NT_PRPSINFO:
7890 case NT_PSINFO:
7891 if (bed->elf_backend_grok_psinfo)
7892 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7893 return TRUE;
7894#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7895 return elfcore_grok_psinfo (abfd, note);
7896#else
7897 return TRUE;
7898#endif
7899
7900 case NT_AUXV:
7901 {
7902 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7903 SEC_HAS_CONTENTS);
7904
7905 if (sect == NULL)
7906 return FALSE;
7907 sect->size = note->descsz;
7908 sect->filepos = note->descpos;
7909 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7910
7911 return TRUE;
7912 }
7913 }
7914}
7915
7916static bfd_boolean
7917elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
7918{
7919 elf_tdata (abfd)->build_id_size = note->descsz;
7920 elf_tdata (abfd)->build_id = bfd_alloc (abfd, note->descsz);
7921 if (elf_tdata (abfd)->build_id == NULL)
7922 return FALSE;
7923
7924 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
7925
7926 return TRUE;
7927}
7928
7929static bfd_boolean
7930elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
7931{
7932 switch (note->type)
7933 {
7934 default:
7935 return TRUE;
7936
7937 case NT_GNU_BUILD_ID:
7938 return elfobj_grok_gnu_build_id (abfd, note);
7939 }
7940}
7941
7942static bfd_boolean
7943elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7944{
7945 char *cp;
7946
7947 cp = strchr (note->namedata, '@');
7948 if (cp != NULL)
7949 {
7950 *lwpidp = atoi(cp + 1);
7951 return TRUE;
7952 }
7953 return FALSE;
7954}
7955
7956static bfd_boolean
7957elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7958{
7959 /* Signal number at offset 0x08. */
7960 elf_tdata (abfd)->core_signal
7961 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7962
7963 /* Process ID at offset 0x50. */
7964 elf_tdata (abfd)->core_pid
7965 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7966
7967 /* Command name at 0x7c (max 32 bytes, including nul). */
7968 elf_tdata (abfd)->core_command
7969 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7970
7971 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7972 note);
7973}
7974
7975static bfd_boolean
7976elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7977{
7978 int lwp;
7979
7980 if (elfcore_netbsd_get_lwpid (note, &lwp))
7981 elf_tdata (abfd)->core_lwpid = lwp;
7982
7983 if (note->type == NT_NETBSDCORE_PROCINFO)
7984 {
7985 /* NetBSD-specific core "procinfo". Note that we expect to
7986 find this note before any of the others, which is fine,
7987 since the kernel writes this note out first when it
7988 creates a core file. */
7989
7990 return elfcore_grok_netbsd_procinfo (abfd, note);
7991 }
7992
7993 /* As of Jan 2002 there are no other machine-independent notes
7994 defined for NetBSD core files. If the note type is less
7995 than the start of the machine-dependent note types, we don't
7996 understand it. */
7997
7998 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7999 return TRUE;
8000
8001
8002 switch (bfd_get_arch (abfd))
8003 {
8004 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8005 PT_GETFPREGS == mach+2. */
8006
8007 case bfd_arch_alpha:
8008 case bfd_arch_sparc:
8009 switch (note->type)
8010 {
8011 case NT_NETBSDCORE_FIRSTMACH+0:
8012 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8013
8014 case NT_NETBSDCORE_FIRSTMACH+2:
8015 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8016
8017 default:
8018 return TRUE;
8019 }
8020
8021 /* On all other arch's, PT_GETREGS == mach+1 and
8022 PT_GETFPREGS == mach+3. */
8023
8024 default:
8025 switch (note->type)
8026 {
8027 case NT_NETBSDCORE_FIRSTMACH+1:
8028 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8029
8030 case NT_NETBSDCORE_FIRSTMACH+3:
8031 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8032
8033 default:
8034 return TRUE;
8035 }
8036 }
8037 /* NOTREACHED */
8038}
8039
8040static bfd_boolean
8041elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8042{
8043 void *ddata = note->descdata;
8044 char buf[100];
8045 char *name;
8046 asection *sect;
8047 short sig;
8048 unsigned flags;
8049
8050 /* nto_procfs_status 'pid' field is at offset 0. */
8051 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8052
8053 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8054 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8055
8056 /* nto_procfs_status 'flags' field is at offset 8. */
8057 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8058
8059 /* nto_procfs_status 'what' field is at offset 14. */
8060 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8061 {
8062 elf_tdata (abfd)->core_signal = sig;
8063 elf_tdata (abfd)->core_lwpid = *tid;
8064 }
8065
8066 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8067 do not come from signals so we make sure we set the current
8068 thread just in case. */
8069 if (flags & 0x00000080)
8070 elf_tdata (abfd)->core_lwpid = *tid;
8071
8072 /* Make a ".qnx_core_status/%d" section. */
8073 sprintf (buf, ".qnx_core_status/%ld", *tid);
8074
8075 name = bfd_alloc (abfd, strlen (buf) + 1);
8076 if (name == NULL)
8077 return FALSE;
8078 strcpy (name, buf);
8079
8080 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8081 if (sect == NULL)
8082 return FALSE;
8083
8084 sect->size = note->descsz;
8085 sect->filepos = note->descpos;
8086 sect->alignment_power = 2;
8087
8088 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8089}
8090
8091static bfd_boolean
8092elfcore_grok_nto_regs (bfd *abfd,
8093 Elf_Internal_Note *note,
8094 long tid,
8095 char *base)
8096{
8097 char buf[100];
8098 char *name;
8099 asection *sect;
8100
8101 /* Make a "(base)/%d" section. */
8102 sprintf (buf, "%s/%ld", base, tid);
8103
8104 name = bfd_alloc (abfd, strlen (buf) + 1);
8105 if (name == NULL)
8106 return FALSE;
8107 strcpy (name, buf);
8108
8109 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8110 if (sect == NULL)
8111 return FALSE;
8112
8113 sect->size = note->descsz;
8114 sect->filepos = note->descpos;
8115 sect->alignment_power = 2;
8116
8117 /* This is the current thread. */
8118 if (elf_tdata (abfd)->core_lwpid == tid)
8119 return elfcore_maybe_make_sect (abfd, base, sect);
8120
8121 return TRUE;
8122}
8123
8124#define BFD_QNT_CORE_INFO 7
8125#define BFD_QNT_CORE_STATUS 8
8126#define BFD_QNT_CORE_GREG 9
8127#define BFD_QNT_CORE_FPREG 10
8128
8129static bfd_boolean
8130elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8131{
8132 /* Every GREG section has a STATUS section before it. Store the
8133 tid from the previous call to pass down to the next gregs
8134 function. */
8135 static long tid = 1;
8136
8137 switch (note->type)
8138 {
8139 case BFD_QNT_CORE_INFO:
8140 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8141 case BFD_QNT_CORE_STATUS:
8142 return elfcore_grok_nto_status (abfd, note, &tid);
8143 case BFD_QNT_CORE_GREG:
8144 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8145 case BFD_QNT_CORE_FPREG:
8146 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8147 default:
8148 return TRUE;
8149 }
8150}
8151
8152static bfd_boolean
8153elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8154{
8155 char *name;
8156 asection *sect;
8157 size_t len;
8158
8159 /* Use note name as section name. */
8160 len = note->namesz;
8161 name = bfd_alloc (abfd, len);
8162 if (name == NULL)
8163 return FALSE;
8164 memcpy (name, note->namedata, len);
8165 name[len - 1] = '\0';
8166
8167 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8168 if (sect == NULL)
8169 return FALSE;
8170
8171 sect->size = note->descsz;
8172 sect->filepos = note->descpos;
8173 sect->alignment_power = 1;
8174
8175 return TRUE;
8176}
8177
8178/* Function: elfcore_write_note
8179
8180 Inputs:
8181 buffer to hold note, and current size of buffer
8182 name of note
8183 type of note
8184 data for note
8185 size of data for note
8186
8187 Writes note to end of buffer. ELF64 notes are written exactly as
8188 for ELF32, despite the current (as of 2006) ELF gabi specifying
8189 that they ought to have 8-byte namesz and descsz field, and have
8190 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8191
8192 Return:
8193 Pointer to realloc'd buffer, *BUFSIZ updated. */
8194
8195char *
8196elfcore_write_note (bfd *abfd,
8197 char *buf,
8198 int *bufsiz,
8199 const char *name,
8200 int type,
8201 const void *input,
8202 int size)
8203{
8204 Elf_External_Note *xnp;
8205 size_t namesz;
8206 size_t newspace;
8207 char *dest;
8208
8209 namesz = 0;
8210 if (name != NULL)
8211 namesz = strlen (name) + 1;
8212
8213 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8214
8215 buf = realloc (buf, *bufsiz + newspace);
8216 if (buf == NULL)
8217 return buf;
8218 dest = buf + *bufsiz;
8219 *bufsiz += newspace;
8220 xnp = (Elf_External_Note *) dest;
8221 H_PUT_32 (abfd, namesz, xnp->namesz);
8222 H_PUT_32 (abfd, size, xnp->descsz);
8223 H_PUT_32 (abfd, type, xnp->type);
8224 dest = xnp->name;
8225 if (name != NULL)
8226 {
8227 memcpy (dest, name, namesz);
8228 dest += namesz;
8229 while (namesz & 3)
8230 {
8231 *dest++ = '\0';
8232 ++namesz;
8233 }
8234 }
8235 memcpy (dest, input, size);
8236 dest += size;
8237 while (size & 3)
8238 {
8239 *dest++ = '\0';
8240 ++size;
8241 }
8242 return buf;
8243}
8244
8245#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8246char *
8247elfcore_write_prpsinfo (bfd *abfd,
8248 char *buf,
8249 int *bufsiz,
8250 const char *fname,
8251 const char *psargs)
8252{
8253 const char *note_name = "CORE";
8254 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8255
8256 if (bed->elf_backend_write_core_note != NULL)
8257 {
8258 char *ret;
8259 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8260 NT_PRPSINFO, fname, psargs);
8261 if (ret != NULL)
8262 return ret;
8263 }
8264
8265#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8266 if (bed->s->elfclass == ELFCLASS32)
8267 {
8268#if defined (HAVE_PSINFO32_T)
8269 psinfo32_t data;
8270 int note_type = NT_PSINFO;
8271#else
8272 prpsinfo32_t data;
8273 int note_type = NT_PRPSINFO;
8274#endif
8275
8276 memset (&data, 0, sizeof (data));
8277 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8278 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8279 return elfcore_write_note (abfd, buf, bufsiz,
8280 note_name, note_type, &data, sizeof (data));
8281 }
8282 else
8283#endif
8284 {
8285#if defined (HAVE_PSINFO_T)
8286 psinfo_t data;
8287 int note_type = NT_PSINFO;
8288#else
8289 prpsinfo_t data;
8290 int note_type = NT_PRPSINFO;
8291#endif
8292
8293 memset (&data, 0, sizeof (data));
8294 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8295 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8296 return elfcore_write_note (abfd, buf, bufsiz,
8297 note_name, note_type, &data, sizeof (data));
8298 }
8299}
8300#endif /* PSINFO_T or PRPSINFO_T */
8301
8302#if defined (HAVE_PRSTATUS_T)
8303char *
8304elfcore_write_prstatus (bfd *abfd,
8305 char *buf,
8306 int *bufsiz,
8307 long pid,
8308 int cursig,
8309 const void *gregs)
8310{
8311 const char *note_name = "CORE";
8312 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8313
8314 if (bed->elf_backend_write_core_note != NULL)
8315 {
8316 char *ret;
8317 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8318 NT_PRSTATUS,
8319 pid, cursig, gregs);
8320 if (ret != NULL)
8321 return ret;
8322 }
8323
8324#if defined (HAVE_PRSTATUS32_T)
8325 if (bed->s->elfclass == ELFCLASS32)
8326 {
8327 prstatus32_t prstat;
8328
8329 memset (&prstat, 0, sizeof (prstat));
8330 prstat.pr_pid = pid;
8331 prstat.pr_cursig = cursig;
8332 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8333 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8334 NT_PRSTATUS, &prstat, sizeof (prstat));
8335 }
8336 else
8337#endif
8338 {
8339 prstatus_t prstat;
8340
8341 memset (&prstat, 0, sizeof (prstat));
8342 prstat.pr_pid = pid;
8343 prstat.pr_cursig = cursig;
8344 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8345 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8346 NT_PRSTATUS, &prstat, sizeof (prstat));
8347 }
8348}
8349#endif /* HAVE_PRSTATUS_T */
8350
8351#if defined (HAVE_LWPSTATUS_T)
8352char *
8353elfcore_write_lwpstatus (bfd *abfd,
8354 char *buf,
8355 int *bufsiz,
8356 long pid,
8357 int cursig,
8358 const void *gregs)
8359{
8360 lwpstatus_t lwpstat;
8361 const char *note_name = "CORE";
8362
8363 memset (&lwpstat, 0, sizeof (lwpstat));
8364 lwpstat.pr_lwpid = pid >> 16;
8365 lwpstat.pr_cursig = cursig;
8366#if defined (HAVE_LWPSTATUS_T_PR_REG)
8367 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8368#elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8369#if !defined(gregs)
8370 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8371 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8372#else
8373 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8374 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8375#endif
8376#endif
8377 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8378 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8379}
8380#endif /* HAVE_LWPSTATUS_T */
8381
8382#if defined (HAVE_PSTATUS_T)
8383char *
8384elfcore_write_pstatus (bfd *abfd,
8385 char *buf,
8386 int *bufsiz,
8387 long pid,
8388 int cursig ATTRIBUTE_UNUSED,
8389 const void *gregs ATTRIBUTE_UNUSED)
8390{
8391 const char *note_name = "CORE";
8392#if defined (HAVE_PSTATUS32_T)
8393 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8394
8395 if (bed->s->elfclass == ELFCLASS32)
8396 {
8397 pstatus32_t pstat;
8398
8399 memset (&pstat, 0, sizeof (pstat));
8400 pstat.pr_pid = pid & 0xffff;
8401 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8402 NT_PSTATUS, &pstat, sizeof (pstat));
8403 return buf;
8404 }
8405 else
8406#endif
8407 {
8408 pstatus_t pstat;
8409
8410 memset (&pstat, 0, sizeof (pstat));
8411 pstat.pr_pid = pid & 0xffff;
8412 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8413 NT_PSTATUS, &pstat, sizeof (pstat));
8414 return buf;
8415 }
8416}
8417#endif /* HAVE_PSTATUS_T */
8418
8419char *
8420elfcore_write_prfpreg (bfd *abfd,
8421 char *buf,
8422 int *bufsiz,
8423 const void *fpregs,
8424 int size)
8425{
8426 const char *note_name = "CORE";
8427 return elfcore_write_note (abfd, buf, bufsiz,
8428 note_name, NT_FPREGSET, fpregs, size);
8429}
8430
8431char *
8432elfcore_write_prxfpreg (bfd *abfd,
8433 char *buf,
8434 int *bufsiz,
8435 const void *xfpregs,
8436 int size)
8437{
8438 char *note_name = "LINUX";
8439 return elfcore_write_note (abfd, buf, bufsiz,
8440 note_name, NT_PRXFPREG, xfpregs, size);
8441}
8442
8443char *
8444elfcore_write_ppc_vmx (bfd *abfd,
8445 char *buf,
8446 int *bufsiz,
8447 const void *ppc_vmx,
8448 int size)
8449{
8450 char *note_name = "LINUX";
8451 return elfcore_write_note (abfd, buf, bufsiz,
8452 note_name, NT_PPC_VMX, ppc_vmx, size);
8453}
8454
8455char *
8456elfcore_write_register_note (bfd *abfd,
8457 char *buf,
8458 int *bufsiz,
8459 const char *section,
8460 const void *data,
8461 int size)
8462{
8463 if (strcmp (section, ".reg2") == 0)
8464 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
8465 if (strcmp (section, ".reg-xfp") == 0)
8466 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
8467 if (strcmp (section, ".reg-ppc-vmx") == 0)
8468 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
8469 return NULL;
8470}
8471
8472static bfd_boolean
8473elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
8474{
8475 char *p;
8476
8477 p = buf;
8478 while (p < buf + size)
8479 {
8480 /* FIXME: bad alignment assumption. */
8481 Elf_External_Note *xnp = (Elf_External_Note *) p;
8482 Elf_Internal_Note in;
8483
8484 in.type = H_GET_32 (abfd, xnp->type);
8485
8486 in.namesz = H_GET_32 (abfd, xnp->namesz);
8487 in.namedata = xnp->name;
8488
8489 in.descsz = H_GET_32 (abfd, xnp->descsz);
8490 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8491 in.descpos = offset + (in.descdata - buf);
8492
8493 switch (bfd_get_format (abfd))
8494 {
8495 default:
8496 return TRUE;
8497
8498 case bfd_core:
8499 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8500 {
8501 if (! elfcore_grok_netbsd_note (abfd, &in))
8502 return FALSE;
8503 }
8504 else if (CONST_STRNEQ (in.namedata, "QNX"))
8505 {
8506 if (! elfcore_grok_nto_note (abfd, &in))
8507 return FALSE;
8508 }
8509 else if (CONST_STRNEQ (in.namedata, "SPU/"))
8510 {
8511 if (! elfcore_grok_spu_note (abfd, &in))
8512 return FALSE;
8513 }
8514 else
8515 {
8516 if (! elfcore_grok_note (abfd, &in))
8517 return FALSE;
8518 }
8519 break;
8520
8521 case bfd_object:
8522 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
8523 {
8524 if (! elfobj_grok_gnu_note (abfd, &in))
8525 return FALSE;
8526 }
8527 break;
8528 }
8529
8530 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8531 }
8532
8533 return TRUE;
8534}
8535
8536static bfd_boolean
8537elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8538{
8539 char *buf;
8540
8541 if (size <= 0)
8542 return TRUE;
8543
8544 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8545 return FALSE;
8546
8547 buf = bfd_malloc (size);
8548 if (buf == NULL)
8549 return FALSE;
8550
8551 if (bfd_bread (buf, size, abfd) != size
8552 || !elf_parse_notes (abfd, buf, size, offset))
8553 {
8554 free (buf);
8555 return FALSE;
8556 }
8557
8558 free (buf);
8559 return TRUE;
8560}
8561\f
8562/* Providing external access to the ELF program header table. */
8563
8564/* Return an upper bound on the number of bytes required to store a
8565 copy of ABFD's program header table entries. Return -1 if an error
8566 occurs; bfd_get_error will return an appropriate code. */
8567
8568long
8569bfd_get_elf_phdr_upper_bound (bfd *abfd)
8570{
8571 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8572 {
8573 bfd_set_error (bfd_error_wrong_format);
8574 return -1;
8575 }
8576
8577 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8578}
8579
8580/* Copy ABFD's program header table entries to *PHDRS. The entries
8581 will be stored as an array of Elf_Internal_Phdr structures, as
8582 defined in include/elf/internal.h. To find out how large the
8583 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8584
8585 Return the number of program header table entries read, or -1 if an
8586 error occurs; bfd_get_error will return an appropriate code. */
8587
8588int
8589bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8590{
8591 int num_phdrs;
8592
8593 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8594 {
8595 bfd_set_error (bfd_error_wrong_format);
8596 return -1;
8597 }
8598
8599 num_phdrs = elf_elfheader (abfd)->e_phnum;
8600 memcpy (phdrs, elf_tdata (abfd)->phdr,
8601 num_phdrs * sizeof (Elf_Internal_Phdr));
8602
8603 return num_phdrs;
8604}
8605
8606enum elf_reloc_type_class
8607_bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8608{
8609 return reloc_class_normal;
8610}
8611
8612/* For RELA architectures, return the relocation value for a
8613 relocation against a local symbol. */
8614
8615bfd_vma
8616_bfd_elf_rela_local_sym (bfd *abfd,
8617 Elf_Internal_Sym *sym,
8618 asection **psec,
8619 Elf_Internal_Rela *rel)
8620{
8621 asection *sec = *psec;
8622 bfd_vma relocation;
8623
8624 relocation = (sec->output_section->vma
8625 + sec->output_offset
8626 + sym->st_value);
8627 if ((sec->flags & SEC_MERGE)
8628 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8629 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8630 {
8631 rel->r_addend =
8632 _bfd_merged_section_offset (abfd, psec,
8633 elf_section_data (sec)->sec_info,
8634 sym->st_value + rel->r_addend);
8635 if (sec != *psec)
8636 {
8637 /* If we have changed the section, and our original section is
8638 marked with SEC_EXCLUDE, it means that the original
8639 SEC_MERGE section has been completely subsumed in some
8640 other SEC_MERGE section. In this case, we need to leave
8641 some info around for --emit-relocs. */
8642 if ((sec->flags & SEC_EXCLUDE) != 0)
8643 sec->kept_section = *psec;
8644 sec = *psec;
8645 }
8646 rel->r_addend -= relocation;
8647 rel->r_addend += sec->output_section->vma + sec->output_offset;
8648 }
8649 return relocation;
8650}
8651
8652bfd_vma
8653_bfd_elf_rel_local_sym (bfd *abfd,
8654 Elf_Internal_Sym *sym,
8655 asection **psec,
8656 bfd_vma addend)
8657{
8658 asection *sec = *psec;
8659
8660 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8661 return sym->st_value + addend;
8662
8663 return _bfd_merged_section_offset (abfd, psec,
8664 elf_section_data (sec)->sec_info,
8665 sym->st_value + addend);
8666}
8667
8668bfd_vma
8669_bfd_elf_section_offset (bfd *abfd,
8670 struct bfd_link_info *info,
8671 asection *sec,
8672 bfd_vma offset)
8673{
8674 switch (sec->sec_info_type)
8675 {
8676 case ELF_INFO_TYPE_STABS:
8677 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8678 offset);
8679 case ELF_INFO_TYPE_EH_FRAME:
8680 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8681 default:
8682 return offset;
8683 }
8684}
8685\f
8686/* Create a new BFD as if by bfd_openr. Rather than opening a file,
8687 reconstruct an ELF file by reading the segments out of remote memory
8688 based on the ELF file header at EHDR_VMA and the ELF program headers it
8689 points to. If not null, *LOADBASEP is filled in with the difference
8690 between the VMAs from which the segments were read, and the VMAs the
8691 file headers (and hence BFD's idea of each section's VMA) put them at.
8692
8693 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8694 remote memory at target address VMA into the local buffer at MYADDR; it
8695 should return zero on success or an `errno' code on failure. TEMPL must
8696 be a BFD for an ELF target with the word size and byte order found in
8697 the remote memory. */
8698
8699bfd *
8700bfd_elf_bfd_from_remote_memory
8701 (bfd *templ,
8702 bfd_vma ehdr_vma,
8703 bfd_vma *loadbasep,
8704 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8705{
8706 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8707 (templ, ehdr_vma, loadbasep, target_read_memory);
8708}
8709\f
8710long
8711_bfd_elf_get_synthetic_symtab (bfd *abfd,
8712 long symcount ATTRIBUTE_UNUSED,
8713 asymbol **syms ATTRIBUTE_UNUSED,
8714 long dynsymcount,
8715 asymbol **dynsyms,
8716 asymbol **ret)
8717{
8718 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8719 asection *relplt;
8720 asymbol *s;
8721 const char *relplt_name;
8722 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8723 arelent *p;
8724 long count, i, n;
8725 size_t size;
8726 Elf_Internal_Shdr *hdr;
8727 char *names;
8728 asection *plt;
8729
8730 *ret = NULL;
8731
8732 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8733 return 0;
8734
8735 if (dynsymcount <= 0)
8736 return 0;
8737
8738 if (!bed->plt_sym_val)
8739 return 0;
8740
8741 relplt_name = bed->relplt_name;
8742 if (relplt_name == NULL)
8743 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8744 relplt = bfd_get_section_by_name (abfd, relplt_name);
8745 if (relplt == NULL)
8746 return 0;
8747
8748 hdr = &elf_section_data (relplt)->this_hdr;
8749 if (hdr->sh_link != elf_dynsymtab (abfd)
8750 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8751 return 0;
8752
8753 plt = bfd_get_section_by_name (abfd, ".plt");
8754 if (plt == NULL)
8755 return 0;
8756
8757 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8758 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8759 return -1;
8760
8761 count = relplt->size / hdr->sh_entsize;
8762 size = count * sizeof (asymbol);
8763 p = relplt->relocation;
8764 for (i = 0; i < count; i++, p++)
8765 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8766
8767 s = *ret = bfd_malloc (size);
8768 if (s == NULL)
8769 return -1;
8770
8771 names = (char *) (s + count);
8772 p = relplt->relocation;
8773 n = 0;
8774 for (i = 0; i < count; i++, p++)
8775 {
8776 size_t len;
8777 bfd_vma addr;
8778
8779 addr = bed->plt_sym_val (i, plt, p);
8780 if (addr == (bfd_vma) -1)
8781 continue;
8782
8783 *s = **p->sym_ptr_ptr;
8784 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8785 we are defining a symbol, ensure one of them is set. */
8786 if ((s->flags & BSF_LOCAL) == 0)
8787 s->flags |= BSF_GLOBAL;
8788 s->section = plt;
8789 s->value = addr - plt->vma;
8790 s->name = names;
8791 s->udata.p = NULL;
8792 len = strlen ((*p->sym_ptr_ptr)->name);
8793 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8794 names += len;
8795 memcpy (names, "@plt", sizeof ("@plt"));
8796 names += sizeof ("@plt");
8797 ++s, ++n;
8798 }
8799
8800 return n;
8801}
8802
8803/* It is only used by x86-64 so far. */
8804asection _bfd_elf_large_com_section
8805 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8806 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8807
8808void
8809_bfd_elf_set_osabi (bfd * abfd,
8810 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
8811{
8812 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
8813
8814 i_ehdrp = elf_elfheader (abfd);
8815
8816 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
8817}
8818
8819
8820/* Return TRUE for ELF symbol types that represent functions.
8821 This is the default version of this function, which is sufficient for
8822 most targets. It returns true if TYPE is STT_FUNC. */
8823
8824bfd_boolean
8825_bfd_elf_is_function_type (unsigned int type)
8826{
8827 return (type == STT_FUNC);
8828}