]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame_incremental - gas/config/tc-arm.c
Updated translations for various binutils sub-directories
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
... / ...
CommitLineData
1/* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2020 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26#include "as.h"
27#include <limits.h>
28#include <stdarg.h>
29#define NO_RELOC 0
30#include "safe-ctype.h"
31#include "subsegs.h"
32#include "obstack.h"
33#include "libiberty.h"
34#include "opcode/arm.h"
35#include "cpu-arm.h"
36
37#ifdef OBJ_ELF
38#include "elf/arm.h"
39#include "dw2gencfi.h"
40#endif
41
42#include "dwarf2dbg.h"
43
44#ifdef OBJ_ELF
45/* Must be at least the size of the largest unwind opcode (currently two). */
46#define ARM_OPCODE_CHUNK_SIZE 8
47
48/* This structure holds the unwinding state. */
49
50static struct
51{
52 symbolS * proc_start;
53 symbolS * table_entry;
54 symbolS * personality_routine;
55 int personality_index;
56 /* The segment containing the function. */
57 segT saved_seg;
58 subsegT saved_subseg;
59 /* Opcodes generated from this function. */
60 unsigned char * opcodes;
61 int opcode_count;
62 int opcode_alloc;
63 /* The number of bytes pushed to the stack. */
64 offsetT frame_size;
65 /* We don't add stack adjustment opcodes immediately so that we can merge
66 multiple adjustments. We can also omit the final adjustment
67 when using a frame pointer. */
68 offsetT pending_offset;
69 /* These two fields are set by both unwind_movsp and unwind_setfp. They
70 hold the reg+offset to use when restoring sp from a frame pointer. */
71 offsetT fp_offset;
72 int fp_reg;
73 /* Nonzero if an unwind_setfp directive has been seen. */
74 unsigned fp_used:1;
75 /* Nonzero if the last opcode restores sp from fp_reg. */
76 unsigned sp_restored:1;
77} unwind;
78
79/* Whether --fdpic was given. */
80static int arm_fdpic;
81
82#endif /* OBJ_ELF */
83
84/* Results from operand parsing worker functions. */
85
86typedef enum
87{
88 PARSE_OPERAND_SUCCESS,
89 PARSE_OPERAND_FAIL,
90 PARSE_OPERAND_FAIL_NO_BACKTRACK
91} parse_operand_result;
92
93enum arm_float_abi
94{
95 ARM_FLOAT_ABI_HARD,
96 ARM_FLOAT_ABI_SOFTFP,
97 ARM_FLOAT_ABI_SOFT
98};
99
100/* Types of processor to assemble for. */
101#ifndef CPU_DEFAULT
102/* The code that was here used to select a default CPU depending on compiler
103 pre-defines which were only present when doing native builds, thus
104 changing gas' default behaviour depending upon the build host.
105
106 If you have a target that requires a default CPU option then the you
107 should define CPU_DEFAULT here. */
108#endif
109
110/* Perform range checks on positive and negative overflows by checking if the
111 VALUE given fits within the range of an BITS sized immediate. */
112static bfd_boolean out_of_range_p (offsetT value, offsetT bits)
113 {
114 gas_assert (bits < (offsetT)(sizeof (value) * 8));
115 return (value & ~((1 << bits)-1))
116 && ((value & ~((1 << bits)-1)) != ~((1 << bits)-1));
117}
118
119#ifndef FPU_DEFAULT
120# ifdef TE_LINUX
121# define FPU_DEFAULT FPU_ARCH_FPA
122# elif defined (TE_NetBSD)
123# ifdef OBJ_ELF
124# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
125# else
126 /* Legacy a.out format. */
127# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
128# endif
129# elif defined (TE_VXWORKS)
130# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
131# else
132 /* For backwards compatibility, default to FPA. */
133# define FPU_DEFAULT FPU_ARCH_FPA
134# endif
135#endif /* ifndef FPU_DEFAULT */
136
137#define streq(a, b) (strcmp (a, b) == 0)
138
139/* Current set of feature bits available (CPU+FPU). Different from
140 selected_cpu + selected_fpu in case of autodetection since the CPU
141 feature bits are then all set. */
142static arm_feature_set cpu_variant;
143/* Feature bits used in each execution state. Used to set build attribute
144 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
145static arm_feature_set arm_arch_used;
146static arm_feature_set thumb_arch_used;
147
148/* Flags stored in private area of BFD structure. */
149static int uses_apcs_26 = FALSE;
150static int atpcs = FALSE;
151static int support_interwork = FALSE;
152static int uses_apcs_float = FALSE;
153static int pic_code = FALSE;
154static int fix_v4bx = FALSE;
155/* Warn on using deprecated features. */
156static int warn_on_deprecated = TRUE;
157static int warn_on_restrict_it = FALSE;
158
159/* Understand CodeComposer Studio assembly syntax. */
160bfd_boolean codecomposer_syntax = FALSE;
161
162/* Variables that we set while parsing command-line options. Once all
163 options have been read we re-process these values to set the real
164 assembly flags. */
165
166/* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
167 instead of -mcpu=arm1). */
168static const arm_feature_set *legacy_cpu = NULL;
169static const arm_feature_set *legacy_fpu = NULL;
170
171/* CPU, extension and FPU feature bits selected by -mcpu. */
172static const arm_feature_set *mcpu_cpu_opt = NULL;
173static arm_feature_set *mcpu_ext_opt = NULL;
174static const arm_feature_set *mcpu_fpu_opt = NULL;
175
176/* CPU, extension and FPU feature bits selected by -march. */
177static const arm_feature_set *march_cpu_opt = NULL;
178static arm_feature_set *march_ext_opt = NULL;
179static const arm_feature_set *march_fpu_opt = NULL;
180
181/* Feature bits selected by -mfpu. */
182static const arm_feature_set *mfpu_opt = NULL;
183
184/* Constants for known architecture features. */
185static const arm_feature_set fpu_default = FPU_DEFAULT;
186static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
187static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
188static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
189static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
190static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
191static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
192#ifdef OBJ_ELF
193static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
194#endif
195static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
196
197#ifdef CPU_DEFAULT
198static const arm_feature_set cpu_default = CPU_DEFAULT;
199#endif
200
201static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
202static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
203static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
204static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
205static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
206static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
207static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
208static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
209static const arm_feature_set arm_ext_v4t_5 =
210 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
211static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
212static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
213static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
214static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
215static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
216static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
217static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
218/* Only for compatability of hint instructions. */
219static const arm_feature_set arm_ext_v6k_v6t2 =
220 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
221static const arm_feature_set arm_ext_v6_notm =
222 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
223static const arm_feature_set arm_ext_v6_dsp =
224 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
225static const arm_feature_set arm_ext_barrier =
226 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
227static const arm_feature_set arm_ext_msr =
228 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
229static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
230static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
231static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
232static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
233static const arm_feature_set arm_ext_v8r = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8R);
234#ifdef OBJ_ELF
235static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
236#endif
237static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
238static const arm_feature_set arm_ext_m =
239 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
240 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
241static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
242static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
243static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
244static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
245static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
246static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
247static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
248static const arm_feature_set arm_ext_v8m_main =
249 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
250static const arm_feature_set arm_ext_v8_1m_main =
251ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
252/* Instructions in ARMv8-M only found in M profile architectures. */
253static const arm_feature_set arm_ext_v8m_m_only =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
255static const arm_feature_set arm_ext_v6t2_v8m =
256 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
257/* Instructions shared between ARMv8-A and ARMv8-M. */
258static const arm_feature_set arm_ext_atomics =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
260#ifdef OBJ_ELF
261/* DSP instructions Tag_DSP_extension refers to. */
262static const arm_feature_set arm_ext_dsp =
263 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
264#endif
265static const arm_feature_set arm_ext_ras =
266 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
267/* FP16 instructions. */
268static const arm_feature_set arm_ext_fp16 =
269 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
270static const arm_feature_set arm_ext_fp16_fml =
271 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
272static const arm_feature_set arm_ext_v8_2 =
273 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
274static const arm_feature_set arm_ext_v8_3 =
275 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
276static const arm_feature_set arm_ext_sb =
277 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
278static const arm_feature_set arm_ext_predres =
279 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
280static const arm_feature_set arm_ext_bf16 =
281 ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16);
282static const arm_feature_set arm_ext_i8mm =
283 ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM);
284static const arm_feature_set arm_ext_crc =
285 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC);
286static const arm_feature_set arm_ext_cde =
287 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE);
288static const arm_feature_set arm_ext_cde0 =
289 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE0);
290static const arm_feature_set arm_ext_cde1 =
291 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE1);
292static const arm_feature_set arm_ext_cde2 =
293 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE2);
294static const arm_feature_set arm_ext_cde3 =
295 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE3);
296static const arm_feature_set arm_ext_cde4 =
297 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE4);
298static const arm_feature_set arm_ext_cde5 =
299 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE5);
300static const arm_feature_set arm_ext_cde6 =
301 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE6);
302static const arm_feature_set arm_ext_cde7 =
303 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE7);
304
305static const arm_feature_set arm_arch_any = ARM_ANY;
306static const arm_feature_set fpu_any = FPU_ANY;
307static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
308static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
309static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
310
311static const arm_feature_set arm_cext_iwmmxt2 =
312 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
313static const arm_feature_set arm_cext_iwmmxt =
314 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
315static const arm_feature_set arm_cext_xscale =
316 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
317static const arm_feature_set arm_cext_maverick =
318 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
319static const arm_feature_set fpu_fpa_ext_v1 =
320 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
321static const arm_feature_set fpu_fpa_ext_v2 =
322 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
323static const arm_feature_set fpu_vfp_ext_v1xd =
324 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
325static const arm_feature_set fpu_vfp_ext_v1 =
326 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
327static const arm_feature_set fpu_vfp_ext_v2 =
328 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
329static const arm_feature_set fpu_vfp_ext_v3xd =
330 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
331static const arm_feature_set fpu_vfp_ext_v3 =
332 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
333static const arm_feature_set fpu_vfp_ext_d32 =
334 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
335static const arm_feature_set fpu_neon_ext_v1 =
336 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
337static const arm_feature_set fpu_vfp_v3_or_neon_ext =
338 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
339static const arm_feature_set mve_ext =
340 ARM_FEATURE_CORE_HIGH (ARM_EXT2_MVE);
341static const arm_feature_set mve_fp_ext =
342 ARM_FEATURE_CORE_HIGH (ARM_EXT2_MVE_FP);
343/* Note: This has more than one bit set, which means using it with
344 mark_feature_used (which returns if *any* of the bits are set in the current
345 cpu variant) can give surprising results. */
346static const arm_feature_set armv8m_fp =
347 ARM_FEATURE_COPROC (FPU_VFP_V5_SP_D16);
348#ifdef OBJ_ELF
349static const arm_feature_set fpu_vfp_fp16 =
350 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
351static const arm_feature_set fpu_neon_ext_fma =
352 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
353#endif
354static const arm_feature_set fpu_vfp_ext_fma =
355 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
356static const arm_feature_set fpu_vfp_ext_armv8 =
357 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
358static const arm_feature_set fpu_vfp_ext_armv8xd =
359 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
360static const arm_feature_set fpu_neon_ext_armv8 =
361 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
362static const arm_feature_set fpu_crypto_ext_armv8 =
363 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
364static const arm_feature_set fpu_neon_ext_v8_1 =
365 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
366static const arm_feature_set fpu_neon_ext_dotprod =
367 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
368
369static int mfloat_abi_opt = -1;
370/* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
371 directive. */
372static arm_feature_set selected_arch = ARM_ARCH_NONE;
373/* Extension feature bits selected by the last -mcpu/-march or .arch_extension
374 directive. */
375static arm_feature_set selected_ext = ARM_ARCH_NONE;
376/* Feature bits selected by the last -mcpu/-march or by the combination of the
377 last .cpu/.arch directive .arch_extension directives since that
378 directive. */
379static arm_feature_set selected_cpu = ARM_ARCH_NONE;
380/* FPU feature bits selected by the last -mfpu or .fpu directive. */
381static arm_feature_set selected_fpu = FPU_NONE;
382/* Feature bits selected by the last .object_arch directive. */
383static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
384/* Must be long enough to hold any of the names in arm_cpus. */
385static const struct arm_ext_table * selected_ctx_ext_table = NULL;
386static char selected_cpu_name[20];
387
388extern FLONUM_TYPE generic_floating_point_number;
389
390/* Return if no cpu was selected on command-line. */
391static bfd_boolean
392no_cpu_selected (void)
393{
394 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
395}
396
397#ifdef OBJ_ELF
398# ifdef EABI_DEFAULT
399static int meabi_flags = EABI_DEFAULT;
400# else
401static int meabi_flags = EF_ARM_EABI_UNKNOWN;
402# endif
403
404static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
405
406bfd_boolean
407arm_is_eabi (void)
408{
409 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
410}
411#endif
412
413#ifdef OBJ_ELF
414/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
415symbolS * GOT_symbol;
416#endif
417
418/* 0: assemble for ARM,
419 1: assemble for Thumb,
420 2: assemble for Thumb even though target CPU does not support thumb
421 instructions. */
422static int thumb_mode = 0;
423/* A value distinct from the possible values for thumb_mode that we
424 can use to record whether thumb_mode has been copied into the
425 tc_frag_data field of a frag. */
426#define MODE_RECORDED (1 << 4)
427
428/* Specifies the intrinsic IT insn behavior mode. */
429enum implicit_it_mode
430{
431 IMPLICIT_IT_MODE_NEVER = 0x00,
432 IMPLICIT_IT_MODE_ARM = 0x01,
433 IMPLICIT_IT_MODE_THUMB = 0x02,
434 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
435};
436static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
437
438/* If unified_syntax is true, we are processing the new unified
439 ARM/Thumb syntax. Important differences from the old ARM mode:
440
441 - Immediate operands do not require a # prefix.
442 - Conditional affixes always appear at the end of the
443 instruction. (For backward compatibility, those instructions
444 that formerly had them in the middle, continue to accept them
445 there.)
446 - The IT instruction may appear, and if it does is validated
447 against subsequent conditional affixes. It does not generate
448 machine code.
449
450 Important differences from the old Thumb mode:
451
452 - Immediate operands do not require a # prefix.
453 - Most of the V6T2 instructions are only available in unified mode.
454 - The .N and .W suffixes are recognized and honored (it is an error
455 if they cannot be honored).
456 - All instructions set the flags if and only if they have an 's' affix.
457 - Conditional affixes may be used. They are validated against
458 preceding IT instructions. Unlike ARM mode, you cannot use a
459 conditional affix except in the scope of an IT instruction. */
460
461static bfd_boolean unified_syntax = FALSE;
462
463/* An immediate operand can start with #, and ld*, st*, pld operands
464 can contain [ and ]. We need to tell APP not to elide whitespace
465 before a [, which can appear as the first operand for pld.
466 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
467const char arm_symbol_chars[] = "#[]{}";
468
469enum neon_el_type
470{
471 NT_invtype,
472 NT_untyped,
473 NT_integer,
474 NT_float,
475 NT_poly,
476 NT_signed,
477 NT_bfloat,
478 NT_unsigned
479};
480
481struct neon_type_el
482{
483 enum neon_el_type type;
484 unsigned size;
485};
486
487#define NEON_MAX_TYPE_ELS 5
488
489struct neon_type
490{
491 struct neon_type_el el[NEON_MAX_TYPE_ELS];
492 unsigned elems;
493};
494
495enum pred_instruction_type
496{
497 OUTSIDE_PRED_INSN,
498 INSIDE_VPT_INSN,
499 INSIDE_IT_INSN,
500 INSIDE_IT_LAST_INSN,
501 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
502 if inside, should be the last one. */
503 NEUTRAL_IT_INSN, /* This could be either inside or outside,
504 i.e. BKPT and NOP. */
505 IT_INSN, /* The IT insn has been parsed. */
506 VPT_INSN, /* The VPT/VPST insn has been parsed. */
507 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
508 a predication code. */
509 MVE_UNPREDICABLE_INSN, /* MVE instruction that is non-predicable. */
510};
511
512/* The maximum number of operands we need. */
513#define ARM_IT_MAX_OPERANDS 6
514#define ARM_IT_MAX_RELOCS 3
515
516struct arm_it
517{
518 const char * error;
519 unsigned long instruction;
520 int size;
521 int size_req;
522 int cond;
523 /* "uncond_value" is set to the value in place of the conditional field in
524 unconditional versions of the instruction, or -1 if nothing is
525 appropriate. */
526 int uncond_value;
527 struct neon_type vectype;
528 /* This does not indicate an actual NEON instruction, only that
529 the mnemonic accepts neon-style type suffixes. */
530 int is_neon;
531 /* Set to the opcode if the instruction needs relaxation.
532 Zero if the instruction is not relaxed. */
533 unsigned long relax;
534 struct
535 {
536 bfd_reloc_code_real_type type;
537 expressionS exp;
538 int pc_rel;
539 } relocs[ARM_IT_MAX_RELOCS];
540
541 enum pred_instruction_type pred_insn_type;
542
543 struct
544 {
545 unsigned reg;
546 signed int imm;
547 struct neon_type_el vectype;
548 unsigned present : 1; /* Operand present. */
549 unsigned isreg : 1; /* Operand was a register. */
550 unsigned immisreg : 2; /* .imm field is a second register.
551 0: imm, 1: gpr, 2: MVE Q-register. */
552 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
553 0) not scalar,
554 1) Neon scalar,
555 2) MVE scalar. */
556 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
557 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
558 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
559 instructions. This allows us to disambiguate ARM <-> vector insns. */
560 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
561 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
562 unsigned isquad : 1; /* Operand is SIMD quad register. */
563 unsigned issingle : 1; /* Operand is VFP single-precision register. */
564 unsigned iszr : 1; /* Operand is ZR register. */
565 unsigned hasreloc : 1; /* Operand has relocation suffix. */
566 unsigned writeback : 1; /* Operand has trailing ! */
567 unsigned preind : 1; /* Preindexed address. */
568 unsigned postind : 1; /* Postindexed address. */
569 unsigned negative : 1; /* Index register was negated. */
570 unsigned shifted : 1; /* Shift applied to operation. */
571 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
572 } operands[ARM_IT_MAX_OPERANDS];
573};
574
575static struct arm_it inst;
576
577#define NUM_FLOAT_VALS 8
578
579const char * fp_const[] =
580{
581 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
582};
583
584LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
585
586#define FAIL (-1)
587#define SUCCESS (0)
588
589#define SUFF_S 1
590#define SUFF_D 2
591#define SUFF_E 3
592#define SUFF_P 4
593
594#define CP_T_X 0x00008000
595#define CP_T_Y 0x00400000
596
597#define CONDS_BIT 0x00100000
598#define LOAD_BIT 0x00100000
599
600#define DOUBLE_LOAD_FLAG 0x00000001
601
602struct asm_cond
603{
604 const char * template_name;
605 unsigned long value;
606};
607
608#define COND_ALWAYS 0xE
609
610struct asm_psr
611{
612 const char * template_name;
613 unsigned long field;
614};
615
616struct asm_barrier_opt
617{
618 const char * template_name;
619 unsigned long value;
620 const arm_feature_set arch;
621};
622
623/* The bit that distinguishes CPSR and SPSR. */
624#define SPSR_BIT (1 << 22)
625
626/* The individual PSR flag bits. */
627#define PSR_c (1 << 16)
628#define PSR_x (1 << 17)
629#define PSR_s (1 << 18)
630#define PSR_f (1 << 19)
631
632struct reloc_entry
633{
634 const char * name;
635 bfd_reloc_code_real_type reloc;
636};
637
638enum vfp_reg_pos
639{
640 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
641 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
642};
643
644enum vfp_ldstm_type
645{
646 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
647};
648
649/* Bits for DEFINED field in neon_typed_alias. */
650#define NTA_HASTYPE 1
651#define NTA_HASINDEX 2
652
653struct neon_typed_alias
654{
655 unsigned char defined;
656 unsigned char index;
657 struct neon_type_el eltype;
658};
659
660/* ARM register categories. This includes coprocessor numbers and various
661 architecture extensions' registers. Each entry should have an error message
662 in reg_expected_msgs below. */
663enum arm_reg_type
664{
665 REG_TYPE_RN,
666 REG_TYPE_CP,
667 REG_TYPE_CN,
668 REG_TYPE_FN,
669 REG_TYPE_VFS,
670 REG_TYPE_VFD,
671 REG_TYPE_NQ,
672 REG_TYPE_VFSD,
673 REG_TYPE_NDQ,
674 REG_TYPE_NSD,
675 REG_TYPE_NSDQ,
676 REG_TYPE_VFC,
677 REG_TYPE_MVF,
678 REG_TYPE_MVD,
679 REG_TYPE_MVFX,
680 REG_TYPE_MVDX,
681 REG_TYPE_MVAX,
682 REG_TYPE_MQ,
683 REG_TYPE_DSPSC,
684 REG_TYPE_MMXWR,
685 REG_TYPE_MMXWC,
686 REG_TYPE_MMXWCG,
687 REG_TYPE_XSCALE,
688 REG_TYPE_RNB,
689 REG_TYPE_ZR
690};
691
692/* Structure for a hash table entry for a register.
693 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
694 information which states whether a vector type or index is specified (for a
695 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
696struct reg_entry
697{
698 const char * name;
699 unsigned int number;
700 unsigned char type;
701 unsigned char builtin;
702 struct neon_typed_alias * neon;
703};
704
705/* Diagnostics used when we don't get a register of the expected type. */
706const char * const reg_expected_msgs[] =
707{
708 [REG_TYPE_RN] = N_("ARM register expected"),
709 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
710 [REG_TYPE_CN] = N_("co-processor register expected"),
711 [REG_TYPE_FN] = N_("FPA register expected"),
712 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
713 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
714 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
715 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
716 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
717 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
718 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
719 " expected"),
720 [REG_TYPE_VFC] = N_("VFP system register expected"),
721 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
722 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
723 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
724 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
725 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
726 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
727 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
728 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
729 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
730 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
731 [REG_TYPE_MQ] = N_("MVE vector register expected"),
732 [REG_TYPE_RNB] = ""
733};
734
735/* Some well known registers that we refer to directly elsewhere. */
736#define REG_R12 12
737#define REG_SP 13
738#define REG_LR 14
739#define REG_PC 15
740
741/* ARM instructions take 4bytes in the object file, Thumb instructions
742 take 2: */
743#define INSN_SIZE 4
744
745struct asm_opcode
746{
747 /* Basic string to match. */
748 const char * template_name;
749
750 /* Parameters to instruction. */
751 unsigned int operands[8];
752
753 /* Conditional tag - see opcode_lookup. */
754 unsigned int tag : 4;
755
756 /* Basic instruction code. */
757 unsigned int avalue;
758
759 /* Thumb-format instruction code. */
760 unsigned int tvalue;
761
762 /* Which architecture variant provides this instruction. */
763 const arm_feature_set * avariant;
764 const arm_feature_set * tvariant;
765
766 /* Function to call to encode instruction in ARM format. */
767 void (* aencode) (void);
768
769 /* Function to call to encode instruction in Thumb format. */
770 void (* tencode) (void);
771
772 /* Indicates whether this instruction may be vector predicated. */
773 unsigned int mayBeVecPred : 1;
774};
775
776/* Defines for various bits that we will want to toggle. */
777#define INST_IMMEDIATE 0x02000000
778#define OFFSET_REG 0x02000000
779#define HWOFFSET_IMM 0x00400000
780#define SHIFT_BY_REG 0x00000010
781#define PRE_INDEX 0x01000000
782#define INDEX_UP 0x00800000
783#define WRITE_BACK 0x00200000
784#define LDM_TYPE_2_OR_3 0x00400000
785#define CPSI_MMOD 0x00020000
786
787#define LITERAL_MASK 0xf000f000
788#define OPCODE_MASK 0xfe1fffff
789#define V4_STR_BIT 0x00000020
790#define VLDR_VMOV_SAME 0x0040f000
791
792#define T2_SUBS_PC_LR 0xf3de8f00
793
794#define DATA_OP_SHIFT 21
795#define SBIT_SHIFT 20
796
797#define T2_OPCODE_MASK 0xfe1fffff
798#define T2_DATA_OP_SHIFT 21
799#define T2_SBIT_SHIFT 20
800
801#define A_COND_MASK 0xf0000000
802#define A_PUSH_POP_OP_MASK 0x0fff0000
803
804/* Opcodes for pushing/poping registers to/from the stack. */
805#define A1_OPCODE_PUSH 0x092d0000
806#define A2_OPCODE_PUSH 0x052d0004
807#define A2_OPCODE_POP 0x049d0004
808
809/* Codes to distinguish the arithmetic instructions. */
810#define OPCODE_AND 0
811#define OPCODE_EOR 1
812#define OPCODE_SUB 2
813#define OPCODE_RSB 3
814#define OPCODE_ADD 4
815#define OPCODE_ADC 5
816#define OPCODE_SBC 6
817#define OPCODE_RSC 7
818#define OPCODE_TST 8
819#define OPCODE_TEQ 9
820#define OPCODE_CMP 10
821#define OPCODE_CMN 11
822#define OPCODE_ORR 12
823#define OPCODE_MOV 13
824#define OPCODE_BIC 14
825#define OPCODE_MVN 15
826
827#define T2_OPCODE_AND 0
828#define T2_OPCODE_BIC 1
829#define T2_OPCODE_ORR 2
830#define T2_OPCODE_ORN 3
831#define T2_OPCODE_EOR 4
832#define T2_OPCODE_ADD 8
833#define T2_OPCODE_ADC 10
834#define T2_OPCODE_SBC 11
835#define T2_OPCODE_SUB 13
836#define T2_OPCODE_RSB 14
837
838#define T_OPCODE_MUL 0x4340
839#define T_OPCODE_TST 0x4200
840#define T_OPCODE_CMN 0x42c0
841#define T_OPCODE_NEG 0x4240
842#define T_OPCODE_MVN 0x43c0
843
844#define T_OPCODE_ADD_R3 0x1800
845#define T_OPCODE_SUB_R3 0x1a00
846#define T_OPCODE_ADD_HI 0x4400
847#define T_OPCODE_ADD_ST 0xb000
848#define T_OPCODE_SUB_ST 0xb080
849#define T_OPCODE_ADD_SP 0xa800
850#define T_OPCODE_ADD_PC 0xa000
851#define T_OPCODE_ADD_I8 0x3000
852#define T_OPCODE_SUB_I8 0x3800
853#define T_OPCODE_ADD_I3 0x1c00
854#define T_OPCODE_SUB_I3 0x1e00
855
856#define T_OPCODE_ASR_R 0x4100
857#define T_OPCODE_LSL_R 0x4080
858#define T_OPCODE_LSR_R 0x40c0
859#define T_OPCODE_ROR_R 0x41c0
860#define T_OPCODE_ASR_I 0x1000
861#define T_OPCODE_LSL_I 0x0000
862#define T_OPCODE_LSR_I 0x0800
863
864#define T_OPCODE_MOV_I8 0x2000
865#define T_OPCODE_CMP_I8 0x2800
866#define T_OPCODE_CMP_LR 0x4280
867#define T_OPCODE_MOV_HR 0x4600
868#define T_OPCODE_CMP_HR 0x4500
869
870#define T_OPCODE_LDR_PC 0x4800
871#define T_OPCODE_LDR_SP 0x9800
872#define T_OPCODE_STR_SP 0x9000
873#define T_OPCODE_LDR_IW 0x6800
874#define T_OPCODE_STR_IW 0x6000
875#define T_OPCODE_LDR_IH 0x8800
876#define T_OPCODE_STR_IH 0x8000
877#define T_OPCODE_LDR_IB 0x7800
878#define T_OPCODE_STR_IB 0x7000
879#define T_OPCODE_LDR_RW 0x5800
880#define T_OPCODE_STR_RW 0x5000
881#define T_OPCODE_LDR_RH 0x5a00
882#define T_OPCODE_STR_RH 0x5200
883#define T_OPCODE_LDR_RB 0x5c00
884#define T_OPCODE_STR_RB 0x5400
885
886#define T_OPCODE_PUSH 0xb400
887#define T_OPCODE_POP 0xbc00
888
889#define T_OPCODE_BRANCH 0xe000
890
891#define THUMB_SIZE 2 /* Size of thumb instruction. */
892#define THUMB_PP_PC_LR 0x0100
893#define THUMB_LOAD_BIT 0x0800
894#define THUMB2_LOAD_BIT 0x00100000
895
896#define BAD_SYNTAX _("syntax error")
897#define BAD_ARGS _("bad arguments to instruction")
898#define BAD_SP _("r13 not allowed here")
899#define BAD_PC _("r15 not allowed here")
900#define BAD_ODD _("Odd register not allowed here")
901#define BAD_EVEN _("Even register not allowed here")
902#define BAD_COND _("instruction cannot be conditional")
903#define BAD_OVERLAP _("registers may not be the same")
904#define BAD_HIREG _("lo register required")
905#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
906#define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
907#define BAD_BRANCH _("branch must be last instruction in IT block")
908#define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
909#define BAD_NO_VPT _("instruction not allowed in VPT block")
910#define BAD_NOT_IT _("instruction not allowed in IT block")
911#define BAD_NOT_VPT _("instruction missing MVE vector predication code")
912#define BAD_FPU _("selected FPU does not support instruction")
913#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
914#define BAD_OUT_VPT \
915 _("vector predicated instruction should be in VPT/VPST block")
916#define BAD_IT_COND _("incorrect condition in IT block")
917#define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
918#define BAD_IT_IT _("IT falling in the range of a previous IT block")
919#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
920#define BAD_PC_ADDRESSING \
921 _("cannot use register index with PC-relative addressing")
922#define BAD_PC_WRITEBACK \
923 _("cannot use writeback with PC-relative addressing")
924#define BAD_RANGE _("branch out of range")
925#define BAD_FP16 _("selected processor does not support fp16 instruction")
926#define BAD_BF16 _("selected processor does not support bf16 instruction")
927#define BAD_CDE _("selected processor does not support cde instruction")
928#define BAD_CDE_COPROC _("coprocessor for insn is not enabled for cde")
929#define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
930#define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
931#define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
932 "block")
933#define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
934 "block")
935#define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
936 " operand")
937#define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
938 " operand")
939#define BAD_SIMD_TYPE _("bad type in SIMD instruction")
940#define BAD_MVE_AUTO \
941 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
942 " use a valid -march or -mcpu option.")
943#define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
944 "and source operands makes instruction UNPREDICTABLE")
945#define BAD_EL_TYPE _("bad element type for instruction")
946#define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
947
948static struct hash_control * arm_ops_hsh;
949static struct hash_control * arm_cond_hsh;
950static struct hash_control * arm_vcond_hsh;
951static struct hash_control * arm_shift_hsh;
952static struct hash_control * arm_psr_hsh;
953static struct hash_control * arm_v7m_psr_hsh;
954static struct hash_control * arm_reg_hsh;
955static struct hash_control * arm_reloc_hsh;
956static struct hash_control * arm_barrier_opt_hsh;
957
958/* Stuff needed to resolve the label ambiguity
959 As:
960 ...
961 label: <insn>
962 may differ from:
963 ...
964 label:
965 <insn> */
966
967symbolS * last_label_seen;
968static int label_is_thumb_function_name = FALSE;
969
970/* Literal pool structure. Held on a per-section
971 and per-sub-section basis. */
972
973#define MAX_LITERAL_POOL_SIZE 1024
974typedef struct literal_pool
975{
976 expressionS literals [MAX_LITERAL_POOL_SIZE];
977 unsigned int next_free_entry;
978 unsigned int id;
979 symbolS * symbol;
980 segT section;
981 subsegT sub_section;
982#ifdef OBJ_ELF
983 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
984#endif
985 struct literal_pool * next;
986 unsigned int alignment;
987} literal_pool;
988
989/* Pointer to a linked list of literal pools. */
990literal_pool * list_of_pools = NULL;
991
992typedef enum asmfunc_states
993{
994 OUTSIDE_ASMFUNC,
995 WAITING_ASMFUNC_NAME,
996 WAITING_ENDASMFUNC
997} asmfunc_states;
998
999static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
1000
1001#ifdef OBJ_ELF
1002# define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
1003#else
1004static struct current_pred now_pred;
1005#endif
1006
1007static inline int
1008now_pred_compatible (int cond)
1009{
1010 return (cond & ~1) == (now_pred.cc & ~1);
1011}
1012
1013static inline int
1014conditional_insn (void)
1015{
1016 return inst.cond != COND_ALWAYS;
1017}
1018
1019static int in_pred_block (void);
1020
1021static int handle_pred_state (void);
1022
1023static void force_automatic_it_block_close (void);
1024
1025static void it_fsm_post_encode (void);
1026
1027#define set_pred_insn_type(type) \
1028 do \
1029 { \
1030 inst.pred_insn_type = type; \
1031 if (handle_pred_state () == FAIL) \
1032 return; \
1033 } \
1034 while (0)
1035
1036#define set_pred_insn_type_nonvoid(type, failret) \
1037 do \
1038 { \
1039 inst.pred_insn_type = type; \
1040 if (handle_pred_state () == FAIL) \
1041 return failret; \
1042 } \
1043 while(0)
1044
1045#define set_pred_insn_type_last() \
1046 do \
1047 { \
1048 if (inst.cond == COND_ALWAYS) \
1049 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1050 else \
1051 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1052 } \
1053 while (0)
1054
1055/* Toggle value[pos]. */
1056#define TOGGLE_BIT(value, pos) (value ^ (1 << pos))
1057
1058/* Pure syntax. */
1059
1060/* This array holds the chars that always start a comment. If the
1061 pre-processor is disabled, these aren't very useful. */
1062char arm_comment_chars[] = "@";
1063
1064/* This array holds the chars that only start a comment at the beginning of
1065 a line. If the line seems to have the form '# 123 filename'
1066 .line and .file directives will appear in the pre-processed output. */
1067/* Note that input_file.c hand checks for '#' at the beginning of the
1068 first line of the input file. This is because the compiler outputs
1069 #NO_APP at the beginning of its output. */
1070/* Also note that comments like this one will always work. */
1071const char line_comment_chars[] = "#";
1072
1073char arm_line_separator_chars[] = ";";
1074
1075/* Chars that can be used to separate mant
1076 from exp in floating point numbers. */
1077const char EXP_CHARS[] = "eE";
1078
1079/* Chars that mean this number is a floating point constant. */
1080/* As in 0f12.456 */
1081/* or 0d1.2345e12 */
1082
1083const char FLT_CHARS[] = "rRsSfFdDxXeEpPHh";
1084
1085/* Prefix characters that indicate the start of an immediate
1086 value. */
1087#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1088
1089/* Separator character handling. */
1090
1091#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1092
1093enum fp_16bit_format
1094{
1095 ARM_FP16_FORMAT_IEEE = 0x1,
1096 ARM_FP16_FORMAT_ALTERNATIVE = 0x2,
1097 ARM_FP16_FORMAT_DEFAULT = 0x3
1098};
1099
1100static enum fp_16bit_format fp16_format = ARM_FP16_FORMAT_DEFAULT;
1101
1102
1103static inline int
1104skip_past_char (char ** str, char c)
1105{
1106 /* PR gas/14987: Allow for whitespace before the expected character. */
1107 skip_whitespace (*str);
1108
1109 if (**str == c)
1110 {
1111 (*str)++;
1112 return SUCCESS;
1113 }
1114 else
1115 return FAIL;
1116}
1117
1118#define skip_past_comma(str) skip_past_char (str, ',')
1119
1120/* Arithmetic expressions (possibly involving symbols). */
1121
1122/* Return TRUE if anything in the expression is a bignum. */
1123
1124static bfd_boolean
1125walk_no_bignums (symbolS * sp)
1126{
1127 if (symbol_get_value_expression (sp)->X_op == O_big)
1128 return TRUE;
1129
1130 if (symbol_get_value_expression (sp)->X_add_symbol)
1131 {
1132 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1133 || (symbol_get_value_expression (sp)->X_op_symbol
1134 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1135 }
1136
1137 return FALSE;
1138}
1139
1140static bfd_boolean in_my_get_expression = FALSE;
1141
1142/* Third argument to my_get_expression. */
1143#define GE_NO_PREFIX 0
1144#define GE_IMM_PREFIX 1
1145#define GE_OPT_PREFIX 2
1146/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1147 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1148#define GE_OPT_PREFIX_BIG 3
1149
1150static int
1151my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1152{
1153 char * save_in;
1154
1155 /* In unified syntax, all prefixes are optional. */
1156 if (unified_syntax)
1157 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1158 : GE_OPT_PREFIX;
1159
1160 switch (prefix_mode)
1161 {
1162 case GE_NO_PREFIX: break;
1163 case GE_IMM_PREFIX:
1164 if (!is_immediate_prefix (**str))
1165 {
1166 inst.error = _("immediate expression requires a # prefix");
1167 return FAIL;
1168 }
1169 (*str)++;
1170 break;
1171 case GE_OPT_PREFIX:
1172 case GE_OPT_PREFIX_BIG:
1173 if (is_immediate_prefix (**str))
1174 (*str)++;
1175 break;
1176 default:
1177 abort ();
1178 }
1179
1180 memset (ep, 0, sizeof (expressionS));
1181
1182 save_in = input_line_pointer;
1183 input_line_pointer = *str;
1184 in_my_get_expression = TRUE;
1185 expression (ep);
1186 in_my_get_expression = FALSE;
1187
1188 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1189 {
1190 /* We found a bad or missing expression in md_operand(). */
1191 *str = input_line_pointer;
1192 input_line_pointer = save_in;
1193 if (inst.error == NULL)
1194 inst.error = (ep->X_op == O_absent
1195 ? _("missing expression") :_("bad expression"));
1196 return 1;
1197 }
1198
1199 /* Get rid of any bignums now, so that we don't generate an error for which
1200 we can't establish a line number later on. Big numbers are never valid
1201 in instructions, which is where this routine is always called. */
1202 if (prefix_mode != GE_OPT_PREFIX_BIG
1203 && (ep->X_op == O_big
1204 || (ep->X_add_symbol
1205 && (walk_no_bignums (ep->X_add_symbol)
1206 || (ep->X_op_symbol
1207 && walk_no_bignums (ep->X_op_symbol))))))
1208 {
1209 inst.error = _("invalid constant");
1210 *str = input_line_pointer;
1211 input_line_pointer = save_in;
1212 return 1;
1213 }
1214
1215 *str = input_line_pointer;
1216 input_line_pointer = save_in;
1217 return SUCCESS;
1218}
1219
1220/* Turn a string in input_line_pointer into a floating point constant
1221 of type TYPE, and store the appropriate bytes in *LITP. The number
1222 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1223 returned, or NULL on OK.
1224
1225 Note that fp constants aren't represent in the normal way on the ARM.
1226 In big endian mode, things are as expected. However, in little endian
1227 mode fp constants are big-endian word-wise, and little-endian byte-wise
1228 within the words. For example, (double) 1.1 in big endian mode is
1229 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1230 the byte sequence 99 99 f1 3f 9a 99 99 99.
1231
1232 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1233
1234const char *
1235md_atof (int type, char * litP, int * sizeP)
1236{
1237 int prec;
1238 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1239 char *t;
1240 int i;
1241
1242 switch (type)
1243 {
1244 case 'H':
1245 case 'h':
1246 prec = 1;
1247 break;
1248
1249 /* If this is a bfloat16, then parse it slightly differently, as it
1250 does not follow the IEEE specification for floating point numbers
1251 exactly. */
1252 case 'b':
1253 {
1254 FLONUM_TYPE generic_float;
1255
1256 t = atof_ieee_detail (input_line_pointer, 1, 8, words, &generic_float);
1257
1258 if (t)
1259 input_line_pointer = t;
1260 else
1261 return _("invalid floating point number");
1262
1263 switch (generic_float.sign)
1264 {
1265 /* Is +Inf. */
1266 case 'P':
1267 words[0] = 0x7f80;
1268 break;
1269
1270 /* Is -Inf. */
1271 case 'N':
1272 words[0] = 0xff80;
1273 break;
1274
1275 /* Is NaN. */
1276 /* bfloat16 has two types of NaN - quiet and signalling.
1277 Quiet NaN has bit[6] == 1 && faction != 0, whereas
1278 signalling NaN's have bit[0] == 0 && fraction != 0.
1279 Chosen this specific encoding as it is the same form
1280 as used by other IEEE 754 encodings in GAS. */
1281 case 0:
1282 words[0] = 0x7fff;
1283 break;
1284
1285 default:
1286 break;
1287 }
1288
1289 *sizeP = 2;
1290
1291 md_number_to_chars (litP, (valueT) words[0], sizeof (LITTLENUM_TYPE));
1292
1293 return NULL;
1294 }
1295 case 'f':
1296 case 'F':
1297 case 's':
1298 case 'S':
1299 prec = 2;
1300 break;
1301
1302 case 'd':
1303 case 'D':
1304 case 'r':
1305 case 'R':
1306 prec = 4;
1307 break;
1308
1309 case 'x':
1310 case 'X':
1311 prec = 5;
1312 break;
1313
1314 case 'p':
1315 case 'P':
1316 prec = 5;
1317 break;
1318
1319 default:
1320 *sizeP = 0;
1321 return _("Unrecognized or unsupported floating point constant");
1322 }
1323
1324 t = atof_ieee (input_line_pointer, type, words);
1325 if (t)
1326 input_line_pointer = t;
1327 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1328
1329 if (target_big_endian || prec == 1)
1330 for (i = 0; i < prec; i++)
1331 {
1332 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1333 litP += sizeof (LITTLENUM_TYPE);
1334 }
1335 else if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1336 for (i = prec - 1; i >= 0; i--)
1337 {
1338 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1339 litP += sizeof (LITTLENUM_TYPE);
1340 }
1341 else
1342 /* For a 4 byte float the order of elements in `words' is 1 0.
1343 For an 8 byte float the order is 1 0 3 2. */
1344 for (i = 0; i < prec; i += 2)
1345 {
1346 md_number_to_chars (litP, (valueT) words[i + 1],
1347 sizeof (LITTLENUM_TYPE));
1348 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1349 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1350 litP += 2 * sizeof (LITTLENUM_TYPE);
1351 }
1352
1353 return NULL;
1354}
1355
1356/* We handle all bad expressions here, so that we can report the faulty
1357 instruction in the error message. */
1358
1359void
1360md_operand (expressionS * exp)
1361{
1362 if (in_my_get_expression)
1363 exp->X_op = O_illegal;
1364}
1365
1366/* Immediate values. */
1367
1368#ifdef OBJ_ELF
1369/* Generic immediate-value read function for use in directives.
1370 Accepts anything that 'expression' can fold to a constant.
1371 *val receives the number. */
1372
1373static int
1374immediate_for_directive (int *val)
1375{
1376 expressionS exp;
1377 exp.X_op = O_illegal;
1378
1379 if (is_immediate_prefix (*input_line_pointer))
1380 {
1381 input_line_pointer++;
1382 expression (&exp);
1383 }
1384
1385 if (exp.X_op != O_constant)
1386 {
1387 as_bad (_("expected #constant"));
1388 ignore_rest_of_line ();
1389 return FAIL;
1390 }
1391 *val = exp.X_add_number;
1392 return SUCCESS;
1393}
1394#endif
1395
1396/* Register parsing. */
1397
1398/* Generic register parser. CCP points to what should be the
1399 beginning of a register name. If it is indeed a valid register
1400 name, advance CCP over it and return the reg_entry structure;
1401 otherwise return NULL. Does not issue diagnostics. */
1402
1403static struct reg_entry *
1404arm_reg_parse_multi (char **ccp)
1405{
1406 char *start = *ccp;
1407 char *p;
1408 struct reg_entry *reg;
1409
1410 skip_whitespace (start);
1411
1412#ifdef REGISTER_PREFIX
1413 if (*start != REGISTER_PREFIX)
1414 return NULL;
1415 start++;
1416#endif
1417#ifdef OPTIONAL_REGISTER_PREFIX
1418 if (*start == OPTIONAL_REGISTER_PREFIX)
1419 start++;
1420#endif
1421
1422 p = start;
1423 if (!ISALPHA (*p) || !is_name_beginner (*p))
1424 return NULL;
1425
1426 do
1427 p++;
1428 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1429
1430 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1431
1432 if (!reg)
1433 return NULL;
1434
1435 *ccp = p;
1436 return reg;
1437}
1438
1439static int
1440arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1441 enum arm_reg_type type)
1442{
1443 /* Alternative syntaxes are accepted for a few register classes. */
1444 switch (type)
1445 {
1446 case REG_TYPE_MVF:
1447 case REG_TYPE_MVD:
1448 case REG_TYPE_MVFX:
1449 case REG_TYPE_MVDX:
1450 /* Generic coprocessor register names are allowed for these. */
1451 if (reg && reg->type == REG_TYPE_CN)
1452 return reg->number;
1453 break;
1454
1455 case REG_TYPE_CP:
1456 /* For backward compatibility, a bare number is valid here. */
1457 {
1458 unsigned long processor = strtoul (start, ccp, 10);
1459 if (*ccp != start && processor <= 15)
1460 return processor;
1461 }
1462 /* Fall through. */
1463
1464 case REG_TYPE_MMXWC:
1465 /* WC includes WCG. ??? I'm not sure this is true for all
1466 instructions that take WC registers. */
1467 if (reg && reg->type == REG_TYPE_MMXWCG)
1468 return reg->number;
1469 break;
1470
1471 default:
1472 break;
1473 }
1474
1475 return FAIL;
1476}
1477
1478/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1479 return value is the register number or FAIL. */
1480
1481static int
1482arm_reg_parse (char **ccp, enum arm_reg_type type)
1483{
1484 char *start = *ccp;
1485 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1486 int ret;
1487
1488 /* Do not allow a scalar (reg+index) to parse as a register. */
1489 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1490 return FAIL;
1491
1492 if (reg && reg->type == type)
1493 return reg->number;
1494
1495 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1496 return ret;
1497
1498 *ccp = start;
1499 return FAIL;
1500}
1501
1502/* Parse a Neon type specifier. *STR should point at the leading '.'
1503 character. Does no verification at this stage that the type fits the opcode
1504 properly. E.g.,
1505
1506 .i32.i32.s16
1507 .s32.f32
1508 .u16
1509
1510 Can all be legally parsed by this function.
1511
1512 Fills in neon_type struct pointer with parsed information, and updates STR
1513 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1514 type, FAIL if not. */
1515
1516static int
1517parse_neon_type (struct neon_type *type, char **str)
1518{
1519 char *ptr = *str;
1520
1521 if (type)
1522 type->elems = 0;
1523
1524 while (type->elems < NEON_MAX_TYPE_ELS)
1525 {
1526 enum neon_el_type thistype = NT_untyped;
1527 unsigned thissize = -1u;
1528
1529 if (*ptr != '.')
1530 break;
1531
1532 ptr++;
1533
1534 /* Just a size without an explicit type. */
1535 if (ISDIGIT (*ptr))
1536 goto parsesize;
1537
1538 switch (TOLOWER (*ptr))
1539 {
1540 case 'i': thistype = NT_integer; break;
1541 case 'f': thistype = NT_float; break;
1542 case 'p': thistype = NT_poly; break;
1543 case 's': thistype = NT_signed; break;
1544 case 'u': thistype = NT_unsigned; break;
1545 case 'd':
1546 thistype = NT_float;
1547 thissize = 64;
1548 ptr++;
1549 goto done;
1550 case 'b':
1551 thistype = NT_bfloat;
1552 switch (TOLOWER (*(++ptr)))
1553 {
1554 case 'f':
1555 ptr += 1;
1556 thissize = strtoul (ptr, &ptr, 10);
1557 if (thissize != 16)
1558 {
1559 as_bad (_("bad size %d in type specifier"), thissize);
1560 return FAIL;
1561 }
1562 goto done;
1563 case '0': case '1': case '2': case '3': case '4':
1564 case '5': case '6': case '7': case '8': case '9':
1565 case ' ': case '.':
1566 as_bad (_("unexpected type character `b' -- did you mean `bf'?"));
1567 return FAIL;
1568 default:
1569 break;
1570 }
1571 break;
1572 default:
1573 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1574 return FAIL;
1575 }
1576
1577 ptr++;
1578
1579 /* .f is an abbreviation for .f32. */
1580 if (thistype == NT_float && !ISDIGIT (*ptr))
1581 thissize = 32;
1582 else
1583 {
1584 parsesize:
1585 thissize = strtoul (ptr, &ptr, 10);
1586
1587 if (thissize != 8 && thissize != 16 && thissize != 32
1588 && thissize != 64)
1589 {
1590 as_bad (_("bad size %d in type specifier"), thissize);
1591 return FAIL;
1592 }
1593 }
1594
1595 done:
1596 if (type)
1597 {
1598 type->el[type->elems].type = thistype;
1599 type->el[type->elems].size = thissize;
1600 type->elems++;
1601 }
1602 }
1603
1604 /* Empty/missing type is not a successful parse. */
1605 if (type->elems == 0)
1606 return FAIL;
1607
1608 *str = ptr;
1609
1610 return SUCCESS;
1611}
1612
1613/* Errors may be set multiple times during parsing or bit encoding
1614 (particularly in the Neon bits), but usually the earliest error which is set
1615 will be the most meaningful. Avoid overwriting it with later (cascading)
1616 errors by calling this function. */
1617
1618static void
1619first_error (const char *err)
1620{
1621 if (!inst.error)
1622 inst.error = err;
1623}
1624
1625/* Parse a single type, e.g. ".s32", leading period included. */
1626static int
1627parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1628{
1629 char *str = *ccp;
1630 struct neon_type optype;
1631
1632 if (*str == '.')
1633 {
1634 if (parse_neon_type (&optype, &str) == SUCCESS)
1635 {
1636 if (optype.elems == 1)
1637 *vectype = optype.el[0];
1638 else
1639 {
1640 first_error (_("only one type should be specified for operand"));
1641 return FAIL;
1642 }
1643 }
1644 else
1645 {
1646 first_error (_("vector type expected"));
1647 return FAIL;
1648 }
1649 }
1650 else
1651 return FAIL;
1652
1653 *ccp = str;
1654
1655 return SUCCESS;
1656}
1657
1658/* Special meanings for indices (which have a range of 0-7), which will fit into
1659 a 4-bit integer. */
1660
1661#define NEON_ALL_LANES 15
1662#define NEON_INTERLEAVE_LANES 14
1663
1664/* Record a use of the given feature. */
1665static void
1666record_feature_use (const arm_feature_set *feature)
1667{
1668 if (thumb_mode)
1669 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1670 else
1671 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1672}
1673
1674/* If the given feature available in the selected CPU, mark it as used.
1675 Returns TRUE iff feature is available. */
1676static bfd_boolean
1677mark_feature_used (const arm_feature_set *feature)
1678{
1679
1680 /* Do not support the use of MVE only instructions when in auto-detection or
1681 -march=all. */
1682 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1683 && ARM_CPU_IS_ANY (cpu_variant))
1684 {
1685 first_error (BAD_MVE_AUTO);
1686 return FALSE;
1687 }
1688 /* Ensure the option is valid on the current architecture. */
1689 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1690 return FALSE;
1691
1692 /* Add the appropriate architecture feature for the barrier option used.
1693 */
1694 record_feature_use (feature);
1695
1696 return TRUE;
1697}
1698
1699/* Parse either a register or a scalar, with an optional type. Return the
1700 register number, and optionally fill in the actual type of the register
1701 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1702 type/index information in *TYPEINFO. */
1703
1704static int
1705parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1706 enum arm_reg_type *rtype,
1707 struct neon_typed_alias *typeinfo)
1708{
1709 char *str = *ccp;
1710 struct reg_entry *reg = arm_reg_parse_multi (&str);
1711 struct neon_typed_alias atype;
1712 struct neon_type_el parsetype;
1713
1714 atype.defined = 0;
1715 atype.index = -1;
1716 atype.eltype.type = NT_invtype;
1717 atype.eltype.size = -1;
1718
1719 /* Try alternate syntax for some types of register. Note these are mutually
1720 exclusive with the Neon syntax extensions. */
1721 if (reg == NULL)
1722 {
1723 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1724 if (altreg != FAIL)
1725 *ccp = str;
1726 if (typeinfo)
1727 *typeinfo = atype;
1728 return altreg;
1729 }
1730
1731 /* Undo polymorphism when a set of register types may be accepted. */
1732 if ((type == REG_TYPE_NDQ
1733 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1734 || (type == REG_TYPE_VFSD
1735 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1736 || (type == REG_TYPE_NSDQ
1737 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1738 || reg->type == REG_TYPE_NQ))
1739 || (type == REG_TYPE_NSD
1740 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1741 || (type == REG_TYPE_MMXWC
1742 && (reg->type == REG_TYPE_MMXWCG)))
1743 type = (enum arm_reg_type) reg->type;
1744
1745 if (type == REG_TYPE_MQ)
1746 {
1747 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1748 return FAIL;
1749
1750 if (!reg || reg->type != REG_TYPE_NQ)
1751 return FAIL;
1752
1753 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1754 {
1755 first_error (_("expected MVE register [q0..q7]"));
1756 return FAIL;
1757 }
1758 type = REG_TYPE_NQ;
1759 }
1760 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1761 && (type == REG_TYPE_NQ))
1762 return FAIL;
1763
1764
1765 if (type != reg->type)
1766 return FAIL;
1767
1768 if (reg->neon)
1769 atype = *reg->neon;
1770
1771 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1772 {
1773 if ((atype.defined & NTA_HASTYPE) != 0)
1774 {
1775 first_error (_("can't redefine type for operand"));
1776 return FAIL;
1777 }
1778 atype.defined |= NTA_HASTYPE;
1779 atype.eltype = parsetype;
1780 }
1781
1782 if (skip_past_char (&str, '[') == SUCCESS)
1783 {
1784 if (type != REG_TYPE_VFD
1785 && !(type == REG_TYPE_VFS
1786 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1787 && !(type == REG_TYPE_NQ
1788 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
1789 {
1790 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1791 first_error (_("only D and Q registers may be indexed"));
1792 else
1793 first_error (_("only D registers may be indexed"));
1794 return FAIL;
1795 }
1796
1797 if ((atype.defined & NTA_HASINDEX) != 0)
1798 {
1799 first_error (_("can't change index for operand"));
1800 return FAIL;
1801 }
1802
1803 atype.defined |= NTA_HASINDEX;
1804
1805 if (skip_past_char (&str, ']') == SUCCESS)
1806 atype.index = NEON_ALL_LANES;
1807 else
1808 {
1809 expressionS exp;
1810
1811 my_get_expression (&exp, &str, GE_NO_PREFIX);
1812
1813 if (exp.X_op != O_constant)
1814 {
1815 first_error (_("constant expression required"));
1816 return FAIL;
1817 }
1818
1819 if (skip_past_char (&str, ']') == FAIL)
1820 return FAIL;
1821
1822 atype.index = exp.X_add_number;
1823 }
1824 }
1825
1826 if (typeinfo)
1827 *typeinfo = atype;
1828
1829 if (rtype)
1830 *rtype = type;
1831
1832 *ccp = str;
1833
1834 return reg->number;
1835}
1836
1837/* Like arm_reg_parse, but also allow the following extra features:
1838 - If RTYPE is non-zero, return the (possibly restricted) type of the
1839 register (e.g. Neon double or quad reg when either has been requested).
1840 - If this is a Neon vector type with additional type information, fill
1841 in the struct pointed to by VECTYPE (if non-NULL).
1842 This function will fault on encountering a scalar. */
1843
1844static int
1845arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1846 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1847{
1848 struct neon_typed_alias atype;
1849 char *str = *ccp;
1850 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1851
1852 if (reg == FAIL)
1853 return FAIL;
1854
1855 /* Do not allow regname(... to parse as a register. */
1856 if (*str == '(')
1857 return FAIL;
1858
1859 /* Do not allow a scalar (reg+index) to parse as a register. */
1860 if ((atype.defined & NTA_HASINDEX) != 0)
1861 {
1862 first_error (_("register operand expected, but got scalar"));
1863 return FAIL;
1864 }
1865
1866 if (vectype)
1867 *vectype = atype.eltype;
1868
1869 *ccp = str;
1870
1871 return reg;
1872}
1873
1874#define NEON_SCALAR_REG(X) ((X) >> 4)
1875#define NEON_SCALAR_INDEX(X) ((X) & 15)
1876
1877/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1878 have enough information to be able to do a good job bounds-checking. So, we
1879 just do easy checks here, and do further checks later. */
1880
1881static int
1882parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1883 arm_reg_type reg_type)
1884{
1885 int reg;
1886 char *str = *ccp;
1887 struct neon_typed_alias atype;
1888 unsigned reg_size;
1889
1890 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1891
1892 switch (reg_type)
1893 {
1894 case REG_TYPE_VFS:
1895 reg_size = 32;
1896 break;
1897 case REG_TYPE_VFD:
1898 reg_size = 64;
1899 break;
1900 case REG_TYPE_MQ:
1901 reg_size = 128;
1902 break;
1903 default:
1904 gas_assert (0);
1905 return FAIL;
1906 }
1907
1908 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1909 return FAIL;
1910
1911 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
1912 {
1913 first_error (_("scalar must have an index"));
1914 return FAIL;
1915 }
1916 else if (atype.index >= reg_size / elsize)
1917 {
1918 first_error (_("scalar index out of range"));
1919 return FAIL;
1920 }
1921
1922 if (type)
1923 *type = atype.eltype;
1924
1925 *ccp = str;
1926
1927 return reg * 16 + atype.index;
1928}
1929
1930/* Types of registers in a list. */
1931
1932enum reg_list_els
1933{
1934 REGLIST_RN,
1935 REGLIST_CLRM,
1936 REGLIST_VFP_S,
1937 REGLIST_VFP_S_VPR,
1938 REGLIST_VFP_D,
1939 REGLIST_VFP_D_VPR,
1940 REGLIST_NEON_D
1941};
1942
1943/* Parse an ARM register list. Returns the bitmask, or FAIL. */
1944
1945static long
1946parse_reg_list (char ** strp, enum reg_list_els etype)
1947{
1948 char *str = *strp;
1949 long range = 0;
1950 int another_range;
1951
1952 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
1953
1954 /* We come back here if we get ranges concatenated by '+' or '|'. */
1955 do
1956 {
1957 skip_whitespace (str);
1958
1959 another_range = 0;
1960
1961 if (*str == '{')
1962 {
1963 int in_range = 0;
1964 int cur_reg = -1;
1965
1966 str++;
1967 do
1968 {
1969 int reg;
1970 const char apsr_str[] = "apsr";
1971 int apsr_str_len = strlen (apsr_str);
1972
1973 reg = arm_reg_parse (&str, REG_TYPE_RN);
1974 if (etype == REGLIST_CLRM)
1975 {
1976 if (reg == REG_SP || reg == REG_PC)
1977 reg = FAIL;
1978 else if (reg == FAIL
1979 && !strncasecmp (str, apsr_str, apsr_str_len)
1980 && !ISALPHA (*(str + apsr_str_len)))
1981 {
1982 reg = 15;
1983 str += apsr_str_len;
1984 }
1985
1986 if (reg == FAIL)
1987 {
1988 first_error (_("r0-r12, lr or APSR expected"));
1989 return FAIL;
1990 }
1991 }
1992 else /* etype == REGLIST_RN. */
1993 {
1994 if (reg == FAIL)
1995 {
1996 first_error (_(reg_expected_msgs[REGLIST_RN]));
1997 return FAIL;
1998 }
1999 }
2000
2001 if (in_range)
2002 {
2003 int i;
2004
2005 if (reg <= cur_reg)
2006 {
2007 first_error (_("bad range in register list"));
2008 return FAIL;
2009 }
2010
2011 for (i = cur_reg + 1; i < reg; i++)
2012 {
2013 if (range & (1 << i))
2014 as_tsktsk
2015 (_("Warning: duplicated register (r%d) in register list"),
2016 i);
2017 else
2018 range |= 1 << i;
2019 }
2020 in_range = 0;
2021 }
2022
2023 if (range & (1 << reg))
2024 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
2025 reg);
2026 else if (reg <= cur_reg)
2027 as_tsktsk (_("Warning: register range not in ascending order"));
2028
2029 range |= 1 << reg;
2030 cur_reg = reg;
2031 }
2032 while (skip_past_comma (&str) != FAIL
2033 || (in_range = 1, *str++ == '-'));
2034 str--;
2035
2036 if (skip_past_char (&str, '}') == FAIL)
2037 {
2038 first_error (_("missing `}'"));
2039 return FAIL;
2040 }
2041 }
2042 else if (etype == REGLIST_RN)
2043 {
2044 expressionS exp;
2045
2046 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
2047 return FAIL;
2048
2049 if (exp.X_op == O_constant)
2050 {
2051 if (exp.X_add_number
2052 != (exp.X_add_number & 0x0000ffff))
2053 {
2054 inst.error = _("invalid register mask");
2055 return FAIL;
2056 }
2057
2058 if ((range & exp.X_add_number) != 0)
2059 {
2060 int regno = range & exp.X_add_number;
2061
2062 regno &= -regno;
2063 regno = (1 << regno) - 1;
2064 as_tsktsk
2065 (_("Warning: duplicated register (r%d) in register list"),
2066 regno);
2067 }
2068
2069 range |= exp.X_add_number;
2070 }
2071 else
2072 {
2073 if (inst.relocs[0].type != 0)
2074 {
2075 inst.error = _("expression too complex");
2076 return FAIL;
2077 }
2078
2079 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
2080 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
2081 inst.relocs[0].pc_rel = 0;
2082 }
2083 }
2084
2085 if (*str == '|' || *str == '+')
2086 {
2087 str++;
2088 another_range = 1;
2089 }
2090 }
2091 while (another_range);
2092
2093 *strp = str;
2094 return range;
2095}
2096
2097/* Parse a VFP register list. If the string is invalid return FAIL.
2098 Otherwise return the number of registers, and set PBASE to the first
2099 register. Parses registers of type ETYPE.
2100 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
2101 - Q registers can be used to specify pairs of D registers
2102 - { } can be omitted from around a singleton register list
2103 FIXME: This is not implemented, as it would require backtracking in
2104 some cases, e.g.:
2105 vtbl.8 d3,d4,d5
2106 This could be done (the meaning isn't really ambiguous), but doesn't
2107 fit in well with the current parsing framework.
2108 - 32 D registers may be used (also true for VFPv3).
2109 FIXME: Types are ignored in these register lists, which is probably a
2110 bug. */
2111
2112static int
2113parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
2114 bfd_boolean *partial_match)
2115{
2116 char *str = *ccp;
2117 int base_reg;
2118 int new_base;
2119 enum arm_reg_type regtype = (enum arm_reg_type) 0;
2120 int max_regs = 0;
2121 int count = 0;
2122 int warned = 0;
2123 unsigned long mask = 0;
2124 int i;
2125 bfd_boolean vpr_seen = FALSE;
2126 bfd_boolean expect_vpr =
2127 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
2128
2129 if (skip_past_char (&str, '{') == FAIL)
2130 {
2131 inst.error = _("expecting {");
2132 return FAIL;
2133 }
2134
2135 switch (etype)
2136 {
2137 case REGLIST_VFP_S:
2138 case REGLIST_VFP_S_VPR:
2139 regtype = REG_TYPE_VFS;
2140 max_regs = 32;
2141 break;
2142
2143 case REGLIST_VFP_D:
2144 case REGLIST_VFP_D_VPR:
2145 regtype = REG_TYPE_VFD;
2146 break;
2147
2148 case REGLIST_NEON_D:
2149 regtype = REG_TYPE_NDQ;
2150 break;
2151
2152 default:
2153 gas_assert (0);
2154 }
2155
2156 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
2157 {
2158 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2159 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
2160 {
2161 max_regs = 32;
2162 if (thumb_mode)
2163 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2164 fpu_vfp_ext_d32);
2165 else
2166 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2167 fpu_vfp_ext_d32);
2168 }
2169 else
2170 max_regs = 16;
2171 }
2172
2173 base_reg = max_regs;
2174 *partial_match = FALSE;
2175
2176 do
2177 {
2178 int setmask = 1, addregs = 1;
2179 const char vpr_str[] = "vpr";
2180 int vpr_str_len = strlen (vpr_str);
2181
2182 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
2183
2184 if (expect_vpr)
2185 {
2186 if (new_base == FAIL
2187 && !strncasecmp (str, vpr_str, vpr_str_len)
2188 && !ISALPHA (*(str + vpr_str_len))
2189 && !vpr_seen)
2190 {
2191 vpr_seen = TRUE;
2192 str += vpr_str_len;
2193 if (count == 0)
2194 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2195 }
2196 else if (vpr_seen)
2197 {
2198 first_error (_("VPR expected last"));
2199 return FAIL;
2200 }
2201 else if (new_base == FAIL)
2202 {
2203 if (regtype == REG_TYPE_VFS)
2204 first_error (_("VFP single precision register or VPR "
2205 "expected"));
2206 else /* regtype == REG_TYPE_VFD. */
2207 first_error (_("VFP/Neon double precision register or VPR "
2208 "expected"));
2209 return FAIL;
2210 }
2211 }
2212 else if (new_base == FAIL)
2213 {
2214 first_error (_(reg_expected_msgs[regtype]));
2215 return FAIL;
2216 }
2217
2218 *partial_match = TRUE;
2219 if (vpr_seen)
2220 continue;
2221
2222 if (new_base >= max_regs)
2223 {
2224 first_error (_("register out of range in list"));
2225 return FAIL;
2226 }
2227
2228 /* Note: a value of 2 * n is returned for the register Q<n>. */
2229 if (regtype == REG_TYPE_NQ)
2230 {
2231 setmask = 3;
2232 addregs = 2;
2233 }
2234
2235 if (new_base < base_reg)
2236 base_reg = new_base;
2237
2238 if (mask & (setmask << new_base))
2239 {
2240 first_error (_("invalid register list"));
2241 return FAIL;
2242 }
2243
2244 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
2245 {
2246 as_tsktsk (_("register list not in ascending order"));
2247 warned = 1;
2248 }
2249
2250 mask |= setmask << new_base;
2251 count += addregs;
2252
2253 if (*str == '-') /* We have the start of a range expression */
2254 {
2255 int high_range;
2256
2257 str++;
2258
2259 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
2260 == FAIL)
2261 {
2262 inst.error = gettext (reg_expected_msgs[regtype]);
2263 return FAIL;
2264 }
2265
2266 if (high_range >= max_regs)
2267 {
2268 first_error (_("register out of range in list"));
2269 return FAIL;
2270 }
2271
2272 if (regtype == REG_TYPE_NQ)
2273 high_range = high_range + 1;
2274
2275 if (high_range <= new_base)
2276 {
2277 inst.error = _("register range not in ascending order");
2278 return FAIL;
2279 }
2280
2281 for (new_base += addregs; new_base <= high_range; new_base += addregs)
2282 {
2283 if (mask & (setmask << new_base))
2284 {
2285 inst.error = _("invalid register list");
2286 return FAIL;
2287 }
2288
2289 mask |= setmask << new_base;
2290 count += addregs;
2291 }
2292 }
2293 }
2294 while (skip_past_comma (&str) != FAIL);
2295
2296 str++;
2297
2298 /* Sanity check -- should have raised a parse error above. */
2299 if ((!vpr_seen && count == 0) || count > max_regs)
2300 abort ();
2301
2302 *pbase = base_reg;
2303
2304 if (expect_vpr && !vpr_seen)
2305 {
2306 first_error (_("VPR expected last"));
2307 return FAIL;
2308 }
2309
2310 /* Final test -- the registers must be consecutive. */
2311 mask >>= base_reg;
2312 for (i = 0; i < count; i++)
2313 {
2314 if ((mask & (1u << i)) == 0)
2315 {
2316 inst.error = _("non-contiguous register range");
2317 return FAIL;
2318 }
2319 }
2320
2321 *ccp = str;
2322
2323 return count;
2324}
2325
2326/* True if two alias types are the same. */
2327
2328static bfd_boolean
2329neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2330{
2331 if (!a && !b)
2332 return TRUE;
2333
2334 if (!a || !b)
2335 return FALSE;
2336
2337 if (a->defined != b->defined)
2338 return FALSE;
2339
2340 if ((a->defined & NTA_HASTYPE) != 0
2341 && (a->eltype.type != b->eltype.type
2342 || a->eltype.size != b->eltype.size))
2343 return FALSE;
2344
2345 if ((a->defined & NTA_HASINDEX) != 0
2346 && (a->index != b->index))
2347 return FALSE;
2348
2349 return TRUE;
2350}
2351
2352/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2353 The base register is put in *PBASE.
2354 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2355 the return value.
2356 The register stride (minus one) is put in bit 4 of the return value.
2357 Bits [6:5] encode the list length (minus one).
2358 The type of the list elements is put in *ELTYPE, if non-NULL. */
2359
2360#define NEON_LANE(X) ((X) & 0xf)
2361#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2362#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2363
2364static int
2365parse_neon_el_struct_list (char **str, unsigned *pbase,
2366 int mve,
2367 struct neon_type_el *eltype)
2368{
2369 char *ptr = *str;
2370 int base_reg = -1;
2371 int reg_incr = -1;
2372 int count = 0;
2373 int lane = -1;
2374 int leading_brace = 0;
2375 enum arm_reg_type rtype = REG_TYPE_NDQ;
2376 const char *const incr_error = mve ? _("register stride must be 1") :
2377 _("register stride must be 1 or 2");
2378 const char *const type_error = _("mismatched element/structure types in list");
2379 struct neon_typed_alias firsttype;
2380 firsttype.defined = 0;
2381 firsttype.eltype.type = NT_invtype;
2382 firsttype.eltype.size = -1;
2383 firsttype.index = -1;
2384
2385 if (skip_past_char (&ptr, '{') == SUCCESS)
2386 leading_brace = 1;
2387
2388 do
2389 {
2390 struct neon_typed_alias atype;
2391 if (mve)
2392 rtype = REG_TYPE_MQ;
2393 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2394
2395 if (getreg == FAIL)
2396 {
2397 first_error (_(reg_expected_msgs[rtype]));
2398 return FAIL;
2399 }
2400
2401 if (base_reg == -1)
2402 {
2403 base_reg = getreg;
2404 if (rtype == REG_TYPE_NQ)
2405 {
2406 reg_incr = 1;
2407 }
2408 firsttype = atype;
2409 }
2410 else if (reg_incr == -1)
2411 {
2412 reg_incr = getreg - base_reg;
2413 if (reg_incr < 1 || reg_incr > 2)
2414 {
2415 first_error (_(incr_error));
2416 return FAIL;
2417 }
2418 }
2419 else if (getreg != base_reg + reg_incr * count)
2420 {
2421 first_error (_(incr_error));
2422 return FAIL;
2423 }
2424
2425 if (! neon_alias_types_same (&atype, &firsttype))
2426 {
2427 first_error (_(type_error));
2428 return FAIL;
2429 }
2430
2431 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2432 modes. */
2433 if (ptr[0] == '-')
2434 {
2435 struct neon_typed_alias htype;
2436 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2437 if (lane == -1)
2438 lane = NEON_INTERLEAVE_LANES;
2439 else if (lane != NEON_INTERLEAVE_LANES)
2440 {
2441 first_error (_(type_error));
2442 return FAIL;
2443 }
2444 if (reg_incr == -1)
2445 reg_incr = 1;
2446 else if (reg_incr != 1)
2447 {
2448 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2449 return FAIL;
2450 }
2451 ptr++;
2452 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2453 if (hireg == FAIL)
2454 {
2455 first_error (_(reg_expected_msgs[rtype]));
2456 return FAIL;
2457 }
2458 if (! neon_alias_types_same (&htype, &firsttype))
2459 {
2460 first_error (_(type_error));
2461 return FAIL;
2462 }
2463 count += hireg + dregs - getreg;
2464 continue;
2465 }
2466
2467 /* If we're using Q registers, we can't use [] or [n] syntax. */
2468 if (rtype == REG_TYPE_NQ)
2469 {
2470 count += 2;
2471 continue;
2472 }
2473
2474 if ((atype.defined & NTA_HASINDEX) != 0)
2475 {
2476 if (lane == -1)
2477 lane = atype.index;
2478 else if (lane != atype.index)
2479 {
2480 first_error (_(type_error));
2481 return FAIL;
2482 }
2483 }
2484 else if (lane == -1)
2485 lane = NEON_INTERLEAVE_LANES;
2486 else if (lane != NEON_INTERLEAVE_LANES)
2487 {
2488 first_error (_(type_error));
2489 return FAIL;
2490 }
2491 count++;
2492 }
2493 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2494
2495 /* No lane set by [x]. We must be interleaving structures. */
2496 if (lane == -1)
2497 lane = NEON_INTERLEAVE_LANES;
2498
2499 /* Sanity check. */
2500 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
2501 || (count > 1 && reg_incr == -1))
2502 {
2503 first_error (_("error parsing element/structure list"));
2504 return FAIL;
2505 }
2506
2507 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2508 {
2509 first_error (_("expected }"));
2510 return FAIL;
2511 }
2512
2513 if (reg_incr == -1)
2514 reg_incr = 1;
2515
2516 if (eltype)
2517 *eltype = firsttype.eltype;
2518
2519 *pbase = base_reg;
2520 *str = ptr;
2521
2522 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2523}
2524
2525/* Parse an explicit relocation suffix on an expression. This is
2526 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2527 arm_reloc_hsh contains no entries, so this function can only
2528 succeed if there is no () after the word. Returns -1 on error,
2529 BFD_RELOC_UNUSED if there wasn't any suffix. */
2530
2531static int
2532parse_reloc (char **str)
2533{
2534 struct reloc_entry *r;
2535 char *p, *q;
2536
2537 if (**str != '(')
2538 return BFD_RELOC_UNUSED;
2539
2540 p = *str + 1;
2541 q = p;
2542
2543 while (*q && *q != ')' && *q != ',')
2544 q++;
2545 if (*q != ')')
2546 return -1;
2547
2548 if ((r = (struct reloc_entry *)
2549 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2550 return -1;
2551
2552 *str = q + 1;
2553 return r->reloc;
2554}
2555
2556/* Directives: register aliases. */
2557
2558static struct reg_entry *
2559insert_reg_alias (char *str, unsigned number, int type)
2560{
2561 struct reg_entry *new_reg;
2562 const char *name;
2563
2564 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2565 {
2566 if (new_reg->builtin)
2567 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2568
2569 /* Only warn about a redefinition if it's not defined as the
2570 same register. */
2571 else if (new_reg->number != number || new_reg->type != type)
2572 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2573
2574 return NULL;
2575 }
2576
2577 name = xstrdup (str);
2578 new_reg = XNEW (struct reg_entry);
2579
2580 new_reg->name = name;
2581 new_reg->number = number;
2582 new_reg->type = type;
2583 new_reg->builtin = FALSE;
2584 new_reg->neon = NULL;
2585
2586 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2587 abort ();
2588
2589 return new_reg;
2590}
2591
2592static void
2593insert_neon_reg_alias (char *str, int number, int type,
2594 struct neon_typed_alias *atype)
2595{
2596 struct reg_entry *reg = insert_reg_alias (str, number, type);
2597
2598 if (!reg)
2599 {
2600 first_error (_("attempt to redefine typed alias"));
2601 return;
2602 }
2603
2604 if (atype)
2605 {
2606 reg->neon = XNEW (struct neon_typed_alias);
2607 *reg->neon = *atype;
2608 }
2609}
2610
2611/* Look for the .req directive. This is of the form:
2612
2613 new_register_name .req existing_register_name
2614
2615 If we find one, or if it looks sufficiently like one that we want to
2616 handle any error here, return TRUE. Otherwise return FALSE. */
2617
2618static bfd_boolean
2619create_register_alias (char * newname, char *p)
2620{
2621 struct reg_entry *old;
2622 char *oldname, *nbuf;
2623 size_t nlen;
2624
2625 /* The input scrubber ensures that whitespace after the mnemonic is
2626 collapsed to single spaces. */
2627 oldname = p;
2628 if (strncmp (oldname, " .req ", 6) != 0)
2629 return FALSE;
2630
2631 oldname += 6;
2632 if (*oldname == '\0')
2633 return FALSE;
2634
2635 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2636 if (!old)
2637 {
2638 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2639 return TRUE;
2640 }
2641
2642 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2643 the desired alias name, and p points to its end. If not, then
2644 the desired alias name is in the global original_case_string. */
2645#ifdef TC_CASE_SENSITIVE
2646 nlen = p - newname;
2647#else
2648 newname = original_case_string;
2649 nlen = strlen (newname);
2650#endif
2651
2652 nbuf = xmemdup0 (newname, nlen);
2653
2654 /* Create aliases under the new name as stated; an all-lowercase
2655 version of the new name; and an all-uppercase version of the new
2656 name. */
2657 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2658 {
2659 for (p = nbuf; *p; p++)
2660 *p = TOUPPER (*p);
2661
2662 if (strncmp (nbuf, newname, nlen))
2663 {
2664 /* If this attempt to create an additional alias fails, do not bother
2665 trying to create the all-lower case alias. We will fail and issue
2666 a second, duplicate error message. This situation arises when the
2667 programmer does something like:
2668 foo .req r0
2669 Foo .req r1
2670 The second .req creates the "Foo" alias but then fails to create
2671 the artificial FOO alias because it has already been created by the
2672 first .req. */
2673 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2674 {
2675 free (nbuf);
2676 return TRUE;
2677 }
2678 }
2679
2680 for (p = nbuf; *p; p++)
2681 *p = TOLOWER (*p);
2682
2683 if (strncmp (nbuf, newname, nlen))
2684 insert_reg_alias (nbuf, old->number, old->type);
2685 }
2686
2687 free (nbuf);
2688 return TRUE;
2689}
2690
2691/* Create a Neon typed/indexed register alias using directives, e.g.:
2692 X .dn d5.s32[1]
2693 Y .qn 6.s16
2694 Z .dn d7
2695 T .dn Z[0]
2696 These typed registers can be used instead of the types specified after the
2697 Neon mnemonic, so long as all operands given have types. Types can also be
2698 specified directly, e.g.:
2699 vadd d0.s32, d1.s32, d2.s32 */
2700
2701static bfd_boolean
2702create_neon_reg_alias (char *newname, char *p)
2703{
2704 enum arm_reg_type basetype;
2705 struct reg_entry *basereg;
2706 struct reg_entry mybasereg;
2707 struct neon_type ntype;
2708 struct neon_typed_alias typeinfo;
2709 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2710 int namelen;
2711
2712 typeinfo.defined = 0;
2713 typeinfo.eltype.type = NT_invtype;
2714 typeinfo.eltype.size = -1;
2715 typeinfo.index = -1;
2716
2717 nameend = p;
2718
2719 if (strncmp (p, " .dn ", 5) == 0)
2720 basetype = REG_TYPE_VFD;
2721 else if (strncmp (p, " .qn ", 5) == 0)
2722 basetype = REG_TYPE_NQ;
2723 else
2724 return FALSE;
2725
2726 p += 5;
2727
2728 if (*p == '\0')
2729 return FALSE;
2730
2731 basereg = arm_reg_parse_multi (&p);
2732
2733 if (basereg && basereg->type != basetype)
2734 {
2735 as_bad (_("bad type for register"));
2736 return FALSE;
2737 }
2738
2739 if (basereg == NULL)
2740 {
2741 expressionS exp;
2742 /* Try parsing as an integer. */
2743 my_get_expression (&exp, &p, GE_NO_PREFIX);
2744 if (exp.X_op != O_constant)
2745 {
2746 as_bad (_("expression must be constant"));
2747 return FALSE;
2748 }
2749 basereg = &mybasereg;
2750 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2751 : exp.X_add_number;
2752 basereg->neon = 0;
2753 }
2754
2755 if (basereg->neon)
2756 typeinfo = *basereg->neon;
2757
2758 if (parse_neon_type (&ntype, &p) == SUCCESS)
2759 {
2760 /* We got a type. */
2761 if (typeinfo.defined & NTA_HASTYPE)
2762 {
2763 as_bad (_("can't redefine the type of a register alias"));
2764 return FALSE;
2765 }
2766
2767 typeinfo.defined |= NTA_HASTYPE;
2768 if (ntype.elems != 1)
2769 {
2770 as_bad (_("you must specify a single type only"));
2771 return FALSE;
2772 }
2773 typeinfo.eltype = ntype.el[0];
2774 }
2775
2776 if (skip_past_char (&p, '[') == SUCCESS)
2777 {
2778 expressionS exp;
2779 /* We got a scalar index. */
2780
2781 if (typeinfo.defined & NTA_HASINDEX)
2782 {
2783 as_bad (_("can't redefine the index of a scalar alias"));
2784 return FALSE;
2785 }
2786
2787 my_get_expression (&exp, &p, GE_NO_PREFIX);
2788
2789 if (exp.X_op != O_constant)
2790 {
2791 as_bad (_("scalar index must be constant"));
2792 return FALSE;
2793 }
2794
2795 typeinfo.defined |= NTA_HASINDEX;
2796 typeinfo.index = exp.X_add_number;
2797
2798 if (skip_past_char (&p, ']') == FAIL)
2799 {
2800 as_bad (_("expecting ]"));
2801 return FALSE;
2802 }
2803 }
2804
2805 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2806 the desired alias name, and p points to its end. If not, then
2807 the desired alias name is in the global original_case_string. */
2808#ifdef TC_CASE_SENSITIVE
2809 namelen = nameend - newname;
2810#else
2811 newname = original_case_string;
2812 namelen = strlen (newname);
2813#endif
2814
2815 namebuf = xmemdup0 (newname, namelen);
2816
2817 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2818 typeinfo.defined != 0 ? &typeinfo : NULL);
2819
2820 /* Insert name in all uppercase. */
2821 for (p = namebuf; *p; p++)
2822 *p = TOUPPER (*p);
2823
2824 if (strncmp (namebuf, newname, namelen))
2825 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2826 typeinfo.defined != 0 ? &typeinfo : NULL);
2827
2828 /* Insert name in all lowercase. */
2829 for (p = namebuf; *p; p++)
2830 *p = TOLOWER (*p);
2831
2832 if (strncmp (namebuf, newname, namelen))
2833 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2834 typeinfo.defined != 0 ? &typeinfo : NULL);
2835
2836 free (namebuf);
2837 return TRUE;
2838}
2839
2840/* Should never be called, as .req goes between the alias and the
2841 register name, not at the beginning of the line. */
2842
2843static void
2844s_req (int a ATTRIBUTE_UNUSED)
2845{
2846 as_bad (_("invalid syntax for .req directive"));
2847}
2848
2849static void
2850s_dn (int a ATTRIBUTE_UNUSED)
2851{
2852 as_bad (_("invalid syntax for .dn directive"));
2853}
2854
2855static void
2856s_qn (int a ATTRIBUTE_UNUSED)
2857{
2858 as_bad (_("invalid syntax for .qn directive"));
2859}
2860
2861/* The .unreq directive deletes an alias which was previously defined
2862 by .req. For example:
2863
2864 my_alias .req r11
2865 .unreq my_alias */
2866
2867static void
2868s_unreq (int a ATTRIBUTE_UNUSED)
2869{
2870 char * name;
2871 char saved_char;
2872
2873 name = input_line_pointer;
2874
2875 while (*input_line_pointer != 0
2876 && *input_line_pointer != ' '
2877 && *input_line_pointer != '\n')
2878 ++input_line_pointer;
2879
2880 saved_char = *input_line_pointer;
2881 *input_line_pointer = 0;
2882
2883 if (!*name)
2884 as_bad (_("invalid syntax for .unreq directive"));
2885 else
2886 {
2887 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2888 name);
2889
2890 if (!reg)
2891 as_bad (_("unknown register alias '%s'"), name);
2892 else if (reg->builtin)
2893 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2894 name);
2895 else
2896 {
2897 char * p;
2898 char * nbuf;
2899
2900 hash_delete (arm_reg_hsh, name, FALSE);
2901 free ((char *) reg->name);
2902 free (reg->neon);
2903 free (reg);
2904
2905 /* Also locate the all upper case and all lower case versions.
2906 Do not complain if we cannot find one or the other as it
2907 was probably deleted above. */
2908
2909 nbuf = strdup (name);
2910 for (p = nbuf; *p; p++)
2911 *p = TOUPPER (*p);
2912 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2913 if (reg)
2914 {
2915 hash_delete (arm_reg_hsh, nbuf, FALSE);
2916 free ((char *) reg->name);
2917 free (reg->neon);
2918 free (reg);
2919 }
2920
2921 for (p = nbuf; *p; p++)
2922 *p = TOLOWER (*p);
2923 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2924 if (reg)
2925 {
2926 hash_delete (arm_reg_hsh, nbuf, FALSE);
2927 free ((char *) reg->name);
2928 free (reg->neon);
2929 free (reg);
2930 }
2931
2932 free (nbuf);
2933 }
2934 }
2935
2936 *input_line_pointer = saved_char;
2937 demand_empty_rest_of_line ();
2938}
2939
2940/* Directives: Instruction set selection. */
2941
2942#ifdef OBJ_ELF
2943/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2944 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2945 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2946 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2947
2948/* Create a new mapping symbol for the transition to STATE. */
2949
2950static void
2951make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2952{
2953 symbolS * symbolP;
2954 const char * symname;
2955 int type;
2956
2957 switch (state)
2958 {
2959 case MAP_DATA:
2960 symname = "$d";
2961 type = BSF_NO_FLAGS;
2962 break;
2963 case MAP_ARM:
2964 symname = "$a";
2965 type = BSF_NO_FLAGS;
2966 break;
2967 case MAP_THUMB:
2968 symname = "$t";
2969 type = BSF_NO_FLAGS;
2970 break;
2971 default:
2972 abort ();
2973 }
2974
2975 symbolP = symbol_new (symname, now_seg, value, frag);
2976 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2977
2978 switch (state)
2979 {
2980 case MAP_ARM:
2981 THUMB_SET_FUNC (symbolP, 0);
2982 ARM_SET_THUMB (symbolP, 0);
2983 ARM_SET_INTERWORK (symbolP, support_interwork);
2984 break;
2985
2986 case MAP_THUMB:
2987 THUMB_SET_FUNC (symbolP, 1);
2988 ARM_SET_THUMB (symbolP, 1);
2989 ARM_SET_INTERWORK (symbolP, support_interwork);
2990 break;
2991
2992 case MAP_DATA:
2993 default:
2994 break;
2995 }
2996
2997 /* Save the mapping symbols for future reference. Also check that
2998 we do not place two mapping symbols at the same offset within a
2999 frag. We'll handle overlap between frags in
3000 check_mapping_symbols.
3001
3002 If .fill or other data filling directive generates zero sized data,
3003 the mapping symbol for the following code will have the same value
3004 as the one generated for the data filling directive. In this case,
3005 we replace the old symbol with the new one at the same address. */
3006 if (value == 0)
3007 {
3008 if (frag->tc_frag_data.first_map != NULL)
3009 {
3010 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
3011 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
3012 }
3013 frag->tc_frag_data.first_map = symbolP;
3014 }
3015 if (frag->tc_frag_data.last_map != NULL)
3016 {
3017 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
3018 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
3019 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
3020 }
3021 frag->tc_frag_data.last_map = symbolP;
3022}
3023
3024/* We must sometimes convert a region marked as code to data during
3025 code alignment, if an odd number of bytes have to be padded. The
3026 code mapping symbol is pushed to an aligned address. */
3027
3028static void
3029insert_data_mapping_symbol (enum mstate state,
3030 valueT value, fragS *frag, offsetT bytes)
3031{
3032 /* If there was already a mapping symbol, remove it. */
3033 if (frag->tc_frag_data.last_map != NULL
3034 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
3035 {
3036 symbolS *symp = frag->tc_frag_data.last_map;
3037
3038 if (value == 0)
3039 {
3040 know (frag->tc_frag_data.first_map == symp);
3041 frag->tc_frag_data.first_map = NULL;
3042 }
3043 frag->tc_frag_data.last_map = NULL;
3044 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
3045 }
3046
3047 make_mapping_symbol (MAP_DATA, value, frag);
3048 make_mapping_symbol (state, value + bytes, frag);
3049}
3050
3051static void mapping_state_2 (enum mstate state, int max_chars);
3052
3053/* Set the mapping state to STATE. Only call this when about to
3054 emit some STATE bytes to the file. */
3055
3056#define TRANSITION(from, to) (mapstate == (from) && state == (to))
3057void
3058mapping_state (enum mstate state)
3059{
3060 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
3061
3062 if (mapstate == state)
3063 /* The mapping symbol has already been emitted.
3064 There is nothing else to do. */
3065 return;
3066
3067 if (state == MAP_ARM || state == MAP_THUMB)
3068 /* PR gas/12931
3069 All ARM instructions require 4-byte alignment.
3070 (Almost) all Thumb instructions require 2-byte alignment.
3071
3072 When emitting instructions into any section, mark the section
3073 appropriately.
3074
3075 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
3076 but themselves require 2-byte alignment; this applies to some
3077 PC- relative forms. However, these cases will involve implicit
3078 literal pool generation or an explicit .align >=2, both of
3079 which will cause the section to me marked with sufficient
3080 alignment. Thus, we don't handle those cases here. */
3081 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
3082
3083 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
3084 /* This case will be evaluated later. */
3085 return;
3086
3087 mapping_state_2 (state, 0);
3088}
3089
3090/* Same as mapping_state, but MAX_CHARS bytes have already been
3091 allocated. Put the mapping symbol that far back. */
3092
3093static void
3094mapping_state_2 (enum mstate state, int max_chars)
3095{
3096 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
3097
3098 if (!SEG_NORMAL (now_seg))
3099 return;
3100
3101 if (mapstate == state)
3102 /* The mapping symbol has already been emitted.
3103 There is nothing else to do. */
3104 return;
3105
3106 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
3107 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
3108 {
3109 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
3110 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
3111
3112 if (add_symbol)
3113 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
3114 }
3115
3116 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
3117 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
3118}
3119#undef TRANSITION
3120#else
3121#define mapping_state(x) ((void)0)
3122#define mapping_state_2(x, y) ((void)0)
3123#endif
3124
3125/* Find the real, Thumb encoded start of a Thumb function. */
3126
3127#ifdef OBJ_COFF
3128static symbolS *
3129find_real_start (symbolS * symbolP)
3130{
3131 char * real_start;
3132 const char * name = S_GET_NAME (symbolP);
3133 symbolS * new_target;
3134
3135 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3136#define STUB_NAME ".real_start_of"
3137
3138 if (name == NULL)
3139 abort ();
3140
3141 /* The compiler may generate BL instructions to local labels because
3142 it needs to perform a branch to a far away location. These labels
3143 do not have a corresponding ".real_start_of" label. We check
3144 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3145 the ".real_start_of" convention for nonlocal branches. */
3146 if (S_IS_LOCAL (symbolP) || name[0] == '.')
3147 return symbolP;
3148
3149 real_start = concat (STUB_NAME, name, NULL);
3150 new_target = symbol_find (real_start);
3151 free (real_start);
3152
3153 if (new_target == NULL)
3154 {
3155 as_warn (_("Failed to find real start of function: %s\n"), name);
3156 new_target = symbolP;
3157 }
3158
3159 return new_target;
3160}
3161#endif
3162
3163static void
3164opcode_select (int width)
3165{
3166 switch (width)
3167 {
3168 case 16:
3169 if (! thumb_mode)
3170 {
3171 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
3172 as_bad (_("selected processor does not support THUMB opcodes"));
3173
3174 thumb_mode = 1;
3175 /* No need to force the alignment, since we will have been
3176 coming from ARM mode, which is word-aligned. */
3177 record_alignment (now_seg, 1);
3178 }
3179 break;
3180
3181 case 32:
3182 if (thumb_mode)
3183 {
3184 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
3185 as_bad (_("selected processor does not support ARM opcodes"));
3186
3187 thumb_mode = 0;
3188
3189 if (!need_pass_2)
3190 frag_align (2, 0, 0);
3191
3192 record_alignment (now_seg, 1);
3193 }
3194 break;
3195
3196 default:
3197 as_bad (_("invalid instruction size selected (%d)"), width);
3198 }
3199}
3200
3201static void
3202s_arm (int ignore ATTRIBUTE_UNUSED)
3203{
3204 opcode_select (32);
3205 demand_empty_rest_of_line ();
3206}
3207
3208static void
3209s_thumb (int ignore ATTRIBUTE_UNUSED)
3210{
3211 opcode_select (16);
3212 demand_empty_rest_of_line ();
3213}
3214
3215static void
3216s_code (int unused ATTRIBUTE_UNUSED)
3217{
3218 int temp;
3219
3220 temp = get_absolute_expression ();
3221 switch (temp)
3222 {
3223 case 16:
3224 case 32:
3225 opcode_select (temp);
3226 break;
3227
3228 default:
3229 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3230 }
3231}
3232
3233static void
3234s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3235{
3236 /* If we are not already in thumb mode go into it, EVEN if
3237 the target processor does not support thumb instructions.
3238 This is used by gcc/config/arm/lib1funcs.asm for example
3239 to compile interworking support functions even if the
3240 target processor should not support interworking. */
3241 if (! thumb_mode)
3242 {
3243 thumb_mode = 2;
3244 record_alignment (now_seg, 1);
3245 }
3246
3247 demand_empty_rest_of_line ();
3248}
3249
3250static void
3251s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3252{
3253 s_thumb (0);
3254
3255 /* The following label is the name/address of the start of a Thumb function.
3256 We need to know this for the interworking support. */
3257 label_is_thumb_function_name = TRUE;
3258}
3259
3260/* Perform a .set directive, but also mark the alias as
3261 being a thumb function. */
3262
3263static void
3264s_thumb_set (int equiv)
3265{
3266 /* XXX the following is a duplicate of the code for s_set() in read.c
3267 We cannot just call that code as we need to get at the symbol that
3268 is created. */
3269 char * name;
3270 char delim;
3271 char * end_name;
3272 symbolS * symbolP;
3273
3274 /* Especial apologies for the random logic:
3275 This just grew, and could be parsed much more simply!
3276 Dean - in haste. */
3277 delim = get_symbol_name (& name);
3278 end_name = input_line_pointer;
3279 (void) restore_line_pointer (delim);
3280
3281 if (*input_line_pointer != ',')
3282 {
3283 *end_name = 0;
3284 as_bad (_("expected comma after name \"%s\""), name);
3285 *end_name = delim;
3286 ignore_rest_of_line ();
3287 return;
3288 }
3289
3290 input_line_pointer++;
3291 *end_name = 0;
3292
3293 if (name[0] == '.' && name[1] == '\0')
3294 {
3295 /* XXX - this should not happen to .thumb_set. */
3296 abort ();
3297 }
3298
3299 if ((symbolP = symbol_find (name)) == NULL
3300 && (symbolP = md_undefined_symbol (name)) == NULL)
3301 {
3302#ifndef NO_LISTING
3303 /* When doing symbol listings, play games with dummy fragments living
3304 outside the normal fragment chain to record the file and line info
3305 for this symbol. */
3306 if (listing & LISTING_SYMBOLS)
3307 {
3308 extern struct list_info_struct * listing_tail;
3309 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
3310
3311 memset (dummy_frag, 0, sizeof (fragS));
3312 dummy_frag->fr_type = rs_fill;
3313 dummy_frag->line = listing_tail;
3314 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3315 dummy_frag->fr_symbol = symbolP;
3316 }
3317 else
3318#endif
3319 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3320
3321#ifdef OBJ_COFF
3322 /* "set" symbols are local unless otherwise specified. */
3323 SF_SET_LOCAL (symbolP);
3324#endif /* OBJ_COFF */
3325 } /* Make a new symbol. */
3326
3327 symbol_table_insert (symbolP);
3328
3329 * end_name = delim;
3330
3331 if (equiv
3332 && S_IS_DEFINED (symbolP)
3333 && S_GET_SEGMENT (symbolP) != reg_section)
3334 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3335
3336 pseudo_set (symbolP);
3337
3338 demand_empty_rest_of_line ();
3339
3340 /* XXX Now we come to the Thumb specific bit of code. */
3341
3342 THUMB_SET_FUNC (symbolP, 1);
3343 ARM_SET_THUMB (symbolP, 1);
3344#if defined OBJ_ELF || defined OBJ_COFF
3345 ARM_SET_INTERWORK (symbolP, support_interwork);
3346#endif
3347}
3348
3349/* Directives: Mode selection. */
3350
3351/* .syntax [unified|divided] - choose the new unified syntax
3352 (same for Arm and Thumb encoding, modulo slight differences in what
3353 can be represented) or the old divergent syntax for each mode. */
3354static void
3355s_syntax (int unused ATTRIBUTE_UNUSED)
3356{
3357 char *name, delim;
3358
3359 delim = get_symbol_name (& name);
3360
3361 if (!strcasecmp (name, "unified"))
3362 unified_syntax = TRUE;
3363 else if (!strcasecmp (name, "divided"))
3364 unified_syntax = FALSE;
3365 else
3366 {
3367 as_bad (_("unrecognized syntax mode \"%s\""), name);
3368 return;
3369 }
3370 (void) restore_line_pointer (delim);
3371 demand_empty_rest_of_line ();
3372}
3373
3374/* Directives: sectioning and alignment. */
3375
3376static void
3377s_bss (int ignore ATTRIBUTE_UNUSED)
3378{
3379 /* We don't support putting frags in the BSS segment, we fake it by
3380 marking in_bss, then looking at s_skip for clues. */
3381 subseg_set (bss_section, 0);
3382 demand_empty_rest_of_line ();
3383
3384#ifdef md_elf_section_change_hook
3385 md_elf_section_change_hook ();
3386#endif
3387}
3388
3389static void
3390s_even (int ignore ATTRIBUTE_UNUSED)
3391{
3392 /* Never make frag if expect extra pass. */
3393 if (!need_pass_2)
3394 frag_align (1, 0, 0);
3395
3396 record_alignment (now_seg, 1);
3397
3398 demand_empty_rest_of_line ();
3399}
3400
3401/* Directives: CodeComposer Studio. */
3402
3403/* .ref (for CodeComposer Studio syntax only). */
3404static void
3405s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3406{
3407 if (codecomposer_syntax)
3408 ignore_rest_of_line ();
3409 else
3410 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3411}
3412
3413/* If name is not NULL, then it is used for marking the beginning of a
3414 function, whereas if it is NULL then it means the function end. */
3415static void
3416asmfunc_debug (const char * name)
3417{
3418 static const char * last_name = NULL;
3419
3420 if (name != NULL)
3421 {
3422 gas_assert (last_name == NULL);
3423 last_name = name;
3424
3425 if (debug_type == DEBUG_STABS)
3426 stabs_generate_asm_func (name, name);
3427 }
3428 else
3429 {
3430 gas_assert (last_name != NULL);
3431
3432 if (debug_type == DEBUG_STABS)
3433 stabs_generate_asm_endfunc (last_name, last_name);
3434
3435 last_name = NULL;
3436 }
3437}
3438
3439static void
3440s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3441{
3442 if (codecomposer_syntax)
3443 {
3444 switch (asmfunc_state)
3445 {
3446 case OUTSIDE_ASMFUNC:
3447 asmfunc_state = WAITING_ASMFUNC_NAME;
3448 break;
3449
3450 case WAITING_ASMFUNC_NAME:
3451 as_bad (_(".asmfunc repeated."));
3452 break;
3453
3454 case WAITING_ENDASMFUNC:
3455 as_bad (_(".asmfunc without function."));
3456 break;
3457 }
3458 demand_empty_rest_of_line ();
3459 }
3460 else
3461 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3462}
3463
3464static void
3465s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3466{
3467 if (codecomposer_syntax)
3468 {
3469 switch (asmfunc_state)
3470 {
3471 case OUTSIDE_ASMFUNC:
3472 as_bad (_(".endasmfunc without a .asmfunc."));
3473 break;
3474
3475 case WAITING_ASMFUNC_NAME:
3476 as_bad (_(".endasmfunc without function."));
3477 break;
3478
3479 case WAITING_ENDASMFUNC:
3480 asmfunc_state = OUTSIDE_ASMFUNC;
3481 asmfunc_debug (NULL);
3482 break;
3483 }
3484 demand_empty_rest_of_line ();
3485 }
3486 else
3487 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3488}
3489
3490static void
3491s_ccs_def (int name)
3492{
3493 if (codecomposer_syntax)
3494 s_globl (name);
3495 else
3496 as_bad (_(".def pseudo-op only available with -mccs flag."));
3497}
3498
3499/* Directives: Literal pools. */
3500
3501static literal_pool *
3502find_literal_pool (void)
3503{
3504 literal_pool * pool;
3505
3506 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3507 {
3508 if (pool->section == now_seg
3509 && pool->sub_section == now_subseg)
3510 break;
3511 }
3512
3513 return pool;
3514}
3515
3516static literal_pool *
3517find_or_make_literal_pool (void)
3518{
3519 /* Next literal pool ID number. */
3520 static unsigned int latest_pool_num = 1;
3521 literal_pool * pool;
3522
3523 pool = find_literal_pool ();
3524
3525 if (pool == NULL)
3526 {
3527 /* Create a new pool. */
3528 pool = XNEW (literal_pool);
3529 if (! pool)
3530 return NULL;
3531
3532 pool->next_free_entry = 0;
3533 pool->section = now_seg;
3534 pool->sub_section = now_subseg;
3535 pool->next = list_of_pools;
3536 pool->symbol = NULL;
3537 pool->alignment = 2;
3538
3539 /* Add it to the list. */
3540 list_of_pools = pool;
3541 }
3542
3543 /* New pools, and emptied pools, will have a NULL symbol. */
3544 if (pool->symbol == NULL)
3545 {
3546 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3547 (valueT) 0, &zero_address_frag);
3548 pool->id = latest_pool_num ++;
3549 }
3550
3551 /* Done. */
3552 return pool;
3553}
3554
3555/* Add the literal in the global 'inst'
3556 structure to the relevant literal pool. */
3557
3558static int
3559add_to_lit_pool (unsigned int nbytes)
3560{
3561#define PADDING_SLOT 0x1
3562#define LIT_ENTRY_SIZE_MASK 0xFF
3563 literal_pool * pool;
3564 unsigned int entry, pool_size = 0;
3565 bfd_boolean padding_slot_p = FALSE;
3566 unsigned imm1 = 0;
3567 unsigned imm2 = 0;
3568
3569 if (nbytes == 8)
3570 {
3571 imm1 = inst.operands[1].imm;
3572 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3573 : inst.relocs[0].exp.X_unsigned ? 0
3574 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3575 if (target_big_endian)
3576 {
3577 imm1 = imm2;
3578 imm2 = inst.operands[1].imm;
3579 }
3580 }
3581
3582 pool = find_or_make_literal_pool ();
3583
3584 /* Check if this literal value is already in the pool. */
3585 for (entry = 0; entry < pool->next_free_entry; entry ++)
3586 {
3587 if (nbytes == 4)
3588 {
3589 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3590 && (inst.relocs[0].exp.X_op == O_constant)
3591 && (pool->literals[entry].X_add_number
3592 == inst.relocs[0].exp.X_add_number)
3593 && (pool->literals[entry].X_md == nbytes)
3594 && (pool->literals[entry].X_unsigned
3595 == inst.relocs[0].exp.X_unsigned))
3596 break;
3597
3598 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3599 && (inst.relocs[0].exp.X_op == O_symbol)
3600 && (pool->literals[entry].X_add_number
3601 == inst.relocs[0].exp.X_add_number)
3602 && (pool->literals[entry].X_add_symbol
3603 == inst.relocs[0].exp.X_add_symbol)
3604 && (pool->literals[entry].X_op_symbol
3605 == inst.relocs[0].exp.X_op_symbol)
3606 && (pool->literals[entry].X_md == nbytes))
3607 break;
3608 }
3609 else if ((nbytes == 8)
3610 && !(pool_size & 0x7)
3611 && ((entry + 1) != pool->next_free_entry)
3612 && (pool->literals[entry].X_op == O_constant)
3613 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3614 && (pool->literals[entry].X_unsigned
3615 == inst.relocs[0].exp.X_unsigned)
3616 && (pool->literals[entry + 1].X_op == O_constant)
3617 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3618 && (pool->literals[entry + 1].X_unsigned
3619 == inst.relocs[0].exp.X_unsigned))
3620 break;
3621
3622 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3623 if (padding_slot_p && (nbytes == 4))
3624 break;
3625
3626 pool_size += 4;
3627 }
3628
3629 /* Do we need to create a new entry? */
3630 if (entry == pool->next_free_entry)
3631 {
3632 if (entry >= MAX_LITERAL_POOL_SIZE)
3633 {
3634 inst.error = _("literal pool overflow");
3635 return FAIL;
3636 }
3637
3638 if (nbytes == 8)
3639 {
3640 /* For 8-byte entries, we align to an 8-byte boundary,
3641 and split it into two 4-byte entries, because on 32-bit
3642 host, 8-byte constants are treated as big num, thus
3643 saved in "generic_bignum" which will be overwritten
3644 by later assignments.
3645
3646 We also need to make sure there is enough space for
3647 the split.
3648
3649 We also check to make sure the literal operand is a
3650 constant number. */
3651 if (!(inst.relocs[0].exp.X_op == O_constant
3652 || inst.relocs[0].exp.X_op == O_big))
3653 {
3654 inst.error = _("invalid type for literal pool");
3655 return FAIL;
3656 }
3657 else if (pool_size & 0x7)
3658 {
3659 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3660 {
3661 inst.error = _("literal pool overflow");
3662 return FAIL;
3663 }
3664
3665 pool->literals[entry] = inst.relocs[0].exp;
3666 pool->literals[entry].X_op = O_constant;
3667 pool->literals[entry].X_add_number = 0;
3668 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3669 pool->next_free_entry += 1;
3670 pool_size += 4;
3671 }
3672 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3673 {
3674 inst.error = _("literal pool overflow");
3675 return FAIL;
3676 }
3677
3678 pool->literals[entry] = inst.relocs[0].exp;
3679 pool->literals[entry].X_op = O_constant;
3680 pool->literals[entry].X_add_number = imm1;
3681 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3682 pool->literals[entry++].X_md = 4;
3683 pool->literals[entry] = inst.relocs[0].exp;
3684 pool->literals[entry].X_op = O_constant;
3685 pool->literals[entry].X_add_number = imm2;
3686 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3687 pool->literals[entry].X_md = 4;
3688 pool->alignment = 3;
3689 pool->next_free_entry += 1;
3690 }
3691 else
3692 {
3693 pool->literals[entry] = inst.relocs[0].exp;
3694 pool->literals[entry].X_md = 4;
3695 }
3696
3697#ifdef OBJ_ELF
3698 /* PR ld/12974: Record the location of the first source line to reference
3699 this entry in the literal pool. If it turns out during linking that the
3700 symbol does not exist we will be able to give an accurate line number for
3701 the (first use of the) missing reference. */
3702 if (debug_type == DEBUG_DWARF2)
3703 dwarf2_where (pool->locs + entry);
3704#endif
3705 pool->next_free_entry += 1;
3706 }
3707 else if (padding_slot_p)
3708 {
3709 pool->literals[entry] = inst.relocs[0].exp;
3710 pool->literals[entry].X_md = nbytes;
3711 }
3712
3713 inst.relocs[0].exp.X_op = O_symbol;
3714 inst.relocs[0].exp.X_add_number = pool_size;
3715 inst.relocs[0].exp.X_add_symbol = pool->symbol;
3716
3717 return SUCCESS;
3718}
3719
3720bfd_boolean
3721tc_start_label_without_colon (void)
3722{
3723 bfd_boolean ret = TRUE;
3724
3725 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3726 {
3727 const char *label = input_line_pointer;
3728
3729 while (!is_end_of_line[(int) label[-1]])
3730 --label;
3731
3732 if (*label == '.')
3733 {
3734 as_bad (_("Invalid label '%s'"), label);
3735 ret = FALSE;
3736 }
3737
3738 asmfunc_debug (label);
3739
3740 asmfunc_state = WAITING_ENDASMFUNC;
3741 }
3742
3743 return ret;
3744}
3745
3746/* Can't use symbol_new here, so have to create a symbol and then at
3747 a later date assign it a value. That's what these functions do. */
3748
3749static void
3750symbol_locate (symbolS * symbolP,
3751 const char * name, /* It is copied, the caller can modify. */
3752 segT segment, /* Segment identifier (SEG_<something>). */
3753 valueT valu, /* Symbol value. */
3754 fragS * frag) /* Associated fragment. */
3755{
3756 size_t name_length;
3757 char * preserved_copy_of_name;
3758
3759 name_length = strlen (name) + 1; /* +1 for \0. */
3760 obstack_grow (&notes, name, name_length);
3761 preserved_copy_of_name = (char *) obstack_finish (&notes);
3762
3763#ifdef tc_canonicalize_symbol_name
3764 preserved_copy_of_name =
3765 tc_canonicalize_symbol_name (preserved_copy_of_name);
3766#endif
3767
3768 S_SET_NAME (symbolP, preserved_copy_of_name);
3769
3770 S_SET_SEGMENT (symbolP, segment);
3771 S_SET_VALUE (symbolP, valu);
3772 symbol_clear_list_pointers (symbolP);
3773
3774 symbol_set_frag (symbolP, frag);
3775
3776 /* Link to end of symbol chain. */
3777 {
3778 extern int symbol_table_frozen;
3779
3780 if (symbol_table_frozen)
3781 abort ();
3782 }
3783
3784 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3785
3786 obj_symbol_new_hook (symbolP);
3787
3788#ifdef tc_symbol_new_hook
3789 tc_symbol_new_hook (symbolP);
3790#endif
3791
3792#ifdef DEBUG_SYMS
3793 verify_symbol_chain (symbol_rootP, symbol_lastP);
3794#endif /* DEBUG_SYMS */
3795}
3796
3797static void
3798s_ltorg (int ignored ATTRIBUTE_UNUSED)
3799{
3800 unsigned int entry;
3801 literal_pool * pool;
3802 char sym_name[20];
3803
3804 pool = find_literal_pool ();
3805 if (pool == NULL
3806 || pool->symbol == NULL
3807 || pool->next_free_entry == 0)
3808 return;
3809
3810 /* Align pool as you have word accesses.
3811 Only make a frag if we have to. */
3812 if (!need_pass_2)
3813 frag_align (pool->alignment, 0, 0);
3814
3815 record_alignment (now_seg, 2);
3816
3817#ifdef OBJ_ELF
3818 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3819 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3820#endif
3821 sprintf (sym_name, "$$lit_\002%x", pool->id);
3822
3823 symbol_locate (pool->symbol, sym_name, now_seg,
3824 (valueT) frag_now_fix (), frag_now);
3825 symbol_table_insert (pool->symbol);
3826
3827 ARM_SET_THUMB (pool->symbol, thumb_mode);
3828
3829#if defined OBJ_COFF || defined OBJ_ELF
3830 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3831#endif
3832
3833 for (entry = 0; entry < pool->next_free_entry; entry ++)
3834 {
3835#ifdef OBJ_ELF
3836 if (debug_type == DEBUG_DWARF2)
3837 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3838#endif
3839 /* First output the expression in the instruction to the pool. */
3840 emit_expr (&(pool->literals[entry]),
3841 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3842 }
3843
3844 /* Mark the pool as empty. */
3845 pool->next_free_entry = 0;
3846 pool->symbol = NULL;
3847}
3848
3849#ifdef OBJ_ELF
3850/* Forward declarations for functions below, in the MD interface
3851 section. */
3852static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3853static valueT create_unwind_entry (int);
3854static void start_unwind_section (const segT, int);
3855static void add_unwind_opcode (valueT, int);
3856static void flush_pending_unwind (void);
3857
3858/* Directives: Data. */
3859
3860static void
3861s_arm_elf_cons (int nbytes)
3862{
3863 expressionS exp;
3864
3865#ifdef md_flush_pending_output
3866 md_flush_pending_output ();
3867#endif
3868
3869 if (is_it_end_of_statement ())
3870 {
3871 demand_empty_rest_of_line ();
3872 return;
3873 }
3874
3875#ifdef md_cons_align
3876 md_cons_align (nbytes);
3877#endif
3878
3879 mapping_state (MAP_DATA);
3880 do
3881 {
3882 int reloc;
3883 char *base = input_line_pointer;
3884
3885 expression (& exp);
3886
3887 if (exp.X_op != O_symbol)
3888 emit_expr (&exp, (unsigned int) nbytes);
3889 else
3890 {
3891 char *before_reloc = input_line_pointer;
3892 reloc = parse_reloc (&input_line_pointer);
3893 if (reloc == -1)
3894 {
3895 as_bad (_("unrecognized relocation suffix"));
3896 ignore_rest_of_line ();
3897 return;
3898 }
3899 else if (reloc == BFD_RELOC_UNUSED)
3900 emit_expr (&exp, (unsigned int) nbytes);
3901 else
3902 {
3903 reloc_howto_type *howto = (reloc_howto_type *)
3904 bfd_reloc_type_lookup (stdoutput,
3905 (bfd_reloc_code_real_type) reloc);
3906 int size = bfd_get_reloc_size (howto);
3907
3908 if (reloc == BFD_RELOC_ARM_PLT32)
3909 {
3910 as_bad (_("(plt) is only valid on branch targets"));
3911 reloc = BFD_RELOC_UNUSED;
3912 size = 0;
3913 }
3914
3915 if (size > nbytes)
3916 as_bad (ngettext ("%s relocations do not fit in %d byte",
3917 "%s relocations do not fit in %d bytes",
3918 nbytes),
3919 howto->name, nbytes);
3920 else
3921 {
3922 /* We've parsed an expression stopping at O_symbol.
3923 But there may be more expression left now that we
3924 have parsed the relocation marker. Parse it again.
3925 XXX Surely there is a cleaner way to do this. */
3926 char *p = input_line_pointer;
3927 int offset;
3928 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3929
3930 memcpy (save_buf, base, input_line_pointer - base);
3931 memmove (base + (input_line_pointer - before_reloc),
3932 base, before_reloc - base);
3933
3934 input_line_pointer = base + (input_line_pointer-before_reloc);
3935 expression (&exp);
3936 memcpy (base, save_buf, p - base);
3937
3938 offset = nbytes - size;
3939 p = frag_more (nbytes);
3940 memset (p, 0, nbytes);
3941 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3942 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3943 free (save_buf);
3944 }
3945 }
3946 }
3947 }
3948 while (*input_line_pointer++ == ',');
3949
3950 /* Put terminator back into stream. */
3951 input_line_pointer --;
3952 demand_empty_rest_of_line ();
3953}
3954
3955/* Emit an expression containing a 32-bit thumb instruction.
3956 Implementation based on put_thumb32_insn. */
3957
3958static void
3959emit_thumb32_expr (expressionS * exp)
3960{
3961 expressionS exp_high = *exp;
3962
3963 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3964 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3965 exp->X_add_number &= 0xffff;
3966 emit_expr (exp, (unsigned int) THUMB_SIZE);
3967}
3968
3969/* Guess the instruction size based on the opcode. */
3970
3971static int
3972thumb_insn_size (int opcode)
3973{
3974 if ((unsigned int) opcode < 0xe800u)
3975 return 2;
3976 else if ((unsigned int) opcode >= 0xe8000000u)
3977 return 4;
3978 else
3979 return 0;
3980}
3981
3982static bfd_boolean
3983emit_insn (expressionS *exp, int nbytes)
3984{
3985 int size = 0;
3986
3987 if (exp->X_op == O_constant)
3988 {
3989 size = nbytes;
3990
3991 if (size == 0)
3992 size = thumb_insn_size (exp->X_add_number);
3993
3994 if (size != 0)
3995 {
3996 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3997 {
3998 as_bad (_(".inst.n operand too big. "\
3999 "Use .inst.w instead"));
4000 size = 0;
4001 }
4002 else
4003 {
4004 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
4005 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
4006 else
4007 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
4008
4009 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
4010 emit_thumb32_expr (exp);
4011 else
4012 emit_expr (exp, (unsigned int) size);
4013
4014 it_fsm_post_encode ();
4015 }
4016 }
4017 else
4018 as_bad (_("cannot determine Thumb instruction size. " \
4019 "Use .inst.n/.inst.w instead"));
4020 }
4021 else
4022 as_bad (_("constant expression required"));
4023
4024 return (size != 0);
4025}
4026
4027/* Like s_arm_elf_cons but do not use md_cons_align and
4028 set the mapping state to MAP_ARM/MAP_THUMB. */
4029
4030static void
4031s_arm_elf_inst (int nbytes)
4032{
4033 if (is_it_end_of_statement ())
4034 {
4035 demand_empty_rest_of_line ();
4036 return;
4037 }
4038
4039 /* Calling mapping_state () here will not change ARM/THUMB,
4040 but will ensure not to be in DATA state. */
4041
4042 if (thumb_mode)
4043 mapping_state (MAP_THUMB);
4044 else
4045 {
4046 if (nbytes != 0)
4047 {
4048 as_bad (_("width suffixes are invalid in ARM mode"));
4049 ignore_rest_of_line ();
4050 return;
4051 }
4052
4053 nbytes = 4;
4054
4055 mapping_state (MAP_ARM);
4056 }
4057
4058 do
4059 {
4060 expressionS exp;
4061
4062 expression (& exp);
4063
4064 if (! emit_insn (& exp, nbytes))
4065 {
4066 ignore_rest_of_line ();
4067 return;
4068 }
4069 }
4070 while (*input_line_pointer++ == ',');
4071
4072 /* Put terminator back into stream. */
4073 input_line_pointer --;
4074 demand_empty_rest_of_line ();
4075}
4076
4077/* Parse a .rel31 directive. */
4078
4079static void
4080s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
4081{
4082 expressionS exp;
4083 char *p;
4084 valueT highbit;
4085
4086 highbit = 0;
4087 if (*input_line_pointer == '1')
4088 highbit = 0x80000000;
4089 else if (*input_line_pointer != '0')
4090 as_bad (_("expected 0 or 1"));
4091
4092 input_line_pointer++;
4093 if (*input_line_pointer != ',')
4094 as_bad (_("missing comma"));
4095 input_line_pointer++;
4096
4097#ifdef md_flush_pending_output
4098 md_flush_pending_output ();
4099#endif
4100
4101#ifdef md_cons_align
4102 md_cons_align (4);
4103#endif
4104
4105 mapping_state (MAP_DATA);
4106
4107 expression (&exp);
4108
4109 p = frag_more (4);
4110 md_number_to_chars (p, highbit, 4);
4111 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
4112 BFD_RELOC_ARM_PREL31);
4113
4114 demand_empty_rest_of_line ();
4115}
4116
4117/* Directives: AEABI stack-unwind tables. */
4118
4119/* Parse an unwind_fnstart directive. Simply records the current location. */
4120
4121static void
4122s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4123{
4124 demand_empty_rest_of_line ();
4125 if (unwind.proc_start)
4126 {
4127 as_bad (_("duplicate .fnstart directive"));
4128 return;
4129 }
4130
4131 /* Mark the start of the function. */
4132 unwind.proc_start = expr_build_dot ();
4133
4134 /* Reset the rest of the unwind info. */
4135 unwind.opcode_count = 0;
4136 unwind.table_entry = NULL;
4137 unwind.personality_routine = NULL;
4138 unwind.personality_index = -1;
4139 unwind.frame_size = 0;
4140 unwind.fp_offset = 0;
4141 unwind.fp_reg = REG_SP;
4142 unwind.fp_used = 0;
4143 unwind.sp_restored = 0;
4144}
4145
4146
4147/* Parse a handlerdata directive. Creates the exception handling table entry
4148 for the function. */
4149
4150static void
4151s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4152{
4153 demand_empty_rest_of_line ();
4154 if (!unwind.proc_start)
4155 as_bad (MISSING_FNSTART);
4156
4157 if (unwind.table_entry)
4158 as_bad (_("duplicate .handlerdata directive"));
4159
4160 create_unwind_entry (1);
4161}
4162
4163/* Parse an unwind_fnend directive. Generates the index table entry. */
4164
4165static void
4166s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4167{
4168 long where;
4169 char *ptr;
4170 valueT val;
4171 unsigned int marked_pr_dependency;
4172
4173 demand_empty_rest_of_line ();
4174
4175 if (!unwind.proc_start)
4176 {
4177 as_bad (_(".fnend directive without .fnstart"));
4178 return;
4179 }
4180
4181 /* Add eh table entry. */
4182 if (unwind.table_entry == NULL)
4183 val = create_unwind_entry (0);
4184 else
4185 val = 0;
4186
4187 /* Add index table entry. This is two words. */
4188 start_unwind_section (unwind.saved_seg, 1);
4189 frag_align (2, 0, 0);
4190 record_alignment (now_seg, 2);
4191
4192 ptr = frag_more (8);
4193 memset (ptr, 0, 8);
4194 where = frag_now_fix () - 8;
4195
4196 /* Self relative offset of the function start. */
4197 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4198 BFD_RELOC_ARM_PREL31);
4199
4200 /* Indicate dependency on EHABI-defined personality routines to the
4201 linker, if it hasn't been done already. */
4202 marked_pr_dependency
4203 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
4204 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4205 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4206 {
4207 static const char *const name[] =
4208 {
4209 "__aeabi_unwind_cpp_pr0",
4210 "__aeabi_unwind_cpp_pr1",
4211 "__aeabi_unwind_cpp_pr2"
4212 };
4213 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4214 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
4215 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
4216 |= 1 << unwind.personality_index;
4217 }
4218
4219 if (val)
4220 /* Inline exception table entry. */
4221 md_number_to_chars (ptr + 4, val, 4);
4222 else
4223 /* Self relative offset of the table entry. */
4224 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4225 BFD_RELOC_ARM_PREL31);
4226
4227 /* Restore the original section. */
4228 subseg_set (unwind.saved_seg, unwind.saved_subseg);
4229
4230 unwind.proc_start = NULL;
4231}
4232
4233
4234/* Parse an unwind_cantunwind directive. */
4235
4236static void
4237s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4238{
4239 demand_empty_rest_of_line ();
4240 if (!unwind.proc_start)
4241 as_bad (MISSING_FNSTART);
4242
4243 if (unwind.personality_routine || unwind.personality_index != -1)
4244 as_bad (_("personality routine specified for cantunwind frame"));
4245
4246 unwind.personality_index = -2;
4247}
4248
4249
4250/* Parse a personalityindex directive. */
4251
4252static void
4253s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4254{
4255 expressionS exp;
4256
4257 if (!unwind.proc_start)
4258 as_bad (MISSING_FNSTART);
4259
4260 if (unwind.personality_routine || unwind.personality_index != -1)
4261 as_bad (_("duplicate .personalityindex directive"));
4262
4263 expression (&exp);
4264
4265 if (exp.X_op != O_constant
4266 || exp.X_add_number < 0 || exp.X_add_number > 15)
4267 {
4268 as_bad (_("bad personality routine number"));
4269 ignore_rest_of_line ();
4270 return;
4271 }
4272
4273 unwind.personality_index = exp.X_add_number;
4274
4275 demand_empty_rest_of_line ();
4276}
4277
4278
4279/* Parse a personality directive. */
4280
4281static void
4282s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4283{
4284 char *name, *p, c;
4285
4286 if (!unwind.proc_start)
4287 as_bad (MISSING_FNSTART);
4288
4289 if (unwind.personality_routine || unwind.personality_index != -1)
4290 as_bad (_("duplicate .personality directive"));
4291
4292 c = get_symbol_name (& name);
4293 p = input_line_pointer;
4294 if (c == '"')
4295 ++ input_line_pointer;
4296 unwind.personality_routine = symbol_find_or_make (name);
4297 *p = c;
4298 demand_empty_rest_of_line ();
4299}
4300
4301
4302/* Parse a directive saving core registers. */
4303
4304static void
4305s_arm_unwind_save_core (void)
4306{
4307 valueT op;
4308 long range;
4309 int n;
4310
4311 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
4312 if (range == FAIL)
4313 {
4314 as_bad (_("expected register list"));
4315 ignore_rest_of_line ();
4316 return;
4317 }
4318
4319 demand_empty_rest_of_line ();
4320
4321 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4322 into .unwind_save {..., sp...}. We aren't bothered about the value of
4323 ip because it is clobbered by calls. */
4324 if (unwind.sp_restored && unwind.fp_reg == 12
4325 && (range & 0x3000) == 0x1000)
4326 {
4327 unwind.opcode_count--;
4328 unwind.sp_restored = 0;
4329 range = (range | 0x2000) & ~0x1000;
4330 unwind.pending_offset = 0;
4331 }
4332
4333 /* Pop r4-r15. */
4334 if (range & 0xfff0)
4335 {
4336 /* See if we can use the short opcodes. These pop a block of up to 8
4337 registers starting with r4, plus maybe r14. */
4338 for (n = 0; n < 8; n++)
4339 {
4340 /* Break at the first non-saved register. */
4341 if ((range & (1 << (n + 4))) == 0)
4342 break;
4343 }
4344 /* See if there are any other bits set. */
4345 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4346 {
4347 /* Use the long form. */
4348 op = 0x8000 | ((range >> 4) & 0xfff);
4349 add_unwind_opcode (op, 2);
4350 }
4351 else
4352 {
4353 /* Use the short form. */
4354 if (range & 0x4000)
4355 op = 0xa8; /* Pop r14. */
4356 else
4357 op = 0xa0; /* Do not pop r14. */
4358 op |= (n - 1);
4359 add_unwind_opcode (op, 1);
4360 }
4361 }
4362
4363 /* Pop r0-r3. */
4364 if (range & 0xf)
4365 {
4366 op = 0xb100 | (range & 0xf);
4367 add_unwind_opcode (op, 2);
4368 }
4369
4370 /* Record the number of bytes pushed. */
4371 for (n = 0; n < 16; n++)
4372 {
4373 if (range & (1 << n))
4374 unwind.frame_size += 4;
4375 }
4376}
4377
4378
4379/* Parse a directive saving FPA registers. */
4380
4381static void
4382s_arm_unwind_save_fpa (int reg)
4383{
4384 expressionS exp;
4385 int num_regs;
4386 valueT op;
4387
4388 /* Get Number of registers to transfer. */
4389 if (skip_past_comma (&input_line_pointer) != FAIL)
4390 expression (&exp);
4391 else
4392 exp.X_op = O_illegal;
4393
4394 if (exp.X_op != O_constant)
4395 {
4396 as_bad (_("expected , <constant>"));
4397 ignore_rest_of_line ();
4398 return;
4399 }
4400
4401 num_regs = exp.X_add_number;
4402
4403 if (num_regs < 1 || num_regs > 4)
4404 {
4405 as_bad (_("number of registers must be in the range [1:4]"));
4406 ignore_rest_of_line ();
4407 return;
4408 }
4409
4410 demand_empty_rest_of_line ();
4411
4412 if (reg == 4)
4413 {
4414 /* Short form. */
4415 op = 0xb4 | (num_regs - 1);
4416 add_unwind_opcode (op, 1);
4417 }
4418 else
4419 {
4420 /* Long form. */
4421 op = 0xc800 | (reg << 4) | (num_regs - 1);
4422 add_unwind_opcode (op, 2);
4423 }
4424 unwind.frame_size += num_regs * 12;
4425}
4426
4427
4428/* Parse a directive saving VFP registers for ARMv6 and above. */
4429
4430static void
4431s_arm_unwind_save_vfp_armv6 (void)
4432{
4433 int count;
4434 unsigned int start;
4435 valueT op;
4436 int num_vfpv3_regs = 0;
4437 int num_regs_below_16;
4438 bfd_boolean partial_match;
4439
4440 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4441 &partial_match);
4442 if (count == FAIL)
4443 {
4444 as_bad (_("expected register list"));
4445 ignore_rest_of_line ();
4446 return;
4447 }
4448
4449 demand_empty_rest_of_line ();
4450
4451 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4452 than FSTMX/FLDMX-style ones). */
4453
4454 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4455 if (start >= 16)
4456 num_vfpv3_regs = count;
4457 else if (start + count > 16)
4458 num_vfpv3_regs = start + count - 16;
4459
4460 if (num_vfpv3_regs > 0)
4461 {
4462 int start_offset = start > 16 ? start - 16 : 0;
4463 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4464 add_unwind_opcode (op, 2);
4465 }
4466
4467 /* Generate opcode for registers numbered in the range 0 .. 15. */
4468 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4469 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4470 if (num_regs_below_16 > 0)
4471 {
4472 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4473 add_unwind_opcode (op, 2);
4474 }
4475
4476 unwind.frame_size += count * 8;
4477}
4478
4479
4480/* Parse a directive saving VFP registers for pre-ARMv6. */
4481
4482static void
4483s_arm_unwind_save_vfp (void)
4484{
4485 int count;
4486 unsigned int reg;
4487 valueT op;
4488 bfd_boolean partial_match;
4489
4490 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4491 &partial_match);
4492 if (count == FAIL)
4493 {
4494 as_bad (_("expected register list"));
4495 ignore_rest_of_line ();
4496 return;
4497 }
4498
4499 demand_empty_rest_of_line ();
4500
4501 if (reg == 8)
4502 {
4503 /* Short form. */
4504 op = 0xb8 | (count - 1);
4505 add_unwind_opcode (op, 1);
4506 }
4507 else
4508 {
4509 /* Long form. */
4510 op = 0xb300 | (reg << 4) | (count - 1);
4511 add_unwind_opcode (op, 2);
4512 }
4513 unwind.frame_size += count * 8 + 4;
4514}
4515
4516
4517/* Parse a directive saving iWMMXt data registers. */
4518
4519static void
4520s_arm_unwind_save_mmxwr (void)
4521{
4522 int reg;
4523 int hi_reg;
4524 int i;
4525 unsigned mask = 0;
4526 valueT op;
4527
4528 if (*input_line_pointer == '{')
4529 input_line_pointer++;
4530
4531 do
4532 {
4533 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4534
4535 if (reg == FAIL)
4536 {
4537 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4538 goto error;
4539 }
4540
4541 if (mask >> reg)
4542 as_tsktsk (_("register list not in ascending order"));
4543 mask |= 1 << reg;
4544
4545 if (*input_line_pointer == '-')
4546 {
4547 input_line_pointer++;
4548 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4549 if (hi_reg == FAIL)
4550 {
4551 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4552 goto error;
4553 }
4554 else if (reg >= hi_reg)
4555 {
4556 as_bad (_("bad register range"));
4557 goto error;
4558 }
4559 for (; reg < hi_reg; reg++)
4560 mask |= 1 << reg;
4561 }
4562 }
4563 while (skip_past_comma (&input_line_pointer) != FAIL);
4564
4565 skip_past_char (&input_line_pointer, '}');
4566
4567 demand_empty_rest_of_line ();
4568
4569 /* Generate any deferred opcodes because we're going to be looking at
4570 the list. */
4571 flush_pending_unwind ();
4572
4573 for (i = 0; i < 16; i++)
4574 {
4575 if (mask & (1 << i))
4576 unwind.frame_size += 8;
4577 }
4578
4579 /* Attempt to combine with a previous opcode. We do this because gcc
4580 likes to output separate unwind directives for a single block of
4581 registers. */
4582 if (unwind.opcode_count > 0)
4583 {
4584 i = unwind.opcodes[unwind.opcode_count - 1];
4585 if ((i & 0xf8) == 0xc0)
4586 {
4587 i &= 7;
4588 /* Only merge if the blocks are contiguous. */
4589 if (i < 6)
4590 {
4591 if ((mask & 0xfe00) == (1 << 9))
4592 {
4593 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4594 unwind.opcode_count--;
4595 }
4596 }
4597 else if (i == 6 && unwind.opcode_count >= 2)
4598 {
4599 i = unwind.opcodes[unwind.opcode_count - 2];
4600 reg = i >> 4;
4601 i &= 0xf;
4602
4603 op = 0xffff << (reg - 1);
4604 if (reg > 0
4605 && ((mask & op) == (1u << (reg - 1))))
4606 {
4607 op = (1 << (reg + i + 1)) - 1;
4608 op &= ~((1 << reg) - 1);
4609 mask |= op;
4610 unwind.opcode_count -= 2;
4611 }
4612 }
4613 }
4614 }
4615
4616 hi_reg = 15;
4617 /* We want to generate opcodes in the order the registers have been
4618 saved, ie. descending order. */
4619 for (reg = 15; reg >= -1; reg--)
4620 {
4621 /* Save registers in blocks. */
4622 if (reg < 0
4623 || !(mask & (1 << reg)))
4624 {
4625 /* We found an unsaved reg. Generate opcodes to save the
4626 preceding block. */
4627 if (reg != hi_reg)
4628 {
4629 if (reg == 9)
4630 {
4631 /* Short form. */
4632 op = 0xc0 | (hi_reg - 10);
4633 add_unwind_opcode (op, 1);
4634 }
4635 else
4636 {
4637 /* Long form. */
4638 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4639 add_unwind_opcode (op, 2);
4640 }
4641 }
4642 hi_reg = reg - 1;
4643 }
4644 }
4645
4646 return;
4647 error:
4648 ignore_rest_of_line ();
4649}
4650
4651static void
4652s_arm_unwind_save_mmxwcg (void)
4653{
4654 int reg;
4655 int hi_reg;
4656 unsigned mask = 0;
4657 valueT op;
4658
4659 if (*input_line_pointer == '{')
4660 input_line_pointer++;
4661
4662 skip_whitespace (input_line_pointer);
4663
4664 do
4665 {
4666 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4667
4668 if (reg == FAIL)
4669 {
4670 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4671 goto error;
4672 }
4673
4674 reg -= 8;
4675 if (mask >> reg)
4676 as_tsktsk (_("register list not in ascending order"));
4677 mask |= 1 << reg;
4678
4679 if (*input_line_pointer == '-')
4680 {
4681 input_line_pointer++;
4682 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4683 if (hi_reg == FAIL)
4684 {
4685 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4686 goto error;
4687 }
4688 else if (reg >= hi_reg)
4689 {
4690 as_bad (_("bad register range"));
4691 goto error;
4692 }
4693 for (; reg < hi_reg; reg++)
4694 mask |= 1 << reg;
4695 }
4696 }
4697 while (skip_past_comma (&input_line_pointer) != FAIL);
4698
4699 skip_past_char (&input_line_pointer, '}');
4700
4701 demand_empty_rest_of_line ();
4702
4703 /* Generate any deferred opcodes because we're going to be looking at
4704 the list. */
4705 flush_pending_unwind ();
4706
4707 for (reg = 0; reg < 16; reg++)
4708 {
4709 if (mask & (1 << reg))
4710 unwind.frame_size += 4;
4711 }
4712 op = 0xc700 | mask;
4713 add_unwind_opcode (op, 2);
4714 return;
4715 error:
4716 ignore_rest_of_line ();
4717}
4718
4719
4720/* Parse an unwind_save directive.
4721 If the argument is non-zero, this is a .vsave directive. */
4722
4723static void
4724s_arm_unwind_save (int arch_v6)
4725{
4726 char *peek;
4727 struct reg_entry *reg;
4728 bfd_boolean had_brace = FALSE;
4729
4730 if (!unwind.proc_start)
4731 as_bad (MISSING_FNSTART);
4732
4733 /* Figure out what sort of save we have. */
4734 peek = input_line_pointer;
4735
4736 if (*peek == '{')
4737 {
4738 had_brace = TRUE;
4739 peek++;
4740 }
4741
4742 reg = arm_reg_parse_multi (&peek);
4743
4744 if (!reg)
4745 {
4746 as_bad (_("register expected"));
4747 ignore_rest_of_line ();
4748 return;
4749 }
4750
4751 switch (reg->type)
4752 {
4753 case REG_TYPE_FN:
4754 if (had_brace)
4755 {
4756 as_bad (_("FPA .unwind_save does not take a register list"));
4757 ignore_rest_of_line ();
4758 return;
4759 }
4760 input_line_pointer = peek;
4761 s_arm_unwind_save_fpa (reg->number);
4762 return;
4763
4764 case REG_TYPE_RN:
4765 s_arm_unwind_save_core ();
4766 return;
4767
4768 case REG_TYPE_VFD:
4769 if (arch_v6)
4770 s_arm_unwind_save_vfp_armv6 ();
4771 else
4772 s_arm_unwind_save_vfp ();
4773 return;
4774
4775 case REG_TYPE_MMXWR:
4776 s_arm_unwind_save_mmxwr ();
4777 return;
4778
4779 case REG_TYPE_MMXWCG:
4780 s_arm_unwind_save_mmxwcg ();
4781 return;
4782
4783 default:
4784 as_bad (_(".unwind_save does not support this kind of register"));
4785 ignore_rest_of_line ();
4786 }
4787}
4788
4789
4790/* Parse an unwind_movsp directive. */
4791
4792static void
4793s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4794{
4795 int reg;
4796 valueT op;
4797 int offset;
4798
4799 if (!unwind.proc_start)
4800 as_bad (MISSING_FNSTART);
4801
4802 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4803 if (reg == FAIL)
4804 {
4805 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4806 ignore_rest_of_line ();
4807 return;
4808 }
4809
4810 /* Optional constant. */
4811 if (skip_past_comma (&input_line_pointer) != FAIL)
4812 {
4813 if (immediate_for_directive (&offset) == FAIL)
4814 return;
4815 }
4816 else
4817 offset = 0;
4818
4819 demand_empty_rest_of_line ();
4820
4821 if (reg == REG_SP || reg == REG_PC)
4822 {
4823 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4824 return;
4825 }
4826
4827 if (unwind.fp_reg != REG_SP)
4828 as_bad (_("unexpected .unwind_movsp directive"));
4829
4830 /* Generate opcode to restore the value. */
4831 op = 0x90 | reg;
4832 add_unwind_opcode (op, 1);
4833
4834 /* Record the information for later. */
4835 unwind.fp_reg = reg;
4836 unwind.fp_offset = unwind.frame_size - offset;
4837 unwind.sp_restored = 1;
4838}
4839
4840/* Parse an unwind_pad directive. */
4841
4842static void
4843s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4844{
4845 int offset;
4846
4847 if (!unwind.proc_start)
4848 as_bad (MISSING_FNSTART);
4849
4850 if (immediate_for_directive (&offset) == FAIL)
4851 return;
4852
4853 if (offset & 3)
4854 {
4855 as_bad (_("stack increment must be multiple of 4"));
4856 ignore_rest_of_line ();
4857 return;
4858 }
4859
4860 /* Don't generate any opcodes, just record the details for later. */
4861 unwind.frame_size += offset;
4862 unwind.pending_offset += offset;
4863
4864 demand_empty_rest_of_line ();
4865}
4866
4867/* Parse an unwind_setfp directive. */
4868
4869static void
4870s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4871{
4872 int sp_reg;
4873 int fp_reg;
4874 int offset;
4875
4876 if (!unwind.proc_start)
4877 as_bad (MISSING_FNSTART);
4878
4879 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4880 if (skip_past_comma (&input_line_pointer) == FAIL)
4881 sp_reg = FAIL;
4882 else
4883 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4884
4885 if (fp_reg == FAIL || sp_reg == FAIL)
4886 {
4887 as_bad (_("expected <reg>, <reg>"));
4888 ignore_rest_of_line ();
4889 return;
4890 }
4891
4892 /* Optional constant. */
4893 if (skip_past_comma (&input_line_pointer) != FAIL)
4894 {
4895 if (immediate_for_directive (&offset) == FAIL)
4896 return;
4897 }
4898 else
4899 offset = 0;
4900
4901 demand_empty_rest_of_line ();
4902
4903 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4904 {
4905 as_bad (_("register must be either sp or set by a previous"
4906 "unwind_movsp directive"));
4907 return;
4908 }
4909
4910 /* Don't generate any opcodes, just record the information for later. */
4911 unwind.fp_reg = fp_reg;
4912 unwind.fp_used = 1;
4913 if (sp_reg == REG_SP)
4914 unwind.fp_offset = unwind.frame_size - offset;
4915 else
4916 unwind.fp_offset -= offset;
4917}
4918
4919/* Parse an unwind_raw directive. */
4920
4921static void
4922s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4923{
4924 expressionS exp;
4925 /* This is an arbitrary limit. */
4926 unsigned char op[16];
4927 int count;
4928
4929 if (!unwind.proc_start)
4930 as_bad (MISSING_FNSTART);
4931
4932 expression (&exp);
4933 if (exp.X_op == O_constant
4934 && skip_past_comma (&input_line_pointer) != FAIL)
4935 {
4936 unwind.frame_size += exp.X_add_number;
4937 expression (&exp);
4938 }
4939 else
4940 exp.X_op = O_illegal;
4941
4942 if (exp.X_op != O_constant)
4943 {
4944 as_bad (_("expected <offset>, <opcode>"));
4945 ignore_rest_of_line ();
4946 return;
4947 }
4948
4949 count = 0;
4950
4951 /* Parse the opcode. */
4952 for (;;)
4953 {
4954 if (count >= 16)
4955 {
4956 as_bad (_("unwind opcode too long"));
4957 ignore_rest_of_line ();
4958 }
4959 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4960 {
4961 as_bad (_("invalid unwind opcode"));
4962 ignore_rest_of_line ();
4963 return;
4964 }
4965 op[count++] = exp.X_add_number;
4966
4967 /* Parse the next byte. */
4968 if (skip_past_comma (&input_line_pointer) == FAIL)
4969 break;
4970
4971 expression (&exp);
4972 }
4973
4974 /* Add the opcode bytes in reverse order. */
4975 while (count--)
4976 add_unwind_opcode (op[count], 1);
4977
4978 demand_empty_rest_of_line ();
4979}
4980
4981
4982/* Parse a .eabi_attribute directive. */
4983
4984static void
4985s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4986{
4987 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4988
4989 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4990 attributes_set_explicitly[tag] = 1;
4991}
4992
4993/* Emit a tls fix for the symbol. */
4994
4995static void
4996s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4997{
4998 char *p;
4999 expressionS exp;
5000#ifdef md_flush_pending_output
5001 md_flush_pending_output ();
5002#endif
5003
5004#ifdef md_cons_align
5005 md_cons_align (4);
5006#endif
5007
5008 /* Since we're just labelling the code, there's no need to define a
5009 mapping symbol. */
5010 expression (&exp);
5011 p = obstack_next_free (&frchain_now->frch_obstack);
5012 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
5013 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
5014 : BFD_RELOC_ARM_TLS_DESCSEQ);
5015}
5016#endif /* OBJ_ELF */
5017
5018static void s_arm_arch (int);
5019static void s_arm_object_arch (int);
5020static void s_arm_cpu (int);
5021static void s_arm_fpu (int);
5022static void s_arm_arch_extension (int);
5023
5024#ifdef TE_PE
5025
5026static void
5027pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
5028{
5029 expressionS exp;
5030
5031 do
5032 {
5033 expression (&exp);
5034 if (exp.X_op == O_symbol)
5035 exp.X_op = O_secrel;
5036
5037 emit_expr (&exp, 4);
5038 }
5039 while (*input_line_pointer++ == ',');
5040
5041 input_line_pointer--;
5042 demand_empty_rest_of_line ();
5043}
5044#endif /* TE_PE */
5045
5046int
5047arm_is_largest_exponent_ok (int precision)
5048{
5049 /* precision == 1 ensures that this will only return
5050 true for 16 bit floats. */
5051 return (precision == 1) && (fp16_format == ARM_FP16_FORMAT_ALTERNATIVE);
5052}
5053
5054static void
5055set_fp16_format (int dummy ATTRIBUTE_UNUSED)
5056{
5057 char saved_char;
5058 char* name;
5059 enum fp_16bit_format new_format;
5060
5061 new_format = ARM_FP16_FORMAT_DEFAULT;
5062
5063 name = input_line_pointer;
5064 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
5065 input_line_pointer++;
5066
5067 saved_char = *input_line_pointer;
5068 *input_line_pointer = 0;
5069
5070 if (strcasecmp (name, "ieee") == 0)
5071 new_format = ARM_FP16_FORMAT_IEEE;
5072 else if (strcasecmp (name, "alternative") == 0)
5073 new_format = ARM_FP16_FORMAT_ALTERNATIVE;
5074 else
5075 {
5076 as_bad (_("unrecognised float16 format \"%s\""), name);
5077 goto cleanup;
5078 }
5079
5080 /* Only set fp16_format if it is still the default (aka not already
5081 been set yet). */
5082 if (fp16_format == ARM_FP16_FORMAT_DEFAULT)
5083 fp16_format = new_format;
5084 else
5085 {
5086 if (new_format != fp16_format)
5087 as_warn (_("float16 format cannot be set more than once, ignoring."));
5088 }
5089
5090 cleanup:
5091 *input_line_pointer = saved_char;
5092 ignore_rest_of_line ();
5093}
5094
5095/* This table describes all the machine specific pseudo-ops the assembler
5096 has to support. The fields are:
5097 pseudo-op name without dot
5098 function to call to execute this pseudo-op
5099 Integer arg to pass to the function. */
5100
5101const pseudo_typeS md_pseudo_table[] =
5102{
5103 /* Never called because '.req' does not start a line. */
5104 { "req", s_req, 0 },
5105 /* Following two are likewise never called. */
5106 { "dn", s_dn, 0 },
5107 { "qn", s_qn, 0 },
5108 { "unreq", s_unreq, 0 },
5109 { "bss", s_bss, 0 },
5110 { "align", s_align_ptwo, 2 },
5111 { "arm", s_arm, 0 },
5112 { "thumb", s_thumb, 0 },
5113 { "code", s_code, 0 },
5114 { "force_thumb", s_force_thumb, 0 },
5115 { "thumb_func", s_thumb_func, 0 },
5116 { "thumb_set", s_thumb_set, 0 },
5117 { "even", s_even, 0 },
5118 { "ltorg", s_ltorg, 0 },
5119 { "pool", s_ltorg, 0 },
5120 { "syntax", s_syntax, 0 },
5121 { "cpu", s_arm_cpu, 0 },
5122 { "arch", s_arm_arch, 0 },
5123 { "object_arch", s_arm_object_arch, 0 },
5124 { "fpu", s_arm_fpu, 0 },
5125 { "arch_extension", s_arm_arch_extension, 0 },
5126#ifdef OBJ_ELF
5127 { "word", s_arm_elf_cons, 4 },
5128 { "long", s_arm_elf_cons, 4 },
5129 { "inst.n", s_arm_elf_inst, 2 },
5130 { "inst.w", s_arm_elf_inst, 4 },
5131 { "inst", s_arm_elf_inst, 0 },
5132 { "rel31", s_arm_rel31, 0 },
5133 { "fnstart", s_arm_unwind_fnstart, 0 },
5134 { "fnend", s_arm_unwind_fnend, 0 },
5135 { "cantunwind", s_arm_unwind_cantunwind, 0 },
5136 { "personality", s_arm_unwind_personality, 0 },
5137 { "personalityindex", s_arm_unwind_personalityindex, 0 },
5138 { "handlerdata", s_arm_unwind_handlerdata, 0 },
5139 { "save", s_arm_unwind_save, 0 },
5140 { "vsave", s_arm_unwind_save, 1 },
5141 { "movsp", s_arm_unwind_movsp, 0 },
5142 { "pad", s_arm_unwind_pad, 0 },
5143 { "setfp", s_arm_unwind_setfp, 0 },
5144 { "unwind_raw", s_arm_unwind_raw, 0 },
5145 { "eabi_attribute", s_arm_eabi_attribute, 0 },
5146 { "tlsdescseq", s_arm_tls_descseq, 0 },
5147#else
5148 { "word", cons, 4},
5149
5150 /* These are used for dwarf. */
5151 {"2byte", cons, 2},
5152 {"4byte", cons, 4},
5153 {"8byte", cons, 8},
5154 /* These are used for dwarf2. */
5155 { "file", dwarf2_directive_file, 0 },
5156 { "loc", dwarf2_directive_loc, 0 },
5157 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
5158#endif
5159 { "extend", float_cons, 'x' },
5160 { "ldouble", float_cons, 'x' },
5161 { "packed", float_cons, 'p' },
5162 { "bfloat16", float_cons, 'b' },
5163#ifdef TE_PE
5164 {"secrel32", pe_directive_secrel, 0},
5165#endif
5166
5167 /* These are for compatibility with CodeComposer Studio. */
5168 {"ref", s_ccs_ref, 0},
5169 {"def", s_ccs_def, 0},
5170 {"asmfunc", s_ccs_asmfunc, 0},
5171 {"endasmfunc", s_ccs_endasmfunc, 0},
5172
5173 {"float16", float_cons, 'h' },
5174 {"float16_format", set_fp16_format, 0 },
5175
5176 { 0, 0, 0 }
5177};
5178
5179/* Parser functions used exclusively in instruction operands. */
5180
5181/* Generic immediate-value read function for use in insn parsing.
5182 STR points to the beginning of the immediate (the leading #);
5183 VAL receives the value; if the value is outside [MIN, MAX]
5184 issue an error. PREFIX_OPT is true if the immediate prefix is
5185 optional. */
5186
5187static int
5188parse_immediate (char **str, int *val, int min, int max,
5189 bfd_boolean prefix_opt)
5190{
5191 expressionS exp;
5192
5193 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5194 if (exp.X_op != O_constant)
5195 {
5196 inst.error = _("constant expression required");
5197 return FAIL;
5198 }
5199
5200 if (exp.X_add_number < min || exp.X_add_number > max)
5201 {
5202 inst.error = _("immediate value out of range");
5203 return FAIL;
5204 }
5205
5206 *val = exp.X_add_number;
5207 return SUCCESS;
5208}
5209
5210/* Less-generic immediate-value read function with the possibility of loading a
5211 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5212 instructions. Puts the result directly in inst.operands[i]. */
5213
5214static int
5215parse_big_immediate (char **str, int i, expressionS *in_exp,
5216 bfd_boolean allow_symbol_p)
5217{
5218 expressionS exp;
5219 expressionS *exp_p = in_exp ? in_exp : &exp;
5220 char *ptr = *str;
5221
5222 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5223
5224 if (exp_p->X_op == O_constant)
5225 {
5226 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
5227 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5228 O_constant. We have to be careful not to break compilation for
5229 32-bit X_add_number, though. */
5230 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
5231 {
5232 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5233 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5234 & 0xffffffff);
5235 inst.operands[i].regisimm = 1;
5236 }
5237 }
5238 else if (exp_p->X_op == O_big
5239 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5240 {
5241 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
5242
5243 /* Bignums have their least significant bits in
5244 generic_bignum[0]. Make sure we put 32 bits in imm and
5245 32 bits in reg, in a (hopefully) portable way. */
5246 gas_assert (parts != 0);
5247
5248 /* Make sure that the number is not too big.
5249 PR 11972: Bignums can now be sign-extended to the
5250 size of a .octa so check that the out of range bits
5251 are all zero or all one. */
5252 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
5253 {
5254 LITTLENUM_TYPE m = -1;
5255
5256 if (generic_bignum[parts * 2] != 0
5257 && generic_bignum[parts * 2] != m)
5258 return FAIL;
5259
5260 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
5261 if (generic_bignum[j] != generic_bignum[j-1])
5262 return FAIL;
5263 }
5264
5265 inst.operands[i].imm = 0;
5266 for (j = 0; j < parts; j++, idx++)
5267 inst.operands[i].imm |= generic_bignum[idx]
5268 << (LITTLENUM_NUMBER_OF_BITS * j);
5269 inst.operands[i].reg = 0;
5270 for (j = 0; j < parts; j++, idx++)
5271 inst.operands[i].reg |= generic_bignum[idx]
5272 << (LITTLENUM_NUMBER_OF_BITS * j);
5273 inst.operands[i].regisimm = 1;
5274 }
5275 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5276 return FAIL;
5277
5278 *str = ptr;
5279
5280 return SUCCESS;
5281}
5282
5283/* Returns the pseudo-register number of an FPA immediate constant,
5284 or FAIL if there isn't a valid constant here. */
5285
5286static int
5287parse_fpa_immediate (char ** str)
5288{
5289 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5290 char * save_in;
5291 expressionS exp;
5292 int i;
5293 int j;
5294
5295 /* First try and match exact strings, this is to guarantee
5296 that some formats will work even for cross assembly. */
5297
5298 for (i = 0; fp_const[i]; i++)
5299 {
5300 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
5301 {
5302 char *start = *str;
5303
5304 *str += strlen (fp_const[i]);
5305 if (is_end_of_line[(unsigned char) **str])
5306 return i + 8;
5307 *str = start;
5308 }
5309 }
5310
5311 /* Just because we didn't get a match doesn't mean that the constant
5312 isn't valid, just that it is in a format that we don't
5313 automatically recognize. Try parsing it with the standard
5314 expression routines. */
5315
5316 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
5317
5318 /* Look for a raw floating point number. */
5319 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5320 && is_end_of_line[(unsigned char) *save_in])
5321 {
5322 for (i = 0; i < NUM_FLOAT_VALS; i++)
5323 {
5324 for (j = 0; j < MAX_LITTLENUMS; j++)
5325 {
5326 if (words[j] != fp_values[i][j])
5327 break;
5328 }
5329
5330 if (j == MAX_LITTLENUMS)
5331 {
5332 *str = save_in;
5333 return i + 8;
5334 }
5335 }
5336 }
5337
5338 /* Try and parse a more complex expression, this will probably fail
5339 unless the code uses a floating point prefix (eg "0f"). */
5340 save_in = input_line_pointer;
5341 input_line_pointer = *str;
5342 if (expression (&exp) == absolute_section
5343 && exp.X_op == O_big
5344 && exp.X_add_number < 0)
5345 {
5346 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5347 Ditto for 15. */
5348#define X_PRECISION 5
5349#define E_PRECISION 15L
5350 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
5351 {
5352 for (i = 0; i < NUM_FLOAT_VALS; i++)
5353 {
5354 for (j = 0; j < MAX_LITTLENUMS; j++)
5355 {
5356 if (words[j] != fp_values[i][j])
5357 break;
5358 }
5359
5360 if (j == MAX_LITTLENUMS)
5361 {
5362 *str = input_line_pointer;
5363 input_line_pointer = save_in;
5364 return i + 8;
5365 }
5366 }
5367 }
5368 }
5369
5370 *str = input_line_pointer;
5371 input_line_pointer = save_in;
5372 inst.error = _("invalid FPA immediate expression");
5373 return FAIL;
5374}
5375
5376/* Returns 1 if a number has "quarter-precision" float format
5377 0baBbbbbbc defgh000 00000000 00000000. */
5378
5379static int
5380is_quarter_float (unsigned imm)
5381{
5382 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5383 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5384}
5385
5386
5387/* Detect the presence of a floating point or integer zero constant,
5388 i.e. #0.0 or #0. */
5389
5390static bfd_boolean
5391parse_ifimm_zero (char **in)
5392{
5393 int error_code;
5394
5395 if (!is_immediate_prefix (**in))
5396 {
5397 /* In unified syntax, all prefixes are optional. */
5398 if (!unified_syntax)
5399 return FALSE;
5400 }
5401 else
5402 ++*in;
5403
5404 /* Accept #0x0 as a synonym for #0. */
5405 if (strncmp (*in, "0x", 2) == 0)
5406 {
5407 int val;
5408 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5409 return FALSE;
5410 return TRUE;
5411 }
5412
5413 error_code = atof_generic (in, ".", EXP_CHARS,
5414 &generic_floating_point_number);
5415
5416 if (!error_code
5417 && generic_floating_point_number.sign == '+'
5418 && (generic_floating_point_number.low
5419 > generic_floating_point_number.leader))
5420 return TRUE;
5421
5422 return FALSE;
5423}
5424
5425/* Parse an 8-bit "quarter-precision" floating point number of the form:
5426 0baBbbbbbc defgh000 00000000 00000000.
5427 The zero and minus-zero cases need special handling, since they can't be
5428 encoded in the "quarter-precision" float format, but can nonetheless be
5429 loaded as integer constants. */
5430
5431static unsigned
5432parse_qfloat_immediate (char **ccp, int *immed)
5433{
5434 char *str = *ccp;
5435 char *fpnum;
5436 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5437 int found_fpchar = 0;
5438
5439 skip_past_char (&str, '#');
5440
5441 /* We must not accidentally parse an integer as a floating-point number. Make
5442 sure that the value we parse is not an integer by checking for special
5443 characters '.' or 'e'.
5444 FIXME: This is a horrible hack, but doing better is tricky because type
5445 information isn't in a very usable state at parse time. */
5446 fpnum = str;
5447 skip_whitespace (fpnum);
5448
5449 if (strncmp (fpnum, "0x", 2) == 0)
5450 return FAIL;
5451 else
5452 {
5453 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5454 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5455 {
5456 found_fpchar = 1;
5457 break;
5458 }
5459
5460 if (!found_fpchar)
5461 return FAIL;
5462 }
5463
5464 if ((str = atof_ieee (str, 's', words)) != NULL)
5465 {
5466 unsigned fpword = 0;
5467 int i;
5468
5469 /* Our FP word must be 32 bits (single-precision FP). */
5470 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5471 {
5472 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5473 fpword |= words[i];
5474 }
5475
5476 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5477 *immed = fpword;
5478 else
5479 return FAIL;
5480
5481 *ccp = str;
5482
5483 return SUCCESS;
5484 }
5485
5486 return FAIL;
5487}
5488
5489/* Shift operands. */
5490enum shift_kind
5491{
5492 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
5493};
5494
5495struct asm_shift_name
5496{
5497 const char *name;
5498 enum shift_kind kind;
5499};
5500
5501/* Third argument to parse_shift. */
5502enum parse_shift_mode
5503{
5504 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5505 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5506 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5507 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5508 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5509 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
5510};
5511
5512/* Parse a <shift> specifier on an ARM data processing instruction.
5513 This has three forms:
5514
5515 (LSL|LSR|ASL|ASR|ROR) Rs
5516 (LSL|LSR|ASL|ASR|ROR) #imm
5517 RRX
5518
5519 Note that ASL is assimilated to LSL in the instruction encoding, and
5520 RRX to ROR #0 (which cannot be written as such). */
5521
5522static int
5523parse_shift (char **str, int i, enum parse_shift_mode mode)
5524{
5525 const struct asm_shift_name *shift_name;
5526 enum shift_kind shift;
5527 char *s = *str;
5528 char *p = s;
5529 int reg;
5530
5531 for (p = *str; ISALPHA (*p); p++)
5532 ;
5533
5534 if (p == *str)
5535 {
5536 inst.error = _("shift expression expected");
5537 return FAIL;
5538 }
5539
5540 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5541 p - *str);
5542
5543 if (shift_name == NULL)
5544 {
5545 inst.error = _("shift expression expected");
5546 return FAIL;
5547 }
5548
5549 shift = shift_name->kind;
5550
5551 switch (mode)
5552 {
5553 case NO_SHIFT_RESTRICT:
5554 case SHIFT_IMMEDIATE:
5555 if (shift == SHIFT_UXTW)
5556 {
5557 inst.error = _("'UXTW' not allowed here");
5558 return FAIL;
5559 }
5560 break;
5561
5562 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5563 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5564 {
5565 inst.error = _("'LSL' or 'ASR' required");
5566 return FAIL;
5567 }
5568 break;
5569
5570 case SHIFT_LSL_IMMEDIATE:
5571 if (shift != SHIFT_LSL)
5572 {
5573 inst.error = _("'LSL' required");
5574 return FAIL;
5575 }
5576 break;
5577
5578 case SHIFT_ASR_IMMEDIATE:
5579 if (shift != SHIFT_ASR)
5580 {
5581 inst.error = _("'ASR' required");
5582 return FAIL;
5583 }
5584 break;
5585 case SHIFT_UXTW_IMMEDIATE:
5586 if (shift != SHIFT_UXTW)
5587 {
5588 inst.error = _("'UXTW' required");
5589 return FAIL;
5590 }
5591 break;
5592
5593 default: abort ();
5594 }
5595
5596 if (shift != SHIFT_RRX)
5597 {
5598 /* Whitespace can appear here if the next thing is a bare digit. */
5599 skip_whitespace (p);
5600
5601 if (mode == NO_SHIFT_RESTRICT
5602 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5603 {
5604 inst.operands[i].imm = reg;
5605 inst.operands[i].immisreg = 1;
5606 }
5607 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5608 return FAIL;
5609 }
5610 inst.operands[i].shift_kind = shift;
5611 inst.operands[i].shifted = 1;
5612 *str = p;
5613 return SUCCESS;
5614}
5615
5616/* Parse a <shifter_operand> for an ARM data processing instruction:
5617
5618 #<immediate>
5619 #<immediate>, <rotate>
5620 <Rm>
5621 <Rm>, <shift>
5622
5623 where <shift> is defined by parse_shift above, and <rotate> is a
5624 multiple of 2 between 0 and 30. Validation of immediate operands
5625 is deferred to md_apply_fix. */
5626
5627static int
5628parse_shifter_operand (char **str, int i)
5629{
5630 int value;
5631 expressionS exp;
5632
5633 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5634 {
5635 inst.operands[i].reg = value;
5636 inst.operands[i].isreg = 1;
5637
5638 /* parse_shift will override this if appropriate */
5639 inst.relocs[0].exp.X_op = O_constant;
5640 inst.relocs[0].exp.X_add_number = 0;
5641
5642 if (skip_past_comma (str) == FAIL)
5643 return SUCCESS;
5644
5645 /* Shift operation on register. */
5646 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5647 }
5648
5649 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
5650 return FAIL;
5651
5652 if (skip_past_comma (str) == SUCCESS)
5653 {
5654 /* #x, y -- ie explicit rotation by Y. */
5655 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5656 return FAIL;
5657
5658 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
5659 {
5660 inst.error = _("constant expression expected");
5661 return FAIL;
5662 }
5663
5664 value = exp.X_add_number;
5665 if (value < 0 || value > 30 || value % 2 != 0)
5666 {
5667 inst.error = _("invalid rotation");
5668 return FAIL;
5669 }
5670 if (inst.relocs[0].exp.X_add_number < 0
5671 || inst.relocs[0].exp.X_add_number > 255)
5672 {
5673 inst.error = _("invalid constant");
5674 return FAIL;
5675 }
5676
5677 /* Encode as specified. */
5678 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
5679 return SUCCESS;
5680 }
5681
5682 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5683 inst.relocs[0].pc_rel = 0;
5684 return SUCCESS;
5685}
5686
5687/* Group relocation information. Each entry in the table contains the
5688 textual name of the relocation as may appear in assembler source
5689 and must end with a colon.
5690 Along with this textual name are the relocation codes to be used if
5691 the corresponding instruction is an ALU instruction (ADD or SUB only),
5692 an LDR, an LDRS, or an LDC. */
5693
5694struct group_reloc_table_entry
5695{
5696 const char *name;
5697 int alu_code;
5698 int ldr_code;
5699 int ldrs_code;
5700 int ldc_code;
5701};
5702
5703typedef enum
5704{
5705 /* Varieties of non-ALU group relocation. */
5706
5707 GROUP_LDR,
5708 GROUP_LDRS,
5709 GROUP_LDC,
5710 GROUP_MVE
5711} group_reloc_type;
5712
5713static struct group_reloc_table_entry group_reloc_table[] =
5714 { /* Program counter relative: */
5715 { "pc_g0_nc",
5716 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5717 0, /* LDR */
5718 0, /* LDRS */
5719 0 }, /* LDC */
5720 { "pc_g0",
5721 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5722 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5723 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5724 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5725 { "pc_g1_nc",
5726 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5727 0, /* LDR */
5728 0, /* LDRS */
5729 0 }, /* LDC */
5730 { "pc_g1",
5731 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5732 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5733 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5734 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5735 { "pc_g2",
5736 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5737 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5738 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5739 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5740 /* Section base relative */
5741 { "sb_g0_nc",
5742 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5743 0, /* LDR */
5744 0, /* LDRS */
5745 0 }, /* LDC */
5746 { "sb_g0",
5747 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5748 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5749 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5750 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5751 { "sb_g1_nc",
5752 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5753 0, /* LDR */
5754 0, /* LDRS */
5755 0 }, /* LDC */
5756 { "sb_g1",
5757 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5758 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5759 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5760 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5761 { "sb_g2",
5762 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5763 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5764 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5765 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5766 /* Absolute thumb alu relocations. */
5767 { "lower0_7",
5768 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5769 0, /* LDR. */
5770 0, /* LDRS. */
5771 0 }, /* LDC. */
5772 { "lower8_15",
5773 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5774 0, /* LDR. */
5775 0, /* LDRS. */
5776 0 }, /* LDC. */
5777 { "upper0_7",
5778 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5779 0, /* LDR. */
5780 0, /* LDRS. */
5781 0 }, /* LDC. */
5782 { "upper8_15",
5783 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5784 0, /* LDR. */
5785 0, /* LDRS. */
5786 0 } }; /* LDC. */
5787
5788/* Given the address of a pointer pointing to the textual name of a group
5789 relocation as may appear in assembler source, attempt to find its details
5790 in group_reloc_table. The pointer will be updated to the character after
5791 the trailing colon. On failure, FAIL will be returned; SUCCESS
5792 otherwise. On success, *entry will be updated to point at the relevant
5793 group_reloc_table entry. */
5794
5795static int
5796find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5797{
5798 unsigned int i;
5799 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5800 {
5801 int length = strlen (group_reloc_table[i].name);
5802
5803 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5804 && (*str)[length] == ':')
5805 {
5806 *out = &group_reloc_table[i];
5807 *str += (length + 1);
5808 return SUCCESS;
5809 }
5810 }
5811
5812 return FAIL;
5813}
5814
5815/* Parse a <shifter_operand> for an ARM data processing instruction
5816 (as for parse_shifter_operand) where group relocations are allowed:
5817
5818 #<immediate>
5819 #<immediate>, <rotate>
5820 #:<group_reloc>:<expression>
5821 <Rm>
5822 <Rm>, <shift>
5823
5824 where <group_reloc> is one of the strings defined in group_reloc_table.
5825 The hashes are optional.
5826
5827 Everything else is as for parse_shifter_operand. */
5828
5829static parse_operand_result
5830parse_shifter_operand_group_reloc (char **str, int i)
5831{
5832 /* Determine if we have the sequence of characters #: or just :
5833 coming next. If we do, then we check for a group relocation.
5834 If we don't, punt the whole lot to parse_shifter_operand. */
5835
5836 if (((*str)[0] == '#' && (*str)[1] == ':')
5837 || (*str)[0] == ':')
5838 {
5839 struct group_reloc_table_entry *entry;
5840
5841 if ((*str)[0] == '#')
5842 (*str) += 2;
5843 else
5844 (*str)++;
5845
5846 /* Try to parse a group relocation. Anything else is an error. */
5847 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5848 {
5849 inst.error = _("unknown group relocation");
5850 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5851 }
5852
5853 /* We now have the group relocation table entry corresponding to
5854 the name in the assembler source. Next, we parse the expression. */
5855 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
5856 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5857
5858 /* Record the relocation type (always the ALU variant here). */
5859 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5860 gas_assert (inst.relocs[0].type != 0);
5861
5862 return PARSE_OPERAND_SUCCESS;
5863 }
5864 else
5865 return parse_shifter_operand (str, i) == SUCCESS
5866 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5867
5868 /* Never reached. */
5869}
5870
5871/* Parse a Neon alignment expression. Information is written to
5872 inst.operands[i]. We assume the initial ':' has been skipped.
5873
5874 align .imm = align << 8, .immisalign=1, .preind=0 */
5875static parse_operand_result
5876parse_neon_alignment (char **str, int i)
5877{
5878 char *p = *str;
5879 expressionS exp;
5880
5881 my_get_expression (&exp, &p, GE_NO_PREFIX);
5882
5883 if (exp.X_op != O_constant)
5884 {
5885 inst.error = _("alignment must be constant");
5886 return PARSE_OPERAND_FAIL;
5887 }
5888
5889 inst.operands[i].imm = exp.X_add_number << 8;
5890 inst.operands[i].immisalign = 1;
5891 /* Alignments are not pre-indexes. */
5892 inst.operands[i].preind = 0;
5893
5894 *str = p;
5895 return PARSE_OPERAND_SUCCESS;
5896}
5897
5898/* Parse all forms of an ARM address expression. Information is written
5899 to inst.operands[i] and/or inst.relocs[0].
5900
5901 Preindexed addressing (.preind=1):
5902
5903 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5904 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5905 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5906 .shift_kind=shift .relocs[0].exp=shift_imm
5907
5908 These three may have a trailing ! which causes .writeback to be set also.
5909
5910 Postindexed addressing (.postind=1, .writeback=1):
5911
5912 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5913 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5914 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5915 .shift_kind=shift .relocs[0].exp=shift_imm
5916
5917 Unindexed addressing (.preind=0, .postind=0):
5918
5919 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5920
5921 Other:
5922
5923 [Rn]{!} shorthand for [Rn,#0]{!}
5924 =immediate .isreg=0 .relocs[0].exp=immediate
5925 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5926
5927 It is the caller's responsibility to check for addressing modes not
5928 supported by the instruction, and to set inst.relocs[0].type. */
5929
5930static parse_operand_result
5931parse_address_main (char **str, int i, int group_relocations,
5932 group_reloc_type group_type)
5933{
5934 char *p = *str;
5935 int reg;
5936
5937 if (skip_past_char (&p, '[') == FAIL)
5938 {
5939 if (skip_past_char (&p, '=') == FAIL)
5940 {
5941 /* Bare address - translate to PC-relative offset. */
5942 inst.relocs[0].pc_rel = 1;
5943 inst.operands[i].reg = REG_PC;
5944 inst.operands[i].isreg = 1;
5945 inst.operands[i].preind = 1;
5946
5947 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
5948 return PARSE_OPERAND_FAIL;
5949 }
5950 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
5951 /*allow_symbol_p=*/TRUE))
5952 return PARSE_OPERAND_FAIL;
5953
5954 *str = p;
5955 return PARSE_OPERAND_SUCCESS;
5956 }
5957
5958 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5959 skip_whitespace (p);
5960
5961 if (group_type == GROUP_MVE)
5962 {
5963 enum arm_reg_type rtype = REG_TYPE_MQ;
5964 struct neon_type_el et;
5965 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5966 {
5967 inst.operands[i].isquad = 1;
5968 }
5969 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5970 {
5971 inst.error = BAD_ADDR_MODE;
5972 return PARSE_OPERAND_FAIL;
5973 }
5974 }
5975 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5976 {
5977 if (group_type == GROUP_MVE)
5978 inst.error = BAD_ADDR_MODE;
5979 else
5980 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5981 return PARSE_OPERAND_FAIL;
5982 }
5983 inst.operands[i].reg = reg;
5984 inst.operands[i].isreg = 1;
5985
5986 if (skip_past_comma (&p) == SUCCESS)
5987 {
5988 inst.operands[i].preind = 1;
5989
5990 if (*p == '+') p++;
5991 else if (*p == '-') p++, inst.operands[i].negative = 1;
5992
5993 enum arm_reg_type rtype = REG_TYPE_MQ;
5994 struct neon_type_el et;
5995 if (group_type == GROUP_MVE
5996 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5997 {
5998 inst.operands[i].immisreg = 2;
5999 inst.operands[i].imm = reg;
6000
6001 if (skip_past_comma (&p) == SUCCESS)
6002 {
6003 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
6004 {
6005 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
6006 inst.relocs[0].exp.X_add_number = 0;
6007 }
6008 else
6009 return PARSE_OPERAND_FAIL;
6010 }
6011 }
6012 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
6013 {
6014 inst.operands[i].imm = reg;
6015 inst.operands[i].immisreg = 1;
6016
6017 if (skip_past_comma (&p) == SUCCESS)
6018 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
6019 return PARSE_OPERAND_FAIL;
6020 }
6021 else if (skip_past_char (&p, ':') == SUCCESS)
6022 {
6023 /* FIXME: '@' should be used here, but it's filtered out by generic
6024 code before we get to see it here. This may be subject to
6025 change. */
6026 parse_operand_result result = parse_neon_alignment (&p, i);
6027
6028 if (result != PARSE_OPERAND_SUCCESS)
6029 return result;
6030 }
6031 else
6032 {
6033 if (inst.operands[i].negative)
6034 {
6035 inst.operands[i].negative = 0;
6036 p--;
6037 }
6038
6039 if (group_relocations
6040 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
6041 {
6042 struct group_reloc_table_entry *entry;
6043
6044 /* Skip over the #: or : sequence. */
6045 if (*p == '#')
6046 p += 2;
6047 else
6048 p++;
6049
6050 /* Try to parse a group relocation. Anything else is an
6051 error. */
6052 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
6053 {
6054 inst.error = _("unknown group relocation");
6055 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
6056 }
6057
6058 /* We now have the group relocation table entry corresponding to
6059 the name in the assembler source. Next, we parse the
6060 expression. */
6061 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6062 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
6063
6064 /* Record the relocation type. */
6065 switch (group_type)
6066 {
6067 case GROUP_LDR:
6068 inst.relocs[0].type
6069 = (bfd_reloc_code_real_type) entry->ldr_code;
6070 break;
6071
6072 case GROUP_LDRS:
6073 inst.relocs[0].type
6074 = (bfd_reloc_code_real_type) entry->ldrs_code;
6075 break;
6076
6077 case GROUP_LDC:
6078 inst.relocs[0].type
6079 = (bfd_reloc_code_real_type) entry->ldc_code;
6080 break;
6081
6082 default:
6083 gas_assert (0);
6084 }
6085
6086 if (inst.relocs[0].type == 0)
6087 {
6088 inst.error = _("this group relocation is not allowed on this instruction");
6089 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
6090 }
6091 }
6092 else
6093 {
6094 char *q = p;
6095
6096 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6097 return PARSE_OPERAND_FAIL;
6098 /* If the offset is 0, find out if it's a +0 or -0. */
6099 if (inst.relocs[0].exp.X_op == O_constant
6100 && inst.relocs[0].exp.X_add_number == 0)
6101 {
6102 skip_whitespace (q);
6103 if (*q == '#')
6104 {
6105 q++;
6106 skip_whitespace (q);
6107 }
6108 if (*q == '-')
6109 inst.operands[i].negative = 1;
6110 }
6111 }
6112 }
6113 }
6114 else if (skip_past_char (&p, ':') == SUCCESS)
6115 {
6116 /* FIXME: '@' should be used here, but it's filtered out by generic code
6117 before we get to see it here. This may be subject to change. */
6118 parse_operand_result result = parse_neon_alignment (&p, i);
6119
6120 if (result != PARSE_OPERAND_SUCCESS)
6121 return result;
6122 }
6123
6124 if (skip_past_char (&p, ']') == FAIL)
6125 {
6126 inst.error = _("']' expected");
6127 return PARSE_OPERAND_FAIL;
6128 }
6129
6130 if (skip_past_char (&p, '!') == SUCCESS)
6131 inst.operands[i].writeback = 1;
6132
6133 else if (skip_past_comma (&p) == SUCCESS)
6134 {
6135 if (skip_past_char (&p, '{') == SUCCESS)
6136 {
6137 /* [Rn], {expr} - unindexed, with option */
6138 if (parse_immediate (&p, &inst.operands[i].imm,
6139 0, 255, TRUE) == FAIL)
6140 return PARSE_OPERAND_FAIL;
6141
6142 if (skip_past_char (&p, '}') == FAIL)
6143 {
6144 inst.error = _("'}' expected at end of 'option' field");
6145 return PARSE_OPERAND_FAIL;
6146 }
6147 if (inst.operands[i].preind)
6148 {
6149 inst.error = _("cannot combine index with option");
6150 return PARSE_OPERAND_FAIL;
6151 }
6152 *str = p;
6153 return PARSE_OPERAND_SUCCESS;
6154 }
6155 else
6156 {
6157 inst.operands[i].postind = 1;
6158 inst.operands[i].writeback = 1;
6159
6160 if (inst.operands[i].preind)
6161 {
6162 inst.error = _("cannot combine pre- and post-indexing");
6163 return PARSE_OPERAND_FAIL;
6164 }
6165
6166 if (*p == '+') p++;
6167 else if (*p == '-') p++, inst.operands[i].negative = 1;
6168
6169 enum arm_reg_type rtype = REG_TYPE_MQ;
6170 struct neon_type_el et;
6171 if (group_type == GROUP_MVE
6172 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
6173 {
6174 inst.operands[i].immisreg = 2;
6175 inst.operands[i].imm = reg;
6176 }
6177 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
6178 {
6179 /* We might be using the immediate for alignment already. If we
6180 are, OR the register number into the low-order bits. */
6181 if (inst.operands[i].immisalign)
6182 inst.operands[i].imm |= reg;
6183 else
6184 inst.operands[i].imm = reg;
6185 inst.operands[i].immisreg = 1;
6186
6187 if (skip_past_comma (&p) == SUCCESS)
6188 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
6189 return PARSE_OPERAND_FAIL;
6190 }
6191 else
6192 {
6193 char *q = p;
6194
6195 if (inst.operands[i].negative)
6196 {
6197 inst.operands[i].negative = 0;
6198 p--;
6199 }
6200 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6201 return PARSE_OPERAND_FAIL;
6202 /* If the offset is 0, find out if it's a +0 or -0. */
6203 if (inst.relocs[0].exp.X_op == O_constant
6204 && inst.relocs[0].exp.X_add_number == 0)
6205 {
6206 skip_whitespace (q);
6207 if (*q == '#')
6208 {
6209 q++;
6210 skip_whitespace (q);
6211 }
6212 if (*q == '-')
6213 inst.operands[i].negative = 1;
6214 }
6215 }
6216 }
6217 }
6218
6219 /* If at this point neither .preind nor .postind is set, we have a
6220 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6221 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6222 {
6223 inst.operands[i].preind = 1;
6224 inst.relocs[0].exp.X_op = O_constant;
6225 inst.relocs[0].exp.X_add_number = 0;
6226 }
6227 *str = p;
6228 return PARSE_OPERAND_SUCCESS;
6229}
6230
6231static int
6232parse_address (char **str, int i)
6233{
6234 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
6235 ? SUCCESS : FAIL;
6236}
6237
6238static parse_operand_result
6239parse_address_group_reloc (char **str, int i, group_reloc_type type)
6240{
6241 return parse_address_main (str, i, 1, type);
6242}
6243
6244/* Parse an operand for a MOVW or MOVT instruction. */
6245static int
6246parse_half (char **str)
6247{
6248 char * p;
6249
6250 p = *str;
6251 skip_past_char (&p, '#');
6252 if (strncasecmp (p, ":lower16:", 9) == 0)
6253 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
6254 else if (strncasecmp (p, ":upper16:", 9) == 0)
6255 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
6256
6257 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
6258 {
6259 p += 9;
6260 skip_whitespace (p);
6261 }
6262
6263 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6264 return FAIL;
6265
6266 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
6267 {
6268 if (inst.relocs[0].exp.X_op != O_constant)
6269 {
6270 inst.error = _("constant expression expected");
6271 return FAIL;
6272 }
6273 if (inst.relocs[0].exp.X_add_number < 0
6274 || inst.relocs[0].exp.X_add_number > 0xffff)
6275 {
6276 inst.error = _("immediate value out of range");
6277 return FAIL;
6278 }
6279 }
6280 *str = p;
6281 return SUCCESS;
6282}
6283
6284/* Miscellaneous. */
6285
6286/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6287 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6288static int
6289parse_psr (char **str, bfd_boolean lhs)
6290{
6291 char *p;
6292 unsigned long psr_field;
6293 const struct asm_psr *psr;
6294 char *start;
6295 bfd_boolean is_apsr = FALSE;
6296 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
6297
6298 /* PR gas/12698: If the user has specified -march=all then m_profile will
6299 be TRUE, but we want to ignore it in this case as we are building for any
6300 CPU type, including non-m variants. */
6301 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
6302 m_profile = FALSE;
6303
6304 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6305 feature for ease of use and backwards compatibility. */
6306 p = *str;
6307 if (strncasecmp (p, "SPSR", 4) == 0)
6308 {
6309 if (m_profile)
6310 goto unsupported_psr;
6311
6312 psr_field = SPSR_BIT;
6313 }
6314 else if (strncasecmp (p, "CPSR", 4) == 0)
6315 {
6316 if (m_profile)
6317 goto unsupported_psr;
6318
6319 psr_field = 0;
6320 }
6321 else if (strncasecmp (p, "APSR", 4) == 0)
6322 {
6323 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6324 and ARMv7-R architecture CPUs. */
6325 is_apsr = TRUE;
6326 psr_field = 0;
6327 }
6328 else if (m_profile)
6329 {
6330 start = p;
6331 do
6332 p++;
6333 while (ISALNUM (*p) || *p == '_');
6334
6335 if (strncasecmp (start, "iapsr", 5) == 0
6336 || strncasecmp (start, "eapsr", 5) == 0
6337 || strncasecmp (start, "xpsr", 4) == 0
6338 || strncasecmp (start, "psr", 3) == 0)
6339 p = start + strcspn (start, "rR") + 1;
6340
6341 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
6342 p - start);
6343
6344 if (!psr)
6345 return FAIL;
6346
6347 /* If APSR is being written, a bitfield may be specified. Note that
6348 APSR itself is handled above. */
6349 if (psr->field <= 3)
6350 {
6351 psr_field = psr->field;
6352 is_apsr = TRUE;
6353 goto check_suffix;
6354 }
6355
6356 *str = p;
6357 /* M-profile MSR instructions have the mask field set to "10", except
6358 *PSR variants which modify APSR, which may use a different mask (and
6359 have been handled already). Do that by setting the PSR_f field
6360 here. */
6361 return psr->field | (lhs ? PSR_f : 0);
6362 }
6363 else
6364 goto unsupported_psr;
6365
6366 p += 4;
6367 check_suffix:
6368 if (*p == '_')
6369 {
6370 /* A suffix follows. */
6371 p++;
6372 start = p;
6373
6374 do
6375 p++;
6376 while (ISALNUM (*p) || *p == '_');
6377
6378 if (is_apsr)
6379 {
6380 /* APSR uses a notation for bits, rather than fields. */
6381 unsigned int nzcvq_bits = 0;
6382 unsigned int g_bit = 0;
6383 char *bit;
6384
6385 for (bit = start; bit != p; bit++)
6386 {
6387 switch (TOLOWER (*bit))
6388 {
6389 case 'n':
6390 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6391 break;
6392
6393 case 'z':
6394 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6395 break;
6396
6397 case 'c':
6398 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6399 break;
6400
6401 case 'v':
6402 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6403 break;
6404
6405 case 'q':
6406 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6407 break;
6408
6409 case 'g':
6410 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6411 break;
6412
6413 default:
6414 inst.error = _("unexpected bit specified after APSR");
6415 return FAIL;
6416 }
6417 }
6418
6419 if (nzcvq_bits == 0x1f)
6420 psr_field |= PSR_f;
6421
6422 if (g_bit == 0x1)
6423 {
6424 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
6425 {
6426 inst.error = _("selected processor does not "
6427 "support DSP extension");
6428 return FAIL;
6429 }
6430
6431 psr_field |= PSR_s;
6432 }
6433
6434 if ((nzcvq_bits & 0x20) != 0
6435 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6436 || (g_bit & 0x2) != 0)
6437 {
6438 inst.error = _("bad bitmask specified after APSR");
6439 return FAIL;
6440 }
6441 }
6442 else
6443 {
6444 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
6445 p - start);
6446 if (!psr)
6447 goto error;
6448
6449 psr_field |= psr->field;
6450 }
6451 }
6452 else
6453 {
6454 if (ISALNUM (*p))
6455 goto error; /* Garbage after "[CS]PSR". */
6456
6457 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6458 is deprecated, but allow it anyway. */
6459 if (is_apsr && lhs)
6460 {
6461 psr_field |= PSR_f;
6462 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6463 "deprecated"));
6464 }
6465 else if (!m_profile)
6466 /* These bits are never right for M-profile devices: don't set them
6467 (only code paths which read/write APSR reach here). */
6468 psr_field |= (PSR_c | PSR_f);
6469 }
6470 *str = p;
6471 return psr_field;
6472
6473 unsupported_psr:
6474 inst.error = _("selected processor does not support requested special "
6475 "purpose register");
6476 return FAIL;
6477
6478 error:
6479 inst.error = _("flag for {c}psr instruction expected");
6480 return FAIL;
6481}
6482
6483static int
6484parse_sys_vldr_vstr (char **str)
6485{
6486 unsigned i;
6487 int val = FAIL;
6488 struct {
6489 const char *name;
6490 int regl;
6491 int regh;
6492 } sysregs[] = {
6493 {"FPSCR", 0x1, 0x0},
6494 {"FPSCR_nzcvqc", 0x2, 0x0},
6495 {"VPR", 0x4, 0x1},
6496 {"P0", 0x5, 0x1},
6497 {"FPCXTNS", 0x6, 0x1},
6498 {"FPCXTS", 0x7, 0x1}
6499 };
6500 char *op_end = strchr (*str, ',');
6501 size_t op_strlen = op_end - *str;
6502
6503 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6504 {
6505 if (!strncmp (*str, sysregs[i].name, op_strlen))
6506 {
6507 val = sysregs[i].regl | (sysregs[i].regh << 3);
6508 *str = op_end;
6509 break;
6510 }
6511 }
6512
6513 return val;
6514}
6515
6516/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6517 value suitable for splatting into the AIF field of the instruction. */
6518
6519static int
6520parse_cps_flags (char **str)
6521{
6522 int val = 0;
6523 int saw_a_flag = 0;
6524 char *s = *str;
6525
6526 for (;;)
6527 switch (*s++)
6528 {
6529 case '\0': case ',':
6530 goto done;
6531
6532 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6533 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6534 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6535
6536 default:
6537 inst.error = _("unrecognized CPS flag");
6538 return FAIL;
6539 }
6540
6541 done:
6542 if (saw_a_flag == 0)
6543 {
6544 inst.error = _("missing CPS flags");
6545 return FAIL;
6546 }
6547
6548 *str = s - 1;
6549 return val;
6550}
6551
6552/* Parse an endian specifier ("BE" or "LE", case insensitive);
6553 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6554
6555static int
6556parse_endian_specifier (char **str)
6557{
6558 int little_endian;
6559 char *s = *str;
6560
6561 if (strncasecmp (s, "BE", 2))
6562 little_endian = 0;
6563 else if (strncasecmp (s, "LE", 2))
6564 little_endian = 1;
6565 else
6566 {
6567 inst.error = _("valid endian specifiers are be or le");
6568 return FAIL;
6569 }
6570
6571 if (ISALNUM (s[2]) || s[2] == '_')
6572 {
6573 inst.error = _("valid endian specifiers are be or le");
6574 return FAIL;
6575 }
6576
6577 *str = s + 2;
6578 return little_endian;
6579}
6580
6581/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6582 value suitable for poking into the rotate field of an sxt or sxta
6583 instruction, or FAIL on error. */
6584
6585static int
6586parse_ror (char **str)
6587{
6588 int rot;
6589 char *s = *str;
6590
6591 if (strncasecmp (s, "ROR", 3) == 0)
6592 s += 3;
6593 else
6594 {
6595 inst.error = _("missing rotation field after comma");
6596 return FAIL;
6597 }
6598
6599 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6600 return FAIL;
6601
6602 switch (rot)
6603 {
6604 case 0: *str = s; return 0x0;
6605 case 8: *str = s; return 0x1;
6606 case 16: *str = s; return 0x2;
6607 case 24: *str = s; return 0x3;
6608
6609 default:
6610 inst.error = _("rotation can only be 0, 8, 16, or 24");
6611 return FAIL;
6612 }
6613}
6614
6615/* Parse a conditional code (from conds[] below). The value returned is in the
6616 range 0 .. 14, or FAIL. */
6617static int
6618parse_cond (char **str)
6619{
6620 char *q;
6621 const struct asm_cond *c;
6622 int n;
6623 /* Condition codes are always 2 characters, so matching up to
6624 3 characters is sufficient. */
6625 char cond[3];
6626
6627 q = *str;
6628 n = 0;
6629 while (ISALPHA (*q) && n < 3)
6630 {
6631 cond[n] = TOLOWER (*q);
6632 q++;
6633 n++;
6634 }
6635
6636 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6637 if (!c)
6638 {
6639 inst.error = _("condition required");
6640 return FAIL;
6641 }
6642
6643 *str = q;
6644 return c->value;
6645}
6646
6647/* Parse an option for a barrier instruction. Returns the encoding for the
6648 option, or FAIL. */
6649static int
6650parse_barrier (char **str)
6651{
6652 char *p, *q;
6653 const struct asm_barrier_opt *o;
6654
6655 p = q = *str;
6656 while (ISALPHA (*q))
6657 q++;
6658
6659 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6660 q - p);
6661 if (!o)
6662 return FAIL;
6663
6664 if (!mark_feature_used (&o->arch))
6665 return FAIL;
6666
6667 *str = q;
6668 return o->value;
6669}
6670
6671/* Parse the operands of a table branch instruction. Similar to a memory
6672 operand. */
6673static int
6674parse_tb (char **str)
6675{
6676 char * p = *str;
6677 int reg;
6678
6679 if (skip_past_char (&p, '[') == FAIL)
6680 {
6681 inst.error = _("'[' expected");
6682 return FAIL;
6683 }
6684
6685 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6686 {
6687 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6688 return FAIL;
6689 }
6690 inst.operands[0].reg = reg;
6691
6692 if (skip_past_comma (&p) == FAIL)
6693 {
6694 inst.error = _("',' expected");
6695 return FAIL;
6696 }
6697
6698 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6699 {
6700 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6701 return FAIL;
6702 }
6703 inst.operands[0].imm = reg;
6704
6705 if (skip_past_comma (&p) == SUCCESS)
6706 {
6707 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6708 return FAIL;
6709 if (inst.relocs[0].exp.X_add_number != 1)
6710 {
6711 inst.error = _("invalid shift");
6712 return FAIL;
6713 }
6714 inst.operands[0].shifted = 1;
6715 }
6716
6717 if (skip_past_char (&p, ']') == FAIL)
6718 {
6719 inst.error = _("']' expected");
6720 return FAIL;
6721 }
6722 *str = p;
6723 return SUCCESS;
6724}
6725
6726/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6727 information on the types the operands can take and how they are encoded.
6728 Up to four operands may be read; this function handles setting the
6729 ".present" field for each read operand itself.
6730 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6731 else returns FAIL. */
6732
6733static int
6734parse_neon_mov (char **str, int *which_operand)
6735{
6736 int i = *which_operand, val;
6737 enum arm_reg_type rtype;
6738 char *ptr = *str;
6739 struct neon_type_el optype;
6740
6741 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6742 {
6743 /* Cases 17 or 19. */
6744 inst.operands[i].reg = val;
6745 inst.operands[i].isvec = 1;
6746 inst.operands[i].isscalar = 2;
6747 inst.operands[i].vectype = optype;
6748 inst.operands[i++].present = 1;
6749
6750 if (skip_past_comma (&ptr) == FAIL)
6751 goto wanted_comma;
6752
6753 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6754 {
6755 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6756 inst.operands[i].reg = val;
6757 inst.operands[i].isreg = 1;
6758 inst.operands[i].present = 1;
6759 }
6760 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6761 {
6762 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6763 inst.operands[i].reg = val;
6764 inst.operands[i].isvec = 1;
6765 inst.operands[i].isscalar = 2;
6766 inst.operands[i].vectype = optype;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6773 goto wanted_arm;
6774
6775 inst.operands[i].reg = val;
6776 inst.operands[i].isreg = 1;
6777 inst.operands[i++].present = 1;
6778
6779 if (skip_past_comma (&ptr) == FAIL)
6780 goto wanted_comma;
6781
6782 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6783 goto wanted_arm;
6784
6785 inst.operands[i].reg = val;
6786 inst.operands[i].isreg = 1;
6787 inst.operands[i].present = 1;
6788 }
6789 else
6790 {
6791 first_error (_("expected ARM or MVE vector register"));
6792 return FAIL;
6793 }
6794 }
6795 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6796 {
6797 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6798 inst.operands[i].reg = val;
6799 inst.operands[i].isscalar = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i++].present = 1;
6802
6803 if (skip_past_comma (&ptr) == FAIL)
6804 goto wanted_comma;
6805
6806 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6807 goto wanted_arm;
6808
6809 inst.operands[i].reg = val;
6810 inst.operands[i].isreg = 1;
6811 inst.operands[i].present = 1;
6812 }
6813 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6814 != FAIL)
6815 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6816 != FAIL))
6817 {
6818 /* Cases 0, 1, 2, 3, 5 (D only). */
6819 if (skip_past_comma (&ptr) == FAIL)
6820 goto wanted_comma;
6821
6822 inst.operands[i].reg = val;
6823 inst.operands[i].isreg = 1;
6824 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6825 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].vectype = optype;
6828 inst.operands[i++].present = 1;
6829
6830 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6831 {
6832 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6833 Case 13: VMOV <Sd>, <Rm> */
6834 inst.operands[i].reg = val;
6835 inst.operands[i].isreg = 1;
6836 inst.operands[i].present = 1;
6837
6838 if (rtype == REG_TYPE_NQ)
6839 {
6840 first_error (_("can't use Neon quad register here"));
6841 return FAIL;
6842 }
6843 else if (rtype != REG_TYPE_VFS)
6844 {
6845 i++;
6846 if (skip_past_comma (&ptr) == FAIL)
6847 goto wanted_comma;
6848 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6849 goto wanted_arm;
6850 inst.operands[i].reg = val;
6851 inst.operands[i].isreg = 1;
6852 inst.operands[i].present = 1;
6853 }
6854 }
6855 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6856 &optype)) != FAIL)
6857 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype,
6858 &optype)) != FAIL))
6859 {
6860 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6861 Case 1: VMOV<c><q> <Dd>, <Dm>
6862 Case 8: VMOV.F32 <Sd>, <Sm>
6863 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6864
6865 inst.operands[i].reg = val;
6866 inst.operands[i].isreg = 1;
6867 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6868 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6869 inst.operands[i].isvec = 1;
6870 inst.operands[i].vectype = optype;
6871 inst.operands[i].present = 1;
6872
6873 if (skip_past_comma (&ptr) == SUCCESS)
6874 {
6875 /* Case 15. */
6876 i++;
6877
6878 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6879 goto wanted_arm;
6880
6881 inst.operands[i].reg = val;
6882 inst.operands[i].isreg = 1;
6883 inst.operands[i++].present = 1;
6884
6885 if (skip_past_comma (&ptr) == FAIL)
6886 goto wanted_comma;
6887
6888 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6889 goto wanted_arm;
6890
6891 inst.operands[i].reg = val;
6892 inst.operands[i].isreg = 1;
6893 inst.operands[i].present = 1;
6894 }
6895 }
6896 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6897 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6898 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6899 Case 10: VMOV.F32 <Sd>, #<imm>
6900 Case 11: VMOV.F64 <Dd>, #<imm> */
6901 inst.operands[i].immisfloat = 1;
6902 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6903 == SUCCESS)
6904 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6905 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6906 ;
6907 else
6908 {
6909 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6910 return FAIL;
6911 }
6912 }
6913 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6914 {
6915 /* Cases 6, 7, 16, 18. */
6916 inst.operands[i].reg = val;
6917 inst.operands[i].isreg = 1;
6918 inst.operands[i++].present = 1;
6919
6920 if (skip_past_comma (&ptr) == FAIL)
6921 goto wanted_comma;
6922
6923 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6924 {
6925 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6926 inst.operands[i].reg = val;
6927 inst.operands[i].isscalar = 2;
6928 inst.operands[i].present = 1;
6929 inst.operands[i].vectype = optype;
6930 }
6931 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6932 {
6933 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6934 inst.operands[i].reg = val;
6935 inst.operands[i].isscalar = 1;
6936 inst.operands[i].present = 1;
6937 inst.operands[i].vectype = optype;
6938 }
6939 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6940 {
6941 inst.operands[i].reg = val;
6942 inst.operands[i].isreg = 1;
6943 inst.operands[i++].present = 1;
6944
6945 if (skip_past_comma (&ptr) == FAIL)
6946 goto wanted_comma;
6947
6948 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6949 != FAIL)
6950 {
6951 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6952
6953 inst.operands[i].reg = val;
6954 inst.operands[i].isreg = 1;
6955 inst.operands[i].isvec = 1;
6956 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6957 inst.operands[i].vectype = optype;
6958 inst.operands[i].present = 1;
6959
6960 if (rtype == REG_TYPE_VFS)
6961 {
6962 /* Case 14. */
6963 i++;
6964 if (skip_past_comma (&ptr) == FAIL)
6965 goto wanted_comma;
6966 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6967 &optype)) == FAIL)
6968 {
6969 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6970 return FAIL;
6971 }
6972 inst.operands[i].reg = val;
6973 inst.operands[i].isreg = 1;
6974 inst.operands[i].isvec = 1;
6975 inst.operands[i].issingle = 1;
6976 inst.operands[i].vectype = optype;
6977 inst.operands[i].present = 1;
6978 }
6979 }
6980 else
6981 {
6982 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6983 != FAIL)
6984 {
6985 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6986 inst.operands[i].reg = val;
6987 inst.operands[i].isvec = 1;
6988 inst.operands[i].isscalar = 2;
6989 inst.operands[i].vectype = optype;
6990 inst.operands[i++].present = 1;
6991
6992 if (skip_past_comma (&ptr) == FAIL)
6993 goto wanted_comma;
6994
6995 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6996 == FAIL)
6997 {
6998 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6999 return FAIL;
7000 }
7001 inst.operands[i].reg = val;
7002 inst.operands[i].isvec = 1;
7003 inst.operands[i].isscalar = 2;
7004 inst.operands[i].vectype = optype;
7005 inst.operands[i].present = 1;
7006 }
7007 else
7008 {
7009 first_error (_("VFP single, double or MVE vector register"
7010 " expected"));
7011 return FAIL;
7012 }
7013 }
7014 }
7015 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
7016 != FAIL)
7017 {
7018 /* Case 13. */
7019 inst.operands[i].reg = val;
7020 inst.operands[i].isreg = 1;
7021 inst.operands[i].isvec = 1;
7022 inst.operands[i].issingle = 1;
7023 inst.operands[i].vectype = optype;
7024 inst.operands[i].present = 1;
7025 }
7026 }
7027 else
7028 {
7029 first_error (_("parse error"));
7030 return FAIL;
7031 }
7032
7033 /* Successfully parsed the operands. Update args. */
7034 *which_operand = i;
7035 *str = ptr;
7036 return SUCCESS;
7037
7038 wanted_comma:
7039 first_error (_("expected comma"));
7040 return FAIL;
7041
7042 wanted_arm:
7043 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
7044 return FAIL;
7045}
7046
7047/* Use this macro when the operand constraints are different
7048 for ARM and THUMB (e.g. ldrd). */
7049#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
7050 ((arm_operand) | ((thumb_operand) << 16))
7051
7052/* Matcher codes for parse_operands. */
7053enum operand_parse_code
7054{
7055 OP_stop, /* end of line */
7056
7057 OP_RR, /* ARM register */
7058 OP_RRnpc, /* ARM register, not r15 */
7059 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
7060 OP_RRnpcb, /* ARM register, not r15, in square brackets */
7061 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
7062 optional trailing ! */
7063 OP_RRw, /* ARM register, not r15, optional trailing ! */
7064 OP_RCP, /* Coprocessor number */
7065 OP_RCN, /* Coprocessor register */
7066 OP_RF, /* FPA register */
7067 OP_RVS, /* VFP single precision register */
7068 OP_RVD, /* VFP double precision register (0..15) */
7069 OP_RND, /* Neon double precision register (0..31) */
7070 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
7071 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
7072 */
7073 OP_RNSDMQR, /* Neon single or double precision, MVE vector or ARM register.
7074 */
7075 OP_RNQ, /* Neon quad precision register */
7076 OP_RNQMQ, /* Neon quad or MVE vector register. */
7077 OP_RVSD, /* VFP single or double precision register */
7078 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
7079 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
7080 OP_RNSD, /* Neon single or double precision register */
7081 OP_RNDQ, /* Neon double or quad precision register */
7082 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
7083 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
7084 OP_RNSDQ, /* Neon single, double or quad precision register */
7085 OP_RNSC, /* Neon scalar D[X] */
7086 OP_RVC, /* VFP control register */
7087 OP_RMF, /* Maverick F register */
7088 OP_RMD, /* Maverick D register */
7089 OP_RMFX, /* Maverick FX register */
7090 OP_RMDX, /* Maverick DX register */
7091 OP_RMAX, /* Maverick AX register */
7092 OP_RMDS, /* Maverick DSPSC register */
7093 OP_RIWR, /* iWMMXt wR register */
7094 OP_RIWC, /* iWMMXt wC register */
7095 OP_RIWG, /* iWMMXt wCG register */
7096 OP_RXA, /* XScale accumulator register */
7097
7098 OP_RNSDMQ, /* Neon single, double or MVE vector register */
7099 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
7100 */
7101 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
7102 GPR (no SP/SP) */
7103 OP_RMQ, /* MVE vector register. */
7104 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
7105 OP_RMQRR, /* MVE vector or ARM register. */
7106
7107 /* New operands for Armv8.1-M Mainline. */
7108 OP_LR, /* ARM LR register */
7109 OP_RRe, /* ARM register, only even numbered. */
7110 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
7111 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
7112 OP_RR_ZR, /* ARM register or ZR but no PC */
7113
7114 OP_REGLST, /* ARM register list */
7115 OP_CLRMLST, /* CLRM register list */
7116 OP_VRSLST, /* VFP single-precision register list */
7117 OP_VRDLST, /* VFP double-precision register list */
7118 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
7119 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
7120 OP_NSTRLST, /* Neon element/structure list */
7121 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
7122 OP_MSTRLST2, /* MVE vector list with two elements. */
7123 OP_MSTRLST4, /* MVE vector list with four elements. */
7124
7125 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
7126 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
7127 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
7128 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
7129 zero. */
7130 OP_RR_RNSC, /* ARM reg or Neon scalar. */
7131 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
7132 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
7133 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
7134 */
7135 OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon
7136 scalar, or ARM register. */
7137 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
7138 OP_RNDQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, or ARM register. */
7139 OP_RNDQMQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, MVE vector or ARM
7140 register. */
7141 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
7142 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
7143 OP_VMOV, /* Neon VMOV operands. */
7144 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
7145 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
7146 OP_RNDQMQ_Ibig,
7147 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
7148 OP_RNDQMQ_I63b_RR, /* Neon D or Q reg, immediate for shift, MVE vector or
7149 ARM register. */
7150 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
7151 OP_VLDR, /* VLDR operand. */
7152
7153 OP_I0, /* immediate zero */
7154 OP_I7, /* immediate value 0 .. 7 */
7155 OP_I15, /* 0 .. 15 */
7156 OP_I16, /* 1 .. 16 */
7157 OP_I16z, /* 0 .. 16 */
7158 OP_I31, /* 0 .. 31 */
7159 OP_I31w, /* 0 .. 31, optional trailing ! */
7160 OP_I32, /* 1 .. 32 */
7161 OP_I32z, /* 0 .. 32 */
7162 OP_I48_I64, /* 48 or 64 */
7163 OP_I63, /* 0 .. 63 */
7164 OP_I63s, /* -64 .. 63 */
7165 OP_I64, /* 1 .. 64 */
7166 OP_I64z, /* 0 .. 64 */
7167 OP_I127, /* 0 .. 127 */
7168 OP_I255, /* 0 .. 255 */
7169 OP_I511, /* 0 .. 511 */
7170 OP_I4095, /* 0 .. 4095 */
7171 OP_I8191, /* 0 .. 8191 */
7172 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
7173 OP_I7b, /* 0 .. 7 */
7174 OP_I15b, /* 0 .. 15 */
7175 OP_I31b, /* 0 .. 31 */
7176
7177 OP_SH, /* shifter operand */
7178 OP_SHG, /* shifter operand with possible group relocation */
7179 OP_ADDR, /* Memory address expression (any mode) */
7180 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
7181 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
7182 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
7183 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
7184 OP_EXP, /* arbitrary expression */
7185 OP_EXPi, /* same, with optional immediate prefix */
7186 OP_EXPr, /* same, with optional relocation suffix */
7187 OP_EXPs, /* same, with optional non-first operand relocation suffix */
7188 OP_HALF, /* 0 .. 65535 or low/high reloc. */
7189 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
7190 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
7191
7192 OP_CPSF, /* CPS flags */
7193 OP_ENDI, /* Endianness specifier */
7194 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7195 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
7196 OP_COND, /* conditional code */
7197 OP_TB, /* Table branch. */
7198
7199 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7200
7201 OP_RRnpc_I0, /* ARM register or literal 0 */
7202 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
7203 OP_RR_EXi, /* ARM register or expression with imm prefix */
7204 OP_RF_IF, /* FPA register or immediate */
7205 OP_RIWR_RIWC, /* iWMMXt R or C reg */
7206 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
7207
7208 /* Optional operands. */
7209 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7210 OP_oI31b, /* 0 .. 31 */
7211 OP_oI32b, /* 1 .. 32 */
7212 OP_oI32z, /* 0 .. 32 */
7213 OP_oIffffb, /* 0 .. 65535 */
7214 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7215
7216 OP_oRR, /* ARM register */
7217 OP_oLR, /* ARM LR register */
7218 OP_oRRnpc, /* ARM register, not the PC */
7219 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7220 OP_oRRw, /* ARM register, not r15, optional trailing ! */
7221 OP_oRND, /* Optional Neon double precision register */
7222 OP_oRNQ, /* Optional Neon quad precision register */
7223 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
7224 OP_oRNDQ, /* Optional Neon double or quad precision register */
7225 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
7226 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7227 register. */
7228 OP_oRNSDMQ, /* Optional single, double register or MVE vector
7229 register. */
7230 OP_oSHll, /* LSL immediate */
7231 OP_oSHar, /* ASR immediate */
7232 OP_oSHllar, /* LSL or ASR immediate */
7233 OP_oROR, /* ROR 0/8/16/24 */
7234 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
7235
7236 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7237
7238 /* Some pre-defined mixed (ARM/THUMB) operands. */
7239 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7240 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7241 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7242
7243 OP_FIRST_OPTIONAL = OP_oI7b
7244};
7245
7246/* Generic instruction operand parser. This does no encoding and no
7247 semantic validation; it merely squirrels values away in the inst
7248 structure. Returns SUCCESS or FAIL depending on whether the
7249 specified grammar matched. */
7250static int
7251parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
7252{
7253 unsigned const int *upat = pattern;
7254 char *backtrack_pos = 0;
7255 const char *backtrack_error = 0;
7256 int i, val = 0, backtrack_index = 0;
7257 enum arm_reg_type rtype;
7258 parse_operand_result result;
7259 unsigned int op_parse_code;
7260 bfd_boolean partial_match;
7261
7262#define po_char_or_fail(chr) \
7263 do \
7264 { \
7265 if (skip_past_char (&str, chr) == FAIL) \
7266 goto bad_args; \
7267 } \
7268 while (0)
7269
7270#define po_reg_or_fail(regtype) \
7271 do \
7272 { \
7273 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7274 & inst.operands[i].vectype); \
7275 if (val == FAIL) \
7276 { \
7277 first_error (_(reg_expected_msgs[regtype])); \
7278 goto failure; \
7279 } \
7280 inst.operands[i].reg = val; \
7281 inst.operands[i].isreg = 1; \
7282 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7283 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7284 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7285 || rtype == REG_TYPE_VFD \
7286 || rtype == REG_TYPE_NQ); \
7287 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7288 } \
7289 while (0)
7290
7291#define po_reg_or_goto(regtype, label) \
7292 do \
7293 { \
7294 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7295 & inst.operands[i].vectype); \
7296 if (val == FAIL) \
7297 goto label; \
7298 \
7299 inst.operands[i].reg = val; \
7300 inst.operands[i].isreg = 1; \
7301 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7302 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7303 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7304 || rtype == REG_TYPE_VFD \
7305 || rtype == REG_TYPE_NQ); \
7306 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7307 } \
7308 while (0)
7309
7310#define po_imm_or_fail(min, max, popt) \
7311 do \
7312 { \
7313 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7314 goto failure; \
7315 inst.operands[i].imm = val; \
7316 } \
7317 while (0)
7318
7319#define po_imm1_or_imm2_or_fail(imm1, imm2, popt) \
7320 do \
7321 { \
7322 expressionS exp; \
7323 my_get_expression (&exp, &str, popt); \
7324 if (exp.X_op != O_constant) \
7325 { \
7326 inst.error = _("constant expression required"); \
7327 goto failure; \
7328 } \
7329 if (exp.X_add_number != imm1 && exp.X_add_number != imm2) \
7330 { \
7331 inst.error = _("immediate value 48 or 64 expected"); \
7332 goto failure; \
7333 } \
7334 inst.operands[i].imm = exp.X_add_number; \
7335 } \
7336 while (0)
7337
7338#define po_scalar_or_goto(elsz, label, reg_type) \
7339 do \
7340 { \
7341 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7342 reg_type); \
7343 if (val == FAIL) \
7344 goto label; \
7345 inst.operands[i].reg = val; \
7346 inst.operands[i].isscalar = 1; \
7347 } \
7348 while (0)
7349
7350#define po_misc_or_fail(expr) \
7351 do \
7352 { \
7353 if (expr) \
7354 goto failure; \
7355 } \
7356 while (0)
7357
7358#define po_misc_or_fail_no_backtrack(expr) \
7359 do \
7360 { \
7361 result = expr; \
7362 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7363 backtrack_pos = 0; \
7364 if (result != PARSE_OPERAND_SUCCESS) \
7365 goto failure; \
7366 } \
7367 while (0)
7368
7369#define po_barrier_or_imm(str) \
7370 do \
7371 { \
7372 val = parse_barrier (&str); \
7373 if (val == FAIL && ! ISALPHA (*str)) \
7374 goto immediate; \
7375 if (val == FAIL \
7376 /* ISB can only take SY as an option. */ \
7377 || ((inst.instruction & 0xf0) == 0x60 \
7378 && val != 0xf)) \
7379 { \
7380 inst.error = _("invalid barrier type"); \
7381 backtrack_pos = 0; \
7382 goto failure; \
7383 } \
7384 } \
7385 while (0)
7386
7387 skip_whitespace (str);
7388
7389 for (i = 0; upat[i] != OP_stop; i++)
7390 {
7391 op_parse_code = upat[i];
7392 if (op_parse_code >= 1<<16)
7393 op_parse_code = thumb ? (op_parse_code >> 16)
7394 : (op_parse_code & ((1<<16)-1));
7395
7396 if (op_parse_code >= OP_FIRST_OPTIONAL)
7397 {
7398 /* Remember where we are in case we need to backtrack. */
7399 backtrack_pos = str;
7400 backtrack_error = inst.error;
7401 backtrack_index = i;
7402 }
7403
7404 if (i > 0 && (i > 1 || inst.operands[0].present))
7405 po_char_or_fail (',');
7406
7407 switch (op_parse_code)
7408 {
7409 /* Registers */
7410 case OP_oRRnpc:
7411 case OP_oRRnpcsp:
7412 case OP_RRnpc:
7413 case OP_RRnpcsp:
7414 case OP_oRR:
7415 case OP_RRe:
7416 case OP_RRo:
7417 case OP_LR:
7418 case OP_oLR:
7419 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7420 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7421 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7422 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7423 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7424 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
7425 case OP_oRND:
7426 case OP_RNSDMQR:
7427 po_reg_or_goto (REG_TYPE_VFS, try_rndmqr);
7428 break;
7429 try_rndmqr:
7430 case OP_RNDMQR:
7431 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7432 break;
7433 try_rndmq:
7434 case OP_RNDMQ:
7435 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7436 break;
7437 try_rnd:
7438 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
7439 case OP_RVC:
7440 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7441 break;
7442 /* Also accept generic coprocessor regs for unknown registers. */
7443 coproc_reg:
7444 po_reg_or_goto (REG_TYPE_CN, vpr_po);
7445 break;
7446 /* Also accept P0 or p0 for VPR.P0. Since P0 is already an
7447 existing register with a value of 0, this seems like the
7448 best way to parse P0. */
7449 vpr_po:
7450 if (strncasecmp (str, "P0", 2) == 0)
7451 {
7452 str += 2;
7453 inst.operands[i].isreg = 1;
7454 inst.operands[i].reg = 13;
7455 }
7456 else
7457 goto failure;
7458 break;
7459 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7460 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7461 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7462 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7463 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7464 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7465 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7466 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7467 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7468 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
7469 case OP_oRNQ:
7470 case OP_RNQMQ:
7471 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7472 break;
7473 try_nq:
7474 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
7475 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7476 case OP_RNDQMQR:
7477 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7478 break;
7479 try_rndqmq:
7480 case OP_oRNDQMQ:
7481 case OP_RNDQMQ:
7482 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7483 break;
7484 try_rndq:
7485 case OP_oRNDQ:
7486 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
7487 case OP_RVSDMQ:
7488 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7489 break;
7490 try_rvsd:
7491 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
7492 case OP_RVSD_COND:
7493 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7494 break;
7495 case OP_oRNSDMQ:
7496 case OP_RNSDMQ:
7497 po_reg_or_goto (REG_TYPE_NSD, try_mq2);
7498 break;
7499 try_mq2:
7500 po_reg_or_fail (REG_TYPE_MQ);
7501 break;
7502 case OP_oRNSDQ:
7503 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
7504 case OP_RNSDQMQR:
7505 po_reg_or_goto (REG_TYPE_RN, try_mq);
7506 break;
7507 try_mq:
7508 case OP_oRNSDQMQ:
7509 case OP_RNSDQMQ:
7510 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7511 break;
7512 try_nsdq2:
7513 po_reg_or_fail (REG_TYPE_NSDQ);
7514 inst.error = 0;
7515 break;
7516 case OP_RMQRR:
7517 po_reg_or_goto (REG_TYPE_RN, try_rmq);
7518 break;
7519 try_rmq:
7520 case OP_RMQ:
7521 po_reg_or_fail (REG_TYPE_MQ);
7522 break;
7523 /* Neon scalar. Using an element size of 8 means that some invalid
7524 scalars are accepted here, so deal with those in later code. */
7525 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
7526
7527 case OP_RNDQ_I0:
7528 {
7529 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7530 break;
7531 try_imm0:
7532 po_imm_or_fail (0, 0, TRUE);
7533 }
7534 break;
7535
7536 case OP_RVSD_I0:
7537 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7538 break;
7539
7540 case OP_RSVDMQ_FI0:
7541 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7542 break;
7543 try_rsvd_fi0:
7544 case OP_RSVD_FI0:
7545 {
7546 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7547 break;
7548 try_ifimm0:
7549 if (parse_ifimm_zero (&str))
7550 inst.operands[i].imm = 0;
7551 else
7552 {
7553 inst.error
7554 = _("only floating point zero is allowed as immediate value");
7555 goto failure;
7556 }
7557 }
7558 break;
7559
7560 case OP_RR_RNSC:
7561 {
7562 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
7563 break;
7564 try_rr:
7565 po_reg_or_fail (REG_TYPE_RN);
7566 }
7567 break;
7568
7569 case OP_RNSDQ_RNSC_MQ_RR:
7570 po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq);
7571 break;
7572 try_rnsdq_rnsc_mq:
7573 case OP_RNSDQ_RNSC_MQ:
7574 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7575 break;
7576 try_rnsdq_rnsc:
7577 case OP_RNSDQ_RNSC:
7578 {
7579 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7580 inst.error = 0;
7581 break;
7582 try_nsdq:
7583 po_reg_or_fail (REG_TYPE_NSDQ);
7584 inst.error = 0;
7585 }
7586 break;
7587
7588 case OP_RNSD_RNSC:
7589 {
7590 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
7591 break;
7592 try_s_scalar:
7593 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
7594 break;
7595 try_nsd:
7596 po_reg_or_fail (REG_TYPE_NSD);
7597 }
7598 break;
7599
7600 case OP_RNDQMQ_RNSC_RR:
7601 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc_rr);
7602 break;
7603 try_rndq_rnsc_rr:
7604 case OP_RNDQ_RNSC_RR:
7605 po_reg_or_goto (REG_TYPE_RN, try_rndq_rnsc);
7606 break;
7607 case OP_RNDQMQ_RNSC:
7608 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7609 break;
7610 try_rndq_rnsc:
7611 case OP_RNDQ_RNSC:
7612 {
7613 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
7614 break;
7615 try_ndq:
7616 po_reg_or_fail (REG_TYPE_NDQ);
7617 }
7618 break;
7619
7620 case OP_RND_RNSC:
7621 {
7622 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
7623 break;
7624 try_vfd:
7625 po_reg_or_fail (REG_TYPE_VFD);
7626 }
7627 break;
7628
7629 case OP_VMOV:
7630 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7631 not careful then bad things might happen. */
7632 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7633 break;
7634
7635 case OP_RNDQMQ_Ibig:
7636 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7637 break;
7638 try_rndq_ibig:
7639 case OP_RNDQ_Ibig:
7640 {
7641 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7642 break;
7643 try_immbig:
7644 /* There's a possibility of getting a 64-bit immediate here, so
7645 we need special handling. */
7646 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7647 == FAIL)
7648 {
7649 inst.error = _("immediate value is out of range");
7650 goto failure;
7651 }
7652 }
7653 break;
7654
7655 case OP_RNDQMQ_I63b_RR:
7656 po_reg_or_goto (REG_TYPE_MQ, try_rndq_i63b_rr);
7657 break;
7658 try_rndq_i63b_rr:
7659 po_reg_or_goto (REG_TYPE_RN, try_rndq_i63b);
7660 break;
7661 try_rndq_i63b:
7662 case OP_RNDQ_I63b:
7663 {
7664 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7665 break;
7666 try_shimm:
7667 po_imm_or_fail (0, 63, TRUE);
7668 }
7669 break;
7670
7671 case OP_RRnpcb:
7672 po_char_or_fail ('[');
7673 po_reg_or_fail (REG_TYPE_RN);
7674 po_char_or_fail (']');
7675 break;
7676
7677 case OP_RRnpctw:
7678 case OP_RRw:
7679 case OP_oRRw:
7680 po_reg_or_fail (REG_TYPE_RN);
7681 if (skip_past_char (&str, '!') == SUCCESS)
7682 inst.operands[i].writeback = 1;
7683 break;
7684
7685 /* Immediates */
7686 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7687 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7688 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
7689 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
7690 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7691 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
7692 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
7693 case OP_I48_I64: po_imm1_or_imm2_or_fail (48, 64, FALSE); break;
7694 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
7695 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7696 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7697 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
7698 case OP_I127: po_imm_or_fail ( 0, 127, FALSE); break;
7699 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
7700 case OP_I511: po_imm_or_fail ( 0, 511, FALSE); break;
7701 case OP_I4095: po_imm_or_fail ( 0, 4095, FALSE); break;
7702 case OP_I8191: po_imm_or_fail ( 0, 8191, FALSE); break;
7703 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7704 case OP_oI7b:
7705 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7706 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7707 case OP_oI31b:
7708 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
7709 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7710 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
7711 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7712
7713 /* Immediate variants */
7714 case OP_oI255c:
7715 po_char_or_fail ('{');
7716 po_imm_or_fail (0, 255, TRUE);
7717 po_char_or_fail ('}');
7718 break;
7719
7720 case OP_I31w:
7721 /* The expression parser chokes on a trailing !, so we have
7722 to find it first and zap it. */
7723 {
7724 char *s = str;
7725 while (*s && *s != ',')
7726 s++;
7727 if (s[-1] == '!')
7728 {
7729 s[-1] = '\0';
7730 inst.operands[i].writeback = 1;
7731 }
7732 po_imm_or_fail (0, 31, TRUE);
7733 if (str == s - 1)
7734 str = s;
7735 }
7736 break;
7737
7738 /* Expressions */
7739 case OP_EXPi: EXPi:
7740 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7741 GE_OPT_PREFIX));
7742 break;
7743
7744 case OP_EXP:
7745 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7746 GE_NO_PREFIX));
7747 break;
7748
7749 case OP_EXPr: EXPr:
7750 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7751 GE_NO_PREFIX));
7752 if (inst.relocs[0].exp.X_op == O_symbol)
7753 {
7754 val = parse_reloc (&str);
7755 if (val == -1)
7756 {
7757 inst.error = _("unrecognized relocation suffix");
7758 goto failure;
7759 }
7760 else if (val != BFD_RELOC_UNUSED)
7761 {
7762 inst.operands[i].imm = val;
7763 inst.operands[i].hasreloc = 1;
7764 }
7765 }
7766 break;
7767
7768 case OP_EXPs:
7769 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7770 GE_NO_PREFIX));
7771 if (inst.relocs[i].exp.X_op == O_symbol)
7772 {
7773 inst.operands[i].hasreloc = 1;
7774 }
7775 else if (inst.relocs[i].exp.X_op == O_constant)
7776 {
7777 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7778 inst.operands[i].hasreloc = 0;
7779 }
7780 break;
7781
7782 /* Operand for MOVW or MOVT. */
7783 case OP_HALF:
7784 po_misc_or_fail (parse_half (&str));
7785 break;
7786
7787 /* Register or expression. */
7788 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7789 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7790
7791 /* Register or immediate. */
7792 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7793 I0: po_imm_or_fail (0, 0, FALSE); break;
7794
7795 case OP_RRnpcsp_I32: po_reg_or_goto (REG_TYPE_RN, I32); break;
7796 I32: po_imm_or_fail (1, 32, FALSE); break;
7797
7798 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7799 IF:
7800 if (!is_immediate_prefix (*str))
7801 goto bad_args;
7802 str++;
7803 val = parse_fpa_immediate (&str);
7804 if (val == FAIL)
7805 goto failure;
7806 /* FPA immediates are encoded as registers 8-15.
7807 parse_fpa_immediate has already applied the offset. */
7808 inst.operands[i].reg = val;
7809 inst.operands[i].isreg = 1;
7810 break;
7811
7812 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7813 I32z: po_imm_or_fail (0, 32, FALSE); break;
7814
7815 /* Two kinds of register. */
7816 case OP_RIWR_RIWC:
7817 {
7818 struct reg_entry *rege = arm_reg_parse_multi (&str);
7819 if (!rege
7820 || (rege->type != REG_TYPE_MMXWR
7821 && rege->type != REG_TYPE_MMXWC
7822 && rege->type != REG_TYPE_MMXWCG))
7823 {
7824 inst.error = _("iWMMXt data or control register expected");
7825 goto failure;
7826 }
7827 inst.operands[i].reg = rege->number;
7828 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7829 }
7830 break;
7831
7832 case OP_RIWC_RIWG:
7833 {
7834 struct reg_entry *rege = arm_reg_parse_multi (&str);
7835 if (!rege
7836 || (rege->type != REG_TYPE_MMXWC
7837 && rege->type != REG_TYPE_MMXWCG))
7838 {
7839 inst.error = _("iWMMXt control register expected");
7840 goto failure;
7841 }
7842 inst.operands[i].reg = rege->number;
7843 inst.operands[i].isreg = 1;
7844 }
7845 break;
7846
7847 /* Misc */
7848 case OP_CPSF: val = parse_cps_flags (&str); break;
7849 case OP_ENDI: val = parse_endian_specifier (&str); break;
7850 case OP_oROR: val = parse_ror (&str); break;
7851 try_cond:
7852 case OP_COND: val = parse_cond (&str); break;
7853 case OP_oBARRIER_I15:
7854 po_barrier_or_imm (str); break;
7855 immediate:
7856 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7857 goto failure;
7858 break;
7859
7860 case OP_wPSR:
7861 case OP_rPSR:
7862 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7863 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7864 {
7865 inst.error = _("Banked registers are not available with this "
7866 "architecture.");
7867 goto failure;
7868 }
7869 break;
7870 try_psr:
7871 val = parse_psr (&str, op_parse_code == OP_wPSR);
7872 break;
7873
7874 case OP_VLDR:
7875 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7876 break;
7877 try_sysreg:
7878 val = parse_sys_vldr_vstr (&str);
7879 break;
7880
7881 case OP_APSR_RR:
7882 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7883 break;
7884 try_apsr:
7885 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7886 instruction). */
7887 if (strncasecmp (str, "APSR_", 5) == 0)
7888 {
7889 unsigned found = 0;
7890 str += 5;
7891 while (found < 15)
7892 switch (*str++)
7893 {
7894 case 'c': found = (found & 1) ? 16 : found | 1; break;
7895 case 'n': found = (found & 2) ? 16 : found | 2; break;
7896 case 'z': found = (found & 4) ? 16 : found | 4; break;
7897 case 'v': found = (found & 8) ? 16 : found | 8; break;
7898 default: found = 16;
7899 }
7900 if (found != 15)
7901 goto failure;
7902 inst.operands[i].isvec = 1;
7903 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7904 inst.operands[i].reg = REG_PC;
7905 }
7906 else
7907 goto failure;
7908 break;
7909
7910 case OP_TB:
7911 po_misc_or_fail (parse_tb (&str));
7912 break;
7913
7914 /* Register lists. */
7915 case OP_REGLST:
7916 val = parse_reg_list (&str, REGLIST_RN);
7917 if (*str == '^')
7918 {
7919 inst.operands[i].writeback = 1;
7920 str++;
7921 }
7922 break;
7923
7924 case OP_CLRMLST:
7925 val = parse_reg_list (&str, REGLIST_CLRM);
7926 break;
7927
7928 case OP_VRSLST:
7929 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7930 &partial_match);
7931 break;
7932
7933 case OP_VRDLST:
7934 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7935 &partial_match);
7936 break;
7937
7938 case OP_VRSDLST:
7939 /* Allow Q registers too. */
7940 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7941 REGLIST_NEON_D, &partial_match);
7942 if (val == FAIL)
7943 {
7944 inst.error = NULL;
7945 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7946 REGLIST_VFP_S, &partial_match);
7947 inst.operands[i].issingle = 1;
7948 }
7949 break;
7950
7951 case OP_VRSDVLST:
7952 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7953 REGLIST_VFP_D_VPR, &partial_match);
7954 if (val == FAIL && !partial_match)
7955 {
7956 inst.error = NULL;
7957 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7958 REGLIST_VFP_S_VPR, &partial_match);
7959 inst.operands[i].issingle = 1;
7960 }
7961 break;
7962
7963 case OP_NRDLST:
7964 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7965 REGLIST_NEON_D, &partial_match);
7966 break;
7967
7968 case OP_MSTRLST4:
7969 case OP_MSTRLST2:
7970 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7971 1, &inst.operands[i].vectype);
7972 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7973 goto failure;
7974 break;
7975 case OP_NSTRLST:
7976 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7977 0, &inst.operands[i].vectype);
7978 break;
7979
7980 /* Addressing modes */
7981 case OP_ADDRMVE:
7982 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7983 break;
7984
7985 case OP_ADDR:
7986 po_misc_or_fail (parse_address (&str, i));
7987 break;
7988
7989 case OP_ADDRGLDR:
7990 po_misc_or_fail_no_backtrack (
7991 parse_address_group_reloc (&str, i, GROUP_LDR));
7992 break;
7993
7994 case OP_ADDRGLDRS:
7995 po_misc_or_fail_no_backtrack (
7996 parse_address_group_reloc (&str, i, GROUP_LDRS));
7997 break;
7998
7999 case OP_ADDRGLDC:
8000 po_misc_or_fail_no_backtrack (
8001 parse_address_group_reloc (&str, i, GROUP_LDC));
8002 break;
8003
8004 case OP_SH:
8005 po_misc_or_fail (parse_shifter_operand (&str, i));
8006 break;
8007
8008 case OP_SHG:
8009 po_misc_or_fail_no_backtrack (
8010 parse_shifter_operand_group_reloc (&str, i));
8011 break;
8012
8013 case OP_oSHll:
8014 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
8015 break;
8016
8017 case OP_oSHar:
8018 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
8019 break;
8020
8021 case OP_oSHllar:
8022 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
8023 break;
8024
8025 case OP_RMQRZ:
8026 case OP_oRMQRZ:
8027 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
8028 break;
8029
8030 case OP_RR_ZR:
8031 try_rr_zr:
8032 po_reg_or_goto (REG_TYPE_RN, ZR);
8033 break;
8034 ZR:
8035 po_reg_or_fail (REG_TYPE_ZR);
8036 break;
8037
8038 default:
8039 as_fatal (_("unhandled operand code %d"), op_parse_code);
8040 }
8041
8042 /* Various value-based sanity checks and shared operations. We
8043 do not signal immediate failures for the register constraints;
8044 this allows a syntax error to take precedence. */
8045 switch (op_parse_code)
8046 {
8047 case OP_oRRnpc:
8048 case OP_RRnpc:
8049 case OP_RRnpcb:
8050 case OP_RRw:
8051 case OP_oRRw:
8052 case OP_RRnpc_I0:
8053 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
8054 inst.error = BAD_PC;
8055 break;
8056
8057 case OP_oRRnpcsp:
8058 case OP_RRnpcsp:
8059 case OP_RRnpcsp_I32:
8060 if (inst.operands[i].isreg)
8061 {
8062 if (inst.operands[i].reg == REG_PC)
8063 inst.error = BAD_PC;
8064 else if (inst.operands[i].reg == REG_SP
8065 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
8066 relaxed since ARMv8-A. */
8067 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8068 {
8069 gas_assert (thumb);
8070 inst.error = BAD_SP;
8071 }
8072 }
8073 break;
8074
8075 case OP_RRnpctw:
8076 if (inst.operands[i].isreg
8077 && inst.operands[i].reg == REG_PC
8078 && (inst.operands[i].writeback || thumb))
8079 inst.error = BAD_PC;
8080 break;
8081
8082 case OP_RVSD_COND:
8083 case OP_VLDR:
8084 if (inst.operands[i].isreg)
8085 break;
8086 /* fall through. */
8087
8088 case OP_CPSF:
8089 case OP_ENDI:
8090 case OP_oROR:
8091 case OP_wPSR:
8092 case OP_rPSR:
8093 case OP_COND:
8094 case OP_oBARRIER_I15:
8095 case OP_REGLST:
8096 case OP_CLRMLST:
8097 case OP_VRSLST:
8098 case OP_VRDLST:
8099 case OP_VRSDLST:
8100 case OP_VRSDVLST:
8101 case OP_NRDLST:
8102 case OP_NSTRLST:
8103 case OP_MSTRLST2:
8104 case OP_MSTRLST4:
8105 if (val == FAIL)
8106 goto failure;
8107 inst.operands[i].imm = val;
8108 break;
8109
8110 case OP_LR:
8111 case OP_oLR:
8112 if (inst.operands[i].reg != REG_LR)
8113 inst.error = _("operand must be LR register");
8114 break;
8115
8116 case OP_RMQRZ:
8117 case OP_oRMQRZ:
8118 case OP_RR_ZR:
8119 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
8120 inst.error = BAD_PC;
8121 break;
8122
8123 case OP_RRe:
8124 if (inst.operands[i].isreg
8125 && (inst.operands[i].reg & 0x00000001) != 0)
8126 inst.error = BAD_ODD;
8127 break;
8128
8129 case OP_RRo:
8130 if (inst.operands[i].isreg)
8131 {
8132 if ((inst.operands[i].reg & 0x00000001) != 1)
8133 inst.error = BAD_EVEN;
8134 else if (inst.operands[i].reg == REG_SP)
8135 as_tsktsk (MVE_BAD_SP);
8136 else if (inst.operands[i].reg == REG_PC)
8137 inst.error = BAD_PC;
8138 }
8139 break;
8140
8141 default:
8142 break;
8143 }
8144
8145 /* If we get here, this operand was successfully parsed. */
8146 inst.operands[i].present = 1;
8147 continue;
8148
8149 bad_args:
8150 inst.error = BAD_ARGS;
8151
8152 failure:
8153 if (!backtrack_pos)
8154 {
8155 /* The parse routine should already have set inst.error, but set a
8156 default here just in case. */
8157 if (!inst.error)
8158 inst.error = BAD_SYNTAX;
8159 return FAIL;
8160 }
8161
8162 /* Do not backtrack over a trailing optional argument that
8163 absorbed some text. We will only fail again, with the
8164 'garbage following instruction' error message, which is
8165 probably less helpful than the current one. */
8166 if (backtrack_index == i && backtrack_pos != str
8167 && upat[i+1] == OP_stop)
8168 {
8169 if (!inst.error)
8170 inst.error = BAD_SYNTAX;
8171 return FAIL;
8172 }
8173
8174 /* Try again, skipping the optional argument at backtrack_pos. */
8175 str = backtrack_pos;
8176 inst.error = backtrack_error;
8177 inst.operands[backtrack_index].present = 0;
8178 i = backtrack_index;
8179 backtrack_pos = 0;
8180 }
8181
8182 /* Check that we have parsed all the arguments. */
8183 if (*str != '\0' && !inst.error)
8184 inst.error = _("garbage following instruction");
8185
8186 return inst.error ? FAIL : SUCCESS;
8187}
8188
8189#undef po_char_or_fail
8190#undef po_reg_or_fail
8191#undef po_reg_or_goto
8192#undef po_imm_or_fail
8193#undef po_scalar_or_fail
8194#undef po_barrier_or_imm
8195
8196/* Shorthand macro for instruction encoding functions issuing errors. */
8197#define constraint(expr, err) \
8198 do \
8199 { \
8200 if (expr) \
8201 { \
8202 inst.error = err; \
8203 return; \
8204 } \
8205 } \
8206 while (0)
8207
8208/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
8209 instructions are unpredictable if these registers are used. This
8210 is the BadReg predicate in ARM's Thumb-2 documentation.
8211
8212 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
8213 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
8214#define reject_bad_reg(reg) \
8215 do \
8216 if (reg == REG_PC) \
8217 { \
8218 inst.error = BAD_PC; \
8219 return; \
8220 } \
8221 else if (reg == REG_SP \
8222 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
8223 { \
8224 inst.error = BAD_SP; \
8225 return; \
8226 } \
8227 while (0)
8228
8229/* If REG is R13 (the stack pointer), warn that its use is
8230 deprecated. */
8231#define warn_deprecated_sp(reg) \
8232 do \
8233 if (warn_on_deprecated && reg == REG_SP) \
8234 as_tsktsk (_("use of r13 is deprecated")); \
8235 while (0)
8236
8237/* Functions for operand encoding. ARM, then Thumb. */
8238
8239#define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
8240
8241/* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
8242
8243 The only binary encoding difference is the Coprocessor number. Coprocessor
8244 9 is used for half-precision calculations or conversions. The format of the
8245 instruction is the same as the equivalent Coprocessor 10 instruction that
8246 exists for Single-Precision operation. */
8247
8248static void
8249do_scalar_fp16_v82_encode (void)
8250{
8251 if (inst.cond < COND_ALWAYS)
8252 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
8253 " the behaviour is UNPREDICTABLE"));
8254 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
8255 _(BAD_FP16));
8256
8257 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
8258 mark_feature_used (&arm_ext_fp16);
8259}
8260
8261/* If VAL can be encoded in the immediate field of an ARM instruction,
8262 return the encoded form. Otherwise, return FAIL. */
8263
8264static unsigned int
8265encode_arm_immediate (unsigned int val)
8266{
8267 unsigned int a, i;
8268
8269 if (val <= 0xff)
8270 return val;
8271
8272 for (i = 2; i < 32; i += 2)
8273 if ((a = rotate_left (val, i)) <= 0xff)
8274 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8275
8276 return FAIL;
8277}
8278
8279/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8280 return the encoded form. Otherwise, return FAIL. */
8281static unsigned int
8282encode_thumb32_immediate (unsigned int val)
8283{
8284 unsigned int a, i;
8285
8286 if (val <= 0xff)
8287 return val;
8288
8289 for (i = 1; i <= 24; i++)
8290 {
8291 a = val >> i;
8292 if ((val & ~(0xff << i)) == 0)
8293 return ((val >> i) & 0x7f) | ((32 - i) << 7);
8294 }
8295
8296 a = val & 0xff;
8297 if (val == ((a << 16) | a))
8298 return 0x100 | a;
8299 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8300 return 0x300 | a;
8301
8302 a = val & 0xff00;
8303 if (val == ((a << 16) | a))
8304 return 0x200 | (a >> 8);
8305
8306 return FAIL;
8307}
8308/* Encode a VFP SP or DP register number into inst.instruction. */
8309
8310static void
8311encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8312{
8313 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8314 && reg > 15)
8315 {
8316 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
8317 {
8318 if (thumb_mode)
8319 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8320 fpu_vfp_ext_d32);
8321 else
8322 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8323 fpu_vfp_ext_d32);
8324 }
8325 else
8326 {
8327 first_error (_("D register out of range for selected VFP version"));
8328 return;
8329 }
8330 }
8331
8332 switch (pos)
8333 {
8334 case VFP_REG_Sd:
8335 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8336 break;
8337
8338 case VFP_REG_Sn:
8339 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8340 break;
8341
8342 case VFP_REG_Sm:
8343 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8344 break;
8345
8346 case VFP_REG_Dd:
8347 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8348 break;
8349
8350 case VFP_REG_Dn:
8351 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8352 break;
8353
8354 case VFP_REG_Dm:
8355 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8356 break;
8357
8358 default:
8359 abort ();
8360 }
8361}
8362
8363/* Encode a <shift> in an ARM-format instruction. The immediate,
8364 if any, is handled by md_apply_fix. */
8365static void
8366encode_arm_shift (int i)
8367{
8368 /* register-shifted register. */
8369 if (inst.operands[i].immisreg)
8370 {
8371 int op_index;
8372 for (op_index = 0; op_index <= i; ++op_index)
8373 {
8374 /* Check the operand only when it's presented. In pre-UAL syntax,
8375 if the destination register is the same as the first operand, two
8376 register form of the instruction can be used. */
8377 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8378 && inst.operands[op_index].reg == REG_PC)
8379 as_warn (UNPRED_REG ("r15"));
8380 }
8381
8382 if (inst.operands[i].imm == REG_PC)
8383 as_warn (UNPRED_REG ("r15"));
8384 }
8385
8386 if (inst.operands[i].shift_kind == SHIFT_RRX)
8387 inst.instruction |= SHIFT_ROR << 5;
8388 else
8389 {
8390 inst.instruction |= inst.operands[i].shift_kind << 5;
8391 if (inst.operands[i].immisreg)
8392 {
8393 inst.instruction |= SHIFT_BY_REG;
8394 inst.instruction |= inst.operands[i].imm << 8;
8395 }
8396 else
8397 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8398 }
8399}
8400
8401static void
8402encode_arm_shifter_operand (int i)
8403{
8404 if (inst.operands[i].isreg)
8405 {
8406 inst.instruction |= inst.operands[i].reg;
8407 encode_arm_shift (i);
8408 }
8409 else
8410 {
8411 inst.instruction |= INST_IMMEDIATE;
8412 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
8413 inst.instruction |= inst.operands[i].imm;
8414 }
8415}
8416
8417/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8418static void
8419encode_arm_addr_mode_common (int i, bfd_boolean is_t)
8420{
8421 /* PR 14260:
8422 Generate an error if the operand is not a register. */
8423 constraint (!inst.operands[i].isreg,
8424 _("Instruction does not support =N addresses"));
8425
8426 inst.instruction |= inst.operands[i].reg << 16;
8427
8428 if (inst.operands[i].preind)
8429 {
8430 if (is_t)
8431 {
8432 inst.error = _("instruction does not accept preindexed addressing");
8433 return;
8434 }
8435 inst.instruction |= PRE_INDEX;
8436 if (inst.operands[i].writeback)
8437 inst.instruction |= WRITE_BACK;
8438
8439 }
8440 else if (inst.operands[i].postind)
8441 {
8442 gas_assert (inst.operands[i].writeback);
8443 if (is_t)
8444 inst.instruction |= WRITE_BACK;
8445 }
8446 else /* unindexed - only for coprocessor */
8447 {
8448 inst.error = _("instruction does not accept unindexed addressing");
8449 return;
8450 }
8451
8452 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8453 && (((inst.instruction & 0x000f0000) >> 16)
8454 == ((inst.instruction & 0x0000f000) >> 12)))
8455 as_warn ((inst.instruction & LOAD_BIT)
8456 ? _("destination register same as write-back base")
8457 : _("source register same as write-back base"));
8458}
8459
8460/* inst.operands[i] was set up by parse_address. Encode it into an
8461 ARM-format mode 2 load or store instruction. If is_t is true,
8462 reject forms that cannot be used with a T instruction (i.e. not
8463 post-indexed). */
8464static void
8465encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
8466{
8467 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8468
8469 encode_arm_addr_mode_common (i, is_t);
8470
8471 if (inst.operands[i].immisreg)
8472 {
8473 constraint ((inst.operands[i].imm == REG_PC
8474 || (is_pc && inst.operands[i].writeback)),
8475 BAD_PC_ADDRESSING);
8476 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8477 inst.instruction |= inst.operands[i].imm;
8478 if (!inst.operands[i].negative)
8479 inst.instruction |= INDEX_UP;
8480 if (inst.operands[i].shifted)
8481 {
8482 if (inst.operands[i].shift_kind == SHIFT_RRX)
8483 inst.instruction |= SHIFT_ROR << 5;
8484 else
8485 {
8486 inst.instruction |= inst.operands[i].shift_kind << 5;
8487 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8488 }
8489 }
8490 }
8491 else /* immediate offset in inst.relocs[0] */
8492 {
8493 if (is_pc && !inst.relocs[0].pc_rel)
8494 {
8495 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
8496
8497 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8498 cannot use PC in addressing.
8499 PC cannot be used in writeback addressing, either. */
8500 constraint ((is_t || inst.operands[i].writeback),
8501 BAD_PC_ADDRESSING);
8502
8503 /* Use of PC in str is deprecated for ARMv7. */
8504 if (warn_on_deprecated
8505 && !is_load
8506 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
8507 as_tsktsk (_("use of PC in this instruction is deprecated"));
8508 }
8509
8510 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8511 {
8512 /* Prefer + for zero encoded value. */
8513 if (!inst.operands[i].negative)
8514 inst.instruction |= INDEX_UP;
8515 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
8516 }
8517 }
8518}
8519
8520/* inst.operands[i] was set up by parse_address. Encode it into an
8521 ARM-format mode 3 load or store instruction. Reject forms that
8522 cannot be used with such instructions. If is_t is true, reject
8523 forms that cannot be used with a T instruction (i.e. not
8524 post-indexed). */
8525static void
8526encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
8527{
8528 if (inst.operands[i].immisreg && inst.operands[i].shifted)
8529 {
8530 inst.error = _("instruction does not accept scaled register index");
8531 return;
8532 }
8533
8534 encode_arm_addr_mode_common (i, is_t);
8535
8536 if (inst.operands[i].immisreg)
8537 {
8538 constraint ((inst.operands[i].imm == REG_PC
8539 || (is_t && inst.operands[i].reg == REG_PC)),
8540 BAD_PC_ADDRESSING);
8541 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8542 BAD_PC_WRITEBACK);
8543 inst.instruction |= inst.operands[i].imm;
8544 if (!inst.operands[i].negative)
8545 inst.instruction |= INDEX_UP;
8546 }
8547 else /* immediate offset in inst.relocs[0] */
8548 {
8549 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
8550 && inst.operands[i].writeback),
8551 BAD_PC_WRITEBACK);
8552 inst.instruction |= HWOFFSET_IMM;
8553 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8554 {
8555 /* Prefer + for zero encoded value. */
8556 if (!inst.operands[i].negative)
8557 inst.instruction |= INDEX_UP;
8558
8559 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
8560 }
8561 }
8562}
8563
8564/* Write immediate bits [7:0] to the following locations:
8565
8566 |28/24|23 19|18 16|15 4|3 0|
8567 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8568
8569 This function is used by VMOV/VMVN/VORR/VBIC. */
8570
8571static void
8572neon_write_immbits (unsigned immbits)
8573{
8574 inst.instruction |= immbits & 0xf;
8575 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8576 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8577}
8578
8579/* Invert low-order SIZE bits of XHI:XLO. */
8580
8581static void
8582neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8583{
8584 unsigned immlo = xlo ? *xlo : 0;
8585 unsigned immhi = xhi ? *xhi : 0;
8586
8587 switch (size)
8588 {
8589 case 8:
8590 immlo = (~immlo) & 0xff;
8591 break;
8592
8593 case 16:
8594 immlo = (~immlo) & 0xffff;
8595 break;
8596
8597 case 64:
8598 immhi = (~immhi) & 0xffffffff;
8599 /* fall through. */
8600
8601 case 32:
8602 immlo = (~immlo) & 0xffffffff;
8603 break;
8604
8605 default:
8606 abort ();
8607 }
8608
8609 if (xlo)
8610 *xlo = immlo;
8611
8612 if (xhi)
8613 *xhi = immhi;
8614}
8615
8616/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8617 A, B, C, D. */
8618
8619static int
8620neon_bits_same_in_bytes (unsigned imm)
8621{
8622 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8623 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8624 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8625 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8626}
8627
8628/* For immediate of above form, return 0bABCD. */
8629
8630static unsigned
8631neon_squash_bits (unsigned imm)
8632{
8633 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8634 | ((imm & 0x01000000) >> 21);
8635}
8636
8637/* Compress quarter-float representation to 0b...000 abcdefgh. */
8638
8639static unsigned
8640neon_qfloat_bits (unsigned imm)
8641{
8642 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8643}
8644
8645/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8646 the instruction. *OP is passed as the initial value of the op field, and
8647 may be set to a different value depending on the constant (i.e.
8648 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8649 MVN). If the immediate looks like a repeated pattern then also
8650 try smaller element sizes. */
8651
8652static int
8653neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8654 unsigned *immbits, int *op, int size,
8655 enum neon_el_type type)
8656{
8657 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8658 float. */
8659 if (type == NT_float && !float_p)
8660 return FAIL;
8661
8662 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
8663 {
8664 if (size != 32 || *op == 1)
8665 return FAIL;
8666 *immbits = neon_qfloat_bits (immlo);
8667 return 0xf;
8668 }
8669
8670 if (size == 64)
8671 {
8672 if (neon_bits_same_in_bytes (immhi)
8673 && neon_bits_same_in_bytes (immlo))
8674 {
8675 if (*op == 1)
8676 return FAIL;
8677 *immbits = (neon_squash_bits (immhi) << 4)
8678 | neon_squash_bits (immlo);
8679 *op = 1;
8680 return 0xe;
8681 }
8682
8683 if (immhi != immlo)
8684 return FAIL;
8685 }
8686
8687 if (size >= 32)
8688 {
8689 if (immlo == (immlo & 0x000000ff))
8690 {
8691 *immbits = immlo;
8692 return 0x0;
8693 }
8694 else if (immlo == (immlo & 0x0000ff00))
8695 {
8696 *immbits = immlo >> 8;
8697 return 0x2;
8698 }
8699 else if (immlo == (immlo & 0x00ff0000))
8700 {
8701 *immbits = immlo >> 16;
8702 return 0x4;
8703 }
8704 else if (immlo == (immlo & 0xff000000))
8705 {
8706 *immbits = immlo >> 24;
8707 return 0x6;
8708 }
8709 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8710 {
8711 *immbits = (immlo >> 8) & 0xff;
8712 return 0xc;
8713 }
8714 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8715 {
8716 *immbits = (immlo >> 16) & 0xff;
8717 return 0xd;
8718 }
8719
8720 if ((immlo & 0xffff) != (immlo >> 16))
8721 return FAIL;
8722 immlo &= 0xffff;
8723 }
8724
8725 if (size >= 16)
8726 {
8727 if (immlo == (immlo & 0x000000ff))
8728 {
8729 *immbits = immlo;
8730 return 0x8;
8731 }
8732 else if (immlo == (immlo & 0x0000ff00))
8733 {
8734 *immbits = immlo >> 8;
8735 return 0xa;
8736 }
8737
8738 if ((immlo & 0xff) != (immlo >> 8))
8739 return FAIL;
8740 immlo &= 0xff;
8741 }
8742
8743 if (immlo == (immlo & 0x000000ff))
8744 {
8745 /* Don't allow MVN with 8-bit immediate. */
8746 if (*op == 1)
8747 return FAIL;
8748 *immbits = immlo;
8749 return 0xe;
8750 }
8751
8752 return FAIL;
8753}
8754
8755#if defined BFD_HOST_64_BIT
8756/* Returns TRUE if double precision value V may be cast
8757 to single precision without loss of accuracy. */
8758
8759static bfd_boolean
8760is_double_a_single (bfd_int64_t v)
8761{
8762 int exp = (int)((v >> 52) & 0x7FF);
8763 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8764
8765 return (exp == 0 || exp == 0x7FF
8766 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8767 && (mantissa & 0x1FFFFFFFl) == 0;
8768}
8769
8770/* Returns a double precision value casted to single precision
8771 (ignoring the least significant bits in exponent and mantissa). */
8772
8773static int
8774double_to_single (bfd_int64_t v)
8775{
8776 int sign = (int) ((v >> 63) & 1l);
8777 int exp = (int) ((v >> 52) & 0x7FF);
8778 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8779
8780 if (exp == 0x7FF)
8781 exp = 0xFF;
8782 else
8783 {
8784 exp = exp - 1023 + 127;
8785 if (exp >= 0xFF)
8786 {
8787 /* Infinity. */
8788 exp = 0x7F;
8789 mantissa = 0;
8790 }
8791 else if (exp < 0)
8792 {
8793 /* No denormalized numbers. */
8794 exp = 0;
8795 mantissa = 0;
8796 }
8797 }
8798 mantissa >>= 29;
8799 return (sign << 31) | (exp << 23) | mantissa;
8800}
8801#endif /* BFD_HOST_64_BIT */
8802
8803enum lit_type
8804{
8805 CONST_THUMB,
8806 CONST_ARM,
8807 CONST_VEC
8808};
8809
8810static void do_vfp_nsyn_opcode (const char *);
8811
8812/* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8813 Determine whether it can be performed with a move instruction; if
8814 it can, convert inst.instruction to that move instruction and
8815 return TRUE; if it can't, convert inst.instruction to a literal-pool
8816 load and return FALSE. If this is not a valid thing to do in the
8817 current context, set inst.error and return TRUE.
8818
8819 inst.operands[i] describes the destination register. */
8820
8821static bfd_boolean
8822move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
8823{
8824 unsigned long tbit;
8825 bfd_boolean thumb_p = (t == CONST_THUMB);
8826 bfd_boolean arm_p = (t == CONST_ARM);
8827
8828 if (thumb_p)
8829 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8830 else
8831 tbit = LOAD_BIT;
8832
8833 if ((inst.instruction & tbit) == 0)
8834 {
8835 inst.error = _("invalid pseudo operation");
8836 return TRUE;
8837 }
8838
8839 if (inst.relocs[0].exp.X_op != O_constant
8840 && inst.relocs[0].exp.X_op != O_symbol
8841 && inst.relocs[0].exp.X_op != O_big)
8842 {
8843 inst.error = _("constant expression expected");
8844 return TRUE;
8845 }
8846
8847 if (inst.relocs[0].exp.X_op == O_constant
8848 || inst.relocs[0].exp.X_op == O_big)
8849 {
8850#if defined BFD_HOST_64_BIT
8851 bfd_int64_t v;
8852#else
8853 offsetT v;
8854#endif
8855 if (inst.relocs[0].exp.X_op == O_big)
8856 {
8857 LITTLENUM_TYPE w[X_PRECISION];
8858 LITTLENUM_TYPE * l;
8859
8860 if (inst.relocs[0].exp.X_add_number == -1)
8861 {
8862 gen_to_words (w, X_PRECISION, E_PRECISION);
8863 l = w;
8864 /* FIXME: Should we check words w[2..5] ? */
8865 }
8866 else
8867 l = generic_bignum;
8868
8869#if defined BFD_HOST_64_BIT
8870 v =
8871 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8872 << LITTLENUM_NUMBER_OF_BITS)
8873 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8874 << LITTLENUM_NUMBER_OF_BITS)
8875 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8876 << LITTLENUM_NUMBER_OF_BITS)
8877 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8878#else
8879 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8880 | (l[0] & LITTLENUM_MASK);
8881#endif
8882 }
8883 else
8884 v = inst.relocs[0].exp.X_add_number;
8885
8886 if (!inst.operands[i].issingle)
8887 {
8888 if (thumb_p)
8889 {
8890 /* LDR should not use lead in a flag-setting instruction being
8891 chosen so we do not check whether movs can be used. */
8892
8893 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8894 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8895 && inst.operands[i].reg != 13
8896 && inst.operands[i].reg != 15)
8897 {
8898 /* Check if on thumb2 it can be done with a mov.w, mvn or
8899 movw instruction. */
8900 unsigned int newimm;
8901 bfd_boolean isNegated;
8902
8903 newimm = encode_thumb32_immediate (v);
8904 if (newimm != (unsigned int) FAIL)
8905 isNegated = FALSE;
8906 else
8907 {
8908 newimm = encode_thumb32_immediate (~v);
8909 if (newimm != (unsigned int) FAIL)
8910 isNegated = TRUE;
8911 }
8912
8913 /* The number can be loaded with a mov.w or mvn
8914 instruction. */
8915 if (newimm != (unsigned int) FAIL
8916 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8917 {
8918 inst.instruction = (0xf04f0000 /* MOV.W. */
8919 | (inst.operands[i].reg << 8));
8920 /* Change to MOVN. */
8921 inst.instruction |= (isNegated ? 0x200000 : 0);
8922 inst.instruction |= (newimm & 0x800) << 15;
8923 inst.instruction |= (newimm & 0x700) << 4;
8924 inst.instruction |= (newimm & 0x0ff);
8925 return TRUE;
8926 }
8927 /* The number can be loaded with a movw instruction. */
8928 else if ((v & ~0xFFFF) == 0
8929 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8930 {
8931 int imm = v & 0xFFFF;
8932
8933 inst.instruction = 0xf2400000; /* MOVW. */
8934 inst.instruction |= (inst.operands[i].reg << 8);
8935 inst.instruction |= (imm & 0xf000) << 4;
8936 inst.instruction |= (imm & 0x0800) << 15;
8937 inst.instruction |= (imm & 0x0700) << 4;
8938 inst.instruction |= (imm & 0x00ff);
8939 /* In case this replacement is being done on Armv8-M
8940 Baseline we need to make sure to disable the
8941 instruction size check, as otherwise GAS will reject
8942 the use of this T32 instruction. */
8943 inst.size_req = 0;
8944 return TRUE;
8945 }
8946 }
8947 }
8948 else if (arm_p)
8949 {
8950 int value = encode_arm_immediate (v);
8951
8952 if (value != FAIL)
8953 {
8954 /* This can be done with a mov instruction. */
8955 inst.instruction &= LITERAL_MASK;
8956 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8957 inst.instruction |= value & 0xfff;
8958 return TRUE;
8959 }
8960
8961 value = encode_arm_immediate (~ v);
8962 if (value != FAIL)
8963 {
8964 /* This can be done with a mvn instruction. */
8965 inst.instruction &= LITERAL_MASK;
8966 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8967 inst.instruction |= value & 0xfff;
8968 return TRUE;
8969 }
8970 }
8971 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8972 {
8973 int op = 0;
8974 unsigned immbits = 0;
8975 unsigned immlo = inst.operands[1].imm;
8976 unsigned immhi = inst.operands[1].regisimm
8977 ? inst.operands[1].reg
8978 : inst.relocs[0].exp.X_unsigned
8979 ? 0
8980 : ((bfd_int64_t)((int) immlo)) >> 32;
8981 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8982 &op, 64, NT_invtype);
8983
8984 if (cmode == FAIL)
8985 {
8986 neon_invert_size (&immlo, &immhi, 64);
8987 op = !op;
8988 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8989 &op, 64, NT_invtype);
8990 }
8991
8992 if (cmode != FAIL)
8993 {
8994 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8995 | (1 << 23)
8996 | (cmode << 8)
8997 | (op << 5)
8998 | (1 << 4);
8999
9000 /* Fill other bits in vmov encoding for both thumb and arm. */
9001 if (thumb_mode)
9002 inst.instruction |= (0x7U << 29) | (0xF << 24);
9003 else
9004 inst.instruction |= (0xFU << 28) | (0x1 << 25);
9005 neon_write_immbits (immbits);
9006 return TRUE;
9007 }
9008 }
9009 }
9010
9011 if (t == CONST_VEC)
9012 {
9013 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
9014 if (inst.operands[i].issingle
9015 && is_quarter_float (inst.operands[1].imm)
9016 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
9017 {
9018 inst.operands[1].imm =
9019 neon_qfloat_bits (v);
9020 do_vfp_nsyn_opcode ("fconsts");
9021 return TRUE;
9022 }
9023
9024 /* If our host does not support a 64-bit type then we cannot perform
9025 the following optimization. This mean that there will be a
9026 discrepancy between the output produced by an assembler built for
9027 a 32-bit-only host and the output produced from a 64-bit host, but
9028 this cannot be helped. */
9029#if defined BFD_HOST_64_BIT
9030 else if (!inst.operands[1].issingle
9031 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
9032 {
9033 if (is_double_a_single (v)
9034 && is_quarter_float (double_to_single (v)))
9035 {
9036 inst.operands[1].imm =
9037 neon_qfloat_bits (double_to_single (v));
9038 do_vfp_nsyn_opcode ("fconstd");
9039 return TRUE;
9040 }
9041 }
9042#endif
9043 }
9044 }
9045
9046 if (add_to_lit_pool ((!inst.operands[i].isvec
9047 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
9048 return TRUE;
9049
9050 inst.operands[1].reg = REG_PC;
9051 inst.operands[1].isreg = 1;
9052 inst.operands[1].preind = 1;
9053 inst.relocs[0].pc_rel = 1;
9054 inst.relocs[0].type = (thumb_p
9055 ? BFD_RELOC_ARM_THUMB_OFFSET
9056 : (mode_3
9057 ? BFD_RELOC_ARM_HWLITERAL
9058 : BFD_RELOC_ARM_LITERAL));
9059 return FALSE;
9060}
9061
9062/* inst.operands[i] was set up by parse_address. Encode it into an
9063 ARM-format instruction. Reject all forms which cannot be encoded
9064 into a coprocessor load/store instruction. If wb_ok is false,
9065 reject use of writeback; if unind_ok is false, reject use of
9066 unindexed addressing. If reloc_override is not 0, use it instead
9067 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
9068 (in which case it is preserved). */
9069
9070static int
9071encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
9072{
9073 if (!inst.operands[i].isreg)
9074 {
9075 /* PR 18256 */
9076 if (! inst.operands[0].isvec)
9077 {
9078 inst.error = _("invalid co-processor operand");
9079 return FAIL;
9080 }
9081 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
9082 return SUCCESS;
9083 }
9084
9085 inst.instruction |= inst.operands[i].reg << 16;
9086
9087 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
9088
9089 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
9090 {
9091 gas_assert (!inst.operands[i].writeback);
9092 if (!unind_ok)
9093 {
9094 inst.error = _("instruction does not support unindexed addressing");
9095 return FAIL;
9096 }
9097 inst.instruction |= inst.operands[i].imm;
9098 inst.instruction |= INDEX_UP;
9099 return SUCCESS;
9100 }
9101
9102 if (inst.operands[i].preind)
9103 inst.instruction |= PRE_INDEX;
9104
9105 if (inst.operands[i].writeback)
9106 {
9107 if (inst.operands[i].reg == REG_PC)
9108 {
9109 inst.error = _("pc may not be used with write-back");
9110 return FAIL;
9111 }
9112 if (!wb_ok)
9113 {
9114 inst.error = _("instruction does not support writeback");
9115 return FAIL;
9116 }
9117 inst.instruction |= WRITE_BACK;
9118 }
9119
9120 if (reloc_override)
9121 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
9122 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
9123 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
9124 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
9125 {
9126 if (thumb_mode)
9127 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
9128 else
9129 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
9130 }
9131
9132 /* Prefer + for zero encoded value. */
9133 if (!inst.operands[i].negative)
9134 inst.instruction |= INDEX_UP;
9135
9136 return SUCCESS;
9137}
9138
9139/* Functions for instruction encoding, sorted by sub-architecture.
9140 First some generics; their names are taken from the conventional
9141 bit positions for register arguments in ARM format instructions. */
9142
9143static void
9144do_noargs (void)
9145{
9146}
9147
9148static void
9149do_rd (void)
9150{
9151 inst.instruction |= inst.operands[0].reg << 12;
9152}
9153
9154static void
9155do_rn (void)
9156{
9157 inst.instruction |= inst.operands[0].reg << 16;
9158}
9159
9160static void
9161do_rd_rm (void)
9162{
9163 inst.instruction |= inst.operands[0].reg << 12;
9164 inst.instruction |= inst.operands[1].reg;
9165}
9166
9167static void
9168do_rm_rn (void)
9169{
9170 inst.instruction |= inst.operands[0].reg;
9171 inst.instruction |= inst.operands[1].reg << 16;
9172}
9173
9174static void
9175do_rd_rn (void)
9176{
9177 inst.instruction |= inst.operands[0].reg << 12;
9178 inst.instruction |= inst.operands[1].reg << 16;
9179}
9180
9181static void
9182do_rn_rd (void)
9183{
9184 inst.instruction |= inst.operands[0].reg << 16;
9185 inst.instruction |= inst.operands[1].reg << 12;
9186}
9187
9188static void
9189do_tt (void)
9190{
9191 inst.instruction |= inst.operands[0].reg << 8;
9192 inst.instruction |= inst.operands[1].reg << 16;
9193}
9194
9195static bfd_boolean
9196check_obsolete (const arm_feature_set *feature, const char *msg)
9197{
9198 if (ARM_CPU_IS_ANY (cpu_variant))
9199 {
9200 as_tsktsk ("%s", msg);
9201 return TRUE;
9202 }
9203 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
9204 {
9205 as_bad ("%s", msg);
9206 return TRUE;
9207 }
9208
9209 return FALSE;
9210}
9211
9212static void
9213do_rd_rm_rn (void)
9214{
9215 unsigned Rn = inst.operands[2].reg;
9216 /* Enforce restrictions on SWP instruction. */
9217 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
9218 {
9219 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
9220 _("Rn must not overlap other operands"));
9221
9222 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
9223 */
9224 if (!check_obsolete (&arm_ext_v8,
9225 _("swp{b} use is obsoleted for ARMv8 and later"))
9226 && warn_on_deprecated
9227 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
9228 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
9229 }
9230
9231 inst.instruction |= inst.operands[0].reg << 12;
9232 inst.instruction |= inst.operands[1].reg;
9233 inst.instruction |= Rn << 16;
9234}
9235
9236static void
9237do_rd_rn_rm (void)
9238{
9239 inst.instruction |= inst.operands[0].reg << 12;
9240 inst.instruction |= inst.operands[1].reg << 16;
9241 inst.instruction |= inst.operands[2].reg;
9242}
9243
9244static void
9245do_rm_rd_rn (void)
9246{
9247 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
9248 constraint (((inst.relocs[0].exp.X_op != O_constant
9249 && inst.relocs[0].exp.X_op != O_illegal)
9250 || inst.relocs[0].exp.X_add_number != 0),
9251 BAD_ADDR_MODE);
9252 inst.instruction |= inst.operands[0].reg;
9253 inst.instruction |= inst.operands[1].reg << 12;
9254 inst.instruction |= inst.operands[2].reg << 16;
9255}
9256
9257static void
9258do_imm0 (void)
9259{
9260 inst.instruction |= inst.operands[0].imm;
9261}
9262
9263static void
9264do_rd_cpaddr (void)
9265{
9266 inst.instruction |= inst.operands[0].reg << 12;
9267 encode_arm_cp_address (1, TRUE, TRUE, 0);
9268}
9269
9270/* ARM instructions, in alphabetical order by function name (except
9271 that wrapper functions appear immediately after the function they
9272 wrap). */
9273
9274/* This is a pseudo-op of the form "adr rd, label" to be converted
9275 into a relative address of the form "add rd, pc, #label-.-8". */
9276
9277static void
9278do_adr (void)
9279{
9280 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9281
9282 /* Frag hacking will turn this into a sub instruction if the offset turns
9283 out to be negative. */
9284 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9285 inst.relocs[0].pc_rel = 1;
9286 inst.relocs[0].exp.X_add_number -= 8;
9287
9288 if (support_interwork
9289 && inst.relocs[0].exp.X_op == O_symbol
9290 && inst.relocs[0].exp.X_add_symbol != NULL
9291 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9292 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9293 inst.relocs[0].exp.X_add_number |= 1;
9294}
9295
9296/* This is a pseudo-op of the form "adrl rd, label" to be converted
9297 into a relative address of the form:
9298 add rd, pc, #low(label-.-8)"
9299 add rd, rd, #high(label-.-8)" */
9300
9301static void
9302do_adrl (void)
9303{
9304 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9305
9306 /* Frag hacking will turn this into a sub instruction if the offset turns
9307 out to be negative. */
9308 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9309 inst.relocs[0].pc_rel = 1;
9310 inst.size = INSN_SIZE * 2;
9311 inst.relocs[0].exp.X_add_number -= 8;
9312
9313 if (support_interwork
9314 && inst.relocs[0].exp.X_op == O_symbol
9315 && inst.relocs[0].exp.X_add_symbol != NULL
9316 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9317 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9318 inst.relocs[0].exp.X_add_number |= 1;
9319}
9320
9321static void
9322do_arit (void)
9323{
9324 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9325 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9326 THUMB1_RELOC_ONLY);
9327 if (!inst.operands[1].present)
9328 inst.operands[1].reg = inst.operands[0].reg;
9329 inst.instruction |= inst.operands[0].reg << 12;
9330 inst.instruction |= inst.operands[1].reg << 16;
9331 encode_arm_shifter_operand (2);
9332}
9333
9334static void
9335do_barrier (void)
9336{
9337 if (inst.operands[0].present)
9338 inst.instruction |= inst.operands[0].imm;
9339 else
9340 inst.instruction |= 0xf;
9341}
9342
9343static void
9344do_bfc (void)
9345{
9346 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9347 constraint (msb > 32, _("bit-field extends past end of register"));
9348 /* The instruction encoding stores the LSB and MSB,
9349 not the LSB and width. */
9350 inst.instruction |= inst.operands[0].reg << 12;
9351 inst.instruction |= inst.operands[1].imm << 7;
9352 inst.instruction |= (msb - 1) << 16;
9353}
9354
9355static void
9356do_bfi (void)
9357{
9358 unsigned int msb;
9359
9360 /* #0 in second position is alternative syntax for bfc, which is
9361 the same instruction but with REG_PC in the Rm field. */
9362 if (!inst.operands[1].isreg)
9363 inst.operands[1].reg = REG_PC;
9364
9365 msb = inst.operands[2].imm + inst.operands[3].imm;
9366 constraint (msb > 32, _("bit-field extends past end of register"));
9367 /* The instruction encoding stores the LSB and MSB,
9368 not the LSB and width. */
9369 inst.instruction |= inst.operands[0].reg << 12;
9370 inst.instruction |= inst.operands[1].reg;
9371 inst.instruction |= inst.operands[2].imm << 7;
9372 inst.instruction |= (msb - 1) << 16;
9373}
9374
9375static void
9376do_bfx (void)
9377{
9378 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9379 _("bit-field extends past end of register"));
9380 inst.instruction |= inst.operands[0].reg << 12;
9381 inst.instruction |= inst.operands[1].reg;
9382 inst.instruction |= inst.operands[2].imm << 7;
9383 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9384}
9385
9386/* ARM V5 breakpoint instruction (argument parse)
9387 BKPT <16 bit unsigned immediate>
9388 Instruction is not conditional.
9389 The bit pattern given in insns[] has the COND_ALWAYS condition,
9390 and it is an error if the caller tried to override that. */
9391
9392static void
9393do_bkpt (void)
9394{
9395 /* Top 12 of 16 bits to bits 19:8. */
9396 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
9397
9398 /* Bottom 4 of 16 bits to bits 3:0. */
9399 inst.instruction |= inst.operands[0].imm & 0xf;
9400}
9401
9402static void
9403encode_branch (int default_reloc)
9404{
9405 if (inst.operands[0].hasreloc)
9406 {
9407 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9408 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9409 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9410 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
9411 ? BFD_RELOC_ARM_PLT32
9412 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
9413 }
9414 else
9415 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9416 inst.relocs[0].pc_rel = 1;
9417}
9418
9419static void
9420do_branch (void)
9421{
9422#ifdef OBJ_ELF
9423 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9424 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9425 else
9426#endif
9427 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9428}
9429
9430static void
9431do_bl (void)
9432{
9433#ifdef OBJ_ELF
9434 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9435 {
9436 if (inst.cond == COND_ALWAYS)
9437 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9438 else
9439 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9440 }
9441 else
9442#endif
9443 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9444}
9445
9446/* ARM V5 branch-link-exchange instruction (argument parse)
9447 BLX <target_addr> ie BLX(1)
9448 BLX{<condition>} <Rm> ie BLX(2)
9449 Unfortunately, there are two different opcodes for this mnemonic.
9450 So, the insns[].value is not used, and the code here zaps values
9451 into inst.instruction.
9452 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9453
9454static void
9455do_blx (void)
9456{
9457 if (inst.operands[0].isreg)
9458 {
9459 /* Arg is a register; the opcode provided by insns[] is correct.
9460 It is not illegal to do "blx pc", just useless. */
9461 if (inst.operands[0].reg == REG_PC)
9462 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9463
9464 inst.instruction |= inst.operands[0].reg;
9465 }
9466 else
9467 {
9468 /* Arg is an address; this instruction cannot be executed
9469 conditionally, and the opcode must be adjusted.
9470 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9471 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9472 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9473 inst.instruction = 0xfa000000;
9474 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
9475 }
9476}
9477
9478static void
9479do_bx (void)
9480{
9481 bfd_boolean want_reloc;
9482
9483 if (inst.operands[0].reg == REG_PC)
9484 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9485
9486 inst.instruction |= inst.operands[0].reg;
9487 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9488 it is for ARMv4t or earlier. */
9489 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
9490 if (!ARM_FEATURE_ZERO (selected_object_arch)
9491 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
9492 want_reloc = TRUE;
9493
9494#ifdef OBJ_ELF
9495 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
9496#endif
9497 want_reloc = FALSE;
9498
9499 if (want_reloc)
9500 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
9501}
9502
9503
9504/* ARM v5TEJ. Jump to Jazelle code. */
9505
9506static void
9507do_bxj (void)
9508{
9509 if (inst.operands[0].reg == REG_PC)
9510 as_tsktsk (_("use of r15 in bxj is not really useful"));
9511
9512 inst.instruction |= inst.operands[0].reg;
9513}
9514
9515/* Co-processor data operation:
9516 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9517 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9518static void
9519do_cdp (void)
9520{
9521 inst.instruction |= inst.operands[0].reg << 8;
9522 inst.instruction |= inst.operands[1].imm << 20;
9523 inst.instruction |= inst.operands[2].reg << 12;
9524 inst.instruction |= inst.operands[3].reg << 16;
9525 inst.instruction |= inst.operands[4].reg;
9526 inst.instruction |= inst.operands[5].imm << 5;
9527}
9528
9529static void
9530do_cmp (void)
9531{
9532 inst.instruction |= inst.operands[0].reg << 16;
9533 encode_arm_shifter_operand (1);
9534}
9535
9536/* Transfer between coprocessor and ARM registers.
9537 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9538 MRC2
9539 MCR{cond}
9540 MCR2
9541
9542 No special properties. */
9543
9544struct deprecated_coproc_regs_s
9545{
9546 unsigned cp;
9547 int opc1;
9548 unsigned crn;
9549 unsigned crm;
9550 int opc2;
9551 arm_feature_set deprecated;
9552 arm_feature_set obsoleted;
9553 const char *dep_msg;
9554 const char *obs_msg;
9555};
9556
9557#define DEPR_ACCESS_V8 \
9558 N_("This coprocessor register access is deprecated in ARMv8")
9559
9560/* Table of all deprecated coprocessor registers. */
9561static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9562{
9563 {15, 0, 7, 10, 5, /* CP15DMB. */
9564 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9565 DEPR_ACCESS_V8, NULL},
9566 {15, 0, 7, 10, 4, /* CP15DSB. */
9567 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9568 DEPR_ACCESS_V8, NULL},
9569 {15, 0, 7, 5, 4, /* CP15ISB. */
9570 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9571 DEPR_ACCESS_V8, NULL},
9572 {14, 6, 1, 0, 0, /* TEEHBR. */
9573 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9574 DEPR_ACCESS_V8, NULL},
9575 {14, 6, 0, 0, 0, /* TEECR. */
9576 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9577 DEPR_ACCESS_V8, NULL},
9578};
9579
9580#undef DEPR_ACCESS_V8
9581
9582static const size_t deprecated_coproc_reg_count =
9583 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9584
9585static void
9586do_co_reg (void)
9587{
9588 unsigned Rd;
9589 size_t i;
9590
9591 Rd = inst.operands[2].reg;
9592 if (thumb_mode)
9593 {
9594 if (inst.instruction == 0xee000010
9595 || inst.instruction == 0xfe000010)
9596 /* MCR, MCR2 */
9597 reject_bad_reg (Rd);
9598 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9599 /* MRC, MRC2 */
9600 constraint (Rd == REG_SP, BAD_SP);
9601 }
9602 else
9603 {
9604 /* MCR */
9605 if (inst.instruction == 0xe000010)
9606 constraint (Rd == REG_PC, BAD_PC);
9607 }
9608
9609 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9610 {
9611 const struct deprecated_coproc_regs_s *r =
9612 deprecated_coproc_regs + i;
9613
9614 if (inst.operands[0].reg == r->cp
9615 && inst.operands[1].imm == r->opc1
9616 && inst.operands[3].reg == r->crn
9617 && inst.operands[4].reg == r->crm
9618 && inst.operands[5].imm == r->opc2)
9619 {
9620 if (! ARM_CPU_IS_ANY (cpu_variant)
9621 && warn_on_deprecated
9622 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
9623 as_tsktsk ("%s", r->dep_msg);
9624 }
9625 }
9626
9627 inst.instruction |= inst.operands[0].reg << 8;
9628 inst.instruction |= inst.operands[1].imm << 21;
9629 inst.instruction |= Rd << 12;
9630 inst.instruction |= inst.operands[3].reg << 16;
9631 inst.instruction |= inst.operands[4].reg;
9632 inst.instruction |= inst.operands[5].imm << 5;
9633}
9634
9635/* Transfer between coprocessor register and pair of ARM registers.
9636 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9637 MCRR2
9638 MRRC{cond}
9639 MRRC2
9640
9641 Two XScale instructions are special cases of these:
9642
9643 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9644 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9645
9646 Result unpredictable if Rd or Rn is R15. */
9647
9648static void
9649do_co_reg2c (void)
9650{
9651 unsigned Rd, Rn;
9652
9653 Rd = inst.operands[2].reg;
9654 Rn = inst.operands[3].reg;
9655
9656 if (thumb_mode)
9657 {
9658 reject_bad_reg (Rd);
9659 reject_bad_reg (Rn);
9660 }
9661 else
9662 {
9663 constraint (Rd == REG_PC, BAD_PC);
9664 constraint (Rn == REG_PC, BAD_PC);
9665 }
9666
9667 /* Only check the MRRC{2} variants. */
9668 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9669 {
9670 /* If Rd == Rn, error that the operation is
9671 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9672 constraint (Rd == Rn, BAD_OVERLAP);
9673 }
9674
9675 inst.instruction |= inst.operands[0].reg << 8;
9676 inst.instruction |= inst.operands[1].imm << 4;
9677 inst.instruction |= Rd << 12;
9678 inst.instruction |= Rn << 16;
9679 inst.instruction |= inst.operands[4].reg;
9680}
9681
9682static void
9683do_cpsi (void)
9684{
9685 inst.instruction |= inst.operands[0].imm << 6;
9686 if (inst.operands[1].present)
9687 {
9688 inst.instruction |= CPSI_MMOD;
9689 inst.instruction |= inst.operands[1].imm;
9690 }
9691}
9692
9693static void
9694do_dbg (void)
9695{
9696 inst.instruction |= inst.operands[0].imm;
9697}
9698
9699static void
9700do_div (void)
9701{
9702 unsigned Rd, Rn, Rm;
9703
9704 Rd = inst.operands[0].reg;
9705 Rn = (inst.operands[1].present
9706 ? inst.operands[1].reg : Rd);
9707 Rm = inst.operands[2].reg;
9708
9709 constraint ((Rd == REG_PC), BAD_PC);
9710 constraint ((Rn == REG_PC), BAD_PC);
9711 constraint ((Rm == REG_PC), BAD_PC);
9712
9713 inst.instruction |= Rd << 16;
9714 inst.instruction |= Rn << 0;
9715 inst.instruction |= Rm << 8;
9716}
9717
9718static void
9719do_it (void)
9720{
9721 /* There is no IT instruction in ARM mode. We
9722 process it to do the validation as if in
9723 thumb mode, just in case the code gets
9724 assembled for thumb using the unified syntax. */
9725
9726 inst.size = 0;
9727 if (unified_syntax)
9728 {
9729 set_pred_insn_type (IT_INSN);
9730 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9731 now_pred.cc = inst.operands[0].imm;
9732 }
9733}
9734
9735/* If there is only one register in the register list,
9736 then return its register number. Otherwise return -1. */
9737static int
9738only_one_reg_in_list (int range)
9739{
9740 int i = ffs (range) - 1;
9741 return (i > 15 || range != (1 << i)) ? -1 : i;
9742}
9743
9744static void
9745encode_ldmstm(int from_push_pop_mnem)
9746{
9747 int base_reg = inst.operands[0].reg;
9748 int range = inst.operands[1].imm;
9749 int one_reg;
9750
9751 inst.instruction |= base_reg << 16;
9752 inst.instruction |= range;
9753
9754 if (inst.operands[1].writeback)
9755 inst.instruction |= LDM_TYPE_2_OR_3;
9756
9757 if (inst.operands[0].writeback)
9758 {
9759 inst.instruction |= WRITE_BACK;
9760 /* Check for unpredictable uses of writeback. */
9761 if (inst.instruction & LOAD_BIT)
9762 {
9763 /* Not allowed in LDM type 2. */
9764 if ((inst.instruction & LDM_TYPE_2_OR_3)
9765 && ((range & (1 << REG_PC)) == 0))
9766 as_warn (_("writeback of base register is UNPREDICTABLE"));
9767 /* Only allowed if base reg not in list for other types. */
9768 else if (range & (1 << base_reg))
9769 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9770 }
9771 else /* STM. */
9772 {
9773 /* Not allowed for type 2. */
9774 if (inst.instruction & LDM_TYPE_2_OR_3)
9775 as_warn (_("writeback of base register is UNPREDICTABLE"));
9776 /* Only allowed if base reg not in list, or first in list. */
9777 else if ((range & (1 << base_reg))
9778 && (range & ((1 << base_reg) - 1)))
9779 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9780 }
9781 }
9782
9783 /* If PUSH/POP has only one register, then use the A2 encoding. */
9784 one_reg = only_one_reg_in_list (range);
9785 if (from_push_pop_mnem && one_reg >= 0)
9786 {
9787 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9788
9789 if (is_push && one_reg == 13 /* SP */)
9790 /* PR 22483: The A2 encoding cannot be used when
9791 pushing the stack pointer as this is UNPREDICTABLE. */
9792 return;
9793
9794 inst.instruction &= A_COND_MASK;
9795 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9796 inst.instruction |= one_reg << 12;
9797 }
9798}
9799
9800static void
9801do_ldmstm (void)
9802{
9803 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
9804}
9805
9806/* ARMv5TE load-consecutive (argument parse)
9807 Mode is like LDRH.
9808
9809 LDRccD R, mode
9810 STRccD R, mode. */
9811
9812static void
9813do_ldrd (void)
9814{
9815 constraint (inst.operands[0].reg % 2 != 0,
9816 _("first transfer register must be even"));
9817 constraint (inst.operands[1].present
9818 && inst.operands[1].reg != inst.operands[0].reg + 1,
9819 _("can only transfer two consecutive registers"));
9820 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9821 constraint (!inst.operands[2].isreg, _("'[' expected"));
9822
9823 if (!inst.operands[1].present)
9824 inst.operands[1].reg = inst.operands[0].reg + 1;
9825
9826 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9827 register and the first register written; we have to diagnose
9828 overlap between the base and the second register written here. */
9829
9830 if (inst.operands[2].reg == inst.operands[1].reg
9831 && (inst.operands[2].writeback || inst.operands[2].postind))
9832 as_warn (_("base register written back, and overlaps "
9833 "second transfer register"));
9834
9835 if (!(inst.instruction & V4_STR_BIT))
9836 {
9837 /* For an index-register load, the index register must not overlap the
9838 destination (even if not write-back). */
9839 if (inst.operands[2].immisreg
9840 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9841 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9842 as_warn (_("index register overlaps transfer register"));
9843 }
9844 inst.instruction |= inst.operands[0].reg << 12;
9845 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
9846}
9847
9848static void
9849do_ldrex (void)
9850{
9851 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9852 || inst.operands[1].postind || inst.operands[1].writeback
9853 || inst.operands[1].immisreg || inst.operands[1].shifted
9854 || inst.operands[1].negative
9855 /* This can arise if the programmer has written
9856 strex rN, rM, foo
9857 or if they have mistakenly used a register name as the last
9858 operand, eg:
9859 strex rN, rM, rX
9860 It is very difficult to distinguish between these two cases
9861 because "rX" might actually be a label. ie the register
9862 name has been occluded by a symbol of the same name. So we
9863 just generate a general 'bad addressing mode' type error
9864 message and leave it up to the programmer to discover the
9865 true cause and fix their mistake. */
9866 || (inst.operands[1].reg == REG_PC),
9867 BAD_ADDR_MODE);
9868
9869 constraint (inst.relocs[0].exp.X_op != O_constant
9870 || inst.relocs[0].exp.X_add_number != 0,
9871 _("offset must be zero in ARM encoding"));
9872
9873 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9874
9875 inst.instruction |= inst.operands[0].reg << 12;
9876 inst.instruction |= inst.operands[1].reg << 16;
9877 inst.relocs[0].type = BFD_RELOC_UNUSED;
9878}
9879
9880static void
9881do_ldrexd (void)
9882{
9883 constraint (inst.operands[0].reg % 2 != 0,
9884 _("even register required"));
9885 constraint (inst.operands[1].present
9886 && inst.operands[1].reg != inst.operands[0].reg + 1,
9887 _("can only load two consecutive registers"));
9888 /* If op 1 were present and equal to PC, this function wouldn't
9889 have been called in the first place. */
9890 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9891
9892 inst.instruction |= inst.operands[0].reg << 12;
9893 inst.instruction |= inst.operands[2].reg << 16;
9894}
9895
9896/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9897 which is not a multiple of four is UNPREDICTABLE. */
9898static void
9899check_ldr_r15_aligned (void)
9900{
9901 constraint (!(inst.operands[1].immisreg)
9902 && (inst.operands[0].reg == REG_PC
9903 && inst.operands[1].reg == REG_PC
9904 && (inst.relocs[0].exp.X_add_number & 0x3)),
9905 _("ldr to register 15 must be 4-byte aligned"));
9906}
9907
9908static void
9909do_ldst (void)
9910{
9911 inst.instruction |= inst.operands[0].reg << 12;
9912 if (!inst.operands[1].isreg)
9913 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9914 return;
9915 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9916 check_ldr_r15_aligned ();
9917}
9918
9919static void
9920do_ldstt (void)
9921{
9922 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9923 reject [Rn,...]. */
9924 if (inst.operands[1].preind)
9925 {
9926 constraint (inst.relocs[0].exp.X_op != O_constant
9927 || inst.relocs[0].exp.X_add_number != 0,
9928 _("this instruction requires a post-indexed address"));
9929
9930 inst.operands[1].preind = 0;
9931 inst.operands[1].postind = 1;
9932 inst.operands[1].writeback = 1;
9933 }
9934 inst.instruction |= inst.operands[0].reg << 12;
9935 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9936}
9937
9938/* Halfword and signed-byte load/store operations. */
9939
9940static void
9941do_ldstv4 (void)
9942{
9943 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9944 inst.instruction |= inst.operands[0].reg << 12;
9945 if (!inst.operands[1].isreg)
9946 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9947 return;
9948 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9949}
9950
9951static void
9952do_ldsttv4 (void)
9953{
9954 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9955 reject [Rn,...]. */
9956 if (inst.operands[1].preind)
9957 {
9958 constraint (inst.relocs[0].exp.X_op != O_constant
9959 || inst.relocs[0].exp.X_add_number != 0,
9960 _("this instruction requires a post-indexed address"));
9961
9962 inst.operands[1].preind = 0;
9963 inst.operands[1].postind = 1;
9964 inst.operands[1].writeback = 1;
9965 }
9966 inst.instruction |= inst.operands[0].reg << 12;
9967 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9968}
9969
9970/* Co-processor register load/store.
9971 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9972static void
9973do_lstc (void)
9974{
9975 inst.instruction |= inst.operands[0].reg << 8;
9976 inst.instruction |= inst.operands[1].reg << 12;
9977 encode_arm_cp_address (2, TRUE, TRUE, 0);
9978}
9979
9980static void
9981do_mlas (void)
9982{
9983 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9984 if (inst.operands[0].reg == inst.operands[1].reg
9985 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9986 && !(inst.instruction & 0x00400000))
9987 as_tsktsk (_("Rd and Rm should be different in mla"));
9988
9989 inst.instruction |= inst.operands[0].reg << 16;
9990 inst.instruction |= inst.operands[1].reg;
9991 inst.instruction |= inst.operands[2].reg << 8;
9992 inst.instruction |= inst.operands[3].reg << 12;
9993}
9994
9995static void
9996do_mov (void)
9997{
9998 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9999 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
10000 THUMB1_RELOC_ONLY);
10001 inst.instruction |= inst.operands[0].reg << 12;
10002 encode_arm_shifter_operand (1);
10003}
10004
10005/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
10006static void
10007do_mov16 (void)
10008{
10009 bfd_vma imm;
10010 bfd_boolean top;
10011
10012 top = (inst.instruction & 0x00400000) != 0;
10013 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
10014 _(":lower16: not allowed in this instruction"));
10015 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
10016 _(":upper16: not allowed in this instruction"));
10017 inst.instruction |= inst.operands[0].reg << 12;
10018 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
10019 {
10020 imm = inst.relocs[0].exp.X_add_number;
10021 /* The value is in two pieces: 0:11, 16:19. */
10022 inst.instruction |= (imm & 0x00000fff);
10023 inst.instruction |= (imm & 0x0000f000) << 4;
10024 }
10025}
10026
10027static int
10028do_vfp_nsyn_mrs (void)
10029{
10030 if (inst.operands[0].isvec)
10031 {
10032 if (inst.operands[1].reg != 1)
10033 first_error (_("operand 1 must be FPSCR"));
10034 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
10035 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
10036 do_vfp_nsyn_opcode ("fmstat");
10037 }
10038 else if (inst.operands[1].isvec)
10039 do_vfp_nsyn_opcode ("fmrx");
10040 else
10041 return FAIL;
10042
10043 return SUCCESS;
10044}
10045
10046static int
10047do_vfp_nsyn_msr (void)
10048{
10049 if (inst.operands[0].isvec)
10050 do_vfp_nsyn_opcode ("fmxr");
10051 else
10052 return FAIL;
10053
10054 return SUCCESS;
10055}
10056
10057static void
10058do_vmrs (void)
10059{
10060 unsigned Rt = inst.operands[0].reg;
10061
10062 if (thumb_mode && Rt == REG_SP)
10063 {
10064 inst.error = BAD_SP;
10065 return;
10066 }
10067
10068 switch (inst.operands[1].reg)
10069 {
10070 /* MVFR2 is only valid for Armv8-A. */
10071 case 5:
10072 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
10073 _(BAD_FPU));
10074 break;
10075
10076 /* Check for new Armv8.1-M Mainline changes to <spec_reg>. */
10077 case 1: /* fpscr. */
10078 constraint (!(ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10079 || ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10080 _(BAD_FPU));
10081 break;
10082
10083 case 14: /* fpcxt_ns. */
10084 case 15: /* fpcxt_s. */
10085 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main),
10086 _("selected processor does not support instruction"));
10087 break;
10088
10089 case 2: /* fpscr_nzcvqc. */
10090 case 12: /* vpr. */
10091 case 13: /* p0. */
10092 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main)
10093 || (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10094 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10095 _("selected processor does not support instruction"));
10096 if (inst.operands[0].reg != 2
10097 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
10098 as_warn (_("accessing MVE system register without MVE is UNPREDICTABLE"));
10099 break;
10100
10101 default:
10102 break;
10103 }
10104
10105 /* APSR_ sets isvec. All other refs to PC are illegal. */
10106 if (!inst.operands[0].isvec && Rt == REG_PC)
10107 {
10108 inst.error = BAD_PC;
10109 return;
10110 }
10111
10112 /* If we get through parsing the register name, we just insert the number
10113 generated into the instruction without further validation. */
10114 inst.instruction |= (inst.operands[1].reg << 16);
10115 inst.instruction |= (Rt << 12);
10116}
10117
10118static void
10119do_vmsr (void)
10120{
10121 unsigned Rt = inst.operands[1].reg;
10122
10123 if (thumb_mode)
10124 reject_bad_reg (Rt);
10125 else if (Rt == REG_PC)
10126 {
10127 inst.error = BAD_PC;
10128 return;
10129 }
10130
10131 switch (inst.operands[0].reg)
10132 {
10133 /* MVFR2 is only valid for Armv8-A. */
10134 case 5:
10135 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
10136 _(BAD_FPU));
10137 break;
10138
10139 /* Check for new Armv8.1-M Mainline changes to <spec_reg>. */
10140 case 1: /* fpcr. */
10141 constraint (!(ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10142 || ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10143 _(BAD_FPU));
10144 break;
10145
10146 case 14: /* fpcxt_ns. */
10147 case 15: /* fpcxt_s. */
10148 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main),
10149 _("selected processor does not support instruction"));
10150 break;
10151
10152 case 2: /* fpscr_nzcvqc. */
10153 case 12: /* vpr. */
10154 case 13: /* p0. */
10155 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main)
10156 || (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10157 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10158 _("selected processor does not support instruction"));
10159 if (inst.operands[0].reg != 2
10160 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
10161 as_warn (_("accessing MVE system register without MVE is UNPREDICTABLE"));
10162 break;
10163
10164 default:
10165 break;
10166 }
10167
10168 /* If we get through parsing the register name, we just insert the number
10169 generated into the instruction without further validation. */
10170 inst.instruction |= (inst.operands[0].reg << 16);
10171 inst.instruction |= (Rt << 12);
10172}
10173
10174static void
10175do_mrs (void)
10176{
10177 unsigned br;
10178
10179 if (do_vfp_nsyn_mrs () == SUCCESS)
10180 return;
10181
10182 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10183 inst.instruction |= inst.operands[0].reg << 12;
10184
10185 if (inst.operands[1].isreg)
10186 {
10187 br = inst.operands[1].reg;
10188 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
10189 as_bad (_("bad register for mrs"));
10190 }
10191 else
10192 {
10193 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10194 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
10195 != (PSR_c|PSR_f),
10196 _("'APSR', 'CPSR' or 'SPSR' expected"));
10197 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
10198 }
10199
10200 inst.instruction |= br;
10201}
10202
10203/* Two possible forms:
10204 "{C|S}PSR_<field>, Rm",
10205 "{C|S}PSR_f, #expression". */
10206
10207static void
10208do_msr (void)
10209{
10210 if (do_vfp_nsyn_msr () == SUCCESS)
10211 return;
10212
10213 inst.instruction |= inst.operands[0].imm;
10214 if (inst.operands[1].isreg)
10215 inst.instruction |= inst.operands[1].reg;
10216 else
10217 {
10218 inst.instruction |= INST_IMMEDIATE;
10219 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
10220 inst.relocs[0].pc_rel = 0;
10221 }
10222}
10223
10224static void
10225do_mul (void)
10226{
10227 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
10228
10229 if (!inst.operands[2].present)
10230 inst.operands[2].reg = inst.operands[0].reg;
10231 inst.instruction |= inst.operands[0].reg << 16;
10232 inst.instruction |= inst.operands[1].reg;
10233 inst.instruction |= inst.operands[2].reg << 8;
10234
10235 if (inst.operands[0].reg == inst.operands[1].reg
10236 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
10237 as_tsktsk (_("Rd and Rm should be different in mul"));
10238}
10239
10240/* Long Multiply Parser
10241 UMULL RdLo, RdHi, Rm, Rs
10242 SMULL RdLo, RdHi, Rm, Rs
10243 UMLAL RdLo, RdHi, Rm, Rs
10244 SMLAL RdLo, RdHi, Rm, Rs. */
10245
10246static void
10247do_mull (void)
10248{
10249 inst.instruction |= inst.operands[0].reg << 12;
10250 inst.instruction |= inst.operands[1].reg << 16;
10251 inst.instruction |= inst.operands[2].reg;
10252 inst.instruction |= inst.operands[3].reg << 8;
10253
10254 /* rdhi and rdlo must be different. */
10255 if (inst.operands[0].reg == inst.operands[1].reg)
10256 as_tsktsk (_("rdhi and rdlo must be different"));
10257
10258 /* rdhi, rdlo and rm must all be different before armv6. */
10259 if ((inst.operands[0].reg == inst.operands[2].reg
10260 || inst.operands[1].reg == inst.operands[2].reg)
10261 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
10262 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
10263}
10264
10265static void
10266do_nop (void)
10267{
10268 if (inst.operands[0].present
10269 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
10270 {
10271 /* Architectural NOP hints are CPSR sets with no bits selected. */
10272 inst.instruction &= 0xf0000000;
10273 inst.instruction |= 0x0320f000;
10274 if (inst.operands[0].present)
10275 inst.instruction |= inst.operands[0].imm;
10276 }
10277}
10278
10279/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
10280 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
10281 Condition defaults to COND_ALWAYS.
10282 Error if Rd, Rn or Rm are R15. */
10283
10284static void
10285do_pkhbt (void)
10286{
10287 inst.instruction |= inst.operands[0].reg << 12;
10288 inst.instruction |= inst.operands[1].reg << 16;
10289 inst.instruction |= inst.operands[2].reg;
10290 if (inst.operands[3].present)
10291 encode_arm_shift (3);
10292}
10293
10294/* ARM V6 PKHTB (Argument Parse). */
10295
10296static void
10297do_pkhtb (void)
10298{
10299 if (!inst.operands[3].present)
10300 {
10301 /* If the shift specifier is omitted, turn the instruction
10302 into pkhbt rd, rm, rn. */
10303 inst.instruction &= 0xfff00010;
10304 inst.instruction |= inst.operands[0].reg << 12;
10305 inst.instruction |= inst.operands[1].reg;
10306 inst.instruction |= inst.operands[2].reg << 16;
10307 }
10308 else
10309 {
10310 inst.instruction |= inst.operands[0].reg << 12;
10311 inst.instruction |= inst.operands[1].reg << 16;
10312 inst.instruction |= inst.operands[2].reg;
10313 encode_arm_shift (3);
10314 }
10315}
10316
10317/* ARMv5TE: Preload-Cache
10318 MP Extensions: Preload for write
10319
10320 PLD(W) <addr_mode>
10321
10322 Syntactically, like LDR with B=1, W=0, L=1. */
10323
10324static void
10325do_pld (void)
10326{
10327 constraint (!inst.operands[0].isreg,
10328 _("'[' expected after PLD mnemonic"));
10329 constraint (inst.operands[0].postind,
10330 _("post-indexed expression used in preload instruction"));
10331 constraint (inst.operands[0].writeback,
10332 _("writeback used in preload instruction"));
10333 constraint (!inst.operands[0].preind,
10334 _("unindexed addressing used in preload instruction"));
10335 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10336}
10337
10338/* ARMv7: PLI <addr_mode> */
10339static void
10340do_pli (void)
10341{
10342 constraint (!inst.operands[0].isreg,
10343 _("'[' expected after PLI mnemonic"));
10344 constraint (inst.operands[0].postind,
10345 _("post-indexed expression used in preload instruction"));
10346 constraint (inst.operands[0].writeback,
10347 _("writeback used in preload instruction"));
10348 constraint (!inst.operands[0].preind,
10349 _("unindexed addressing used in preload instruction"));
10350 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10351 inst.instruction &= ~PRE_INDEX;
10352}
10353
10354static void
10355do_push_pop (void)
10356{
10357 constraint (inst.operands[0].writeback,
10358 _("push/pop do not support {reglist}^"));
10359 inst.operands[1] = inst.operands[0];
10360 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10361 inst.operands[0].isreg = 1;
10362 inst.operands[0].writeback = 1;
10363 inst.operands[0].reg = REG_SP;
10364 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
10365}
10366
10367/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10368 word at the specified address and the following word
10369 respectively.
10370 Unconditionally executed.
10371 Error if Rn is R15. */
10372
10373static void
10374do_rfe (void)
10375{
10376 inst.instruction |= inst.operands[0].reg << 16;
10377 if (inst.operands[0].writeback)
10378 inst.instruction |= WRITE_BACK;
10379}
10380
10381/* ARM V6 ssat (argument parse). */
10382
10383static void
10384do_ssat (void)
10385{
10386 inst.instruction |= inst.operands[0].reg << 12;
10387 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10388 inst.instruction |= inst.operands[2].reg;
10389
10390 if (inst.operands[3].present)
10391 encode_arm_shift (3);
10392}
10393
10394/* ARM V6 usat (argument parse). */
10395
10396static void
10397do_usat (void)
10398{
10399 inst.instruction |= inst.operands[0].reg << 12;
10400 inst.instruction |= inst.operands[1].imm << 16;
10401 inst.instruction |= inst.operands[2].reg;
10402
10403 if (inst.operands[3].present)
10404 encode_arm_shift (3);
10405}
10406
10407/* ARM V6 ssat16 (argument parse). */
10408
10409static void
10410do_ssat16 (void)
10411{
10412 inst.instruction |= inst.operands[0].reg << 12;
10413 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10414 inst.instruction |= inst.operands[2].reg;
10415}
10416
10417static void
10418do_usat16 (void)
10419{
10420 inst.instruction |= inst.operands[0].reg << 12;
10421 inst.instruction |= inst.operands[1].imm << 16;
10422 inst.instruction |= inst.operands[2].reg;
10423}
10424
10425/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10426 preserving the other bits.
10427
10428 setend <endian_specifier>, where <endian_specifier> is either
10429 BE or LE. */
10430
10431static void
10432do_setend (void)
10433{
10434 if (warn_on_deprecated
10435 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10436 as_tsktsk (_("setend use is deprecated for ARMv8"));
10437
10438 if (inst.operands[0].imm)
10439 inst.instruction |= 0x200;
10440}
10441
10442static void
10443do_shift (void)
10444{
10445 unsigned int Rm = (inst.operands[1].present
10446 ? inst.operands[1].reg
10447 : inst.operands[0].reg);
10448
10449 inst.instruction |= inst.operands[0].reg << 12;
10450 inst.instruction |= Rm;
10451 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
10452 {
10453 inst.instruction |= inst.operands[2].reg << 8;
10454 inst.instruction |= SHIFT_BY_REG;
10455 /* PR 12854: Error on extraneous shifts. */
10456 constraint (inst.operands[2].shifted,
10457 _("extraneous shift as part of operand to shift insn"));
10458 }
10459 else
10460 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
10461}
10462
10463static void
10464do_smc (void)
10465{
10466 unsigned int value = inst.relocs[0].exp.X_add_number;
10467 constraint (value > 0xf, _("immediate too large (bigger than 0xF)"));
10468
10469 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10470 inst.relocs[0].pc_rel = 0;
10471}
10472
10473static void
10474do_hvc (void)
10475{
10476 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10477 inst.relocs[0].pc_rel = 0;
10478}
10479
10480static void
10481do_swi (void)
10482{
10483 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10484 inst.relocs[0].pc_rel = 0;
10485}
10486
10487static void
10488do_setpan (void)
10489{
10490 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10491 _("selected processor does not support SETPAN instruction"));
10492
10493 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10494}
10495
10496static void
10497do_t_setpan (void)
10498{
10499 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10500 _("selected processor does not support SETPAN instruction"));
10501
10502 inst.instruction |= (inst.operands[0].imm << 3);
10503}
10504
10505/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10506 SMLAxy{cond} Rd,Rm,Rs,Rn
10507 SMLAWy{cond} Rd,Rm,Rs,Rn
10508 Error if any register is R15. */
10509
10510static void
10511do_smla (void)
10512{
10513 inst.instruction |= inst.operands[0].reg << 16;
10514 inst.instruction |= inst.operands[1].reg;
10515 inst.instruction |= inst.operands[2].reg << 8;
10516 inst.instruction |= inst.operands[3].reg << 12;
10517}
10518
10519/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10520 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10521 Error if any register is R15.
10522 Warning if Rdlo == Rdhi. */
10523
10524static void
10525do_smlal (void)
10526{
10527 inst.instruction |= inst.operands[0].reg << 12;
10528 inst.instruction |= inst.operands[1].reg << 16;
10529 inst.instruction |= inst.operands[2].reg;
10530 inst.instruction |= inst.operands[3].reg << 8;
10531
10532 if (inst.operands[0].reg == inst.operands[1].reg)
10533 as_tsktsk (_("rdhi and rdlo must be different"));
10534}
10535
10536/* ARM V5E (El Segundo) signed-multiply (argument parse)
10537 SMULxy{cond} Rd,Rm,Rs
10538 Error if any register is R15. */
10539
10540static void
10541do_smul (void)
10542{
10543 inst.instruction |= inst.operands[0].reg << 16;
10544 inst.instruction |= inst.operands[1].reg;
10545 inst.instruction |= inst.operands[2].reg << 8;
10546}
10547
10548/* ARM V6 srs (argument parse). The variable fields in the encoding are
10549 the same for both ARM and Thumb-2. */
10550
10551static void
10552do_srs (void)
10553{
10554 int reg;
10555
10556 if (inst.operands[0].present)
10557 {
10558 reg = inst.operands[0].reg;
10559 constraint (reg != REG_SP, _("SRS base register must be r13"));
10560 }
10561 else
10562 reg = REG_SP;
10563
10564 inst.instruction |= reg << 16;
10565 inst.instruction |= inst.operands[1].imm;
10566 if (inst.operands[0].writeback || inst.operands[1].writeback)
10567 inst.instruction |= WRITE_BACK;
10568}
10569
10570/* ARM V6 strex (argument parse). */
10571
10572static void
10573do_strex (void)
10574{
10575 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10576 || inst.operands[2].postind || inst.operands[2].writeback
10577 || inst.operands[2].immisreg || inst.operands[2].shifted
10578 || inst.operands[2].negative
10579 /* See comment in do_ldrex(). */
10580 || (inst.operands[2].reg == REG_PC),
10581 BAD_ADDR_MODE);
10582
10583 constraint (inst.operands[0].reg == inst.operands[1].reg
10584 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10585
10586 constraint (inst.relocs[0].exp.X_op != O_constant
10587 || inst.relocs[0].exp.X_add_number != 0,
10588 _("offset must be zero in ARM encoding"));
10589
10590 inst.instruction |= inst.operands[0].reg << 12;
10591 inst.instruction |= inst.operands[1].reg;
10592 inst.instruction |= inst.operands[2].reg << 16;
10593 inst.relocs[0].type = BFD_RELOC_UNUSED;
10594}
10595
10596static void
10597do_t_strexbh (void)
10598{
10599 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10600 || inst.operands[2].postind || inst.operands[2].writeback
10601 || inst.operands[2].immisreg || inst.operands[2].shifted
10602 || inst.operands[2].negative,
10603 BAD_ADDR_MODE);
10604
10605 constraint (inst.operands[0].reg == inst.operands[1].reg
10606 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10607
10608 do_rm_rd_rn ();
10609}
10610
10611static void
10612do_strexd (void)
10613{
10614 constraint (inst.operands[1].reg % 2 != 0,
10615 _("even register required"));
10616 constraint (inst.operands[2].present
10617 && inst.operands[2].reg != inst.operands[1].reg + 1,
10618 _("can only store two consecutive registers"));
10619 /* If op 2 were present and equal to PC, this function wouldn't
10620 have been called in the first place. */
10621 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
10622
10623 constraint (inst.operands[0].reg == inst.operands[1].reg
10624 || inst.operands[0].reg == inst.operands[1].reg + 1
10625 || inst.operands[0].reg == inst.operands[3].reg,
10626 BAD_OVERLAP);
10627
10628 inst.instruction |= inst.operands[0].reg << 12;
10629 inst.instruction |= inst.operands[1].reg;
10630 inst.instruction |= inst.operands[3].reg << 16;
10631}
10632
10633/* ARM V8 STRL. */
10634static void
10635do_stlex (void)
10636{
10637 constraint (inst.operands[0].reg == inst.operands[1].reg
10638 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10639
10640 do_rd_rm_rn ();
10641}
10642
10643static void
10644do_t_stlex (void)
10645{
10646 constraint (inst.operands[0].reg == inst.operands[1].reg
10647 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10648
10649 do_rm_rd_rn ();
10650}
10651
10652/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10653 extends it to 32-bits, and adds the result to a value in another
10654 register. You can specify a rotation by 0, 8, 16, or 24 bits
10655 before extracting the 16-bit value.
10656 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10657 Condition defaults to COND_ALWAYS.
10658 Error if any register uses R15. */
10659
10660static void
10661do_sxtah (void)
10662{
10663 inst.instruction |= inst.operands[0].reg << 12;
10664 inst.instruction |= inst.operands[1].reg << 16;
10665 inst.instruction |= inst.operands[2].reg;
10666 inst.instruction |= inst.operands[3].imm << 10;
10667}
10668
10669/* ARM V6 SXTH.
10670
10671 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10672 Condition defaults to COND_ALWAYS.
10673 Error if any register uses R15. */
10674
10675static void
10676do_sxth (void)
10677{
10678 inst.instruction |= inst.operands[0].reg << 12;
10679 inst.instruction |= inst.operands[1].reg;
10680 inst.instruction |= inst.operands[2].imm << 10;
10681}
10682\f
10683/* VFP instructions. In a logical order: SP variant first, monad
10684 before dyad, arithmetic then move then load/store. */
10685
10686static void
10687do_vfp_sp_monadic (void)
10688{
10689 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10690 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10691 _(BAD_FPU));
10692
10693 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10694 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10695}
10696
10697static void
10698do_vfp_sp_dyadic (void)
10699{
10700 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10701 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10702 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10703}
10704
10705static void
10706do_vfp_sp_compare_z (void)
10707{
10708 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10709}
10710
10711static void
10712do_vfp_dp_sp_cvt (void)
10713{
10714 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10715 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10716}
10717
10718static void
10719do_vfp_sp_dp_cvt (void)
10720{
10721 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10722 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10723}
10724
10725static void
10726do_vfp_reg_from_sp (void)
10727{
10728 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10729 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10730 _(BAD_FPU));
10731
10732 inst.instruction |= inst.operands[0].reg << 12;
10733 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10734}
10735
10736static void
10737do_vfp_reg2_from_sp2 (void)
10738{
10739 constraint (inst.operands[2].imm != 2,
10740 _("only two consecutive VFP SP registers allowed here"));
10741 inst.instruction |= inst.operands[0].reg << 12;
10742 inst.instruction |= inst.operands[1].reg << 16;
10743 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10744}
10745
10746static void
10747do_vfp_sp_from_reg (void)
10748{
10749 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10750 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10751 _(BAD_FPU));
10752
10753 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
10754 inst.instruction |= inst.operands[1].reg << 12;
10755}
10756
10757static void
10758do_vfp_sp2_from_reg2 (void)
10759{
10760 constraint (inst.operands[0].imm != 2,
10761 _("only two consecutive VFP SP registers allowed here"));
10762 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
10763 inst.instruction |= inst.operands[1].reg << 12;
10764 inst.instruction |= inst.operands[2].reg << 16;
10765}
10766
10767static void
10768do_vfp_sp_ldst (void)
10769{
10770 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10771 encode_arm_cp_address (1, FALSE, TRUE, 0);
10772}
10773
10774static void
10775do_vfp_dp_ldst (void)
10776{
10777 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10778 encode_arm_cp_address (1, FALSE, TRUE, 0);
10779}
10780
10781
10782static void
10783vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
10784{
10785 if (inst.operands[0].writeback)
10786 inst.instruction |= WRITE_BACK;
10787 else
10788 constraint (ldstm_type != VFP_LDSTMIA,
10789 _("this addressing mode requires base-register writeback"));
10790 inst.instruction |= inst.operands[0].reg << 16;
10791 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
10792 inst.instruction |= inst.operands[1].imm;
10793}
10794
10795static void
10796vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
10797{
10798 int count;
10799
10800 if (inst.operands[0].writeback)
10801 inst.instruction |= WRITE_BACK;
10802 else
10803 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10804 _("this addressing mode requires base-register writeback"));
10805
10806 inst.instruction |= inst.operands[0].reg << 16;
10807 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10808
10809 count = inst.operands[1].imm << 1;
10810 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10811 count += 1;
10812
10813 inst.instruction |= count;
10814}
10815
10816static void
10817do_vfp_sp_ldstmia (void)
10818{
10819 vfp_sp_ldstm (VFP_LDSTMIA);
10820}
10821
10822static void
10823do_vfp_sp_ldstmdb (void)
10824{
10825 vfp_sp_ldstm (VFP_LDSTMDB);
10826}
10827
10828static void
10829do_vfp_dp_ldstmia (void)
10830{
10831 vfp_dp_ldstm (VFP_LDSTMIA);
10832}
10833
10834static void
10835do_vfp_dp_ldstmdb (void)
10836{
10837 vfp_dp_ldstm (VFP_LDSTMDB);
10838}
10839
10840static void
10841do_vfp_xp_ldstmia (void)
10842{
10843 vfp_dp_ldstm (VFP_LDSTMIAX);
10844}
10845
10846static void
10847do_vfp_xp_ldstmdb (void)
10848{
10849 vfp_dp_ldstm (VFP_LDSTMDBX);
10850}
10851
10852static void
10853do_vfp_dp_rd_rm (void)
10854{
10855 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10856 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10857 _(BAD_FPU));
10858
10859 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10860 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10861}
10862
10863static void
10864do_vfp_dp_rn_rd (void)
10865{
10866 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10867 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10868}
10869
10870static void
10871do_vfp_dp_rd_rn (void)
10872{
10873 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10874 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10875}
10876
10877static void
10878do_vfp_dp_rd_rn_rm (void)
10879{
10880 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10881 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10882 _(BAD_FPU));
10883
10884 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10885 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10886 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10887}
10888
10889static void
10890do_vfp_dp_rd (void)
10891{
10892 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10893}
10894
10895static void
10896do_vfp_dp_rm_rd_rn (void)
10897{
10898 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10899 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10900 _(BAD_FPU));
10901
10902 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10903 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10904 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10905}
10906
10907/* VFPv3 instructions. */
10908static void
10909do_vfp_sp_const (void)
10910{
10911 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10912 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10913 inst.instruction |= (inst.operands[1].imm & 0x0f);
10914}
10915
10916static void
10917do_vfp_dp_const (void)
10918{
10919 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10920 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10921 inst.instruction |= (inst.operands[1].imm & 0x0f);
10922}
10923
10924static void
10925vfp_conv (int srcsize)
10926{
10927 int immbits = srcsize - inst.operands[1].imm;
10928
10929 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10930 {
10931 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10932 i.e. immbits must be in range 0 - 16. */
10933 inst.error = _("immediate value out of range, expected range [0, 16]");
10934 return;
10935 }
10936 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
10937 {
10938 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10939 i.e. immbits must be in range 0 - 31. */
10940 inst.error = _("immediate value out of range, expected range [1, 32]");
10941 return;
10942 }
10943
10944 inst.instruction |= (immbits & 1) << 5;
10945 inst.instruction |= (immbits >> 1);
10946}
10947
10948static void
10949do_vfp_sp_conv_16 (void)
10950{
10951 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10952 vfp_conv (16);
10953}
10954
10955static void
10956do_vfp_dp_conv_16 (void)
10957{
10958 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10959 vfp_conv (16);
10960}
10961
10962static void
10963do_vfp_sp_conv_32 (void)
10964{
10965 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10966 vfp_conv (32);
10967}
10968
10969static void
10970do_vfp_dp_conv_32 (void)
10971{
10972 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10973 vfp_conv (32);
10974}
10975\f
10976/* FPA instructions. Also in a logical order. */
10977
10978static void
10979do_fpa_cmp (void)
10980{
10981 inst.instruction |= inst.operands[0].reg << 16;
10982 inst.instruction |= inst.operands[1].reg;
10983}
10984
10985static void
10986do_fpa_ldmstm (void)
10987{
10988 inst.instruction |= inst.operands[0].reg << 12;
10989 switch (inst.operands[1].imm)
10990 {
10991 case 1: inst.instruction |= CP_T_X; break;
10992 case 2: inst.instruction |= CP_T_Y; break;
10993 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10994 case 4: break;
10995 default: abort ();
10996 }
10997
10998 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10999 {
11000 /* The instruction specified "ea" or "fd", so we can only accept
11001 [Rn]{!}. The instruction does not really support stacking or
11002 unstacking, so we have to emulate these by setting appropriate
11003 bits and offsets. */
11004 constraint (inst.relocs[0].exp.X_op != O_constant
11005 || inst.relocs[0].exp.X_add_number != 0,
11006 _("this instruction does not support indexing"));
11007
11008 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
11009 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
11010
11011 if (!(inst.instruction & INDEX_UP))
11012 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
11013
11014 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
11015 {
11016 inst.operands[2].preind = 0;
11017 inst.operands[2].postind = 1;
11018 }
11019 }
11020
11021 encode_arm_cp_address (2, TRUE, TRUE, 0);
11022}
11023\f
11024/* iWMMXt instructions: strictly in alphabetical order. */
11025
11026static void
11027do_iwmmxt_tandorc (void)
11028{
11029 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
11030}
11031
11032static void
11033do_iwmmxt_textrc (void)
11034{
11035 inst.instruction |= inst.operands[0].reg << 12;
11036 inst.instruction |= inst.operands[1].imm;
11037}
11038
11039static void
11040do_iwmmxt_textrm (void)
11041{
11042 inst.instruction |= inst.operands[0].reg << 12;
11043 inst.instruction |= inst.operands[1].reg << 16;
11044 inst.instruction |= inst.operands[2].imm;
11045}
11046
11047static void
11048do_iwmmxt_tinsr (void)
11049{
11050 inst.instruction |= inst.operands[0].reg << 16;
11051 inst.instruction |= inst.operands[1].reg << 12;
11052 inst.instruction |= inst.operands[2].imm;
11053}
11054
11055static void
11056do_iwmmxt_tmia (void)
11057{
11058 inst.instruction |= inst.operands[0].reg << 5;
11059 inst.instruction |= inst.operands[1].reg;
11060 inst.instruction |= inst.operands[2].reg << 12;
11061}
11062
11063static void
11064do_iwmmxt_waligni (void)
11065{
11066 inst.instruction |= inst.operands[0].reg << 12;
11067 inst.instruction |= inst.operands[1].reg << 16;
11068 inst.instruction |= inst.operands[2].reg;
11069 inst.instruction |= inst.operands[3].imm << 20;
11070}
11071
11072static void
11073do_iwmmxt_wmerge (void)
11074{
11075 inst.instruction |= inst.operands[0].reg << 12;
11076 inst.instruction |= inst.operands[1].reg << 16;
11077 inst.instruction |= inst.operands[2].reg;
11078 inst.instruction |= inst.operands[3].imm << 21;
11079}
11080
11081static void
11082do_iwmmxt_wmov (void)
11083{
11084 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
11085 inst.instruction |= inst.operands[0].reg << 12;
11086 inst.instruction |= inst.operands[1].reg << 16;
11087 inst.instruction |= inst.operands[1].reg;
11088}
11089
11090static void
11091do_iwmmxt_wldstbh (void)
11092{
11093 int reloc;
11094 inst.instruction |= inst.operands[0].reg << 12;
11095 if (thumb_mode)
11096 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
11097 else
11098 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
11099 encode_arm_cp_address (1, TRUE, FALSE, reloc);
11100}
11101
11102static void
11103do_iwmmxt_wldstw (void)
11104{
11105 /* RIWR_RIWC clears .isreg for a control register. */
11106 if (!inst.operands[0].isreg)
11107 {
11108 constraint (inst.cond != COND_ALWAYS, BAD_COND);
11109 inst.instruction |= 0xf0000000;
11110 }
11111
11112 inst.instruction |= inst.operands[0].reg << 12;
11113 encode_arm_cp_address (1, TRUE, TRUE, 0);
11114}
11115
11116static void
11117do_iwmmxt_wldstd (void)
11118{
11119 inst.instruction |= inst.operands[0].reg << 12;
11120 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
11121 && inst.operands[1].immisreg)
11122 {
11123 inst.instruction &= ~0x1a000ff;
11124 inst.instruction |= (0xfU << 28);
11125 if (inst.operands[1].preind)
11126 inst.instruction |= PRE_INDEX;
11127 if (!inst.operands[1].negative)
11128 inst.instruction |= INDEX_UP;
11129 if (inst.operands[1].writeback)
11130 inst.instruction |= WRITE_BACK;
11131 inst.instruction |= inst.operands[1].reg << 16;
11132 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11133 inst.instruction |= inst.operands[1].imm;
11134 }
11135 else
11136 encode_arm_cp_address (1, TRUE, FALSE, 0);
11137}
11138
11139static void
11140do_iwmmxt_wshufh (void)
11141{
11142 inst.instruction |= inst.operands[0].reg << 12;
11143 inst.instruction |= inst.operands[1].reg << 16;
11144 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
11145 inst.instruction |= (inst.operands[2].imm & 0x0f);
11146}
11147
11148static void
11149do_iwmmxt_wzero (void)
11150{
11151 /* WZERO reg is an alias for WANDN reg, reg, reg. */
11152 inst.instruction |= inst.operands[0].reg;
11153 inst.instruction |= inst.operands[0].reg << 12;
11154 inst.instruction |= inst.operands[0].reg << 16;
11155}
11156
11157static void
11158do_iwmmxt_wrwrwr_or_imm5 (void)
11159{
11160 if (inst.operands[2].isreg)
11161 do_rd_rn_rm ();
11162 else {
11163 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
11164 _("immediate operand requires iWMMXt2"));
11165 do_rd_rn ();
11166 if (inst.operands[2].imm == 0)
11167 {
11168 switch ((inst.instruction >> 20) & 0xf)
11169 {
11170 case 4:
11171 case 5:
11172 case 6:
11173 case 7:
11174 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
11175 inst.operands[2].imm = 16;
11176 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
11177 break;
11178 case 8:
11179 case 9:
11180 case 10:
11181 case 11:
11182 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
11183 inst.operands[2].imm = 32;
11184 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
11185 break;
11186 case 12:
11187 case 13:
11188 case 14:
11189 case 15:
11190 {
11191 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
11192 unsigned long wrn;
11193 wrn = (inst.instruction >> 16) & 0xf;
11194 inst.instruction &= 0xff0fff0f;
11195 inst.instruction |= wrn;
11196 /* Bail out here; the instruction is now assembled. */
11197 return;
11198 }
11199 }
11200 }
11201 /* Map 32 -> 0, etc. */
11202 inst.operands[2].imm &= 0x1f;
11203 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
11204 }
11205}
11206\f
11207/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
11208 operations first, then control, shift, and load/store. */
11209
11210/* Insns like "foo X,Y,Z". */
11211
11212static void
11213do_mav_triple (void)
11214{
11215 inst.instruction |= inst.operands[0].reg << 16;
11216 inst.instruction |= inst.operands[1].reg;
11217 inst.instruction |= inst.operands[2].reg << 12;
11218}
11219
11220/* Insns like "foo W,X,Y,Z".
11221 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
11222
11223static void
11224do_mav_quad (void)
11225{
11226 inst.instruction |= inst.operands[0].reg << 5;
11227 inst.instruction |= inst.operands[1].reg << 12;
11228 inst.instruction |= inst.operands[2].reg << 16;
11229 inst.instruction |= inst.operands[3].reg;
11230}
11231
11232/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
11233static void
11234do_mav_dspsc (void)
11235{
11236 inst.instruction |= inst.operands[1].reg << 12;
11237}
11238
11239/* Maverick shift immediate instructions.
11240 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
11241 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
11242
11243static void
11244do_mav_shift (void)
11245{
11246 int imm = inst.operands[2].imm;
11247
11248 inst.instruction |= inst.operands[0].reg << 12;
11249 inst.instruction |= inst.operands[1].reg << 16;
11250
11251 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
11252 Bits 5-7 of the insn should have bits 4-6 of the immediate.
11253 Bit 4 should be 0. */
11254 imm = (imm & 0xf) | ((imm & 0x70) << 1);
11255
11256 inst.instruction |= imm;
11257}
11258\f
11259/* XScale instructions. Also sorted arithmetic before move. */
11260
11261/* Xscale multiply-accumulate (argument parse)
11262 MIAcc acc0,Rm,Rs
11263 MIAPHcc acc0,Rm,Rs
11264 MIAxycc acc0,Rm,Rs. */
11265
11266static void
11267do_xsc_mia (void)
11268{
11269 inst.instruction |= inst.operands[1].reg;
11270 inst.instruction |= inst.operands[2].reg << 12;
11271}
11272
11273/* Xscale move-accumulator-register (argument parse)
11274
11275 MARcc acc0,RdLo,RdHi. */
11276
11277static void
11278do_xsc_mar (void)
11279{
11280 inst.instruction |= inst.operands[1].reg << 12;
11281 inst.instruction |= inst.operands[2].reg << 16;
11282}
11283
11284/* Xscale move-register-accumulator (argument parse)
11285
11286 MRAcc RdLo,RdHi,acc0. */
11287
11288static void
11289do_xsc_mra (void)
11290{
11291 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
11292 inst.instruction |= inst.operands[0].reg << 12;
11293 inst.instruction |= inst.operands[1].reg << 16;
11294}
11295\f
11296/* Encoding functions relevant only to Thumb. */
11297
11298/* inst.operands[i] is a shifted-register operand; encode
11299 it into inst.instruction in the format used by Thumb32. */
11300
11301static void
11302encode_thumb32_shifted_operand (int i)
11303{
11304 unsigned int value = inst.relocs[0].exp.X_add_number;
11305 unsigned int shift = inst.operands[i].shift_kind;
11306
11307 constraint (inst.operands[i].immisreg,
11308 _("shift by register not allowed in thumb mode"));
11309 inst.instruction |= inst.operands[i].reg;
11310 if (shift == SHIFT_RRX)
11311 inst.instruction |= SHIFT_ROR << 4;
11312 else
11313 {
11314 constraint (inst.relocs[0].exp.X_op != O_constant,
11315 _("expression too complex"));
11316
11317 constraint (value > 32
11318 || (value == 32 && (shift == SHIFT_LSL
11319 || shift == SHIFT_ROR)),
11320 _("shift expression is too large"));
11321
11322 if (value == 0)
11323 shift = SHIFT_LSL;
11324 else if (value == 32)
11325 value = 0;
11326
11327 inst.instruction |= shift << 4;
11328 inst.instruction |= (value & 0x1c) << 10;
11329 inst.instruction |= (value & 0x03) << 6;
11330 }
11331}
11332
11333
11334/* inst.operands[i] was set up by parse_address. Encode it into a
11335 Thumb32 format load or store instruction. Reject forms that cannot
11336 be used with such instructions. If is_t is true, reject forms that
11337 cannot be used with a T instruction; if is_d is true, reject forms
11338 that cannot be used with a D instruction. If it is a store insn,
11339 reject PC in Rn. */
11340
11341static void
11342encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11343{
11344 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
11345
11346 constraint (!inst.operands[i].isreg,
11347 _("Instruction does not support =N addresses"));
11348
11349 inst.instruction |= inst.operands[i].reg << 16;
11350 if (inst.operands[i].immisreg)
11351 {
11352 constraint (is_pc, BAD_PC_ADDRESSING);
11353 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11354 constraint (inst.operands[i].negative,
11355 _("Thumb does not support negative register indexing"));
11356 constraint (inst.operands[i].postind,
11357 _("Thumb does not support register post-indexing"));
11358 constraint (inst.operands[i].writeback,
11359 _("Thumb does not support register indexing with writeback"));
11360 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11361 _("Thumb supports only LSL in shifted register indexing"));
11362
11363 inst.instruction |= inst.operands[i].imm;
11364 if (inst.operands[i].shifted)
11365 {
11366 constraint (inst.relocs[0].exp.X_op != O_constant,
11367 _("expression too complex"));
11368 constraint (inst.relocs[0].exp.X_add_number < 0
11369 || inst.relocs[0].exp.X_add_number > 3,
11370 _("shift out of range"));
11371 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11372 }
11373 inst.relocs[0].type = BFD_RELOC_UNUSED;
11374 }
11375 else if (inst.operands[i].preind)
11376 {
11377 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
11378 constraint (is_t && inst.operands[i].writeback,
11379 _("cannot use writeback with this instruction"));
11380 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11381 BAD_PC_ADDRESSING);
11382
11383 if (is_d)
11384 {
11385 inst.instruction |= 0x01000000;
11386 if (inst.operands[i].writeback)
11387 inst.instruction |= 0x00200000;
11388 }
11389 else
11390 {
11391 inst.instruction |= 0x00000c00;
11392 if (inst.operands[i].writeback)
11393 inst.instruction |= 0x00000100;
11394 }
11395 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11396 }
11397 else if (inst.operands[i].postind)
11398 {
11399 gas_assert (inst.operands[i].writeback);
11400 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11401 constraint (is_t, _("cannot use post-indexing with this instruction"));
11402
11403 if (is_d)
11404 inst.instruction |= 0x00200000;
11405 else
11406 inst.instruction |= 0x00000900;
11407 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11408 }
11409 else /* unindexed - only for coprocessor */
11410 inst.error = _("instruction does not accept unindexed addressing");
11411}
11412
11413/* Table of Thumb instructions which exist in 16- and/or 32-bit
11414 encodings (the latter only in post-V6T2 cores). The index is the
11415 value used in the insns table below. When there is more than one
11416 possible 16-bit encoding for the instruction, this table always
11417 holds variant (1).
11418 Also contains several pseudo-instructions used during relaxation. */
11419#define T16_32_TAB \
11420 X(_adc, 4140, eb400000), \
11421 X(_adcs, 4140, eb500000), \
11422 X(_add, 1c00, eb000000), \
11423 X(_adds, 1c00, eb100000), \
11424 X(_addi, 0000, f1000000), \
11425 X(_addis, 0000, f1100000), \
11426 X(_add_pc,000f, f20f0000), \
11427 X(_add_sp,000d, f10d0000), \
11428 X(_adr, 000f, f20f0000), \
11429 X(_and, 4000, ea000000), \
11430 X(_ands, 4000, ea100000), \
11431 X(_asr, 1000, fa40f000), \
11432 X(_asrs, 1000, fa50f000), \
11433 X(_b, e000, f000b000), \
11434 X(_bcond, d000, f0008000), \
11435 X(_bf, 0000, f040e001), \
11436 X(_bfcsel,0000, f000e001), \
11437 X(_bfx, 0000, f060e001), \
11438 X(_bfl, 0000, f000c001), \
11439 X(_bflx, 0000, f070e001), \
11440 X(_bic, 4380, ea200000), \
11441 X(_bics, 4380, ea300000), \
11442 X(_cinc, 0000, ea509000), \
11443 X(_cinv, 0000, ea50a000), \
11444 X(_cmn, 42c0, eb100f00), \
11445 X(_cmp, 2800, ebb00f00), \
11446 X(_cneg, 0000, ea50b000), \
11447 X(_cpsie, b660, f3af8400), \
11448 X(_cpsid, b670, f3af8600), \
11449 X(_cpy, 4600, ea4f0000), \
11450 X(_csel, 0000, ea508000), \
11451 X(_cset, 0000, ea5f900f), \
11452 X(_csetm, 0000, ea5fa00f), \
11453 X(_csinc, 0000, ea509000), \
11454 X(_csinv, 0000, ea50a000), \
11455 X(_csneg, 0000, ea50b000), \
11456 X(_dec_sp,80dd, f1ad0d00), \
11457 X(_dls, 0000, f040e001), \
11458 X(_dlstp, 0000, f000e001), \
11459 X(_eor, 4040, ea800000), \
11460 X(_eors, 4040, ea900000), \
11461 X(_inc_sp,00dd, f10d0d00), \
11462 X(_lctp, 0000, f00fe001), \
11463 X(_ldmia, c800, e8900000), \
11464 X(_ldr, 6800, f8500000), \
11465 X(_ldrb, 7800, f8100000), \
11466 X(_ldrh, 8800, f8300000), \
11467 X(_ldrsb, 5600, f9100000), \
11468 X(_ldrsh, 5e00, f9300000), \
11469 X(_ldr_pc,4800, f85f0000), \
11470 X(_ldr_pc2,4800, f85f0000), \
11471 X(_ldr_sp,9800, f85d0000), \
11472 X(_le, 0000, f00fc001), \
11473 X(_letp, 0000, f01fc001), \
11474 X(_lsl, 0000, fa00f000), \
11475 X(_lsls, 0000, fa10f000), \
11476 X(_lsr, 0800, fa20f000), \
11477 X(_lsrs, 0800, fa30f000), \
11478 X(_mov, 2000, ea4f0000), \
11479 X(_movs, 2000, ea5f0000), \
11480 X(_mul, 4340, fb00f000), \
11481 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11482 X(_mvn, 43c0, ea6f0000), \
11483 X(_mvns, 43c0, ea7f0000), \
11484 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11485 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11486 X(_orr, 4300, ea400000), \
11487 X(_orrs, 4300, ea500000), \
11488 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11489 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11490 X(_rev, ba00, fa90f080), \
11491 X(_rev16, ba40, fa90f090), \
11492 X(_revsh, bac0, fa90f0b0), \
11493 X(_ror, 41c0, fa60f000), \
11494 X(_rors, 41c0, fa70f000), \
11495 X(_sbc, 4180, eb600000), \
11496 X(_sbcs, 4180, eb700000), \
11497 X(_stmia, c000, e8800000), \
11498 X(_str, 6000, f8400000), \
11499 X(_strb, 7000, f8000000), \
11500 X(_strh, 8000, f8200000), \
11501 X(_str_sp,9000, f84d0000), \
11502 X(_sub, 1e00, eba00000), \
11503 X(_subs, 1e00, ebb00000), \
11504 X(_subi, 8000, f1a00000), \
11505 X(_subis, 8000, f1b00000), \
11506 X(_sxtb, b240, fa4ff080), \
11507 X(_sxth, b200, fa0ff080), \
11508 X(_tst, 4200, ea100f00), \
11509 X(_uxtb, b2c0, fa5ff080), \
11510 X(_uxth, b280, fa1ff080), \
11511 X(_nop, bf00, f3af8000), \
11512 X(_yield, bf10, f3af8001), \
11513 X(_wfe, bf20, f3af8002), \
11514 X(_wfi, bf30, f3af8003), \
11515 X(_wls, 0000, f040c001), \
11516 X(_wlstp, 0000, f000c001), \
11517 X(_sev, bf40, f3af8004), \
11518 X(_sevl, bf50, f3af8005), \
11519 X(_udf, de00, f7f0a000)
11520
11521/* To catch errors in encoding functions, the codes are all offset by
11522 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11523 as 16-bit instructions. */
11524#define X(a,b,c) T_MNEM##a
11525enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11526#undef X
11527
11528#define X(a,b,c) 0x##b
11529static const unsigned short thumb_op16[] = { T16_32_TAB };
11530#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11531#undef X
11532
11533#define X(a,b,c) 0x##c
11534static const unsigned int thumb_op32[] = { T16_32_TAB };
11535#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11536#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11537#undef X
11538#undef T16_32_TAB
11539
11540/* Thumb instruction encoders, in alphabetical order. */
11541
11542/* ADDW or SUBW. */
11543
11544static void
11545do_t_add_sub_w (void)
11546{
11547 int Rd, Rn;
11548
11549 Rd = inst.operands[0].reg;
11550 Rn = inst.operands[1].reg;
11551
11552 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11553 is the SP-{plus,minus}-immediate form of the instruction. */
11554 if (Rn == REG_SP)
11555 constraint (Rd == REG_PC, BAD_PC);
11556 else
11557 reject_bad_reg (Rd);
11558
11559 inst.instruction |= (Rn << 16) | (Rd << 8);
11560 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11561}
11562
11563/* Parse an add or subtract instruction. We get here with inst.instruction
11564 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11565
11566static void
11567do_t_add_sub (void)
11568{
11569 int Rd, Rs, Rn;
11570
11571 Rd = inst.operands[0].reg;
11572 Rs = (inst.operands[1].present
11573 ? inst.operands[1].reg /* Rd, Rs, foo */
11574 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11575
11576 if (Rd == REG_PC)
11577 set_pred_insn_type_last ();
11578
11579 if (unified_syntax)
11580 {
11581 bfd_boolean flags;
11582 bfd_boolean narrow;
11583 int opcode;
11584
11585 flags = (inst.instruction == T_MNEM_adds
11586 || inst.instruction == T_MNEM_subs);
11587 if (flags)
11588 narrow = !in_pred_block ();
11589 else
11590 narrow = in_pred_block ();
11591 if (!inst.operands[2].isreg)
11592 {
11593 int add;
11594
11595 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11596 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11597
11598 add = (inst.instruction == T_MNEM_add
11599 || inst.instruction == T_MNEM_adds);
11600 opcode = 0;
11601 if (inst.size_req != 4)
11602 {
11603 /* Attempt to use a narrow opcode, with relaxation if
11604 appropriate. */
11605 if (Rd == REG_SP && Rs == REG_SP && !flags)
11606 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11607 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11608 opcode = T_MNEM_add_sp;
11609 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11610 opcode = T_MNEM_add_pc;
11611 else if (Rd <= 7 && Rs <= 7 && narrow)
11612 {
11613 if (flags)
11614 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11615 else
11616 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11617 }
11618 if (opcode)
11619 {
11620 inst.instruction = THUMB_OP16(opcode);
11621 inst.instruction |= (Rd << 4) | Rs;
11622 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11623 || (inst.relocs[0].type
11624 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
11625 {
11626 if (inst.size_req == 2)
11627 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11628 else
11629 inst.relax = opcode;
11630 }
11631 }
11632 else
11633 constraint (inst.size_req == 2, BAD_HIREG);
11634 }
11635 if (inst.size_req == 4
11636 || (inst.size_req != 2 && !opcode))
11637 {
11638 constraint ((inst.relocs[0].type
11639 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11640 && (inst.relocs[0].type
11641 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
11642 THUMB1_RELOC_ONLY);
11643 if (Rd == REG_PC)
11644 {
11645 constraint (add, BAD_PC);
11646 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11647 _("only SUBS PC, LR, #const allowed"));
11648 constraint (inst.relocs[0].exp.X_op != O_constant,
11649 _("expression too complex"));
11650 constraint (inst.relocs[0].exp.X_add_number < 0
11651 || inst.relocs[0].exp.X_add_number > 0xff,
11652 _("immediate value out of range"));
11653 inst.instruction = T2_SUBS_PC_LR
11654 | inst.relocs[0].exp.X_add_number;
11655 inst.relocs[0].type = BFD_RELOC_UNUSED;
11656 return;
11657 }
11658 else if (Rs == REG_PC)
11659 {
11660 /* Always use addw/subw. */
11661 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
11662 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11663 }
11664 else
11665 {
11666 inst.instruction = THUMB_OP32 (inst.instruction);
11667 inst.instruction = (inst.instruction & 0xe1ffffff)
11668 | 0x10000000;
11669 if (flags)
11670 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11671 else
11672 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
11673 }
11674 inst.instruction |= Rd << 8;
11675 inst.instruction |= Rs << 16;
11676 }
11677 }
11678 else
11679 {
11680 unsigned int value = inst.relocs[0].exp.X_add_number;
11681 unsigned int shift = inst.operands[2].shift_kind;
11682
11683 Rn = inst.operands[2].reg;
11684 /* See if we can do this with a 16-bit instruction. */
11685 if (!inst.operands[2].shifted && inst.size_req != 4)
11686 {
11687 if (Rd > 7 || Rs > 7 || Rn > 7)
11688 narrow = FALSE;
11689
11690 if (narrow)
11691 {
11692 inst.instruction = ((inst.instruction == T_MNEM_adds
11693 || inst.instruction == T_MNEM_add)
11694 ? T_OPCODE_ADD_R3
11695 : T_OPCODE_SUB_R3);
11696 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11697 return;
11698 }
11699
11700 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
11701 {
11702 /* Thumb-1 cores (except v6-M) require at least one high
11703 register in a narrow non flag setting add. */
11704 if (Rd > 7 || Rn > 7
11705 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11706 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
11707 {
11708 if (Rd == Rn)
11709 {
11710 Rn = Rs;
11711 Rs = Rd;
11712 }
11713 inst.instruction = T_OPCODE_ADD_HI;
11714 inst.instruction |= (Rd & 8) << 4;
11715 inst.instruction |= (Rd & 7);
11716 inst.instruction |= Rn << 3;
11717 return;
11718 }
11719 }
11720 }
11721
11722 constraint (Rd == REG_PC, BAD_PC);
11723 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11724 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11725 constraint (Rs == REG_PC, BAD_PC);
11726 reject_bad_reg (Rn);
11727
11728 /* If we get here, it can't be done in 16 bits. */
11729 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11730 _("shift must be constant"));
11731 inst.instruction = THUMB_OP32 (inst.instruction);
11732 inst.instruction |= Rd << 8;
11733 inst.instruction |= Rs << 16;
11734 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11735 _("shift value over 3 not allowed in thumb mode"));
11736 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11737 _("only LSL shift allowed in thumb mode"));
11738 encode_thumb32_shifted_operand (2);
11739 }
11740 }
11741 else
11742 {
11743 constraint (inst.instruction == T_MNEM_adds
11744 || inst.instruction == T_MNEM_subs,
11745 BAD_THUMB32);
11746
11747 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
11748 {
11749 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11750 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11751 BAD_HIREG);
11752
11753 inst.instruction = (inst.instruction == T_MNEM_add
11754 ? 0x0000 : 0x8000);
11755 inst.instruction |= (Rd << 4) | Rs;
11756 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11757 return;
11758 }
11759
11760 Rn = inst.operands[2].reg;
11761 constraint (inst.operands[2].shifted, _("unshifted register required"));
11762
11763 /* We now have Rd, Rs, and Rn set to registers. */
11764 if (Rd > 7 || Rs > 7 || Rn > 7)
11765 {
11766 /* Can't do this for SUB. */
11767 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11768 inst.instruction = T_OPCODE_ADD_HI;
11769 inst.instruction |= (Rd & 8) << 4;
11770 inst.instruction |= (Rd & 7);
11771 if (Rs == Rd)
11772 inst.instruction |= Rn << 3;
11773 else if (Rn == Rd)
11774 inst.instruction |= Rs << 3;
11775 else
11776 constraint (1, _("dest must overlap one source register"));
11777 }
11778 else
11779 {
11780 inst.instruction = (inst.instruction == T_MNEM_add
11781 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11782 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11783 }
11784 }
11785}
11786
11787static void
11788do_t_adr (void)
11789{
11790 unsigned Rd;
11791
11792 Rd = inst.operands[0].reg;
11793 reject_bad_reg (Rd);
11794
11795 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
11796 {
11797 /* Defer to section relaxation. */
11798 inst.relax = inst.instruction;
11799 inst.instruction = THUMB_OP16 (inst.instruction);
11800 inst.instruction |= Rd << 4;
11801 }
11802 else if (unified_syntax && inst.size_req != 2)
11803 {
11804 /* Generate a 32-bit opcode. */
11805 inst.instruction = THUMB_OP32 (inst.instruction);
11806 inst.instruction |= Rd << 8;
11807 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11808 inst.relocs[0].pc_rel = 1;
11809 }
11810 else
11811 {
11812 /* Generate a 16-bit opcode. */
11813 inst.instruction = THUMB_OP16 (inst.instruction);
11814 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11815 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11816 inst.relocs[0].pc_rel = 1;
11817 inst.instruction |= Rd << 4;
11818 }
11819
11820 if (inst.relocs[0].exp.X_op == O_symbol
11821 && inst.relocs[0].exp.X_add_symbol != NULL
11822 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11823 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11824 inst.relocs[0].exp.X_add_number += 1;
11825}
11826
11827/* Arithmetic instructions for which there is just one 16-bit
11828 instruction encoding, and it allows only two low registers.
11829 For maximal compatibility with ARM syntax, we allow three register
11830 operands even when Thumb-32 instructions are not available, as long
11831 as the first two are identical. For instance, both "sbc r0,r1" and
11832 "sbc r0,r0,r1" are allowed. */
11833static void
11834do_t_arit3 (void)
11835{
11836 int Rd, Rs, Rn;
11837
11838 Rd = inst.operands[0].reg;
11839 Rs = (inst.operands[1].present
11840 ? inst.operands[1].reg /* Rd, Rs, foo */
11841 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11842 Rn = inst.operands[2].reg;
11843
11844 reject_bad_reg (Rd);
11845 reject_bad_reg (Rs);
11846 if (inst.operands[2].isreg)
11847 reject_bad_reg (Rn);
11848
11849 if (unified_syntax)
11850 {
11851 if (!inst.operands[2].isreg)
11852 {
11853 /* For an immediate, we always generate a 32-bit opcode;
11854 section relaxation will shrink it later if possible. */
11855 inst.instruction = THUMB_OP32 (inst.instruction);
11856 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11857 inst.instruction |= Rd << 8;
11858 inst.instruction |= Rs << 16;
11859 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11860 }
11861 else
11862 {
11863 bfd_boolean narrow;
11864
11865 /* See if we can do this with a 16-bit instruction. */
11866 if (THUMB_SETS_FLAGS (inst.instruction))
11867 narrow = !in_pred_block ();
11868 else
11869 narrow = in_pred_block ();
11870
11871 if (Rd > 7 || Rn > 7 || Rs > 7)
11872 narrow = FALSE;
11873 if (inst.operands[2].shifted)
11874 narrow = FALSE;
11875 if (inst.size_req == 4)
11876 narrow = FALSE;
11877
11878 if (narrow
11879 && Rd == Rs)
11880 {
11881 inst.instruction = THUMB_OP16 (inst.instruction);
11882 inst.instruction |= Rd;
11883 inst.instruction |= Rn << 3;
11884 return;
11885 }
11886
11887 /* If we get here, it can't be done in 16 bits. */
11888 constraint (inst.operands[2].shifted
11889 && inst.operands[2].immisreg,
11890 _("shift must be constant"));
11891 inst.instruction = THUMB_OP32 (inst.instruction);
11892 inst.instruction |= Rd << 8;
11893 inst.instruction |= Rs << 16;
11894 encode_thumb32_shifted_operand (2);
11895 }
11896 }
11897 else
11898 {
11899 /* On its face this is a lie - the instruction does set the
11900 flags. However, the only supported mnemonic in this mode
11901 says it doesn't. */
11902 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11903
11904 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11905 _("unshifted register required"));
11906 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11907 constraint (Rd != Rs,
11908 _("dest and source1 must be the same register"));
11909
11910 inst.instruction = THUMB_OP16 (inst.instruction);
11911 inst.instruction |= Rd;
11912 inst.instruction |= Rn << 3;
11913 }
11914}
11915
11916/* Similarly, but for instructions where the arithmetic operation is
11917 commutative, so we can allow either of them to be different from
11918 the destination operand in a 16-bit instruction. For instance, all
11919 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11920 accepted. */
11921static void
11922do_t_arit3c (void)
11923{
11924 int Rd, Rs, Rn;
11925
11926 Rd = inst.operands[0].reg;
11927 Rs = (inst.operands[1].present
11928 ? inst.operands[1].reg /* Rd, Rs, foo */
11929 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11930 Rn = inst.operands[2].reg;
11931
11932 reject_bad_reg (Rd);
11933 reject_bad_reg (Rs);
11934 if (inst.operands[2].isreg)
11935 reject_bad_reg (Rn);
11936
11937 if (unified_syntax)
11938 {
11939 if (!inst.operands[2].isreg)
11940 {
11941 /* For an immediate, we always generate a 32-bit opcode;
11942 section relaxation will shrink it later if possible. */
11943 inst.instruction = THUMB_OP32 (inst.instruction);
11944 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11945 inst.instruction |= Rd << 8;
11946 inst.instruction |= Rs << 16;
11947 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11948 }
11949 else
11950 {
11951 bfd_boolean narrow;
11952
11953 /* See if we can do this with a 16-bit instruction. */
11954 if (THUMB_SETS_FLAGS (inst.instruction))
11955 narrow = !in_pred_block ();
11956 else
11957 narrow = in_pred_block ();
11958
11959 if (Rd > 7 || Rn > 7 || Rs > 7)
11960 narrow = FALSE;
11961 if (inst.operands[2].shifted)
11962 narrow = FALSE;
11963 if (inst.size_req == 4)
11964 narrow = FALSE;
11965
11966 if (narrow)
11967 {
11968 if (Rd == Rs)
11969 {
11970 inst.instruction = THUMB_OP16 (inst.instruction);
11971 inst.instruction |= Rd;
11972 inst.instruction |= Rn << 3;
11973 return;
11974 }
11975 if (Rd == Rn)
11976 {
11977 inst.instruction = THUMB_OP16 (inst.instruction);
11978 inst.instruction |= Rd;
11979 inst.instruction |= Rs << 3;
11980 return;
11981 }
11982 }
11983
11984 /* If we get here, it can't be done in 16 bits. */
11985 constraint (inst.operands[2].shifted
11986 && inst.operands[2].immisreg,
11987 _("shift must be constant"));
11988 inst.instruction = THUMB_OP32 (inst.instruction);
11989 inst.instruction |= Rd << 8;
11990 inst.instruction |= Rs << 16;
11991 encode_thumb32_shifted_operand (2);
11992 }
11993 }
11994 else
11995 {
11996 /* On its face this is a lie - the instruction does set the
11997 flags. However, the only supported mnemonic in this mode
11998 says it doesn't. */
11999 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12000
12001 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
12002 _("unshifted register required"));
12003 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
12004
12005 inst.instruction = THUMB_OP16 (inst.instruction);
12006 inst.instruction |= Rd;
12007
12008 if (Rd == Rs)
12009 inst.instruction |= Rn << 3;
12010 else if (Rd == Rn)
12011 inst.instruction |= Rs << 3;
12012 else
12013 constraint (1, _("dest must overlap one source register"));
12014 }
12015}
12016
12017static void
12018do_t_bfc (void)
12019{
12020 unsigned Rd;
12021 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
12022 constraint (msb > 32, _("bit-field extends past end of register"));
12023 /* The instruction encoding stores the LSB and MSB,
12024 not the LSB and width. */
12025 Rd = inst.operands[0].reg;
12026 reject_bad_reg (Rd);
12027 inst.instruction |= Rd << 8;
12028 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
12029 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
12030 inst.instruction |= msb - 1;
12031}
12032
12033static void
12034do_t_bfi (void)
12035{
12036 int Rd, Rn;
12037 unsigned int msb;
12038
12039 Rd = inst.operands[0].reg;
12040 reject_bad_reg (Rd);
12041
12042 /* #0 in second position is alternative syntax for bfc, which is
12043 the same instruction but with REG_PC in the Rm field. */
12044 if (!inst.operands[1].isreg)
12045 Rn = REG_PC;
12046 else
12047 {
12048 Rn = inst.operands[1].reg;
12049 reject_bad_reg (Rn);
12050 }
12051
12052 msb = inst.operands[2].imm + inst.operands[3].imm;
12053 constraint (msb > 32, _("bit-field extends past end of register"));
12054 /* The instruction encoding stores the LSB and MSB,
12055 not the LSB and width. */
12056 inst.instruction |= Rd << 8;
12057 inst.instruction |= Rn << 16;
12058 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
12059 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
12060 inst.instruction |= msb - 1;
12061}
12062
12063static void
12064do_t_bfx (void)
12065{
12066 unsigned Rd, Rn;
12067
12068 Rd = inst.operands[0].reg;
12069 Rn = inst.operands[1].reg;
12070
12071 reject_bad_reg (Rd);
12072 reject_bad_reg (Rn);
12073
12074 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
12075 _("bit-field extends past end of register"));
12076 inst.instruction |= Rd << 8;
12077 inst.instruction |= Rn << 16;
12078 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
12079 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
12080 inst.instruction |= inst.operands[3].imm - 1;
12081}
12082
12083/* ARM V5 Thumb BLX (argument parse)
12084 BLX <target_addr> which is BLX(1)
12085 BLX <Rm> which is BLX(2)
12086 Unfortunately, there are two different opcodes for this mnemonic.
12087 So, the insns[].value is not used, and the code here zaps values
12088 into inst.instruction.
12089
12090 ??? How to take advantage of the additional two bits of displacement
12091 available in Thumb32 mode? Need new relocation? */
12092
12093static void
12094do_t_blx (void)
12095{
12096 set_pred_insn_type_last ();
12097
12098 if (inst.operands[0].isreg)
12099 {
12100 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
12101 /* We have a register, so this is BLX(2). */
12102 inst.instruction |= inst.operands[0].reg << 3;
12103 }
12104 else
12105 {
12106 /* No register. This must be BLX(1). */
12107 inst.instruction = 0xf000e800;
12108 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
12109 }
12110}
12111
12112static void
12113do_t_branch (void)
12114{
12115 int opcode;
12116 int cond;
12117 bfd_reloc_code_real_type reloc;
12118
12119 cond = inst.cond;
12120 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
12121
12122 if (in_pred_block ())
12123 {
12124 /* Conditional branches inside IT blocks are encoded as unconditional
12125 branches. */
12126 cond = COND_ALWAYS;
12127 }
12128 else
12129 cond = inst.cond;
12130
12131 if (cond != COND_ALWAYS)
12132 opcode = T_MNEM_bcond;
12133 else
12134 opcode = inst.instruction;
12135
12136 if (unified_syntax
12137 && (inst.size_req == 4
12138 || (inst.size_req != 2
12139 && (inst.operands[0].hasreloc
12140 || inst.relocs[0].exp.X_op == O_constant))))
12141 {
12142 inst.instruction = THUMB_OP32(opcode);
12143 if (cond == COND_ALWAYS)
12144 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
12145 else
12146 {
12147 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
12148 _("selected architecture does not support "
12149 "wide conditional branch instruction"));
12150
12151 gas_assert (cond != 0xF);
12152 inst.instruction |= cond << 22;
12153 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
12154 }
12155 }
12156 else
12157 {
12158 inst.instruction = THUMB_OP16(opcode);
12159 if (cond == COND_ALWAYS)
12160 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
12161 else
12162 {
12163 inst.instruction |= cond << 8;
12164 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
12165 }
12166 /* Allow section relaxation. */
12167 if (unified_syntax && inst.size_req != 2)
12168 inst.relax = opcode;
12169 }
12170 inst.relocs[0].type = reloc;
12171 inst.relocs[0].pc_rel = 1;
12172}
12173
12174/* Actually do the work for Thumb state bkpt and hlt. The only difference
12175 between the two is the maximum immediate allowed - which is passed in
12176 RANGE. */
12177static void
12178do_t_bkpt_hlt1 (int range)
12179{
12180 constraint (inst.cond != COND_ALWAYS,
12181 _("instruction is always unconditional"));
12182 if (inst.operands[0].present)
12183 {
12184 constraint (inst.operands[0].imm > range,
12185 _("immediate value out of range"));
12186 inst.instruction |= inst.operands[0].imm;
12187 }
12188
12189 set_pred_insn_type (NEUTRAL_IT_INSN);
12190}
12191
12192static void
12193do_t_hlt (void)
12194{
12195 do_t_bkpt_hlt1 (63);
12196}
12197
12198static void
12199do_t_bkpt (void)
12200{
12201 do_t_bkpt_hlt1 (255);
12202}
12203
12204static void
12205do_t_branch23 (void)
12206{
12207 set_pred_insn_type_last ();
12208 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
12209
12210 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
12211 this file. We used to simply ignore the PLT reloc type here --
12212 the branch encoding is now needed to deal with TLSCALL relocs.
12213 So if we see a PLT reloc now, put it back to how it used to be to
12214 keep the preexisting behaviour. */
12215 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
12216 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
12217
12218#if defined(OBJ_COFF)
12219 /* If the destination of the branch is a defined symbol which does not have
12220 the THUMB_FUNC attribute, then we must be calling a function which has
12221 the (interfacearm) attribute. We look for the Thumb entry point to that
12222 function and change the branch to refer to that function instead. */
12223 if ( inst.relocs[0].exp.X_op == O_symbol
12224 && inst.relocs[0].exp.X_add_symbol != NULL
12225 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
12226 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
12227 inst.relocs[0].exp.X_add_symbol
12228 = find_real_start (inst.relocs[0].exp.X_add_symbol);
12229#endif
12230}
12231
12232static void
12233do_t_bx (void)
12234{
12235 set_pred_insn_type_last ();
12236 inst.instruction |= inst.operands[0].reg << 3;
12237 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
12238 should cause the alignment to be checked once it is known. This is
12239 because BX PC only works if the instruction is word aligned. */
12240}
12241
12242static void
12243do_t_bxj (void)
12244{
12245 int Rm;
12246
12247 set_pred_insn_type_last ();
12248 Rm = inst.operands[0].reg;
12249 reject_bad_reg (Rm);
12250 inst.instruction |= Rm << 16;
12251}
12252
12253static void
12254do_t_clz (void)
12255{
12256 unsigned Rd;
12257 unsigned Rm;
12258
12259 Rd = inst.operands[0].reg;
12260 Rm = inst.operands[1].reg;
12261
12262 reject_bad_reg (Rd);
12263 reject_bad_reg (Rm);
12264
12265 inst.instruction |= Rd << 8;
12266 inst.instruction |= Rm << 16;
12267 inst.instruction |= Rm;
12268}
12269
12270/* For the Armv8.1-M conditional instructions. */
12271static void
12272do_t_cond (void)
12273{
12274 unsigned Rd, Rn, Rm;
12275 signed int cond;
12276
12277 constraint (inst.cond != COND_ALWAYS, BAD_COND);
12278
12279 Rd = inst.operands[0].reg;
12280 switch (inst.instruction)
12281 {
12282 case T_MNEM_csinc:
12283 case T_MNEM_csinv:
12284 case T_MNEM_csneg:
12285 case T_MNEM_csel:
12286 Rn = inst.operands[1].reg;
12287 Rm = inst.operands[2].reg;
12288 cond = inst.operands[3].imm;
12289 constraint (Rn == REG_SP, BAD_SP);
12290 constraint (Rm == REG_SP, BAD_SP);
12291 break;
12292
12293 case T_MNEM_cinc:
12294 case T_MNEM_cinv:
12295 case T_MNEM_cneg:
12296 Rn = inst.operands[1].reg;
12297 cond = inst.operands[2].imm;
12298 /* Invert the last bit to invert the cond. */
12299 cond = TOGGLE_BIT (cond, 0);
12300 constraint (Rn == REG_SP, BAD_SP);
12301 Rm = Rn;
12302 break;
12303
12304 case T_MNEM_csetm:
12305 case T_MNEM_cset:
12306 cond = inst.operands[1].imm;
12307 /* Invert the last bit to invert the cond. */
12308 cond = TOGGLE_BIT (cond, 0);
12309 Rn = REG_PC;
12310 Rm = REG_PC;
12311 break;
12312
12313 default: abort ();
12314 }
12315
12316 set_pred_insn_type (OUTSIDE_PRED_INSN);
12317 inst.instruction = THUMB_OP32 (inst.instruction);
12318 inst.instruction |= Rd << 8;
12319 inst.instruction |= Rn << 16;
12320 inst.instruction |= Rm;
12321 inst.instruction |= cond << 4;
12322}
12323
12324static void
12325do_t_csdb (void)
12326{
12327 set_pred_insn_type (OUTSIDE_PRED_INSN);
12328}
12329
12330static void
12331do_t_cps (void)
12332{
12333 set_pred_insn_type (OUTSIDE_PRED_INSN);
12334 inst.instruction |= inst.operands[0].imm;
12335}
12336
12337static void
12338do_t_cpsi (void)
12339{
12340 set_pred_insn_type (OUTSIDE_PRED_INSN);
12341 if (unified_syntax
12342 && (inst.operands[1].present || inst.size_req == 4)
12343 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
12344 {
12345 unsigned int imod = (inst.instruction & 0x0030) >> 4;
12346 inst.instruction = 0xf3af8000;
12347 inst.instruction |= imod << 9;
12348 inst.instruction |= inst.operands[0].imm << 5;
12349 if (inst.operands[1].present)
12350 inst.instruction |= 0x100 | inst.operands[1].imm;
12351 }
12352 else
12353 {
12354 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
12355 && (inst.operands[0].imm & 4),
12356 _("selected processor does not support 'A' form "
12357 "of this instruction"));
12358 constraint (inst.operands[1].present || inst.size_req == 4,
12359 _("Thumb does not support the 2-argument "
12360 "form of this instruction"));
12361 inst.instruction |= inst.operands[0].imm;
12362 }
12363}
12364
12365/* THUMB CPY instruction (argument parse). */
12366
12367static void
12368do_t_cpy (void)
12369{
12370 if (inst.size_req == 4)
12371 {
12372 inst.instruction = THUMB_OP32 (T_MNEM_mov);
12373 inst.instruction |= inst.operands[0].reg << 8;
12374 inst.instruction |= inst.operands[1].reg;
12375 }
12376 else
12377 {
12378 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
12379 inst.instruction |= (inst.operands[0].reg & 0x7);
12380 inst.instruction |= inst.operands[1].reg << 3;
12381 }
12382}
12383
12384static void
12385do_t_cbz (void)
12386{
12387 set_pred_insn_type (OUTSIDE_PRED_INSN);
12388 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12389 inst.instruction |= inst.operands[0].reg;
12390 inst.relocs[0].pc_rel = 1;
12391 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
12392}
12393
12394static void
12395do_t_dbg (void)
12396{
12397 inst.instruction |= inst.operands[0].imm;
12398}
12399
12400static void
12401do_t_div (void)
12402{
12403 unsigned Rd, Rn, Rm;
12404
12405 Rd = inst.operands[0].reg;
12406 Rn = (inst.operands[1].present
12407 ? inst.operands[1].reg : Rd);
12408 Rm = inst.operands[2].reg;
12409
12410 reject_bad_reg (Rd);
12411 reject_bad_reg (Rn);
12412 reject_bad_reg (Rm);
12413
12414 inst.instruction |= Rd << 8;
12415 inst.instruction |= Rn << 16;
12416 inst.instruction |= Rm;
12417}
12418
12419static void
12420do_t_hint (void)
12421{
12422 if (unified_syntax && inst.size_req == 4)
12423 inst.instruction = THUMB_OP32 (inst.instruction);
12424 else
12425 inst.instruction = THUMB_OP16 (inst.instruction);
12426}
12427
12428static void
12429do_t_it (void)
12430{
12431 unsigned int cond = inst.operands[0].imm;
12432
12433 set_pred_insn_type (IT_INSN);
12434 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12435 now_pred.cc = cond;
12436 now_pred.warn_deprecated = FALSE;
12437 now_pred.type = SCALAR_PRED;
12438
12439 /* If the condition is a negative condition, invert the mask. */
12440 if ((cond & 0x1) == 0x0)
12441 {
12442 unsigned int mask = inst.instruction & 0x000f;
12443
12444 if ((mask & 0x7) == 0)
12445 {
12446 /* No conversion needed. */
12447 now_pred.block_length = 1;
12448 }
12449 else if ((mask & 0x3) == 0)
12450 {
12451 mask ^= 0x8;
12452 now_pred.block_length = 2;
12453 }
12454 else if ((mask & 0x1) == 0)
12455 {
12456 mask ^= 0xC;
12457 now_pred.block_length = 3;
12458 }
12459 else
12460 {
12461 mask ^= 0xE;
12462 now_pred.block_length = 4;
12463 }
12464
12465 inst.instruction &= 0xfff0;
12466 inst.instruction |= mask;
12467 }
12468
12469 inst.instruction |= cond << 4;
12470}
12471
12472/* Helper function used for both push/pop and ldm/stm. */
12473static void
12474encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12475 bfd_boolean writeback)
12476{
12477 bfd_boolean load, store;
12478
12479 gas_assert (base != -1 || !do_io);
12480 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12481 store = do_io && !load;
12482
12483 if (mask & (1 << 13))
12484 inst.error = _("SP not allowed in register list");
12485
12486 if (do_io && (mask & (1 << base)) != 0
12487 && writeback)
12488 inst.error = _("having the base register in the register list when "
12489 "using write back is UNPREDICTABLE");
12490
12491 if (load)
12492 {
12493 if (mask & (1 << 15))
12494 {
12495 if (mask & (1 << 14))
12496 inst.error = _("LR and PC should not both be in register list");
12497 else
12498 set_pred_insn_type_last ();
12499 }
12500 }
12501 else if (store)
12502 {
12503 if (mask & (1 << 15))
12504 inst.error = _("PC not allowed in register list");
12505 }
12506
12507 if (do_io && ((mask & (mask - 1)) == 0))
12508 {
12509 /* Single register transfers implemented as str/ldr. */
12510 if (writeback)
12511 {
12512 if (inst.instruction & (1 << 23))
12513 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12514 else
12515 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12516 }
12517 else
12518 {
12519 if (inst.instruction & (1 << 23))
12520 inst.instruction = 0x00800000; /* ia -> [base] */
12521 else
12522 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12523 }
12524
12525 inst.instruction |= 0xf8400000;
12526 if (load)
12527 inst.instruction |= 0x00100000;
12528
12529 mask = ffs (mask) - 1;
12530 mask <<= 12;
12531 }
12532 else if (writeback)
12533 inst.instruction |= WRITE_BACK;
12534
12535 inst.instruction |= mask;
12536 if (do_io)
12537 inst.instruction |= base << 16;
12538}
12539
12540static void
12541do_t_ldmstm (void)
12542{
12543 /* This really doesn't seem worth it. */
12544 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
12545 _("expression too complex"));
12546 constraint (inst.operands[1].writeback,
12547 _("Thumb load/store multiple does not support {reglist}^"));
12548
12549 if (unified_syntax)
12550 {
12551 bfd_boolean narrow;
12552 unsigned mask;
12553
12554 narrow = FALSE;
12555 /* See if we can use a 16-bit instruction. */
12556 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12557 && inst.size_req != 4
12558 && !(inst.operands[1].imm & ~0xff))
12559 {
12560 mask = 1 << inst.operands[0].reg;
12561
12562 if (inst.operands[0].reg <= 7)
12563 {
12564 if (inst.instruction == T_MNEM_stmia
12565 ? inst.operands[0].writeback
12566 : (inst.operands[0].writeback
12567 == !(inst.operands[1].imm & mask)))
12568 {
12569 if (inst.instruction == T_MNEM_stmia
12570 && (inst.operands[1].imm & mask)
12571 && (inst.operands[1].imm & (mask - 1)))
12572 as_warn (_("value stored for r%d is UNKNOWN"),
12573 inst.operands[0].reg);
12574
12575 inst.instruction = THUMB_OP16 (inst.instruction);
12576 inst.instruction |= inst.operands[0].reg << 8;
12577 inst.instruction |= inst.operands[1].imm;
12578 narrow = TRUE;
12579 }
12580 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12581 {
12582 /* This means 1 register in reg list one of 3 situations:
12583 1. Instruction is stmia, but without writeback.
12584 2. lmdia without writeback, but with Rn not in
12585 reglist.
12586 3. ldmia with writeback, but with Rn in reglist.
12587 Case 3 is UNPREDICTABLE behaviour, so we handle
12588 case 1 and 2 which can be converted into a 16-bit
12589 str or ldr. The SP cases are handled below. */
12590 unsigned long opcode;
12591 /* First, record an error for Case 3. */
12592 if (inst.operands[1].imm & mask
12593 && inst.operands[0].writeback)
12594 inst.error =
12595 _("having the base register in the register list when "
12596 "using write back is UNPREDICTABLE");
12597
12598 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
12599 : T_MNEM_ldr);
12600 inst.instruction = THUMB_OP16 (opcode);
12601 inst.instruction |= inst.operands[0].reg << 3;
12602 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12603 narrow = TRUE;
12604 }
12605 }
12606 else if (inst.operands[0] .reg == REG_SP)
12607 {
12608 if (inst.operands[0].writeback)
12609 {
12610 inst.instruction =
12611 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12612 ? T_MNEM_push : T_MNEM_pop);
12613 inst.instruction |= inst.operands[1].imm;
12614 narrow = TRUE;
12615 }
12616 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12617 {
12618 inst.instruction =
12619 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12620 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
12621 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
12622 narrow = TRUE;
12623 }
12624 }
12625 }
12626
12627 if (!narrow)
12628 {
12629 if (inst.instruction < 0xffff)
12630 inst.instruction = THUMB_OP32 (inst.instruction);
12631
12632 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12633 inst.operands[1].imm,
12634 inst.operands[0].writeback);
12635 }
12636 }
12637 else
12638 {
12639 constraint (inst.operands[0].reg > 7
12640 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
12641 constraint (inst.instruction != T_MNEM_ldmia
12642 && inst.instruction != T_MNEM_stmia,
12643 _("Thumb-2 instruction only valid in unified syntax"));
12644 if (inst.instruction == T_MNEM_stmia)
12645 {
12646 if (!inst.operands[0].writeback)
12647 as_warn (_("this instruction will write back the base register"));
12648 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12649 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
12650 as_warn (_("value stored for r%d is UNKNOWN"),
12651 inst.operands[0].reg);
12652 }
12653 else
12654 {
12655 if (!inst.operands[0].writeback
12656 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12657 as_warn (_("this instruction will write back the base register"));
12658 else if (inst.operands[0].writeback
12659 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12660 as_warn (_("this instruction will not write back the base register"));
12661 }
12662
12663 inst.instruction = THUMB_OP16 (inst.instruction);
12664 inst.instruction |= inst.operands[0].reg << 8;
12665 inst.instruction |= inst.operands[1].imm;
12666 }
12667}
12668
12669static void
12670do_t_ldrex (void)
12671{
12672 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12673 || inst.operands[1].postind || inst.operands[1].writeback
12674 || inst.operands[1].immisreg || inst.operands[1].shifted
12675 || inst.operands[1].negative,
12676 BAD_ADDR_MODE);
12677
12678 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12679
12680 inst.instruction |= inst.operands[0].reg << 12;
12681 inst.instruction |= inst.operands[1].reg << 16;
12682 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
12683}
12684
12685static void
12686do_t_ldrexd (void)
12687{
12688 if (!inst.operands[1].present)
12689 {
12690 constraint (inst.operands[0].reg == REG_LR,
12691 _("r14 not allowed as first register "
12692 "when second register is omitted"));
12693 inst.operands[1].reg = inst.operands[0].reg + 1;
12694 }
12695 constraint (inst.operands[0].reg == inst.operands[1].reg,
12696 BAD_OVERLAP);
12697
12698 inst.instruction |= inst.operands[0].reg << 12;
12699 inst.instruction |= inst.operands[1].reg << 8;
12700 inst.instruction |= inst.operands[2].reg << 16;
12701}
12702
12703static void
12704do_t_ldst (void)
12705{
12706 unsigned long opcode;
12707 int Rn;
12708
12709 if (inst.operands[0].isreg
12710 && !inst.operands[0].preind
12711 && inst.operands[0].reg == REG_PC)
12712 set_pred_insn_type_last ();
12713
12714 opcode = inst.instruction;
12715 if (unified_syntax)
12716 {
12717 if (!inst.operands[1].isreg)
12718 {
12719 if (opcode <= 0xffff)
12720 inst.instruction = THUMB_OP32 (opcode);
12721 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12722 return;
12723 }
12724 if (inst.operands[1].isreg
12725 && !inst.operands[1].writeback
12726 && !inst.operands[1].shifted && !inst.operands[1].postind
12727 && !inst.operands[1].negative && inst.operands[0].reg <= 7
12728 && opcode <= 0xffff
12729 && inst.size_req != 4)
12730 {
12731 /* Insn may have a 16-bit form. */
12732 Rn = inst.operands[1].reg;
12733 if (inst.operands[1].immisreg)
12734 {
12735 inst.instruction = THUMB_OP16 (opcode);
12736 /* [Rn, Rik] */
12737 if (Rn <= 7 && inst.operands[1].imm <= 7)
12738 goto op16;
12739 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12740 reject_bad_reg (inst.operands[1].imm);
12741 }
12742 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12743 && opcode != T_MNEM_ldrsb)
12744 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12745 || (Rn == REG_SP && opcode == T_MNEM_str))
12746 {
12747 /* [Rn, #const] */
12748 if (Rn > 7)
12749 {
12750 if (Rn == REG_PC)
12751 {
12752 if (inst.relocs[0].pc_rel)
12753 opcode = T_MNEM_ldr_pc2;
12754 else
12755 opcode = T_MNEM_ldr_pc;
12756 }
12757 else
12758 {
12759 if (opcode == T_MNEM_ldr)
12760 opcode = T_MNEM_ldr_sp;
12761 else
12762 opcode = T_MNEM_str_sp;
12763 }
12764 inst.instruction = inst.operands[0].reg << 8;
12765 }
12766 else
12767 {
12768 inst.instruction = inst.operands[0].reg;
12769 inst.instruction |= inst.operands[1].reg << 3;
12770 }
12771 inst.instruction |= THUMB_OP16 (opcode);
12772 if (inst.size_req == 2)
12773 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12774 else
12775 inst.relax = opcode;
12776 return;
12777 }
12778 }
12779 /* Definitely a 32-bit variant. */
12780
12781 /* Warning for Erratum 752419. */
12782 if (opcode == T_MNEM_ldr
12783 && inst.operands[0].reg == REG_SP
12784 && inst.operands[1].writeback == 1
12785 && !inst.operands[1].immisreg)
12786 {
12787 if (no_cpu_selected ()
12788 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
12789 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12790 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
12791 as_warn (_("This instruction may be unpredictable "
12792 "if executed on M-profile cores "
12793 "with interrupts enabled."));
12794 }
12795
12796 /* Do some validations regarding addressing modes. */
12797 if (inst.operands[1].immisreg)
12798 reject_bad_reg (inst.operands[1].imm);
12799
12800 constraint (inst.operands[1].writeback == 1
12801 && inst.operands[0].reg == inst.operands[1].reg,
12802 BAD_OVERLAP);
12803
12804 inst.instruction = THUMB_OP32 (opcode);
12805 inst.instruction |= inst.operands[0].reg << 12;
12806 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
12807 check_ldr_r15_aligned ();
12808 return;
12809 }
12810
12811 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12812
12813 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
12814 {
12815 /* Only [Rn,Rm] is acceptable. */
12816 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12817 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12818 || inst.operands[1].postind || inst.operands[1].shifted
12819 || inst.operands[1].negative,
12820 _("Thumb does not support this addressing mode"));
12821 inst.instruction = THUMB_OP16 (inst.instruction);
12822 goto op16;
12823 }
12824
12825 inst.instruction = THUMB_OP16 (inst.instruction);
12826 if (!inst.operands[1].isreg)
12827 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12828 return;
12829
12830 constraint (!inst.operands[1].preind
12831 || inst.operands[1].shifted
12832 || inst.operands[1].writeback,
12833 _("Thumb does not support this addressing mode"));
12834 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
12835 {
12836 constraint (inst.instruction & 0x0600,
12837 _("byte or halfword not valid for base register"));
12838 constraint (inst.operands[1].reg == REG_PC
12839 && !(inst.instruction & THUMB_LOAD_BIT),
12840 _("r15 based store not allowed"));
12841 constraint (inst.operands[1].immisreg,
12842 _("invalid base register for register offset"));
12843
12844 if (inst.operands[1].reg == REG_PC)
12845 inst.instruction = T_OPCODE_LDR_PC;
12846 else if (inst.instruction & THUMB_LOAD_BIT)
12847 inst.instruction = T_OPCODE_LDR_SP;
12848 else
12849 inst.instruction = T_OPCODE_STR_SP;
12850
12851 inst.instruction |= inst.operands[0].reg << 8;
12852 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12853 return;
12854 }
12855
12856 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12857 if (!inst.operands[1].immisreg)
12858 {
12859 /* Immediate offset. */
12860 inst.instruction |= inst.operands[0].reg;
12861 inst.instruction |= inst.operands[1].reg << 3;
12862 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12863 return;
12864 }
12865
12866 /* Register offset. */
12867 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12868 constraint (inst.operands[1].negative,
12869 _("Thumb does not support this addressing mode"));
12870
12871 op16:
12872 switch (inst.instruction)
12873 {
12874 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12875 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12876 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12877 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12878 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12879 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12880 case 0x5600 /* ldrsb */:
12881 case 0x5e00 /* ldrsh */: break;
12882 default: abort ();
12883 }
12884
12885 inst.instruction |= inst.operands[0].reg;
12886 inst.instruction |= inst.operands[1].reg << 3;
12887 inst.instruction |= inst.operands[1].imm << 6;
12888}
12889
12890static void
12891do_t_ldstd (void)
12892{
12893 if (!inst.operands[1].present)
12894 {
12895 inst.operands[1].reg = inst.operands[0].reg + 1;
12896 constraint (inst.operands[0].reg == REG_LR,
12897 _("r14 not allowed here"));
12898 constraint (inst.operands[0].reg == REG_R12,
12899 _("r12 not allowed here"));
12900 }
12901
12902 if (inst.operands[2].writeback
12903 && (inst.operands[0].reg == inst.operands[2].reg
12904 || inst.operands[1].reg == inst.operands[2].reg))
12905 as_warn (_("base register written back, and overlaps "
12906 "one of transfer registers"));
12907
12908 inst.instruction |= inst.operands[0].reg << 12;
12909 inst.instruction |= inst.operands[1].reg << 8;
12910 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
12911}
12912
12913static void
12914do_t_ldstt (void)
12915{
12916 inst.instruction |= inst.operands[0].reg << 12;
12917 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12918}
12919
12920static void
12921do_t_mla (void)
12922{
12923 unsigned Rd, Rn, Rm, Ra;
12924
12925 Rd = inst.operands[0].reg;
12926 Rn = inst.operands[1].reg;
12927 Rm = inst.operands[2].reg;
12928 Ra = inst.operands[3].reg;
12929
12930 reject_bad_reg (Rd);
12931 reject_bad_reg (Rn);
12932 reject_bad_reg (Rm);
12933 reject_bad_reg (Ra);
12934
12935 inst.instruction |= Rd << 8;
12936 inst.instruction |= Rn << 16;
12937 inst.instruction |= Rm;
12938 inst.instruction |= Ra << 12;
12939}
12940
12941static void
12942do_t_mlal (void)
12943{
12944 unsigned RdLo, RdHi, Rn, Rm;
12945
12946 RdLo = inst.operands[0].reg;
12947 RdHi = inst.operands[1].reg;
12948 Rn = inst.operands[2].reg;
12949 Rm = inst.operands[3].reg;
12950
12951 reject_bad_reg (RdLo);
12952 reject_bad_reg (RdHi);
12953 reject_bad_reg (Rn);
12954 reject_bad_reg (Rm);
12955
12956 inst.instruction |= RdLo << 12;
12957 inst.instruction |= RdHi << 8;
12958 inst.instruction |= Rn << 16;
12959 inst.instruction |= Rm;
12960}
12961
12962static void
12963do_t_mov_cmp (void)
12964{
12965 unsigned Rn, Rm;
12966
12967 Rn = inst.operands[0].reg;
12968 Rm = inst.operands[1].reg;
12969
12970 if (Rn == REG_PC)
12971 set_pred_insn_type_last ();
12972
12973 if (unified_syntax)
12974 {
12975 int r0off = (inst.instruction == T_MNEM_mov
12976 || inst.instruction == T_MNEM_movs) ? 8 : 16;
12977 unsigned long opcode;
12978 bfd_boolean narrow;
12979 bfd_boolean low_regs;
12980
12981 low_regs = (Rn <= 7 && Rm <= 7);
12982 opcode = inst.instruction;
12983 if (in_pred_block ())
12984 narrow = opcode != T_MNEM_movs;
12985 else
12986 narrow = opcode != T_MNEM_movs || low_regs;
12987 if (inst.size_req == 4
12988 || inst.operands[1].shifted)
12989 narrow = FALSE;
12990
12991 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12992 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12993 && !inst.operands[1].shifted
12994 && Rn == REG_PC
12995 && Rm == REG_LR)
12996 {
12997 inst.instruction = T2_SUBS_PC_LR;
12998 return;
12999 }
13000
13001 if (opcode == T_MNEM_cmp)
13002 {
13003 constraint (Rn == REG_PC, BAD_PC);
13004 if (narrow)
13005 {
13006 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
13007 but valid. */
13008 warn_deprecated_sp (Rm);
13009 /* R15 was documented as a valid choice for Rm in ARMv6,
13010 but as UNPREDICTABLE in ARMv7. ARM's proprietary
13011 tools reject R15, so we do too. */
13012 constraint (Rm == REG_PC, BAD_PC);
13013 }
13014 else
13015 reject_bad_reg (Rm);
13016 }
13017 else if (opcode == T_MNEM_mov
13018 || opcode == T_MNEM_movs)
13019 {
13020 if (inst.operands[1].isreg)
13021 {
13022 if (opcode == T_MNEM_movs)
13023 {
13024 reject_bad_reg (Rn);
13025 reject_bad_reg (Rm);
13026 }
13027 else if (narrow)
13028 {
13029 /* This is mov.n. */
13030 if ((Rn == REG_SP || Rn == REG_PC)
13031 && (Rm == REG_SP || Rm == REG_PC))
13032 {
13033 as_tsktsk (_("Use of r%u as a source register is "
13034 "deprecated when r%u is the destination "
13035 "register."), Rm, Rn);
13036 }
13037 }
13038 else
13039 {
13040 /* This is mov.w. */
13041 constraint (Rn == REG_PC, BAD_PC);
13042 constraint (Rm == REG_PC, BAD_PC);
13043 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13044 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
13045 }
13046 }
13047 else
13048 reject_bad_reg (Rn);
13049 }
13050
13051 if (!inst.operands[1].isreg)
13052 {
13053 /* Immediate operand. */
13054 if (!in_pred_block () && opcode == T_MNEM_mov)
13055 narrow = 0;
13056 if (low_regs && narrow)
13057 {
13058 inst.instruction = THUMB_OP16 (opcode);
13059 inst.instruction |= Rn << 8;
13060 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
13061 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
13062 {
13063 if (inst.size_req == 2)
13064 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
13065 else
13066 inst.relax = opcode;
13067 }
13068 }
13069 else
13070 {
13071 constraint ((inst.relocs[0].type
13072 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
13073 && (inst.relocs[0].type
13074 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
13075 THUMB1_RELOC_ONLY);
13076
13077 inst.instruction = THUMB_OP32 (inst.instruction);
13078 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13079 inst.instruction |= Rn << r0off;
13080 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13081 }
13082 }
13083 else if (inst.operands[1].shifted && inst.operands[1].immisreg
13084 && (inst.instruction == T_MNEM_mov
13085 || inst.instruction == T_MNEM_movs))
13086 {
13087 /* Register shifts are encoded as separate shift instructions. */
13088 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
13089
13090 if (in_pred_block ())
13091 narrow = !flags;
13092 else
13093 narrow = flags;
13094
13095 if (inst.size_req == 4)
13096 narrow = FALSE;
13097
13098 if (!low_regs || inst.operands[1].imm > 7)
13099 narrow = FALSE;
13100
13101 if (Rn != Rm)
13102 narrow = FALSE;
13103
13104 switch (inst.operands[1].shift_kind)
13105 {
13106 case SHIFT_LSL:
13107 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
13108 break;
13109 case SHIFT_ASR:
13110 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
13111 break;
13112 case SHIFT_LSR:
13113 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
13114 break;
13115 case SHIFT_ROR:
13116 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
13117 break;
13118 default:
13119 abort ();
13120 }
13121
13122 inst.instruction = opcode;
13123 if (narrow)
13124 {
13125 inst.instruction |= Rn;
13126 inst.instruction |= inst.operands[1].imm << 3;
13127 }
13128 else
13129 {
13130 if (flags)
13131 inst.instruction |= CONDS_BIT;
13132
13133 inst.instruction |= Rn << 8;
13134 inst.instruction |= Rm << 16;
13135 inst.instruction |= inst.operands[1].imm;
13136 }
13137 }
13138 else if (!narrow)
13139 {
13140 /* Some mov with immediate shift have narrow variants.
13141 Register shifts are handled above. */
13142 if (low_regs && inst.operands[1].shifted
13143 && (inst.instruction == T_MNEM_mov
13144 || inst.instruction == T_MNEM_movs))
13145 {
13146 if (in_pred_block ())
13147 narrow = (inst.instruction == T_MNEM_mov);
13148 else
13149 narrow = (inst.instruction == T_MNEM_movs);
13150 }
13151
13152 if (narrow)
13153 {
13154 switch (inst.operands[1].shift_kind)
13155 {
13156 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13157 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13158 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13159 default: narrow = FALSE; break;
13160 }
13161 }
13162
13163 if (narrow)
13164 {
13165 inst.instruction |= Rn;
13166 inst.instruction |= Rm << 3;
13167 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13168 }
13169 else
13170 {
13171 inst.instruction = THUMB_OP32 (inst.instruction);
13172 inst.instruction |= Rn << r0off;
13173 encode_thumb32_shifted_operand (1);
13174 }
13175 }
13176 else
13177 switch (inst.instruction)
13178 {
13179 case T_MNEM_mov:
13180 /* In v4t or v5t a move of two lowregs produces unpredictable
13181 results. Don't allow this. */
13182 if (low_regs)
13183 {
13184 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
13185 "MOV Rd, Rs with two low registers is not "
13186 "permitted on this architecture");
13187 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
13188 arm_ext_v6);
13189 }
13190
13191 inst.instruction = T_OPCODE_MOV_HR;
13192 inst.instruction |= (Rn & 0x8) << 4;
13193 inst.instruction |= (Rn & 0x7);
13194 inst.instruction |= Rm << 3;
13195 break;
13196
13197 case T_MNEM_movs:
13198 /* We know we have low registers at this point.
13199 Generate LSLS Rd, Rs, #0. */
13200 inst.instruction = T_OPCODE_LSL_I;
13201 inst.instruction |= Rn;
13202 inst.instruction |= Rm << 3;
13203 break;
13204
13205 case T_MNEM_cmp:
13206 if (low_regs)
13207 {
13208 inst.instruction = T_OPCODE_CMP_LR;
13209 inst.instruction |= Rn;
13210 inst.instruction |= Rm << 3;
13211 }
13212 else
13213 {
13214 inst.instruction = T_OPCODE_CMP_HR;
13215 inst.instruction |= (Rn & 0x8) << 4;
13216 inst.instruction |= (Rn & 0x7);
13217 inst.instruction |= Rm << 3;
13218 }
13219 break;
13220 }
13221 return;
13222 }
13223
13224 inst.instruction = THUMB_OP16 (inst.instruction);
13225
13226 /* PR 10443: Do not silently ignore shifted operands. */
13227 constraint (inst.operands[1].shifted,
13228 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
13229
13230 if (inst.operands[1].isreg)
13231 {
13232 if (Rn < 8 && Rm < 8)
13233 {
13234 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
13235 since a MOV instruction produces unpredictable results. */
13236 if (inst.instruction == T_OPCODE_MOV_I8)
13237 inst.instruction = T_OPCODE_ADD_I3;
13238 else
13239 inst.instruction = T_OPCODE_CMP_LR;
13240
13241 inst.instruction |= Rn;
13242 inst.instruction |= Rm << 3;
13243 }
13244 else
13245 {
13246 if (inst.instruction == T_OPCODE_MOV_I8)
13247 inst.instruction = T_OPCODE_MOV_HR;
13248 else
13249 inst.instruction = T_OPCODE_CMP_HR;
13250 do_t_cpy ();
13251 }
13252 }
13253 else
13254 {
13255 constraint (Rn > 7,
13256 _("only lo regs allowed with immediate"));
13257 inst.instruction |= Rn << 8;
13258 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
13259 }
13260}
13261
13262static void
13263do_t_mov16 (void)
13264{
13265 unsigned Rd;
13266 bfd_vma imm;
13267 bfd_boolean top;
13268
13269 top = (inst.instruction & 0x00800000) != 0;
13270 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
13271 {
13272 constraint (top, _(":lower16: not allowed in this instruction"));
13273 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
13274 }
13275 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
13276 {
13277 constraint (!top, _(":upper16: not allowed in this instruction"));
13278 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
13279 }
13280
13281 Rd = inst.operands[0].reg;
13282 reject_bad_reg (Rd);
13283
13284 inst.instruction |= Rd << 8;
13285 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
13286 {
13287 imm = inst.relocs[0].exp.X_add_number;
13288 inst.instruction |= (imm & 0xf000) << 4;
13289 inst.instruction |= (imm & 0x0800) << 15;
13290 inst.instruction |= (imm & 0x0700) << 4;
13291 inst.instruction |= (imm & 0x00ff);
13292 }
13293}
13294
13295static void
13296do_t_mvn_tst (void)
13297{
13298 unsigned Rn, Rm;
13299
13300 Rn = inst.operands[0].reg;
13301 Rm = inst.operands[1].reg;
13302
13303 if (inst.instruction == T_MNEM_cmp
13304 || inst.instruction == T_MNEM_cmn)
13305 constraint (Rn == REG_PC, BAD_PC);
13306 else
13307 reject_bad_reg (Rn);
13308 reject_bad_reg (Rm);
13309
13310 if (unified_syntax)
13311 {
13312 int r0off = (inst.instruction == T_MNEM_mvn
13313 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
13314 bfd_boolean narrow;
13315
13316 if (inst.size_req == 4
13317 || inst.instruction > 0xffff
13318 || inst.operands[1].shifted
13319 || Rn > 7 || Rm > 7)
13320 narrow = FALSE;
13321 else if (inst.instruction == T_MNEM_cmn
13322 || inst.instruction == T_MNEM_tst)
13323 narrow = TRUE;
13324 else if (THUMB_SETS_FLAGS (inst.instruction))
13325 narrow = !in_pred_block ();
13326 else
13327 narrow = in_pred_block ();
13328
13329 if (!inst.operands[1].isreg)
13330 {
13331 /* For an immediate, we always generate a 32-bit opcode;
13332 section relaxation will shrink it later if possible. */
13333 if (inst.instruction < 0xffff)
13334 inst.instruction = THUMB_OP32 (inst.instruction);
13335 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13336 inst.instruction |= Rn << r0off;
13337 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13338 }
13339 else
13340 {
13341 /* See if we can do this with a 16-bit instruction. */
13342 if (narrow)
13343 {
13344 inst.instruction = THUMB_OP16 (inst.instruction);
13345 inst.instruction |= Rn;
13346 inst.instruction |= Rm << 3;
13347 }
13348 else
13349 {
13350 constraint (inst.operands[1].shifted
13351 && inst.operands[1].immisreg,
13352 _("shift must be constant"));
13353 if (inst.instruction < 0xffff)
13354 inst.instruction = THUMB_OP32 (inst.instruction);
13355 inst.instruction |= Rn << r0off;
13356 encode_thumb32_shifted_operand (1);
13357 }
13358 }
13359 }
13360 else
13361 {
13362 constraint (inst.instruction > 0xffff
13363 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
13364 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
13365 _("unshifted register required"));
13366 constraint (Rn > 7 || Rm > 7,
13367 BAD_HIREG);
13368
13369 inst.instruction = THUMB_OP16 (inst.instruction);
13370 inst.instruction |= Rn;
13371 inst.instruction |= Rm << 3;
13372 }
13373}
13374
13375static void
13376do_t_mrs (void)
13377{
13378 unsigned Rd;
13379
13380 if (do_vfp_nsyn_mrs () == SUCCESS)
13381 return;
13382
13383 Rd = inst.operands[0].reg;
13384 reject_bad_reg (Rd);
13385 inst.instruction |= Rd << 8;
13386
13387 if (inst.operands[1].isreg)
13388 {
13389 unsigned br = inst.operands[1].reg;
13390 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
13391 as_bad (_("bad register for mrs"));
13392
13393 inst.instruction |= br & (0xf << 16);
13394 inst.instruction |= (br & 0x300) >> 4;
13395 inst.instruction |= (br & SPSR_BIT) >> 2;
13396 }
13397 else
13398 {
13399 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13400
13401 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13402 {
13403 /* PR gas/12698: The constraint is only applied for m_profile.
13404 If the user has specified -march=all, we want to ignore it as
13405 we are building for any CPU type, including non-m variants. */
13406 bfd_boolean m_profile =
13407 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13408 constraint ((flags != 0) && m_profile, _("selected processor does "
13409 "not support requested special purpose register"));
13410 }
13411 else
13412 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13413 devices). */
13414 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13415 _("'APSR', 'CPSR' or 'SPSR' expected"));
13416
13417 inst.instruction |= (flags & SPSR_BIT) >> 2;
13418 inst.instruction |= inst.operands[1].imm & 0xff;
13419 inst.instruction |= 0xf0000;
13420 }
13421}
13422
13423static void
13424do_t_msr (void)
13425{
13426 int flags;
13427 unsigned Rn;
13428
13429 if (do_vfp_nsyn_msr () == SUCCESS)
13430 return;
13431
13432 constraint (!inst.operands[1].isreg,
13433 _("Thumb encoding does not support an immediate here"));
13434
13435 if (inst.operands[0].isreg)
13436 flags = (int)(inst.operands[0].reg);
13437 else
13438 flags = inst.operands[0].imm;
13439
13440 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13441 {
13442 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13443
13444 /* PR gas/12698: The constraint is only applied for m_profile.
13445 If the user has specified -march=all, we want to ignore it as
13446 we are building for any CPU type, including non-m variants. */
13447 bfd_boolean m_profile =
13448 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13449 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13450 && (bits & ~(PSR_s | PSR_f)) != 0)
13451 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13452 && bits != PSR_f)) && m_profile,
13453 _("selected processor does not support requested special "
13454 "purpose register"));
13455 }
13456 else
13457 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13458 "requested special purpose register"));
13459
13460 Rn = inst.operands[1].reg;
13461 reject_bad_reg (Rn);
13462
13463 inst.instruction |= (flags & SPSR_BIT) >> 2;
13464 inst.instruction |= (flags & 0xf0000) >> 8;
13465 inst.instruction |= (flags & 0x300) >> 4;
13466 inst.instruction |= (flags & 0xff);
13467 inst.instruction |= Rn << 16;
13468}
13469
13470static void
13471do_t_mul (void)
13472{
13473 bfd_boolean narrow;
13474 unsigned Rd, Rn, Rm;
13475
13476 if (!inst.operands[2].present)
13477 inst.operands[2].reg = inst.operands[0].reg;
13478
13479 Rd = inst.operands[0].reg;
13480 Rn = inst.operands[1].reg;
13481 Rm = inst.operands[2].reg;
13482
13483 if (unified_syntax)
13484 {
13485 if (inst.size_req == 4
13486 || (Rd != Rn
13487 && Rd != Rm)
13488 || Rn > 7
13489 || Rm > 7)
13490 narrow = FALSE;
13491 else if (inst.instruction == T_MNEM_muls)
13492 narrow = !in_pred_block ();
13493 else
13494 narrow = in_pred_block ();
13495 }
13496 else
13497 {
13498 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
13499 constraint (Rn > 7 || Rm > 7,
13500 BAD_HIREG);
13501 narrow = TRUE;
13502 }
13503
13504 if (narrow)
13505 {
13506 /* 16-bit MULS/Conditional MUL. */
13507 inst.instruction = THUMB_OP16 (inst.instruction);
13508 inst.instruction |= Rd;
13509
13510 if (Rd == Rn)
13511 inst.instruction |= Rm << 3;
13512 else if (Rd == Rm)
13513 inst.instruction |= Rn << 3;
13514 else
13515 constraint (1, _("dest must overlap one source register"));
13516 }
13517 else
13518 {
13519 constraint (inst.instruction != T_MNEM_mul,
13520 _("Thumb-2 MUL must not set flags"));
13521 /* 32-bit MUL. */
13522 inst.instruction = THUMB_OP32 (inst.instruction);
13523 inst.instruction |= Rd << 8;
13524 inst.instruction |= Rn << 16;
13525 inst.instruction |= Rm << 0;
13526
13527 reject_bad_reg (Rd);
13528 reject_bad_reg (Rn);
13529 reject_bad_reg (Rm);
13530 }
13531}
13532
13533static void
13534do_t_mull (void)
13535{
13536 unsigned RdLo, RdHi, Rn, Rm;
13537
13538 RdLo = inst.operands[0].reg;
13539 RdHi = inst.operands[1].reg;
13540 Rn = inst.operands[2].reg;
13541 Rm = inst.operands[3].reg;
13542
13543 reject_bad_reg (RdLo);
13544 reject_bad_reg (RdHi);
13545 reject_bad_reg (Rn);
13546 reject_bad_reg (Rm);
13547
13548 inst.instruction |= RdLo << 12;
13549 inst.instruction |= RdHi << 8;
13550 inst.instruction |= Rn << 16;
13551 inst.instruction |= Rm;
13552
13553 if (RdLo == RdHi)
13554 as_tsktsk (_("rdhi and rdlo must be different"));
13555}
13556
13557static void
13558do_t_nop (void)
13559{
13560 set_pred_insn_type (NEUTRAL_IT_INSN);
13561
13562 if (unified_syntax)
13563 {
13564 if (inst.size_req == 4 || inst.operands[0].imm > 15)
13565 {
13566 inst.instruction = THUMB_OP32 (inst.instruction);
13567 inst.instruction |= inst.operands[0].imm;
13568 }
13569 else
13570 {
13571 /* PR9722: Check for Thumb2 availability before
13572 generating a thumb2 nop instruction. */
13573 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
13574 {
13575 inst.instruction = THUMB_OP16 (inst.instruction);
13576 inst.instruction |= inst.operands[0].imm << 4;
13577 }
13578 else
13579 inst.instruction = 0x46c0;
13580 }
13581 }
13582 else
13583 {
13584 constraint (inst.operands[0].present,
13585 _("Thumb does not support NOP with hints"));
13586 inst.instruction = 0x46c0;
13587 }
13588}
13589
13590static void
13591do_t_neg (void)
13592{
13593 if (unified_syntax)
13594 {
13595 bfd_boolean narrow;
13596
13597 if (THUMB_SETS_FLAGS (inst.instruction))
13598 narrow = !in_pred_block ();
13599 else
13600 narrow = in_pred_block ();
13601 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13602 narrow = FALSE;
13603 if (inst.size_req == 4)
13604 narrow = FALSE;
13605
13606 if (!narrow)
13607 {
13608 inst.instruction = THUMB_OP32 (inst.instruction);
13609 inst.instruction |= inst.operands[0].reg << 8;
13610 inst.instruction |= inst.operands[1].reg << 16;
13611 }
13612 else
13613 {
13614 inst.instruction = THUMB_OP16 (inst.instruction);
13615 inst.instruction |= inst.operands[0].reg;
13616 inst.instruction |= inst.operands[1].reg << 3;
13617 }
13618 }
13619 else
13620 {
13621 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13622 BAD_HIREG);
13623 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13624
13625 inst.instruction = THUMB_OP16 (inst.instruction);
13626 inst.instruction |= inst.operands[0].reg;
13627 inst.instruction |= inst.operands[1].reg << 3;
13628 }
13629}
13630
13631static void
13632do_t_orn (void)
13633{
13634 unsigned Rd, Rn;
13635
13636 Rd = inst.operands[0].reg;
13637 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13638
13639 reject_bad_reg (Rd);
13640 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13641 reject_bad_reg (Rn);
13642
13643 inst.instruction |= Rd << 8;
13644 inst.instruction |= Rn << 16;
13645
13646 if (!inst.operands[2].isreg)
13647 {
13648 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13649 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13650 }
13651 else
13652 {
13653 unsigned Rm;
13654
13655 Rm = inst.operands[2].reg;
13656 reject_bad_reg (Rm);
13657
13658 constraint (inst.operands[2].shifted
13659 && inst.operands[2].immisreg,
13660 _("shift must be constant"));
13661 encode_thumb32_shifted_operand (2);
13662 }
13663}
13664
13665static void
13666do_t_pkhbt (void)
13667{
13668 unsigned Rd, Rn, Rm;
13669
13670 Rd = inst.operands[0].reg;
13671 Rn = inst.operands[1].reg;
13672 Rm = inst.operands[2].reg;
13673
13674 reject_bad_reg (Rd);
13675 reject_bad_reg (Rn);
13676 reject_bad_reg (Rm);
13677
13678 inst.instruction |= Rd << 8;
13679 inst.instruction |= Rn << 16;
13680 inst.instruction |= Rm;
13681 if (inst.operands[3].present)
13682 {
13683 unsigned int val = inst.relocs[0].exp.X_add_number;
13684 constraint (inst.relocs[0].exp.X_op != O_constant,
13685 _("expression too complex"));
13686 inst.instruction |= (val & 0x1c) << 10;
13687 inst.instruction |= (val & 0x03) << 6;
13688 }
13689}
13690
13691static void
13692do_t_pkhtb (void)
13693{
13694 if (!inst.operands[3].present)
13695 {
13696 unsigned Rtmp;
13697
13698 inst.instruction &= ~0x00000020;
13699
13700 /* PR 10168. Swap the Rm and Rn registers. */
13701 Rtmp = inst.operands[1].reg;
13702 inst.operands[1].reg = inst.operands[2].reg;
13703 inst.operands[2].reg = Rtmp;
13704 }
13705 do_t_pkhbt ();
13706}
13707
13708static void
13709do_t_pld (void)
13710{
13711 if (inst.operands[0].immisreg)
13712 reject_bad_reg (inst.operands[0].imm);
13713
13714 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13715}
13716
13717static void
13718do_t_push_pop (void)
13719{
13720 unsigned mask;
13721
13722 constraint (inst.operands[0].writeback,
13723 _("push/pop do not support {reglist}^"));
13724 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
13725 _("expression too complex"));
13726
13727 mask = inst.operands[0].imm;
13728 if (inst.size_req != 4 && (mask & ~0xff) == 0)
13729 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
13730 else if (inst.size_req != 4
13731 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
13732 ? REG_LR : REG_PC)))
13733 {
13734 inst.instruction = THUMB_OP16 (inst.instruction);
13735 inst.instruction |= THUMB_PP_PC_LR;
13736 inst.instruction |= mask & 0xff;
13737 }
13738 else if (unified_syntax)
13739 {
13740 inst.instruction = THUMB_OP32 (inst.instruction);
13741 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13742 }
13743 else
13744 {
13745 inst.error = _("invalid register list to push/pop instruction");
13746 return;
13747 }
13748}
13749
13750static void
13751do_t_clrm (void)
13752{
13753 if (unified_syntax)
13754 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
13755 else
13756 {
13757 inst.error = _("invalid register list to push/pop instruction");
13758 return;
13759 }
13760}
13761
13762static void
13763do_t_vscclrm (void)
13764{
13765 if (inst.operands[0].issingle)
13766 {
13767 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13768 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13769 inst.instruction |= inst.operands[0].imm;
13770 }
13771 else
13772 {
13773 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13774 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13775 inst.instruction |= 1 << 8;
13776 inst.instruction |= inst.operands[0].imm << 1;
13777 }
13778}
13779
13780static void
13781do_t_rbit (void)
13782{
13783 unsigned Rd, Rm;
13784
13785 Rd = inst.operands[0].reg;
13786 Rm = inst.operands[1].reg;
13787
13788 reject_bad_reg (Rd);
13789 reject_bad_reg (Rm);
13790
13791 inst.instruction |= Rd << 8;
13792 inst.instruction |= Rm << 16;
13793 inst.instruction |= Rm;
13794}
13795
13796static void
13797do_t_rev (void)
13798{
13799 unsigned Rd, Rm;
13800
13801 Rd = inst.operands[0].reg;
13802 Rm = inst.operands[1].reg;
13803
13804 reject_bad_reg (Rd);
13805 reject_bad_reg (Rm);
13806
13807 if (Rd <= 7 && Rm <= 7
13808 && inst.size_req != 4)
13809 {
13810 inst.instruction = THUMB_OP16 (inst.instruction);
13811 inst.instruction |= Rd;
13812 inst.instruction |= Rm << 3;
13813 }
13814 else if (unified_syntax)
13815 {
13816 inst.instruction = THUMB_OP32 (inst.instruction);
13817 inst.instruction |= Rd << 8;
13818 inst.instruction |= Rm << 16;
13819 inst.instruction |= Rm;
13820 }
13821 else
13822 inst.error = BAD_HIREG;
13823}
13824
13825static void
13826do_t_rrx (void)
13827{
13828 unsigned Rd, Rm;
13829
13830 Rd = inst.operands[0].reg;
13831 Rm = inst.operands[1].reg;
13832
13833 reject_bad_reg (Rd);
13834 reject_bad_reg (Rm);
13835
13836 inst.instruction |= Rd << 8;
13837 inst.instruction |= Rm;
13838}
13839
13840static void
13841do_t_rsb (void)
13842{
13843 unsigned Rd, Rs;
13844
13845 Rd = inst.operands[0].reg;
13846 Rs = (inst.operands[1].present
13847 ? inst.operands[1].reg /* Rd, Rs, foo */
13848 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
13849
13850 reject_bad_reg (Rd);
13851 reject_bad_reg (Rs);
13852 if (inst.operands[2].isreg)
13853 reject_bad_reg (inst.operands[2].reg);
13854
13855 inst.instruction |= Rd << 8;
13856 inst.instruction |= Rs << 16;
13857 if (!inst.operands[2].isreg)
13858 {
13859 bfd_boolean narrow;
13860
13861 if ((inst.instruction & 0x00100000) != 0)
13862 narrow = !in_pred_block ();
13863 else
13864 narrow = in_pred_block ();
13865
13866 if (Rd > 7 || Rs > 7)
13867 narrow = FALSE;
13868
13869 if (inst.size_req == 4 || !unified_syntax)
13870 narrow = FALSE;
13871
13872 if (inst.relocs[0].exp.X_op != O_constant
13873 || inst.relocs[0].exp.X_add_number != 0)
13874 narrow = FALSE;
13875
13876 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13877 relaxation, but it doesn't seem worth the hassle. */
13878 if (narrow)
13879 {
13880 inst.relocs[0].type = BFD_RELOC_UNUSED;
13881 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13882 inst.instruction |= Rs << 3;
13883 inst.instruction |= Rd;
13884 }
13885 else
13886 {
13887 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13888 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13889 }
13890 }
13891 else
13892 encode_thumb32_shifted_operand (2);
13893}
13894
13895static void
13896do_t_setend (void)
13897{
13898 if (warn_on_deprecated
13899 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13900 as_tsktsk (_("setend use is deprecated for ARMv8"));
13901
13902 set_pred_insn_type (OUTSIDE_PRED_INSN);
13903 if (inst.operands[0].imm)
13904 inst.instruction |= 0x8;
13905}
13906
13907static void
13908do_t_shift (void)
13909{
13910 if (!inst.operands[1].present)
13911 inst.operands[1].reg = inst.operands[0].reg;
13912
13913 if (unified_syntax)
13914 {
13915 bfd_boolean narrow;
13916 int shift_kind;
13917
13918 switch (inst.instruction)
13919 {
13920 case T_MNEM_asr:
13921 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13922 case T_MNEM_lsl:
13923 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13924 case T_MNEM_lsr:
13925 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13926 case T_MNEM_ror:
13927 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13928 default: abort ();
13929 }
13930
13931 if (THUMB_SETS_FLAGS (inst.instruction))
13932 narrow = !in_pred_block ();
13933 else
13934 narrow = in_pred_block ();
13935 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13936 narrow = FALSE;
13937 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13938 narrow = FALSE;
13939 if (inst.operands[2].isreg
13940 && (inst.operands[1].reg != inst.operands[0].reg
13941 || inst.operands[2].reg > 7))
13942 narrow = FALSE;
13943 if (inst.size_req == 4)
13944 narrow = FALSE;
13945
13946 reject_bad_reg (inst.operands[0].reg);
13947 reject_bad_reg (inst.operands[1].reg);
13948
13949 if (!narrow)
13950 {
13951 if (inst.operands[2].isreg)
13952 {
13953 reject_bad_reg (inst.operands[2].reg);
13954 inst.instruction = THUMB_OP32 (inst.instruction);
13955 inst.instruction |= inst.operands[0].reg << 8;
13956 inst.instruction |= inst.operands[1].reg << 16;
13957 inst.instruction |= inst.operands[2].reg;
13958
13959 /* PR 12854: Error on extraneous shifts. */
13960 constraint (inst.operands[2].shifted,
13961 _("extraneous shift as part of operand to shift insn"));
13962 }
13963 else
13964 {
13965 inst.operands[1].shifted = 1;
13966 inst.operands[1].shift_kind = shift_kind;
13967 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13968 ? T_MNEM_movs : T_MNEM_mov);
13969 inst.instruction |= inst.operands[0].reg << 8;
13970 encode_thumb32_shifted_operand (1);
13971 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13972 inst.relocs[0].type = BFD_RELOC_UNUSED;
13973 }
13974 }
13975 else
13976 {
13977 if (inst.operands[2].isreg)
13978 {
13979 switch (shift_kind)
13980 {
13981 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13982 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13983 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13984 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
13985 default: abort ();
13986 }
13987
13988 inst.instruction |= inst.operands[0].reg;
13989 inst.instruction |= inst.operands[2].reg << 3;
13990
13991 /* PR 12854: Error on extraneous shifts. */
13992 constraint (inst.operands[2].shifted,
13993 _("extraneous shift as part of operand to shift insn"));
13994 }
13995 else
13996 {
13997 switch (shift_kind)
13998 {
13999 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
14000 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
14001 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
14002 default: abort ();
14003 }
14004 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
14005 inst.instruction |= inst.operands[0].reg;
14006 inst.instruction |= inst.operands[1].reg << 3;
14007 }
14008 }
14009 }
14010 else
14011 {
14012 constraint (inst.operands[0].reg > 7
14013 || inst.operands[1].reg > 7, BAD_HIREG);
14014 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
14015
14016 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
14017 {
14018 constraint (inst.operands[2].reg > 7, BAD_HIREG);
14019 constraint (inst.operands[0].reg != inst.operands[1].reg,
14020 _("source1 and dest must be same register"));
14021
14022 switch (inst.instruction)
14023 {
14024 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
14025 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
14026 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
14027 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
14028 default: abort ();
14029 }
14030
14031 inst.instruction |= inst.operands[0].reg;
14032 inst.instruction |= inst.operands[2].reg << 3;
14033
14034 /* PR 12854: Error on extraneous shifts. */
14035 constraint (inst.operands[2].shifted,
14036 _("extraneous shift as part of operand to shift insn"));
14037 }
14038 else
14039 {
14040 switch (inst.instruction)
14041 {
14042 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
14043 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
14044 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
14045 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
14046 default: abort ();
14047 }
14048 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
14049 inst.instruction |= inst.operands[0].reg;
14050 inst.instruction |= inst.operands[1].reg << 3;
14051 }
14052 }
14053}
14054
14055static void
14056do_t_simd (void)
14057{
14058 unsigned Rd, Rn, Rm;
14059
14060 Rd = inst.operands[0].reg;
14061 Rn = inst.operands[1].reg;
14062 Rm = inst.operands[2].reg;
14063
14064 reject_bad_reg (Rd);
14065 reject_bad_reg (Rn);
14066 reject_bad_reg (Rm);
14067
14068 inst.instruction |= Rd << 8;
14069 inst.instruction |= Rn << 16;
14070 inst.instruction |= Rm;
14071}
14072
14073static void
14074do_t_simd2 (void)
14075{
14076 unsigned Rd, Rn, Rm;
14077
14078 Rd = inst.operands[0].reg;
14079 Rm = inst.operands[1].reg;
14080 Rn = inst.operands[2].reg;
14081
14082 reject_bad_reg (Rd);
14083 reject_bad_reg (Rn);
14084 reject_bad_reg (Rm);
14085
14086 inst.instruction |= Rd << 8;
14087 inst.instruction |= Rn << 16;
14088 inst.instruction |= Rm;
14089}
14090
14091static void
14092do_t_smc (void)
14093{
14094 unsigned int value = inst.relocs[0].exp.X_add_number;
14095 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
14096 _("SMC is not permitted on this architecture"));
14097 constraint (inst.relocs[0].exp.X_op != O_constant,
14098 _("expression too complex"));
14099 constraint (value > 0xf, _("immediate too large (bigger than 0xF)"));
14100
14101 inst.relocs[0].type = BFD_RELOC_UNUSED;
14102 inst.instruction |= (value & 0x000f) << 16;
14103
14104 /* PR gas/15623: SMC instructions must be last in an IT block. */
14105 set_pred_insn_type_last ();
14106}
14107
14108static void
14109do_t_hvc (void)
14110{
14111 unsigned int value = inst.relocs[0].exp.X_add_number;
14112
14113 inst.relocs[0].type = BFD_RELOC_UNUSED;
14114 inst.instruction |= (value & 0x0fff);
14115 inst.instruction |= (value & 0xf000) << 4;
14116}
14117
14118static void
14119do_t_ssat_usat (int bias)
14120{
14121 unsigned Rd, Rn;
14122
14123 Rd = inst.operands[0].reg;
14124 Rn = inst.operands[2].reg;
14125
14126 reject_bad_reg (Rd);
14127 reject_bad_reg (Rn);
14128
14129 inst.instruction |= Rd << 8;
14130 inst.instruction |= inst.operands[1].imm - bias;
14131 inst.instruction |= Rn << 16;
14132
14133 if (inst.operands[3].present)
14134 {
14135 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
14136
14137 inst.relocs[0].type = BFD_RELOC_UNUSED;
14138
14139 constraint (inst.relocs[0].exp.X_op != O_constant,
14140 _("expression too complex"));
14141
14142 if (shift_amount != 0)
14143 {
14144 constraint (shift_amount > 31,
14145 _("shift expression is too large"));
14146
14147 if (inst.operands[3].shift_kind == SHIFT_ASR)
14148 inst.instruction |= 0x00200000; /* sh bit. */
14149
14150 inst.instruction |= (shift_amount & 0x1c) << 10;
14151 inst.instruction |= (shift_amount & 0x03) << 6;
14152 }
14153 }
14154}
14155
14156static void
14157do_t_ssat (void)
14158{
14159 do_t_ssat_usat (1);
14160}
14161
14162static void
14163do_t_ssat16 (void)
14164{
14165 unsigned Rd, Rn;
14166
14167 Rd = inst.operands[0].reg;
14168 Rn = inst.operands[2].reg;
14169
14170 reject_bad_reg (Rd);
14171 reject_bad_reg (Rn);
14172
14173 inst.instruction |= Rd << 8;
14174 inst.instruction |= inst.operands[1].imm - 1;
14175 inst.instruction |= Rn << 16;
14176}
14177
14178static void
14179do_t_strex (void)
14180{
14181 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
14182 || inst.operands[2].postind || inst.operands[2].writeback
14183 || inst.operands[2].immisreg || inst.operands[2].shifted
14184 || inst.operands[2].negative,
14185 BAD_ADDR_MODE);
14186
14187 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
14188
14189 inst.instruction |= inst.operands[0].reg << 8;
14190 inst.instruction |= inst.operands[1].reg << 12;
14191 inst.instruction |= inst.operands[2].reg << 16;
14192 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
14193}
14194
14195static void
14196do_t_strexd (void)
14197{
14198 if (!inst.operands[2].present)
14199 inst.operands[2].reg = inst.operands[1].reg + 1;
14200
14201 constraint (inst.operands[0].reg == inst.operands[1].reg
14202 || inst.operands[0].reg == inst.operands[2].reg
14203 || inst.operands[0].reg == inst.operands[3].reg,
14204 BAD_OVERLAP);
14205
14206 inst.instruction |= inst.operands[0].reg;
14207 inst.instruction |= inst.operands[1].reg << 12;
14208 inst.instruction |= inst.operands[2].reg << 8;
14209 inst.instruction |= inst.operands[3].reg << 16;
14210}
14211
14212static void
14213do_t_sxtah (void)
14214{
14215 unsigned Rd, Rn, Rm;
14216
14217 Rd = inst.operands[0].reg;
14218 Rn = inst.operands[1].reg;
14219 Rm = inst.operands[2].reg;
14220
14221 reject_bad_reg (Rd);
14222 reject_bad_reg (Rn);
14223 reject_bad_reg (Rm);
14224
14225 inst.instruction |= Rd << 8;
14226 inst.instruction |= Rn << 16;
14227 inst.instruction |= Rm;
14228 inst.instruction |= inst.operands[3].imm << 4;
14229}
14230
14231static void
14232do_t_sxth (void)
14233{
14234 unsigned Rd, Rm;
14235
14236 Rd = inst.operands[0].reg;
14237 Rm = inst.operands[1].reg;
14238
14239 reject_bad_reg (Rd);
14240 reject_bad_reg (Rm);
14241
14242 if (inst.instruction <= 0xffff
14243 && inst.size_req != 4
14244 && Rd <= 7 && Rm <= 7
14245 && (!inst.operands[2].present || inst.operands[2].imm == 0))
14246 {
14247 inst.instruction = THUMB_OP16 (inst.instruction);
14248 inst.instruction |= Rd;
14249 inst.instruction |= Rm << 3;
14250 }
14251 else if (unified_syntax)
14252 {
14253 if (inst.instruction <= 0xffff)
14254 inst.instruction = THUMB_OP32 (inst.instruction);
14255 inst.instruction |= Rd << 8;
14256 inst.instruction |= Rm;
14257 inst.instruction |= inst.operands[2].imm << 4;
14258 }
14259 else
14260 {
14261 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
14262 _("Thumb encoding does not support rotation"));
14263 constraint (1, BAD_HIREG);
14264 }
14265}
14266
14267static void
14268do_t_swi (void)
14269{
14270 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
14271}
14272
14273static void
14274do_t_tb (void)
14275{
14276 unsigned Rn, Rm;
14277 int half;
14278
14279 half = (inst.instruction & 0x10) != 0;
14280 set_pred_insn_type_last ();
14281 constraint (inst.operands[0].immisreg,
14282 _("instruction requires register index"));
14283
14284 Rn = inst.operands[0].reg;
14285 Rm = inst.operands[0].imm;
14286
14287 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
14288 constraint (Rn == REG_SP, BAD_SP);
14289 reject_bad_reg (Rm);
14290
14291 constraint (!half && inst.operands[0].shifted,
14292 _("instruction does not allow shifted index"));
14293 inst.instruction |= (Rn << 16) | Rm;
14294}
14295
14296static void
14297do_t_udf (void)
14298{
14299 if (!inst.operands[0].present)
14300 inst.operands[0].imm = 0;
14301
14302 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
14303 {
14304 constraint (inst.size_req == 2,
14305 _("immediate value out of range"));
14306 inst.instruction = THUMB_OP32 (inst.instruction);
14307 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
14308 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
14309 }
14310 else
14311 {
14312 inst.instruction = THUMB_OP16 (inst.instruction);
14313 inst.instruction |= inst.operands[0].imm;
14314 }
14315
14316 set_pred_insn_type (NEUTRAL_IT_INSN);
14317}
14318
14319
14320static void
14321do_t_usat (void)
14322{
14323 do_t_ssat_usat (0);
14324}
14325
14326static void
14327do_t_usat16 (void)
14328{
14329 unsigned Rd, Rn;
14330
14331 Rd = inst.operands[0].reg;
14332 Rn = inst.operands[2].reg;
14333
14334 reject_bad_reg (Rd);
14335 reject_bad_reg (Rn);
14336
14337 inst.instruction |= Rd << 8;
14338 inst.instruction |= inst.operands[1].imm;
14339 inst.instruction |= Rn << 16;
14340}
14341
14342/* Checking the range of the branch offset (VAL) with NBITS bits
14343 and IS_SIGNED signedness. Also checks the LSB to be 0. */
14344static int
14345v8_1_branch_value_check (int val, int nbits, int is_signed)
14346{
14347 gas_assert (nbits > 0 && nbits <= 32);
14348 if (is_signed)
14349 {
14350 int cmp = (1 << (nbits - 1));
14351 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
14352 return FAIL;
14353 }
14354 else
14355 {
14356 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
14357 return FAIL;
14358 }
14359 return SUCCESS;
14360}
14361
14362/* For branches in Armv8.1-M Mainline. */
14363static void
14364do_t_branch_future (void)
14365{
14366 unsigned long insn = inst.instruction;
14367
14368 inst.instruction = THUMB_OP32 (inst.instruction);
14369 if (inst.operands[0].hasreloc == 0)
14370 {
14371 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
14372 as_bad (BAD_BRANCH_OFF);
14373
14374 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
14375 }
14376 else
14377 {
14378 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
14379 inst.relocs[0].pc_rel = 1;
14380 }
14381
14382 switch (insn)
14383 {
14384 case T_MNEM_bf:
14385 if (inst.operands[1].hasreloc == 0)
14386 {
14387 int val = inst.operands[1].imm;
14388 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
14389 as_bad (BAD_BRANCH_OFF);
14390
14391 int immA = (val & 0x0001f000) >> 12;
14392 int immB = (val & 0x00000ffc) >> 2;
14393 int immC = (val & 0x00000002) >> 1;
14394 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14395 }
14396 else
14397 {
14398 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
14399 inst.relocs[1].pc_rel = 1;
14400 }
14401 break;
14402
14403 case T_MNEM_bfl:
14404 if (inst.operands[1].hasreloc == 0)
14405 {
14406 int val = inst.operands[1].imm;
14407 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
14408 as_bad (BAD_BRANCH_OFF);
14409
14410 int immA = (val & 0x0007f000) >> 12;
14411 int immB = (val & 0x00000ffc) >> 2;
14412 int immC = (val & 0x00000002) >> 1;
14413 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14414 }
14415 else
14416 {
14417 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14418 inst.relocs[1].pc_rel = 1;
14419 }
14420 break;
14421
14422 case T_MNEM_bfcsel:
14423 /* Operand 1. */
14424 if (inst.operands[1].hasreloc == 0)
14425 {
14426 int val = inst.operands[1].imm;
14427 int immA = (val & 0x00001000) >> 12;
14428 int immB = (val & 0x00000ffc) >> 2;
14429 int immC = (val & 0x00000002) >> 1;
14430 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14431 }
14432 else
14433 {
14434 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14435 inst.relocs[1].pc_rel = 1;
14436 }
14437
14438 /* Operand 2. */
14439 if (inst.operands[2].hasreloc == 0)
14440 {
14441 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14442 int val2 = inst.operands[2].imm;
14443 int val0 = inst.operands[0].imm & 0x1f;
14444 int diff = val2 - val0;
14445 if (diff == 4)
14446 inst.instruction |= 1 << 17; /* T bit. */
14447 else if (diff != 2)
14448 as_bad (_("out of range label-relative fixup value"));
14449 }
14450 else
14451 {
14452 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14453 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14454 inst.relocs[2].pc_rel = 1;
14455 }
14456
14457 /* Operand 3. */
14458 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14459 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14460 break;
14461
14462 case T_MNEM_bfx:
14463 case T_MNEM_bflx:
14464 inst.instruction |= inst.operands[1].reg << 16;
14465 break;
14466
14467 default: abort ();
14468 }
14469}
14470
14471/* Helper function for do_t_loloop to handle relocations. */
14472static void
14473v8_1_loop_reloc (int is_le)
14474{
14475 if (inst.relocs[0].exp.X_op == O_constant)
14476 {
14477 int value = inst.relocs[0].exp.X_add_number;
14478 value = (is_le) ? -value : value;
14479
14480 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14481 as_bad (BAD_BRANCH_OFF);
14482
14483 int imml, immh;
14484
14485 immh = (value & 0x00000ffc) >> 2;
14486 imml = (value & 0x00000002) >> 1;
14487
14488 inst.instruction |= (imml << 11) | (immh << 1);
14489 }
14490 else
14491 {
14492 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14493 inst.relocs[0].pc_rel = 1;
14494 }
14495}
14496
14497/* For shifts with four operands in MVE. */
14498static void
14499do_mve_scalar_shift1 (void)
14500{
14501 unsigned int value = inst.operands[2].imm;
14502
14503 inst.instruction |= inst.operands[0].reg << 16;
14504 inst.instruction |= inst.operands[1].reg << 8;
14505
14506 /* Setting the bit for saturation. */
14507 inst.instruction |= ((value == 64) ? 0: 1) << 7;
14508
14509 /* Assuming Rm is already checked not to be 11x1. */
14510 constraint (inst.operands[3].reg == inst.operands[0].reg, BAD_OVERLAP);
14511 constraint (inst.operands[3].reg == inst.operands[1].reg, BAD_OVERLAP);
14512 inst.instruction |= inst.operands[3].reg << 12;
14513}
14514
14515/* For shifts in MVE. */
14516static void
14517do_mve_scalar_shift (void)
14518{
14519 if (!inst.operands[2].present)
14520 {
14521 inst.operands[2] = inst.operands[1];
14522 inst.operands[1].reg = 0xf;
14523 }
14524
14525 inst.instruction |= inst.operands[0].reg << 16;
14526 inst.instruction |= inst.operands[1].reg << 8;
14527
14528 if (inst.operands[2].isreg)
14529 {
14530 /* Assuming Rm is already checked not to be 11x1. */
14531 constraint (inst.operands[2].reg == inst.operands[0].reg, BAD_OVERLAP);
14532 constraint (inst.operands[2].reg == inst.operands[1].reg, BAD_OVERLAP);
14533 inst.instruction |= inst.operands[2].reg << 12;
14534 }
14535 else
14536 {
14537 /* Assuming imm is already checked as [1,32]. */
14538 unsigned int value = inst.operands[2].imm;
14539 inst.instruction |= (value & 0x1c) << 10;
14540 inst.instruction |= (value & 0x03) << 6;
14541 /* Change last 4 bits from 0xd to 0xf. */
14542 inst.instruction |= 0x2;
14543 }
14544}
14545
14546/* MVE instruction encoder helpers. */
14547#define M_MNEM_vabav 0xee800f01
14548#define M_MNEM_vmladav 0xeef00e00
14549#define M_MNEM_vmladava 0xeef00e20
14550#define M_MNEM_vmladavx 0xeef01e00
14551#define M_MNEM_vmladavax 0xeef01e20
14552#define M_MNEM_vmlsdav 0xeef00e01
14553#define M_MNEM_vmlsdava 0xeef00e21
14554#define M_MNEM_vmlsdavx 0xeef01e01
14555#define M_MNEM_vmlsdavax 0xeef01e21
14556#define M_MNEM_vmullt 0xee011e00
14557#define M_MNEM_vmullb 0xee010e00
14558#define M_MNEM_vctp 0xf000e801
14559#define M_MNEM_vst20 0xfc801e00
14560#define M_MNEM_vst21 0xfc801e20
14561#define M_MNEM_vst40 0xfc801e01
14562#define M_MNEM_vst41 0xfc801e21
14563#define M_MNEM_vst42 0xfc801e41
14564#define M_MNEM_vst43 0xfc801e61
14565#define M_MNEM_vld20 0xfc901e00
14566#define M_MNEM_vld21 0xfc901e20
14567#define M_MNEM_vld40 0xfc901e01
14568#define M_MNEM_vld41 0xfc901e21
14569#define M_MNEM_vld42 0xfc901e41
14570#define M_MNEM_vld43 0xfc901e61
14571#define M_MNEM_vstrb 0xec000e00
14572#define M_MNEM_vstrh 0xec000e10
14573#define M_MNEM_vstrw 0xec000e40
14574#define M_MNEM_vstrd 0xec000e50
14575#define M_MNEM_vldrb 0xec100e00
14576#define M_MNEM_vldrh 0xec100e10
14577#define M_MNEM_vldrw 0xec100e40
14578#define M_MNEM_vldrd 0xec100e50
14579#define M_MNEM_vmovlt 0xeea01f40
14580#define M_MNEM_vmovlb 0xeea00f40
14581#define M_MNEM_vmovnt 0xfe311e81
14582#define M_MNEM_vmovnb 0xfe310e81
14583#define M_MNEM_vadc 0xee300f00
14584#define M_MNEM_vadci 0xee301f00
14585#define M_MNEM_vbrsr 0xfe011e60
14586#define M_MNEM_vaddlv 0xee890f00
14587#define M_MNEM_vaddlva 0xee890f20
14588#define M_MNEM_vaddv 0xeef10f00
14589#define M_MNEM_vaddva 0xeef10f20
14590#define M_MNEM_vddup 0xee011f6e
14591#define M_MNEM_vdwdup 0xee011f60
14592#define M_MNEM_vidup 0xee010f6e
14593#define M_MNEM_viwdup 0xee010f60
14594#define M_MNEM_vmaxv 0xeee20f00
14595#define M_MNEM_vmaxav 0xeee00f00
14596#define M_MNEM_vminv 0xeee20f80
14597#define M_MNEM_vminav 0xeee00f80
14598#define M_MNEM_vmlaldav 0xee800e00
14599#define M_MNEM_vmlaldava 0xee800e20
14600#define M_MNEM_vmlaldavx 0xee801e00
14601#define M_MNEM_vmlaldavax 0xee801e20
14602#define M_MNEM_vmlsldav 0xee800e01
14603#define M_MNEM_vmlsldava 0xee800e21
14604#define M_MNEM_vmlsldavx 0xee801e01
14605#define M_MNEM_vmlsldavax 0xee801e21
14606#define M_MNEM_vrmlaldavhx 0xee801f00
14607#define M_MNEM_vrmlaldavhax 0xee801f20
14608#define M_MNEM_vrmlsldavh 0xfe800e01
14609#define M_MNEM_vrmlsldavha 0xfe800e21
14610#define M_MNEM_vrmlsldavhx 0xfe801e01
14611#define M_MNEM_vrmlsldavhax 0xfe801e21
14612#define M_MNEM_vqmovnt 0xee331e01
14613#define M_MNEM_vqmovnb 0xee330e01
14614#define M_MNEM_vqmovunt 0xee311e81
14615#define M_MNEM_vqmovunb 0xee310e81
14616#define M_MNEM_vshrnt 0xee801fc1
14617#define M_MNEM_vshrnb 0xee800fc1
14618#define M_MNEM_vrshrnt 0xfe801fc1
14619#define M_MNEM_vqshrnt 0xee801f40
14620#define M_MNEM_vqshrnb 0xee800f40
14621#define M_MNEM_vqshrunt 0xee801fc0
14622#define M_MNEM_vqshrunb 0xee800fc0
14623#define M_MNEM_vrshrnb 0xfe800fc1
14624#define M_MNEM_vqrshrnt 0xee801f41
14625#define M_MNEM_vqrshrnb 0xee800f41
14626#define M_MNEM_vqrshrunt 0xfe801fc0
14627#define M_MNEM_vqrshrunb 0xfe800fc0
14628
14629/* Bfloat16 instruction encoder helpers. */
14630#define B_MNEM_vfmat 0xfc300850
14631#define B_MNEM_vfmab 0xfc300810
14632
14633/* Neon instruction encoder helpers. */
14634
14635/* Encodings for the different types for various Neon opcodes. */
14636
14637/* An "invalid" code for the following tables. */
14638#define N_INV -1u
14639
14640struct neon_tab_entry
14641{
14642 unsigned integer;
14643 unsigned float_or_poly;
14644 unsigned scalar_or_imm;
14645};
14646
14647/* Map overloaded Neon opcodes to their respective encodings. */
14648#define NEON_ENC_TAB \
14649 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14650 X(vabdl, 0x0800700, N_INV, N_INV), \
14651 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14652 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14653 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14654 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14655 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14656 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14657 X(vaddl, 0x0800000, N_INV, N_INV), \
14658 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14659 X(vsubl, 0x0800200, N_INV, N_INV), \
14660 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14661 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14662 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14663 /* Register variants of the following two instructions are encoded as
14664 vcge / vcgt with the operands reversed. */ \
14665 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14666 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14667 X(vfma, N_INV, 0x0000c10, N_INV), \
14668 X(vfms, N_INV, 0x0200c10, N_INV), \
14669 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14670 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14671 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14672 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14673 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14674 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14675 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14676 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14677 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14678 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14679 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14680 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14681 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14682 X(vshl, 0x0000400, N_INV, 0x0800510), \
14683 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14684 X(vand, 0x0000110, N_INV, 0x0800030), \
14685 X(vbic, 0x0100110, N_INV, 0x0800030), \
14686 X(veor, 0x1000110, N_INV, N_INV), \
14687 X(vorn, 0x0300110, N_INV, 0x0800010), \
14688 X(vorr, 0x0200110, N_INV, 0x0800010), \
14689 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14690 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14691 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14692 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14693 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14694 X(vst1, 0x0000000, 0x0800000, N_INV), \
14695 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14696 X(vst2, 0x0000100, 0x0800100, N_INV), \
14697 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14698 X(vst3, 0x0000200, 0x0800200, N_INV), \
14699 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14700 X(vst4, 0x0000300, 0x0800300, N_INV), \
14701 X(vmovn, 0x1b20200, N_INV, N_INV), \
14702 X(vtrn, 0x1b20080, N_INV, N_INV), \
14703 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14704 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14705 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14706 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14707 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14708 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14709 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14710 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14711 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14712 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14713 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14714 X(vseleq, 0xe000a00, N_INV, N_INV), \
14715 X(vselvs, 0xe100a00, N_INV, N_INV), \
14716 X(vselge, 0xe200a00, N_INV, N_INV), \
14717 X(vselgt, 0xe300a00, N_INV, N_INV), \
14718 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14719 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14720 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14721 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14722 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14723 X(aes, 0x3b00300, N_INV, N_INV), \
14724 X(sha3op, 0x2000c00, N_INV, N_INV), \
14725 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14726 X(sha2op, 0x3ba0380, N_INV, N_INV)
14727
14728enum neon_opc
14729{
14730#define X(OPC,I,F,S) N_MNEM_##OPC
14731NEON_ENC_TAB
14732#undef X
14733};
14734
14735static const struct neon_tab_entry neon_enc_tab[] =
14736{
14737#define X(OPC,I,F,S) { (I), (F), (S) }
14738NEON_ENC_TAB
14739#undef X
14740};
14741
14742/* Do not use these macros; instead, use NEON_ENCODE defined below. */
14743#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14744#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14745#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14746#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14747#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14748#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14749#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14750#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14751#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14752#define NEON_ENC_SINGLE_(X) \
14753 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14754#define NEON_ENC_DOUBLE_(X) \
14755 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14756#define NEON_ENC_FPV8_(X) \
14757 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14758
14759#define NEON_ENCODE(type, inst) \
14760 do \
14761 { \
14762 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14763 inst.is_neon = 1; \
14764 } \
14765 while (0)
14766
14767#define check_neon_suffixes \
14768 do \
14769 { \
14770 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14771 { \
14772 as_bad (_("invalid neon suffix for non neon instruction")); \
14773 return; \
14774 } \
14775 } \
14776 while (0)
14777
14778/* Define shapes for instruction operands. The following mnemonic characters
14779 are used in this table:
14780
14781 F - VFP S<n> register
14782 D - Neon D<n> register
14783 Q - Neon Q<n> register
14784 I - Immediate
14785 S - Scalar
14786 R - ARM register
14787 L - D<n> register list
14788
14789 This table is used to generate various data:
14790 - enumerations of the form NS_DDR to be used as arguments to
14791 neon_select_shape.
14792 - a table classifying shapes into single, double, quad, mixed.
14793 - a table used to drive neon_select_shape. */
14794
14795#define NEON_SHAPE_DEF \
14796 X(4, (R, R, Q, Q), QUAD), \
14797 X(4, (Q, R, R, I), QUAD), \
14798 X(4, (R, R, S, S), QUAD), \
14799 X(4, (S, S, R, R), QUAD), \
14800 X(3, (Q, R, I), QUAD), \
14801 X(3, (I, Q, Q), QUAD), \
14802 X(3, (I, Q, R), QUAD), \
14803 X(3, (R, Q, Q), QUAD), \
14804 X(3, (D, D, D), DOUBLE), \
14805 X(3, (Q, Q, Q), QUAD), \
14806 X(3, (D, D, I), DOUBLE), \
14807 X(3, (Q, Q, I), QUAD), \
14808 X(3, (D, D, S), DOUBLE), \
14809 X(3, (Q, Q, S), QUAD), \
14810 X(3, (Q, Q, R), QUAD), \
14811 X(3, (R, R, Q), QUAD), \
14812 X(2, (R, Q), QUAD), \
14813 X(2, (D, D), DOUBLE), \
14814 X(2, (Q, Q), QUAD), \
14815 X(2, (D, S), DOUBLE), \
14816 X(2, (Q, S), QUAD), \
14817 X(2, (D, R), DOUBLE), \
14818 X(2, (Q, R), QUAD), \
14819 X(2, (D, I), DOUBLE), \
14820 X(2, (Q, I), QUAD), \
14821 X(3, (P, F, I), SINGLE), \
14822 X(3, (P, D, I), DOUBLE), \
14823 X(3, (P, Q, I), QUAD), \
14824 X(4, (P, F, F, I), SINGLE), \
14825 X(4, (P, D, D, I), DOUBLE), \
14826 X(4, (P, Q, Q, I), QUAD), \
14827 X(5, (P, F, F, F, I), SINGLE), \
14828 X(5, (P, D, D, D, I), DOUBLE), \
14829 X(5, (P, Q, Q, Q, I), QUAD), \
14830 X(3, (D, L, D), DOUBLE), \
14831 X(2, (D, Q), MIXED), \
14832 X(2, (Q, D), MIXED), \
14833 X(3, (D, Q, I), MIXED), \
14834 X(3, (Q, D, I), MIXED), \
14835 X(3, (Q, D, D), MIXED), \
14836 X(3, (D, Q, Q), MIXED), \
14837 X(3, (Q, Q, D), MIXED), \
14838 X(3, (Q, D, S), MIXED), \
14839 X(3, (D, Q, S), MIXED), \
14840 X(4, (D, D, D, I), DOUBLE), \
14841 X(4, (Q, Q, Q, I), QUAD), \
14842 X(4, (D, D, S, I), DOUBLE), \
14843 X(4, (Q, Q, S, I), QUAD), \
14844 X(2, (F, F), SINGLE), \
14845 X(3, (F, F, F), SINGLE), \
14846 X(2, (F, I), SINGLE), \
14847 X(2, (F, D), MIXED), \
14848 X(2, (D, F), MIXED), \
14849 X(3, (F, F, I), MIXED), \
14850 X(4, (R, R, F, F), SINGLE), \
14851 X(4, (F, F, R, R), SINGLE), \
14852 X(3, (D, R, R), DOUBLE), \
14853 X(3, (R, R, D), DOUBLE), \
14854 X(2, (S, R), SINGLE), \
14855 X(2, (R, S), SINGLE), \
14856 X(2, (F, R), SINGLE), \
14857 X(2, (R, F), SINGLE), \
14858/* Used for MVE tail predicated loop instructions. */\
14859 X(2, (R, R), QUAD), \
14860/* Half float shape supported so far. */\
14861 X (2, (H, D), MIXED), \
14862 X (2, (D, H), MIXED), \
14863 X (2, (H, F), MIXED), \
14864 X (2, (F, H), MIXED), \
14865 X (2, (H, H), HALF), \
14866 X (2, (H, R), HALF), \
14867 X (2, (R, H), HALF), \
14868 X (2, (H, I), HALF), \
14869 X (3, (H, H, H), HALF), \
14870 X (3, (H, F, I), MIXED), \
14871 X (3, (F, H, I), MIXED), \
14872 X (3, (D, H, H), MIXED), \
14873 X (3, (D, H, S), MIXED)
14874
14875#define S2(A,B) NS_##A##B
14876#define S3(A,B,C) NS_##A##B##C
14877#define S4(A,B,C,D) NS_##A##B##C##D
14878#define S5(A,B,C,D,E) NS_##A##B##C##D##E
14879
14880#define X(N, L, C) S##N L
14881
14882enum neon_shape
14883{
14884 NEON_SHAPE_DEF,
14885 NS_NULL
14886};
14887
14888#undef X
14889#undef S2
14890#undef S3
14891#undef S4
14892#undef S5
14893
14894enum neon_shape_class
14895{
14896 SC_HALF,
14897 SC_SINGLE,
14898 SC_DOUBLE,
14899 SC_QUAD,
14900 SC_MIXED
14901};
14902
14903#define X(N, L, C) SC_##C
14904
14905static enum neon_shape_class neon_shape_class[] =
14906{
14907 NEON_SHAPE_DEF
14908};
14909
14910#undef X
14911
14912enum neon_shape_el
14913{
14914 SE_H,
14915 SE_F,
14916 SE_D,
14917 SE_Q,
14918 SE_I,
14919 SE_S,
14920 SE_R,
14921 SE_L,
14922 SE_P
14923};
14924
14925/* Register widths of above. */
14926static unsigned neon_shape_el_size[] =
14927{
14928 16,
14929 32,
14930 64,
14931 128,
14932 0,
14933 32,
14934 32,
14935 0,
14936 0
14937};
14938
14939struct neon_shape_info
14940{
14941 unsigned els;
14942 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14943};
14944
14945#define S2(A,B) { SE_##A, SE_##B }
14946#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14947#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14948#define S5(A,B,C,D,E) { SE_##A, SE_##B, SE_##C, SE_##D, SE_##E }
14949
14950#define X(N, L, C) { N, S##N L }
14951
14952static struct neon_shape_info neon_shape_tab[] =
14953{
14954 NEON_SHAPE_DEF
14955};
14956
14957#undef X
14958#undef S2
14959#undef S3
14960#undef S4
14961#undef S5
14962
14963/* Bit masks used in type checking given instructions.
14964 'N_EQK' means the type must be the same as (or based on in some way) the key
14965 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14966 set, various other bits can be set as well in order to modify the meaning of
14967 the type constraint. */
14968
14969enum neon_type_mask
14970{
14971 N_S8 = 0x0000001,
14972 N_S16 = 0x0000002,
14973 N_S32 = 0x0000004,
14974 N_S64 = 0x0000008,
14975 N_U8 = 0x0000010,
14976 N_U16 = 0x0000020,
14977 N_U32 = 0x0000040,
14978 N_U64 = 0x0000080,
14979 N_I8 = 0x0000100,
14980 N_I16 = 0x0000200,
14981 N_I32 = 0x0000400,
14982 N_I64 = 0x0000800,
14983 N_8 = 0x0001000,
14984 N_16 = 0x0002000,
14985 N_32 = 0x0004000,
14986 N_64 = 0x0008000,
14987 N_P8 = 0x0010000,
14988 N_P16 = 0x0020000,
14989 N_F16 = 0x0040000,
14990 N_F32 = 0x0080000,
14991 N_F64 = 0x0100000,
14992 N_P64 = 0x0200000,
14993 N_BF16 = 0x0400000,
14994 N_KEY = 0x1000000, /* Key element (main type specifier). */
14995 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
14996 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
14997 N_UNT = 0x8000000, /* Must be explicitly untyped. */
14998 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14999 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
15000 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
15001 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
15002 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
15003 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
15004 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
15005 N_UTYP = 0,
15006 N_MAX_NONSPECIAL = N_P64
15007};
15008
15009#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
15010
15011#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
15012#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
15013#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
15014#define N_S_32 (N_S8 | N_S16 | N_S32)
15015#define N_F_16_32 (N_F16 | N_F32)
15016#define N_SUF_32 (N_SU_32 | N_F_16_32)
15017#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
15018#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
15019#define N_F_ALL (N_F16 | N_F32 | N_F64)
15020#define N_I_MVE (N_I8 | N_I16 | N_I32)
15021#define N_F_MVE (N_F16 | N_F32)
15022#define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
15023
15024/* Pass this as the first type argument to neon_check_type to ignore types
15025 altogether. */
15026#define N_IGNORE_TYPE (N_KEY | N_EQK)
15027
15028/* Select a "shape" for the current instruction (describing register types or
15029 sizes) from a list of alternatives. Return NS_NULL if the current instruction
15030 doesn't fit. For non-polymorphic shapes, checking is usually done as a
15031 function of operand parsing, so this function doesn't need to be called.
15032 Shapes should be listed in order of decreasing length. */
15033
15034static enum neon_shape
15035neon_select_shape (enum neon_shape shape, ...)
15036{
15037 va_list ap;
15038 enum neon_shape first_shape = shape;
15039
15040 /* Fix missing optional operands. FIXME: we don't know at this point how
15041 many arguments we should have, so this makes the assumption that we have
15042 > 1. This is true of all current Neon opcodes, I think, but may not be
15043 true in the future. */
15044 if (!inst.operands[1].present)
15045 inst.operands[1] = inst.operands[0];
15046
15047 va_start (ap, shape);
15048
15049 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
15050 {
15051 unsigned j;
15052 int matches = 1;
15053
15054 for (j = 0; j < neon_shape_tab[shape].els; j++)
15055 {
15056 if (!inst.operands[j].present)
15057 {
15058 matches = 0;
15059 break;
15060 }
15061
15062 switch (neon_shape_tab[shape].el[j])
15063 {
15064 /* If a .f16, .16, .u16, .s16 type specifier is given over
15065 a VFP single precision register operand, it's essentially
15066 means only half of the register is used.
15067
15068 If the type specifier is given after the mnemonics, the
15069 information is stored in inst.vectype. If the type specifier
15070 is given after register operand, the information is stored
15071 in inst.operands[].vectype.
15072
15073 When there is only one type specifier, and all the register
15074 operands are the same type of hardware register, the type
15075 specifier applies to all register operands.
15076
15077 If no type specifier is given, the shape is inferred from
15078 operand information.
15079
15080 for example:
15081 vadd.f16 s0, s1, s2: NS_HHH
15082 vabs.f16 s0, s1: NS_HH
15083 vmov.f16 s0, r1: NS_HR
15084 vmov.f16 r0, s1: NS_RH
15085 vcvt.f16 r0, s1: NS_RH
15086 vcvt.f16.s32 s2, s2, #29: NS_HFI
15087 vcvt.f16.s32 s2, s2: NS_HF
15088 */
15089 case SE_H:
15090 if (!(inst.operands[j].isreg
15091 && inst.operands[j].isvec
15092 && inst.operands[j].issingle
15093 && !inst.operands[j].isquad
15094 && ((inst.vectype.elems == 1
15095 && inst.vectype.el[0].size == 16)
15096 || (inst.vectype.elems > 1
15097 && inst.vectype.el[j].size == 16)
15098 || (inst.vectype.elems == 0
15099 && inst.operands[j].vectype.type != NT_invtype
15100 && inst.operands[j].vectype.size == 16))))
15101 matches = 0;
15102 break;
15103
15104 case SE_F:
15105 if (!(inst.operands[j].isreg
15106 && inst.operands[j].isvec
15107 && inst.operands[j].issingle
15108 && !inst.operands[j].isquad
15109 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
15110 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
15111 || (inst.vectype.elems == 0
15112 && (inst.operands[j].vectype.size == 32
15113 || inst.operands[j].vectype.type == NT_invtype)))))
15114 matches = 0;
15115 break;
15116
15117 case SE_D:
15118 if (!(inst.operands[j].isreg
15119 && inst.operands[j].isvec
15120 && !inst.operands[j].isquad
15121 && !inst.operands[j].issingle))
15122 matches = 0;
15123 break;
15124
15125 case SE_R:
15126 if (!(inst.operands[j].isreg
15127 && !inst.operands[j].isvec))
15128 matches = 0;
15129 break;
15130
15131 case SE_Q:
15132 if (!(inst.operands[j].isreg
15133 && inst.operands[j].isvec
15134 && inst.operands[j].isquad
15135 && !inst.operands[j].issingle))
15136 matches = 0;
15137 break;
15138
15139 case SE_I:
15140 if (!(!inst.operands[j].isreg
15141 && !inst.operands[j].isscalar))
15142 matches = 0;
15143 break;
15144
15145 case SE_S:
15146 if (!(!inst.operands[j].isreg
15147 && inst.operands[j].isscalar))
15148 matches = 0;
15149 break;
15150
15151 case SE_P:
15152 case SE_L:
15153 break;
15154 }
15155 if (!matches)
15156 break;
15157 }
15158 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
15159 /* We've matched all the entries in the shape table, and we don't
15160 have any left over operands which have not been matched. */
15161 break;
15162 }
15163
15164 va_end (ap);
15165
15166 if (shape == NS_NULL && first_shape != NS_NULL)
15167 first_error (_("invalid instruction shape"));
15168
15169 return shape;
15170}
15171
15172/* True if SHAPE is predominantly a quadword operation (most of the time, this
15173 means the Q bit should be set). */
15174
15175static int
15176neon_quad (enum neon_shape shape)
15177{
15178 return neon_shape_class[shape] == SC_QUAD;
15179}
15180
15181static void
15182neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
15183 unsigned *g_size)
15184{
15185 /* Allow modification to be made to types which are constrained to be
15186 based on the key element, based on bits set alongside N_EQK. */
15187 if ((typebits & N_EQK) != 0)
15188 {
15189 if ((typebits & N_HLF) != 0)
15190 *g_size /= 2;
15191 else if ((typebits & N_DBL) != 0)
15192 *g_size *= 2;
15193 if ((typebits & N_SGN) != 0)
15194 *g_type = NT_signed;
15195 else if ((typebits & N_UNS) != 0)
15196 *g_type = NT_unsigned;
15197 else if ((typebits & N_INT) != 0)
15198 *g_type = NT_integer;
15199 else if ((typebits & N_FLT) != 0)
15200 *g_type = NT_float;
15201 else if ((typebits & N_SIZ) != 0)
15202 *g_type = NT_untyped;
15203 }
15204}
15205
15206/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
15207 operand type, i.e. the single type specified in a Neon instruction when it
15208 is the only one given. */
15209
15210static struct neon_type_el
15211neon_type_promote (struct neon_type_el *key, unsigned thisarg)
15212{
15213 struct neon_type_el dest = *key;
15214
15215 gas_assert ((thisarg & N_EQK) != 0);
15216
15217 neon_modify_type_size (thisarg, &dest.type, &dest.size);
15218
15219 return dest;
15220}
15221
15222/* Convert Neon type and size into compact bitmask representation. */
15223
15224static enum neon_type_mask
15225type_chk_of_el_type (enum neon_el_type type, unsigned size)
15226{
15227 switch (type)
15228 {
15229 case NT_untyped:
15230 switch (size)
15231 {
15232 case 8: return N_8;
15233 case 16: return N_16;
15234 case 32: return N_32;
15235 case 64: return N_64;
15236 default: ;
15237 }
15238 break;
15239
15240 case NT_integer:
15241 switch (size)
15242 {
15243 case 8: return N_I8;
15244 case 16: return N_I16;
15245 case 32: return N_I32;
15246 case 64: return N_I64;
15247 default: ;
15248 }
15249 break;
15250
15251 case NT_float:
15252 switch (size)
15253 {
15254 case 16: return N_F16;
15255 case 32: return N_F32;
15256 case 64: return N_F64;
15257 default: ;
15258 }
15259 break;
15260
15261 case NT_poly:
15262 switch (size)
15263 {
15264 case 8: return N_P8;
15265 case 16: return N_P16;
15266 case 64: return N_P64;
15267 default: ;
15268 }
15269 break;
15270
15271 case NT_signed:
15272 switch (size)
15273 {
15274 case 8: return N_S8;
15275 case 16: return N_S16;
15276 case 32: return N_S32;
15277 case 64: return N_S64;
15278 default: ;
15279 }
15280 break;
15281
15282 case NT_unsigned:
15283 switch (size)
15284 {
15285 case 8: return N_U8;
15286 case 16: return N_U16;
15287 case 32: return N_U32;
15288 case 64: return N_U64;
15289 default: ;
15290 }
15291 break;
15292
15293 case NT_bfloat:
15294 if (size == 16) return N_BF16;
15295 break;
15296
15297 default: ;
15298 }
15299
15300 return N_UTYP;
15301}
15302
15303/* Convert compact Neon bitmask type representation to a type and size. Only
15304 handles the case where a single bit is set in the mask. */
15305
15306static int
15307el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
15308 enum neon_type_mask mask)
15309{
15310 if ((mask & N_EQK) != 0)
15311 return FAIL;
15312
15313 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
15314 *size = 8;
15315 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16 | N_BF16))
15316 != 0)
15317 *size = 16;
15318 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
15319 *size = 32;
15320 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
15321 *size = 64;
15322 else
15323 return FAIL;
15324
15325 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
15326 *type = NT_signed;
15327 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
15328 *type = NT_unsigned;
15329 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
15330 *type = NT_integer;
15331 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
15332 *type = NT_untyped;
15333 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
15334 *type = NT_poly;
15335 else if ((mask & (N_F_ALL)) != 0)
15336 *type = NT_float;
15337 else if ((mask & (N_BF16)) != 0)
15338 *type = NT_bfloat;
15339 else
15340 return FAIL;
15341
15342 return SUCCESS;
15343}
15344
15345/* Modify a bitmask of allowed types. This is only needed for type
15346 relaxation. */
15347
15348static unsigned
15349modify_types_allowed (unsigned allowed, unsigned mods)
15350{
15351 unsigned size;
15352 enum neon_el_type type;
15353 unsigned destmask;
15354 int i;
15355
15356 destmask = 0;
15357
15358 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
15359 {
15360 if (el_type_of_type_chk (&type, &size,
15361 (enum neon_type_mask) (allowed & i)) == SUCCESS)
15362 {
15363 neon_modify_type_size (mods, &type, &size);
15364 destmask |= type_chk_of_el_type (type, size);
15365 }
15366 }
15367
15368 return destmask;
15369}
15370
15371/* Check type and return type classification.
15372 The manual states (paraphrase): If one datatype is given, it indicates the
15373 type given in:
15374 - the second operand, if there is one
15375 - the operand, if there is no second operand
15376 - the result, if there are no operands.
15377 This isn't quite good enough though, so we use a concept of a "key" datatype
15378 which is set on a per-instruction basis, which is the one which matters when
15379 only one data type is written.
15380 Note: this function has side-effects (e.g. filling in missing operands). All
15381 Neon instructions should call it before performing bit encoding. */
15382
15383static struct neon_type_el
15384neon_check_type (unsigned els, enum neon_shape ns, ...)
15385{
15386 va_list ap;
15387 unsigned i, pass, key_el = 0;
15388 unsigned types[NEON_MAX_TYPE_ELS];
15389 enum neon_el_type k_type = NT_invtype;
15390 unsigned k_size = -1u;
15391 struct neon_type_el badtype = {NT_invtype, -1};
15392 unsigned key_allowed = 0;
15393
15394 /* Optional registers in Neon instructions are always (not) in operand 1.
15395 Fill in the missing operand here, if it was omitted. */
15396 if (els > 1 && !inst.operands[1].present)
15397 inst.operands[1] = inst.operands[0];
15398
15399 /* Suck up all the varargs. */
15400 va_start (ap, ns);
15401 for (i = 0; i < els; i++)
15402 {
15403 unsigned thisarg = va_arg (ap, unsigned);
15404 if (thisarg == N_IGNORE_TYPE)
15405 {
15406 va_end (ap);
15407 return badtype;
15408 }
15409 types[i] = thisarg;
15410 if ((thisarg & N_KEY) != 0)
15411 key_el = i;
15412 }
15413 va_end (ap);
15414
15415 if (inst.vectype.elems > 0)
15416 for (i = 0; i < els; i++)
15417 if (inst.operands[i].vectype.type != NT_invtype)
15418 {
15419 first_error (_("types specified in both the mnemonic and operands"));
15420 return badtype;
15421 }
15422
15423 /* Duplicate inst.vectype elements here as necessary.
15424 FIXME: No idea if this is exactly the same as the ARM assembler,
15425 particularly when an insn takes one register and one non-register
15426 operand. */
15427 if (inst.vectype.elems == 1 && els > 1)
15428 {
15429 unsigned j;
15430 inst.vectype.elems = els;
15431 inst.vectype.el[key_el] = inst.vectype.el[0];
15432 for (j = 0; j < els; j++)
15433 if (j != key_el)
15434 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15435 types[j]);
15436 }
15437 else if (inst.vectype.elems == 0 && els > 0)
15438 {
15439 unsigned j;
15440 /* No types were given after the mnemonic, so look for types specified
15441 after each operand. We allow some flexibility here; as long as the
15442 "key" operand has a type, we can infer the others. */
15443 for (j = 0; j < els; j++)
15444 if (inst.operands[j].vectype.type != NT_invtype)
15445 inst.vectype.el[j] = inst.operands[j].vectype;
15446
15447 if (inst.operands[key_el].vectype.type != NT_invtype)
15448 {
15449 for (j = 0; j < els; j++)
15450 if (inst.operands[j].vectype.type == NT_invtype)
15451 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15452 types[j]);
15453 }
15454 else
15455 {
15456 first_error (_("operand types can't be inferred"));
15457 return badtype;
15458 }
15459 }
15460 else if (inst.vectype.elems != els)
15461 {
15462 first_error (_("type specifier has the wrong number of parts"));
15463 return badtype;
15464 }
15465
15466 for (pass = 0; pass < 2; pass++)
15467 {
15468 for (i = 0; i < els; i++)
15469 {
15470 unsigned thisarg = types[i];
15471 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
15472 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
15473 enum neon_el_type g_type = inst.vectype.el[i].type;
15474 unsigned g_size = inst.vectype.el[i].size;
15475
15476 /* Decay more-specific signed & unsigned types to sign-insensitive
15477 integer types if sign-specific variants are unavailable. */
15478 if ((g_type == NT_signed || g_type == NT_unsigned)
15479 && (types_allowed & N_SU_ALL) == 0)
15480 g_type = NT_integer;
15481
15482 /* If only untyped args are allowed, decay any more specific types to
15483 them. Some instructions only care about signs for some element
15484 sizes, so handle that properly. */
15485 if (((types_allowed & N_UNT) == 0)
15486 && ((g_size == 8 && (types_allowed & N_8) != 0)
15487 || (g_size == 16 && (types_allowed & N_16) != 0)
15488 || (g_size == 32 && (types_allowed & N_32) != 0)
15489 || (g_size == 64 && (types_allowed & N_64) != 0)))
15490 g_type = NT_untyped;
15491
15492 if (pass == 0)
15493 {
15494 if ((thisarg & N_KEY) != 0)
15495 {
15496 k_type = g_type;
15497 k_size = g_size;
15498 key_allowed = thisarg & ~N_KEY;
15499
15500 /* Check architecture constraint on FP16 extension. */
15501 if (k_size == 16
15502 && k_type == NT_float
15503 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15504 {
15505 inst.error = _(BAD_FP16);
15506 return badtype;
15507 }
15508 }
15509 }
15510 else
15511 {
15512 if ((thisarg & N_VFP) != 0)
15513 {
15514 enum neon_shape_el regshape;
15515 unsigned regwidth, match;
15516
15517 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15518 if (ns == NS_NULL)
15519 {
15520 first_error (_("invalid instruction shape"));
15521 return badtype;
15522 }
15523 regshape = neon_shape_tab[ns].el[i];
15524 regwidth = neon_shape_el_size[regshape];
15525
15526 /* In VFP mode, operands must match register widths. If we
15527 have a key operand, use its width, else use the width of
15528 the current operand. */
15529 if (k_size != -1u)
15530 match = k_size;
15531 else
15532 match = g_size;
15533
15534 /* FP16 will use a single precision register. */
15535 if (regwidth == 32 && match == 16)
15536 {
15537 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15538 match = regwidth;
15539 else
15540 {
15541 inst.error = _(BAD_FP16);
15542 return badtype;
15543 }
15544 }
15545
15546 if (regwidth != match)
15547 {
15548 first_error (_("operand size must match register width"));
15549 return badtype;
15550 }
15551 }
15552
15553 if ((thisarg & N_EQK) == 0)
15554 {
15555 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15556
15557 if ((given_type & types_allowed) == 0)
15558 {
15559 first_error (BAD_SIMD_TYPE);
15560 return badtype;
15561 }
15562 }
15563 else
15564 {
15565 enum neon_el_type mod_k_type = k_type;
15566 unsigned mod_k_size = k_size;
15567 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15568 if (g_type != mod_k_type || g_size != mod_k_size)
15569 {
15570 first_error (_("inconsistent types in Neon instruction"));
15571 return badtype;
15572 }
15573 }
15574 }
15575 }
15576 }
15577
15578 return inst.vectype.el[key_el];
15579}
15580
15581/* Neon-style VFP instruction forwarding. */
15582
15583/* Thumb VFP instructions have 0xE in the condition field. */
15584
15585static void
15586do_vfp_cond_or_thumb (void)
15587{
15588 inst.is_neon = 1;
15589
15590 if (thumb_mode)
15591 inst.instruction |= 0xe0000000;
15592 else
15593 inst.instruction |= inst.cond << 28;
15594}
15595
15596/* Look up and encode a simple mnemonic, for use as a helper function for the
15597 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15598 etc. It is assumed that operand parsing has already been done, and that the
15599 operands are in the form expected by the given opcode (this isn't necessarily
15600 the same as the form in which they were parsed, hence some massaging must
15601 take place before this function is called).
15602 Checks current arch version against that in the looked-up opcode. */
15603
15604static void
15605do_vfp_nsyn_opcode (const char *opname)
15606{
15607 const struct asm_opcode *opcode;
15608
15609 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
15610
15611 if (!opcode)
15612 abort ();
15613
15614 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
15615 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15616 _(BAD_FPU));
15617
15618 inst.is_neon = 1;
15619
15620 if (thumb_mode)
15621 {
15622 inst.instruction = opcode->tvalue;
15623 opcode->tencode ();
15624 }
15625 else
15626 {
15627 inst.instruction = (inst.cond << 28) | opcode->avalue;
15628 opcode->aencode ();
15629 }
15630}
15631
15632static void
15633do_vfp_nsyn_add_sub (enum neon_shape rs)
15634{
15635 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15636
15637 if (rs == NS_FFF || rs == NS_HHH)
15638 {
15639 if (is_add)
15640 do_vfp_nsyn_opcode ("fadds");
15641 else
15642 do_vfp_nsyn_opcode ("fsubs");
15643
15644 /* ARMv8.2 fp16 instruction. */
15645 if (rs == NS_HHH)
15646 do_scalar_fp16_v82_encode ();
15647 }
15648 else
15649 {
15650 if (is_add)
15651 do_vfp_nsyn_opcode ("faddd");
15652 else
15653 do_vfp_nsyn_opcode ("fsubd");
15654 }
15655}
15656
15657/* Check operand types to see if this is a VFP instruction, and if so call
15658 PFN (). */
15659
15660static int
15661try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15662{
15663 enum neon_shape rs;
15664 struct neon_type_el et;
15665
15666 switch (args)
15667 {
15668 case 2:
15669 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15670 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15671 break;
15672
15673 case 3:
15674 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15675 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15676 N_F_ALL | N_KEY | N_VFP);
15677 break;
15678
15679 default:
15680 abort ();
15681 }
15682
15683 if (et.type != NT_invtype)
15684 {
15685 pfn (rs);
15686 return SUCCESS;
15687 }
15688
15689 inst.error = NULL;
15690 return FAIL;
15691}
15692
15693static void
15694do_vfp_nsyn_mla_mls (enum neon_shape rs)
15695{
15696 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
15697
15698 if (rs == NS_FFF || rs == NS_HHH)
15699 {
15700 if (is_mla)
15701 do_vfp_nsyn_opcode ("fmacs");
15702 else
15703 do_vfp_nsyn_opcode ("fnmacs");
15704
15705 /* ARMv8.2 fp16 instruction. */
15706 if (rs == NS_HHH)
15707 do_scalar_fp16_v82_encode ();
15708 }
15709 else
15710 {
15711 if (is_mla)
15712 do_vfp_nsyn_opcode ("fmacd");
15713 else
15714 do_vfp_nsyn_opcode ("fnmacd");
15715 }
15716}
15717
15718static void
15719do_vfp_nsyn_fma_fms (enum neon_shape rs)
15720{
15721 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15722
15723 if (rs == NS_FFF || rs == NS_HHH)
15724 {
15725 if (is_fma)
15726 do_vfp_nsyn_opcode ("ffmas");
15727 else
15728 do_vfp_nsyn_opcode ("ffnmas");
15729
15730 /* ARMv8.2 fp16 instruction. */
15731 if (rs == NS_HHH)
15732 do_scalar_fp16_v82_encode ();
15733 }
15734 else
15735 {
15736 if (is_fma)
15737 do_vfp_nsyn_opcode ("ffmad");
15738 else
15739 do_vfp_nsyn_opcode ("ffnmad");
15740 }
15741}
15742
15743static void
15744do_vfp_nsyn_mul (enum neon_shape rs)
15745{
15746 if (rs == NS_FFF || rs == NS_HHH)
15747 {
15748 do_vfp_nsyn_opcode ("fmuls");
15749
15750 /* ARMv8.2 fp16 instruction. */
15751 if (rs == NS_HHH)
15752 do_scalar_fp16_v82_encode ();
15753 }
15754 else
15755 do_vfp_nsyn_opcode ("fmuld");
15756}
15757
15758static void
15759do_vfp_nsyn_abs_neg (enum neon_shape rs)
15760{
15761 int is_neg = (inst.instruction & 0x80) != 0;
15762 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
15763
15764 if (rs == NS_FF || rs == NS_HH)
15765 {
15766 if (is_neg)
15767 do_vfp_nsyn_opcode ("fnegs");
15768 else
15769 do_vfp_nsyn_opcode ("fabss");
15770
15771 /* ARMv8.2 fp16 instruction. */
15772 if (rs == NS_HH)
15773 do_scalar_fp16_v82_encode ();
15774 }
15775 else
15776 {
15777 if (is_neg)
15778 do_vfp_nsyn_opcode ("fnegd");
15779 else
15780 do_vfp_nsyn_opcode ("fabsd");
15781 }
15782}
15783
15784/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15785 insns belong to Neon, and are handled elsewhere. */
15786
15787static void
15788do_vfp_nsyn_ldm_stm (int is_dbmode)
15789{
15790 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15791 if (is_ldm)
15792 {
15793 if (is_dbmode)
15794 do_vfp_nsyn_opcode ("fldmdbs");
15795 else
15796 do_vfp_nsyn_opcode ("fldmias");
15797 }
15798 else
15799 {
15800 if (is_dbmode)
15801 do_vfp_nsyn_opcode ("fstmdbs");
15802 else
15803 do_vfp_nsyn_opcode ("fstmias");
15804 }
15805}
15806
15807static void
15808do_vfp_nsyn_sqrt (void)
15809{
15810 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15811 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15812
15813 if (rs == NS_FF || rs == NS_HH)
15814 {
15815 do_vfp_nsyn_opcode ("fsqrts");
15816
15817 /* ARMv8.2 fp16 instruction. */
15818 if (rs == NS_HH)
15819 do_scalar_fp16_v82_encode ();
15820 }
15821 else
15822 do_vfp_nsyn_opcode ("fsqrtd");
15823}
15824
15825static void
15826do_vfp_nsyn_div (void)
15827{
15828 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15829 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15830 N_F_ALL | N_KEY | N_VFP);
15831
15832 if (rs == NS_FFF || rs == NS_HHH)
15833 {
15834 do_vfp_nsyn_opcode ("fdivs");
15835
15836 /* ARMv8.2 fp16 instruction. */
15837 if (rs == NS_HHH)
15838 do_scalar_fp16_v82_encode ();
15839 }
15840 else
15841 do_vfp_nsyn_opcode ("fdivd");
15842}
15843
15844static void
15845do_vfp_nsyn_nmul (void)
15846{
15847 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15848 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15849 N_F_ALL | N_KEY | N_VFP);
15850
15851 if (rs == NS_FFF || rs == NS_HHH)
15852 {
15853 NEON_ENCODE (SINGLE, inst);
15854 do_vfp_sp_dyadic ();
15855
15856 /* ARMv8.2 fp16 instruction. */
15857 if (rs == NS_HHH)
15858 do_scalar_fp16_v82_encode ();
15859 }
15860 else
15861 {
15862 NEON_ENCODE (DOUBLE, inst);
15863 do_vfp_dp_rd_rn_rm ();
15864 }
15865 do_vfp_cond_or_thumb ();
15866
15867}
15868
15869/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15870 (0, 1, 2, 3). */
15871
15872static unsigned
15873neon_logbits (unsigned x)
15874{
15875 return ffs (x) - 4;
15876}
15877
15878#define LOW4(R) ((R) & 0xf)
15879#define HI1(R) (((R) >> 4) & 1)
15880#define LOW1(R) ((R) & 0x1)
15881#define HI4(R) (((R) >> 1) & 0xf)
15882
15883static unsigned
15884mve_get_vcmp_vpt_cond (struct neon_type_el et)
15885{
15886 switch (et.type)
15887 {
15888 default:
15889 first_error (BAD_EL_TYPE);
15890 return 0;
15891 case NT_float:
15892 switch (inst.operands[0].imm)
15893 {
15894 default:
15895 first_error (_("invalid condition"));
15896 return 0;
15897 case 0x0:
15898 /* eq. */
15899 return 0;
15900 case 0x1:
15901 /* ne. */
15902 return 1;
15903 case 0xa:
15904 /* ge/ */
15905 return 4;
15906 case 0xb:
15907 /* lt. */
15908 return 5;
15909 case 0xc:
15910 /* gt. */
15911 return 6;
15912 case 0xd:
15913 /* le. */
15914 return 7;
15915 }
15916 case NT_integer:
15917 /* only accept eq and ne. */
15918 if (inst.operands[0].imm > 1)
15919 {
15920 first_error (_("invalid condition"));
15921 return 0;
15922 }
15923 return inst.operands[0].imm;
15924 case NT_unsigned:
15925 if (inst.operands[0].imm == 0x2)
15926 return 2;
15927 else if (inst.operands[0].imm == 0x8)
15928 return 3;
15929 else
15930 {
15931 first_error (_("invalid condition"));
15932 return 0;
15933 }
15934 case NT_signed:
15935 switch (inst.operands[0].imm)
15936 {
15937 default:
15938 first_error (_("invalid condition"));
15939 return 0;
15940 case 0xa:
15941 /* ge. */
15942 return 4;
15943 case 0xb:
15944 /* lt. */
15945 return 5;
15946 case 0xc:
15947 /* gt. */
15948 return 6;
15949 case 0xd:
15950 /* le. */
15951 return 7;
15952 }
15953 }
15954 /* Should be unreachable. */
15955 abort ();
15956}
15957
15958/* For VCTP (create vector tail predicate) in MVE. */
15959static void
15960do_mve_vctp (void)
15961{
15962 int dt = 0;
15963 unsigned size = 0x0;
15964
15965 if (inst.cond > COND_ALWAYS)
15966 inst.pred_insn_type = INSIDE_VPT_INSN;
15967 else
15968 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15969
15970 /* This is a typical MVE instruction which has no type but have size 8, 16,
15971 32 and 64. For instructions with no type, inst.vectype.el[j].type is set
15972 to NT_untyped and size is updated in inst.vectype.el[j].size. */
15973 if ((inst.operands[0].present) && (inst.vectype.el[0].type == NT_untyped))
15974 dt = inst.vectype.el[0].size;
15975
15976 /* Setting this does not indicate an actual NEON instruction, but only
15977 indicates that the mnemonic accepts neon-style type suffixes. */
15978 inst.is_neon = 1;
15979
15980 switch (dt)
15981 {
15982 case 8:
15983 break;
15984 case 16:
15985 size = 0x1; break;
15986 case 32:
15987 size = 0x2; break;
15988 case 64:
15989 size = 0x3; break;
15990 default:
15991 first_error (_("Type is not allowed for this instruction"));
15992 }
15993 inst.instruction |= size << 20;
15994 inst.instruction |= inst.operands[0].reg << 16;
15995}
15996
15997static void
15998do_mve_vpt (void)
15999{
16000 /* We are dealing with a vector predicated block. */
16001 if (inst.operands[0].present)
16002 {
16003 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
16004 struct neon_type_el et
16005 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
16006 N_EQK);
16007
16008 unsigned fcond = mve_get_vcmp_vpt_cond (et);
16009
16010 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16011
16012 if (et.type == NT_invtype)
16013 return;
16014
16015 if (et.type == NT_float)
16016 {
16017 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
16018 BAD_FPU);
16019 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
16020 inst.instruction |= (et.size == 16) << 28;
16021 inst.instruction |= 0x3 << 20;
16022 }
16023 else
16024 {
16025 constraint (et.size != 8 && et.size != 16 && et.size != 32,
16026 BAD_EL_TYPE);
16027 inst.instruction |= 1 << 28;
16028 inst.instruction |= neon_logbits (et.size) << 20;
16029 }
16030
16031 if (inst.operands[2].isquad)
16032 {
16033 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16034 inst.instruction |= LOW4 (inst.operands[2].reg);
16035 inst.instruction |= (fcond & 0x2) >> 1;
16036 }
16037 else
16038 {
16039 if (inst.operands[2].reg == REG_SP)
16040 as_tsktsk (MVE_BAD_SP);
16041 inst.instruction |= 1 << 6;
16042 inst.instruction |= (fcond & 0x2) << 4;
16043 inst.instruction |= inst.operands[2].reg;
16044 }
16045 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16046 inst.instruction |= (fcond & 0x4) << 10;
16047 inst.instruction |= (fcond & 0x1) << 7;
16048
16049 }
16050 set_pred_insn_type (VPT_INSN);
16051 now_pred.cc = 0;
16052 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
16053 | ((inst.instruction & 0xe000) >> 13);
16054 now_pred.warn_deprecated = FALSE;
16055 now_pred.type = VECTOR_PRED;
16056 inst.is_neon = 1;
16057}
16058
16059static void
16060do_mve_vcmp (void)
16061{
16062 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
16063 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
16064 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
16065 if (!inst.operands[2].present)
16066 first_error (_("MVE vector or ARM register expected"));
16067 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16068
16069 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
16070 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
16071 && inst.operands[1].isquad)
16072 {
16073 inst.instruction = N_MNEM_vcmp;
16074 inst.cond = 0x10;
16075 }
16076
16077 if (inst.cond > COND_ALWAYS)
16078 inst.pred_insn_type = INSIDE_VPT_INSN;
16079 else
16080 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16081
16082 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
16083 struct neon_type_el et
16084 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
16085 N_EQK);
16086
16087 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
16088 && !inst.operands[2].iszr, BAD_PC);
16089
16090 unsigned fcond = mve_get_vcmp_vpt_cond (et);
16091
16092 inst.instruction = 0xee010f00;
16093 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16094 inst.instruction |= (fcond & 0x4) << 10;
16095 inst.instruction |= (fcond & 0x1) << 7;
16096 if (et.type == NT_float)
16097 {
16098 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
16099 BAD_FPU);
16100 inst.instruction |= (et.size == 16) << 28;
16101 inst.instruction |= 0x3 << 20;
16102 }
16103 else
16104 {
16105 inst.instruction |= 1 << 28;
16106 inst.instruction |= neon_logbits (et.size) << 20;
16107 }
16108 if (inst.operands[2].isquad)
16109 {
16110 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16111 inst.instruction |= (fcond & 0x2) >> 1;
16112 inst.instruction |= LOW4 (inst.operands[2].reg);
16113 }
16114 else
16115 {
16116 if (inst.operands[2].reg == REG_SP)
16117 as_tsktsk (MVE_BAD_SP);
16118 inst.instruction |= 1 << 6;
16119 inst.instruction |= (fcond & 0x2) << 4;
16120 inst.instruction |= inst.operands[2].reg;
16121 }
16122
16123 inst.is_neon = 1;
16124 return;
16125}
16126
16127static void
16128do_mve_vmaxa_vmina (void)
16129{
16130 if (inst.cond > COND_ALWAYS)
16131 inst.pred_insn_type = INSIDE_VPT_INSN;
16132 else
16133 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16134
16135 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
16136 struct neon_type_el et
16137 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
16138
16139 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16140 inst.instruction |= neon_logbits (et.size) << 18;
16141 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16142 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16143 inst.instruction |= LOW4 (inst.operands[1].reg);
16144 inst.is_neon = 1;
16145}
16146
16147static void
16148do_mve_vfmas (void)
16149{
16150 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
16151 struct neon_type_el et
16152 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
16153
16154 if (inst.cond > COND_ALWAYS)
16155 inst.pred_insn_type = INSIDE_VPT_INSN;
16156 else
16157 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16158
16159 if (inst.operands[2].reg == REG_SP)
16160 as_tsktsk (MVE_BAD_SP);
16161 else if (inst.operands[2].reg == REG_PC)
16162 as_tsktsk (MVE_BAD_PC);
16163
16164 inst.instruction |= (et.size == 16) << 28;
16165 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16166 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16167 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16168 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16169 inst.instruction |= inst.operands[2].reg;
16170 inst.is_neon = 1;
16171}
16172
16173static void
16174do_mve_viddup (void)
16175{
16176 if (inst.cond > COND_ALWAYS)
16177 inst.pred_insn_type = INSIDE_VPT_INSN;
16178 else
16179 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16180
16181 unsigned imm = inst.relocs[0].exp.X_add_number;
16182 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
16183 _("immediate must be either 1, 2, 4 or 8"));
16184
16185 enum neon_shape rs;
16186 struct neon_type_el et;
16187 unsigned Rm;
16188 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
16189 {
16190 rs = neon_select_shape (NS_QRI, NS_NULL);
16191 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
16192 Rm = 7;
16193 }
16194 else
16195 {
16196 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
16197 if (inst.operands[2].reg == REG_SP)
16198 as_tsktsk (MVE_BAD_SP);
16199 else if (inst.operands[2].reg == REG_PC)
16200 first_error (BAD_PC);
16201
16202 rs = neon_select_shape (NS_QRRI, NS_NULL);
16203 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
16204 Rm = inst.operands[2].reg >> 1;
16205 }
16206 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16207 inst.instruction |= neon_logbits (et.size) << 20;
16208 inst.instruction |= inst.operands[1].reg << 16;
16209 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16210 inst.instruction |= (imm > 2) << 7;
16211 inst.instruction |= Rm << 1;
16212 inst.instruction |= (imm == 2 || imm == 8);
16213 inst.is_neon = 1;
16214}
16215
16216static void
16217do_mve_vmlas (void)
16218{
16219 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
16220 struct neon_type_el et
16221 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16222
16223 if (inst.operands[2].reg == REG_PC)
16224 as_tsktsk (MVE_BAD_PC);
16225 else if (inst.operands[2].reg == REG_SP)
16226 as_tsktsk (MVE_BAD_SP);
16227
16228 if (inst.cond > COND_ALWAYS)
16229 inst.pred_insn_type = INSIDE_VPT_INSN;
16230 else
16231 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16232
16233 inst.instruction |= (et.type == NT_unsigned) << 28;
16234 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16235 inst.instruction |= neon_logbits (et.size) << 20;
16236 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16237 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16238 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16239 inst.instruction |= inst.operands[2].reg;
16240 inst.is_neon = 1;
16241}
16242
16243static void
16244do_mve_vshll (void)
16245{
16246 struct neon_type_el et
16247 = neon_check_type (2, NS_QQI, N_EQK, N_S8 | N_U8 | N_S16 | N_U16 | N_KEY);
16248
16249 if (inst.cond > COND_ALWAYS)
16250 inst.pred_insn_type = INSIDE_VPT_INSN;
16251 else
16252 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16253
16254 int imm = inst.operands[2].imm;
16255 constraint (imm < 1 || (unsigned)imm > et.size,
16256 _("immediate value out of range"));
16257
16258 if ((unsigned)imm == et.size)
16259 {
16260 inst.instruction |= neon_logbits (et.size) << 18;
16261 inst.instruction |= 0x110001;
16262 }
16263 else
16264 {
16265 inst.instruction |= (et.size + imm) << 16;
16266 inst.instruction |= 0x800140;
16267 }
16268
16269 inst.instruction |= (et.type == NT_unsigned) << 28;
16270 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16271 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16272 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16273 inst.instruction |= LOW4 (inst.operands[1].reg);
16274 inst.is_neon = 1;
16275}
16276
16277static void
16278do_mve_vshlc (void)
16279{
16280 if (inst.cond > COND_ALWAYS)
16281 inst.pred_insn_type = INSIDE_VPT_INSN;
16282 else
16283 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16284
16285 if (inst.operands[1].reg == REG_PC)
16286 as_tsktsk (MVE_BAD_PC);
16287 else if (inst.operands[1].reg == REG_SP)
16288 as_tsktsk (MVE_BAD_SP);
16289
16290 int imm = inst.operands[2].imm;
16291 constraint (imm < 1 || imm > 32, _("immediate value out of range"));
16292
16293 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16294 inst.instruction |= (imm & 0x1f) << 16;
16295 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16296 inst.instruction |= inst.operands[1].reg;
16297 inst.is_neon = 1;
16298}
16299
16300static void
16301do_mve_vshrn (void)
16302{
16303 unsigned types;
16304 switch (inst.instruction)
16305 {
16306 case M_MNEM_vshrnt:
16307 case M_MNEM_vshrnb:
16308 case M_MNEM_vrshrnt:
16309 case M_MNEM_vrshrnb:
16310 types = N_I16 | N_I32;
16311 break;
16312 case M_MNEM_vqshrnt:
16313 case M_MNEM_vqshrnb:
16314 case M_MNEM_vqrshrnt:
16315 case M_MNEM_vqrshrnb:
16316 types = N_U16 | N_U32 | N_S16 | N_S32;
16317 break;
16318 case M_MNEM_vqshrunt:
16319 case M_MNEM_vqshrunb:
16320 case M_MNEM_vqrshrunt:
16321 case M_MNEM_vqrshrunb:
16322 types = N_S16 | N_S32;
16323 break;
16324 default:
16325 abort ();
16326 }
16327
16328 struct neon_type_el et = neon_check_type (2, NS_QQI, N_EQK, types | N_KEY);
16329
16330 if (inst.cond > COND_ALWAYS)
16331 inst.pred_insn_type = INSIDE_VPT_INSN;
16332 else
16333 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16334
16335 unsigned Qd = inst.operands[0].reg;
16336 unsigned Qm = inst.operands[1].reg;
16337 unsigned imm = inst.operands[2].imm;
16338 constraint (imm < 1 || ((unsigned) imm) > (et.size / 2),
16339 et.size == 16
16340 ? _("immediate operand expected in the range [1,8]")
16341 : _("immediate operand expected in the range [1,16]"));
16342
16343 inst.instruction |= (et.type == NT_unsigned) << 28;
16344 inst.instruction |= HI1 (Qd) << 22;
16345 inst.instruction |= (et.size - imm) << 16;
16346 inst.instruction |= LOW4 (Qd) << 12;
16347 inst.instruction |= HI1 (Qm) << 5;
16348 inst.instruction |= LOW4 (Qm);
16349 inst.is_neon = 1;
16350}
16351
16352static void
16353do_mve_vqmovn (void)
16354{
16355 struct neon_type_el et;
16356 if (inst.instruction == M_MNEM_vqmovnt
16357 || inst.instruction == M_MNEM_vqmovnb)
16358 et = neon_check_type (2, NS_QQ, N_EQK,
16359 N_U16 | N_U32 | N_S16 | N_S32 | N_KEY);
16360 else
16361 et = neon_check_type (2, NS_QQ, N_EQK, N_S16 | N_S32 | N_KEY);
16362
16363 if (inst.cond > COND_ALWAYS)
16364 inst.pred_insn_type = INSIDE_VPT_INSN;
16365 else
16366 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16367
16368 inst.instruction |= (et.type == NT_unsigned) << 28;
16369 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16370 inst.instruction |= (et.size == 32) << 18;
16371 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16372 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16373 inst.instruction |= LOW4 (inst.operands[1].reg);
16374 inst.is_neon = 1;
16375}
16376
16377static void
16378do_mve_vpsel (void)
16379{
16380 neon_select_shape (NS_QQQ, NS_NULL);
16381
16382 if (inst.cond > COND_ALWAYS)
16383 inst.pred_insn_type = INSIDE_VPT_INSN;
16384 else
16385 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16386
16387 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16388 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16389 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16390 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16391 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16392 inst.instruction |= LOW4 (inst.operands[2].reg);
16393 inst.is_neon = 1;
16394}
16395
16396static void
16397do_mve_vpnot (void)
16398{
16399 if (inst.cond > COND_ALWAYS)
16400 inst.pred_insn_type = INSIDE_VPT_INSN;
16401 else
16402 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16403}
16404
16405static void
16406do_mve_vmaxnma_vminnma (void)
16407{
16408 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
16409 struct neon_type_el et
16410 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
16411
16412 if (inst.cond > COND_ALWAYS)
16413 inst.pred_insn_type = INSIDE_VPT_INSN;
16414 else
16415 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16416
16417 inst.instruction |= (et.size == 16) << 28;
16418 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16419 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16420 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16421 inst.instruction |= LOW4 (inst.operands[1].reg);
16422 inst.is_neon = 1;
16423}
16424
16425static void
16426do_mve_vcmul (void)
16427{
16428 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
16429 struct neon_type_el et
16430 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
16431
16432 if (inst.cond > COND_ALWAYS)
16433 inst.pred_insn_type = INSIDE_VPT_INSN;
16434 else
16435 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16436
16437 unsigned rot = inst.relocs[0].exp.X_add_number;
16438 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
16439 _("immediate out of range"));
16440
16441 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
16442 || inst.operands[0].reg == inst.operands[2].reg))
16443 as_tsktsk (BAD_MVE_SRCDEST);
16444
16445 inst.instruction |= (et.size == 32) << 28;
16446 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16447 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16448 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16449 inst.instruction |= (rot > 90) << 12;
16450 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16451 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16452 inst.instruction |= LOW4 (inst.operands[2].reg);
16453 inst.instruction |= (rot == 90 || rot == 270);
16454 inst.is_neon = 1;
16455}
16456
16457/* To handle the Low Overhead Loop instructions
16458 in Armv8.1-M Mainline and MVE. */
16459static void
16460do_t_loloop (void)
16461{
16462 unsigned long insn = inst.instruction;
16463
16464 inst.instruction = THUMB_OP32 (inst.instruction);
16465
16466 if (insn == T_MNEM_lctp)
16467 return;
16468
16469 set_pred_insn_type (MVE_OUTSIDE_PRED_INSN);
16470
16471 if (insn == T_MNEM_wlstp || insn == T_MNEM_dlstp)
16472 {
16473 struct neon_type_el et
16474 = neon_check_type (2, NS_RR, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16475 inst.instruction |= neon_logbits (et.size) << 20;
16476 inst.is_neon = 1;
16477 }
16478
16479 switch (insn)
16480 {
16481 case T_MNEM_letp:
16482 constraint (!inst.operands[0].present,
16483 _("expected LR"));
16484 /* fall through. */
16485 case T_MNEM_le:
16486 /* le <label>. */
16487 if (!inst.operands[0].present)
16488 inst.instruction |= 1 << 21;
16489
16490 v8_1_loop_reloc (TRUE);
16491 break;
16492
16493 case T_MNEM_wls:
16494 case T_MNEM_wlstp:
16495 v8_1_loop_reloc (FALSE);
16496 /* fall through. */
16497 case T_MNEM_dlstp:
16498 case T_MNEM_dls:
16499 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
16500
16501 if (insn == T_MNEM_wlstp || insn == T_MNEM_dlstp)
16502 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
16503 else if (inst.operands[1].reg == REG_PC)
16504 as_tsktsk (MVE_BAD_PC);
16505 if (inst.operands[1].reg == REG_SP)
16506 as_tsktsk (MVE_BAD_SP);
16507
16508 inst.instruction |= (inst.operands[1].reg << 16);
16509 break;
16510
16511 default:
16512 abort ();
16513 }
16514}
16515
16516
16517static void
16518do_vfp_nsyn_cmp (void)
16519{
16520 enum neon_shape rs;
16521 if (!inst.operands[0].isreg)
16522 {
16523 do_mve_vcmp ();
16524 return;
16525 }
16526 else
16527 {
16528 constraint (inst.operands[2].present, BAD_SYNTAX);
16529 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
16530 BAD_FPU);
16531 }
16532
16533 if (inst.operands[1].isreg)
16534 {
16535 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
16536 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
16537
16538 if (rs == NS_FF || rs == NS_HH)
16539 {
16540 NEON_ENCODE (SINGLE, inst);
16541 do_vfp_sp_monadic ();
16542 }
16543 else
16544 {
16545 NEON_ENCODE (DOUBLE, inst);
16546 do_vfp_dp_rd_rm ();
16547 }
16548 }
16549 else
16550 {
16551 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
16552 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
16553
16554 switch (inst.instruction & 0x0fffffff)
16555 {
16556 case N_MNEM_vcmp:
16557 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
16558 break;
16559 case N_MNEM_vcmpe:
16560 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
16561 break;
16562 default:
16563 abort ();
16564 }
16565
16566 if (rs == NS_FI || rs == NS_HI)
16567 {
16568 NEON_ENCODE (SINGLE, inst);
16569 do_vfp_sp_compare_z ();
16570 }
16571 else
16572 {
16573 NEON_ENCODE (DOUBLE, inst);
16574 do_vfp_dp_rd ();
16575 }
16576 }
16577 do_vfp_cond_or_thumb ();
16578
16579 /* ARMv8.2 fp16 instruction. */
16580 if (rs == NS_HI || rs == NS_HH)
16581 do_scalar_fp16_v82_encode ();
16582}
16583
16584static void
16585nsyn_insert_sp (void)
16586{
16587 inst.operands[1] = inst.operands[0];
16588 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
16589 inst.operands[0].reg = REG_SP;
16590 inst.operands[0].isreg = 1;
16591 inst.operands[0].writeback = 1;
16592 inst.operands[0].present = 1;
16593}
16594
16595/* Fix up Neon data-processing instructions, ORing in the correct bits for
16596 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
16597
16598static void
16599neon_dp_fixup (struct arm_it* insn)
16600{
16601 unsigned int i = insn->instruction;
16602 insn->is_neon = 1;
16603
16604 if (thumb_mode)
16605 {
16606 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
16607 if (i & (1 << 24))
16608 i |= 1 << 28;
16609
16610 i &= ~(1 << 24);
16611
16612 i |= 0xef000000;
16613 }
16614 else
16615 i |= 0xf2000000;
16616
16617 insn->instruction = i;
16618}
16619
16620static void
16621mve_encode_qqr (int size, int U, int fp)
16622{
16623 if (inst.operands[2].reg == REG_SP)
16624 as_tsktsk (MVE_BAD_SP);
16625 else if (inst.operands[2].reg == REG_PC)
16626 as_tsktsk (MVE_BAD_PC);
16627
16628 if (fp)
16629 {
16630 /* vadd. */
16631 if (((unsigned)inst.instruction) == 0xd00)
16632 inst.instruction = 0xee300f40;
16633 /* vsub. */
16634 else if (((unsigned)inst.instruction) == 0x200d00)
16635 inst.instruction = 0xee301f40;
16636 /* vmul. */
16637 else if (((unsigned)inst.instruction) == 0x1000d10)
16638 inst.instruction = 0xee310e60;
16639
16640 /* Setting size which is 1 for F16 and 0 for F32. */
16641 inst.instruction |= (size == 16) << 28;
16642 }
16643 else
16644 {
16645 /* vadd. */
16646 if (((unsigned)inst.instruction) == 0x800)
16647 inst.instruction = 0xee010f40;
16648 /* vsub. */
16649 else if (((unsigned)inst.instruction) == 0x1000800)
16650 inst.instruction = 0xee011f40;
16651 /* vhadd. */
16652 else if (((unsigned)inst.instruction) == 0)
16653 inst.instruction = 0xee000f40;
16654 /* vhsub. */
16655 else if (((unsigned)inst.instruction) == 0x200)
16656 inst.instruction = 0xee001f40;
16657 /* vmla. */
16658 else if (((unsigned)inst.instruction) == 0x900)
16659 inst.instruction = 0xee010e40;
16660 /* vmul. */
16661 else if (((unsigned)inst.instruction) == 0x910)
16662 inst.instruction = 0xee011e60;
16663 /* vqadd. */
16664 else if (((unsigned)inst.instruction) == 0x10)
16665 inst.instruction = 0xee000f60;
16666 /* vqsub. */
16667 else if (((unsigned)inst.instruction) == 0x210)
16668 inst.instruction = 0xee001f60;
16669 /* vqrdmlah. */
16670 else if (((unsigned)inst.instruction) == 0x3000b10)
16671 inst.instruction = 0xee000e40;
16672 /* vqdmulh. */
16673 else if (((unsigned)inst.instruction) == 0x0000b00)
16674 inst.instruction = 0xee010e60;
16675 /* vqrdmulh. */
16676 else if (((unsigned)inst.instruction) == 0x1000b00)
16677 inst.instruction = 0xfe010e60;
16678
16679 /* Set U-bit. */
16680 inst.instruction |= U << 28;
16681
16682 /* Setting bits for size. */
16683 inst.instruction |= neon_logbits (size) << 20;
16684 }
16685 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16686 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16687 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16688 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16689 inst.instruction |= inst.operands[2].reg;
16690 inst.is_neon = 1;
16691}
16692
16693static void
16694mve_encode_rqq (unsigned bit28, unsigned size)
16695{
16696 inst.instruction |= bit28 << 28;
16697 inst.instruction |= neon_logbits (size) << 20;
16698 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16699 inst.instruction |= inst.operands[0].reg << 12;
16700 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16701 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16702 inst.instruction |= LOW4 (inst.operands[2].reg);
16703 inst.is_neon = 1;
16704}
16705
16706static void
16707mve_encode_qqq (int ubit, int size)
16708{
16709
16710 inst.instruction |= (ubit != 0) << 28;
16711 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16712 inst.instruction |= neon_logbits (size) << 20;
16713 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16714 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16715 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16716 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16717 inst.instruction |= LOW4 (inst.operands[2].reg);
16718
16719 inst.is_neon = 1;
16720}
16721
16722static void
16723mve_encode_rq (unsigned bit28, unsigned size)
16724{
16725 inst.instruction |= bit28 << 28;
16726 inst.instruction |= neon_logbits (size) << 18;
16727 inst.instruction |= inst.operands[0].reg << 12;
16728 inst.instruction |= LOW4 (inst.operands[1].reg);
16729 inst.is_neon = 1;
16730}
16731
16732static void
16733mve_encode_rrqq (unsigned U, unsigned size)
16734{
16735 constraint (inst.operands[3].reg > 14, MVE_BAD_QREG);
16736
16737 inst.instruction |= U << 28;
16738 inst.instruction |= (inst.operands[1].reg >> 1) << 20;
16739 inst.instruction |= LOW4 (inst.operands[2].reg) << 16;
16740 inst.instruction |= (size == 32) << 16;
16741 inst.instruction |= inst.operands[0].reg << 12;
16742 inst.instruction |= HI1 (inst.operands[2].reg) << 7;
16743 inst.instruction |= inst.operands[3].reg;
16744 inst.is_neon = 1;
16745}
16746
16747/* Helper function for neon_three_same handling the operands. */
16748static void
16749neon_three_args (int isquad)
16750{
16751 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16752 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16753 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16754 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16755 inst.instruction |= LOW4 (inst.operands[2].reg);
16756 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16757 inst.instruction |= (isquad != 0) << 6;
16758 inst.is_neon = 1;
16759}
16760
16761/* Encode insns with bit pattern:
16762
16763 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16764 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
16765
16766 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16767 different meaning for some instruction. */
16768
16769static void
16770neon_three_same (int isquad, int ubit, int size)
16771{
16772 neon_three_args (isquad);
16773 inst.instruction |= (ubit != 0) << 24;
16774 if (size != -1)
16775 inst.instruction |= neon_logbits (size) << 20;
16776
16777 neon_dp_fixup (&inst);
16778}
16779
16780/* Encode instructions of the form:
16781
16782 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16783 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
16784
16785 Don't write size if SIZE == -1. */
16786
16787static void
16788neon_two_same (int qbit, int ubit, int size)
16789{
16790 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16791 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16792 inst.instruction |= LOW4 (inst.operands[1].reg);
16793 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16794 inst.instruction |= (qbit != 0) << 6;
16795 inst.instruction |= (ubit != 0) << 24;
16796
16797 if (size != -1)
16798 inst.instruction |= neon_logbits (size) << 18;
16799
16800 neon_dp_fixup (&inst);
16801}
16802
16803enum vfp_or_neon_is_neon_bits
16804{
16805NEON_CHECK_CC = 1,
16806NEON_CHECK_ARCH = 2,
16807NEON_CHECK_ARCH8 = 4
16808};
16809
16810/* Call this function if an instruction which may have belonged to the VFP or
16811 Neon instruction sets, but turned out to be a Neon instruction (due to the
16812 operand types involved, etc.). We have to check and/or fix-up a couple of
16813 things:
16814
16815 - Make sure the user hasn't attempted to make a Neon instruction
16816 conditional.
16817 - Alter the value in the condition code field if necessary.
16818 - Make sure that the arch supports Neon instructions.
16819
16820 Which of these operations take place depends on bits from enum
16821 vfp_or_neon_is_neon_bits.
16822
16823 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16824 current instruction's condition is COND_ALWAYS, the condition field is
16825 changed to inst.uncond_value. This is necessary because instructions shared
16826 between VFP and Neon may be conditional for the VFP variants only, and the
16827 unconditional Neon version must have, e.g., 0xF in the condition field. */
16828
16829static int
16830vfp_or_neon_is_neon (unsigned check)
16831{
16832/* Conditions are always legal in Thumb mode (IT blocks). */
16833if (!thumb_mode && (check & NEON_CHECK_CC))
16834 {
16835 if (inst.cond != COND_ALWAYS)
16836 {
16837 first_error (_(BAD_COND));
16838 return FAIL;
16839 }
16840 if (inst.uncond_value != -1)
16841 inst.instruction |= inst.uncond_value << 28;
16842 }
16843
16844
16845 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16846 || ((check & NEON_CHECK_ARCH8)
16847 && !mark_feature_used (&fpu_neon_ext_armv8)))
16848 {
16849 first_error (_(BAD_FPU));
16850 return FAIL;
16851 }
16852
16853return SUCCESS;
16854}
16855
16856
16857/* Return TRUE if the SIMD instruction is available for the current
16858 cpu_variant. FP is set to TRUE if this is a SIMD floating-point
16859 instruction. CHECK contains th. CHECK contains the set of bits to pass to
16860 vfp_or_neon_is_neon for the NEON specific checks. */
16861
16862static bfd_boolean
16863check_simd_pred_availability (int fp, unsigned check)
16864{
16865if (inst.cond > COND_ALWAYS)
16866 {
16867 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16868 {
16869 inst.error = BAD_FPU;
16870 return FALSE;
16871 }
16872 inst.pred_insn_type = INSIDE_VPT_INSN;
16873 }
16874else if (inst.cond < COND_ALWAYS)
16875 {
16876 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16877 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16878 else if (vfp_or_neon_is_neon (check) == FAIL)
16879 return FALSE;
16880 }
16881else
16882 {
16883 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16884 && vfp_or_neon_is_neon (check) == FAIL)
16885 return FALSE;
16886
16887 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16888 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16889 }
16890return TRUE;
16891}
16892
16893/* Neon instruction encoders, in approximate order of appearance. */
16894
16895static void
16896do_neon_dyadic_i_su (void)
16897{
16898 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16899 return;
16900
16901 enum neon_shape rs;
16902 struct neon_type_el et;
16903 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16904 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16905 else
16906 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16907
16908 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16909
16910
16911 if (rs != NS_QQR)
16912 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16913 else
16914 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16915}
16916
16917static void
16918do_neon_dyadic_i64_su (void)
16919{
16920 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
16921 return;
16922 enum neon_shape rs;
16923 struct neon_type_el et;
16924 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16925 {
16926 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16927 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16928 }
16929 else
16930 {
16931 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16932 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16933 }
16934 if (rs == NS_QQR)
16935 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16936 else
16937 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16938}
16939
16940static void
16941neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
16942 unsigned immbits)
16943{
16944 unsigned size = et.size >> 3;
16945 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16946 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16947 inst.instruction |= LOW4 (inst.operands[1].reg);
16948 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16949 inst.instruction |= (isquad != 0) << 6;
16950 inst.instruction |= immbits << 16;
16951 inst.instruction |= (size >> 3) << 7;
16952 inst.instruction |= (size & 0x7) << 19;
16953 if (write_ubit)
16954 inst.instruction |= (uval != 0) << 24;
16955
16956 neon_dp_fixup (&inst);
16957}
16958
16959static void
16960do_neon_shl (void)
16961{
16962 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16963 return;
16964
16965 if (!inst.operands[2].isreg)
16966 {
16967 enum neon_shape rs;
16968 struct neon_type_el et;
16969 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16970 {
16971 rs = neon_select_shape (NS_QQI, NS_NULL);
16972 et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_MVE);
16973 }
16974 else
16975 {
16976 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16977 et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
16978 }
16979 int imm = inst.operands[2].imm;
16980
16981 constraint (imm < 0 || (unsigned)imm >= et.size,
16982 _("immediate out of range for shift"));
16983 NEON_ENCODE (IMMED, inst);
16984 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
16985 }
16986 else
16987 {
16988 enum neon_shape rs;
16989 struct neon_type_el et;
16990 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16991 {
16992 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16993 et = neon_check_type (3, rs, N_EQK, N_SU_MVE | N_KEY, N_EQK | N_EQK);
16994 }
16995 else
16996 {
16997 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16998 et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16999 }
17000
17001
17002 if (rs == NS_QQR)
17003 {
17004 constraint (inst.operands[0].reg != inst.operands[1].reg,
17005 _("invalid instruction shape"));
17006 if (inst.operands[2].reg == REG_SP)
17007 as_tsktsk (MVE_BAD_SP);
17008 else if (inst.operands[2].reg == REG_PC)
17009 as_tsktsk (MVE_BAD_PC);
17010
17011 inst.instruction = 0xee311e60;
17012 inst.instruction |= (et.type == NT_unsigned) << 28;
17013 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17014 inst.instruction |= neon_logbits (et.size) << 18;
17015 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17016 inst.instruction |= inst.operands[2].reg;
17017 inst.is_neon = 1;
17018 }
17019 else
17020 {
17021 unsigned int tmp;
17022
17023 /* VSHL/VQSHL 3-register variants have syntax such as:
17024 vshl.xx Dd, Dm, Dn
17025 whereas other 3-register operations encoded by neon_three_same have
17026 syntax like:
17027 vadd.xx Dd, Dn, Dm
17028 (i.e. with Dn & Dm reversed). Swap operands[1].reg and
17029 operands[2].reg here. */
17030 tmp = inst.operands[2].reg;
17031 inst.operands[2].reg = inst.operands[1].reg;
17032 inst.operands[1].reg = tmp;
17033 NEON_ENCODE (INTEGER, inst);
17034 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
17035 }
17036 }
17037}
17038
17039static void
17040do_neon_qshl (void)
17041{
17042 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
17043 return;
17044
17045 if (!inst.operands[2].isreg)
17046 {
17047 enum neon_shape rs;
17048 struct neon_type_el et;
17049 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17050 {
17051 rs = neon_select_shape (NS_QQI, NS_NULL);
17052 et = neon_check_type (2, rs, N_EQK, N_KEY | N_SU_MVE);
17053 }
17054 else
17055 {
17056 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17057 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
17058 }
17059 int imm = inst.operands[2].imm;
17060
17061 constraint (imm < 0 || (unsigned)imm >= et.size,
17062 _("immediate out of range for shift"));
17063 NEON_ENCODE (IMMED, inst);
17064 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
17065 }
17066 else
17067 {
17068 enum neon_shape rs;
17069 struct neon_type_el et;
17070
17071 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17072 {
17073 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17074 et = neon_check_type (3, rs, N_EQK, N_SU_MVE | N_KEY, N_EQK | N_EQK);
17075 }
17076 else
17077 {
17078 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17079 et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
17080 }
17081
17082 if (rs == NS_QQR)
17083 {
17084 constraint (inst.operands[0].reg != inst.operands[1].reg,
17085 _("invalid instruction shape"));
17086 if (inst.operands[2].reg == REG_SP)
17087 as_tsktsk (MVE_BAD_SP);
17088 else if (inst.operands[2].reg == REG_PC)
17089 as_tsktsk (MVE_BAD_PC);
17090
17091 inst.instruction = 0xee311ee0;
17092 inst.instruction |= (et.type == NT_unsigned) << 28;
17093 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17094 inst.instruction |= neon_logbits (et.size) << 18;
17095 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17096 inst.instruction |= inst.operands[2].reg;
17097 inst.is_neon = 1;
17098 }
17099 else
17100 {
17101 unsigned int tmp;
17102
17103 /* See note in do_neon_shl. */
17104 tmp = inst.operands[2].reg;
17105 inst.operands[2].reg = inst.operands[1].reg;
17106 inst.operands[1].reg = tmp;
17107 NEON_ENCODE (INTEGER, inst);
17108 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
17109 }
17110 }
17111}
17112
17113static void
17114do_neon_rshl (void)
17115{
17116 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
17117 return;
17118
17119 enum neon_shape rs;
17120 struct neon_type_el et;
17121 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17122 {
17123 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17124 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17125 }
17126 else
17127 {
17128 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17129 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
17130 }
17131
17132 unsigned int tmp;
17133
17134 if (rs == NS_QQR)
17135 {
17136 if (inst.operands[2].reg == REG_PC)
17137 as_tsktsk (MVE_BAD_PC);
17138 else if (inst.operands[2].reg == REG_SP)
17139 as_tsktsk (MVE_BAD_SP);
17140
17141 constraint (inst.operands[0].reg != inst.operands[1].reg,
17142 _("invalid instruction shape"));
17143
17144 if (inst.instruction == 0x0000510)
17145 /* We are dealing with vqrshl. */
17146 inst.instruction = 0xee331ee0;
17147 else
17148 /* We are dealing with vrshl. */
17149 inst.instruction = 0xee331e60;
17150
17151 inst.instruction |= (et.type == NT_unsigned) << 28;
17152 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17153 inst.instruction |= neon_logbits (et.size) << 18;
17154 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17155 inst.instruction |= inst.operands[2].reg;
17156 inst.is_neon = 1;
17157 }
17158 else
17159 {
17160 tmp = inst.operands[2].reg;
17161 inst.operands[2].reg = inst.operands[1].reg;
17162 inst.operands[1].reg = tmp;
17163 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
17164 }
17165}
17166
17167static int
17168neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
17169{
17170 /* Handle .I8 pseudo-instructions. */
17171 if (size == 8)
17172 {
17173 /* Unfortunately, this will make everything apart from zero out-of-range.
17174 FIXME is this the intended semantics? There doesn't seem much point in
17175 accepting .I8 if so. */
17176 immediate |= immediate << 8;
17177 size = 16;
17178 }
17179
17180 if (size >= 32)
17181 {
17182 if (immediate == (immediate & 0x000000ff))
17183 {
17184 *immbits = immediate;
17185 return 0x1;
17186 }
17187 else if (immediate == (immediate & 0x0000ff00))
17188 {
17189 *immbits = immediate >> 8;
17190 return 0x3;
17191 }
17192 else if (immediate == (immediate & 0x00ff0000))
17193 {
17194 *immbits = immediate >> 16;
17195 return 0x5;
17196 }
17197 else if (immediate == (immediate & 0xff000000))
17198 {
17199 *immbits = immediate >> 24;
17200 return 0x7;
17201 }
17202 if ((immediate & 0xffff) != (immediate >> 16))
17203 goto bad_immediate;
17204 immediate &= 0xffff;
17205 }
17206
17207 if (immediate == (immediate & 0x000000ff))
17208 {
17209 *immbits = immediate;
17210 return 0x9;
17211 }
17212 else if (immediate == (immediate & 0x0000ff00))
17213 {
17214 *immbits = immediate >> 8;
17215 return 0xb;
17216 }
17217
17218 bad_immediate:
17219 first_error (_("immediate value out of range"));
17220 return FAIL;
17221}
17222
17223static void
17224do_neon_logic (void)
17225{
17226 if (inst.operands[2].present && inst.operands[2].isreg)
17227 {
17228 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17229 if (rs == NS_QQQ
17230 && !check_simd_pred_availability (FALSE,
17231 NEON_CHECK_ARCH | NEON_CHECK_CC))
17232 return;
17233 else if (rs != NS_QQQ
17234 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
17235 first_error (BAD_FPU);
17236
17237 neon_check_type (3, rs, N_IGNORE_TYPE);
17238 /* U bit and size field were set as part of the bitmask. */
17239 NEON_ENCODE (INTEGER, inst);
17240 neon_three_same (neon_quad (rs), 0, -1);
17241 }
17242 else
17243 {
17244 const int three_ops_form = (inst.operands[2].present
17245 && !inst.operands[2].isreg);
17246 const int immoperand = (three_ops_form ? 2 : 1);
17247 enum neon_shape rs = (three_ops_form
17248 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
17249 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
17250 /* Because neon_select_shape makes the second operand a copy of the first
17251 if the second operand is not present. */
17252 if (rs == NS_QQI
17253 && !check_simd_pred_availability (FALSE,
17254 NEON_CHECK_ARCH | NEON_CHECK_CC))
17255 return;
17256 else if (rs != NS_QQI
17257 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
17258 first_error (BAD_FPU);
17259
17260 struct neon_type_el et;
17261 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17262 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
17263 else
17264 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
17265 | N_KEY, N_EQK);
17266
17267 if (et.type == NT_invtype)
17268 return;
17269 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
17270 unsigned immbits;
17271 int cmode;
17272
17273
17274 if (three_ops_form)
17275 constraint (inst.operands[0].reg != inst.operands[1].reg,
17276 _("first and second operands shall be the same register"));
17277
17278 NEON_ENCODE (IMMED, inst);
17279
17280 immbits = inst.operands[immoperand].imm;
17281 if (et.size == 64)
17282 {
17283 /* .i64 is a pseudo-op, so the immediate must be a repeating
17284 pattern. */
17285 if (immbits != (inst.operands[immoperand].regisimm ?
17286 inst.operands[immoperand].reg : 0))
17287 {
17288 /* Set immbits to an invalid constant. */
17289 immbits = 0xdeadbeef;
17290 }
17291 }
17292
17293 switch (opcode)
17294 {
17295 case N_MNEM_vbic:
17296 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17297 break;
17298
17299 case N_MNEM_vorr:
17300 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17301 break;
17302
17303 case N_MNEM_vand:
17304 /* Pseudo-instruction for VBIC. */
17305 neon_invert_size (&immbits, 0, et.size);
17306 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17307 break;
17308
17309 case N_MNEM_vorn:
17310 /* Pseudo-instruction for VORR. */
17311 neon_invert_size (&immbits, 0, et.size);
17312 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17313 break;
17314
17315 default:
17316 abort ();
17317 }
17318
17319 if (cmode == FAIL)
17320 return;
17321
17322 inst.instruction |= neon_quad (rs) << 6;
17323 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17324 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17325 inst.instruction |= cmode << 8;
17326 neon_write_immbits (immbits);
17327
17328 neon_dp_fixup (&inst);
17329 }
17330}
17331
17332static void
17333do_neon_bitfield (void)
17334{
17335 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17336 neon_check_type (3, rs, N_IGNORE_TYPE);
17337 neon_three_same (neon_quad (rs), 0, -1);
17338}
17339
17340static void
17341neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
17342 unsigned destbits)
17343{
17344 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17345 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
17346 types | N_KEY);
17347 if (et.type == NT_float)
17348 {
17349 NEON_ENCODE (FLOAT, inst);
17350 if (rs == NS_QQR)
17351 mve_encode_qqr (et.size, 0, 1);
17352 else
17353 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
17354 }
17355 else
17356 {
17357 NEON_ENCODE (INTEGER, inst);
17358 if (rs == NS_QQR)
17359 mve_encode_qqr (et.size, et.type == ubit_meaning, 0);
17360 else
17361 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
17362 }
17363}
17364
17365
17366static void
17367do_neon_dyadic_if_su_d (void)
17368{
17369 /* This version only allow D registers, but that constraint is enforced during
17370 operand parsing so we don't need to do anything extra here. */
17371 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
17372}
17373
17374static void
17375do_neon_dyadic_if_i_d (void)
17376{
17377 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17378 affected if we specify unsigned args. */
17379 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17380}
17381
17382static void
17383do_mve_vstr_vldr_QI (int size, int elsize, int load)
17384{
17385 constraint (size < 32, BAD_ADDR_MODE);
17386 constraint (size != elsize, BAD_EL_TYPE);
17387 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
17388 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
17389 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
17390 _("destination register and offset register may not be the"
17391 " same"));
17392
17393 int imm = inst.relocs[0].exp.X_add_number;
17394 int add = 1;
17395 if (imm < 0)
17396 {
17397 add = 0;
17398 imm = -imm;
17399 }
17400 constraint ((imm % (size / 8) != 0)
17401 || imm > (0x7f << neon_logbits (size)),
17402 (size == 32) ? _("immediate must be a multiple of 4 in the"
17403 " range of +/-[0,508]")
17404 : _("immediate must be a multiple of 8 in the"
17405 " range of +/-[0,1016]"));
17406 inst.instruction |= 0x11 << 24;
17407 inst.instruction |= add << 23;
17408 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17409 inst.instruction |= inst.operands[1].writeback << 21;
17410 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17411 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17412 inst.instruction |= 1 << 12;
17413 inst.instruction |= (size == 64) << 8;
17414 inst.instruction &= 0xffffff00;
17415 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17416 inst.instruction |= imm >> neon_logbits (size);
17417}
17418
17419static void
17420do_mve_vstr_vldr_RQ (int size, int elsize, int load)
17421{
17422 unsigned os = inst.operands[1].imm >> 5;
17423 unsigned type = inst.vectype.el[0].type;
17424 constraint (os != 0 && size == 8,
17425 _("can not shift offsets when accessing less than half-word"));
17426 constraint (os && os != neon_logbits (size),
17427 _("shift immediate must be 1, 2 or 3 for half-word, word"
17428 " or double-word accesses respectively"));
17429 if (inst.operands[1].reg == REG_PC)
17430 as_tsktsk (MVE_BAD_PC);
17431
17432 switch (size)
17433 {
17434 case 8:
17435 constraint (elsize >= 64, BAD_EL_TYPE);
17436 break;
17437 case 16:
17438 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
17439 break;
17440 case 32:
17441 case 64:
17442 constraint (elsize != size, BAD_EL_TYPE);
17443 break;
17444 default:
17445 break;
17446 }
17447 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
17448 BAD_ADDR_MODE);
17449 if (load)
17450 {
17451 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
17452 _("destination register and offset register may not be"
17453 " the same"));
17454 constraint (size == elsize && type == NT_signed, BAD_EL_TYPE);
17455 constraint (size != elsize && type != NT_unsigned && type != NT_signed,
17456 BAD_EL_TYPE);
17457 inst.instruction |= ((size == elsize) || (type == NT_unsigned)) << 28;
17458 }
17459 else
17460 {
17461 constraint (type != NT_untyped, BAD_EL_TYPE);
17462 }
17463
17464 inst.instruction |= 1 << 23;
17465 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17466 inst.instruction |= inst.operands[1].reg << 16;
17467 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17468 inst.instruction |= neon_logbits (elsize) << 7;
17469 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
17470 inst.instruction |= LOW4 (inst.operands[1].imm);
17471 inst.instruction |= !!os;
17472}
17473
17474static void
17475do_mve_vstr_vldr_RI (int size, int elsize, int load)
17476{
17477 enum neon_el_type type = inst.vectype.el[0].type;
17478
17479 constraint (size >= 64, BAD_ADDR_MODE);
17480 switch (size)
17481 {
17482 case 16:
17483 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
17484 break;
17485 case 32:
17486 constraint (elsize != size, BAD_EL_TYPE);
17487 break;
17488 default:
17489 break;
17490 }
17491 if (load)
17492 {
17493 constraint (elsize != size && type != NT_unsigned
17494 && type != NT_signed, BAD_EL_TYPE);
17495 }
17496 else
17497 {
17498 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
17499 }
17500
17501 int imm = inst.relocs[0].exp.X_add_number;
17502 int add = 1;
17503 if (imm < 0)
17504 {
17505 add = 0;
17506 imm = -imm;
17507 }
17508
17509 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
17510 {
17511 switch (size)
17512 {
17513 case 8:
17514 constraint (1, _("immediate must be in the range of +/-[0,127]"));
17515 break;
17516 case 16:
17517 constraint (1, _("immediate must be a multiple of 2 in the"
17518 " range of +/-[0,254]"));
17519 break;
17520 case 32:
17521 constraint (1, _("immediate must be a multiple of 4 in the"
17522 " range of +/-[0,508]"));
17523 break;
17524 }
17525 }
17526
17527 if (size != elsize)
17528 {
17529 constraint (inst.operands[1].reg > 7, BAD_HIREG);
17530 constraint (inst.operands[0].reg > 14,
17531 _("MVE vector register in the range [Q0..Q7] expected"));
17532 inst.instruction |= (load && type == NT_unsigned) << 28;
17533 inst.instruction |= (size == 16) << 19;
17534 inst.instruction |= neon_logbits (elsize) << 7;
17535 }
17536 else
17537 {
17538 if (inst.operands[1].reg == REG_PC)
17539 as_tsktsk (MVE_BAD_PC);
17540 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
17541 as_tsktsk (MVE_BAD_SP);
17542 inst.instruction |= 1 << 12;
17543 inst.instruction |= neon_logbits (size) << 7;
17544 }
17545 inst.instruction |= inst.operands[1].preind << 24;
17546 inst.instruction |= add << 23;
17547 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17548 inst.instruction |= inst.operands[1].writeback << 21;
17549 inst.instruction |= inst.operands[1].reg << 16;
17550 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17551 inst.instruction &= 0xffffff80;
17552 inst.instruction |= imm >> neon_logbits (size);
17553
17554}
17555
17556static void
17557do_mve_vstr_vldr (void)
17558{
17559 unsigned size;
17560 int load = 0;
17561
17562 if (inst.cond > COND_ALWAYS)
17563 inst.pred_insn_type = INSIDE_VPT_INSN;
17564 else
17565 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17566
17567 switch (inst.instruction)
17568 {
17569 default:
17570 gas_assert (0);
17571 break;
17572 case M_MNEM_vldrb:
17573 load = 1;
17574 /* fall through. */
17575 case M_MNEM_vstrb:
17576 size = 8;
17577 break;
17578 case M_MNEM_vldrh:
17579 load = 1;
17580 /* fall through. */
17581 case M_MNEM_vstrh:
17582 size = 16;
17583 break;
17584 case M_MNEM_vldrw:
17585 load = 1;
17586 /* fall through. */
17587 case M_MNEM_vstrw:
17588 size = 32;
17589 break;
17590 case M_MNEM_vldrd:
17591 load = 1;
17592 /* fall through. */
17593 case M_MNEM_vstrd:
17594 size = 64;
17595 break;
17596 }
17597 unsigned elsize = inst.vectype.el[0].size;
17598
17599 if (inst.operands[1].isquad)
17600 {
17601 /* We are dealing with [Q, imm]{!} cases. */
17602 do_mve_vstr_vldr_QI (size, elsize, load);
17603 }
17604 else
17605 {
17606 if (inst.operands[1].immisreg == 2)
17607 {
17608 /* We are dealing with [R, Q, {UXTW #os}] cases. */
17609 do_mve_vstr_vldr_RQ (size, elsize, load);
17610 }
17611 else if (!inst.operands[1].immisreg)
17612 {
17613 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
17614 do_mve_vstr_vldr_RI (size, elsize, load);
17615 }
17616 else
17617 constraint (1, BAD_ADDR_MODE);
17618 }
17619
17620 inst.is_neon = 1;
17621}
17622
17623static void
17624do_mve_vst_vld (void)
17625{
17626 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17627 return;
17628
17629 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
17630 || inst.relocs[0].exp.X_add_number != 0
17631 || inst.operands[1].immisreg != 0,
17632 BAD_ADDR_MODE);
17633 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
17634 if (inst.operands[1].reg == REG_PC)
17635 as_tsktsk (MVE_BAD_PC);
17636 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
17637 as_tsktsk (MVE_BAD_SP);
17638
17639
17640 /* These instructions are one of the "exceptions" mentioned in
17641 handle_pred_state. They are MVE instructions that are not VPT compatible
17642 and do not accept a VPT code, thus appending such a code is a syntax
17643 error. */
17644 if (inst.cond > COND_ALWAYS)
17645 first_error (BAD_SYNTAX);
17646 /* If we append a scalar condition code we can set this to
17647 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
17648 else if (inst.cond < COND_ALWAYS)
17649 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17650 else
17651 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
17652
17653 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17654 inst.instruction |= inst.operands[1].writeback << 21;
17655 inst.instruction |= inst.operands[1].reg << 16;
17656 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17657 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
17658 inst.is_neon = 1;
17659}
17660
17661static void
17662do_mve_vaddlv (void)
17663{
17664 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
17665 struct neon_type_el et
17666 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
17667
17668 if (et.type == NT_invtype)
17669 first_error (BAD_EL_TYPE);
17670
17671 if (inst.cond > COND_ALWAYS)
17672 inst.pred_insn_type = INSIDE_VPT_INSN;
17673 else
17674 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17675
17676 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17677
17678 inst.instruction |= (et.type == NT_unsigned) << 28;
17679 inst.instruction |= inst.operands[1].reg << 19;
17680 inst.instruction |= inst.operands[0].reg << 12;
17681 inst.instruction |= inst.operands[2].reg;
17682 inst.is_neon = 1;
17683}
17684
17685static void
17686do_neon_dyadic_if_su (void)
17687{
17688 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17689 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17690 N_SUF_32 | N_KEY);
17691
17692 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
17693 || inst.instruction == ((unsigned) N_MNEM_vmin))
17694 && et.type == NT_float
17695 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
17696
17697 if (!check_simd_pred_availability (et.type == NT_float,
17698 NEON_CHECK_ARCH | NEON_CHECK_CC))
17699 return;
17700
17701 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
17702}
17703
17704static void
17705do_neon_addsub_if_i (void)
17706{
17707 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
17708 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
17709 return;
17710
17711 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17712 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
17713 N_EQK, N_IF_32 | N_I64 | N_KEY);
17714
17715 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
17716 /* If we are parsing Q registers and the element types match MVE, which NEON
17717 also supports, then we must check whether this is an instruction that can
17718 be used by both MVE/NEON. This distinction can be made based on whether
17719 they are predicated or not. */
17720 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
17721 {
17722 if (!check_simd_pred_availability (et.type == NT_float,
17723 NEON_CHECK_ARCH | NEON_CHECK_CC))
17724 return;
17725 }
17726 else
17727 {
17728 /* If they are either in a D register or are using an unsupported. */
17729 if (rs != NS_QQR
17730 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17731 return;
17732 }
17733
17734 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17735 affected if we specify unsigned args. */
17736 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
17737}
17738
17739/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
17740 result to be:
17741 V<op> A,B (A is operand 0, B is operand 2)
17742 to mean:
17743 V<op> A,B,A
17744 not:
17745 V<op> A,B,B
17746 so handle that case specially. */
17747
17748static void
17749neon_exchange_operands (void)
17750{
17751 if (inst.operands[1].present)
17752 {
17753 void *scratch = xmalloc (sizeof (inst.operands[0]));
17754
17755 /* Swap operands[1] and operands[2]. */
17756 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
17757 inst.operands[1] = inst.operands[2];
17758 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
17759 free (scratch);
17760 }
17761 else
17762 {
17763 inst.operands[1] = inst.operands[2];
17764 inst.operands[2] = inst.operands[0];
17765 }
17766}
17767
17768static void
17769neon_compare (unsigned regtypes, unsigned immtypes, int invert)
17770{
17771 if (inst.operands[2].isreg)
17772 {
17773 if (invert)
17774 neon_exchange_operands ();
17775 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
17776 }
17777 else
17778 {
17779 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17780 struct neon_type_el et = neon_check_type (2, rs,
17781 N_EQK | N_SIZ, immtypes | N_KEY);
17782
17783 NEON_ENCODE (IMMED, inst);
17784 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17785 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17786 inst.instruction |= LOW4 (inst.operands[1].reg);
17787 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17788 inst.instruction |= neon_quad (rs) << 6;
17789 inst.instruction |= (et.type == NT_float) << 10;
17790 inst.instruction |= neon_logbits (et.size) << 18;
17791
17792 neon_dp_fixup (&inst);
17793 }
17794}
17795
17796static void
17797do_neon_cmp (void)
17798{
17799 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
17800}
17801
17802static void
17803do_neon_cmp_inv (void)
17804{
17805 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
17806}
17807
17808static void
17809do_neon_ceq (void)
17810{
17811 neon_compare (N_IF_32, N_IF_32, FALSE);
17812}
17813
17814/* For multiply instructions, we have the possibility of 16-bit or 32-bit
17815 scalars, which are encoded in 5 bits, M : Rm.
17816 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
17817 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
17818 index in M.
17819
17820 Dot Product instructions are similar to multiply instructions except elsize
17821 should always be 32.
17822
17823 This function translates SCALAR, which is GAS's internal encoding of indexed
17824 scalar register, to raw encoding. There is also register and index range
17825 check based on ELSIZE. */
17826
17827static unsigned
17828neon_scalar_for_mul (unsigned scalar, unsigned elsize)
17829{
17830 unsigned regno = NEON_SCALAR_REG (scalar);
17831 unsigned elno = NEON_SCALAR_INDEX (scalar);
17832
17833 switch (elsize)
17834 {
17835 case 16:
17836 if (regno > 7 || elno > 3)
17837 goto bad_scalar;
17838 return regno | (elno << 3);
17839
17840 case 32:
17841 if (regno > 15 || elno > 1)
17842 goto bad_scalar;
17843 return regno | (elno << 4);
17844
17845 default:
17846 bad_scalar:
17847 first_error (_("scalar out of range for multiply instruction"));
17848 }
17849
17850 return 0;
17851}
17852
17853/* Encode multiply / multiply-accumulate scalar instructions. */
17854
17855static void
17856neon_mul_mac (struct neon_type_el et, int ubit)
17857{
17858 unsigned scalar;
17859
17860 /* Give a more helpful error message if we have an invalid type. */
17861 if (et.type == NT_invtype)
17862 return;
17863
17864 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
17865 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17866 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17867 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17868 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17869 inst.instruction |= LOW4 (scalar);
17870 inst.instruction |= HI1 (scalar) << 5;
17871 inst.instruction |= (et.type == NT_float) << 8;
17872 inst.instruction |= neon_logbits (et.size) << 20;
17873 inst.instruction |= (ubit != 0) << 24;
17874
17875 neon_dp_fixup (&inst);
17876}
17877
17878static void
17879do_neon_mac_maybe_scalar (void)
17880{
17881 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
17882 return;
17883
17884 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
17885 return;
17886
17887 if (inst.operands[2].isscalar)
17888 {
17889 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17890 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17891 struct neon_type_el et = neon_check_type (3, rs,
17892 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
17893 NEON_ENCODE (SCALAR, inst);
17894 neon_mul_mac (et, neon_quad (rs));
17895 }
17896 else if (!inst.operands[2].isvec)
17897 {
17898 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17899
17900 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17901 neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17902
17903 neon_dyadic_misc (NT_unsigned, N_SU_MVE, 0);
17904 }
17905 else
17906 {
17907 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17908 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17909 affected if we specify unsigned args. */
17910 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17911 }
17912}
17913
17914static void
17915do_bfloat_vfma (void)
17916{
17917 constraint (!mark_feature_used (&fpu_neon_ext_armv8), _(BAD_FPU));
17918 constraint (!mark_feature_used (&arm_ext_bf16), _(BAD_BF16));
17919 enum neon_shape rs;
17920 int t_bit = 0;
17921
17922 if (inst.instruction != B_MNEM_vfmab)
17923 {
17924 t_bit = 1;
17925 inst.instruction = B_MNEM_vfmat;
17926 }
17927
17928 if (inst.operands[2].isscalar)
17929 {
17930 rs = neon_select_shape (NS_QQS, NS_NULL);
17931 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
17932
17933 inst.instruction |= (1 << 25);
17934 int index = inst.operands[2].reg & 0xf;
17935 constraint (!(index < 4), _("index must be in the range 0 to 3"));
17936 inst.operands[2].reg >>= 4;
17937 constraint (!(inst.operands[2].reg < 8),
17938 _("indexed register must be less than 8"));
17939 neon_three_args (t_bit);
17940 inst.instruction |= ((index & 1) << 3);
17941 inst.instruction |= ((index & 2) << 4);
17942 }
17943 else
17944 {
17945 rs = neon_select_shape (NS_QQQ, NS_NULL);
17946 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
17947 neon_three_args (t_bit);
17948 }
17949
17950}
17951
17952static void
17953do_neon_fmac (void)
17954{
17955 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
17956 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
17957 return;
17958
17959 if (!check_simd_pred_availability (TRUE, NEON_CHECK_CC | NEON_CHECK_ARCH))
17960 return;
17961
17962 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17963 {
17964 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17965 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
17966 N_EQK);
17967
17968 if (rs == NS_QQR)
17969 {
17970
17971 if (inst.operands[2].reg == REG_SP)
17972 as_tsktsk (MVE_BAD_SP);
17973 else if (inst.operands[2].reg == REG_PC)
17974 as_tsktsk (MVE_BAD_PC);
17975
17976 inst.instruction = 0xee310e40;
17977 inst.instruction |= (et.size == 16) << 28;
17978 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17979 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17980 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17981 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
17982 inst.instruction |= inst.operands[2].reg;
17983 inst.is_neon = 1;
17984 return;
17985 }
17986 }
17987 else
17988 {
17989 constraint (!inst.operands[2].isvec, BAD_FPU);
17990 }
17991
17992 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17993}
17994
17995static void
17996do_mve_vfma (void)
17997{
17998 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_bf16) &&
17999 inst.cond == COND_ALWAYS)
18000 {
18001 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
18002 inst.instruction = N_MNEM_vfma;
18003 inst.pred_insn_type = INSIDE_VPT_INSN;
18004 inst.cond = 0xf;
18005 return do_neon_fmac();
18006 }
18007 else
18008 {
18009 do_bfloat_vfma();
18010 }
18011}
18012
18013static void
18014do_neon_tst (void)
18015{
18016 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18017 struct neon_type_el et = neon_check_type (3, rs,
18018 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18019 neon_three_same (neon_quad (rs), 0, et.size);
18020}
18021
18022/* VMUL with 3 registers allows the P8 type. The scalar version supports the
18023 same types as the MAC equivalents. The polynomial type for this instruction
18024 is encoded the same as the integer type. */
18025
18026static void
18027do_neon_mul (void)
18028{
18029 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
18030 return;
18031
18032 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
18033 return;
18034
18035 if (inst.operands[2].isscalar)
18036 {
18037 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
18038 do_neon_mac_maybe_scalar ();
18039 }
18040 else
18041 {
18042 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18043 {
18044 enum neon_shape rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
18045 struct neon_type_el et
18046 = neon_check_type (3, rs, N_EQK, N_EQK, N_I_MVE | N_F_MVE | N_KEY);
18047 if (et.type == NT_float)
18048 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
18049 BAD_FPU);
18050
18051 neon_dyadic_misc (NT_float, N_I_MVE | N_F_MVE, 0);
18052 }
18053 else
18054 {
18055 constraint (!inst.operands[2].isvec, BAD_FPU);
18056 neon_dyadic_misc (NT_poly,
18057 N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
18058 }
18059 }
18060}
18061
18062static void
18063do_neon_qdmulh (void)
18064{
18065 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18066 return;
18067
18068 if (inst.operands[2].isscalar)
18069 {
18070 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
18071 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
18072 struct neon_type_el et = neon_check_type (3, rs,
18073 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18074 NEON_ENCODE (SCALAR, inst);
18075 neon_mul_mac (et, neon_quad (rs));
18076 }
18077 else
18078 {
18079 enum neon_shape rs;
18080 struct neon_type_el et;
18081 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18082 {
18083 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
18084 et = neon_check_type (3, rs,
18085 N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18086 }
18087 else
18088 {
18089 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18090 et = neon_check_type (3, rs,
18091 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18092 }
18093
18094 NEON_ENCODE (INTEGER, inst);
18095 if (rs == NS_QQR)
18096 mve_encode_qqr (et.size, 0, 0);
18097 else
18098 /* The U bit (rounding) comes from bit mask. */
18099 neon_three_same (neon_quad (rs), 0, et.size);
18100 }
18101}
18102
18103static void
18104do_mve_vaddv (void)
18105{
18106 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
18107 struct neon_type_el et
18108 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
18109
18110 if (et.type == NT_invtype)
18111 first_error (BAD_EL_TYPE);
18112
18113 if (inst.cond > COND_ALWAYS)
18114 inst.pred_insn_type = INSIDE_VPT_INSN;
18115 else
18116 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18117
18118 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
18119
18120 mve_encode_rq (et.type == NT_unsigned, et.size);
18121}
18122
18123static void
18124do_mve_vhcadd (void)
18125{
18126 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
18127 struct neon_type_el et
18128 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18129
18130 if (inst.cond > COND_ALWAYS)
18131 inst.pred_insn_type = INSIDE_VPT_INSN;
18132 else
18133 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18134
18135 unsigned rot = inst.relocs[0].exp.X_add_number;
18136 constraint (rot != 90 && rot != 270, _("immediate out of range"));
18137
18138 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
18139 as_tsktsk (_("Warning: 32-bit element size and same first and third "
18140 "operand makes instruction UNPREDICTABLE"));
18141
18142 mve_encode_qqq (0, et.size);
18143 inst.instruction |= (rot == 270) << 12;
18144 inst.is_neon = 1;
18145}
18146
18147static void
18148do_mve_vqdmull (void)
18149{
18150 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
18151 struct neon_type_el et
18152 = neon_check_type (3, rs, N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18153
18154 if (et.size == 32
18155 && (inst.operands[0].reg == inst.operands[1].reg
18156 || (rs == NS_QQQ && inst.operands[0].reg == inst.operands[2].reg)))
18157 as_tsktsk (BAD_MVE_SRCDEST);
18158
18159 if (inst.cond > COND_ALWAYS)
18160 inst.pred_insn_type = INSIDE_VPT_INSN;
18161 else
18162 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18163
18164 if (rs == NS_QQQ)
18165 {
18166 mve_encode_qqq (et.size == 32, 64);
18167 inst.instruction |= 1;
18168 }
18169 else
18170 {
18171 mve_encode_qqr (64, et.size == 32, 0);
18172 inst.instruction |= 0x3 << 5;
18173 }
18174}
18175
18176static void
18177do_mve_vadc (void)
18178{
18179 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
18180 struct neon_type_el et
18181 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
18182
18183 if (et.type == NT_invtype)
18184 first_error (BAD_EL_TYPE);
18185
18186 if (inst.cond > COND_ALWAYS)
18187 inst.pred_insn_type = INSIDE_VPT_INSN;
18188 else
18189 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18190
18191 mve_encode_qqq (0, 64);
18192}
18193
18194static void
18195do_mve_vbrsr (void)
18196{
18197 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
18198 struct neon_type_el et
18199 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18200
18201 if (inst.cond > COND_ALWAYS)
18202 inst.pred_insn_type = INSIDE_VPT_INSN;
18203 else
18204 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18205
18206 mve_encode_qqr (et.size, 0, 0);
18207}
18208
18209static void
18210do_mve_vsbc (void)
18211{
18212 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
18213
18214 if (inst.cond > COND_ALWAYS)
18215 inst.pred_insn_type = INSIDE_VPT_INSN;
18216 else
18217 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18218
18219 mve_encode_qqq (1, 64);
18220}
18221
18222static void
18223do_mve_vmulh (void)
18224{
18225 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
18226 struct neon_type_el et
18227 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
18228
18229 if (inst.cond > COND_ALWAYS)
18230 inst.pred_insn_type = INSIDE_VPT_INSN;
18231 else
18232 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18233
18234 mve_encode_qqq (et.type == NT_unsigned, et.size);
18235}
18236
18237static void
18238do_mve_vqdmlah (void)
18239{
18240 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
18241 struct neon_type_el et
18242 = neon_check_type (3, rs, N_EQK, N_EQK, N_S_32 | N_KEY);
18243
18244 if (inst.cond > COND_ALWAYS)
18245 inst.pred_insn_type = INSIDE_VPT_INSN;
18246 else
18247 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18248
18249 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
18250}
18251
18252static void
18253do_mve_vqdmladh (void)
18254{
18255 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
18256 struct neon_type_el et
18257 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18258
18259 if (inst.cond > COND_ALWAYS)
18260 inst.pred_insn_type = INSIDE_VPT_INSN;
18261 else
18262 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18263
18264 mve_encode_qqq (0, et.size);
18265}
18266
18267
18268static void
18269do_mve_vmull (void)
18270{
18271
18272 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
18273 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
18274 if (inst.cond == COND_ALWAYS
18275 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
18276 {
18277
18278 if (rs == NS_QQQ)
18279 {
18280 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18281 goto neon_vmul;
18282 }
18283 else
18284 goto neon_vmul;
18285 }
18286
18287 constraint (rs != NS_QQQ, BAD_FPU);
18288 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
18289 N_SU_32 | N_P8 | N_P16 | N_KEY);
18290
18291 /* We are dealing with MVE's vmullt. */
18292 if (et.size == 32
18293 && (inst.operands[0].reg == inst.operands[1].reg
18294 || inst.operands[0].reg == inst.operands[2].reg))
18295 as_tsktsk (BAD_MVE_SRCDEST);
18296
18297 if (inst.cond > COND_ALWAYS)
18298 inst.pred_insn_type = INSIDE_VPT_INSN;
18299 else
18300 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18301
18302 if (et.type == NT_poly)
18303 mve_encode_qqq (neon_logbits (et.size), 64);
18304 else
18305 mve_encode_qqq (et.type == NT_unsigned, et.size);
18306
18307 return;
18308
18309 neon_vmul:
18310 inst.instruction = N_MNEM_vmul;
18311 inst.cond = 0xb;
18312 if (thumb_mode)
18313 inst.pred_insn_type = INSIDE_IT_INSN;
18314 do_neon_mul ();
18315}
18316
18317static void
18318do_mve_vabav (void)
18319{
18320 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
18321
18322 if (rs == NS_NULL)
18323 return;
18324
18325 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18326 return;
18327
18328 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
18329 | N_S16 | N_S32 | N_U8 | N_U16
18330 | N_U32);
18331
18332 if (inst.cond > COND_ALWAYS)
18333 inst.pred_insn_type = INSIDE_VPT_INSN;
18334 else
18335 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18336
18337 mve_encode_rqq (et.type == NT_unsigned, et.size);
18338}
18339
18340static void
18341do_mve_vmladav (void)
18342{
18343 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
18344 struct neon_type_el et = neon_check_type (3, rs,
18345 N_EQK, N_EQK, N_SU_MVE | N_KEY);
18346
18347 if (et.type == NT_unsigned
18348 && (inst.instruction == M_MNEM_vmladavx
18349 || inst.instruction == M_MNEM_vmladavax
18350 || inst.instruction == M_MNEM_vmlsdav
18351 || inst.instruction == M_MNEM_vmlsdava
18352 || inst.instruction == M_MNEM_vmlsdavx
18353 || inst.instruction == M_MNEM_vmlsdavax))
18354 first_error (BAD_SIMD_TYPE);
18355
18356 constraint (inst.operands[2].reg > 14,
18357 _("MVE vector register in the range [Q0..Q7] expected"));
18358
18359 if (inst.cond > COND_ALWAYS)
18360 inst.pred_insn_type = INSIDE_VPT_INSN;
18361 else
18362 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18363
18364 if (inst.instruction == M_MNEM_vmlsdav
18365 || inst.instruction == M_MNEM_vmlsdava
18366 || inst.instruction == M_MNEM_vmlsdavx
18367 || inst.instruction == M_MNEM_vmlsdavax)
18368 inst.instruction |= (et.size == 8) << 28;
18369 else
18370 inst.instruction |= (et.size == 8) << 8;
18371
18372 mve_encode_rqq (et.type == NT_unsigned, 64);
18373 inst.instruction |= (et.size == 32) << 16;
18374}
18375
18376static void
18377do_mve_vmlaldav (void)
18378{
18379 enum neon_shape rs = neon_select_shape (NS_RRQQ, NS_NULL);
18380 struct neon_type_el et
18381 = neon_check_type (4, rs, N_EQK, N_EQK, N_EQK,
18382 N_S16 | N_S32 | N_U16 | N_U32 | N_KEY);
18383
18384 if (et.type == NT_unsigned
18385 && (inst.instruction == M_MNEM_vmlsldav
18386 || inst.instruction == M_MNEM_vmlsldava
18387 || inst.instruction == M_MNEM_vmlsldavx
18388 || inst.instruction == M_MNEM_vmlsldavax))
18389 first_error (BAD_SIMD_TYPE);
18390
18391 if (inst.cond > COND_ALWAYS)
18392 inst.pred_insn_type = INSIDE_VPT_INSN;
18393 else
18394 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18395
18396 mve_encode_rrqq (et.type == NT_unsigned, et.size);
18397}
18398
18399static void
18400do_mve_vrmlaldavh (void)
18401{
18402 struct neon_type_el et;
18403 if (inst.instruction == M_MNEM_vrmlsldavh
18404 || inst.instruction == M_MNEM_vrmlsldavha
18405 || inst.instruction == M_MNEM_vrmlsldavhx
18406 || inst.instruction == M_MNEM_vrmlsldavhax)
18407 {
18408 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
18409 if (inst.operands[1].reg == REG_SP)
18410 as_tsktsk (MVE_BAD_SP);
18411 }
18412 else
18413 {
18414 if (inst.instruction == M_MNEM_vrmlaldavhx
18415 || inst.instruction == M_MNEM_vrmlaldavhax)
18416 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
18417 else
18418 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK,
18419 N_U32 | N_S32 | N_KEY);
18420 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
18421 with vmax/min instructions, making the use of SP in assembly really
18422 nonsensical, so instead of issuing a warning like we do for other uses
18423 of SP for the odd register operand we error out. */
18424 constraint (inst.operands[1].reg == REG_SP, BAD_SP);
18425 }
18426
18427 /* Make sure we still check the second operand is an odd one and that PC is
18428 disallowed. This because we are parsing for any GPR operand, to be able
18429 to distinguish between giving a warning or an error for SP as described
18430 above. */
18431 constraint ((inst.operands[1].reg % 2) != 1, BAD_EVEN);
18432 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
18433
18434 if (inst.cond > COND_ALWAYS)
18435 inst.pred_insn_type = INSIDE_VPT_INSN;
18436 else
18437 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18438
18439 mve_encode_rrqq (et.type == NT_unsigned, 0);
18440}
18441
18442
18443static void
18444do_mve_vmaxnmv (void)
18445{
18446 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
18447 struct neon_type_el et
18448 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
18449
18450 if (inst.cond > COND_ALWAYS)
18451 inst.pred_insn_type = INSIDE_VPT_INSN;
18452 else
18453 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18454
18455 if (inst.operands[0].reg == REG_SP)
18456 as_tsktsk (MVE_BAD_SP);
18457 else if (inst.operands[0].reg == REG_PC)
18458 as_tsktsk (MVE_BAD_PC);
18459
18460 mve_encode_rq (et.size == 16, 64);
18461}
18462
18463static void
18464do_mve_vmaxv (void)
18465{
18466 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
18467 struct neon_type_el et;
18468
18469 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
18470 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
18471 else
18472 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18473
18474 if (inst.cond > COND_ALWAYS)
18475 inst.pred_insn_type = INSIDE_VPT_INSN;
18476 else
18477 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18478
18479 if (inst.operands[0].reg == REG_SP)
18480 as_tsktsk (MVE_BAD_SP);
18481 else if (inst.operands[0].reg == REG_PC)
18482 as_tsktsk (MVE_BAD_PC);
18483
18484 mve_encode_rq (et.type == NT_unsigned, et.size);
18485}
18486
18487
18488static void
18489do_neon_qrdmlah (void)
18490{
18491 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18492 return;
18493 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18494 {
18495 /* Check we're on the correct architecture. */
18496 if (!mark_feature_used (&fpu_neon_ext_armv8))
18497 inst.error
18498 = _("instruction form not available on this architecture.");
18499 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
18500 {
18501 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
18502 record_feature_use (&fpu_neon_ext_v8_1);
18503 }
18504 if (inst.operands[2].isscalar)
18505 {
18506 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
18507 struct neon_type_el et = neon_check_type (3, rs,
18508 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18509 NEON_ENCODE (SCALAR, inst);
18510 neon_mul_mac (et, neon_quad (rs));
18511 }
18512 else
18513 {
18514 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18515 struct neon_type_el et = neon_check_type (3, rs,
18516 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18517 NEON_ENCODE (INTEGER, inst);
18518 /* The U bit (rounding) comes from bit mask. */
18519 neon_three_same (neon_quad (rs), 0, et.size);
18520 }
18521 }
18522 else
18523 {
18524 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
18525 struct neon_type_el et
18526 = neon_check_type (3, rs, N_EQK, N_EQK, N_S_32 | N_KEY);
18527
18528 NEON_ENCODE (INTEGER, inst);
18529 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
18530 }
18531}
18532
18533static void
18534do_neon_fcmp_absolute (void)
18535{
18536 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18537 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
18538 N_F_16_32 | N_KEY);
18539 /* Size field comes from bit mask. */
18540 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
18541}
18542
18543static void
18544do_neon_fcmp_absolute_inv (void)
18545{
18546 neon_exchange_operands ();
18547 do_neon_fcmp_absolute ();
18548}
18549
18550static void
18551do_neon_step (void)
18552{
18553 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18554 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
18555 N_F_16_32 | N_KEY);
18556 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
18557}
18558
18559static void
18560do_neon_abs_neg (void)
18561{
18562 enum neon_shape rs;
18563 struct neon_type_el et;
18564
18565 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
18566 return;
18567
18568 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18569 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
18570
18571 if (!check_simd_pred_availability (et.type == NT_float,
18572 NEON_CHECK_ARCH | NEON_CHECK_CC))
18573 return;
18574
18575 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18576 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18577 inst.instruction |= LOW4 (inst.operands[1].reg);
18578 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18579 inst.instruction |= neon_quad (rs) << 6;
18580 inst.instruction |= (et.type == NT_float) << 10;
18581 inst.instruction |= neon_logbits (et.size) << 18;
18582
18583 neon_dp_fixup (&inst);
18584}
18585
18586static void
18587do_neon_sli (void)
18588{
18589 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18590 return;
18591
18592 enum neon_shape rs;
18593 struct neon_type_el et;
18594 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18595 {
18596 rs = neon_select_shape (NS_QQI, NS_NULL);
18597 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18598 }
18599 else
18600 {
18601 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18602 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18603 }
18604
18605
18606 int imm = inst.operands[2].imm;
18607 constraint (imm < 0 || (unsigned)imm >= et.size,
18608 _("immediate out of range for insert"));
18609 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
18610}
18611
18612static void
18613do_neon_sri (void)
18614{
18615 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18616 return;
18617
18618 enum neon_shape rs;
18619 struct neon_type_el et;
18620 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18621 {
18622 rs = neon_select_shape (NS_QQI, NS_NULL);
18623 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18624 }
18625 else
18626 {
18627 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18628 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18629 }
18630
18631 int imm = inst.operands[2].imm;
18632 constraint (imm < 1 || (unsigned)imm > et.size,
18633 _("immediate out of range for insert"));
18634 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
18635}
18636
18637static void
18638do_neon_qshlu_imm (void)
18639{
18640 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18641 return;
18642
18643 enum neon_shape rs;
18644 struct neon_type_el et;
18645 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18646 {
18647 rs = neon_select_shape (NS_QQI, NS_NULL);
18648 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18649 }
18650 else
18651 {
18652 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18653 et = neon_check_type (2, rs, N_EQK | N_UNS,
18654 N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
18655 }
18656
18657 int imm = inst.operands[2].imm;
18658 constraint (imm < 0 || (unsigned)imm >= et.size,
18659 _("immediate out of range for shift"));
18660 /* Only encodes the 'U present' variant of the instruction.
18661 In this case, signed types have OP (bit 8) set to 0.
18662 Unsigned types have OP set to 1. */
18663 inst.instruction |= (et.type == NT_unsigned) << 8;
18664 /* The rest of the bits are the same as other immediate shifts. */
18665 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
18666}
18667
18668static void
18669do_neon_qmovn (void)
18670{
18671 struct neon_type_el et = neon_check_type (2, NS_DQ,
18672 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
18673 /* Saturating move where operands can be signed or unsigned, and the
18674 destination has the same signedness. */
18675 NEON_ENCODE (INTEGER, inst);
18676 if (et.type == NT_unsigned)
18677 inst.instruction |= 0xc0;
18678 else
18679 inst.instruction |= 0x80;
18680 neon_two_same (0, 1, et.size / 2);
18681}
18682
18683static void
18684do_neon_qmovun (void)
18685{
18686 struct neon_type_el et = neon_check_type (2, NS_DQ,
18687 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18688 /* Saturating move with unsigned results. Operands must be signed. */
18689 NEON_ENCODE (INTEGER, inst);
18690 neon_two_same (0, 1, et.size / 2);
18691}
18692
18693static void
18694do_neon_rshift_sat_narrow (void)
18695{
18696 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18697 or unsigned. If operands are unsigned, results must also be unsigned. */
18698 struct neon_type_el et = neon_check_type (2, NS_DQI,
18699 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
18700 int imm = inst.operands[2].imm;
18701 /* This gets the bounds check, size encoding and immediate bits calculation
18702 right. */
18703 et.size /= 2;
18704
18705 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
18706 VQMOVN.I<size> <Dd>, <Qm>. */
18707 if (imm == 0)
18708 {
18709 inst.operands[2].present = 0;
18710 inst.instruction = N_MNEM_vqmovn;
18711 do_neon_qmovn ();
18712 return;
18713 }
18714
18715 constraint (imm < 1 || (unsigned)imm > et.size,
18716 _("immediate out of range"));
18717 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
18718}
18719
18720static void
18721do_neon_rshift_sat_narrow_u (void)
18722{
18723 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18724 or unsigned. If operands are unsigned, results must also be unsigned. */
18725 struct neon_type_el et = neon_check_type (2, NS_DQI,
18726 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18727 int imm = inst.operands[2].imm;
18728 /* This gets the bounds check, size encoding and immediate bits calculation
18729 right. */
18730 et.size /= 2;
18731
18732 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
18733 VQMOVUN.I<size> <Dd>, <Qm>. */
18734 if (imm == 0)
18735 {
18736 inst.operands[2].present = 0;
18737 inst.instruction = N_MNEM_vqmovun;
18738 do_neon_qmovun ();
18739 return;
18740 }
18741
18742 constraint (imm < 1 || (unsigned)imm > et.size,
18743 _("immediate out of range"));
18744 /* FIXME: The manual is kind of unclear about what value U should have in
18745 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
18746 must be 1. */
18747 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
18748}
18749
18750static void
18751do_neon_movn (void)
18752{
18753 struct neon_type_el et = neon_check_type (2, NS_DQ,
18754 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18755 NEON_ENCODE (INTEGER, inst);
18756 neon_two_same (0, 1, et.size / 2);
18757}
18758
18759static void
18760do_neon_rshift_narrow (void)
18761{
18762 struct neon_type_el et = neon_check_type (2, NS_DQI,
18763 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18764 int imm = inst.operands[2].imm;
18765 /* This gets the bounds check, size encoding and immediate bits calculation
18766 right. */
18767 et.size /= 2;
18768
18769 /* If immediate is zero then we are a pseudo-instruction for
18770 VMOVN.I<size> <Dd>, <Qm> */
18771 if (imm == 0)
18772 {
18773 inst.operands[2].present = 0;
18774 inst.instruction = N_MNEM_vmovn;
18775 do_neon_movn ();
18776 return;
18777 }
18778
18779 constraint (imm < 1 || (unsigned)imm > et.size,
18780 _("immediate out of range for narrowing operation"));
18781 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
18782}
18783
18784static void
18785do_neon_shll (void)
18786{
18787 /* FIXME: Type checking when lengthening. */
18788 struct neon_type_el et = neon_check_type (2, NS_QDI,
18789 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
18790 unsigned imm = inst.operands[2].imm;
18791
18792 if (imm == et.size)
18793 {
18794 /* Maximum shift variant. */
18795 NEON_ENCODE (INTEGER, inst);
18796 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18797 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18798 inst.instruction |= LOW4 (inst.operands[1].reg);
18799 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18800 inst.instruction |= neon_logbits (et.size) << 18;
18801
18802 neon_dp_fixup (&inst);
18803 }
18804 else
18805 {
18806 /* A more-specific type check for non-max versions. */
18807 et = neon_check_type (2, NS_QDI,
18808 N_EQK | N_DBL, N_SU_32 | N_KEY);
18809 NEON_ENCODE (IMMED, inst);
18810 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
18811 }
18812}
18813
18814/* Check the various types for the VCVT instruction, and return which version
18815 the current instruction is. */
18816
18817#define CVT_FLAVOUR_VAR \
18818 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
18819 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
18820 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
18821 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
18822 /* Half-precision conversions. */ \
18823 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18824 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18825 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
18826 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
18827 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
18828 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
18829 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
18830 Compared with single/double precision variants, only the co-processor \
18831 field is different, so the encoding flow is reused here. */ \
18832 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
18833 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
18834 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
18835 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
18836 CVT_VAR (bf16_f32, N_BF16, N_F32, whole_reg, NULL, NULL, NULL) \
18837 /* VFP instructions. */ \
18838 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
18839 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
18840 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
18841 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
18842 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
18843 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
18844 /* VFP instructions with bitshift. */ \
18845 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
18846 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
18847 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
18848 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
18849 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
18850 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
18851 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
18852 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
18853
18854#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
18855 neon_cvt_flavour_##C,
18856
18857/* The different types of conversions we can do. */
18858enum neon_cvt_flavour
18859{
18860 CVT_FLAVOUR_VAR
18861 neon_cvt_flavour_invalid,
18862 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
18863};
18864
18865#undef CVT_VAR
18866
18867static enum neon_cvt_flavour
18868get_neon_cvt_flavour (enum neon_shape rs)
18869{
18870#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
18871 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
18872 if (et.type != NT_invtype) \
18873 { \
18874 inst.error = NULL; \
18875 return (neon_cvt_flavour_##C); \
18876 }
18877
18878 struct neon_type_el et;
18879 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
18880 || rs == NS_FF) ? N_VFP : 0;
18881 /* The instruction versions which take an immediate take one register
18882 argument, which is extended to the width of the full register. Thus the
18883 "source" and "destination" registers must have the same width. Hack that
18884 here by making the size equal to the key (wider, in this case) operand. */
18885 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
18886
18887 CVT_FLAVOUR_VAR;
18888
18889 return neon_cvt_flavour_invalid;
18890#undef CVT_VAR
18891}
18892
18893enum neon_cvt_mode
18894{
18895 neon_cvt_mode_a,
18896 neon_cvt_mode_n,
18897 neon_cvt_mode_p,
18898 neon_cvt_mode_m,
18899 neon_cvt_mode_z,
18900 neon_cvt_mode_x,
18901 neon_cvt_mode_r
18902};
18903
18904/* Neon-syntax VFP conversions. */
18905
18906static void
18907do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
18908{
18909 const char *opname = 0;
18910
18911 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
18912 || rs == NS_FHI || rs == NS_HFI)
18913 {
18914 /* Conversions with immediate bitshift. */
18915 const char *enc[] =
18916 {
18917#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
18918 CVT_FLAVOUR_VAR
18919 NULL
18920#undef CVT_VAR
18921 };
18922
18923 if (flavour < (int) ARRAY_SIZE (enc))
18924 {
18925 opname = enc[flavour];
18926 constraint (inst.operands[0].reg != inst.operands[1].reg,
18927 _("operands 0 and 1 must be the same register"));
18928 inst.operands[1] = inst.operands[2];
18929 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
18930 }
18931 }
18932 else
18933 {
18934 /* Conversions without bitshift. */
18935 const char *enc[] =
18936 {
18937#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
18938 CVT_FLAVOUR_VAR
18939 NULL
18940#undef CVT_VAR
18941 };
18942
18943 if (flavour < (int) ARRAY_SIZE (enc))
18944 opname = enc[flavour];
18945 }
18946
18947 if (opname)
18948 do_vfp_nsyn_opcode (opname);
18949
18950 /* ARMv8.2 fp16 VCVT instruction. */
18951 if (flavour == neon_cvt_flavour_s32_f16
18952 || flavour == neon_cvt_flavour_u32_f16
18953 || flavour == neon_cvt_flavour_f16_u32
18954 || flavour == neon_cvt_flavour_f16_s32)
18955 do_scalar_fp16_v82_encode ();
18956}
18957
18958static void
18959do_vfp_nsyn_cvtz (void)
18960{
18961 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
18962 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18963 const char *enc[] =
18964 {
18965#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
18966 CVT_FLAVOUR_VAR
18967 NULL
18968#undef CVT_VAR
18969 };
18970
18971 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
18972 do_vfp_nsyn_opcode (enc[flavour]);
18973}
18974
18975static void
18976do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
18977 enum neon_cvt_mode mode)
18978{
18979 int sz, op;
18980 int rm;
18981
18982 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
18983 D register operands. */
18984 if (flavour == neon_cvt_flavour_s32_f64
18985 || flavour == neon_cvt_flavour_u32_f64)
18986 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18987 _(BAD_FPU));
18988
18989 if (flavour == neon_cvt_flavour_s32_f16
18990 || flavour == neon_cvt_flavour_u32_f16)
18991 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
18992 _(BAD_FP16));
18993
18994 set_pred_insn_type (OUTSIDE_PRED_INSN);
18995
18996 switch (flavour)
18997 {
18998 case neon_cvt_flavour_s32_f64:
18999 sz = 1;
19000 op = 1;
19001 break;
19002 case neon_cvt_flavour_s32_f32:
19003 sz = 0;
19004 op = 1;
19005 break;
19006 case neon_cvt_flavour_s32_f16:
19007 sz = 0;
19008 op = 1;
19009 break;
19010 case neon_cvt_flavour_u32_f64:
19011 sz = 1;
19012 op = 0;
19013 break;
19014 case neon_cvt_flavour_u32_f32:
19015 sz = 0;
19016 op = 0;
19017 break;
19018 case neon_cvt_flavour_u32_f16:
19019 sz = 0;
19020 op = 0;
19021 break;
19022 default:
19023 first_error (_("invalid instruction shape"));
19024 return;
19025 }
19026
19027 switch (mode)
19028 {
19029 case neon_cvt_mode_a: rm = 0; break;
19030 case neon_cvt_mode_n: rm = 1; break;
19031 case neon_cvt_mode_p: rm = 2; break;
19032 case neon_cvt_mode_m: rm = 3; break;
19033 default: first_error (_("invalid rounding mode")); return;
19034 }
19035
19036 NEON_ENCODE (FPV8, inst);
19037 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
19038 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
19039 inst.instruction |= sz << 8;
19040
19041 /* ARMv8.2 fp16 VCVT instruction. */
19042 if (flavour == neon_cvt_flavour_s32_f16
19043 ||flavour == neon_cvt_flavour_u32_f16)
19044 do_scalar_fp16_v82_encode ();
19045 inst.instruction |= op << 7;
19046 inst.instruction |= rm << 16;
19047 inst.instruction |= 0xf0000000;
19048 inst.is_neon = TRUE;
19049}
19050
19051static void
19052do_neon_cvt_1 (enum neon_cvt_mode mode)
19053{
19054 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
19055 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
19056 NS_FH, NS_HF, NS_FHI, NS_HFI,
19057 NS_NULL);
19058 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
19059
19060 if (flavour == neon_cvt_flavour_invalid)
19061 return;
19062
19063 /* PR11109: Handle round-to-zero for VCVT conversions. */
19064 if (mode == neon_cvt_mode_z
19065 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
19066 && (flavour == neon_cvt_flavour_s16_f16
19067 || flavour == neon_cvt_flavour_u16_f16
19068 || flavour == neon_cvt_flavour_s32_f32
19069 || flavour == neon_cvt_flavour_u32_f32
19070 || flavour == neon_cvt_flavour_s32_f64
19071 || flavour == neon_cvt_flavour_u32_f64)
19072 && (rs == NS_FD || rs == NS_FF))
19073 {
19074 do_vfp_nsyn_cvtz ();
19075 return;
19076 }
19077
19078 /* ARMv8.2 fp16 VCVT conversions. */
19079 if (mode == neon_cvt_mode_z
19080 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
19081 && (flavour == neon_cvt_flavour_s32_f16
19082 || flavour == neon_cvt_flavour_u32_f16)
19083 && (rs == NS_FH))
19084 {
19085 do_vfp_nsyn_cvtz ();
19086 do_scalar_fp16_v82_encode ();
19087 return;
19088 }
19089
19090 /* VFP rather than Neon conversions. */
19091 if (flavour >= neon_cvt_flavour_first_fp)
19092 {
19093 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
19094 do_vfp_nsyn_cvt (rs, flavour);
19095 else
19096 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
19097
19098 return;
19099 }
19100
19101 switch (rs)
19102 {
19103 case NS_QQI:
19104 if (mode == neon_cvt_mode_z
19105 && (flavour == neon_cvt_flavour_f16_s16
19106 || flavour == neon_cvt_flavour_f16_u16
19107 || flavour == neon_cvt_flavour_s16_f16
19108 || flavour == neon_cvt_flavour_u16_f16
19109 || flavour == neon_cvt_flavour_f32_u32
19110 || flavour == neon_cvt_flavour_f32_s32
19111 || flavour == neon_cvt_flavour_s32_f32
19112 || flavour == neon_cvt_flavour_u32_f32))
19113 {
19114 if (!check_simd_pred_availability (TRUE,
19115 NEON_CHECK_CC | NEON_CHECK_ARCH))
19116 return;
19117 }
19118 else if (mode == neon_cvt_mode_n)
19119 {
19120 /* We are dealing with vcvt with the 'ne' condition. */
19121 inst.cond = 0x1;
19122 inst.instruction = N_MNEM_vcvt;
19123 do_neon_cvt_1 (neon_cvt_mode_z);
19124 return;
19125 }
19126 /* fall through. */
19127 case NS_DDI:
19128 {
19129 unsigned immbits;
19130 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
19131 0x0000100, 0x1000100, 0x0, 0x1000000};
19132
19133 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19134 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
19135 return;
19136
19137 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19138 {
19139 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
19140 _("immediate value out of range"));
19141 switch (flavour)
19142 {
19143 case neon_cvt_flavour_f16_s16:
19144 case neon_cvt_flavour_f16_u16:
19145 case neon_cvt_flavour_s16_f16:
19146 case neon_cvt_flavour_u16_f16:
19147 constraint (inst.operands[2].imm > 16,
19148 _("immediate value out of range"));
19149 break;
19150 case neon_cvt_flavour_f32_u32:
19151 case neon_cvt_flavour_f32_s32:
19152 case neon_cvt_flavour_s32_f32:
19153 case neon_cvt_flavour_u32_f32:
19154 constraint (inst.operands[2].imm > 32,
19155 _("immediate value out of range"));
19156 break;
19157 default:
19158 inst.error = BAD_FPU;
19159 return;
19160 }
19161 }
19162
19163 /* Fixed-point conversion with #0 immediate is encoded as an
19164 integer conversion. */
19165 if (inst.operands[2].present && inst.operands[2].imm == 0)
19166 goto int_encode;
19167 NEON_ENCODE (IMMED, inst);
19168 if (flavour != neon_cvt_flavour_invalid)
19169 inst.instruction |= enctab[flavour];
19170 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19171 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19172 inst.instruction |= LOW4 (inst.operands[1].reg);
19173 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19174 inst.instruction |= neon_quad (rs) << 6;
19175 inst.instruction |= 1 << 21;
19176 if (flavour < neon_cvt_flavour_s16_f16)
19177 {
19178 inst.instruction |= 1 << 21;
19179 immbits = 32 - inst.operands[2].imm;
19180 inst.instruction |= immbits << 16;
19181 }
19182 else
19183 {
19184 inst.instruction |= 3 << 20;
19185 immbits = 16 - inst.operands[2].imm;
19186 inst.instruction |= immbits << 16;
19187 inst.instruction &= ~(1 << 9);
19188 }
19189
19190 neon_dp_fixup (&inst);
19191 }
19192 break;
19193
19194 case NS_QQ:
19195 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
19196 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
19197 && (flavour == neon_cvt_flavour_s16_f16
19198 || flavour == neon_cvt_flavour_u16_f16
19199 || flavour == neon_cvt_flavour_s32_f32
19200 || flavour == neon_cvt_flavour_u32_f32))
19201 {
19202 if (!check_simd_pred_availability (TRUE,
19203 NEON_CHECK_CC | NEON_CHECK_ARCH8))
19204 return;
19205 }
19206 else if (mode == neon_cvt_mode_z
19207 && (flavour == neon_cvt_flavour_f16_s16
19208 || flavour == neon_cvt_flavour_f16_u16
19209 || flavour == neon_cvt_flavour_s16_f16
19210 || flavour == neon_cvt_flavour_u16_f16
19211 || flavour == neon_cvt_flavour_f32_u32
19212 || flavour == neon_cvt_flavour_f32_s32
19213 || flavour == neon_cvt_flavour_s32_f32
19214 || flavour == neon_cvt_flavour_u32_f32))
19215 {
19216 if (!check_simd_pred_availability (TRUE,
19217 NEON_CHECK_CC | NEON_CHECK_ARCH))
19218 return;
19219 }
19220 /* fall through. */
19221 case NS_DD:
19222 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
19223 {
19224
19225 NEON_ENCODE (FLOAT, inst);
19226 if (!check_simd_pred_availability (TRUE,
19227 NEON_CHECK_CC | NEON_CHECK_ARCH8))
19228 return;
19229
19230 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19231 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19232 inst.instruction |= LOW4 (inst.operands[1].reg);
19233 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19234 inst.instruction |= neon_quad (rs) << 6;
19235 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
19236 || flavour == neon_cvt_flavour_u32_f32) << 7;
19237 inst.instruction |= mode << 8;
19238 if (flavour == neon_cvt_flavour_u16_f16
19239 || flavour == neon_cvt_flavour_s16_f16)
19240 /* Mask off the original size bits and reencode them. */
19241 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
19242
19243 if (thumb_mode)
19244 inst.instruction |= 0xfc000000;
19245 else
19246 inst.instruction |= 0xf0000000;
19247 }
19248 else
19249 {
19250 int_encode:
19251 {
19252 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
19253 0x100, 0x180, 0x0, 0x080};
19254
19255 NEON_ENCODE (INTEGER, inst);
19256
19257 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19258 {
19259 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
19260 return;
19261 }
19262
19263 if (flavour != neon_cvt_flavour_invalid)
19264 inst.instruction |= enctab[flavour];
19265
19266 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19267 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19268 inst.instruction |= LOW4 (inst.operands[1].reg);
19269 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19270 inst.instruction |= neon_quad (rs) << 6;
19271 if (flavour >= neon_cvt_flavour_s16_f16
19272 && flavour <= neon_cvt_flavour_f16_u16)
19273 /* Half precision. */
19274 inst.instruction |= 1 << 18;
19275 else
19276 inst.instruction |= 2 << 18;
19277
19278 neon_dp_fixup (&inst);
19279 }
19280 }
19281 break;
19282
19283 /* Half-precision conversions for Advanced SIMD -- neon. */
19284 case NS_QD:
19285 case NS_DQ:
19286 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
19287 return;
19288
19289 if ((rs == NS_DQ)
19290 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
19291 {
19292 as_bad (_("operand size must match register width"));
19293 break;
19294 }
19295
19296 if ((rs == NS_QD)
19297 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
19298 {
19299 as_bad (_("operand size must match register width"));
19300 break;
19301 }
19302
19303 if (rs == NS_DQ)
19304 {
19305 if (flavour == neon_cvt_flavour_bf16_f32)
19306 {
19307 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH8) == FAIL)
19308 return;
19309 constraint (!mark_feature_used (&arm_ext_bf16), _(BAD_BF16));
19310 /* VCVT.bf16.f32. */
19311 inst.instruction = 0x11b60640;
19312 }
19313 else
19314 /* VCVT.f16.f32. */
19315 inst.instruction = 0x3b60600;
19316 }
19317 else
19318 /* VCVT.f32.f16. */
19319 inst.instruction = 0x3b60700;
19320
19321 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19322 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19323 inst.instruction |= LOW4 (inst.operands[1].reg);
19324 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19325 neon_dp_fixup (&inst);
19326 break;
19327
19328 default:
19329 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
19330 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
19331 do_vfp_nsyn_cvt (rs, flavour);
19332 else
19333 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
19334 }
19335}
19336
19337static void
19338do_neon_cvtr (void)
19339{
19340 do_neon_cvt_1 (neon_cvt_mode_x);
19341}
19342
19343static void
19344do_neon_cvt (void)
19345{
19346 do_neon_cvt_1 (neon_cvt_mode_z);
19347}
19348
19349static void
19350do_neon_cvta (void)
19351{
19352 do_neon_cvt_1 (neon_cvt_mode_a);
19353}
19354
19355static void
19356do_neon_cvtn (void)
19357{
19358 do_neon_cvt_1 (neon_cvt_mode_n);
19359}
19360
19361static void
19362do_neon_cvtp (void)
19363{
19364 do_neon_cvt_1 (neon_cvt_mode_p);
19365}
19366
19367static void
19368do_neon_cvtm (void)
19369{
19370 do_neon_cvt_1 (neon_cvt_mode_m);
19371}
19372
19373static void
19374do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
19375{
19376 if (is_double)
19377 mark_feature_used (&fpu_vfp_ext_armv8);
19378
19379 encode_arm_vfp_reg (inst.operands[0].reg,
19380 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
19381 encode_arm_vfp_reg (inst.operands[1].reg,
19382 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
19383 inst.instruction |= to ? 0x10000 : 0;
19384 inst.instruction |= t ? 0x80 : 0;
19385 inst.instruction |= is_double ? 0x100 : 0;
19386 do_vfp_cond_or_thumb ();
19387}
19388
19389static void
19390do_neon_cvttb_1 (bfd_boolean t)
19391{
19392 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
19393 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
19394
19395 if (rs == NS_NULL)
19396 return;
19397 else if (rs == NS_QQ || rs == NS_QQI)
19398 {
19399 int single_to_half = 0;
19400 if (!check_simd_pred_availability (TRUE, NEON_CHECK_ARCH))
19401 return;
19402
19403 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
19404
19405 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19406 && (flavour == neon_cvt_flavour_u16_f16
19407 || flavour == neon_cvt_flavour_s16_f16
19408 || flavour == neon_cvt_flavour_f16_s16
19409 || flavour == neon_cvt_flavour_f16_u16
19410 || flavour == neon_cvt_flavour_u32_f32
19411 || flavour == neon_cvt_flavour_s32_f32
19412 || flavour == neon_cvt_flavour_f32_s32
19413 || flavour == neon_cvt_flavour_f32_u32))
19414 {
19415 inst.cond = 0xf;
19416 inst.instruction = N_MNEM_vcvt;
19417 set_pred_insn_type (INSIDE_VPT_INSN);
19418 do_neon_cvt_1 (neon_cvt_mode_z);
19419 return;
19420 }
19421 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
19422 single_to_half = 1;
19423 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
19424 {
19425 first_error (BAD_FPU);
19426 return;
19427 }
19428
19429 inst.instruction = 0xee3f0e01;
19430 inst.instruction |= single_to_half << 28;
19431 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19432 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
19433 inst.instruction |= t << 12;
19434 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19435 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
19436 inst.is_neon = 1;
19437 }
19438 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
19439 {
19440 inst.error = NULL;
19441 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
19442 }
19443 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
19444 {
19445 inst.error = NULL;
19446 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
19447 }
19448 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
19449 {
19450 /* The VCVTB and VCVTT instructions with D-register operands
19451 don't work for SP only targets. */
19452 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19453 _(BAD_FPU));
19454
19455 inst.error = NULL;
19456 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
19457 }
19458 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
19459 {
19460 /* The VCVTB and VCVTT instructions with D-register operands
19461 don't work for SP only targets. */
19462 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19463 _(BAD_FPU));
19464
19465 inst.error = NULL;
19466 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
19467 }
19468 else if (neon_check_type (2, rs, N_BF16 | N_VFP, N_F32).type != NT_invtype)
19469 {
19470 constraint (!mark_feature_used (&arm_ext_bf16), _(BAD_BF16));
19471 inst.error = NULL;
19472 inst.instruction |= (1 << 8);
19473 inst.instruction &= ~(1 << 9);
19474 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
19475 }
19476 else
19477 return;
19478}
19479
19480static void
19481do_neon_cvtb (void)
19482{
19483 do_neon_cvttb_1 (FALSE);
19484}
19485
19486
19487static void
19488do_neon_cvtt (void)
19489{
19490 do_neon_cvttb_1 (TRUE);
19491}
19492
19493static void
19494neon_move_immediate (void)
19495{
19496 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
19497 struct neon_type_el et = neon_check_type (2, rs,
19498 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
19499 unsigned immlo, immhi = 0, immbits;
19500 int op, cmode, float_p;
19501
19502 constraint (et.type == NT_invtype,
19503 _("operand size must be specified for immediate VMOV"));
19504
19505 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
19506 op = (inst.instruction & (1 << 5)) != 0;
19507
19508 immlo = inst.operands[1].imm;
19509 if (inst.operands[1].regisimm)
19510 immhi = inst.operands[1].reg;
19511
19512 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
19513 _("immediate has bits set outside the operand size"));
19514
19515 float_p = inst.operands[1].immisfloat;
19516
19517 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
19518 et.size, et.type)) == FAIL)
19519 {
19520 /* Invert relevant bits only. */
19521 neon_invert_size (&immlo, &immhi, et.size);
19522 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
19523 with one or the other; those cases are caught by
19524 neon_cmode_for_move_imm. */
19525 op = !op;
19526 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
19527 &op, et.size, et.type)) == FAIL)
19528 {
19529 first_error (_("immediate out of range"));
19530 return;
19531 }
19532 }
19533
19534 inst.instruction &= ~(1 << 5);
19535 inst.instruction |= op << 5;
19536
19537 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19538 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19539 inst.instruction |= neon_quad (rs) << 6;
19540 inst.instruction |= cmode << 8;
19541
19542 neon_write_immbits (immbits);
19543}
19544
19545static void
19546do_neon_mvn (void)
19547{
19548 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
19549 return;
19550
19551 if (inst.operands[1].isreg)
19552 {
19553 enum neon_shape rs;
19554 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19555 rs = neon_select_shape (NS_QQ, NS_NULL);
19556 else
19557 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19558
19559 NEON_ENCODE (INTEGER, inst);
19560 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19561 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19562 inst.instruction |= LOW4 (inst.operands[1].reg);
19563 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19564 inst.instruction |= neon_quad (rs) << 6;
19565 }
19566 else
19567 {
19568 NEON_ENCODE (IMMED, inst);
19569 neon_move_immediate ();
19570 }
19571
19572 neon_dp_fixup (&inst);
19573
19574 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19575 {
19576 constraint (!inst.operands[1].isreg && !inst.operands[0].isquad, BAD_FPU);
19577 }
19578}
19579
19580/* Encode instructions of form:
19581
19582 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
19583 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
19584
19585static void
19586neon_mixed_length (struct neon_type_el et, unsigned size)
19587{
19588 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19589 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19590 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19591 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19592 inst.instruction |= LOW4 (inst.operands[2].reg);
19593 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19594 inst.instruction |= (et.type == NT_unsigned) << 24;
19595 inst.instruction |= neon_logbits (size) << 20;
19596
19597 neon_dp_fixup (&inst);
19598}
19599
19600static void
19601do_neon_dyadic_long (void)
19602{
19603 enum neon_shape rs = neon_select_shape (NS_QDD, NS_HHH, NS_FFF, NS_DDD, NS_NULL);
19604 if (rs == NS_QDD)
19605 {
19606 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
19607 return;
19608
19609 NEON_ENCODE (INTEGER, inst);
19610 /* FIXME: Type checking for lengthening op. */
19611 struct neon_type_el et = neon_check_type (3, NS_QDD,
19612 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
19613 neon_mixed_length (et, et.size);
19614 }
19615 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19616 && (inst.cond == 0xf || inst.cond == 0x10))
19617 {
19618 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
19619 in an IT block with le/lt conditions. */
19620
19621 if (inst.cond == 0xf)
19622 inst.cond = 0xb;
19623 else if (inst.cond == 0x10)
19624 inst.cond = 0xd;
19625
19626 inst.pred_insn_type = INSIDE_IT_INSN;
19627
19628 if (inst.instruction == N_MNEM_vaddl)
19629 {
19630 inst.instruction = N_MNEM_vadd;
19631 do_neon_addsub_if_i ();
19632 }
19633 else if (inst.instruction == N_MNEM_vsubl)
19634 {
19635 inst.instruction = N_MNEM_vsub;
19636 do_neon_addsub_if_i ();
19637 }
19638 else if (inst.instruction == N_MNEM_vabdl)
19639 {
19640 inst.instruction = N_MNEM_vabd;
19641 do_neon_dyadic_if_su ();
19642 }
19643 }
19644 else
19645 first_error (BAD_FPU);
19646}
19647
19648static void
19649do_neon_abal (void)
19650{
19651 struct neon_type_el et = neon_check_type (3, NS_QDD,
19652 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
19653 neon_mixed_length (et, et.size);
19654}
19655
19656static void
19657neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
19658{
19659 if (inst.operands[2].isscalar)
19660 {
19661 struct neon_type_el et = neon_check_type (3, NS_QDS,
19662 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
19663 NEON_ENCODE (SCALAR, inst);
19664 neon_mul_mac (et, et.type == NT_unsigned);
19665 }
19666 else
19667 {
19668 struct neon_type_el et = neon_check_type (3, NS_QDD,
19669 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
19670 NEON_ENCODE (INTEGER, inst);
19671 neon_mixed_length (et, et.size);
19672 }
19673}
19674
19675static void
19676do_neon_mac_maybe_scalar_long (void)
19677{
19678 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
19679}
19680
19681/* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
19682 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
19683
19684static unsigned
19685neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
19686{
19687 unsigned regno = NEON_SCALAR_REG (scalar);
19688 unsigned elno = NEON_SCALAR_INDEX (scalar);
19689
19690 if (quad_p)
19691 {
19692 if (regno > 7 || elno > 3)
19693 goto bad_scalar;
19694
19695 return ((regno & 0x7)
19696 | ((elno & 0x1) << 3)
19697 | (((elno >> 1) & 0x1) << 5));
19698 }
19699 else
19700 {
19701 if (regno > 15 || elno > 1)
19702 goto bad_scalar;
19703
19704 return (((regno & 0x1) << 5)
19705 | ((regno >> 1) & 0x7)
19706 | ((elno & 0x1) << 3));
19707 }
19708
19709 bad_scalar:
19710 first_error (_("scalar out of range for multiply instruction"));
19711 return 0;
19712}
19713
19714static void
19715do_neon_fmac_maybe_scalar_long (int subtype)
19716{
19717 enum neon_shape rs;
19718 int high8;
19719 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
19720 field (bits[21:20]) has different meaning. For scalar index variant, it's
19721 used to differentiate add and subtract, otherwise it's with fixed value
19722 0x2. */
19723 int size = -1;
19724
19725 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
19726 be a scalar index register. */
19727 if (inst.operands[2].isscalar)
19728 {
19729 high8 = 0xfe000000;
19730 if (subtype)
19731 size = 16;
19732 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
19733 }
19734 else
19735 {
19736 high8 = 0xfc000000;
19737 size = 32;
19738 if (subtype)
19739 inst.instruction |= (0x1 << 23);
19740 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
19741 }
19742
19743
19744 if (inst.cond != COND_ALWAYS)
19745 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
19746 "behaviour is UNPREDICTABLE"));
19747
19748 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
19749 _(BAD_FP16));
19750
19751 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19752 _(BAD_FPU));
19753
19754 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
19755 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
19756 so we simply pass -1 as size. */
19757 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
19758 neon_three_same (quad_p, 0, size);
19759
19760 /* Undo neon_dp_fixup. Redo the high eight bits. */
19761 inst.instruction &= 0x00ffffff;
19762 inst.instruction |= high8;
19763
19764 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
19765 whether the instruction is in Q form and whether Vm is a scalar indexed
19766 operand. */
19767 if (inst.operands[2].isscalar)
19768 {
19769 unsigned rm
19770 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
19771 inst.instruction &= 0xffffffd0;
19772 inst.instruction |= rm;
19773
19774 if (!quad_p)
19775 {
19776 /* Redo Rn as well. */
19777 inst.instruction &= 0xfff0ff7f;
19778 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19779 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19780 }
19781 }
19782 else if (!quad_p)
19783 {
19784 /* Redo Rn and Rm. */
19785 inst.instruction &= 0xfff0ff50;
19786 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19787 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19788 inst.instruction |= HI4 (inst.operands[2].reg);
19789 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
19790 }
19791}
19792
19793static void
19794do_neon_vfmal (void)
19795{
19796 return do_neon_fmac_maybe_scalar_long (0);
19797}
19798
19799static void
19800do_neon_vfmsl (void)
19801{
19802 return do_neon_fmac_maybe_scalar_long (1);
19803}
19804
19805static void
19806do_neon_dyadic_wide (void)
19807{
19808 struct neon_type_el et = neon_check_type (3, NS_QQD,
19809 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
19810 neon_mixed_length (et, et.size);
19811}
19812
19813static void
19814do_neon_dyadic_narrow (void)
19815{
19816 struct neon_type_el et = neon_check_type (3, NS_QDD,
19817 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
19818 /* Operand sign is unimportant, and the U bit is part of the opcode,
19819 so force the operand type to integer. */
19820 et.type = NT_integer;
19821 neon_mixed_length (et, et.size / 2);
19822}
19823
19824static void
19825do_neon_mul_sat_scalar_long (void)
19826{
19827 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
19828}
19829
19830static void
19831do_neon_vmull (void)
19832{
19833 if (inst.operands[2].isscalar)
19834 do_neon_mac_maybe_scalar_long ();
19835 else
19836 {
19837 struct neon_type_el et = neon_check_type (3, NS_QDD,
19838 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
19839
19840 if (et.type == NT_poly)
19841 NEON_ENCODE (POLY, inst);
19842 else
19843 NEON_ENCODE (INTEGER, inst);
19844
19845 /* For polynomial encoding the U bit must be zero, and the size must
19846 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
19847 obviously, as 0b10). */
19848 if (et.size == 64)
19849 {
19850 /* Check we're on the correct architecture. */
19851 if (!mark_feature_used (&fpu_crypto_ext_armv8))
19852 inst.error =
19853 _("Instruction form not available on this architecture.");
19854
19855 et.size = 32;
19856 }
19857
19858 neon_mixed_length (et, et.size);
19859 }
19860}
19861
19862static void
19863do_neon_ext (void)
19864{
19865 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19866 struct neon_type_el et = neon_check_type (3, rs,
19867 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
19868 unsigned imm = (inst.operands[3].imm * et.size) / 8;
19869
19870 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
19871 _("shift out of range"));
19872 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19873 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19874 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19875 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19876 inst.instruction |= LOW4 (inst.operands[2].reg);
19877 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19878 inst.instruction |= neon_quad (rs) << 6;
19879 inst.instruction |= imm << 8;
19880
19881 neon_dp_fixup (&inst);
19882}
19883
19884static void
19885do_neon_rev (void)
19886{
19887 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
19888 return;
19889
19890 enum neon_shape rs;
19891 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19892 rs = neon_select_shape (NS_QQ, NS_NULL);
19893 else
19894 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19895
19896 struct neon_type_el et = neon_check_type (2, rs,
19897 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19898
19899 unsigned op = (inst.instruction >> 7) & 3;
19900 /* N (width of reversed regions) is encoded as part of the bitmask. We
19901 extract it here to check the elements to be reversed are smaller.
19902 Otherwise we'd get a reserved instruction. */
19903 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
19904
19905 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) && elsize == 64
19906 && inst.operands[0].reg == inst.operands[1].reg)
19907 as_tsktsk (_("Warning: 64-bit element size and same destination and source"
19908 " operands makes instruction UNPREDICTABLE"));
19909
19910 gas_assert (elsize != 0);
19911 constraint (et.size >= elsize,
19912 _("elements must be smaller than reversal region"));
19913 neon_two_same (neon_quad (rs), 1, et.size);
19914}
19915
19916static void
19917do_neon_dup (void)
19918{
19919 if (inst.operands[1].isscalar)
19920 {
19921 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19922 BAD_FPU);
19923 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
19924 struct neon_type_el et = neon_check_type (2, rs,
19925 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19926 unsigned sizebits = et.size >> 3;
19927 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
19928 int logsize = neon_logbits (et.size);
19929 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
19930
19931 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
19932 return;
19933
19934 NEON_ENCODE (SCALAR, inst);
19935 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19936 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19937 inst.instruction |= LOW4 (dm);
19938 inst.instruction |= HI1 (dm) << 5;
19939 inst.instruction |= neon_quad (rs) << 6;
19940 inst.instruction |= x << 17;
19941 inst.instruction |= sizebits << 16;
19942
19943 neon_dp_fixup (&inst);
19944 }
19945 else
19946 {
19947 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
19948 struct neon_type_el et = neon_check_type (2, rs,
19949 N_8 | N_16 | N_32 | N_KEY, N_EQK);
19950 if (rs == NS_QR)
19951 {
19952 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH))
19953 return;
19954 }
19955 else
19956 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19957 BAD_FPU);
19958
19959 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19960 {
19961 if (inst.operands[1].reg == REG_SP)
19962 as_tsktsk (MVE_BAD_SP);
19963 else if (inst.operands[1].reg == REG_PC)
19964 as_tsktsk (MVE_BAD_PC);
19965 }
19966
19967 /* Duplicate ARM register to lanes of vector. */
19968 NEON_ENCODE (ARMREG, inst);
19969 switch (et.size)
19970 {
19971 case 8: inst.instruction |= 0x400000; break;
19972 case 16: inst.instruction |= 0x000020; break;
19973 case 32: inst.instruction |= 0x000000; break;
19974 default: break;
19975 }
19976 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19977 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
19978 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
19979 inst.instruction |= neon_quad (rs) << 21;
19980 /* The encoding for this instruction is identical for the ARM and Thumb
19981 variants, except for the condition field. */
19982 do_vfp_cond_or_thumb ();
19983 }
19984}
19985
19986static void
19987do_mve_mov (int toQ)
19988{
19989 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19990 return;
19991 if (inst.cond > COND_ALWAYS)
19992 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
19993
19994 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
19995 if (toQ)
19996 {
19997 Q0 = 0;
19998 Q1 = 1;
19999 Rt = 2;
20000 Rt2 = 3;
20001 }
20002
20003 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
20004 _("Index one must be [2,3] and index two must be two less than"
20005 " index one."));
20006 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
20007 _("General purpose registers may not be the same"));
20008 constraint (inst.operands[Rt].reg == REG_SP
20009 || inst.operands[Rt2].reg == REG_SP,
20010 BAD_SP);
20011 constraint (inst.operands[Rt].reg == REG_PC
20012 || inst.operands[Rt2].reg == REG_PC,
20013 BAD_PC);
20014
20015 inst.instruction = 0xec000f00;
20016 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
20017 inst.instruction |= !!toQ << 20;
20018 inst.instruction |= inst.operands[Rt2].reg << 16;
20019 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
20020 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
20021 inst.instruction |= inst.operands[Rt].reg;
20022}
20023
20024static void
20025do_mve_movn (void)
20026{
20027 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20028 return;
20029
20030 if (inst.cond > COND_ALWAYS)
20031 inst.pred_insn_type = INSIDE_VPT_INSN;
20032 else
20033 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
20034
20035 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
20036 | N_KEY);
20037
20038 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20039 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
20040 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20041 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20042 inst.instruction |= LOW4 (inst.operands[1].reg);
20043 inst.is_neon = 1;
20044
20045}
20046
20047/* VMOV has particularly many variations. It can be one of:
20048 0. VMOV<c><q> <Qd>, <Qm>
20049 1. VMOV<c><q> <Dd>, <Dm>
20050 (Register operations, which are VORR with Rm = Rn.)
20051 2. VMOV<c><q>.<dt> <Qd>, #<imm>
20052 3. VMOV<c><q>.<dt> <Dd>, #<imm>
20053 (Immediate loads.)
20054 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
20055 (ARM register to scalar.)
20056 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
20057 (Two ARM registers to vector.)
20058 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
20059 (Scalar to ARM register.)
20060 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
20061 (Vector to two ARM registers.)
20062 8. VMOV.F32 <Sd>, <Sm>
20063 9. VMOV.F64 <Dd>, <Dm>
20064 (VFP register moves.)
20065 10. VMOV.F32 <Sd>, #imm
20066 11. VMOV.F64 <Dd>, #imm
20067 (VFP float immediate load.)
20068 12. VMOV <Rd>, <Sm>
20069 (VFP single to ARM reg.)
20070 13. VMOV <Sd>, <Rm>
20071 (ARM reg to VFP single.)
20072 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
20073 (Two ARM regs to two VFP singles.)
20074 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
20075 (Two VFP singles to two ARM regs.)
20076 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
20077 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
20078 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
20079 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
20080
20081 These cases can be disambiguated using neon_select_shape, except cases 1/9
20082 and 3/11 which depend on the operand type too.
20083
20084 All the encoded bits are hardcoded by this function.
20085
20086 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
20087 Cases 5, 7 may be used with VFPv2 and above.
20088
20089 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
20090 can specify a type where it doesn't make sense to, and is ignored). */
20091
20092static void
20093do_neon_mov (void)
20094{
20095 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
20096 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
20097 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
20098 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
20099 NS_NULL);
20100 struct neon_type_el et;
20101 const char *ldconst = 0;
20102
20103 switch (rs)
20104 {
20105 case NS_DD: /* case 1/9. */
20106 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
20107 /* It is not an error here if no type is given. */
20108 inst.error = NULL;
20109
20110 /* In MVE we interpret the following instructions as same, so ignoring
20111 the following type (float) and size (64) checks.
20112 a: VMOV<c><q> <Dd>, <Dm>
20113 b: VMOV<c><q>.F64 <Dd>, <Dm>. */
20114 if ((et.type == NT_float && et.size == 64)
20115 || (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
20116 {
20117 do_vfp_nsyn_opcode ("fcpyd");
20118 break;
20119 }
20120 /* fall through. */
20121
20122 case NS_QQ: /* case 0/1. */
20123 {
20124 if (!check_simd_pred_availability (FALSE,
20125 NEON_CHECK_CC | NEON_CHECK_ARCH))
20126 return;
20127 /* The architecture manual I have doesn't explicitly state which
20128 value the U bit should have for register->register moves, but
20129 the equivalent VORR instruction has U = 0, so do that. */
20130 inst.instruction = 0x0200110;
20131 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20132 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20133 inst.instruction |= LOW4 (inst.operands[1].reg);
20134 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20135 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20136 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20137 inst.instruction |= neon_quad (rs) << 6;
20138
20139 neon_dp_fixup (&inst);
20140 }
20141 break;
20142
20143 case NS_DI: /* case 3/11. */
20144 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
20145 inst.error = NULL;
20146 if (et.type == NT_float && et.size == 64)
20147 {
20148 /* case 11 (fconstd). */
20149 ldconst = "fconstd";
20150 goto encode_fconstd;
20151 }
20152 /* fall through. */
20153
20154 case NS_QI: /* case 2/3. */
20155 if (!check_simd_pred_availability (FALSE,
20156 NEON_CHECK_CC | NEON_CHECK_ARCH))
20157 return;
20158 inst.instruction = 0x0800010;
20159 neon_move_immediate ();
20160 neon_dp_fixup (&inst);
20161 break;
20162
20163 case NS_SR: /* case 4. */
20164 {
20165 unsigned bcdebits = 0;
20166 int logsize;
20167 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
20168 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
20169
20170 /* .<size> is optional here, defaulting to .32. */
20171 if (inst.vectype.elems == 0
20172 && inst.operands[0].vectype.type == NT_invtype
20173 && inst.operands[1].vectype.type == NT_invtype)
20174 {
20175 inst.vectype.el[0].type = NT_untyped;
20176 inst.vectype.el[0].size = 32;
20177 inst.vectype.elems = 1;
20178 }
20179
20180 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
20181 logsize = neon_logbits (et.size);
20182
20183 if (et.size != 32)
20184 {
20185 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20186 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
20187 return;
20188 }
20189 else
20190 {
20191 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
20192 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20193 _(BAD_FPU));
20194 }
20195
20196 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20197 {
20198 if (inst.operands[1].reg == REG_SP)
20199 as_tsktsk (MVE_BAD_SP);
20200 else if (inst.operands[1].reg == REG_PC)
20201 as_tsktsk (MVE_BAD_PC);
20202 }
20203 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
20204
20205 constraint (et.type == NT_invtype, _("bad type for scalar"));
20206 constraint (x >= size / et.size, _("scalar index out of range"));
20207
20208
20209 switch (et.size)
20210 {
20211 case 8: bcdebits = 0x8; break;
20212 case 16: bcdebits = 0x1; break;
20213 case 32: bcdebits = 0x0; break;
20214 default: ;
20215 }
20216
20217 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
20218
20219 inst.instruction = 0xe000b10;
20220 do_vfp_cond_or_thumb ();
20221 inst.instruction |= LOW4 (dn) << 16;
20222 inst.instruction |= HI1 (dn) << 7;
20223 inst.instruction |= inst.operands[1].reg << 12;
20224 inst.instruction |= (bcdebits & 3) << 5;
20225 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
20226 inst.instruction |= (x >> (3-logsize)) << 16;
20227 }
20228 break;
20229
20230 case NS_DRR: /* case 5 (fmdrr). */
20231 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20232 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20233 _(BAD_FPU));
20234
20235 inst.instruction = 0xc400b10;
20236 do_vfp_cond_or_thumb ();
20237 inst.instruction |= LOW4 (inst.operands[0].reg);
20238 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
20239 inst.instruction |= inst.operands[1].reg << 12;
20240 inst.instruction |= inst.operands[2].reg << 16;
20241 break;
20242
20243 case NS_RS: /* case 6. */
20244 {
20245 unsigned logsize;
20246 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
20247 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
20248 unsigned abcdebits = 0;
20249
20250 /* .<dt> is optional here, defaulting to .32. */
20251 if (inst.vectype.elems == 0
20252 && inst.operands[0].vectype.type == NT_invtype
20253 && inst.operands[1].vectype.type == NT_invtype)
20254 {
20255 inst.vectype.el[0].type = NT_untyped;
20256 inst.vectype.el[0].size = 32;
20257 inst.vectype.elems = 1;
20258 }
20259
20260 et = neon_check_type (2, NS_NULL,
20261 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
20262 logsize = neon_logbits (et.size);
20263
20264 if (et.size != 32)
20265 {
20266 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20267 && vfp_or_neon_is_neon (NEON_CHECK_CC
20268 | NEON_CHECK_ARCH) == FAIL)
20269 return;
20270 }
20271 else
20272 {
20273 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
20274 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20275 _(BAD_FPU));
20276 }
20277
20278 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20279 {
20280 if (inst.operands[0].reg == REG_SP)
20281 as_tsktsk (MVE_BAD_SP);
20282 else if (inst.operands[0].reg == REG_PC)
20283 as_tsktsk (MVE_BAD_PC);
20284 }
20285
20286 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
20287
20288 constraint (et.type == NT_invtype, _("bad type for scalar"));
20289 constraint (x >= size / et.size, _("scalar index out of range"));
20290
20291 switch (et.size)
20292 {
20293 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
20294 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
20295 case 32: abcdebits = 0x00; break;
20296 default: ;
20297 }
20298
20299 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
20300 inst.instruction = 0xe100b10;
20301 do_vfp_cond_or_thumb ();
20302 inst.instruction |= LOW4 (dn) << 16;
20303 inst.instruction |= HI1 (dn) << 7;
20304 inst.instruction |= inst.operands[0].reg << 12;
20305 inst.instruction |= (abcdebits & 3) << 5;
20306 inst.instruction |= (abcdebits >> 2) << 21;
20307 inst.instruction |= (x >> (3-logsize)) << 16;
20308 }
20309 break;
20310
20311 case NS_RRD: /* case 7 (fmrrd). */
20312 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20313 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20314 _(BAD_FPU));
20315
20316 inst.instruction = 0xc500b10;
20317 do_vfp_cond_or_thumb ();
20318 inst.instruction |= inst.operands[0].reg << 12;
20319 inst.instruction |= inst.operands[1].reg << 16;
20320 inst.instruction |= LOW4 (inst.operands[2].reg);
20321 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20322 break;
20323
20324 case NS_FF: /* case 8 (fcpys). */
20325 do_vfp_nsyn_opcode ("fcpys");
20326 break;
20327
20328 case NS_HI:
20329 case NS_FI: /* case 10 (fconsts). */
20330 ldconst = "fconsts";
20331 encode_fconstd:
20332 if (!inst.operands[1].immisfloat)
20333 {
20334 unsigned new_imm;
20335 /* Immediate has to fit in 8 bits so float is enough. */
20336 float imm = (float) inst.operands[1].imm;
20337 memcpy (&new_imm, &imm, sizeof (float));
20338 /* But the assembly may have been written to provide an integer
20339 bit pattern that equates to a float, so check that the
20340 conversion has worked. */
20341 if (is_quarter_float (new_imm))
20342 {
20343 if (is_quarter_float (inst.operands[1].imm))
20344 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
20345
20346 inst.operands[1].imm = new_imm;
20347 inst.operands[1].immisfloat = 1;
20348 }
20349 }
20350
20351 if (is_quarter_float (inst.operands[1].imm))
20352 {
20353 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
20354 do_vfp_nsyn_opcode (ldconst);
20355
20356 /* ARMv8.2 fp16 vmov.f16 instruction. */
20357 if (rs == NS_HI)
20358 do_scalar_fp16_v82_encode ();
20359 }
20360 else
20361 first_error (_("immediate out of range"));
20362 break;
20363
20364 case NS_RH:
20365 case NS_RF: /* case 12 (fmrs). */
20366 do_vfp_nsyn_opcode ("fmrs");
20367 /* ARMv8.2 fp16 vmov.f16 instruction. */
20368 if (rs == NS_RH)
20369 do_scalar_fp16_v82_encode ();
20370 break;
20371
20372 case NS_HR:
20373 case NS_FR: /* case 13 (fmsr). */
20374 do_vfp_nsyn_opcode ("fmsr");
20375 /* ARMv8.2 fp16 vmov.f16 instruction. */
20376 if (rs == NS_HR)
20377 do_scalar_fp16_v82_encode ();
20378 break;
20379
20380 case NS_RRSS:
20381 do_mve_mov (0);
20382 break;
20383 case NS_SSRR:
20384 do_mve_mov (1);
20385 break;
20386
20387 /* The encoders for the fmrrs and fmsrr instructions expect three operands
20388 (one of which is a list), but we have parsed four. Do some fiddling to
20389 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
20390 expect. */
20391 case NS_RRFF: /* case 14 (fmrrs). */
20392 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20393 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20394 _(BAD_FPU));
20395 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
20396 _("VFP registers must be adjacent"));
20397 inst.operands[2].imm = 2;
20398 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
20399 do_vfp_nsyn_opcode ("fmrrs");
20400 break;
20401
20402 case NS_FFRR: /* case 15 (fmsrr). */
20403 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20404 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20405 _(BAD_FPU));
20406 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
20407 _("VFP registers must be adjacent"));
20408 inst.operands[1] = inst.operands[2];
20409 inst.operands[2] = inst.operands[3];
20410 inst.operands[0].imm = 2;
20411 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
20412 do_vfp_nsyn_opcode ("fmsrr");
20413 break;
20414
20415 case NS_NULL:
20416 /* neon_select_shape has determined that the instruction
20417 shape is wrong and has already set the error message. */
20418 break;
20419
20420 default:
20421 abort ();
20422 }
20423}
20424
20425static void
20426do_mve_movl (void)
20427{
20428 if (!(inst.operands[0].present && inst.operands[0].isquad
20429 && inst.operands[1].present && inst.operands[1].isquad
20430 && !inst.operands[2].present))
20431 {
20432 inst.instruction = 0;
20433 inst.cond = 0xb;
20434 if (thumb_mode)
20435 set_pred_insn_type (INSIDE_IT_INSN);
20436 do_neon_mov ();
20437 return;
20438 }
20439
20440 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20441 return;
20442
20443 if (inst.cond != COND_ALWAYS)
20444 inst.pred_insn_type = INSIDE_VPT_INSN;
20445
20446 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
20447 | N_S16 | N_U16 | N_KEY);
20448
20449 inst.instruction |= (et.type == NT_unsigned) << 28;
20450 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20451 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
20452 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20453 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20454 inst.instruction |= LOW4 (inst.operands[1].reg);
20455 inst.is_neon = 1;
20456}
20457
20458static void
20459do_neon_rshift_round_imm (void)
20460{
20461 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20462 return;
20463
20464 enum neon_shape rs;
20465 struct neon_type_el et;
20466
20467 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20468 {
20469 rs = neon_select_shape (NS_QQI, NS_NULL);
20470 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
20471 }
20472 else
20473 {
20474 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
20475 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
20476 }
20477 int imm = inst.operands[2].imm;
20478
20479 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
20480 if (imm == 0)
20481 {
20482 inst.operands[2].present = 0;
20483 do_neon_mov ();
20484 return;
20485 }
20486
20487 constraint (imm < 1 || (unsigned)imm > et.size,
20488 _("immediate out of range for shift"));
20489 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
20490 et.size - imm);
20491}
20492
20493static void
20494do_neon_movhf (void)
20495{
20496 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
20497 constraint (rs != NS_HH, _("invalid suffix"));
20498
20499 if (inst.cond != COND_ALWAYS)
20500 {
20501 if (thumb_mode)
20502 {
20503 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
20504 " the behaviour is UNPREDICTABLE"));
20505 }
20506 else
20507 {
20508 inst.error = BAD_COND;
20509 return;
20510 }
20511 }
20512
20513 do_vfp_sp_monadic ();
20514
20515 inst.is_neon = 1;
20516 inst.instruction |= 0xf0000000;
20517}
20518
20519static void
20520do_neon_movl (void)
20521{
20522 struct neon_type_el et = neon_check_type (2, NS_QD,
20523 N_EQK | N_DBL, N_SU_32 | N_KEY);
20524 unsigned sizebits = et.size >> 3;
20525 inst.instruction |= sizebits << 19;
20526 neon_two_same (0, et.type == NT_unsigned, -1);
20527}
20528
20529static void
20530do_neon_trn (void)
20531{
20532 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20533 struct neon_type_el et = neon_check_type (2, rs,
20534 N_EQK, N_8 | N_16 | N_32 | N_KEY);
20535 NEON_ENCODE (INTEGER, inst);
20536 neon_two_same (neon_quad (rs), 1, et.size);
20537}
20538
20539static void
20540do_neon_zip_uzp (void)
20541{
20542 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20543 struct neon_type_el et = neon_check_type (2, rs,
20544 N_EQK, N_8 | N_16 | N_32 | N_KEY);
20545 if (rs == NS_DD && et.size == 32)
20546 {
20547 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
20548 inst.instruction = N_MNEM_vtrn;
20549 do_neon_trn ();
20550 return;
20551 }
20552 neon_two_same (neon_quad (rs), 1, et.size);
20553}
20554
20555static void
20556do_neon_sat_abs_neg (void)
20557{
20558 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
20559 return;
20560
20561 enum neon_shape rs;
20562 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20563 rs = neon_select_shape (NS_QQ, NS_NULL);
20564 else
20565 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20566 struct neon_type_el et = neon_check_type (2, rs,
20567 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
20568 neon_two_same (neon_quad (rs), 1, et.size);
20569}
20570
20571static void
20572do_neon_pair_long (void)
20573{
20574 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20575 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
20576 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
20577 inst.instruction |= (et.type == NT_unsigned) << 7;
20578 neon_two_same (neon_quad (rs), 1, et.size);
20579}
20580
20581static void
20582do_neon_recip_est (void)
20583{
20584 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20585 struct neon_type_el et = neon_check_type (2, rs,
20586 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
20587 inst.instruction |= (et.type == NT_float) << 8;
20588 neon_two_same (neon_quad (rs), 1, et.size);
20589}
20590
20591static void
20592do_neon_cls (void)
20593{
20594 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20595 return;
20596
20597 enum neon_shape rs;
20598 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20599 rs = neon_select_shape (NS_QQ, NS_NULL);
20600 else
20601 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20602
20603 struct neon_type_el et = neon_check_type (2, rs,
20604 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
20605 neon_two_same (neon_quad (rs), 1, et.size);
20606}
20607
20608static void
20609do_neon_clz (void)
20610{
20611 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20612 return;
20613
20614 enum neon_shape rs;
20615 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20616 rs = neon_select_shape (NS_QQ, NS_NULL);
20617 else
20618 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20619
20620 struct neon_type_el et = neon_check_type (2, rs,
20621 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
20622 neon_two_same (neon_quad (rs), 1, et.size);
20623}
20624
20625static void
20626do_neon_cnt (void)
20627{
20628 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20629 struct neon_type_el et = neon_check_type (2, rs,
20630 N_EQK | N_INT, N_8 | N_KEY);
20631 neon_two_same (neon_quad (rs), 1, et.size);
20632}
20633
20634static void
20635do_neon_swp (void)
20636{
20637 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20638 neon_two_same (neon_quad (rs), 1, -1);
20639}
20640
20641static void
20642do_neon_tbl_tbx (void)
20643{
20644 unsigned listlenbits;
20645 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
20646
20647 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
20648 {
20649 first_error (_("bad list length for table lookup"));
20650 return;
20651 }
20652
20653 listlenbits = inst.operands[1].imm - 1;
20654 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20655 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20656 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20657 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20658 inst.instruction |= LOW4 (inst.operands[2].reg);
20659 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20660 inst.instruction |= listlenbits << 8;
20661
20662 neon_dp_fixup (&inst);
20663}
20664
20665static void
20666do_neon_ldm_stm (void)
20667{
20668 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
20669 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20670 _(BAD_FPU));
20671 /* P, U and L bits are part of bitmask. */
20672 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
20673 unsigned offsetbits = inst.operands[1].imm * 2;
20674
20675 if (inst.operands[1].issingle)
20676 {
20677 do_vfp_nsyn_ldm_stm (is_dbmode);
20678 return;
20679 }
20680
20681 constraint (is_dbmode && !inst.operands[0].writeback,
20682 _("writeback (!) must be used for VLDMDB and VSTMDB"));
20683
20684 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
20685 _("register list must contain at least 1 and at most 16 "
20686 "registers"));
20687
20688 inst.instruction |= inst.operands[0].reg << 16;
20689 inst.instruction |= inst.operands[0].writeback << 21;
20690 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
20691 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
20692
20693 inst.instruction |= offsetbits;
20694
20695 do_vfp_cond_or_thumb ();
20696}
20697
20698static void
20699do_vfp_nsyn_pop (void)
20700{
20701 nsyn_insert_sp ();
20702 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) {
20703 return do_vfp_nsyn_opcode ("vldm");
20704 }
20705
20706 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
20707 _(BAD_FPU));
20708
20709 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
20710 _("register list must contain at least 1 and at most 16 "
20711 "registers"));
20712
20713 if (inst.operands[1].issingle)
20714 do_vfp_nsyn_opcode ("fldmias");
20715 else
20716 do_vfp_nsyn_opcode ("fldmiad");
20717}
20718
20719static void
20720do_vfp_nsyn_push (void)
20721{
20722 nsyn_insert_sp ();
20723 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) {
20724 return do_vfp_nsyn_opcode ("vstmdb");
20725 }
20726
20727 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
20728 _(BAD_FPU));
20729
20730 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
20731 _("register list must contain at least 1 and at most 16 "
20732 "registers"));
20733
20734 if (inst.operands[1].issingle)
20735 do_vfp_nsyn_opcode ("fstmdbs");
20736 else
20737 do_vfp_nsyn_opcode ("fstmdbd");
20738}
20739
20740
20741static void
20742do_neon_ldr_str (void)
20743{
20744 int is_ldr = (inst.instruction & (1 << 20)) != 0;
20745
20746 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
20747 And is UNPREDICTABLE in thumb mode. */
20748 if (!is_ldr
20749 && inst.operands[1].reg == REG_PC
20750 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
20751 {
20752 if (thumb_mode)
20753 inst.error = _("Use of PC here is UNPREDICTABLE");
20754 else if (warn_on_deprecated)
20755 as_tsktsk (_("Use of PC here is deprecated"));
20756 }
20757
20758 if (inst.operands[0].issingle)
20759 {
20760 if (is_ldr)
20761 do_vfp_nsyn_opcode ("flds");
20762 else
20763 do_vfp_nsyn_opcode ("fsts");
20764
20765 /* ARMv8.2 vldr.16/vstr.16 instruction. */
20766 if (inst.vectype.el[0].size == 16)
20767 do_scalar_fp16_v82_encode ();
20768 }
20769 else
20770 {
20771 if (is_ldr)
20772 do_vfp_nsyn_opcode ("fldd");
20773 else
20774 do_vfp_nsyn_opcode ("fstd");
20775 }
20776}
20777
20778static void
20779do_t_vldr_vstr_sysreg (void)
20780{
20781 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
20782 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
20783
20784 /* Use of PC is UNPREDICTABLE. */
20785 if (inst.operands[1].reg == REG_PC)
20786 inst.error = _("Use of PC here is UNPREDICTABLE");
20787
20788 if (inst.operands[1].immisreg)
20789 inst.error = _("instruction does not accept register index");
20790
20791 if (!inst.operands[1].isreg)
20792 inst.error = _("instruction does not accept PC-relative addressing");
20793
20794 if (abs (inst.operands[1].imm) >= (1 << 7))
20795 inst.error = _("immediate value out of range");
20796
20797 inst.instruction = 0xec000f80;
20798 if (is_vldr)
20799 inst.instruction |= 1 << sysreg_vldr_bitno;
20800 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
20801 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
20802 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
20803}
20804
20805static void
20806do_vldr_vstr (void)
20807{
20808 bfd_boolean sysreg_op = !inst.operands[0].isreg;
20809
20810 /* VLDR/VSTR (System Register). */
20811 if (sysreg_op)
20812 {
20813 if (!mark_feature_used (&arm_ext_v8_1m_main))
20814 as_bad (_("Instruction not permitted on this architecture"));
20815
20816 do_t_vldr_vstr_sysreg ();
20817 }
20818 /* VLDR/VSTR. */
20819 else
20820 {
20821 if (!mark_feature_used (&fpu_vfp_ext_v1xd)
20822 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20823 as_bad (_("Instruction not permitted on this architecture"));
20824 do_neon_ldr_str ();
20825 }
20826}
20827
20828/* "interleave" version also handles non-interleaving register VLD1/VST1
20829 instructions. */
20830
20831static void
20832do_neon_ld_st_interleave (void)
20833{
20834 struct neon_type_el et = neon_check_type (1, NS_NULL,
20835 N_8 | N_16 | N_32 | N_64);
20836 unsigned alignbits = 0;
20837 unsigned idx;
20838 /* The bits in this table go:
20839 0: register stride of one (0) or two (1)
20840 1,2: register list length, minus one (1, 2, 3, 4).
20841 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
20842 We use -1 for invalid entries. */
20843 const int typetable[] =
20844 {
20845 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
20846 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
20847 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
20848 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
20849 };
20850 int typebits;
20851
20852 if (et.type == NT_invtype)
20853 return;
20854
20855 if (inst.operands[1].immisalign)
20856 switch (inst.operands[1].imm >> 8)
20857 {
20858 case 64: alignbits = 1; break;
20859 case 128:
20860 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
20861 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20862 goto bad_alignment;
20863 alignbits = 2;
20864 break;
20865 case 256:
20866 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20867 goto bad_alignment;
20868 alignbits = 3;
20869 break;
20870 default:
20871 bad_alignment:
20872 first_error (_("bad alignment"));
20873 return;
20874 }
20875
20876 inst.instruction |= alignbits << 4;
20877 inst.instruction |= neon_logbits (et.size) << 6;
20878
20879 /* Bits [4:6] of the immediate in a list specifier encode register stride
20880 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
20881 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
20882 up the right value for "type" in a table based on this value and the given
20883 list style, then stick it back. */
20884 idx = ((inst.operands[0].imm >> 4) & 7)
20885 | (((inst.instruction >> 8) & 3) << 3);
20886
20887 typebits = typetable[idx];
20888
20889 constraint (typebits == -1, _("bad list type for instruction"));
20890 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
20891 BAD_EL_TYPE);
20892
20893 inst.instruction &= ~0xf00;
20894 inst.instruction |= typebits << 8;
20895}
20896
20897/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
20898 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
20899 otherwise. The variable arguments are a list of pairs of legal (size, align)
20900 values, terminated with -1. */
20901
20902static int
20903neon_alignment_bit (int size, int align, int *do_alignment, ...)
20904{
20905 va_list ap;
20906 int result = FAIL, thissize, thisalign;
20907
20908 if (!inst.operands[1].immisalign)
20909 {
20910 *do_alignment = 0;
20911 return SUCCESS;
20912 }
20913
20914 va_start (ap, do_alignment);
20915
20916 do
20917 {
20918 thissize = va_arg (ap, int);
20919 if (thissize == -1)
20920 break;
20921 thisalign = va_arg (ap, int);
20922
20923 if (size == thissize && align == thisalign)
20924 result = SUCCESS;
20925 }
20926 while (result != SUCCESS);
20927
20928 va_end (ap);
20929
20930 if (result == SUCCESS)
20931 *do_alignment = 1;
20932 else
20933 first_error (_("unsupported alignment for instruction"));
20934
20935 return result;
20936}
20937
20938static void
20939do_neon_ld_st_lane (void)
20940{
20941 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
20942 int align_good, do_alignment = 0;
20943 int logsize = neon_logbits (et.size);
20944 int align = inst.operands[1].imm >> 8;
20945 int n = (inst.instruction >> 8) & 3;
20946 int max_el = 64 / et.size;
20947
20948 if (et.type == NT_invtype)
20949 return;
20950
20951 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
20952 _("bad list length"));
20953 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
20954 _("scalar index out of range"));
20955 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
20956 && et.size == 8,
20957 _("stride of 2 unavailable when element size is 8"));
20958
20959 switch (n)
20960 {
20961 case 0: /* VLD1 / VST1. */
20962 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
20963 32, 32, -1);
20964 if (align_good == FAIL)
20965 return;
20966 if (do_alignment)
20967 {
20968 unsigned alignbits = 0;
20969 switch (et.size)
20970 {
20971 case 16: alignbits = 0x1; break;
20972 case 32: alignbits = 0x3; break;
20973 default: ;
20974 }
20975 inst.instruction |= alignbits << 4;
20976 }
20977 break;
20978
20979 case 1: /* VLD2 / VST2. */
20980 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
20981 16, 32, 32, 64, -1);
20982 if (align_good == FAIL)
20983 return;
20984 if (do_alignment)
20985 inst.instruction |= 1 << 4;
20986 break;
20987
20988 case 2: /* VLD3 / VST3. */
20989 constraint (inst.operands[1].immisalign,
20990 _("can't use alignment with this instruction"));
20991 break;
20992
20993 case 3: /* VLD4 / VST4. */
20994 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
20995 16, 64, 32, 64, 32, 128, -1);
20996 if (align_good == FAIL)
20997 return;
20998 if (do_alignment)
20999 {
21000 unsigned alignbits = 0;
21001 switch (et.size)
21002 {
21003 case 8: alignbits = 0x1; break;
21004 case 16: alignbits = 0x1; break;
21005 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
21006 default: ;
21007 }
21008 inst.instruction |= alignbits << 4;
21009 }
21010 break;
21011
21012 default: ;
21013 }
21014
21015 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
21016 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
21017 inst.instruction |= 1 << (4 + logsize);
21018
21019 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
21020 inst.instruction |= logsize << 10;
21021}
21022
21023/* Encode single n-element structure to all lanes VLD<n> instructions. */
21024
21025static void
21026do_neon_ld_dup (void)
21027{
21028 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
21029 int align_good, do_alignment = 0;
21030
21031 if (et.type == NT_invtype)
21032 return;
21033
21034 switch ((inst.instruction >> 8) & 3)
21035 {
21036 case 0: /* VLD1. */
21037 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
21038 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
21039 &do_alignment, 16, 16, 32, 32, -1);
21040 if (align_good == FAIL)
21041 return;
21042 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
21043 {
21044 case 1: break;
21045 case 2: inst.instruction |= 1 << 5; break;
21046 default: first_error (_("bad list length")); return;
21047 }
21048 inst.instruction |= neon_logbits (et.size) << 6;
21049 break;
21050
21051 case 1: /* VLD2. */
21052 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
21053 &do_alignment, 8, 16, 16, 32, 32, 64,
21054 -1);
21055 if (align_good == FAIL)
21056 return;
21057 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
21058 _("bad list length"));
21059 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
21060 inst.instruction |= 1 << 5;
21061 inst.instruction |= neon_logbits (et.size) << 6;
21062 break;
21063
21064 case 2: /* VLD3. */
21065 constraint (inst.operands[1].immisalign,
21066 _("can't use alignment with this instruction"));
21067 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
21068 _("bad list length"));
21069 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
21070 inst.instruction |= 1 << 5;
21071 inst.instruction |= neon_logbits (et.size) << 6;
21072 break;
21073
21074 case 3: /* VLD4. */
21075 {
21076 int align = inst.operands[1].imm >> 8;
21077 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
21078 16, 64, 32, 64, 32, 128, -1);
21079 if (align_good == FAIL)
21080 return;
21081 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
21082 _("bad list length"));
21083 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
21084 inst.instruction |= 1 << 5;
21085 if (et.size == 32 && align == 128)
21086 inst.instruction |= 0x3 << 6;
21087 else
21088 inst.instruction |= neon_logbits (et.size) << 6;
21089 }
21090 break;
21091
21092 default: ;
21093 }
21094
21095 inst.instruction |= do_alignment << 4;
21096}
21097
21098/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
21099 apart from bits [11:4]. */
21100
21101static void
21102do_neon_ldx_stx (void)
21103{
21104 if (inst.operands[1].isreg)
21105 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
21106
21107 switch (NEON_LANE (inst.operands[0].imm))
21108 {
21109 case NEON_INTERLEAVE_LANES:
21110 NEON_ENCODE (INTERLV, inst);
21111 do_neon_ld_st_interleave ();
21112 break;
21113
21114 case NEON_ALL_LANES:
21115 NEON_ENCODE (DUP, inst);
21116 if (inst.instruction == N_INV)
21117 {
21118 first_error ("only loads support such operands");
21119 break;
21120 }
21121 do_neon_ld_dup ();
21122 break;
21123
21124 default:
21125 NEON_ENCODE (LANE, inst);
21126 do_neon_ld_st_lane ();
21127 }
21128
21129 /* L bit comes from bit mask. */
21130 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21131 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21132 inst.instruction |= inst.operands[1].reg << 16;
21133
21134 if (inst.operands[1].postind)
21135 {
21136 int postreg = inst.operands[1].imm & 0xf;
21137 constraint (!inst.operands[1].immisreg,
21138 _("post-index must be a register"));
21139 constraint (postreg == 0xd || postreg == 0xf,
21140 _("bad register for post-index"));
21141 inst.instruction |= postreg;
21142 }
21143 else
21144 {
21145 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
21146 constraint (inst.relocs[0].exp.X_op != O_constant
21147 || inst.relocs[0].exp.X_add_number != 0,
21148 BAD_ADDR_MODE);
21149
21150 if (inst.operands[1].writeback)
21151 {
21152 inst.instruction |= 0xd;
21153 }
21154 else
21155 inst.instruction |= 0xf;
21156 }
21157
21158 if (thumb_mode)
21159 inst.instruction |= 0xf9000000;
21160 else
21161 inst.instruction |= 0xf4000000;
21162}
21163
21164/* FP v8. */
21165static void
21166do_vfp_nsyn_fpv8 (enum neon_shape rs)
21167{
21168 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
21169 D register operands. */
21170 if (neon_shape_class[rs] == SC_DOUBLE)
21171 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
21172 _(BAD_FPU));
21173
21174 NEON_ENCODE (FPV8, inst);
21175
21176 if (rs == NS_FFF || rs == NS_HHH)
21177 {
21178 do_vfp_sp_dyadic ();
21179
21180 /* ARMv8.2 fp16 instruction. */
21181 if (rs == NS_HHH)
21182 do_scalar_fp16_v82_encode ();
21183 }
21184 else
21185 do_vfp_dp_rd_rn_rm ();
21186
21187 if (rs == NS_DDD)
21188 inst.instruction |= 0x100;
21189
21190 inst.instruction |= 0xf0000000;
21191}
21192
21193static void
21194do_vsel (void)
21195{
21196 set_pred_insn_type (OUTSIDE_PRED_INSN);
21197
21198 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
21199 first_error (_("invalid instruction shape"));
21200}
21201
21202static void
21203do_vmaxnm (void)
21204{
21205 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21206 set_pred_insn_type (OUTSIDE_PRED_INSN);
21207
21208 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
21209 return;
21210
21211 if (!check_simd_pred_availability (TRUE, NEON_CHECK_CC | NEON_CHECK_ARCH8))
21212 return;
21213
21214 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
21215}
21216
21217static void
21218do_vrint_1 (enum neon_cvt_mode mode)
21219{
21220 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
21221 struct neon_type_el et;
21222
21223 if (rs == NS_NULL)
21224 return;
21225
21226 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
21227 D register operands. */
21228 if (neon_shape_class[rs] == SC_DOUBLE)
21229 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
21230 _(BAD_FPU));
21231
21232 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
21233 | N_VFP);
21234 if (et.type != NT_invtype)
21235 {
21236 /* VFP encodings. */
21237 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
21238 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
21239 set_pred_insn_type (OUTSIDE_PRED_INSN);
21240
21241 NEON_ENCODE (FPV8, inst);
21242 if (rs == NS_FF || rs == NS_HH)
21243 do_vfp_sp_monadic ();
21244 else
21245 do_vfp_dp_rd_rm ();
21246
21247 switch (mode)
21248 {
21249 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
21250 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
21251 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
21252 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
21253 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
21254 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
21255 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
21256 default: abort ();
21257 }
21258
21259 inst.instruction |= (rs == NS_DD) << 8;
21260 do_vfp_cond_or_thumb ();
21261
21262 /* ARMv8.2 fp16 vrint instruction. */
21263 if (rs == NS_HH)
21264 do_scalar_fp16_v82_encode ();
21265 }
21266 else
21267 {
21268 /* Neon encodings (or something broken...). */
21269 inst.error = NULL;
21270 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
21271
21272 if (et.type == NT_invtype)
21273 return;
21274
21275 if (!check_simd_pred_availability (TRUE,
21276 NEON_CHECK_CC | NEON_CHECK_ARCH8))
21277 return;
21278
21279 NEON_ENCODE (FLOAT, inst);
21280
21281 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21282 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21283 inst.instruction |= LOW4 (inst.operands[1].reg);
21284 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
21285 inst.instruction |= neon_quad (rs) << 6;
21286 /* Mask off the original size bits and reencode them. */
21287 inst.instruction = ((inst.instruction & 0xfff3ffff)
21288 | neon_logbits (et.size) << 18);
21289
21290 switch (mode)
21291 {
21292 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
21293 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
21294 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
21295 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
21296 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
21297 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
21298 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
21299 default: abort ();
21300 }
21301
21302 if (thumb_mode)
21303 inst.instruction |= 0xfc000000;
21304 else
21305 inst.instruction |= 0xf0000000;
21306 }
21307}
21308
21309static void
21310do_vrintx (void)
21311{
21312 do_vrint_1 (neon_cvt_mode_x);
21313}
21314
21315static void
21316do_vrintz (void)
21317{
21318 do_vrint_1 (neon_cvt_mode_z);
21319}
21320
21321static void
21322do_vrintr (void)
21323{
21324 do_vrint_1 (neon_cvt_mode_r);
21325}
21326
21327static void
21328do_vrinta (void)
21329{
21330 do_vrint_1 (neon_cvt_mode_a);
21331}
21332
21333static void
21334do_vrintn (void)
21335{
21336 do_vrint_1 (neon_cvt_mode_n);
21337}
21338
21339static void
21340do_vrintp (void)
21341{
21342 do_vrint_1 (neon_cvt_mode_p);
21343}
21344
21345static void
21346do_vrintm (void)
21347{
21348 do_vrint_1 (neon_cvt_mode_m);
21349}
21350
21351static unsigned
21352neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
21353{
21354 unsigned regno = NEON_SCALAR_REG (opnd);
21355 unsigned elno = NEON_SCALAR_INDEX (opnd);
21356
21357 if (elsize == 16 && elno < 2 && regno < 16)
21358 return regno | (elno << 4);
21359 else if (elsize == 32 && elno == 0)
21360 return regno;
21361
21362 first_error (_("scalar out of range"));
21363 return 0;
21364}
21365
21366static void
21367do_vcmla (void)
21368{
21369 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
21370 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
21371 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
21372 constraint (inst.relocs[0].exp.X_op != O_constant,
21373 _("expression too complex"));
21374 unsigned rot = inst.relocs[0].exp.X_add_number;
21375 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
21376 _("immediate out of range"));
21377 rot /= 90;
21378
21379 if (!check_simd_pred_availability (TRUE,
21380 NEON_CHECK_ARCH8 | NEON_CHECK_CC))
21381 return;
21382
21383 if (inst.operands[2].isscalar)
21384 {
21385 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
21386 first_error (_("invalid instruction shape"));
21387 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
21388 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
21389 N_KEY | N_F16 | N_F32).size;
21390 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
21391 inst.is_neon = 1;
21392 inst.instruction = 0xfe000800;
21393 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21394 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21395 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
21396 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
21397 inst.instruction |= LOW4 (m);
21398 inst.instruction |= HI1 (m) << 5;
21399 inst.instruction |= neon_quad (rs) << 6;
21400 inst.instruction |= rot << 20;
21401 inst.instruction |= (size == 32) << 23;
21402 }
21403 else
21404 {
21405 enum neon_shape rs;
21406 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
21407 rs = neon_select_shape (NS_QQQI, NS_NULL);
21408 else
21409 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
21410
21411 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
21412 N_KEY | N_F16 | N_F32).size;
21413 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
21414 && (inst.operands[0].reg == inst.operands[1].reg
21415 || inst.operands[0].reg == inst.operands[2].reg))
21416 as_tsktsk (BAD_MVE_SRCDEST);
21417
21418 neon_three_same (neon_quad (rs), 0, -1);
21419 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
21420 inst.instruction |= 0xfc200800;
21421 inst.instruction |= rot << 23;
21422 inst.instruction |= (size == 32) << 20;
21423 }
21424}
21425
21426static void
21427do_vcadd (void)
21428{
21429 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
21430 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
21431 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
21432 constraint (inst.relocs[0].exp.X_op != O_constant,
21433 _("expression too complex"));
21434
21435 unsigned rot = inst.relocs[0].exp.X_add_number;
21436 constraint (rot != 90 && rot != 270, _("immediate out of range"));
21437 enum neon_shape rs;
21438 struct neon_type_el et;
21439 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21440 {
21441 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
21442 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
21443 }
21444 else
21445 {
21446 rs = neon_select_shape (NS_QQQI, NS_NULL);
21447 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
21448 | N_I16 | N_I32);
21449 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
21450 as_tsktsk (_("Warning: 32-bit element size and same first and third "
21451 "operand makes instruction UNPREDICTABLE"));
21452 }
21453
21454 if (et.type == NT_invtype)
21455 return;
21456
21457 if (!check_simd_pred_availability (et.type == NT_float,
21458 NEON_CHECK_ARCH8 | NEON_CHECK_CC))
21459 return;
21460
21461 if (et.type == NT_float)
21462 {
21463 neon_three_same (neon_quad (rs), 0, -1);
21464 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
21465 inst.instruction |= 0xfc800800;
21466 inst.instruction |= (rot == 270) << 24;
21467 inst.instruction |= (et.size == 32) << 20;
21468 }
21469 else
21470 {
21471 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
21472 inst.instruction = 0xfe000f00;
21473 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21474 inst.instruction |= neon_logbits (et.size) << 20;
21475 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
21476 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21477 inst.instruction |= (rot == 270) << 12;
21478 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
21479 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
21480 inst.instruction |= LOW4 (inst.operands[2].reg);
21481 inst.is_neon = 1;
21482 }
21483}
21484
21485/* Dot Product instructions encoding support. */
21486
21487static void
21488do_neon_dotproduct (int unsigned_p)
21489{
21490 enum neon_shape rs;
21491 unsigned scalar_oprd2 = 0;
21492 int high8;
21493
21494 if (inst.cond != COND_ALWAYS)
21495 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
21496 "is UNPREDICTABLE"));
21497
21498 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
21499 _(BAD_FPU));
21500
21501 /* Dot Product instructions are in three-same D/Q register format or the third
21502 operand can be a scalar index register. */
21503 if (inst.operands[2].isscalar)
21504 {
21505 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
21506 high8 = 0xfe000000;
21507 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
21508 }
21509 else
21510 {
21511 high8 = 0xfc000000;
21512 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
21513 }
21514
21515 if (unsigned_p)
21516 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
21517 else
21518 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
21519
21520 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
21521 Product instruction, so we pass 0 as the "ubit" parameter. And the
21522 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
21523 neon_three_same (neon_quad (rs), 0, 32);
21524
21525 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
21526 different NEON three-same encoding. */
21527 inst.instruction &= 0x00ffffff;
21528 inst.instruction |= high8;
21529 /* Encode 'U' bit which indicates signedness. */
21530 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
21531 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
21532 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
21533 the instruction encoding. */
21534 if (inst.operands[2].isscalar)
21535 {
21536 inst.instruction &= 0xffffffd0;
21537 inst.instruction |= LOW4 (scalar_oprd2);
21538 inst.instruction |= HI1 (scalar_oprd2) << 5;
21539 }
21540}
21541
21542/* Dot Product instructions for signed integer. */
21543
21544static void
21545do_neon_dotproduct_s (void)
21546{
21547 return do_neon_dotproduct (0);
21548}
21549
21550/* Dot Product instructions for unsigned integer. */
21551
21552static void
21553do_neon_dotproduct_u (void)
21554{
21555 return do_neon_dotproduct (1);
21556}
21557
21558static void
21559do_vusdot (void)
21560{
21561 enum neon_shape rs;
21562 set_pred_insn_type (OUTSIDE_PRED_INSN);
21563 if (inst.operands[2].isscalar)
21564 {
21565 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
21566 neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_KEY);
21567
21568 inst.instruction |= (1 << 25);
21569 int index = inst.operands[2].reg & 0xf;
21570 constraint ((index != 1 && index != 0), _("index must be 0 or 1"));
21571 inst.operands[2].reg >>= 4;
21572 constraint (!(inst.operands[2].reg < 16),
21573 _("indexed register must be less than 16"));
21574 neon_three_args (rs == NS_QQS);
21575 inst.instruction |= (index << 5);
21576 }
21577 else
21578 {
21579 inst.instruction |= (1 << 21);
21580 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
21581 neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_KEY);
21582 neon_three_args (rs == NS_QQQ);
21583 }
21584}
21585
21586static void
21587do_vsudot (void)
21588{
21589 enum neon_shape rs;
21590 set_pred_insn_type (OUTSIDE_PRED_INSN);
21591 if (inst.operands[2].isscalar)
21592 {
21593 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
21594 neon_check_type (3, rs, N_EQK, N_EQK, N_U8 | N_KEY);
21595
21596 inst.instruction |= (1 << 25);
21597 int index = inst.operands[2].reg & 0xf;
21598 constraint ((index != 1 && index != 0), _("index must be 0 or 1"));
21599 inst.operands[2].reg >>= 4;
21600 constraint (!(inst.operands[2].reg < 16),
21601 _("indexed register must be less than 16"));
21602 neon_three_args (rs == NS_QQS);
21603 inst.instruction |= (index << 5);
21604 }
21605}
21606
21607static void
21608do_vsmmla (void)
21609{
21610 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
21611 neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_KEY);
21612
21613 set_pred_insn_type (OUTSIDE_PRED_INSN);
21614
21615 neon_three_args (1);
21616
21617}
21618
21619static void
21620do_vummla (void)
21621{
21622 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
21623 neon_check_type (3, rs, N_EQK, N_EQK, N_U8 | N_KEY);
21624
21625 set_pred_insn_type (OUTSIDE_PRED_INSN);
21626
21627 neon_three_args (1);
21628
21629}
21630
21631static void
21632check_cde_operand (size_t index, int is_dual)
21633{
21634 unsigned Rx = inst.operands[index].reg;
21635 bfd_boolean isvec = inst.operands[index].isvec;
21636 if (is_dual == 0 && thumb_mode)
21637 constraint (
21638 !((Rx <= 14 && Rx != 13) || (Rx == REG_PC && isvec)),
21639 _("Register must be r0-r14 except r13, or APSR_nzcv."));
21640 else
21641 constraint ( !((Rx <= 10 && Rx % 2 == 0 )),
21642 _("Register must be an even register between r0-r10."));
21643}
21644
21645static bfd_boolean
21646cde_coproc_enabled (unsigned coproc)
21647{
21648 switch (coproc)
21649 {
21650 case 0: return mark_feature_used (&arm_ext_cde0);
21651 case 1: return mark_feature_used (&arm_ext_cde1);
21652 case 2: return mark_feature_used (&arm_ext_cde2);
21653 case 3: return mark_feature_used (&arm_ext_cde3);
21654 case 4: return mark_feature_used (&arm_ext_cde4);
21655 case 5: return mark_feature_used (&arm_ext_cde5);
21656 case 6: return mark_feature_used (&arm_ext_cde6);
21657 case 7: return mark_feature_used (&arm_ext_cde7);
21658 default: return FALSE;
21659 }
21660}
21661
21662#define cde_coproc_pos 8
21663static void
21664cde_handle_coproc (void)
21665{
21666 unsigned coproc = inst.operands[0].reg;
21667 constraint (coproc > 7, _("CDE Coprocessor must be in range 0-7"));
21668 constraint (!(cde_coproc_enabled (coproc)), BAD_CDE_COPROC);
21669 inst.instruction |= coproc << cde_coproc_pos;
21670}
21671#undef cde_coproc_pos
21672
21673static void
21674cxn_handle_predication (bfd_boolean is_accum)
21675{
21676 if (is_accum && conditional_insn ())
21677 set_pred_insn_type (INSIDE_IT_INSN);
21678 else if (conditional_insn ())
21679 /* conditional_insn essentially checks for a suffix, not whether the
21680 instruction is inside an IT block or not.
21681 The non-accumulator versions should not have suffixes. */
21682 inst.error = BAD_SYNTAX;
21683 else
21684 set_pred_insn_type (OUTSIDE_PRED_INSN);
21685}
21686
21687static void
21688do_custom_instruction_1 (int is_dual, bfd_boolean is_accum)
21689{
21690
21691 constraint (!mark_feature_used (&arm_ext_cde), _(BAD_CDE));
21692
21693 unsigned imm, Rd;
21694
21695 Rd = inst.operands[1].reg;
21696 check_cde_operand (1, is_dual);
21697
21698 if (is_dual == 1)
21699 {
21700 constraint (inst.operands[2].reg != Rd + 1,
21701 _("cx1d requires consecutive destination registers."));
21702 imm = inst.operands[3].imm;
21703 }
21704 else if (is_dual == 0)
21705 imm = inst.operands[2].imm;
21706 else
21707 abort ();
21708
21709 inst.instruction |= Rd << 12;
21710 inst.instruction |= (imm & 0x1F80) << 9;
21711 inst.instruction |= (imm & 0x0040) << 1;
21712 inst.instruction |= (imm & 0x003f);
21713
21714 cde_handle_coproc ();
21715 cxn_handle_predication (is_accum);
21716}
21717
21718static void
21719do_custom_instruction_2 (int is_dual, bfd_boolean is_accum)
21720{
21721
21722 constraint (!mark_feature_used (&arm_ext_cde), _(BAD_CDE));
21723
21724 unsigned imm, Rd, Rn;
21725
21726 Rd = inst.operands[1].reg;
21727
21728 if (is_dual == 1)
21729 {
21730 constraint (inst.operands[2].reg != Rd + 1,
21731 _("cx2d requires consecutive destination registers."));
21732 imm = inst.operands[4].imm;
21733 Rn = inst.operands[3].reg;
21734 }
21735 else if (is_dual == 0)
21736 {
21737 imm = inst.operands[3].imm;
21738 Rn = inst.operands[2].reg;
21739 }
21740 else
21741 abort ();
21742
21743 check_cde_operand (2 + is_dual, /* is_dual = */0);
21744 check_cde_operand (1, is_dual);
21745
21746 inst.instruction |= Rd << 12;
21747 inst.instruction |= Rn << 16;
21748
21749 inst.instruction |= (imm & 0x0380) << 13;
21750 inst.instruction |= (imm & 0x0040) << 1;
21751 inst.instruction |= (imm & 0x003f);
21752
21753 cde_handle_coproc ();
21754 cxn_handle_predication (is_accum);
21755}
21756
21757static void
21758do_custom_instruction_3 (int is_dual, bfd_boolean is_accum)
21759{
21760
21761 constraint (!mark_feature_used (&arm_ext_cde), _(BAD_CDE));
21762
21763 unsigned imm, Rd, Rn, Rm;
21764
21765 Rd = inst.operands[1].reg;
21766
21767 if (is_dual == 1)
21768 {
21769 constraint (inst.operands[2].reg != Rd + 1,
21770 _("cx3d requires consecutive destination registers."));
21771 imm = inst.operands[5].imm;
21772 Rn = inst.operands[3].reg;
21773 Rm = inst.operands[4].reg;
21774 }
21775 else if (is_dual == 0)
21776 {
21777 imm = inst.operands[4].imm;
21778 Rn = inst.operands[2].reg;
21779 Rm = inst.operands[3].reg;
21780 }
21781 else
21782 abort ();
21783
21784 check_cde_operand (1, is_dual);
21785 check_cde_operand (2 + is_dual, /* is_dual = */0);
21786 check_cde_operand (3 + is_dual, /* is_dual = */0);
21787
21788 inst.instruction |= Rd;
21789 inst.instruction |= Rn << 16;
21790 inst.instruction |= Rm << 12;
21791
21792 inst.instruction |= (imm & 0x0038) << 17;
21793 inst.instruction |= (imm & 0x0004) << 5;
21794 inst.instruction |= (imm & 0x0003) << 4;
21795
21796 cde_handle_coproc ();
21797 cxn_handle_predication (is_accum);
21798}
21799
21800static void
21801do_cx1 (void)
21802{
21803 return do_custom_instruction_1 (0, 0);
21804}
21805
21806static void
21807do_cx1a (void)
21808{
21809 return do_custom_instruction_1 (0, 1);
21810}
21811
21812static void
21813do_cx1d (void)
21814{
21815 return do_custom_instruction_1 (1, 0);
21816}
21817
21818static void
21819do_cx1da (void)
21820{
21821 return do_custom_instruction_1 (1, 1);
21822}
21823
21824static void
21825do_cx2 (void)
21826{
21827 return do_custom_instruction_2 (0, 0);
21828}
21829
21830static void
21831do_cx2a (void)
21832{
21833 return do_custom_instruction_2 (0, 1);
21834}
21835
21836static void
21837do_cx2d (void)
21838{
21839 return do_custom_instruction_2 (1, 0);
21840}
21841
21842static void
21843do_cx2da (void)
21844{
21845 return do_custom_instruction_2 (1, 1);
21846}
21847
21848static void
21849do_cx3 (void)
21850{
21851 return do_custom_instruction_3 (0, 0);
21852}
21853
21854static void
21855do_cx3a (void)
21856{
21857 return do_custom_instruction_3 (0, 1);
21858}
21859
21860static void
21861do_cx3d (void)
21862{
21863 return do_custom_instruction_3 (1, 0);
21864}
21865
21866static void
21867do_cx3da (void)
21868{
21869 return do_custom_instruction_3 (1, 1);
21870}
21871
21872static void
21873vcx_assign_vec_d (unsigned regnum)
21874{
21875 inst.instruction |= HI4 (regnum) << 12;
21876 inst.instruction |= LOW1 (regnum) << 22;
21877}
21878
21879static void
21880vcx_assign_vec_m (unsigned regnum)
21881{
21882 inst.instruction |= HI4 (regnum);
21883 inst.instruction |= LOW1 (regnum) << 5;
21884}
21885
21886static void
21887vcx_assign_vec_n (unsigned regnum)
21888{
21889 inst.instruction |= HI4 (regnum) << 16;
21890 inst.instruction |= LOW1 (regnum) << 7;
21891}
21892
21893enum vcx_reg_type {
21894 q_reg,
21895 d_reg,
21896 s_reg
21897};
21898
21899static enum vcx_reg_type
21900vcx_get_reg_type (enum neon_shape ns)
21901{
21902 gas_assert (ns == NS_PQI
21903 || ns == NS_PDI
21904 || ns == NS_PFI
21905 || ns == NS_PQQI
21906 || ns == NS_PDDI
21907 || ns == NS_PFFI
21908 || ns == NS_PQQQI
21909 || ns == NS_PDDDI
21910 || ns == NS_PFFFI);
21911 if (ns == NS_PQI || ns == NS_PQQI || ns == NS_PQQQI)
21912 return q_reg;
21913 if (ns == NS_PDI || ns == NS_PDDI || ns == NS_PDDDI)
21914 return d_reg;
21915 return s_reg;
21916}
21917
21918#define vcx_size_pos 24
21919#define vcx_vec_pos 6
21920static unsigned
21921vcx_handle_shape (enum vcx_reg_type reg_type)
21922{
21923 unsigned mult = 2;
21924 if (reg_type == q_reg)
21925 inst.instruction |= 1 << vcx_vec_pos;
21926 else if (reg_type == d_reg)
21927 inst.instruction |= 1 << vcx_size_pos;
21928 else
21929 mult = 1;
21930 /* NOTE:
21931 The documentation says that the Q registers are encoded as 2*N in the D:Vd
21932 bits (or equivalent for N and M registers).
21933 Similarly the D registers are encoded as N in D:Vd bits.
21934 While the S registers are encoded as N in the Vd:D bits.
21935
21936 Taking into account the maximum values of these registers we can see a
21937 nicer pattern for calculation:
21938 Q -> 7, D -> 15, S -> 31
21939
21940 If we say that everything is encoded in the Vd:D bits, then we can say
21941 that Q is encoded as 4*N, and D is encoded as 2*N.
21942 This way the bits will end up the same, and calculation is simpler.
21943 (calculation is now:
21944 1. Multiply by a number determined by the register letter.
21945 2. Encode resulting number in Vd:D bits.)
21946
21947 This is made a little more complicated by automatic handling of 'Q'
21948 registers elsewhere, which means the register number is already 2*N where
21949 N is the number the user wrote after the register letter.
21950 */
21951 return mult;
21952}
21953#undef vcx_vec_pos
21954#undef vcx_size_pos
21955
21956static void
21957vcx_ensure_register_in_range (unsigned R, enum vcx_reg_type reg_type)
21958{
21959 if (reg_type == q_reg)
21960 {
21961 gas_assert (R % 2 == 0);
21962 constraint (R >= 16, _("'q' register must be in range 0-7"));
21963 }
21964 else if (reg_type == d_reg)
21965 constraint (R >= 16, _("'d' register must be in range 0-15"));
21966 else
21967 constraint (R >= 32, _("'s' register must be in range 0-31"));
21968}
21969
21970static void (*vcx_assign_vec[3]) (unsigned) = {
21971 vcx_assign_vec_d,
21972 vcx_assign_vec_m,
21973 vcx_assign_vec_n
21974};
21975
21976static void
21977vcx_handle_register_arguments (unsigned num_registers,
21978 enum vcx_reg_type reg_type)
21979{
21980 unsigned R, i;
21981 unsigned reg_mult = vcx_handle_shape (reg_type);
21982 for (i = 0; i < num_registers; i++)
21983 {
21984 R = inst.operands[i+1].reg;
21985 vcx_ensure_register_in_range (R, reg_type);
21986 if (num_registers == 3 && i > 0)
21987 {
21988 if (i == 2)
21989 vcx_assign_vec[1] (R * reg_mult);
21990 else
21991 vcx_assign_vec[2] (R * reg_mult);
21992 continue;
21993 }
21994 vcx_assign_vec[i](R * reg_mult);
21995 }
21996}
21997
21998static void
21999vcx_handle_insn_block (enum vcx_reg_type reg_type)
22000{
22001 if (reg_type == q_reg)
22002 if (inst.cond > COND_ALWAYS)
22003 inst.pred_insn_type = INSIDE_VPT_INSN;
22004 else
22005 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
22006 else if (inst.cond == COND_ALWAYS)
22007 inst.pred_insn_type = OUTSIDE_PRED_INSN;
22008 else
22009 inst.error = BAD_NOT_IT;
22010}
22011
22012static void
22013vcx_handle_common_checks (unsigned num_args, enum neon_shape rs)
22014{
22015 constraint (!mark_feature_used (&arm_ext_cde), _(BAD_CDE));
22016 cde_handle_coproc ();
22017 enum vcx_reg_type reg_type = vcx_get_reg_type (rs);
22018 vcx_handle_register_arguments (num_args, reg_type);
22019 vcx_handle_insn_block (reg_type);
22020 if (reg_type == q_reg)
22021 constraint (!mark_feature_used (&mve_ext),
22022 _("vcx instructions with Q registers require MVE"));
22023 else
22024 constraint (!(ARM_FSET_CPU_SUBSET (armv8m_fp, cpu_variant)
22025 && mark_feature_used (&armv8m_fp))
22026 && !mark_feature_used (&mve_ext),
22027 _("vcx instructions with S or D registers require either MVE"
22028 " or Armv8-M floating point etension."));
22029}
22030
22031static void
22032do_vcx1 (void)
22033{
22034 enum neon_shape rs = neon_select_shape (NS_PQI, NS_PDI, NS_PFI, NS_NULL);
22035 vcx_handle_common_checks (1, rs);
22036
22037 unsigned imm = inst.operands[2].imm;
22038 inst.instruction |= (imm & 0x03f);
22039 inst.instruction |= (imm & 0x040) << 1;
22040 inst.instruction |= (imm & 0x780) << 9;
22041 if (rs != NS_PQI)
22042 constraint (imm >= 2048,
22043 _("vcx1 with S or D registers takes immediate within 0-2047"));
22044 inst.instruction |= (imm & 0x800) << 13;
22045}
22046
22047static void
22048do_vcx2 (void)
22049{
22050 enum neon_shape rs = neon_select_shape (NS_PQQI, NS_PDDI, NS_PFFI, NS_NULL);
22051 vcx_handle_common_checks (2, rs);
22052
22053 unsigned imm = inst.operands[3].imm;
22054 inst.instruction |= (imm & 0x01) << 4;
22055 inst.instruction |= (imm & 0x02) << 6;
22056 inst.instruction |= (imm & 0x3c) << 14;
22057 if (rs != NS_PQQI)
22058 constraint (imm >= 64,
22059 _("vcx2 with S or D registers takes immediate within 0-63"));
22060 inst.instruction |= (imm & 0x40) << 18;
22061}
22062
22063static void
22064do_vcx3 (void)
22065{
22066 enum neon_shape rs = neon_select_shape (NS_PQQQI, NS_PDDDI, NS_PFFFI, NS_NULL);
22067 vcx_handle_common_checks (3, rs);
22068
22069 unsigned imm = inst.operands[4].imm;
22070 inst.instruction |= (imm & 0x1) << 4;
22071 inst.instruction |= (imm & 0x6) << 19;
22072 if (rs != NS_PQQQI)
22073 constraint (imm >= 8,
22074 _("vcx2 with S or D registers takes immediate within 0-7"));
22075 inst.instruction |= (imm & 0x8) << 21;
22076}
22077
22078/* Crypto v1 instructions. */
22079static void
22080do_crypto_2op_1 (unsigned elttype, int op)
22081{
22082 set_pred_insn_type (OUTSIDE_PRED_INSN);
22083
22084 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
22085 == NT_invtype)
22086 return;
22087
22088 inst.error = NULL;
22089
22090 NEON_ENCODE (INTEGER, inst);
22091 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
22092 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
22093 inst.instruction |= LOW4 (inst.operands[1].reg);
22094 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
22095 if (op != -1)
22096 inst.instruction |= op << 6;
22097
22098 if (thumb_mode)
22099 inst.instruction |= 0xfc000000;
22100 else
22101 inst.instruction |= 0xf0000000;
22102}
22103
22104static void
22105do_crypto_3op_1 (int u, int op)
22106{
22107 set_pred_insn_type (OUTSIDE_PRED_INSN);
22108
22109 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
22110 N_32 | N_UNT | N_KEY).type == NT_invtype)
22111 return;
22112
22113 inst.error = NULL;
22114
22115 NEON_ENCODE (INTEGER, inst);
22116 neon_three_same (1, u, 8 << op);
22117}
22118
22119static void
22120do_aese (void)
22121{
22122 do_crypto_2op_1 (N_8, 0);
22123}
22124
22125static void
22126do_aesd (void)
22127{
22128 do_crypto_2op_1 (N_8, 1);
22129}
22130
22131static void
22132do_aesmc (void)
22133{
22134 do_crypto_2op_1 (N_8, 2);
22135}
22136
22137static void
22138do_aesimc (void)
22139{
22140 do_crypto_2op_1 (N_8, 3);
22141}
22142
22143static void
22144do_sha1c (void)
22145{
22146 do_crypto_3op_1 (0, 0);
22147}
22148
22149static void
22150do_sha1p (void)
22151{
22152 do_crypto_3op_1 (0, 1);
22153}
22154
22155static void
22156do_sha1m (void)
22157{
22158 do_crypto_3op_1 (0, 2);
22159}
22160
22161static void
22162do_sha1su0 (void)
22163{
22164 do_crypto_3op_1 (0, 3);
22165}
22166
22167static void
22168do_sha256h (void)
22169{
22170 do_crypto_3op_1 (1, 0);
22171}
22172
22173static void
22174do_sha256h2 (void)
22175{
22176 do_crypto_3op_1 (1, 1);
22177}
22178
22179static void
22180do_sha256su1 (void)
22181{
22182 do_crypto_3op_1 (1, 2);
22183}
22184
22185static void
22186do_sha1h (void)
22187{
22188 do_crypto_2op_1 (N_32, -1);
22189}
22190
22191static void
22192do_sha1su1 (void)
22193{
22194 do_crypto_2op_1 (N_32, 0);
22195}
22196
22197static void
22198do_sha256su0 (void)
22199{
22200 do_crypto_2op_1 (N_32, 1);
22201}
22202
22203static void
22204do_crc32_1 (unsigned int poly, unsigned int sz)
22205{
22206 unsigned int Rd = inst.operands[0].reg;
22207 unsigned int Rn = inst.operands[1].reg;
22208 unsigned int Rm = inst.operands[2].reg;
22209
22210 set_pred_insn_type (OUTSIDE_PRED_INSN);
22211 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
22212 inst.instruction |= LOW4 (Rn) << 16;
22213 inst.instruction |= LOW4 (Rm);
22214 inst.instruction |= sz << (thumb_mode ? 4 : 21);
22215 inst.instruction |= poly << (thumb_mode ? 20 : 9);
22216
22217 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
22218 as_warn (UNPRED_REG ("r15"));
22219}
22220
22221static void
22222do_crc32b (void)
22223{
22224 do_crc32_1 (0, 0);
22225}
22226
22227static void
22228do_crc32h (void)
22229{
22230 do_crc32_1 (0, 1);
22231}
22232
22233static void
22234do_crc32w (void)
22235{
22236 do_crc32_1 (0, 2);
22237}
22238
22239static void
22240do_crc32cb (void)
22241{
22242 do_crc32_1 (1, 0);
22243}
22244
22245static void
22246do_crc32ch (void)
22247{
22248 do_crc32_1 (1, 1);
22249}
22250
22251static void
22252do_crc32cw (void)
22253{
22254 do_crc32_1 (1, 2);
22255}
22256
22257static void
22258do_vjcvt (void)
22259{
22260 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
22261 _(BAD_FPU));
22262 neon_check_type (2, NS_FD, N_S32, N_F64);
22263 do_vfp_sp_dp_cvt ();
22264 do_vfp_cond_or_thumb ();
22265}
22266
22267static void
22268do_vdot (void)
22269{
22270 enum neon_shape rs;
22271 constraint (!mark_feature_used (&fpu_neon_ext_armv8), _(BAD_FPU));
22272 set_pred_insn_type (OUTSIDE_PRED_INSN);
22273 if (inst.operands[2].isscalar)
22274 {
22275 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
22276 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
22277
22278 inst.instruction |= (1 << 25);
22279 int index = inst.operands[2].reg & 0xf;
22280 constraint ((index != 1 && index != 0), _("index must be 0 or 1"));
22281 inst.operands[2].reg >>= 4;
22282 constraint (!(inst.operands[2].reg < 16),
22283 _("indexed register must be less than 16"));
22284 neon_three_args (rs == NS_QQS);
22285 inst.instruction |= (index << 5);
22286 }
22287 else
22288 {
22289 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
22290 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
22291 neon_three_args (rs == NS_QQQ);
22292 }
22293}
22294
22295static void
22296do_vmmla (void)
22297{
22298 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
22299 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
22300
22301 constraint (!mark_feature_used (&fpu_neon_ext_armv8), _(BAD_FPU));
22302 set_pred_insn_type (OUTSIDE_PRED_INSN);
22303
22304 neon_three_args (1);
22305}
22306
22307\f
22308/* Overall per-instruction processing. */
22309
22310/* We need to be able to fix up arbitrary expressions in some statements.
22311 This is so that we can handle symbols that are an arbitrary distance from
22312 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
22313 which returns part of an address in a form which will be valid for
22314 a data instruction. We do this by pushing the expression into a symbol
22315 in the expr_section, and creating a fix for that. */
22316
22317static void
22318fix_new_arm (fragS * frag,
22319 int where,
22320 short int size,
22321 expressionS * exp,
22322 int pc_rel,
22323 int reloc)
22324{
22325 fixS * new_fix;
22326
22327 switch (exp->X_op)
22328 {
22329 case O_constant:
22330 if (pc_rel)
22331 {
22332 /* Create an absolute valued symbol, so we have something to
22333 refer to in the object file. Unfortunately for us, gas's
22334 generic expression parsing will already have folded out
22335 any use of .set foo/.type foo %function that may have
22336 been used to set type information of the target location,
22337 that's being specified symbolically. We have to presume
22338 the user knows what they are doing. */
22339 char name[16 + 8];
22340 symbolS *symbol;
22341
22342 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
22343
22344 symbol = symbol_find_or_make (name);
22345 S_SET_SEGMENT (symbol, absolute_section);
22346 symbol_set_frag (symbol, &zero_address_frag);
22347 S_SET_VALUE (symbol, exp->X_add_number);
22348 exp->X_op = O_symbol;
22349 exp->X_add_symbol = symbol;
22350 exp->X_add_number = 0;
22351 }
22352 /* FALLTHROUGH */
22353 case O_symbol:
22354 case O_add:
22355 case O_subtract:
22356 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
22357 (enum bfd_reloc_code_real) reloc);
22358 break;
22359
22360 default:
22361 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
22362 pc_rel, (enum bfd_reloc_code_real) reloc);
22363 break;
22364 }
22365
22366 /* Mark whether the fix is to a THUMB instruction, or an ARM
22367 instruction. */
22368 new_fix->tc_fix_data = thumb_mode;
22369}
22370
22371/* Create a frg for an instruction requiring relaxation. */
22372static void
22373output_relax_insn (void)
22374{
22375 char * to;
22376 symbolS *sym;
22377 int offset;
22378
22379 /* The size of the instruction is unknown, so tie the debug info to the
22380 start of the instruction. */
22381 dwarf2_emit_insn (0);
22382
22383 switch (inst.relocs[0].exp.X_op)
22384 {
22385 case O_symbol:
22386 sym = inst.relocs[0].exp.X_add_symbol;
22387 offset = inst.relocs[0].exp.X_add_number;
22388 break;
22389 case O_constant:
22390 sym = NULL;
22391 offset = inst.relocs[0].exp.X_add_number;
22392 break;
22393 default:
22394 sym = make_expr_symbol (&inst.relocs[0].exp);
22395 offset = 0;
22396 break;
22397 }
22398 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
22399 inst.relax, sym, offset, NULL/*offset, opcode*/);
22400 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
22401}
22402
22403/* Write a 32-bit thumb instruction to buf. */
22404static void
22405put_thumb32_insn (char * buf, unsigned long insn)
22406{
22407 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
22408 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
22409}
22410
22411static void
22412output_inst (const char * str)
22413{
22414 char * to = NULL;
22415
22416 if (inst.error)
22417 {
22418 as_bad ("%s -- `%s'", inst.error, str);
22419 return;
22420 }
22421 if (inst.relax)
22422 {
22423 output_relax_insn ();
22424 return;
22425 }
22426 if (inst.size == 0)
22427 return;
22428
22429 to = frag_more (inst.size);
22430 /* PR 9814: Record the thumb mode into the current frag so that we know
22431 what type of NOP padding to use, if necessary. We override any previous
22432 setting so that if the mode has changed then the NOPS that we use will
22433 match the encoding of the last instruction in the frag. */
22434 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
22435
22436 if (thumb_mode && (inst.size > THUMB_SIZE))
22437 {
22438 gas_assert (inst.size == (2 * THUMB_SIZE));
22439 put_thumb32_insn (to, inst.instruction);
22440 }
22441 else if (inst.size > INSN_SIZE)
22442 {
22443 gas_assert (inst.size == (2 * INSN_SIZE));
22444 md_number_to_chars (to, inst.instruction, INSN_SIZE);
22445 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
22446 }
22447 else
22448 md_number_to_chars (to, inst.instruction, inst.size);
22449
22450 int r;
22451 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
22452 {
22453 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
22454 fix_new_arm (frag_now, to - frag_now->fr_literal,
22455 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
22456 inst.relocs[r].type);
22457 }
22458
22459 dwarf2_emit_insn (inst.size);
22460}
22461
22462static char *
22463output_it_inst (int cond, int mask, char * to)
22464{
22465 unsigned long instruction = 0xbf00;
22466
22467 mask &= 0xf;
22468 instruction |= mask;
22469 instruction |= cond << 4;
22470
22471 if (to == NULL)
22472 {
22473 to = frag_more (2);
22474#ifdef OBJ_ELF
22475 dwarf2_emit_insn (2);
22476#endif
22477 }
22478
22479 md_number_to_chars (to, instruction, 2);
22480
22481 return to;
22482}
22483
22484/* Tag values used in struct asm_opcode's tag field. */
22485enum opcode_tag
22486{
22487 OT_unconditional, /* Instruction cannot be conditionalized.
22488 The ARM condition field is still 0xE. */
22489 OT_unconditionalF, /* Instruction cannot be conditionalized
22490 and carries 0xF in its ARM condition field. */
22491 OT_csuffix, /* Instruction takes a conditional suffix. */
22492 OT_csuffixF, /* Some forms of the instruction take a scalar
22493 conditional suffix, others place 0xF where the
22494 condition field would be, others take a vector
22495 conditional suffix. */
22496 OT_cinfix3, /* Instruction takes a conditional infix,
22497 beginning at character index 3. (In
22498 unified mode, it becomes a suffix.) */
22499 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
22500 tsts, cmps, cmns, and teqs. */
22501 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
22502 character index 3, even in unified mode. Used for
22503 legacy instructions where suffix and infix forms
22504 may be ambiguous. */
22505 OT_csuf_or_in3, /* Instruction takes either a conditional
22506 suffix or an infix at character index 3. */
22507 OT_odd_infix_unc, /* This is the unconditional variant of an
22508 instruction that takes a conditional infix
22509 at an unusual position. In unified mode,
22510 this variant will accept a suffix. */
22511 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
22512 are the conditional variants of instructions that
22513 take conditional infixes in unusual positions.
22514 The infix appears at character index
22515 (tag - OT_odd_infix_0). These are not accepted
22516 in unified mode. */
22517};
22518
22519/* Subroutine of md_assemble, responsible for looking up the primary
22520 opcode from the mnemonic the user wrote. STR points to the
22521 beginning of the mnemonic.
22522
22523 This is not simply a hash table lookup, because of conditional
22524 variants. Most instructions have conditional variants, which are
22525 expressed with a _conditional affix_ to the mnemonic. If we were
22526 to encode each conditional variant as a literal string in the opcode
22527 table, it would have approximately 20,000 entries.
22528
22529 Most mnemonics take this affix as a suffix, and in unified syntax,
22530 'most' is upgraded to 'all'. However, in the divided syntax, some
22531 instructions take the affix as an infix, notably the s-variants of
22532 the arithmetic instructions. Of those instructions, all but six
22533 have the infix appear after the third character of the mnemonic.
22534
22535 Accordingly, the algorithm for looking up primary opcodes given
22536 an identifier is:
22537
22538 1. Look up the identifier in the opcode table.
22539 If we find a match, go to step U.
22540
22541 2. Look up the last two characters of the identifier in the
22542 conditions table. If we find a match, look up the first N-2
22543 characters of the identifier in the opcode table. If we
22544 find a match, go to step CE.
22545
22546 3. Look up the fourth and fifth characters of the identifier in
22547 the conditions table. If we find a match, extract those
22548 characters from the identifier, and look up the remaining
22549 characters in the opcode table. If we find a match, go
22550 to step CM.
22551
22552 4. Fail.
22553
22554 U. Examine the tag field of the opcode structure, in case this is
22555 one of the six instructions with its conditional infix in an
22556 unusual place. If it is, the tag tells us where to find the
22557 infix; look it up in the conditions table and set inst.cond
22558 accordingly. Otherwise, this is an unconditional instruction.
22559 Again set inst.cond accordingly. Return the opcode structure.
22560
22561 CE. Examine the tag field to make sure this is an instruction that
22562 should receive a conditional suffix. If it is not, fail.
22563 Otherwise, set inst.cond from the suffix we already looked up,
22564 and return the opcode structure.
22565
22566 CM. Examine the tag field to make sure this is an instruction that
22567 should receive a conditional infix after the third character.
22568 If it is not, fail. Otherwise, undo the edits to the current
22569 line of input and proceed as for case CE. */
22570
22571static const struct asm_opcode *
22572opcode_lookup (char **str)
22573{
22574 char *end, *base;
22575 char *affix;
22576 const struct asm_opcode *opcode;
22577 const struct asm_cond *cond;
22578 char save[2];
22579
22580 /* Scan up to the end of the mnemonic, which must end in white space,
22581 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
22582 for (base = end = *str; *end != '\0'; end++)
22583 if (*end == ' ' || *end == '.')
22584 break;
22585
22586 if (end == base)
22587 return NULL;
22588
22589 /* Handle a possible width suffix and/or Neon type suffix. */
22590 if (end[0] == '.')
22591 {
22592 int offset = 2;
22593
22594 /* The .w and .n suffixes are only valid if the unified syntax is in
22595 use. */
22596 if (unified_syntax && end[1] == 'w')
22597 inst.size_req = 4;
22598 else if (unified_syntax && end[1] == 'n')
22599 inst.size_req = 2;
22600 else
22601 offset = 0;
22602
22603 inst.vectype.elems = 0;
22604
22605 *str = end + offset;
22606
22607 if (end[offset] == '.')
22608 {
22609 /* See if we have a Neon type suffix (possible in either unified or
22610 non-unified ARM syntax mode). */
22611 if (parse_neon_type (&inst.vectype, str) == FAIL)
22612 return NULL;
22613 }
22614 else if (end[offset] != '\0' && end[offset] != ' ')
22615 return NULL;
22616 }
22617 else
22618 *str = end;
22619
22620 /* Look for unaffixed or special-case affixed mnemonic. */
22621 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
22622 end - base);
22623 if (opcode)
22624 {
22625 /* step U */
22626 if (opcode->tag < OT_odd_infix_0)
22627 {
22628 inst.cond = COND_ALWAYS;
22629 return opcode;
22630 }
22631
22632 if (warn_on_deprecated && unified_syntax)
22633 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
22634 affix = base + (opcode->tag - OT_odd_infix_0);
22635 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
22636 gas_assert (cond);
22637
22638 inst.cond = cond->value;
22639 return opcode;
22640 }
22641 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
22642 {
22643 /* Cannot have a conditional suffix on a mnemonic of less than a character.
22644 */
22645 if (end - base < 2)
22646 return NULL;
22647 affix = end - 1;
22648 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
22649 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
22650 affix - base);
22651 /* If this opcode can not be vector predicated then don't accept it with a
22652 vector predication code. */
22653 if (opcode && !opcode->mayBeVecPred)
22654 opcode = NULL;
22655 }
22656 if (!opcode || !cond)
22657 {
22658 /* Cannot have a conditional suffix on a mnemonic of less than two
22659 characters. */
22660 if (end - base < 3)
22661 return NULL;
22662
22663 /* Look for suffixed mnemonic. */
22664 affix = end - 2;
22665 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
22666 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
22667 affix - base);
22668 }
22669
22670 if (opcode && cond)
22671 {
22672 /* step CE */
22673 switch (opcode->tag)
22674 {
22675 case OT_cinfix3_legacy:
22676 /* Ignore conditional suffixes matched on infix only mnemonics. */
22677 break;
22678
22679 case OT_cinfix3:
22680 case OT_cinfix3_deprecated:
22681 case OT_odd_infix_unc:
22682 if (!unified_syntax)
22683 return NULL;
22684 /* Fall through. */
22685
22686 case OT_csuffix:
22687 case OT_csuffixF:
22688 case OT_csuf_or_in3:
22689 inst.cond = cond->value;
22690 return opcode;
22691
22692 case OT_unconditional:
22693 case OT_unconditionalF:
22694 if (thumb_mode)
22695 inst.cond = cond->value;
22696 else
22697 {
22698 /* Delayed diagnostic. */
22699 inst.error = BAD_COND;
22700 inst.cond = COND_ALWAYS;
22701 }
22702 return opcode;
22703
22704 default:
22705 return NULL;
22706 }
22707 }
22708
22709 /* Cannot have a usual-position infix on a mnemonic of less than
22710 six characters (five would be a suffix). */
22711 if (end - base < 6)
22712 return NULL;
22713
22714 /* Look for infixed mnemonic in the usual position. */
22715 affix = base + 3;
22716 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
22717 if (!cond)
22718 return NULL;
22719
22720 memcpy (save, affix, 2);
22721 memmove (affix, affix + 2, (end - affix) - 2);
22722 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
22723 (end - base) - 2);
22724 memmove (affix + 2, affix, (end - affix) - 2);
22725 memcpy (affix, save, 2);
22726
22727 if (opcode
22728 && (opcode->tag == OT_cinfix3
22729 || opcode->tag == OT_cinfix3_deprecated
22730 || opcode->tag == OT_csuf_or_in3
22731 || opcode->tag == OT_cinfix3_legacy))
22732 {
22733 /* Step CM. */
22734 if (warn_on_deprecated && unified_syntax
22735 && (opcode->tag == OT_cinfix3
22736 || opcode->tag == OT_cinfix3_deprecated))
22737 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
22738
22739 inst.cond = cond->value;
22740 return opcode;
22741 }
22742
22743 return NULL;
22744}
22745
22746/* This function generates an initial IT instruction, leaving its block
22747 virtually open for the new instructions. Eventually,
22748 the mask will be updated by now_pred_add_mask () each time
22749 a new instruction needs to be included in the IT block.
22750 Finally, the block is closed with close_automatic_it_block ().
22751 The block closure can be requested either from md_assemble (),
22752 a tencode (), or due to a label hook. */
22753
22754static void
22755new_automatic_it_block (int cond)
22756{
22757 now_pred.state = AUTOMATIC_PRED_BLOCK;
22758 now_pred.mask = 0x18;
22759 now_pred.cc = cond;
22760 now_pred.block_length = 1;
22761 mapping_state (MAP_THUMB);
22762 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
22763 now_pred.warn_deprecated = FALSE;
22764 now_pred.insn_cond = TRUE;
22765}
22766
22767/* Close an automatic IT block.
22768 See comments in new_automatic_it_block (). */
22769
22770static void
22771close_automatic_it_block (void)
22772{
22773 now_pred.mask = 0x10;
22774 now_pred.block_length = 0;
22775}
22776
22777/* Update the mask of the current automatically-generated IT
22778 instruction. See comments in new_automatic_it_block (). */
22779
22780static void
22781now_pred_add_mask (int cond)
22782{
22783#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
22784#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
22785 | ((bitvalue) << (nbit)))
22786 const int resulting_bit = (cond & 1);
22787
22788 now_pred.mask &= 0xf;
22789 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
22790 resulting_bit,
22791 (5 - now_pred.block_length));
22792 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
22793 1,
22794 ((5 - now_pred.block_length) - 1));
22795 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
22796
22797#undef CLEAR_BIT
22798#undef SET_BIT_VALUE
22799}
22800
22801/* The IT blocks handling machinery is accessed through the these functions:
22802 it_fsm_pre_encode () from md_assemble ()
22803 set_pred_insn_type () optional, from the tencode functions
22804 set_pred_insn_type_last () ditto
22805 in_pred_block () ditto
22806 it_fsm_post_encode () from md_assemble ()
22807 force_automatic_it_block_close () from label handling functions
22808
22809 Rationale:
22810 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
22811 initializing the IT insn type with a generic initial value depending
22812 on the inst.condition.
22813 2) During the tencode function, two things may happen:
22814 a) The tencode function overrides the IT insn type by
22815 calling either set_pred_insn_type (type) or
22816 set_pred_insn_type_last ().
22817 b) The tencode function queries the IT block state by
22818 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
22819
22820 Both set_pred_insn_type and in_pred_block run the internal FSM state
22821 handling function (handle_pred_state), because: a) setting the IT insn
22822 type may incur in an invalid state (exiting the function),
22823 and b) querying the state requires the FSM to be updated.
22824 Specifically we want to avoid creating an IT block for conditional
22825 branches, so it_fsm_pre_encode is actually a guess and we can't
22826 determine whether an IT block is required until the tencode () routine
22827 has decided what type of instruction this actually it.
22828 Because of this, if set_pred_insn_type and in_pred_block have to be
22829 used, set_pred_insn_type has to be called first.
22830
22831 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
22832 that determines the insn IT type depending on the inst.cond code.
22833 When a tencode () routine encodes an instruction that can be
22834 either outside an IT block, or, in the case of being inside, has to be
22835 the last one, set_pred_insn_type_last () will determine the proper
22836 IT instruction type based on the inst.cond code. Otherwise,
22837 set_pred_insn_type can be called for overriding that logic or
22838 for covering other cases.
22839
22840 Calling handle_pred_state () may not transition the IT block state to
22841 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
22842 still queried. Instead, if the FSM determines that the state should
22843 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
22844 after the tencode () function: that's what it_fsm_post_encode () does.
22845
22846 Since in_pred_block () calls the state handling function to get an
22847 updated state, an error may occur (due to invalid insns combination).
22848 In that case, inst.error is set.
22849 Therefore, inst.error has to be checked after the execution of
22850 the tencode () routine.
22851
22852 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
22853 any pending state change (if any) that didn't take place in
22854 handle_pred_state () as explained above. */
22855
22856static void
22857it_fsm_pre_encode (void)
22858{
22859 if (inst.cond != COND_ALWAYS)
22860 inst.pred_insn_type = INSIDE_IT_INSN;
22861 else
22862 inst.pred_insn_type = OUTSIDE_PRED_INSN;
22863
22864 now_pred.state_handled = 0;
22865}
22866
22867/* IT state FSM handling function. */
22868/* MVE instructions and non-MVE instructions are handled differently because of
22869 the introduction of VPT blocks.
22870 Specifications say that any non-MVE instruction inside a VPT block is
22871 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
22872 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
22873 few exceptions we have MVE_UNPREDICABLE_INSN.
22874 The error messages provided depending on the different combinations possible
22875 are described in the cases below:
22876 For 'most' MVE instructions:
22877 1) In an IT block, with an IT code: syntax error
22878 2) In an IT block, with a VPT code: error: must be in a VPT block
22879 3) In an IT block, with no code: warning: UNPREDICTABLE
22880 4) In a VPT block, with an IT code: syntax error
22881 5) In a VPT block, with a VPT code: OK!
22882 6) In a VPT block, with no code: error: missing code
22883 7) Outside a pred block, with an IT code: error: syntax error
22884 8) Outside a pred block, with a VPT code: error: should be in a VPT block
22885 9) Outside a pred block, with no code: OK!
22886 For non-MVE instructions:
22887 10) In an IT block, with an IT code: OK!
22888 11) In an IT block, with a VPT code: syntax error
22889 12) In an IT block, with no code: error: missing code
22890 13) In a VPT block, with an IT code: error: should be in an IT block
22891 14) In a VPT block, with a VPT code: syntax error
22892 15) In a VPT block, with no code: UNPREDICTABLE
22893 16) Outside a pred block, with an IT code: error: should be in an IT block
22894 17) Outside a pred block, with a VPT code: syntax error
22895 18) Outside a pred block, with no code: OK!
22896 */
22897
22898
22899static int
22900handle_pred_state (void)
22901{
22902 now_pred.state_handled = 1;
22903 now_pred.insn_cond = FALSE;
22904
22905 switch (now_pred.state)
22906 {
22907 case OUTSIDE_PRED_BLOCK:
22908 switch (inst.pred_insn_type)
22909 {
22910 case MVE_UNPREDICABLE_INSN:
22911 case MVE_OUTSIDE_PRED_INSN:
22912 if (inst.cond < COND_ALWAYS)
22913 {
22914 /* Case 7: Outside a pred block, with an IT code: error: syntax
22915 error. */
22916 inst.error = BAD_SYNTAX;
22917 return FAIL;
22918 }
22919 /* Case 9: Outside a pred block, with no code: OK! */
22920 break;
22921 case OUTSIDE_PRED_INSN:
22922 if (inst.cond > COND_ALWAYS)
22923 {
22924 /* Case 17: Outside a pred block, with a VPT code: syntax error.
22925 */
22926 inst.error = BAD_SYNTAX;
22927 return FAIL;
22928 }
22929 /* Case 18: Outside a pred block, with no code: OK! */
22930 break;
22931
22932 case INSIDE_VPT_INSN:
22933 /* Case 8: Outside a pred block, with a VPT code: error: should be in
22934 a VPT block. */
22935 inst.error = BAD_OUT_VPT;
22936 return FAIL;
22937
22938 case INSIDE_IT_INSN:
22939 case INSIDE_IT_LAST_INSN:
22940 if (inst.cond < COND_ALWAYS)
22941 {
22942 /* Case 16: Outside a pred block, with an IT code: error: should
22943 be in an IT block. */
22944 if (thumb_mode == 0)
22945 {
22946 if (unified_syntax
22947 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
22948 as_tsktsk (_("Warning: conditional outside an IT block"\
22949 " for Thumb."));
22950 }
22951 else
22952 {
22953 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
22954 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
22955 {
22956 /* Automatically generate the IT instruction. */
22957 new_automatic_it_block (inst.cond);
22958 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
22959 close_automatic_it_block ();
22960 }
22961 else
22962 {
22963 inst.error = BAD_OUT_IT;
22964 return FAIL;
22965 }
22966 }
22967 break;
22968 }
22969 else if (inst.cond > COND_ALWAYS)
22970 {
22971 /* Case 17: Outside a pred block, with a VPT code: syntax error.
22972 */
22973 inst.error = BAD_SYNTAX;
22974 return FAIL;
22975 }
22976 else
22977 gas_assert (0);
22978 case IF_INSIDE_IT_LAST_INSN:
22979 case NEUTRAL_IT_INSN:
22980 break;
22981
22982 case VPT_INSN:
22983 if (inst.cond != COND_ALWAYS)
22984 first_error (BAD_SYNTAX);
22985 now_pred.state = MANUAL_PRED_BLOCK;
22986 now_pred.block_length = 0;
22987 now_pred.type = VECTOR_PRED;
22988 now_pred.cc = 0;
22989 break;
22990 case IT_INSN:
22991 now_pred.state = MANUAL_PRED_BLOCK;
22992 now_pred.block_length = 0;
22993 now_pred.type = SCALAR_PRED;
22994 break;
22995 }
22996 break;
22997
22998 case AUTOMATIC_PRED_BLOCK:
22999 /* Three things may happen now:
23000 a) We should increment current it block size;
23001 b) We should close current it block (closing insn or 4 insns);
23002 c) We should close current it block and start a new one (due
23003 to incompatible conditions or
23004 4 insns-length block reached). */
23005
23006 switch (inst.pred_insn_type)
23007 {
23008 case INSIDE_VPT_INSN:
23009 case VPT_INSN:
23010 case MVE_UNPREDICABLE_INSN:
23011 case MVE_OUTSIDE_PRED_INSN:
23012 gas_assert (0);
23013 case OUTSIDE_PRED_INSN:
23014 /* The closure of the block shall happen immediately,
23015 so any in_pred_block () call reports the block as closed. */
23016 force_automatic_it_block_close ();
23017 break;
23018
23019 case INSIDE_IT_INSN:
23020 case INSIDE_IT_LAST_INSN:
23021 case IF_INSIDE_IT_LAST_INSN:
23022 now_pred.block_length++;
23023
23024 if (now_pred.block_length > 4
23025 || !now_pred_compatible (inst.cond))
23026 {
23027 force_automatic_it_block_close ();
23028 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
23029 new_automatic_it_block (inst.cond);
23030 }
23031 else
23032 {
23033 now_pred.insn_cond = TRUE;
23034 now_pred_add_mask (inst.cond);
23035 }
23036
23037 if (now_pred.state == AUTOMATIC_PRED_BLOCK
23038 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
23039 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
23040 close_automatic_it_block ();
23041 break;
23042
23043 /* Fallthrough. */
23044 case NEUTRAL_IT_INSN:
23045 now_pred.block_length++;
23046 now_pred.insn_cond = TRUE;
23047
23048 if (now_pred.block_length > 4)
23049 force_automatic_it_block_close ();
23050 else
23051 now_pred_add_mask (now_pred.cc & 1);
23052 break;
23053
23054 case IT_INSN:
23055 close_automatic_it_block ();
23056 now_pred.state = MANUAL_PRED_BLOCK;
23057 break;
23058 }
23059 break;
23060
23061 case MANUAL_PRED_BLOCK:
23062 {
23063 int cond, is_last;
23064 if (now_pred.type == SCALAR_PRED)
23065 {
23066 /* Check conditional suffixes. */
23067 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
23068 now_pred.mask <<= 1;
23069 now_pred.mask &= 0x1f;
23070 is_last = (now_pred.mask == 0x10);
23071 }
23072 else
23073 {
23074 now_pred.cc ^= (now_pred.mask >> 4);
23075 cond = now_pred.cc + 0xf;
23076 now_pred.mask <<= 1;
23077 now_pred.mask &= 0x1f;
23078 is_last = now_pred.mask == 0x10;
23079 }
23080 now_pred.insn_cond = TRUE;
23081
23082 switch (inst.pred_insn_type)
23083 {
23084 case OUTSIDE_PRED_INSN:
23085 if (now_pred.type == SCALAR_PRED)
23086 {
23087 if (inst.cond == COND_ALWAYS)
23088 {
23089 /* Case 12: In an IT block, with no code: error: missing
23090 code. */
23091 inst.error = BAD_NOT_IT;
23092 return FAIL;
23093 }
23094 else if (inst.cond > COND_ALWAYS)
23095 {
23096 /* Case 11: In an IT block, with a VPT code: syntax error.
23097 */
23098 inst.error = BAD_SYNTAX;
23099 return FAIL;
23100 }
23101 else if (thumb_mode)
23102 {
23103 /* This is for some special cases where a non-MVE
23104 instruction is not allowed in an IT block, such as cbz,
23105 but are put into one with a condition code.
23106 You could argue this should be a syntax error, but we
23107 gave the 'not allowed in IT block' diagnostic in the
23108 past so we will keep doing so. */
23109 inst.error = BAD_NOT_IT;
23110 return FAIL;
23111 }
23112 break;
23113 }
23114 else
23115 {
23116 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
23117 as_tsktsk (MVE_NOT_VPT);
23118 return SUCCESS;
23119 }
23120 case MVE_OUTSIDE_PRED_INSN:
23121 if (now_pred.type == SCALAR_PRED)
23122 {
23123 if (inst.cond == COND_ALWAYS)
23124 {
23125 /* Case 3: In an IT block, with no code: warning:
23126 UNPREDICTABLE. */
23127 as_tsktsk (MVE_NOT_IT);
23128 return SUCCESS;
23129 }
23130 else if (inst.cond < COND_ALWAYS)
23131 {
23132 /* Case 1: In an IT block, with an IT code: syntax error.
23133 */
23134 inst.error = BAD_SYNTAX;
23135 return FAIL;
23136 }
23137 else
23138 gas_assert (0);
23139 }
23140 else
23141 {
23142 if (inst.cond < COND_ALWAYS)
23143 {
23144 /* Case 4: In a VPT block, with an IT code: syntax error.
23145 */
23146 inst.error = BAD_SYNTAX;
23147 return FAIL;
23148 }
23149 else if (inst.cond == COND_ALWAYS)
23150 {
23151 /* Case 6: In a VPT block, with no code: error: missing
23152 code. */
23153 inst.error = BAD_NOT_VPT;
23154 return FAIL;
23155 }
23156 else
23157 {
23158 gas_assert (0);
23159 }
23160 }
23161 case MVE_UNPREDICABLE_INSN:
23162 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
23163 return SUCCESS;
23164 case INSIDE_IT_INSN:
23165 if (inst.cond > COND_ALWAYS)
23166 {
23167 /* Case 11: In an IT block, with a VPT code: syntax error. */
23168 /* Case 14: In a VPT block, with a VPT code: syntax error. */
23169 inst.error = BAD_SYNTAX;
23170 return FAIL;
23171 }
23172 else if (now_pred.type == SCALAR_PRED)
23173 {
23174 /* Case 10: In an IT block, with an IT code: OK! */
23175 if (cond != inst.cond)
23176 {
23177 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
23178 BAD_VPT_COND;
23179 return FAIL;
23180 }
23181 }
23182 else
23183 {
23184 /* Case 13: In a VPT block, with an IT code: error: should be
23185 in an IT block. */
23186 inst.error = BAD_OUT_IT;
23187 return FAIL;
23188 }
23189 break;
23190
23191 case INSIDE_VPT_INSN:
23192 if (now_pred.type == SCALAR_PRED)
23193 {
23194 /* Case 2: In an IT block, with a VPT code: error: must be in a
23195 VPT block. */
23196 inst.error = BAD_OUT_VPT;
23197 return FAIL;
23198 }
23199 /* Case 5: In a VPT block, with a VPT code: OK! */
23200 else if (cond != inst.cond)
23201 {
23202 inst.error = BAD_VPT_COND;
23203 return FAIL;
23204 }
23205 break;
23206 case INSIDE_IT_LAST_INSN:
23207 case IF_INSIDE_IT_LAST_INSN:
23208 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
23209 {
23210 /* Case 4: In a VPT block, with an IT code: syntax error. */
23211 /* Case 11: In an IT block, with a VPT code: syntax error. */
23212 inst.error = BAD_SYNTAX;
23213 return FAIL;
23214 }
23215 else if (cond != inst.cond)
23216 {
23217 inst.error = BAD_IT_COND;
23218 return FAIL;
23219 }
23220 if (!is_last)
23221 {
23222 inst.error = BAD_BRANCH;
23223 return FAIL;
23224 }
23225 break;
23226
23227 case NEUTRAL_IT_INSN:
23228 /* The BKPT instruction is unconditional even in a IT or VPT
23229 block. */
23230 break;
23231
23232 case IT_INSN:
23233 if (now_pred.type == SCALAR_PRED)
23234 {
23235 inst.error = BAD_IT_IT;
23236 return FAIL;
23237 }
23238 /* fall through. */
23239 case VPT_INSN:
23240 if (inst.cond == COND_ALWAYS)
23241 {
23242 /* Executing a VPT/VPST instruction inside an IT block or a
23243 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
23244 */
23245 if (now_pred.type == SCALAR_PRED)
23246 as_tsktsk (MVE_NOT_IT);
23247 else
23248 as_tsktsk (MVE_NOT_VPT);
23249 return SUCCESS;
23250 }
23251 else
23252 {
23253 /* VPT/VPST do not accept condition codes. */
23254 inst.error = BAD_SYNTAX;
23255 return FAIL;
23256 }
23257 }
23258 }
23259 break;
23260 }
23261
23262 return SUCCESS;
23263}
23264
23265struct depr_insn_mask
23266{
23267 unsigned long pattern;
23268 unsigned long mask;
23269 const char* description;
23270};
23271
23272/* List of 16-bit instruction patterns deprecated in an IT block in
23273 ARMv8. */
23274static const struct depr_insn_mask depr_it_insns[] = {
23275 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
23276 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
23277 { 0xa000, 0xb800, N_("ADR") },
23278 { 0x4800, 0xf800, N_("Literal loads") },
23279 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
23280 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
23281 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
23282 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
23283 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
23284 { 0, 0, NULL }
23285};
23286
23287static void
23288it_fsm_post_encode (void)
23289{
23290 int is_last;
23291
23292 if (!now_pred.state_handled)
23293 handle_pred_state ();
23294
23295 if (now_pred.insn_cond
23296 && warn_on_restrict_it
23297 && !now_pred.warn_deprecated
23298 && warn_on_deprecated
23299 && (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
23300 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8r))
23301 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
23302 {
23303 if (inst.instruction >= 0x10000)
23304 {
23305 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
23306 "performance deprecated in ARMv8-A and ARMv8-R"));
23307 now_pred.warn_deprecated = TRUE;
23308 }
23309 else
23310 {
23311 const struct depr_insn_mask *p = depr_it_insns;
23312
23313 while (p->mask != 0)
23314 {
23315 if ((inst.instruction & p->mask) == p->pattern)
23316 {
23317 as_tsktsk (_("IT blocks containing 16-bit Thumb "
23318 "instructions of the following class are "
23319 "performance deprecated in ARMv8-A and "
23320 "ARMv8-R: %s"), p->description);
23321 now_pred.warn_deprecated = TRUE;
23322 break;
23323 }
23324
23325 ++p;
23326 }
23327 }
23328
23329 if (now_pred.block_length > 1)
23330 {
23331 as_tsktsk (_("IT blocks containing more than one conditional "
23332 "instruction are performance deprecated in ARMv8-A and "
23333 "ARMv8-R"));
23334 now_pred.warn_deprecated = TRUE;
23335 }
23336 }
23337
23338 is_last = (now_pred.mask == 0x10);
23339 if (is_last)
23340 {
23341 now_pred.state = OUTSIDE_PRED_BLOCK;
23342 now_pred.mask = 0;
23343 }
23344}
23345
23346static void
23347force_automatic_it_block_close (void)
23348{
23349 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
23350 {
23351 close_automatic_it_block ();
23352 now_pred.state = OUTSIDE_PRED_BLOCK;
23353 now_pred.mask = 0;
23354 }
23355}
23356
23357static int
23358in_pred_block (void)
23359{
23360 if (!now_pred.state_handled)
23361 handle_pred_state ();
23362
23363 return now_pred.state != OUTSIDE_PRED_BLOCK;
23364}
23365
23366/* Whether OPCODE only has T32 encoding. Since this function is only used by
23367 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
23368 here, hence the "known" in the function name. */
23369
23370static bfd_boolean
23371known_t32_only_insn (const struct asm_opcode *opcode)
23372{
23373 /* Original Thumb-1 wide instruction. */
23374 if (opcode->tencode == do_t_blx
23375 || opcode->tencode == do_t_branch23
23376 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
23377 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
23378 return TRUE;
23379
23380 /* Wide-only instruction added to ARMv8-M Baseline. */
23381 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
23382 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
23383 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
23384 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
23385 return TRUE;
23386
23387 return FALSE;
23388}
23389
23390/* Whether wide instruction variant can be used if available for a valid OPCODE
23391 in ARCH. */
23392
23393static bfd_boolean
23394t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
23395{
23396 if (known_t32_only_insn (opcode))
23397 return TRUE;
23398
23399 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
23400 of variant T3 of B.W is checked in do_t_branch. */
23401 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
23402 && opcode->tencode == do_t_branch)
23403 return TRUE;
23404
23405 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
23406 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
23407 && opcode->tencode == do_t_mov_cmp
23408 /* Make sure CMP instruction is not affected. */
23409 && opcode->aencode == do_mov)
23410 return TRUE;
23411
23412 /* Wide instruction variants of all instructions with narrow *and* wide
23413 variants become available with ARMv6t2. Other opcodes are either
23414 narrow-only or wide-only and are thus available if OPCODE is valid. */
23415 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
23416 return TRUE;
23417
23418 /* OPCODE with narrow only instruction variant or wide variant not
23419 available. */
23420 return FALSE;
23421}
23422
23423void
23424md_assemble (char *str)
23425{
23426 char *p = str;
23427 const struct asm_opcode * opcode;
23428
23429 /* Align the previous label if needed. */
23430 if (last_label_seen != NULL)
23431 {
23432 symbol_set_frag (last_label_seen, frag_now);
23433 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
23434 S_SET_SEGMENT (last_label_seen, now_seg);
23435 }
23436
23437 memset (&inst, '\0', sizeof (inst));
23438 int r;
23439 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
23440 inst.relocs[r].type = BFD_RELOC_UNUSED;
23441
23442 opcode = opcode_lookup (&p);
23443 if (!opcode)
23444 {
23445 /* It wasn't an instruction, but it might be a register alias of
23446 the form alias .req reg, or a Neon .dn/.qn directive. */
23447 if (! create_register_alias (str, p)
23448 && ! create_neon_reg_alias (str, p))
23449 as_bad (_("bad instruction `%s'"), str);
23450
23451 return;
23452 }
23453
23454 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
23455 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
23456
23457 /* The value which unconditional instructions should have in place of the
23458 condition field. */
23459 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
23460
23461 if (thumb_mode)
23462 {
23463 arm_feature_set variant;
23464
23465 variant = cpu_variant;
23466 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
23467 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
23468 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
23469 /* Check that this instruction is supported for this CPU. */
23470 if (!opcode->tvariant
23471 || (thumb_mode == 1
23472 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
23473 {
23474 if (opcode->tencode == do_t_swi)
23475 as_bad (_("SVC is not permitted on this architecture"));
23476 else
23477 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
23478 return;
23479 }
23480 if (inst.cond != COND_ALWAYS && !unified_syntax
23481 && opcode->tencode != do_t_branch)
23482 {
23483 as_bad (_("Thumb does not support conditional execution"));
23484 return;
23485 }
23486
23487 /* Two things are addressed here:
23488 1) Implicit require narrow instructions on Thumb-1.
23489 This avoids relaxation accidentally introducing Thumb-2
23490 instructions.
23491 2) Reject wide instructions in non Thumb-2 cores.
23492
23493 Only instructions with narrow and wide variants need to be handled
23494 but selecting all non wide-only instructions is easier. */
23495 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
23496 && !t32_insn_ok (variant, opcode))
23497 {
23498 if (inst.size_req == 0)
23499 inst.size_req = 2;
23500 else if (inst.size_req == 4)
23501 {
23502 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
23503 as_bad (_("selected processor does not support 32bit wide "
23504 "variant of instruction `%s'"), str);
23505 else
23506 as_bad (_("selected processor does not support `%s' in "
23507 "Thumb-2 mode"), str);
23508 return;
23509 }
23510 }
23511
23512 inst.instruction = opcode->tvalue;
23513
23514 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
23515 {
23516 /* Prepare the pred_insn_type for those encodings that don't set
23517 it. */
23518 it_fsm_pre_encode ();
23519
23520 opcode->tencode ();
23521
23522 it_fsm_post_encode ();
23523 }
23524
23525 if (!(inst.error || inst.relax))
23526 {
23527 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
23528 inst.size = (inst.instruction > 0xffff ? 4 : 2);
23529 if (inst.size_req && inst.size_req != inst.size)
23530 {
23531 as_bad (_("cannot honor width suffix -- `%s'"), str);
23532 return;
23533 }
23534 }
23535
23536 /* Something has gone badly wrong if we try to relax a fixed size
23537 instruction. */
23538 gas_assert (inst.size_req == 0 || !inst.relax);
23539
23540 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
23541 *opcode->tvariant);
23542 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
23543 set those bits when Thumb-2 32-bit instructions are seen. The impact
23544 of relaxable instructions will be considered later after we finish all
23545 relaxation. */
23546 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
23547 variant = arm_arch_none;
23548 else
23549 variant = cpu_variant;
23550 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
23551 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
23552 arm_ext_v6t2);
23553
23554 check_neon_suffixes;
23555
23556 if (!inst.error)
23557 {
23558 mapping_state (MAP_THUMB);
23559 }
23560 }
23561 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
23562 {
23563 bfd_boolean is_bx;
23564
23565 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
23566 is_bx = (opcode->aencode == do_bx);
23567
23568 /* Check that this instruction is supported for this CPU. */
23569 if (!(is_bx && fix_v4bx)
23570 && !(opcode->avariant &&
23571 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
23572 {
23573 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
23574 return;
23575 }
23576 if (inst.size_req)
23577 {
23578 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
23579 return;
23580 }
23581
23582 inst.instruction = opcode->avalue;
23583 if (opcode->tag == OT_unconditionalF)
23584 inst.instruction |= 0xFU << 28;
23585 else
23586 inst.instruction |= inst.cond << 28;
23587 inst.size = INSN_SIZE;
23588 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
23589 {
23590 it_fsm_pre_encode ();
23591 opcode->aencode ();
23592 it_fsm_post_encode ();
23593 }
23594 /* Arm mode bx is marked as both v4T and v5 because it's still required
23595 on a hypothetical non-thumb v5 core. */
23596 if (is_bx)
23597 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
23598 else
23599 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
23600 *opcode->avariant);
23601
23602 check_neon_suffixes;
23603
23604 if (!inst.error)
23605 {
23606 mapping_state (MAP_ARM);
23607 }
23608 }
23609 else
23610 {
23611 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
23612 "-- `%s'"), str);
23613 return;
23614 }
23615 output_inst (str);
23616}
23617
23618static void
23619check_pred_blocks_finished (void)
23620{
23621#ifdef OBJ_ELF
23622 asection *sect;
23623
23624 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
23625 if (seg_info (sect)->tc_segment_info_data.current_pred.state
23626 == MANUAL_PRED_BLOCK)
23627 {
23628 if (now_pred.type == SCALAR_PRED)
23629 as_warn (_("section '%s' finished with an open IT block."),
23630 sect->name);
23631 else
23632 as_warn (_("section '%s' finished with an open VPT/VPST block."),
23633 sect->name);
23634 }
23635#else
23636 if (now_pred.state == MANUAL_PRED_BLOCK)
23637 {
23638 if (now_pred.type == SCALAR_PRED)
23639 as_warn (_("file finished with an open IT block."));
23640 else
23641 as_warn (_("file finished with an open VPT/VPST block."));
23642 }
23643#endif
23644}
23645
23646/* Various frobbings of labels and their addresses. */
23647
23648void
23649arm_start_line_hook (void)
23650{
23651 last_label_seen = NULL;
23652}
23653
23654void
23655arm_frob_label (symbolS * sym)
23656{
23657 last_label_seen = sym;
23658
23659 ARM_SET_THUMB (sym, thumb_mode);
23660
23661#if defined OBJ_COFF || defined OBJ_ELF
23662 ARM_SET_INTERWORK (sym, support_interwork);
23663#endif
23664
23665 force_automatic_it_block_close ();
23666
23667 /* Note - do not allow local symbols (.Lxxx) to be labelled
23668 as Thumb functions. This is because these labels, whilst
23669 they exist inside Thumb code, are not the entry points for
23670 possible ARM->Thumb calls. Also, these labels can be used
23671 as part of a computed goto or switch statement. eg gcc
23672 can generate code that looks like this:
23673
23674 ldr r2, [pc, .Laaa]
23675 lsl r3, r3, #2
23676 ldr r2, [r3, r2]
23677 mov pc, r2
23678
23679 .Lbbb: .word .Lxxx
23680 .Lccc: .word .Lyyy
23681 ..etc...
23682 .Laaa: .word Lbbb
23683
23684 The first instruction loads the address of the jump table.
23685 The second instruction converts a table index into a byte offset.
23686 The third instruction gets the jump address out of the table.
23687 The fourth instruction performs the jump.
23688
23689 If the address stored at .Laaa is that of a symbol which has the
23690 Thumb_Func bit set, then the linker will arrange for this address
23691 to have the bottom bit set, which in turn would mean that the
23692 address computation performed by the third instruction would end
23693 up with the bottom bit set. Since the ARM is capable of unaligned
23694 word loads, the instruction would then load the incorrect address
23695 out of the jump table, and chaos would ensue. */
23696 if (label_is_thumb_function_name
23697 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
23698 && (bfd_section_flags (now_seg) & SEC_CODE) != 0)
23699 {
23700 /* When the address of a Thumb function is taken the bottom
23701 bit of that address should be set. This will allow
23702 interworking between Arm and Thumb functions to work
23703 correctly. */
23704
23705 THUMB_SET_FUNC (sym, 1);
23706
23707 label_is_thumb_function_name = FALSE;
23708 }
23709
23710 dwarf2_emit_label (sym);
23711}
23712
23713bfd_boolean
23714arm_data_in_code (void)
23715{
23716 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
23717 {
23718 *input_line_pointer = '/';
23719 input_line_pointer += 5;
23720 *input_line_pointer = 0;
23721 return TRUE;
23722 }
23723
23724 return FALSE;
23725}
23726
23727char *
23728arm_canonicalize_symbol_name (char * name)
23729{
23730 int len;
23731
23732 if (thumb_mode && (len = strlen (name)) > 5
23733 && streq (name + len - 5, "/data"))
23734 *(name + len - 5) = 0;
23735
23736 return name;
23737}
23738\f
23739/* Table of all register names defined by default. The user can
23740 define additional names with .req. Note that all register names
23741 should appear in both upper and lowercase variants. Some registers
23742 also have mixed-case names. */
23743
23744#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
23745#define REGNUM(p,n,t) REGDEF(p##n, n, t)
23746#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
23747#define REGSET(p,t) \
23748 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
23749 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
23750 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
23751 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
23752#define REGSETH(p,t) \
23753 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
23754 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
23755 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
23756 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
23757#define REGSET2(p,t) \
23758 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
23759 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
23760 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
23761 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
23762#define SPLRBANK(base,bank,t) \
23763 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
23764 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
23765 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
23766 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
23767 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
23768 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
23769
23770static const struct reg_entry reg_names[] =
23771{
23772 /* ARM integer registers. */
23773 REGSET(r, RN), REGSET(R, RN),
23774
23775 /* ATPCS synonyms. */
23776 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
23777 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
23778 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
23779
23780 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
23781 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
23782 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
23783
23784 /* Well-known aliases. */
23785 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
23786 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
23787
23788 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
23789 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
23790
23791 /* Defining the new Zero register from ARMv8.1-M. */
23792 REGDEF(zr,15,ZR),
23793 REGDEF(ZR,15,ZR),
23794
23795 /* Coprocessor numbers. */
23796 REGSET(p, CP), REGSET(P, CP),
23797
23798 /* Coprocessor register numbers. The "cr" variants are for backward
23799 compatibility. */
23800 REGSET(c, CN), REGSET(C, CN),
23801 REGSET(cr, CN), REGSET(CR, CN),
23802
23803 /* ARM banked registers. */
23804 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
23805 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
23806 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
23807 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
23808 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
23809 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
23810 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
23811
23812 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
23813 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
23814 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
23815 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
23816 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
23817 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
23818 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
23819 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
23820
23821 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
23822 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
23823 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
23824 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
23825 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
23826 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
23827 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
23828 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
23829 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
23830
23831 /* FPA registers. */
23832 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
23833 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
23834
23835 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
23836 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
23837
23838 /* VFP SP registers. */
23839 REGSET(s,VFS), REGSET(S,VFS),
23840 REGSETH(s,VFS), REGSETH(S,VFS),
23841
23842 /* VFP DP Registers. */
23843 REGSET(d,VFD), REGSET(D,VFD),
23844 /* Extra Neon DP registers. */
23845 REGSETH(d,VFD), REGSETH(D,VFD),
23846
23847 /* Neon QP registers. */
23848 REGSET2(q,NQ), REGSET2(Q,NQ),
23849
23850 /* VFP control registers. */
23851 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
23852 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
23853 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
23854 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
23855 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
23856 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
23857 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
23858 REGDEF(fpscr_nzcvqc,2,VFC), REGDEF(FPSCR_nzcvqc,2,VFC),
23859 REGDEF(vpr,12,VFC), REGDEF(VPR,12,VFC),
23860 REGDEF(fpcxt_ns,14,VFC), REGDEF(FPCXT_NS,14,VFC),
23861 REGDEF(fpcxt_s,15,VFC), REGDEF(FPCXT_S,15,VFC),
23862
23863 /* Maverick DSP coprocessor registers. */
23864 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
23865 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
23866
23867 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
23868 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
23869 REGDEF(dspsc,0,DSPSC),
23870
23871 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
23872 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
23873 REGDEF(DSPSC,0,DSPSC),
23874
23875 /* iWMMXt data registers - p0, c0-15. */
23876 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
23877
23878 /* iWMMXt control registers - p1, c0-3. */
23879 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
23880 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
23881 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
23882 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
23883
23884 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
23885 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
23886 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
23887 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
23888 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
23889
23890 /* XScale accumulator registers. */
23891 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
23892};
23893#undef REGDEF
23894#undef REGNUM
23895#undef REGSET
23896
23897/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
23898 within psr_required_here. */
23899static const struct asm_psr psrs[] =
23900{
23901 /* Backward compatibility notation. Note that "all" is no longer
23902 truly all possible PSR bits. */
23903 {"all", PSR_c | PSR_f},
23904 {"flg", PSR_f},
23905 {"ctl", PSR_c},
23906
23907 /* Individual flags. */
23908 {"f", PSR_f},
23909 {"c", PSR_c},
23910 {"x", PSR_x},
23911 {"s", PSR_s},
23912
23913 /* Combinations of flags. */
23914 {"fs", PSR_f | PSR_s},
23915 {"fx", PSR_f | PSR_x},
23916 {"fc", PSR_f | PSR_c},
23917 {"sf", PSR_s | PSR_f},
23918 {"sx", PSR_s | PSR_x},
23919 {"sc", PSR_s | PSR_c},
23920 {"xf", PSR_x | PSR_f},
23921 {"xs", PSR_x | PSR_s},
23922 {"xc", PSR_x | PSR_c},
23923 {"cf", PSR_c | PSR_f},
23924 {"cs", PSR_c | PSR_s},
23925 {"cx", PSR_c | PSR_x},
23926 {"fsx", PSR_f | PSR_s | PSR_x},
23927 {"fsc", PSR_f | PSR_s | PSR_c},
23928 {"fxs", PSR_f | PSR_x | PSR_s},
23929 {"fxc", PSR_f | PSR_x | PSR_c},
23930 {"fcs", PSR_f | PSR_c | PSR_s},
23931 {"fcx", PSR_f | PSR_c | PSR_x},
23932 {"sfx", PSR_s | PSR_f | PSR_x},
23933 {"sfc", PSR_s | PSR_f | PSR_c},
23934 {"sxf", PSR_s | PSR_x | PSR_f},
23935 {"sxc", PSR_s | PSR_x | PSR_c},
23936 {"scf", PSR_s | PSR_c | PSR_f},
23937 {"scx", PSR_s | PSR_c | PSR_x},
23938 {"xfs", PSR_x | PSR_f | PSR_s},
23939 {"xfc", PSR_x | PSR_f | PSR_c},
23940 {"xsf", PSR_x | PSR_s | PSR_f},
23941 {"xsc", PSR_x | PSR_s | PSR_c},
23942 {"xcf", PSR_x | PSR_c | PSR_f},
23943 {"xcs", PSR_x | PSR_c | PSR_s},
23944 {"cfs", PSR_c | PSR_f | PSR_s},
23945 {"cfx", PSR_c | PSR_f | PSR_x},
23946 {"csf", PSR_c | PSR_s | PSR_f},
23947 {"csx", PSR_c | PSR_s | PSR_x},
23948 {"cxf", PSR_c | PSR_x | PSR_f},
23949 {"cxs", PSR_c | PSR_x | PSR_s},
23950 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
23951 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
23952 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
23953 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
23954 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
23955 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
23956 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
23957 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
23958 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
23959 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
23960 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
23961 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
23962 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
23963 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
23964 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
23965 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
23966 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
23967 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
23968 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
23969 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
23970 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
23971 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
23972 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
23973 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
23974};
23975
23976/* Table of V7M psr names. */
23977static const struct asm_psr v7m_psrs[] =
23978{
23979 {"apsr", 0x0 }, {"APSR", 0x0 },
23980 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
23981 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
23982 {"psr", 0x3 }, {"PSR", 0x3 },
23983 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
23984 {"ipsr", 0x5 }, {"IPSR", 0x5 },
23985 {"epsr", 0x6 }, {"EPSR", 0x6 },
23986 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
23987 {"msp", 0x8 }, {"MSP", 0x8 },
23988 {"psp", 0x9 }, {"PSP", 0x9 },
23989 {"msplim", 0xa }, {"MSPLIM", 0xa },
23990 {"psplim", 0xb }, {"PSPLIM", 0xb },
23991 {"primask", 0x10}, {"PRIMASK", 0x10},
23992 {"basepri", 0x11}, {"BASEPRI", 0x11},
23993 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
23994 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
23995 {"control", 0x14}, {"CONTROL", 0x14},
23996 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
23997 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
23998 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
23999 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
24000 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
24001 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
24002 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
24003 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
24004 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
24005};
24006
24007/* Table of all shift-in-operand names. */
24008static const struct asm_shift_name shift_names [] =
24009{
24010 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
24011 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
24012 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
24013 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
24014 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
24015 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
24016 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
24017};
24018
24019/* Table of all explicit relocation names. */
24020#ifdef OBJ_ELF
24021static struct reloc_entry reloc_names[] =
24022{
24023 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
24024 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
24025 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
24026 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
24027 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
24028 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
24029 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
24030 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
24031 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
24032 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
24033 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
24034 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
24035 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
24036 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
24037 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
24038 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
24039 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
24040 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
24041 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
24042 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
24043 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
24044 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
24045 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
24046 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
24047 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
24048 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
24049 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
24050};
24051#endif
24052
24053/* Table of all conditional affixes. */
24054static const struct asm_cond conds[] =
24055{
24056 {"eq", 0x0},
24057 {"ne", 0x1},
24058 {"cs", 0x2}, {"hs", 0x2},
24059 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
24060 {"mi", 0x4},
24061 {"pl", 0x5},
24062 {"vs", 0x6},
24063 {"vc", 0x7},
24064 {"hi", 0x8},
24065 {"ls", 0x9},
24066 {"ge", 0xa},
24067 {"lt", 0xb},
24068 {"gt", 0xc},
24069 {"le", 0xd},
24070 {"al", 0xe}
24071};
24072static const struct asm_cond vconds[] =
24073{
24074 {"t", 0xf},
24075 {"e", 0x10}
24076};
24077
24078#define UL_BARRIER(L,U,CODE,FEAT) \
24079 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
24080 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
24081
24082static struct asm_barrier_opt barrier_opt_names[] =
24083{
24084 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
24085 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
24086 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
24087 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
24088 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
24089 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
24090 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
24091 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
24092 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
24093 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
24094 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
24095 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
24096 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
24097 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
24098 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
24099 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
24100};
24101
24102#undef UL_BARRIER
24103
24104/* Table of ARM-format instructions. */
24105
24106/* Macros for gluing together operand strings. N.B. In all cases
24107 other than OPS0, the trailing OP_stop comes from default
24108 zero-initialization of the unspecified elements of the array. */
24109#define OPS0() { OP_stop, }
24110#define OPS1(a) { OP_##a, }
24111#define OPS2(a,b) { OP_##a,OP_##b, }
24112#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
24113#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
24114#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
24115#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
24116
24117/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
24118 This is useful when mixing operands for ARM and THUMB, i.e. using the
24119 MIX_ARM_THUMB_OPERANDS macro.
24120 In order to use these macros, prefix the number of operands with _
24121 e.g. _3. */
24122#define OPS_1(a) { a, }
24123#define OPS_2(a,b) { a,b, }
24124#define OPS_3(a,b,c) { a,b,c, }
24125#define OPS_4(a,b,c,d) { a,b,c,d, }
24126#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
24127#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
24128
24129/* These macros abstract out the exact format of the mnemonic table and
24130 save some repeated characters. */
24131
24132/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
24133#define TxCE(mnem, op, top, nops, ops, ae, te) \
24134 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
24135 THUMB_VARIANT, do_##ae, do_##te, 0 }
24136
24137/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
24138 a T_MNEM_xyz enumerator. */
24139#define TCE(mnem, aop, top, nops, ops, ae, te) \
24140 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
24141#define tCE(mnem, aop, top, nops, ops, ae, te) \
24142 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
24143
24144/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
24145 infix after the third character. */
24146#define TxC3(mnem, op, top, nops, ops, ae, te) \
24147 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
24148 THUMB_VARIANT, do_##ae, do_##te, 0 }
24149#define TxC3w(mnem, op, top, nops, ops, ae, te) \
24150 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
24151 THUMB_VARIANT, do_##ae, do_##te, 0 }
24152#define TC3(mnem, aop, top, nops, ops, ae, te) \
24153 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
24154#define TC3w(mnem, aop, top, nops, ops, ae, te) \
24155 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
24156#define tC3(mnem, aop, top, nops, ops, ae, te) \
24157 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
24158#define tC3w(mnem, aop, top, nops, ops, ae, te) \
24159 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
24160
24161/* Mnemonic that cannot be conditionalized. The ARM condition-code
24162 field is still 0xE. Many of the Thumb variants can be executed
24163 conditionally, so this is checked separately. */
24164#define TUE(mnem, op, top, nops, ops, ae, te) \
24165 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
24166 THUMB_VARIANT, do_##ae, do_##te, 0 }
24167
24168/* Same as TUE but the encoding function for ARM and Thumb modes is the same.
24169 Used by mnemonics that have very minimal differences in the encoding for
24170 ARM and Thumb variants and can be handled in a common function. */
24171#define TUEc(mnem, op, top, nops, ops, en) \
24172 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
24173 THUMB_VARIANT, do_##en, do_##en, 0 }
24174
24175/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
24176 condition code field. */
24177#define TUF(mnem, op, top, nops, ops, ae, te) \
24178 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
24179 THUMB_VARIANT, do_##ae, do_##te, 0 }
24180
24181/* ARM-only variants of all the above. */
24182#define CE(mnem, op, nops, ops, ae) \
24183 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
24184
24185#define C3(mnem, op, nops, ops, ae) \
24186 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
24187
24188/* Thumb-only variants of TCE and TUE. */
24189#define ToC(mnem, top, nops, ops, te) \
24190 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
24191 do_##te, 0 }
24192
24193#define ToU(mnem, top, nops, ops, te) \
24194 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
24195 NULL, do_##te, 0 }
24196
24197/* T_MNEM_xyz enumerator variants of ToC. */
24198#define toC(mnem, top, nops, ops, te) \
24199 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
24200 do_##te, 0 }
24201
24202/* T_MNEM_xyz enumerator variants of ToU. */
24203#define toU(mnem, top, nops, ops, te) \
24204 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
24205 NULL, do_##te, 0 }
24206
24207/* Legacy mnemonics that always have conditional infix after the third
24208 character. */
24209#define CL(mnem, op, nops, ops, ae) \
24210 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
24211 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
24212
24213/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
24214#define cCE(mnem, op, nops, ops, ae) \
24215 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
24216
24217/* mov instructions that are shared between coprocessor and MVE. */
24218#define mcCE(mnem, op, nops, ops, ae) \
24219 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
24220
24221/* Legacy coprocessor instructions where conditional infix and conditional
24222 suffix are ambiguous. For consistency this includes all FPA instructions,
24223 not just the potentially ambiguous ones. */
24224#define cCL(mnem, op, nops, ops, ae) \
24225 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
24226 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
24227
24228/* Coprocessor, takes either a suffix or a position-3 infix
24229 (for an FPA corner case). */
24230#define C3E(mnem, op, nops, ops, ae) \
24231 { mnem, OPS##nops ops, OT_csuf_or_in3, \
24232 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
24233
24234#define xCM_(m1, m2, m3, op, nops, ops, ae) \
24235 { m1 #m2 m3, OPS##nops ops, \
24236 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
24237 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
24238
24239#define CM(m1, m2, op, nops, ops, ae) \
24240 xCM_ (m1, , m2, op, nops, ops, ae), \
24241 xCM_ (m1, eq, m2, op, nops, ops, ae), \
24242 xCM_ (m1, ne, m2, op, nops, ops, ae), \
24243 xCM_ (m1, cs, m2, op, nops, ops, ae), \
24244 xCM_ (m1, hs, m2, op, nops, ops, ae), \
24245 xCM_ (m1, cc, m2, op, nops, ops, ae), \
24246 xCM_ (m1, ul, m2, op, nops, ops, ae), \
24247 xCM_ (m1, lo, m2, op, nops, ops, ae), \
24248 xCM_ (m1, mi, m2, op, nops, ops, ae), \
24249 xCM_ (m1, pl, m2, op, nops, ops, ae), \
24250 xCM_ (m1, vs, m2, op, nops, ops, ae), \
24251 xCM_ (m1, vc, m2, op, nops, ops, ae), \
24252 xCM_ (m1, hi, m2, op, nops, ops, ae), \
24253 xCM_ (m1, ls, m2, op, nops, ops, ae), \
24254 xCM_ (m1, ge, m2, op, nops, ops, ae), \
24255 xCM_ (m1, lt, m2, op, nops, ops, ae), \
24256 xCM_ (m1, gt, m2, op, nops, ops, ae), \
24257 xCM_ (m1, le, m2, op, nops, ops, ae), \
24258 xCM_ (m1, al, m2, op, nops, ops, ae)
24259
24260#define UE(mnem, op, nops, ops, ae) \
24261 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
24262
24263#define UF(mnem, op, nops, ops, ae) \
24264 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
24265
24266/* Neon data-processing. ARM versions are unconditional with cond=0xf.
24267 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
24268 use the same encoding function for each. */
24269#define NUF(mnem, op, nops, ops, enc) \
24270 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
24271 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
24272
24273/* Neon data processing, version which indirects through neon_enc_tab for
24274 the various overloaded versions of opcodes. */
24275#define nUF(mnem, op, nops, ops, enc) \
24276 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
24277 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
24278
24279/* Neon insn with conditional suffix for the ARM version, non-overloaded
24280 version. */
24281#define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
24282 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
24283 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
24284
24285#define NCE(mnem, op, nops, ops, enc) \
24286 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
24287
24288#define NCEF(mnem, op, nops, ops, enc) \
24289 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
24290
24291/* Neon insn with conditional suffix for the ARM version, overloaded types. */
24292#define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
24293 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
24294 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
24295
24296#define nCE(mnem, op, nops, ops, enc) \
24297 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
24298
24299#define nCEF(mnem, op, nops, ops, enc) \
24300 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
24301
24302/* */
24303#define mCEF(mnem, op, nops, ops, enc) \
24304 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
24305 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
24306
24307
24308/* nCEF but for MVE predicated instructions. */
24309#define mnCEF(mnem, op, nops, ops, enc) \
24310 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
24311
24312/* nCE but for MVE predicated instructions. */
24313#define mnCE(mnem, op, nops, ops, enc) \
24314 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
24315
24316/* NUF but for potentially MVE predicated instructions. */
24317#define MNUF(mnem, op, nops, ops, enc) \
24318 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
24319 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
24320
24321/* nUF but for potentially MVE predicated instructions. */
24322#define mnUF(mnem, op, nops, ops, enc) \
24323 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
24324 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
24325
24326/* ToC but for potentially MVE predicated instructions. */
24327#define mToC(mnem, top, nops, ops, te) \
24328 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
24329 do_##te, 1 }
24330
24331/* NCE but for MVE predicated instructions. */
24332#define MNCE(mnem, op, nops, ops, enc) \
24333 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
24334
24335/* NCEF but for MVE predicated instructions. */
24336#define MNCEF(mnem, op, nops, ops, enc) \
24337 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
24338#define do_0 0
24339
24340static const struct asm_opcode insns[] =
24341{
24342#define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
24343#define THUMB_VARIANT & arm_ext_v4t
24344 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
24345 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
24346 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
24347 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
24348 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
24349 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
24350 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
24351 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
24352 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
24353 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
24354 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
24355 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
24356 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
24357 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
24358 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
24359 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
24360
24361 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
24362 for setting PSR flag bits. They are obsolete in V6 and do not
24363 have Thumb equivalents. */
24364 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
24365 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
24366 CL("tstp", 110f000, 2, (RR, SH), cmp),
24367 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
24368 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
24369 CL("cmpp", 150f000, 2, (RR, SH), cmp),
24370 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
24371 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
24372 CL("cmnp", 170f000, 2, (RR, SH), cmp),
24373
24374 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
24375 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
24376 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
24377 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
24378
24379 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
24380 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
24381 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
24382 OP_RRnpc),
24383 OP_ADDRGLDR),ldst, t_ldst),
24384 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
24385
24386 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
24387 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
24388 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
24389 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
24390 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
24391 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
24392
24393 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
24394 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
24395
24396 /* Pseudo ops. */
24397 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
24398 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
24399 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
24400 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
24401
24402 /* Thumb-compatibility pseudo ops. */
24403 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
24404 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
24405 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
24406 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
24407 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
24408 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
24409 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
24410 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
24411 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
24412 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
24413 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
24414 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
24415
24416 /* These may simplify to neg. */
24417 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
24418 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
24419
24420#undef THUMB_VARIANT
24421#define THUMB_VARIANT & arm_ext_os
24422
24423 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
24424 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
24425
24426#undef THUMB_VARIANT
24427#define THUMB_VARIANT & arm_ext_v6
24428
24429 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
24430
24431 /* V1 instructions with no Thumb analogue prior to V6T2. */
24432#undef THUMB_VARIANT
24433#define THUMB_VARIANT & arm_ext_v6t2
24434
24435 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
24436 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
24437 CL("teqp", 130f000, 2, (RR, SH), cmp),
24438
24439 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
24440 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
24441 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
24442 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
24443
24444 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
24445 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
24446
24447 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
24448 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
24449
24450 /* V1 instructions with no Thumb analogue at all. */
24451 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
24452 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
24453
24454 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
24455 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
24456 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
24457 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
24458 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
24459 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
24460 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
24461 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
24462
24463#undef ARM_VARIANT
24464#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
24465#undef THUMB_VARIANT
24466#define THUMB_VARIANT & arm_ext_v4t
24467
24468 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
24469 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
24470
24471#undef THUMB_VARIANT
24472#define THUMB_VARIANT & arm_ext_v6t2
24473
24474 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
24475 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
24476
24477 /* Generic coprocessor instructions. */
24478 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
24479 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24480 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24481 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24482 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24483 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
24484 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
24485
24486#undef ARM_VARIANT
24487#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
24488
24489 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
24490 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
24491
24492#undef ARM_VARIANT
24493#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
24494#undef THUMB_VARIANT
24495#define THUMB_VARIANT & arm_ext_msr
24496
24497 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
24498 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
24499
24500#undef ARM_VARIANT
24501#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
24502#undef THUMB_VARIANT
24503#define THUMB_VARIANT & arm_ext_v6t2
24504
24505 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
24506 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
24507 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
24508 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
24509 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
24510 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
24511 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
24512 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
24513
24514#undef ARM_VARIANT
24515#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
24516#undef THUMB_VARIANT
24517#define THUMB_VARIANT & arm_ext_v4t
24518
24519 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24520 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24521 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24522 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24523 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24524 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24525
24526#undef ARM_VARIANT
24527#define ARM_VARIANT & arm_ext_v4t_5
24528
24529 /* ARM Architecture 4T. */
24530 /* Note: bx (and blx) are required on V5, even if the processor does
24531 not support Thumb. */
24532 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
24533
24534#undef ARM_VARIANT
24535#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
24536#undef THUMB_VARIANT
24537#define THUMB_VARIANT & arm_ext_v5t
24538
24539 /* Note: blx has 2 variants; the .value coded here is for
24540 BLX(2). Only this variant has conditional execution. */
24541 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
24542 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
24543
24544#undef THUMB_VARIANT
24545#define THUMB_VARIANT & arm_ext_v6t2
24546
24547 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
24548 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24549 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24550 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24551 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24552 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
24553 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
24554 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
24555
24556#undef ARM_VARIANT
24557#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
24558#undef THUMB_VARIANT
24559#define THUMB_VARIANT & arm_ext_v5exp
24560
24561 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24562 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24563 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24564 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24565
24566 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24567 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24568
24569 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
24570 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
24571 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
24572 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
24573
24574 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24575 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24576 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24577 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24578
24579 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24580 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24581
24582 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
24583 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
24584 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
24585 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
24586
24587#undef ARM_VARIANT
24588#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
24589#undef THUMB_VARIANT
24590#define THUMB_VARIANT & arm_ext_v6t2
24591
24592 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
24593 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
24594 ldrd, t_ldstd),
24595 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
24596 ADDRGLDRS), ldrd, t_ldstd),
24597
24598 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
24599 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
24600
24601#undef ARM_VARIANT
24602#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
24603
24604 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
24605
24606#undef ARM_VARIANT
24607#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
24608#undef THUMB_VARIANT
24609#define THUMB_VARIANT & arm_ext_v6
24610
24611 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
24612 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
24613 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
24614 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
24615 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
24616 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24617 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24618 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24619 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24620 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
24621
24622#undef THUMB_VARIANT
24623#define THUMB_VARIANT & arm_ext_v6t2_v8m
24624
24625 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
24626 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
24627 strex, t_strex),
24628#undef THUMB_VARIANT
24629#define THUMB_VARIANT & arm_ext_v6t2
24630
24631 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
24632 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
24633
24634 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
24635 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
24636
24637/* ARM V6 not included in V7M. */
24638#undef THUMB_VARIANT
24639#define THUMB_VARIANT & arm_ext_v6_notm
24640 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
24641 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
24642 UF(rfeib, 9900a00, 1, (RRw), rfe),
24643 UF(rfeda, 8100a00, 1, (RRw), rfe),
24644 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
24645 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
24646 UF(rfefa, 8100a00, 1, (RRw), rfe),
24647 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
24648 UF(rfeed, 9900a00, 1, (RRw), rfe),
24649 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
24650 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
24651 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
24652 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
24653 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
24654 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
24655 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
24656 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
24657 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
24658 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
24659
24660/* ARM V6 not included in V7M (eg. integer SIMD). */
24661#undef THUMB_VARIANT
24662#define THUMB_VARIANT & arm_ext_v6_dsp
24663 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
24664 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
24665 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24666 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24667 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24668 /* Old name for QASX. */
24669 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24670 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24671 /* Old name for QSAX. */
24672 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24673 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24674 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24675 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24676 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24677 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24678 /* Old name for SASX. */
24679 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24680 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24681 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24682 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24683 /* Old name for SHASX. */
24684 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24685 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24686 /* Old name for SHSAX. */
24687 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24688 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24689 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24690 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24691 /* Old name for SSAX. */
24692 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24693 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24694 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24695 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24696 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24697 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24698 /* Old name for UASX. */
24699 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24700 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24701 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24702 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24703 /* Old name for UHASX. */
24704 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24705 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24706 /* Old name for UHSAX. */
24707 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24708 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24709 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24710 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24711 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24712 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24713 /* Old name for UQASX. */
24714 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24715 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24716 /* Old name for UQSAX. */
24717 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24718 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24719 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24720 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24721 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24722 /* Old name for USAX. */
24723 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24724 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24725 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24726 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24727 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24728 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24729 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24730 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24731 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24732 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24733 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24734 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24735 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24736 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
24737 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
24738 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24739 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24740 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
24741 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
24742 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24743 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24744 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24745 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24746 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24747 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24748 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24749 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24750 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24751 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24752 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
24753 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
24754 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24755 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24756 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
24757
24758#undef ARM_VARIANT
24759#define ARM_VARIANT & arm_ext_v6k_v6t2
24760#undef THUMB_VARIANT
24761#define THUMB_VARIANT & arm_ext_v6k_v6t2
24762
24763 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
24764 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
24765 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
24766 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
24767
24768#undef THUMB_VARIANT
24769#define THUMB_VARIANT & arm_ext_v6_notm
24770 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
24771 ldrexd, t_ldrexd),
24772 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
24773 RRnpcb), strexd, t_strexd),
24774
24775#undef THUMB_VARIANT
24776#define THUMB_VARIANT & arm_ext_v6t2_v8m
24777 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
24778 rd_rn, rd_rn),
24779 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
24780 rd_rn, rd_rn),
24781 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
24782 strex, t_strexbh),
24783 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
24784 strex, t_strexbh),
24785 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
24786
24787#undef ARM_VARIANT
24788#define ARM_VARIANT & arm_ext_sec
24789#undef THUMB_VARIANT
24790#define THUMB_VARIANT & arm_ext_sec
24791
24792 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
24793
24794#undef ARM_VARIANT
24795#define ARM_VARIANT & arm_ext_virt
24796#undef THUMB_VARIANT
24797#define THUMB_VARIANT & arm_ext_virt
24798
24799 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
24800 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
24801
24802#undef ARM_VARIANT
24803#define ARM_VARIANT & arm_ext_pan
24804#undef THUMB_VARIANT
24805#define THUMB_VARIANT & arm_ext_pan
24806
24807 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
24808
24809#undef ARM_VARIANT
24810#define ARM_VARIANT & arm_ext_v6t2
24811#undef THUMB_VARIANT
24812#define THUMB_VARIANT & arm_ext_v6t2
24813
24814 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
24815 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
24816 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
24817 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
24818
24819 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
24820 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
24821
24822 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
24823 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
24824 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
24825 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
24826
24827#undef ARM_VARIANT
24828#define ARM_VARIANT & arm_ext_v3
24829#undef THUMB_VARIANT
24830#define THUMB_VARIANT & arm_ext_v6t2
24831
24832 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
24833 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
24834 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
24835
24836#undef ARM_VARIANT
24837#define ARM_VARIANT & arm_ext_v6t2
24838#undef THUMB_VARIANT
24839#define THUMB_VARIANT & arm_ext_v6t2_v8m
24840 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
24841 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
24842
24843 /* Thumb-only instructions. */
24844#undef ARM_VARIANT
24845#define ARM_VARIANT NULL
24846 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
24847 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
24848
24849 /* ARM does not really have an IT instruction, so always allow it.
24850 The opcode is copied from Thumb in order to allow warnings in
24851 -mimplicit-it=[never | arm] modes. */
24852#undef ARM_VARIANT
24853#define ARM_VARIANT & arm_ext_v1
24854#undef THUMB_VARIANT
24855#define THUMB_VARIANT & arm_ext_v6t2
24856
24857 TUE("it", bf08, bf08, 1, (COND), it, t_it),
24858 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
24859 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
24860 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
24861 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
24862 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
24863 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
24864 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
24865 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
24866 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
24867 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
24868 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
24869 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
24870 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
24871 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
24872 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
24873 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
24874 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
24875
24876 /* Thumb2 only instructions. */
24877#undef ARM_VARIANT
24878#define ARM_VARIANT NULL
24879
24880 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
24881 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
24882 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
24883 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
24884 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
24885 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
24886
24887 /* Hardware division instructions. */
24888#undef ARM_VARIANT
24889#define ARM_VARIANT & arm_ext_adiv
24890#undef THUMB_VARIANT
24891#define THUMB_VARIANT & arm_ext_div
24892
24893 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
24894 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
24895
24896 /* ARM V6M/V7 instructions. */
24897#undef ARM_VARIANT
24898#define ARM_VARIANT & arm_ext_barrier
24899#undef THUMB_VARIANT
24900#define THUMB_VARIANT & arm_ext_barrier
24901
24902 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
24903 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
24904 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
24905
24906 /* ARM V7 instructions. */
24907#undef ARM_VARIANT
24908#define ARM_VARIANT & arm_ext_v7
24909#undef THUMB_VARIANT
24910#define THUMB_VARIANT & arm_ext_v7
24911
24912 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
24913 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
24914
24915#undef ARM_VARIANT
24916#define ARM_VARIANT & arm_ext_mp
24917#undef THUMB_VARIANT
24918#define THUMB_VARIANT & arm_ext_mp
24919
24920 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
24921
24922 /* AArchv8 instructions. */
24923#undef ARM_VARIANT
24924#define ARM_VARIANT & arm_ext_v8
24925
24926/* Instructions shared between armv8-a and armv8-m. */
24927#undef THUMB_VARIANT
24928#define THUMB_VARIANT & arm_ext_atomics
24929
24930 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24931 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24932 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24933 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
24934 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
24935 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
24936 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24937 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
24938 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24939 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
24940 stlex, t_stlex),
24941 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
24942 stlex, t_stlex),
24943 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
24944 stlex, t_stlex),
24945#undef THUMB_VARIANT
24946#define THUMB_VARIANT & arm_ext_v8
24947
24948 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
24949 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
24950 ldrexd, t_ldrexd),
24951 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
24952 strexd, t_strexd),
24953#undef THUMB_VARIANT
24954#define THUMB_VARIANT & arm_ext_v8r
24955#undef ARM_VARIANT
24956#define ARM_VARIANT & arm_ext_v8r
24957
24958/* ARMv8-R instructions. */
24959 TUF("dfb", 57ff04c, f3bf8f4c, 0, (), noargs, noargs),
24960
24961/* Defined in V8 but is in undefined encoding space for earlier
24962 architectures. However earlier architectures are required to treat
24963 this instuction as a semihosting trap as well. Hence while not explicitly
24964 defined as such, it is in fact correct to define the instruction for all
24965 architectures. */
24966#undef THUMB_VARIANT
24967#define THUMB_VARIANT & arm_ext_v1
24968#undef ARM_VARIANT
24969#define ARM_VARIANT & arm_ext_v1
24970 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
24971
24972 /* ARMv8 T32 only. */
24973#undef ARM_VARIANT
24974#define ARM_VARIANT NULL
24975 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
24976 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
24977 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
24978
24979 /* FP for ARMv8. */
24980#undef ARM_VARIANT
24981#define ARM_VARIANT & fpu_vfp_ext_armv8xd
24982#undef THUMB_VARIANT
24983#define THUMB_VARIANT & fpu_vfp_ext_armv8xd
24984
24985 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
24986 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
24987 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
24988 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
24989 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
24990 mnCE(vrintz, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintz),
24991 mnCE(vrintx, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintx),
24992 mnUF(vrinta, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrinta),
24993 mnUF(vrintn, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintn),
24994 mnUF(vrintp, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintp),
24995 mnUF(vrintm, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintm),
24996
24997 /* Crypto v1 extensions. */
24998#undef ARM_VARIANT
24999#define ARM_VARIANT & fpu_crypto_ext_armv8
25000#undef THUMB_VARIANT
25001#define THUMB_VARIANT & fpu_crypto_ext_armv8
25002
25003 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
25004 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
25005 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
25006 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
25007 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
25008 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
25009 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
25010 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
25011 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
25012 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
25013 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
25014 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
25015 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
25016 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
25017
25018#undef ARM_VARIANT
25019#define ARM_VARIANT & arm_ext_crc
25020#undef THUMB_VARIANT
25021#define THUMB_VARIANT & arm_ext_crc
25022 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
25023 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
25024 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
25025 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
25026 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
25027 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
25028
25029 /* ARMv8.2 RAS extension. */
25030#undef ARM_VARIANT
25031#define ARM_VARIANT & arm_ext_ras
25032#undef THUMB_VARIANT
25033#define THUMB_VARIANT & arm_ext_ras
25034 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
25035
25036#undef ARM_VARIANT
25037#define ARM_VARIANT & arm_ext_v8_3
25038#undef THUMB_VARIANT
25039#define THUMB_VARIANT & arm_ext_v8_3
25040 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
25041
25042#undef ARM_VARIANT
25043#define ARM_VARIANT & fpu_neon_ext_dotprod
25044#undef THUMB_VARIANT
25045#define THUMB_VARIANT & fpu_neon_ext_dotprod
25046 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
25047 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
25048
25049#undef ARM_VARIANT
25050#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
25051#undef THUMB_VARIANT
25052#define THUMB_VARIANT NULL
25053
25054 cCE("wfs", e200110, 1, (RR), rd),
25055 cCE("rfs", e300110, 1, (RR), rd),
25056 cCE("wfc", e400110, 1, (RR), rd),
25057 cCE("rfc", e500110, 1, (RR), rd),
25058
25059 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
25060 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
25061 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
25062 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
25063
25064 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
25065 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
25066 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
25067 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
25068
25069 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
25070 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
25071 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
25072 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
25073 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
25074 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
25075 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
25076 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
25077 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
25078 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
25079 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
25080 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
25081
25082 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
25083 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
25084 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
25085 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
25086 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
25087 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
25088 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
25089 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
25090 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
25091 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
25092 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
25093 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
25094
25095 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
25096 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
25097 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
25098 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
25099 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
25100 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
25101 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
25102 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
25103 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
25104 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
25105 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
25106 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
25107
25108 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
25109 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
25110 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
25111 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
25112 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
25113 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
25114 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
25115 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
25116 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
25117 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
25118 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
25119 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
25120
25121 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
25122 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
25123 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
25124 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
25125 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
25126 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
25127 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
25128 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
25129 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
25130 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
25131 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
25132 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
25133
25134 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
25135 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
25136 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
25137 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
25138 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
25139 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
25140 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
25141 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
25142 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
25143 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
25144 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
25145 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
25146
25147 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
25148 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
25149 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
25150 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
25151 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
25152 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
25153 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
25154 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
25155 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
25156 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
25157 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
25158 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
25159
25160 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
25161 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
25162 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
25163 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
25164 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
25165 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
25166 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
25167 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
25168 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
25169 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
25170 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
25171 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
25172
25173 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
25174 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
25175 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
25176 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
25177 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
25178 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
25179 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
25180 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
25181 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
25182 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
25183 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
25184 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
25185
25186 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
25187 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
25188 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
25189 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
25190 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
25191 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
25192 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
25193 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
25194 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
25195 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
25196 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
25197 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
25198
25199 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
25200 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
25201 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
25202 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
25203 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
25204 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
25205 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
25206 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
25207 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
25208 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
25209 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
25210 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
25211
25212 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
25213 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
25214 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
25215 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
25216 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
25217 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
25218 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
25219 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
25220 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
25221 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
25222 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
25223 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
25224
25225 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
25226 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
25227 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
25228 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
25229 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
25230 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
25231 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
25232 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
25233 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
25234 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
25235 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
25236 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
25237
25238 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
25239 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
25240 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
25241 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
25242 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
25243 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
25244 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
25245 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
25246 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
25247 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
25248 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
25249 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
25250
25251 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
25252 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
25253 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
25254 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
25255 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
25256 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
25257 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
25258 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
25259 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
25260 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
25261 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
25262 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
25263
25264 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
25265 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
25266 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
25267 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
25268 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
25269 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
25270 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
25271 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
25272 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
25273 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
25274 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
25275 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
25276
25277 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
25278 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
25279 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
25280 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
25281 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
25282 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25283 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25284 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25285 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
25286 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
25287 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
25288 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
25289
25290 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
25291 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
25292 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
25293 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
25294 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
25295 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25296 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25297 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25298 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
25299 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
25300 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
25301 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
25302
25303 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
25304 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
25305 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
25306 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
25307 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
25308 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25309 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25310 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25311 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
25312 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
25313 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
25314 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
25315
25316 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
25317 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
25318 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
25319 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
25320 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
25321 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25322 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25323 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25324 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
25325 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
25326 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
25327 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
25328
25329 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
25330 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
25331 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
25332 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
25333 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
25334 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25335 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25336 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25337 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
25338 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
25339 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
25340 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
25341
25342 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
25343 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
25344 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
25345 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
25346 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
25347 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25348 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25349 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25350 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
25351 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
25352 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
25353 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
25354
25355 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
25356 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
25357 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
25358 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
25359 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
25360 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25361 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25362 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25363 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
25364 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
25365 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
25366 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
25367
25368 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
25369 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
25370 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
25371 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
25372 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
25373 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25374 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25375 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25376 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
25377 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
25378 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
25379 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
25380
25381 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
25382 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
25383 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
25384 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
25385 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
25386 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25387 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25388 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25389 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
25390 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
25391 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
25392 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
25393
25394 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
25395 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
25396 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
25397 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
25398 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
25399 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25400 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25401 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25402 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
25403 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
25404 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
25405 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
25406
25407 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
25408 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
25409 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
25410 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
25411 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
25412 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25413 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25414 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25415 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
25416 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
25417 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
25418 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
25419
25420 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
25421 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
25422 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
25423 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
25424 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
25425 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25426 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25427 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25428 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
25429 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
25430 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
25431 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
25432
25433 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
25434 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
25435 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
25436 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
25437 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
25438 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25439 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25440 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25441 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
25442 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
25443 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
25444 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
25445
25446 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
25447 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
25448 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
25449 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
25450
25451 cCL("flts", e000110, 2, (RF, RR), rn_rd),
25452 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
25453 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
25454 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
25455 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
25456 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
25457 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
25458 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
25459 cCL("flte", e080110, 2, (RF, RR), rn_rd),
25460 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
25461 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
25462 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
25463
25464 /* The implementation of the FIX instruction is broken on some
25465 assemblers, in that it accepts a precision specifier as well as a
25466 rounding specifier, despite the fact that this is meaningless.
25467 To be more compatible, we accept it as well, though of course it
25468 does not set any bits. */
25469 cCE("fix", e100110, 2, (RR, RF), rd_rm),
25470 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
25471 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
25472 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
25473 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
25474 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
25475 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
25476 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
25477 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
25478 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
25479 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
25480 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
25481 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
25482
25483 /* Instructions that were new with the real FPA, call them V2. */
25484#undef ARM_VARIANT
25485#define ARM_VARIANT & fpu_fpa_ext_v2
25486
25487 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
25488 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
25489 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
25490 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
25491 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
25492 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
25493
25494#undef ARM_VARIANT
25495#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
25496#undef THUMB_VARIANT
25497#define THUMB_VARIANT & arm_ext_v6t2
25498 mcCE(vmrs, ef00a10, 2, (APSR_RR, RVC), vmrs),
25499 mcCE(vmsr, ee00a10, 2, (RVC, RR), vmsr),
25500 mcCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
25501 mcCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
25502 mcCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
25503 mcCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
25504
25505 /* Memory operations. */
25506 mcCE(fldmias, c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
25507 mcCE(fldmdbs, d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
25508 mcCE(fstmias, c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
25509 mcCE(fstmdbs, d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
25510#undef THUMB_VARIANT
25511
25512 /* Moves and type conversions. */
25513 cCE("fmstat", ef1fa10, 0, (), noargs),
25514 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
25515 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
25516 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
25517 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
25518 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
25519 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
25520 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
25521 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
25522
25523 /* Memory operations. */
25524 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
25525 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
25526 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
25527 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
25528 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
25529 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
25530 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
25531 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
25532 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
25533 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
25534 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
25535 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
25536
25537 /* Monadic operations. */
25538 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
25539 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
25540 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
25541
25542 /* Dyadic operations. */
25543 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25544 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25545 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25546 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25547 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25548 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25549 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25550 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25551 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25552
25553 /* Comparisons. */
25554 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
25555 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
25556 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
25557 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
25558
25559 /* Double precision load/store are still present on single precision
25560 implementations. */
25561 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
25562 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
25563 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
25564 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
25565 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
25566 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
25567 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
25568 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
25569
25570#undef ARM_VARIANT
25571#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
25572
25573 /* Moves and type conversions. */
25574 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
25575 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
25576 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
25577 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
25578 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
25579 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
25580 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
25581 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
25582 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
25583 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
25584 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
25585 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
25586
25587 /* Monadic operations. */
25588 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
25589 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
25590 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
25591
25592 /* Dyadic operations. */
25593 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25594 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25595 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25596 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25597 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25598 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25599 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25600 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25601 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25602
25603 /* Comparisons. */
25604 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
25605 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
25606 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
25607 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
25608
25609/* Instructions which may belong to either the Neon or VFP instruction sets.
25610 Individual encoder functions perform additional architecture checks. */
25611#undef ARM_VARIANT
25612#define ARM_VARIANT & fpu_vfp_ext_v1xd
25613#undef THUMB_VARIANT
25614#define THUMB_VARIANT & arm_ext_v6t2
25615
25616 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25617 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25618 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25619 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25620 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25621 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25622
25623 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
25624 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
25625
25626#undef THUMB_VARIANT
25627#define THUMB_VARIANT & fpu_vfp_ext_v1xd
25628
25629 /* These mnemonics are unique to VFP. */
25630 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
25631 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
25632 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25633 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25634 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25635 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
25636
25637 /* Mnemonics shared by Neon and VFP. */
25638 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
25639
25640 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
25641 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
25642 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
25643 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
25644
25645
25646 /* NOTE: All VMOV encoding is special-cased! */
25647 NCE(vmovq, 0, 1, (VMOV), neon_mov),
25648
25649#undef THUMB_VARIANT
25650/* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
25651 by different feature bits. Since we are setting the Thumb guard, we can
25652 require Thumb-1 which makes it a nop guard and set the right feature bit in
25653 do_vldr_vstr (). */
25654#define THUMB_VARIANT & arm_ext_v4t
25655 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
25656 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
25657
25658#undef ARM_VARIANT
25659#define ARM_VARIANT & arm_ext_fp16
25660#undef THUMB_VARIANT
25661#define THUMB_VARIANT & arm_ext_fp16
25662 /* New instructions added from v8.2, allowing the extraction and insertion of
25663 the upper 16 bits of a 32-bit vector register. */
25664 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
25665 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
25666
25667 /* New backported fma/fms instructions optional in v8.2. */
25668 NUF (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
25669 NUF (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
25670
25671#undef THUMB_VARIANT
25672#define THUMB_VARIANT & fpu_neon_ext_v1
25673#undef ARM_VARIANT
25674#define ARM_VARIANT & fpu_neon_ext_v1
25675
25676 /* Data processing with three registers of the same length. */
25677 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
25678 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
25679 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
25680 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
25681 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
25682 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
25683 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
25684 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
25685 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
25686 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
25687 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
25688 /* If not immediate, fall back to neon_dyadic_i64_su.
25689 shl should accept I8 I16 I32 I64,
25690 qshl should accept S8 S16 S32 S64 U8 U16 U32 U64. */
25691 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl),
25692 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl),
25693 /* Logic ops, types optional & ignored. */
25694 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
25695 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
25696 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
25697 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
25698 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
25699 /* Bitfield ops, untyped. */
25700 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
25701 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
25702 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
25703 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
25704 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
25705 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
25706 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
25707 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
25708 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
25709 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
25710 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
25711 back to neon_dyadic_if_su. */
25712 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
25713 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
25714 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
25715 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
25716 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
25717 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
25718 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
25719 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
25720 /* Comparison. Type I8 I16 I32 F32. */
25721 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
25722 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
25723 /* As above, D registers only. */
25724 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
25725 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
25726 /* Int and float variants, signedness unimportant. */
25727 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
25728 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
25729 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
25730 /* Add/sub take types I8 I16 I32 I64 F32. */
25731 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
25732 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
25733 /* vtst takes sizes 8, 16, 32. */
25734 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
25735 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
25736 /* VMUL takes I8 I16 I32 F32 P8. */
25737 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
25738 /* VQD{R}MULH takes S16 S32. */
25739 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
25740 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
25741 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
25742 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
25743 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
25744 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
25745 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
25746 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
25747 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
25748 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
25749 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
25750 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
25751 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
25752 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
25753 /* ARM v8.1 extension. */
25754 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
25755 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
25756 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
25757
25758 /* Two address, int/float. Types S8 S16 S32 F32. */
25759 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
25760 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
25761
25762 /* Data processing with two registers and a shift amount. */
25763 /* Right shifts, and variants with rounding.
25764 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
25765 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
25766 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
25767 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
25768 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
25769 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
25770 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
25771 /* Shift and insert. Sizes accepted 8 16 32 64. */
25772 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
25773 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
25774 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
25775 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
25776 /* Right shift immediate, saturating & narrowing, with rounding variants.
25777 Types accepted S16 S32 S64 U16 U32 U64. */
25778 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
25779 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
25780 /* As above, unsigned. Types accepted S16 S32 S64. */
25781 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
25782 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
25783 /* Right shift narrowing. Types accepted I16 I32 I64. */
25784 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
25785 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
25786 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
25787 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
25788 /* CVT with optional immediate for fixed-point variant. */
25789 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
25790
25791 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
25792
25793 /* Data processing, three registers of different lengths. */
25794 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
25795 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
25796 /* If not scalar, fall back to neon_dyadic_long.
25797 Vector types as above, scalar types S16 S32 U16 U32. */
25798 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
25799 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
25800 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
25801 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
25802 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
25803 /* Dyadic, narrowing insns. Types I16 I32 I64. */
25804 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
25805 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
25806 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
25807 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
25808 /* Saturating doubling multiplies. Types S16 S32. */
25809 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
25810 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
25811 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
25812 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
25813 S16 S32 U16 U32. */
25814 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
25815
25816 /* Extract. Size 8. */
25817 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
25818 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
25819
25820 /* Two registers, miscellaneous. */
25821 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
25822 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
25823 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
25824 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
25825 /* Vector replicate. Sizes 8 16 32. */
25826 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
25827 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
25828 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
25829 /* VMOVN. Types I16 I32 I64. */
25830 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
25831 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
25832 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
25833 /* VQMOVUN. Types S16 S32 S64. */
25834 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
25835 /* VZIP / VUZP. Sizes 8 16 32. */
25836 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
25837 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
25838 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
25839 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
25840 /* VQABS / VQNEG. Types S8 S16 S32. */
25841 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
25842 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
25843 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
25844 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
25845 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
25846 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
25847 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
25848 /* Reciprocal estimates. Types U32 F16 F32. */
25849 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
25850 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
25851 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
25852 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
25853 /* VCLS. Types S8 S16 S32. */
25854 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
25855 /* VCLZ. Types I8 I16 I32. */
25856 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
25857 /* VCNT. Size 8. */
25858 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
25859 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
25860 /* Two address, untyped. */
25861 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
25862 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
25863 /* VTRN. Sizes 8 16 32. */
25864 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
25865 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
25866
25867 /* Table lookup. Size 8. */
25868 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
25869 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
25870
25871#undef THUMB_VARIANT
25872#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
25873#undef ARM_VARIANT
25874#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
25875
25876 /* Neon element/structure load/store. */
25877 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
25878 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
25879 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
25880 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
25881 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
25882 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
25883 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
25884 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
25885
25886#undef THUMB_VARIANT
25887#define THUMB_VARIANT & fpu_vfp_ext_v3xd
25888#undef ARM_VARIANT
25889#define ARM_VARIANT & fpu_vfp_ext_v3xd
25890 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
25891 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25892 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25893 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25894 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25895 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25896 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25897 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25898 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25899
25900#undef THUMB_VARIANT
25901#define THUMB_VARIANT & fpu_vfp_ext_v3
25902#undef ARM_VARIANT
25903#define ARM_VARIANT & fpu_vfp_ext_v3
25904
25905 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
25906 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
25907 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
25908 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
25909 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
25910 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
25911 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
25912 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
25913 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
25914
25915#undef ARM_VARIANT
25916#define ARM_VARIANT & fpu_vfp_ext_fma
25917#undef THUMB_VARIANT
25918#define THUMB_VARIANT & fpu_vfp_ext_fma
25919 /* Mnemonics shared by Neon, VFP, MVE and BF16. These are included in the
25920 VFP FMA variant; NEON and VFP FMA always includes the NEON
25921 FMA instructions. */
25922 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
25923 TUF ("vfmat", c300850, fc300850, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), mve_vfma, mve_vfma),
25924 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
25925
25926 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
25927 the v form should always be used. */
25928 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25929 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25930 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25931 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25932 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25933 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25934
25935#undef THUMB_VARIANT
25936#undef ARM_VARIANT
25937#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
25938
25939 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25940 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25941 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25942 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25943 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25944 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25945 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
25946 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
25947
25948#undef ARM_VARIANT
25949#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
25950
25951 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
25952 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
25953 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
25954 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
25955 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
25956 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
25957 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
25958 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
25959 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
25960 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
25961 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
25962 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
25963 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
25964 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
25965 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
25966 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
25967 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
25968 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
25969 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
25970 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
25971 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25972 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25973 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25974 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25975 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25976 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25977 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
25978 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
25979 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
25980 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
25981 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
25982 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
25983 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
25984 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
25985 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
25986 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
25987 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
25988 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25989 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25990 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25991 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25992 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25993 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25994 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25995 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25996 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25997 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
25998 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25999 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26000 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26001 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26002 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26003 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26004 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26005 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26006 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26007 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26008 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26009 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26010 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26011 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26012 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26013 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26014 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26015 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26016 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26017 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
26018 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
26019 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
26020 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
26021 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26022 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26023 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26024 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26025 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26026 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26027 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26028 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26029 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26030 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26031 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26032 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26033 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26034 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26035 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26036 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26037 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26038 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26039 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
26040 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26041 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26042 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26043 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26044 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26045 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26046 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26047 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26048 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26049 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26050 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26051 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26052 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26053 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26054 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26055 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26056 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26057 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26058 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26059 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26060 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26061 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
26062 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26063 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26064 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26065 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26066 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26067 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26068 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26069 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26070 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26071 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26072 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26073 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26074 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26075 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26076 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26077 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26078 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26079 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26080 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
26081 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
26082 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
26083 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
26084 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26085 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26086 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26087 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26088 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26089 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26090 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26091 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26092 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26093 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
26094 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
26095 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
26096 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
26097 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
26098 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
26099 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26100 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26101 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26102 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
26103 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
26104 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
26105 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
26106 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
26107 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
26108 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26109 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26110 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26111 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26112 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
26113
26114#undef ARM_VARIANT
26115#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
26116
26117 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
26118 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
26119 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
26120 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
26121 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
26122 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
26123 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26124 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26125 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26126 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26127 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26128 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26129 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26130 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26131 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26132 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26133 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26134 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26135 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26136 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26137 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
26138 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26139 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26140 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26141 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26142 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26143 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26144 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26145 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26146 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26147 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26148 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26149 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26150 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26151 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26152 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26153 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26154 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26155 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26156 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26157 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26158 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26159 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26160 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26161 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26162 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26163 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26164 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26165 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26166 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26167 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26168 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26169 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26170 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26171 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26172 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26173 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26174
26175#undef ARM_VARIANT
26176#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
26177
26178 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
26179 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
26180 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
26181 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
26182 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
26183 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
26184 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
26185 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
26186 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
26187 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
26188 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
26189 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
26190 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
26191 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
26192 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
26193 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
26194 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
26195 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
26196 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
26197 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
26198 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
26199 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
26200 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
26201 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
26202 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
26203 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
26204 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
26205 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
26206 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
26207 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
26208 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
26209 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
26210 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
26211 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
26212 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
26213 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
26214 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
26215 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
26216 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
26217 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
26218 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
26219 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
26220 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
26221 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
26222 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
26223 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
26224 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
26225 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
26226 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
26227 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
26228 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
26229 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
26230 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
26231 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
26232 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
26233 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
26234 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
26235 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
26236 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
26237 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
26238 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
26239 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
26240 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
26241 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
26242 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
26243 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
26244 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
26245 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
26246 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
26247 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
26248 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
26249 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
26250 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
26251 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
26252 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
26253 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
26254
26255 /* ARMv8.5-A instructions. */
26256#undef ARM_VARIANT
26257#define ARM_VARIANT & arm_ext_sb
26258#undef THUMB_VARIANT
26259#define THUMB_VARIANT & arm_ext_sb
26260 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
26261
26262#undef ARM_VARIANT
26263#define ARM_VARIANT & arm_ext_predres
26264#undef THUMB_VARIANT
26265#define THUMB_VARIANT & arm_ext_predres
26266 CE("cfprctx", e070f93, 1, (RRnpc), rd),
26267 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
26268 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
26269
26270 /* ARMv8-M instructions. */
26271#undef ARM_VARIANT
26272#define ARM_VARIANT NULL
26273#undef THUMB_VARIANT
26274#define THUMB_VARIANT & arm_ext_v8m
26275 ToU("sg", e97fe97f, 0, (), noargs),
26276 ToC("blxns", 4784, 1, (RRnpc), t_blx),
26277 ToC("bxns", 4704, 1, (RRnpc), t_bx),
26278 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
26279 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
26280 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
26281 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
26282
26283 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
26284 instructions behave as nop if no VFP is present. */
26285#undef THUMB_VARIANT
26286#define THUMB_VARIANT & arm_ext_v8m_main
26287 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
26288 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
26289
26290 /* Armv8.1-M Mainline instructions. */
26291#undef THUMB_VARIANT
26292#define THUMB_VARIANT & arm_ext_v8_1m_main
26293 toU("cinc", _cinc, 3, (RRnpcsp, RR_ZR, COND), t_cond),
26294 toU("cinv", _cinv, 3, (RRnpcsp, RR_ZR, COND), t_cond),
26295 toU("cneg", _cneg, 3, (RRnpcsp, RR_ZR, COND), t_cond),
26296 toU("csel", _csel, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
26297 toU("csetm", _csetm, 2, (RRnpcsp, COND), t_cond),
26298 toU("cset", _cset, 2, (RRnpcsp, COND), t_cond),
26299 toU("csinc", _csinc, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
26300 toU("csinv", _csinv, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
26301 toU("csneg", _csneg, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
26302
26303 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
26304 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
26305 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
26306 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
26307 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
26308
26309 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
26310 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
26311 toU("le", _le, 2, (oLR, EXP), t_loloop),
26312
26313 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
26314 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
26315
26316#undef THUMB_VARIANT
26317#define THUMB_VARIANT & mve_ext
26318 ToC("lsll", ea50010d, 3, (RRe, RRo, RRnpcsp_I32), mve_scalar_shift),
26319 ToC("lsrl", ea50011f, 3, (RRe, RRo, I32), mve_scalar_shift),
26320 ToC("asrl", ea50012d, 3, (RRe, RRo, RRnpcsp_I32), mve_scalar_shift),
26321 ToC("uqrshll", ea51010d, 4, (RRe, RRo, I48_I64, RRnpcsp), mve_scalar_shift1),
26322 ToC("sqrshrl", ea51012d, 4, (RRe, RRo, I48_I64, RRnpcsp), mve_scalar_shift1),
26323 ToC("uqshll", ea51010f, 3, (RRe, RRo, I32), mve_scalar_shift),
26324 ToC("urshrl", ea51011f, 3, (RRe, RRo, I32), mve_scalar_shift),
26325 ToC("srshrl", ea51012f, 3, (RRe, RRo, I32), mve_scalar_shift),
26326 ToC("sqshll", ea51013f, 3, (RRe, RRo, I32), mve_scalar_shift),
26327 ToC("uqrshl", ea500f0d, 2, (RRnpcsp, RRnpcsp), mve_scalar_shift),
26328 ToC("sqrshr", ea500f2d, 2, (RRnpcsp, RRnpcsp), mve_scalar_shift),
26329 ToC("uqshl", ea500f0f, 2, (RRnpcsp, I32), mve_scalar_shift),
26330 ToC("urshr", ea500f1f, 2, (RRnpcsp, I32), mve_scalar_shift),
26331 ToC("srshr", ea500f2f, 2, (RRnpcsp, I32), mve_scalar_shift),
26332 ToC("sqshl", ea500f3f, 2, (RRnpcsp, I32), mve_scalar_shift),
26333
26334 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26335 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26336 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26337 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26338 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26339 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26340 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26341 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26342 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26343 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26344 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26345 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26346 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26347 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26348 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26349
26350 ToC("vpst", fe710f4d, 0, (), mve_vpt),
26351 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
26352 ToC("vpste", fe718f4d, 0, (), mve_vpt),
26353 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
26354 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
26355 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
26356 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
26357 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
26358 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
26359 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
26360 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
26361 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
26362 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
26363 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
26364 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
26365
26366 /* MVE and MVE FP only. */
26367 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
26368 mCEF(vctp, _vctp, 1, (RRnpc), mve_vctp),
26369 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
26370 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
26371 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
26372 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
26373 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
26374 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
26375 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
26376 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
26377 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
26378 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
26379 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
26380 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
26381 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
26382 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
26383 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
26384 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
26385
26386 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
26387 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
26388 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
26389 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
26390 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
26391 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
26392 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
26393 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
26394 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
26395 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
26396 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
26397 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
26398 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
26399 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
26400 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
26401 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
26402 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
26403 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
26404 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
26405 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
26406
26407 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
26408 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
26409 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
26410 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
26411 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
26412 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
26413 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
26414 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
26415 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
26416 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
26417 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
26418 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
26419 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
26420 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
26421 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
26422 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
26423 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
26424
26425 mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
26426 mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
26427 mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
26428 mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
26429 mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
26430 mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
26431 mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
26432 mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
26433 mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
26434 mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
26435 mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
26436 mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
26437 mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
26438 mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
26439 mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
26440 mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
26441 mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
26442 mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
26443 mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
26444 mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
26445
26446 mToC("vmlas", ee011e40, 3, (RMQ, RMQ, RR), mve_vmlas),
26447 mToC("vmulh", ee010e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
26448 mToC("vrmulh", ee011e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
26449 mToC("vpnot", fe310f4d, 0, (), mve_vpnot),
26450 mToC("vpsel", fe310f01, 3, (RMQ, RMQ, RMQ), mve_vpsel),
26451
26452 mToC("vqdmladh", ee000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
26453 mToC("vqdmladhx", ee001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
26454 mToC("vqrdmladh", ee000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
26455 mToC("vqrdmladhx",ee001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
26456 mToC("vqdmlsdh", fe000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
26457 mToC("vqdmlsdhx", fe001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
26458 mToC("vqrdmlsdh", fe000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
26459 mToC("vqrdmlsdhx",fe001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
26460 mToC("vqdmlah", ee000e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
26461 mToC("vqdmlash", ee001e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
26462 mToC("vqrdmlash", ee001e40, 3, (RMQ, RMQ, RR), mve_vqdmlah),
26463 mToC("vqdmullt", ee301f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
26464 mToC("vqdmullb", ee300f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
26465 mCEF(vqmovnt, _vqmovnt, 2, (RMQ, RMQ), mve_vqmovn),
26466 mCEF(vqmovnb, _vqmovnb, 2, (RMQ, RMQ), mve_vqmovn),
26467 mCEF(vqmovunt, _vqmovunt, 2, (RMQ, RMQ), mve_vqmovn),
26468 mCEF(vqmovunb, _vqmovunb, 2, (RMQ, RMQ), mve_vqmovn),
26469
26470 mCEF(vshrnt, _vshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
26471 mCEF(vshrnb, _vshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
26472 mCEF(vrshrnt, _vrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
26473 mCEF(vrshrnb, _vrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
26474 mCEF(vqshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
26475 mCEF(vqshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
26476 mCEF(vqshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
26477 mCEF(vqshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
26478 mCEF(vqrshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
26479 mCEF(vqrshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
26480 mCEF(vqrshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
26481 mCEF(vqrshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
26482
26483 mToC("vshlc", eea00fc0, 3, (RMQ, RR, I32z), mve_vshlc),
26484 mToC("vshllt", ee201e00, 3, (RMQ, RMQ, I32), mve_vshll),
26485 mToC("vshllb", ee200e00, 3, (RMQ, RMQ, I32), mve_vshll),
26486
26487 toU("dlstp", _dlstp, 2, (LR, RR), t_loloop),
26488 toU("wlstp", _wlstp, 3, (LR, RR, EXP), t_loloop),
26489 toU("letp", _letp, 2, (LR, EXP), t_loloop),
26490 toU("lctp", _lctp, 0, (), t_loloop),
26491
26492#undef THUMB_VARIANT
26493#define THUMB_VARIANT & mve_fp_ext
26494 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
26495 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
26496 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
26497 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
26498 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
26499 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
26500 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
26501 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
26502
26503#undef ARM_VARIANT
26504#define ARM_VARIANT & fpu_vfp_ext_v1
26505#undef THUMB_VARIANT
26506#define THUMB_VARIANT & arm_ext_v6t2
26507 mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar),
26508 mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul),
26509
26510 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
26511
26512#undef ARM_VARIANT
26513#define ARM_VARIANT & fpu_vfp_ext_v1xd
26514
26515 MNCE(vmov, 0, 1, (VMOV), neon_mov),
26516 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
26517 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
26518 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
26519
26520 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
26521 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
26522 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
26523
26524 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
26525 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
26526
26527 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
26528 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
26529
26530 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
26531 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
26532
26533#undef ARM_VARIANT
26534#define ARM_VARIANT & fpu_vfp_ext_v2
26535
26536 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
26537 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
26538 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
26539 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
26540
26541#undef ARM_VARIANT
26542#define ARM_VARIANT & fpu_vfp_ext_armv8xd
26543 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
26544 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
26545 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
26546 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
26547 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
26548 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
26549
26550#undef ARM_VARIANT
26551#define ARM_VARIANT & fpu_neon_ext_v1
26552 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
26553 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
26554 mnUF(vaddl, _vaddl, 3, (RNSDQMQ, oRNSDMQ, RNSDMQR), neon_dyadic_long),
26555 mnUF(vsubl, _vsubl, 3, (RNSDQMQ, oRNSDMQ, RNSDMQR), neon_dyadic_long),
26556 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
26557 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
26558 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
26559 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
26560 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
26561 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
26562 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
26563 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
26564 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
26565 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
26566 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
26567 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
26568 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
26569 MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
26570 MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
26571 mnUF(vmvn, _vmvn, 2, (RNDQMQ, RNDQMQ_Ibig), neon_mvn),
26572 MNUF(vqabs, 1b00700, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
26573 MNUF(vqneg, 1b00780, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
26574 mnUF(vqrdmlah, _vqrdmlah,3, (RNDQMQ, oRNDQMQ, RNDQ_RNSC_RR), neon_qrdmlah),
26575 mnUF(vqdmulh, _vqdmulh, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
26576 mnUF(vqrdmulh, _vqrdmulh,3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
26577 MNUF(vqrshl, 0000510, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
26578 MNUF(vrshl, 0000500, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
26579 MNUF(vshr, 0800010, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
26580 MNUF(vrshr, 0800210, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
26581 MNUF(vsli, 1800510, 3, (RNDQMQ, oRNDQMQ, I63), neon_sli),
26582 MNUF(vsri, 1800410, 3, (RNDQMQ, oRNDQMQ, I64z), neon_sri),
26583 MNUF(vrev64, 1b00000, 2, (RNDQMQ, RNDQMQ), neon_rev),
26584 MNUF(vrev32, 1b00080, 2, (RNDQMQ, RNDQMQ), neon_rev),
26585 MNUF(vrev16, 1b00100, 2, (RNDQMQ, RNDQMQ), neon_rev),
26586 mnUF(vshl, _vshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_shl),
26587 mnUF(vqshl, _vqshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_qshl),
26588 MNUF(vqshlu, 1800610, 3, (RNDQMQ, oRNDQMQ, I63), neon_qshlu_imm),
26589
26590#undef ARM_VARIANT
26591#define ARM_VARIANT & arm_ext_v8_3
26592#undef THUMB_VARIANT
26593#define THUMB_VARIANT & arm_ext_v6t2_v8m
26594 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
26595 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
26596
26597#undef ARM_VARIANT
26598#define ARM_VARIANT &arm_ext_bf16
26599#undef THUMB_VARIANT
26600#define THUMB_VARIANT &arm_ext_bf16
26601 TUF ("vdot", c000d00, fc000d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), vdot, vdot),
26602 TUF ("vmmla", c000c40, fc000c40, 3, (RNQ, RNQ, RNQ), vmmla, vmmla),
26603 TUF ("vfmab", c300810, fc300810, 3, (RNDQ, RNDQ, RNDQ_RNSC), bfloat_vfma, bfloat_vfma),
26604
26605#undef ARM_VARIANT
26606#define ARM_VARIANT &arm_ext_i8mm
26607#undef THUMB_VARIANT
26608#define THUMB_VARIANT &arm_ext_i8mm
26609 TUF ("vsmmla", c200c40, fc200c40, 3, (RNQ, RNQ, RNQ), vsmmla, vsmmla),
26610 TUF ("vummla", c200c50, fc200c50, 3, (RNQ, RNQ, RNQ), vummla, vummla),
26611 TUF ("vusmmla", ca00c40, fca00c40, 3, (RNQ, RNQ, RNQ), vsmmla, vsmmla),
26612 TUF ("vusdot", c800d00, fc800d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), vusdot, vusdot),
26613 TUF ("vsudot", c800d10, fc800d10, 3, (RNDQ, RNDQ, RNSC), vsudot, vsudot),
26614
26615#undef ARM_VARIANT
26616#undef THUMB_VARIANT
26617#define THUMB_VARIANT &arm_ext_cde
26618 ToC ("cx1", ee000000, 3, (RCP, APSR_RR, I8191), cx1),
26619 ToC ("cx1a", fe000000, 3, (RCP, APSR_RR, I8191), cx1a),
26620 ToC ("cx1d", ee000040, 4, (RCP, RR, APSR_RR, I8191), cx1d),
26621 ToC ("cx1da", fe000040, 4, (RCP, RR, APSR_RR, I8191), cx1da),
26622
26623 ToC ("cx2", ee400000, 4, (RCP, APSR_RR, APSR_RR, I511), cx2),
26624 ToC ("cx2a", fe400000, 4, (RCP, APSR_RR, APSR_RR, I511), cx2a),
26625 ToC ("cx2d", ee400040, 5, (RCP, RR, APSR_RR, APSR_RR, I511), cx2d),
26626 ToC ("cx2da", fe400040, 5, (RCP, RR, APSR_RR, APSR_RR, I511), cx2da),
26627
26628 ToC ("cx3", ee800000, 5, (RCP, APSR_RR, APSR_RR, APSR_RR, I63), cx3),
26629 ToC ("cx3a", fe800000, 5, (RCP, APSR_RR, APSR_RR, APSR_RR, I63), cx3a),
26630 ToC ("cx3d", ee800040, 6, (RCP, RR, APSR_RR, APSR_RR, APSR_RR, I63), cx3d),
26631 ToC ("cx3da", fe800040, 6, (RCP, RR, APSR_RR, APSR_RR, APSR_RR, I63), cx3da),
26632
26633 mToC ("vcx1", ec200000, 3, (RCP, RNSDMQ, I4095), vcx1),
26634 mToC ("vcx1a", fc200000, 3, (RCP, RNSDMQ, I4095), vcx1),
26635
26636 mToC ("vcx2", ec300000, 4, (RCP, RNSDMQ, RNSDMQ, I127), vcx2),
26637 mToC ("vcx2a", fc300000, 4, (RCP, RNSDMQ, RNSDMQ, I127), vcx2),
26638
26639 mToC ("vcx3", ec800000, 5, (RCP, RNSDMQ, RNSDMQ, RNSDMQ, I15), vcx3),
26640 mToC ("vcx3a", fc800000, 5, (RCP, RNSDMQ, RNSDMQ, RNSDMQ, I15), vcx3),
26641};
26642
26643#undef ARM_VARIANT
26644#undef THUMB_VARIANT
26645#undef TCE
26646#undef TUE
26647#undef TUF
26648#undef TCC
26649#undef cCE
26650#undef cCL
26651#undef C3E
26652#undef C3
26653#undef CE
26654#undef CM
26655#undef CL
26656#undef UE
26657#undef UF
26658#undef UT
26659#undef NUF
26660#undef nUF
26661#undef NCE
26662#undef nCE
26663#undef OPS0
26664#undef OPS1
26665#undef OPS2
26666#undef OPS3
26667#undef OPS4
26668#undef OPS5
26669#undef OPS6
26670#undef do_0
26671#undef ToC
26672#undef toC
26673#undef ToU
26674#undef toU
26675\f
26676/* MD interface: bits in the object file. */
26677
26678/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
26679 for use in the a.out file, and stores them in the array pointed to by buf.
26680 This knows about the endian-ness of the target machine and does
26681 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
26682 2 (short) and 4 (long) Floating numbers are put out as a series of
26683 LITTLENUMS (shorts, here at least). */
26684
26685void
26686md_number_to_chars (char * buf, valueT val, int n)
26687{
26688 if (target_big_endian)
26689 number_to_chars_bigendian (buf, val, n);
26690 else
26691 number_to_chars_littleendian (buf, val, n);
26692}
26693
26694static valueT
26695md_chars_to_number (char * buf, int n)
26696{
26697 valueT result = 0;
26698 unsigned char * where = (unsigned char *) buf;
26699
26700 if (target_big_endian)
26701 {
26702 while (n--)
26703 {
26704 result <<= 8;
26705 result |= (*where++ & 255);
26706 }
26707 }
26708 else
26709 {
26710 while (n--)
26711 {
26712 result <<= 8;
26713 result |= (where[n] & 255);
26714 }
26715 }
26716
26717 return result;
26718}
26719
26720/* MD interface: Sections. */
26721
26722/* Calculate the maximum variable size (i.e., excluding fr_fix)
26723 that an rs_machine_dependent frag may reach. */
26724
26725unsigned int
26726arm_frag_max_var (fragS *fragp)
26727{
26728 /* We only use rs_machine_dependent for variable-size Thumb instructions,
26729 which are either THUMB_SIZE (2) or INSN_SIZE (4).
26730
26731 Note that we generate relaxable instructions even for cases that don't
26732 really need it, like an immediate that's a trivial constant. So we're
26733 overestimating the instruction size for some of those cases. Rather
26734 than putting more intelligence here, it would probably be better to
26735 avoid generating a relaxation frag in the first place when it can be
26736 determined up front that a short instruction will suffice. */
26737
26738 gas_assert (fragp->fr_type == rs_machine_dependent);
26739 return INSN_SIZE;
26740}
26741
26742/* Estimate the size of a frag before relaxing. Assume everything fits in
26743 2 bytes. */
26744
26745int
26746md_estimate_size_before_relax (fragS * fragp,
26747 segT segtype ATTRIBUTE_UNUSED)
26748{
26749 fragp->fr_var = 2;
26750 return 2;
26751}
26752
26753/* Convert a machine dependent frag. */
26754
26755void
26756md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
26757{
26758 unsigned long insn;
26759 unsigned long old_op;
26760 char *buf;
26761 expressionS exp;
26762 fixS *fixp;
26763 int reloc_type;
26764 int pc_rel;
26765 int opcode;
26766
26767 buf = fragp->fr_literal + fragp->fr_fix;
26768
26769 old_op = bfd_get_16(abfd, buf);
26770 if (fragp->fr_symbol)
26771 {
26772 exp.X_op = O_symbol;
26773 exp.X_add_symbol = fragp->fr_symbol;
26774 }
26775 else
26776 {
26777 exp.X_op = O_constant;
26778 }
26779 exp.X_add_number = fragp->fr_offset;
26780 opcode = fragp->fr_subtype;
26781 switch (opcode)
26782 {
26783 case T_MNEM_ldr_pc:
26784 case T_MNEM_ldr_pc2:
26785 case T_MNEM_ldr_sp:
26786 case T_MNEM_str_sp:
26787 case T_MNEM_ldr:
26788 case T_MNEM_ldrb:
26789 case T_MNEM_ldrh:
26790 case T_MNEM_str:
26791 case T_MNEM_strb:
26792 case T_MNEM_strh:
26793 if (fragp->fr_var == 4)
26794 {
26795 insn = THUMB_OP32 (opcode);
26796 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
26797 {
26798 insn |= (old_op & 0x700) << 4;
26799 }
26800 else
26801 {
26802 insn |= (old_op & 7) << 12;
26803 insn |= (old_op & 0x38) << 13;
26804 }
26805 insn |= 0x00000c00;
26806 put_thumb32_insn (buf, insn);
26807 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
26808 }
26809 else
26810 {
26811 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
26812 }
26813 pc_rel = (opcode == T_MNEM_ldr_pc2);
26814 break;
26815 case T_MNEM_adr:
26816 if (fragp->fr_var == 4)
26817 {
26818 insn = THUMB_OP32 (opcode);
26819 insn |= (old_op & 0xf0) << 4;
26820 put_thumb32_insn (buf, insn);
26821 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
26822 }
26823 else
26824 {
26825 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
26826 exp.X_add_number -= 4;
26827 }
26828 pc_rel = 1;
26829 break;
26830 case T_MNEM_mov:
26831 case T_MNEM_movs:
26832 case T_MNEM_cmp:
26833 case T_MNEM_cmn:
26834 if (fragp->fr_var == 4)
26835 {
26836 int r0off = (opcode == T_MNEM_mov
26837 || opcode == T_MNEM_movs) ? 0 : 8;
26838 insn = THUMB_OP32 (opcode);
26839 insn = (insn & 0xe1ffffff) | 0x10000000;
26840 insn |= (old_op & 0x700) << r0off;
26841 put_thumb32_insn (buf, insn);
26842 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
26843 }
26844 else
26845 {
26846 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
26847 }
26848 pc_rel = 0;
26849 break;
26850 case T_MNEM_b:
26851 if (fragp->fr_var == 4)
26852 {
26853 insn = THUMB_OP32(opcode);
26854 put_thumb32_insn (buf, insn);
26855 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
26856 }
26857 else
26858 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
26859 pc_rel = 1;
26860 break;
26861 case T_MNEM_bcond:
26862 if (fragp->fr_var == 4)
26863 {
26864 insn = THUMB_OP32(opcode);
26865 insn |= (old_op & 0xf00) << 14;
26866 put_thumb32_insn (buf, insn);
26867 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
26868 }
26869 else
26870 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
26871 pc_rel = 1;
26872 break;
26873 case T_MNEM_add_sp:
26874 case T_MNEM_add_pc:
26875 case T_MNEM_inc_sp:
26876 case T_MNEM_dec_sp:
26877 if (fragp->fr_var == 4)
26878 {
26879 /* ??? Choose between add and addw. */
26880 insn = THUMB_OP32 (opcode);
26881 insn |= (old_op & 0xf0) << 4;
26882 put_thumb32_insn (buf, insn);
26883 if (opcode == T_MNEM_add_pc)
26884 reloc_type = BFD_RELOC_ARM_T32_IMM12;
26885 else
26886 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
26887 }
26888 else
26889 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
26890 pc_rel = 0;
26891 break;
26892
26893 case T_MNEM_addi:
26894 case T_MNEM_addis:
26895 case T_MNEM_subi:
26896 case T_MNEM_subis:
26897 if (fragp->fr_var == 4)
26898 {
26899 insn = THUMB_OP32 (opcode);
26900 insn |= (old_op & 0xf0) << 4;
26901 insn |= (old_op & 0xf) << 16;
26902 put_thumb32_insn (buf, insn);
26903 if (insn & (1 << 20))
26904 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
26905 else
26906 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
26907 }
26908 else
26909 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
26910 pc_rel = 0;
26911 break;
26912 default:
26913 abort ();
26914 }
26915 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
26916 (enum bfd_reloc_code_real) reloc_type);
26917 fixp->fx_file = fragp->fr_file;
26918 fixp->fx_line = fragp->fr_line;
26919 fragp->fr_fix += fragp->fr_var;
26920
26921 /* Set whether we use thumb-2 ISA based on final relaxation results. */
26922 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
26923 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
26924 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
26925}
26926
26927/* Return the size of a relaxable immediate operand instruction.
26928 SHIFT and SIZE specify the form of the allowable immediate. */
26929static int
26930relax_immediate (fragS *fragp, int size, int shift)
26931{
26932 offsetT offset;
26933 offsetT mask;
26934 offsetT low;
26935
26936 /* ??? Should be able to do better than this. */
26937 if (fragp->fr_symbol)
26938 return 4;
26939
26940 low = (1 << shift) - 1;
26941 mask = (1 << (shift + size)) - (1 << shift);
26942 offset = fragp->fr_offset;
26943 /* Force misaligned offsets to 32-bit variant. */
26944 if (offset & low)
26945 return 4;
26946 if (offset & ~mask)
26947 return 4;
26948 return 2;
26949}
26950
26951/* Get the address of a symbol during relaxation. */
26952static addressT
26953relaxed_symbol_addr (fragS *fragp, long stretch)
26954{
26955 fragS *sym_frag;
26956 addressT addr;
26957 symbolS *sym;
26958
26959 sym = fragp->fr_symbol;
26960 sym_frag = symbol_get_frag (sym);
26961 know (S_GET_SEGMENT (sym) != absolute_section
26962 || sym_frag == &zero_address_frag);
26963 addr = S_GET_VALUE (sym) + fragp->fr_offset;
26964
26965 /* If frag has yet to be reached on this pass, assume it will
26966 move by STRETCH just as we did. If this is not so, it will
26967 be because some frag between grows, and that will force
26968 another pass. */
26969
26970 if (stretch != 0
26971 && sym_frag->relax_marker != fragp->relax_marker)
26972 {
26973 fragS *f;
26974
26975 /* Adjust stretch for any alignment frag. Note that if have
26976 been expanding the earlier code, the symbol may be
26977 defined in what appears to be an earlier frag. FIXME:
26978 This doesn't handle the fr_subtype field, which specifies
26979 a maximum number of bytes to skip when doing an
26980 alignment. */
26981 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
26982 {
26983 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
26984 {
26985 if (stretch < 0)
26986 stretch = - ((- stretch)
26987 & ~ ((1 << (int) f->fr_offset) - 1));
26988 else
26989 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
26990 if (stretch == 0)
26991 break;
26992 }
26993 }
26994 if (f != NULL)
26995 addr += stretch;
26996 }
26997
26998 return addr;
26999}
27000
27001/* Return the size of a relaxable adr pseudo-instruction or PC-relative
27002 load. */
27003static int
27004relax_adr (fragS *fragp, asection *sec, long stretch)
27005{
27006 addressT addr;
27007 offsetT val;
27008
27009 /* Assume worst case for symbols not known to be in the same section. */
27010 if (fragp->fr_symbol == NULL
27011 || !S_IS_DEFINED (fragp->fr_symbol)
27012 || sec != S_GET_SEGMENT (fragp->fr_symbol)
27013 || S_IS_WEAK (fragp->fr_symbol))
27014 return 4;
27015
27016 val = relaxed_symbol_addr (fragp, stretch);
27017 addr = fragp->fr_address + fragp->fr_fix;
27018 addr = (addr + 4) & ~3;
27019 /* Force misaligned targets to 32-bit variant. */
27020 if (val & 3)
27021 return 4;
27022 val -= addr;
27023 if (val < 0 || val > 1020)
27024 return 4;
27025 return 2;
27026}
27027
27028/* Return the size of a relaxable add/sub immediate instruction. */
27029static int
27030relax_addsub (fragS *fragp, asection *sec)
27031{
27032 char *buf;
27033 int op;
27034
27035 buf = fragp->fr_literal + fragp->fr_fix;
27036 op = bfd_get_16(sec->owner, buf);
27037 if ((op & 0xf) == ((op >> 4) & 0xf))
27038 return relax_immediate (fragp, 8, 0);
27039 else
27040 return relax_immediate (fragp, 3, 0);
27041}
27042
27043/* Return TRUE iff the definition of symbol S could be pre-empted
27044 (overridden) at link or load time. */
27045static bfd_boolean
27046symbol_preemptible (symbolS *s)
27047{
27048 /* Weak symbols can always be pre-empted. */
27049 if (S_IS_WEAK (s))
27050 return TRUE;
27051
27052 /* Non-global symbols cannot be pre-empted. */
27053 if (! S_IS_EXTERNAL (s))
27054 return FALSE;
27055
27056#ifdef OBJ_ELF
27057 /* In ELF, a global symbol can be marked protected, or private. In that
27058 case it can't be pre-empted (other definitions in the same link unit
27059 would violate the ODR). */
27060 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
27061 return FALSE;
27062#endif
27063
27064 /* Other global symbols might be pre-empted. */
27065 return TRUE;
27066}
27067
27068/* Return the size of a relaxable branch instruction. BITS is the
27069 size of the offset field in the narrow instruction. */
27070
27071static int
27072relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
27073{
27074 addressT addr;
27075 offsetT val;
27076 offsetT limit;
27077
27078 /* Assume worst case for symbols not known to be in the same section. */
27079 if (!S_IS_DEFINED (fragp->fr_symbol)
27080 || sec != S_GET_SEGMENT (fragp->fr_symbol)
27081 || S_IS_WEAK (fragp->fr_symbol))
27082 return 4;
27083
27084#ifdef OBJ_ELF
27085 /* A branch to a function in ARM state will require interworking. */
27086 if (S_IS_DEFINED (fragp->fr_symbol)
27087 && ARM_IS_FUNC (fragp->fr_symbol))
27088 return 4;
27089#endif
27090
27091 if (symbol_preemptible (fragp->fr_symbol))
27092 return 4;
27093
27094 val = relaxed_symbol_addr (fragp, stretch);
27095 addr = fragp->fr_address + fragp->fr_fix + 4;
27096 val -= addr;
27097
27098 /* Offset is a signed value *2 */
27099 limit = 1 << bits;
27100 if (val >= limit || val < -limit)
27101 return 4;
27102 return 2;
27103}
27104
27105
27106/* Relax a machine dependent frag. This returns the amount by which
27107 the current size of the frag should change. */
27108
27109int
27110arm_relax_frag (asection *sec, fragS *fragp, long stretch)
27111{
27112 int oldsize;
27113 int newsize;
27114
27115 oldsize = fragp->fr_var;
27116 switch (fragp->fr_subtype)
27117 {
27118 case T_MNEM_ldr_pc2:
27119 newsize = relax_adr (fragp, sec, stretch);
27120 break;
27121 case T_MNEM_ldr_pc:
27122 case T_MNEM_ldr_sp:
27123 case T_MNEM_str_sp:
27124 newsize = relax_immediate (fragp, 8, 2);
27125 break;
27126 case T_MNEM_ldr:
27127 case T_MNEM_str:
27128 newsize = relax_immediate (fragp, 5, 2);
27129 break;
27130 case T_MNEM_ldrh:
27131 case T_MNEM_strh:
27132 newsize = relax_immediate (fragp, 5, 1);
27133 break;
27134 case T_MNEM_ldrb:
27135 case T_MNEM_strb:
27136 newsize = relax_immediate (fragp, 5, 0);
27137 break;
27138 case T_MNEM_adr:
27139 newsize = relax_adr (fragp, sec, stretch);
27140 break;
27141 case T_MNEM_mov:
27142 case T_MNEM_movs:
27143 case T_MNEM_cmp:
27144 case T_MNEM_cmn:
27145 newsize = relax_immediate (fragp, 8, 0);
27146 break;
27147 case T_MNEM_b:
27148 newsize = relax_branch (fragp, sec, 11, stretch);
27149 break;
27150 case T_MNEM_bcond:
27151 newsize = relax_branch (fragp, sec, 8, stretch);
27152 break;
27153 case T_MNEM_add_sp:
27154 case T_MNEM_add_pc:
27155 newsize = relax_immediate (fragp, 8, 2);
27156 break;
27157 case T_MNEM_inc_sp:
27158 case T_MNEM_dec_sp:
27159 newsize = relax_immediate (fragp, 7, 2);
27160 break;
27161 case T_MNEM_addi:
27162 case T_MNEM_addis:
27163 case T_MNEM_subi:
27164 case T_MNEM_subis:
27165 newsize = relax_addsub (fragp, sec);
27166 break;
27167 default:
27168 abort ();
27169 }
27170
27171 fragp->fr_var = newsize;
27172 /* Freeze wide instructions that are at or before the same location as
27173 in the previous pass. This avoids infinite loops.
27174 Don't freeze them unconditionally because targets may be artificially
27175 misaligned by the expansion of preceding frags. */
27176 if (stretch <= 0 && newsize > 2)
27177 {
27178 md_convert_frag (sec->owner, sec, fragp);
27179 frag_wane (fragp);
27180 }
27181
27182 return newsize - oldsize;
27183}
27184
27185/* Round up a section size to the appropriate boundary. */
27186
27187valueT
27188md_section_align (segT segment ATTRIBUTE_UNUSED,
27189 valueT size)
27190{
27191 return size;
27192}
27193
27194/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
27195 of an rs_align_code fragment. */
27196
27197void
27198arm_handle_align (fragS * fragP)
27199{
27200 static unsigned char const arm_noop[2][2][4] =
27201 {
27202 { /* ARMv1 */
27203 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
27204 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
27205 },
27206 { /* ARMv6k */
27207 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
27208 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
27209 },
27210 };
27211 static unsigned char const thumb_noop[2][2][2] =
27212 {
27213 { /* Thumb-1 */
27214 {0xc0, 0x46}, /* LE */
27215 {0x46, 0xc0}, /* BE */
27216 },
27217 { /* Thumb-2 */
27218 {0x00, 0xbf}, /* LE */
27219 {0xbf, 0x00} /* BE */
27220 }
27221 };
27222 static unsigned char const wide_thumb_noop[2][4] =
27223 { /* Wide Thumb-2 */
27224 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
27225 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
27226 };
27227
27228 unsigned bytes, fix, noop_size;
27229 char * p;
27230 const unsigned char * noop;
27231 const unsigned char *narrow_noop = NULL;
27232#ifdef OBJ_ELF
27233 enum mstate state;
27234#endif
27235
27236 if (fragP->fr_type != rs_align_code)
27237 return;
27238
27239 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
27240 p = fragP->fr_literal + fragP->fr_fix;
27241 fix = 0;
27242
27243 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
27244 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
27245
27246 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
27247
27248 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
27249 {
27250 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
27251 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
27252 {
27253 narrow_noop = thumb_noop[1][target_big_endian];
27254 noop = wide_thumb_noop[target_big_endian];
27255 }
27256 else
27257 noop = thumb_noop[0][target_big_endian];
27258 noop_size = 2;
27259#ifdef OBJ_ELF
27260 state = MAP_THUMB;
27261#endif
27262 }
27263 else
27264 {
27265 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
27266 ? selected_cpu : arm_arch_none,
27267 arm_ext_v6k) != 0]
27268 [target_big_endian];
27269 noop_size = 4;
27270#ifdef OBJ_ELF
27271 state = MAP_ARM;
27272#endif
27273 }
27274
27275 fragP->fr_var = noop_size;
27276
27277 if (bytes & (noop_size - 1))
27278 {
27279 fix = bytes & (noop_size - 1);
27280#ifdef OBJ_ELF
27281 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
27282#endif
27283 memset (p, 0, fix);
27284 p += fix;
27285 bytes -= fix;
27286 }
27287
27288 if (narrow_noop)
27289 {
27290 if (bytes & noop_size)
27291 {
27292 /* Insert a narrow noop. */
27293 memcpy (p, narrow_noop, noop_size);
27294 p += noop_size;
27295 bytes -= noop_size;
27296 fix += noop_size;
27297 }
27298
27299 /* Use wide noops for the remainder */
27300 noop_size = 4;
27301 }
27302
27303 while (bytes >= noop_size)
27304 {
27305 memcpy (p, noop, noop_size);
27306 p += noop_size;
27307 bytes -= noop_size;
27308 fix += noop_size;
27309 }
27310
27311 fragP->fr_fix += fix;
27312}
27313
27314/* Called from md_do_align. Used to create an alignment
27315 frag in a code section. */
27316
27317void
27318arm_frag_align_code (int n, int max)
27319{
27320 char * p;
27321
27322 /* We assume that there will never be a requirement
27323 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
27324 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
27325 {
27326 char err_msg[128];
27327
27328 sprintf (err_msg,
27329 _("alignments greater than %d bytes not supported in .text sections."),
27330 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
27331 as_fatal ("%s", err_msg);
27332 }
27333
27334 p = frag_var (rs_align_code,
27335 MAX_MEM_FOR_RS_ALIGN_CODE,
27336 1,
27337 (relax_substateT) max,
27338 (symbolS *) NULL,
27339 (offsetT) n,
27340 (char *) NULL);
27341 *p = 0;
27342}
27343
27344/* Perform target specific initialisation of a frag.
27345 Note - despite the name this initialisation is not done when the frag
27346 is created, but only when its type is assigned. A frag can be created
27347 and used a long time before its type is set, so beware of assuming that
27348 this initialisation is performed first. */
27349
27350#ifndef OBJ_ELF
27351void
27352arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
27353{
27354 /* Record whether this frag is in an ARM or a THUMB area. */
27355 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
27356}
27357
27358#else /* OBJ_ELF is defined. */
27359void
27360arm_init_frag (fragS * fragP, int max_chars)
27361{
27362 bfd_boolean frag_thumb_mode;
27363
27364 /* If the current ARM vs THUMB mode has not already
27365 been recorded into this frag then do so now. */
27366 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
27367 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
27368
27369 /* PR 21809: Do not set a mapping state for debug sections
27370 - it just confuses other tools. */
27371 if (bfd_section_flags (now_seg) & SEC_DEBUGGING)
27372 return;
27373
27374 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
27375
27376 /* Record a mapping symbol for alignment frags. We will delete this
27377 later if the alignment ends up empty. */
27378 switch (fragP->fr_type)
27379 {
27380 case rs_align:
27381 case rs_align_test:
27382 case rs_fill:
27383 mapping_state_2 (MAP_DATA, max_chars);
27384 break;
27385 case rs_align_code:
27386 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
27387 break;
27388 default:
27389 break;
27390 }
27391}
27392
27393/* When we change sections we need to issue a new mapping symbol. */
27394
27395void
27396arm_elf_change_section (void)
27397{
27398 /* Link an unlinked unwind index table section to the .text section. */
27399 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
27400 && elf_linked_to_section (now_seg) == NULL)
27401 elf_linked_to_section (now_seg) = text_section;
27402}
27403
27404int
27405arm_elf_section_type (const char * str, size_t len)
27406{
27407 if (len == 5 && strncmp (str, "exidx", 5) == 0)
27408 return SHT_ARM_EXIDX;
27409
27410 return -1;
27411}
27412\f
27413/* Code to deal with unwinding tables. */
27414
27415static void add_unwind_adjustsp (offsetT);
27416
27417/* Generate any deferred unwind frame offset. */
27418
27419static void
27420flush_pending_unwind (void)
27421{
27422 offsetT offset;
27423
27424 offset = unwind.pending_offset;
27425 unwind.pending_offset = 0;
27426 if (offset != 0)
27427 add_unwind_adjustsp (offset);
27428}
27429
27430/* Add an opcode to this list for this function. Two-byte opcodes should
27431 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
27432 order. */
27433
27434static void
27435add_unwind_opcode (valueT op, int length)
27436{
27437 /* Add any deferred stack adjustment. */
27438 if (unwind.pending_offset)
27439 flush_pending_unwind ();
27440
27441 unwind.sp_restored = 0;
27442
27443 if (unwind.opcode_count + length > unwind.opcode_alloc)
27444 {
27445 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
27446 if (unwind.opcodes)
27447 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
27448 unwind.opcode_alloc);
27449 else
27450 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
27451 }
27452 while (length > 0)
27453 {
27454 length--;
27455 unwind.opcodes[unwind.opcode_count] = op & 0xff;
27456 op >>= 8;
27457 unwind.opcode_count++;
27458 }
27459}
27460
27461/* Add unwind opcodes to adjust the stack pointer. */
27462
27463static void
27464add_unwind_adjustsp (offsetT offset)
27465{
27466 valueT op;
27467
27468 if (offset > 0x200)
27469 {
27470 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
27471 char bytes[5];
27472 int n;
27473 valueT o;
27474
27475 /* Long form: 0xb2, uleb128. */
27476 /* This might not fit in a word so add the individual bytes,
27477 remembering the list is built in reverse order. */
27478 o = (valueT) ((offset - 0x204) >> 2);
27479 if (o == 0)
27480 add_unwind_opcode (0, 1);
27481
27482 /* Calculate the uleb128 encoding of the offset. */
27483 n = 0;
27484 while (o)
27485 {
27486 bytes[n] = o & 0x7f;
27487 o >>= 7;
27488 if (o)
27489 bytes[n] |= 0x80;
27490 n++;
27491 }
27492 /* Add the insn. */
27493 for (; n; n--)
27494 add_unwind_opcode (bytes[n - 1], 1);
27495 add_unwind_opcode (0xb2, 1);
27496 }
27497 else if (offset > 0x100)
27498 {
27499 /* Two short opcodes. */
27500 add_unwind_opcode (0x3f, 1);
27501 op = (offset - 0x104) >> 2;
27502 add_unwind_opcode (op, 1);
27503 }
27504 else if (offset > 0)
27505 {
27506 /* Short opcode. */
27507 op = (offset - 4) >> 2;
27508 add_unwind_opcode (op, 1);
27509 }
27510 else if (offset < 0)
27511 {
27512 offset = -offset;
27513 while (offset > 0x100)
27514 {
27515 add_unwind_opcode (0x7f, 1);
27516 offset -= 0x100;
27517 }
27518 op = ((offset - 4) >> 2) | 0x40;
27519 add_unwind_opcode (op, 1);
27520 }
27521}
27522
27523/* Finish the list of unwind opcodes for this function. */
27524
27525static void
27526finish_unwind_opcodes (void)
27527{
27528 valueT op;
27529
27530 if (unwind.fp_used)
27531 {
27532 /* Adjust sp as necessary. */
27533 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
27534 flush_pending_unwind ();
27535
27536 /* After restoring sp from the frame pointer. */
27537 op = 0x90 | unwind.fp_reg;
27538 add_unwind_opcode (op, 1);
27539 }
27540 else
27541 flush_pending_unwind ();
27542}
27543
27544
27545/* Start an exception table entry. If idx is nonzero this is an index table
27546 entry. */
27547
27548static void
27549start_unwind_section (const segT text_seg, int idx)
27550{
27551 const char * text_name;
27552 const char * prefix;
27553 const char * prefix_once;
27554 struct elf_section_match match;
27555 char * sec_name;
27556 int type;
27557 int flags;
27558 int linkonce;
27559
27560 if (idx)
27561 {
27562 prefix = ELF_STRING_ARM_unwind;
27563 prefix_once = ELF_STRING_ARM_unwind_once;
27564 type = SHT_ARM_EXIDX;
27565 }
27566 else
27567 {
27568 prefix = ELF_STRING_ARM_unwind_info;
27569 prefix_once = ELF_STRING_ARM_unwind_info_once;
27570 type = SHT_PROGBITS;
27571 }
27572
27573 text_name = segment_name (text_seg);
27574 if (streq (text_name, ".text"))
27575 text_name = "";
27576
27577 if (strncmp (text_name, ".gnu.linkonce.t.",
27578 strlen (".gnu.linkonce.t.")) == 0)
27579 {
27580 prefix = prefix_once;
27581 text_name += strlen (".gnu.linkonce.t.");
27582 }
27583
27584 sec_name = concat (prefix, text_name, (char *) NULL);
27585
27586 flags = SHF_ALLOC;
27587 linkonce = 0;
27588 memset (&match, 0, sizeof (match));
27589
27590 /* Handle COMDAT group. */
27591 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
27592 {
27593 match.group_name = elf_group_name (text_seg);
27594 if (match.group_name == NULL)
27595 {
27596 as_bad (_("Group section `%s' has no group signature"),
27597 segment_name (text_seg));
27598 ignore_rest_of_line ();
27599 return;
27600 }
27601 flags |= SHF_GROUP;
27602 linkonce = 1;
27603 }
27604
27605 obj_elf_change_section (sec_name, type, flags, 0, &match,
27606 linkonce, 0);
27607
27608 /* Set the section link for index tables. */
27609 if (idx)
27610 elf_linked_to_section (now_seg) = text_seg;
27611}
27612
27613
27614/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
27615 personality routine data. Returns zero, or the index table value for
27616 an inline entry. */
27617
27618static valueT
27619create_unwind_entry (int have_data)
27620{
27621 int size;
27622 addressT where;
27623 char *ptr;
27624 /* The current word of data. */
27625 valueT data;
27626 /* The number of bytes left in this word. */
27627 int n;
27628
27629 finish_unwind_opcodes ();
27630
27631 /* Remember the current text section. */
27632 unwind.saved_seg = now_seg;
27633 unwind.saved_subseg = now_subseg;
27634
27635 start_unwind_section (now_seg, 0);
27636
27637 if (unwind.personality_routine == NULL)
27638 {
27639 if (unwind.personality_index == -2)
27640 {
27641 if (have_data)
27642 as_bad (_("handlerdata in cantunwind frame"));
27643 return 1; /* EXIDX_CANTUNWIND. */
27644 }
27645
27646 /* Use a default personality routine if none is specified. */
27647 if (unwind.personality_index == -1)
27648 {
27649 if (unwind.opcode_count > 3)
27650 unwind.personality_index = 1;
27651 else
27652 unwind.personality_index = 0;
27653 }
27654
27655 /* Space for the personality routine entry. */
27656 if (unwind.personality_index == 0)
27657 {
27658 if (unwind.opcode_count > 3)
27659 as_bad (_("too many unwind opcodes for personality routine 0"));
27660
27661 if (!have_data)
27662 {
27663 /* All the data is inline in the index table. */
27664 data = 0x80;
27665 n = 3;
27666 while (unwind.opcode_count > 0)
27667 {
27668 unwind.opcode_count--;
27669 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
27670 n--;
27671 }
27672
27673 /* Pad with "finish" opcodes. */
27674 while (n--)
27675 data = (data << 8) | 0xb0;
27676
27677 return data;
27678 }
27679 size = 0;
27680 }
27681 else
27682 /* We get two opcodes "free" in the first word. */
27683 size = unwind.opcode_count - 2;
27684 }
27685 else
27686 {
27687 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
27688 if (unwind.personality_index != -1)
27689 {
27690 as_bad (_("attempt to recreate an unwind entry"));
27691 return 1;
27692 }
27693
27694 /* An extra byte is required for the opcode count. */
27695 size = unwind.opcode_count + 1;
27696 }
27697
27698 size = (size + 3) >> 2;
27699 if (size > 0xff)
27700 as_bad (_("too many unwind opcodes"));
27701
27702 frag_align (2, 0, 0);
27703 record_alignment (now_seg, 2);
27704 unwind.table_entry = expr_build_dot ();
27705
27706 /* Allocate the table entry. */
27707 ptr = frag_more ((size << 2) + 4);
27708 /* PR 13449: Zero the table entries in case some of them are not used. */
27709 memset (ptr, 0, (size << 2) + 4);
27710 where = frag_now_fix () - ((size << 2) + 4);
27711
27712 switch (unwind.personality_index)
27713 {
27714 case -1:
27715 /* ??? Should this be a PLT generating relocation? */
27716 /* Custom personality routine. */
27717 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
27718 BFD_RELOC_ARM_PREL31);
27719
27720 where += 4;
27721 ptr += 4;
27722
27723 /* Set the first byte to the number of additional words. */
27724 data = size > 0 ? size - 1 : 0;
27725 n = 3;
27726 break;
27727
27728 /* ABI defined personality routines. */
27729 case 0:
27730 /* Three opcodes bytes are packed into the first word. */
27731 data = 0x80;
27732 n = 3;
27733 break;
27734
27735 case 1:
27736 case 2:
27737 /* The size and first two opcode bytes go in the first word. */
27738 data = ((0x80 + unwind.personality_index) << 8) | size;
27739 n = 2;
27740 break;
27741
27742 default:
27743 /* Should never happen. */
27744 abort ();
27745 }
27746
27747 /* Pack the opcodes into words (MSB first), reversing the list at the same
27748 time. */
27749 while (unwind.opcode_count > 0)
27750 {
27751 if (n == 0)
27752 {
27753 md_number_to_chars (ptr, data, 4);
27754 ptr += 4;
27755 n = 4;
27756 data = 0;
27757 }
27758 unwind.opcode_count--;
27759 n--;
27760 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
27761 }
27762
27763 /* Finish off the last word. */
27764 if (n < 4)
27765 {
27766 /* Pad with "finish" opcodes. */
27767 while (n--)
27768 data = (data << 8) | 0xb0;
27769
27770 md_number_to_chars (ptr, data, 4);
27771 }
27772
27773 if (!have_data)
27774 {
27775 /* Add an empty descriptor if there is no user-specified data. */
27776 ptr = frag_more (4);
27777 md_number_to_chars (ptr, 0, 4);
27778 }
27779
27780 return 0;
27781}
27782
27783
27784/* Initialize the DWARF-2 unwind information for this procedure. */
27785
27786void
27787tc_arm_frame_initial_instructions (void)
27788{
27789 cfi_add_CFA_def_cfa (REG_SP, 0);
27790}
27791#endif /* OBJ_ELF */
27792
27793/* Convert REGNAME to a DWARF-2 register number. */
27794
27795int
27796tc_arm_regname_to_dw2regnum (char *regname)
27797{
27798 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
27799 if (reg != FAIL)
27800 return reg;
27801
27802 /* PR 16694: Allow VFP registers as well. */
27803 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
27804 if (reg != FAIL)
27805 return 64 + reg;
27806
27807 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
27808 if (reg != FAIL)
27809 return reg + 256;
27810
27811 return FAIL;
27812}
27813
27814#ifdef TE_PE
27815void
27816tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
27817{
27818 expressionS exp;
27819
27820 exp.X_op = O_secrel;
27821 exp.X_add_symbol = symbol;
27822 exp.X_add_number = 0;
27823 emit_expr (&exp, size);
27824}
27825#endif
27826
27827/* MD interface: Symbol and relocation handling. */
27828
27829/* Return the address within the segment that a PC-relative fixup is
27830 relative to. For ARM, PC-relative fixups applied to instructions
27831 are generally relative to the location of the fixup plus 8 bytes.
27832 Thumb branches are offset by 4, and Thumb loads relative to PC
27833 require special handling. */
27834
27835long
27836md_pcrel_from_section (fixS * fixP, segT seg)
27837{
27838 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
27839
27840 /* If this is pc-relative and we are going to emit a relocation
27841 then we just want to put out any pipeline compensation that the linker
27842 will need. Otherwise we want to use the calculated base.
27843 For WinCE we skip the bias for externals as well, since this
27844 is how the MS ARM-CE assembler behaves and we want to be compatible. */
27845 if (fixP->fx_pcrel
27846 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
27847 || (arm_force_relocation (fixP)
27848#ifdef TE_WINCE
27849 && !S_IS_EXTERNAL (fixP->fx_addsy)
27850#endif
27851 )))
27852 base = 0;
27853
27854
27855 switch (fixP->fx_r_type)
27856 {
27857 /* PC relative addressing on the Thumb is slightly odd as the
27858 bottom two bits of the PC are forced to zero for the
27859 calculation. This happens *after* application of the
27860 pipeline offset. However, Thumb adrl already adjusts for
27861 this, so we need not do it again. */
27862 case BFD_RELOC_ARM_THUMB_ADD:
27863 return base & ~3;
27864
27865 case BFD_RELOC_ARM_THUMB_OFFSET:
27866 case BFD_RELOC_ARM_T32_OFFSET_IMM:
27867 case BFD_RELOC_ARM_T32_ADD_PC12:
27868 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
27869 return (base + 4) & ~3;
27870
27871 /* Thumb branches are simply offset by +4. */
27872 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27873 case BFD_RELOC_THUMB_PCREL_BRANCH7:
27874 case BFD_RELOC_THUMB_PCREL_BRANCH9:
27875 case BFD_RELOC_THUMB_PCREL_BRANCH12:
27876 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27877 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27878 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27879 case BFD_RELOC_ARM_THUMB_BF17:
27880 case BFD_RELOC_ARM_THUMB_BF19:
27881 case BFD_RELOC_ARM_THUMB_BF13:
27882 case BFD_RELOC_ARM_THUMB_LOOP12:
27883 return base + 4;
27884
27885 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27886 if (fixP->fx_addsy
27887 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27888 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27889 && ARM_IS_FUNC (fixP->fx_addsy)
27890 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27891 base = fixP->fx_where + fixP->fx_frag->fr_address;
27892 return base + 4;
27893
27894 /* BLX is like branches above, but forces the low two bits of PC to
27895 zero. */
27896 case BFD_RELOC_THUMB_PCREL_BLX:
27897 if (fixP->fx_addsy
27898 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27899 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27900 && THUMB_IS_FUNC (fixP->fx_addsy)
27901 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27902 base = fixP->fx_where + fixP->fx_frag->fr_address;
27903 return (base + 4) & ~3;
27904
27905 /* ARM mode branches are offset by +8. However, the Windows CE
27906 loader expects the relocation not to take this into account. */
27907 case BFD_RELOC_ARM_PCREL_BLX:
27908 if (fixP->fx_addsy
27909 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27910 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27911 && ARM_IS_FUNC (fixP->fx_addsy)
27912 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27913 base = fixP->fx_where + fixP->fx_frag->fr_address;
27914 return base + 8;
27915
27916 case BFD_RELOC_ARM_PCREL_CALL:
27917 if (fixP->fx_addsy
27918 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27919 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27920 && THUMB_IS_FUNC (fixP->fx_addsy)
27921 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27922 base = fixP->fx_where + fixP->fx_frag->fr_address;
27923 return base + 8;
27924
27925 case BFD_RELOC_ARM_PCREL_BRANCH:
27926 case BFD_RELOC_ARM_PCREL_JUMP:
27927 case BFD_RELOC_ARM_PLT32:
27928#ifdef TE_WINCE
27929 /* When handling fixups immediately, because we have already
27930 discovered the value of a symbol, or the address of the frag involved
27931 we must account for the offset by +8, as the OS loader will never see the reloc.
27932 see fixup_segment() in write.c
27933 The S_IS_EXTERNAL test handles the case of global symbols.
27934 Those need the calculated base, not just the pipe compensation the linker will need. */
27935 if (fixP->fx_pcrel
27936 && fixP->fx_addsy != NULL
27937 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27938 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
27939 return base + 8;
27940 return base;
27941#else
27942 return base + 8;
27943#endif
27944
27945
27946 /* ARM mode loads relative to PC are also offset by +8. Unlike
27947 branches, the Windows CE loader *does* expect the relocation
27948 to take this into account. */
27949 case BFD_RELOC_ARM_OFFSET_IMM:
27950 case BFD_RELOC_ARM_OFFSET_IMM8:
27951 case BFD_RELOC_ARM_HWLITERAL:
27952 case BFD_RELOC_ARM_LITERAL:
27953 case BFD_RELOC_ARM_CP_OFF_IMM:
27954 return base + 8;
27955
27956
27957 /* Other PC-relative relocations are un-offset. */
27958 default:
27959 return base;
27960 }
27961}
27962
27963static bfd_boolean flag_warn_syms = TRUE;
27964
27965bfd_boolean
27966arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
27967{
27968 /* PR 18347 - Warn if the user attempts to create a symbol with the same
27969 name as an ARM instruction. Whilst strictly speaking it is allowed, it
27970 does mean that the resulting code might be very confusing to the reader.
27971 Also this warning can be triggered if the user omits an operand before
27972 an immediate address, eg:
27973
27974 LDR =foo
27975
27976 GAS treats this as an assignment of the value of the symbol foo to a
27977 symbol LDR, and so (without this code) it will not issue any kind of
27978 warning or error message.
27979
27980 Note - ARM instructions are case-insensitive but the strings in the hash
27981 table are all stored in lower case, so we must first ensure that name is
27982 lower case too. */
27983 if (flag_warn_syms && arm_ops_hsh)
27984 {
27985 char * nbuf = strdup (name);
27986 char * p;
27987
27988 for (p = nbuf; *p; p++)
27989 *p = TOLOWER (*p);
27990 if (hash_find (arm_ops_hsh, nbuf) != NULL)
27991 {
27992 static struct hash_control * already_warned = NULL;
27993
27994 if (already_warned == NULL)
27995 already_warned = hash_new ();
27996 /* Only warn about the symbol once. To keep the code
27997 simple we let hash_insert do the lookup for us. */
27998 if (hash_insert (already_warned, nbuf, NULL) == NULL)
27999 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
28000 }
28001 else
28002 free (nbuf);
28003 }
28004
28005 return FALSE;
28006}
28007
28008/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
28009 Otherwise we have no need to default values of symbols. */
28010
28011symbolS *
28012md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
28013{
28014#ifdef OBJ_ELF
28015 if (name[0] == '_' && name[1] == 'G'
28016 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
28017 {
28018 if (!GOT_symbol)
28019 {
28020 if (symbol_find (name))
28021 as_bad (_("GOT already in the symbol table"));
28022
28023 GOT_symbol = symbol_new (name, undefined_section,
28024 (valueT) 0, & zero_address_frag);
28025 }
28026
28027 return GOT_symbol;
28028 }
28029#endif
28030
28031 return NULL;
28032}
28033
28034/* Subroutine of md_apply_fix. Check to see if an immediate can be
28035 computed as two separate immediate values, added together. We
28036 already know that this value cannot be computed by just one ARM
28037 instruction. */
28038
28039static unsigned int
28040validate_immediate_twopart (unsigned int val,
28041 unsigned int * highpart)
28042{
28043 unsigned int a;
28044 unsigned int i;
28045
28046 for (i = 0; i < 32; i += 2)
28047 if (((a = rotate_left (val, i)) & 0xff) != 0)
28048 {
28049 if (a & 0xff00)
28050 {
28051 if (a & ~ 0xffff)
28052 continue;
28053 * highpart = (a >> 8) | ((i + 24) << 7);
28054 }
28055 else if (a & 0xff0000)
28056 {
28057 if (a & 0xff000000)
28058 continue;
28059 * highpart = (a >> 16) | ((i + 16) << 7);
28060 }
28061 else
28062 {
28063 gas_assert (a & 0xff000000);
28064 * highpart = (a >> 24) | ((i + 8) << 7);
28065 }
28066
28067 return (a & 0xff) | (i << 7);
28068 }
28069
28070 return FAIL;
28071}
28072
28073static int
28074validate_offset_imm (unsigned int val, int hwse)
28075{
28076 if ((hwse && val > 255) || val > 4095)
28077 return FAIL;
28078 return val;
28079}
28080
28081/* Subroutine of md_apply_fix. Do those data_ops which can take a
28082 negative immediate constant by altering the instruction. A bit of
28083 a hack really.
28084 MOV <-> MVN
28085 AND <-> BIC
28086 ADC <-> SBC
28087 by inverting the second operand, and
28088 ADD <-> SUB
28089 CMP <-> CMN
28090 by negating the second operand. */
28091
28092static int
28093negate_data_op (unsigned long * instruction,
28094 unsigned long value)
28095{
28096 int op, new_inst;
28097 unsigned long negated, inverted;
28098
28099 negated = encode_arm_immediate (-value);
28100 inverted = encode_arm_immediate (~value);
28101
28102 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
28103 switch (op)
28104 {
28105 /* First negates. */
28106 case OPCODE_SUB: /* ADD <-> SUB */
28107 new_inst = OPCODE_ADD;
28108 value = negated;
28109 break;
28110
28111 case OPCODE_ADD:
28112 new_inst = OPCODE_SUB;
28113 value = negated;
28114 break;
28115
28116 case OPCODE_CMP: /* CMP <-> CMN */
28117 new_inst = OPCODE_CMN;
28118 value = negated;
28119 break;
28120
28121 case OPCODE_CMN:
28122 new_inst = OPCODE_CMP;
28123 value = negated;
28124 break;
28125
28126 /* Now Inverted ops. */
28127 case OPCODE_MOV: /* MOV <-> MVN */
28128 new_inst = OPCODE_MVN;
28129 value = inverted;
28130 break;
28131
28132 case OPCODE_MVN:
28133 new_inst = OPCODE_MOV;
28134 value = inverted;
28135 break;
28136
28137 case OPCODE_AND: /* AND <-> BIC */
28138 new_inst = OPCODE_BIC;
28139 value = inverted;
28140 break;
28141
28142 case OPCODE_BIC:
28143 new_inst = OPCODE_AND;
28144 value = inverted;
28145 break;
28146
28147 case OPCODE_ADC: /* ADC <-> SBC */
28148 new_inst = OPCODE_SBC;
28149 value = inverted;
28150 break;
28151
28152 case OPCODE_SBC:
28153 new_inst = OPCODE_ADC;
28154 value = inverted;
28155 break;
28156
28157 /* We cannot do anything. */
28158 default:
28159 return FAIL;
28160 }
28161
28162 if (value == (unsigned) FAIL)
28163 return FAIL;
28164
28165 *instruction &= OPCODE_MASK;
28166 *instruction |= new_inst << DATA_OP_SHIFT;
28167 return value;
28168}
28169
28170/* Like negate_data_op, but for Thumb-2. */
28171
28172static unsigned int
28173thumb32_negate_data_op (offsetT *instruction, unsigned int value)
28174{
28175 int op, new_inst;
28176 int rd;
28177 unsigned int negated, inverted;
28178
28179 negated = encode_thumb32_immediate (-value);
28180 inverted = encode_thumb32_immediate (~value);
28181
28182 rd = (*instruction >> 8) & 0xf;
28183 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
28184 switch (op)
28185 {
28186 /* ADD <-> SUB. Includes CMP <-> CMN. */
28187 case T2_OPCODE_SUB:
28188 new_inst = T2_OPCODE_ADD;
28189 value = negated;
28190 break;
28191
28192 case T2_OPCODE_ADD:
28193 new_inst = T2_OPCODE_SUB;
28194 value = negated;
28195 break;
28196
28197 /* ORR <-> ORN. Includes MOV <-> MVN. */
28198 case T2_OPCODE_ORR:
28199 new_inst = T2_OPCODE_ORN;
28200 value = inverted;
28201 break;
28202
28203 case T2_OPCODE_ORN:
28204 new_inst = T2_OPCODE_ORR;
28205 value = inverted;
28206 break;
28207
28208 /* AND <-> BIC. TST has no inverted equivalent. */
28209 case T2_OPCODE_AND:
28210 new_inst = T2_OPCODE_BIC;
28211 if (rd == 15)
28212 value = FAIL;
28213 else
28214 value = inverted;
28215 break;
28216
28217 case T2_OPCODE_BIC:
28218 new_inst = T2_OPCODE_AND;
28219 value = inverted;
28220 break;
28221
28222 /* ADC <-> SBC */
28223 case T2_OPCODE_ADC:
28224 new_inst = T2_OPCODE_SBC;
28225 value = inverted;
28226 break;
28227
28228 case T2_OPCODE_SBC:
28229 new_inst = T2_OPCODE_ADC;
28230 value = inverted;
28231 break;
28232
28233 /* We cannot do anything. */
28234 default:
28235 return FAIL;
28236 }
28237
28238 if (value == (unsigned int)FAIL)
28239 return FAIL;
28240
28241 *instruction &= T2_OPCODE_MASK;
28242 *instruction |= new_inst << T2_DATA_OP_SHIFT;
28243 return value;
28244}
28245
28246/* Read a 32-bit thumb instruction from buf. */
28247
28248static unsigned long
28249get_thumb32_insn (char * buf)
28250{
28251 unsigned long insn;
28252 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
28253 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28254
28255 return insn;
28256}
28257
28258/* We usually want to set the low bit on the address of thumb function
28259 symbols. In particular .word foo - . should have the low bit set.
28260 Generic code tries to fold the difference of two symbols to
28261 a constant. Prevent this and force a relocation when the first symbols
28262 is a thumb function. */
28263
28264bfd_boolean
28265arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
28266{
28267 if (op == O_subtract
28268 && l->X_op == O_symbol
28269 && r->X_op == O_symbol
28270 && THUMB_IS_FUNC (l->X_add_symbol))
28271 {
28272 l->X_op = O_subtract;
28273 l->X_op_symbol = r->X_add_symbol;
28274 l->X_add_number -= r->X_add_number;
28275 return TRUE;
28276 }
28277
28278 /* Process as normal. */
28279 return FALSE;
28280}
28281
28282/* Encode Thumb2 unconditional branches and calls. The encoding
28283 for the 2 are identical for the immediate values. */
28284
28285static void
28286encode_thumb2_b_bl_offset (char * buf, offsetT value)
28287{
28288#define T2I1I2MASK ((1 << 13) | (1 << 11))
28289 offsetT newval;
28290 offsetT newval2;
28291 addressT S, I1, I2, lo, hi;
28292
28293 S = (value >> 24) & 0x01;
28294 I1 = (value >> 23) & 0x01;
28295 I2 = (value >> 22) & 0x01;
28296 hi = (value >> 12) & 0x3ff;
28297 lo = (value >> 1) & 0x7ff;
28298 newval = md_chars_to_number (buf, THUMB_SIZE);
28299 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28300 newval |= (S << 10) | hi;
28301 newval2 &= ~T2I1I2MASK;
28302 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
28303 md_number_to_chars (buf, newval, THUMB_SIZE);
28304 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28305}
28306
28307void
28308md_apply_fix (fixS * fixP,
28309 valueT * valP,
28310 segT seg)
28311{
28312 offsetT value = * valP;
28313 offsetT newval;
28314 unsigned int newimm;
28315 unsigned long temp;
28316 int sign;
28317 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
28318
28319 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
28320
28321 /* Note whether this will delete the relocation. */
28322
28323 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
28324 fixP->fx_done = 1;
28325
28326 /* On a 64-bit host, silently truncate 'value' to 32 bits for
28327 consistency with the behaviour on 32-bit hosts. Remember value
28328 for emit_reloc. */
28329 value &= 0xffffffff;
28330 value ^= 0x80000000;
28331 value -= 0x80000000;
28332
28333 *valP = value;
28334 fixP->fx_addnumber = value;
28335
28336 /* Same treatment for fixP->fx_offset. */
28337 fixP->fx_offset &= 0xffffffff;
28338 fixP->fx_offset ^= 0x80000000;
28339 fixP->fx_offset -= 0x80000000;
28340
28341 switch (fixP->fx_r_type)
28342 {
28343 case BFD_RELOC_NONE:
28344 /* This will need to go in the object file. */
28345 fixP->fx_done = 0;
28346 break;
28347
28348 case BFD_RELOC_ARM_IMMEDIATE:
28349 /* We claim that this fixup has been processed here,
28350 even if in fact we generate an error because we do
28351 not have a reloc for it, so tc_gen_reloc will reject it. */
28352 fixP->fx_done = 1;
28353
28354 if (fixP->fx_addsy)
28355 {
28356 const char *msg = 0;
28357
28358 if (! S_IS_DEFINED (fixP->fx_addsy))
28359 msg = _("undefined symbol %s used as an immediate value");
28360 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
28361 msg = _("symbol %s is in a different section");
28362 else if (S_IS_WEAK (fixP->fx_addsy))
28363 msg = _("symbol %s is weak and may be overridden later");
28364
28365 if (msg)
28366 {
28367 as_bad_where (fixP->fx_file, fixP->fx_line,
28368 msg, S_GET_NAME (fixP->fx_addsy));
28369 break;
28370 }
28371 }
28372
28373 temp = md_chars_to_number (buf, INSN_SIZE);
28374
28375 /* If the offset is negative, we should use encoding A2 for ADR. */
28376 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
28377 newimm = negate_data_op (&temp, value);
28378 else
28379 {
28380 newimm = encode_arm_immediate (value);
28381
28382 /* If the instruction will fail, see if we can fix things up by
28383 changing the opcode. */
28384 if (newimm == (unsigned int) FAIL)
28385 newimm = negate_data_op (&temp, value);
28386 /* MOV accepts both ARM modified immediate (A1 encoding) and
28387 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
28388 When disassembling, MOV is preferred when there is no encoding
28389 overlap. */
28390 if (newimm == (unsigned int) FAIL
28391 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
28392 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
28393 && !((temp >> SBIT_SHIFT) & 0x1)
28394 && value >= 0 && value <= 0xffff)
28395 {
28396 /* Clear bits[23:20] to change encoding from A1 to A2. */
28397 temp &= 0xff0fffff;
28398 /* Encoding high 4bits imm. Code below will encode the remaining
28399 low 12bits. */
28400 temp |= (value & 0x0000f000) << 4;
28401 newimm = value & 0x00000fff;
28402 }
28403 }
28404
28405 if (newimm == (unsigned int) FAIL)
28406 {
28407 as_bad_where (fixP->fx_file, fixP->fx_line,
28408 _("invalid constant (%lx) after fixup"),
28409 (unsigned long) value);
28410 break;
28411 }
28412
28413 newimm |= (temp & 0xfffff000);
28414 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
28415 break;
28416
28417 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
28418 {
28419 unsigned int highpart = 0;
28420 unsigned int newinsn = 0xe1a00000; /* nop. */
28421
28422 if (fixP->fx_addsy)
28423 {
28424 const char *msg = 0;
28425
28426 if (! S_IS_DEFINED (fixP->fx_addsy))
28427 msg = _("undefined symbol %s used as an immediate value");
28428 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
28429 msg = _("symbol %s is in a different section");
28430 else if (S_IS_WEAK (fixP->fx_addsy))
28431 msg = _("symbol %s is weak and may be overridden later");
28432
28433 if (msg)
28434 {
28435 as_bad_where (fixP->fx_file, fixP->fx_line,
28436 msg, S_GET_NAME (fixP->fx_addsy));
28437 break;
28438 }
28439 }
28440
28441 newimm = encode_arm_immediate (value);
28442 temp = md_chars_to_number (buf, INSN_SIZE);
28443
28444 /* If the instruction will fail, see if we can fix things up by
28445 changing the opcode. */
28446 if (newimm == (unsigned int) FAIL
28447 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
28448 {
28449 /* No ? OK - try using two ADD instructions to generate
28450 the value. */
28451 newimm = validate_immediate_twopart (value, & highpart);
28452
28453 /* Yes - then make sure that the second instruction is
28454 also an add. */
28455 if (newimm != (unsigned int) FAIL)
28456 newinsn = temp;
28457 /* Still No ? Try using a negated value. */
28458 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
28459 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
28460 /* Otherwise - give up. */
28461 else
28462 {
28463 as_bad_where (fixP->fx_file, fixP->fx_line,
28464 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
28465 (long) value);
28466 break;
28467 }
28468
28469 /* Replace the first operand in the 2nd instruction (which
28470 is the PC) with the destination register. We have
28471 already added in the PC in the first instruction and we
28472 do not want to do it again. */
28473 newinsn &= ~ 0xf0000;
28474 newinsn |= ((newinsn & 0x0f000) << 4);
28475 }
28476
28477 newimm |= (temp & 0xfffff000);
28478 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
28479
28480 highpart |= (newinsn & 0xfffff000);
28481 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
28482 }
28483 break;
28484
28485 case BFD_RELOC_ARM_OFFSET_IMM:
28486 if (!fixP->fx_done && seg->use_rela_p)
28487 value = 0;
28488 /* Fall through. */
28489
28490 case BFD_RELOC_ARM_LITERAL:
28491 sign = value > 0;
28492
28493 if (value < 0)
28494 value = - value;
28495
28496 if (validate_offset_imm (value, 0) == FAIL)
28497 {
28498 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
28499 as_bad_where (fixP->fx_file, fixP->fx_line,
28500 _("invalid literal constant: pool needs to be closer"));
28501 else
28502 as_bad_where (fixP->fx_file, fixP->fx_line,
28503 _("bad immediate value for offset (%ld)"),
28504 (long) value);
28505 break;
28506 }
28507
28508 newval = md_chars_to_number (buf, INSN_SIZE);
28509 if (value == 0)
28510 newval &= 0xfffff000;
28511 else
28512 {
28513 newval &= 0xff7ff000;
28514 newval |= value | (sign ? INDEX_UP : 0);
28515 }
28516 md_number_to_chars (buf, newval, INSN_SIZE);
28517 break;
28518
28519 case BFD_RELOC_ARM_OFFSET_IMM8:
28520 case BFD_RELOC_ARM_HWLITERAL:
28521 sign = value > 0;
28522
28523 if (value < 0)
28524 value = - value;
28525
28526 if (validate_offset_imm (value, 1) == FAIL)
28527 {
28528 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
28529 as_bad_where (fixP->fx_file, fixP->fx_line,
28530 _("invalid literal constant: pool needs to be closer"));
28531 else
28532 as_bad_where (fixP->fx_file, fixP->fx_line,
28533 _("bad immediate value for 8-bit offset (%ld)"),
28534 (long) value);
28535 break;
28536 }
28537
28538 newval = md_chars_to_number (buf, INSN_SIZE);
28539 if (value == 0)
28540 newval &= 0xfffff0f0;
28541 else
28542 {
28543 newval &= 0xff7ff0f0;
28544 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
28545 }
28546 md_number_to_chars (buf, newval, INSN_SIZE);
28547 break;
28548
28549 case BFD_RELOC_ARM_T32_OFFSET_U8:
28550 if (value < 0 || value > 1020 || value % 4 != 0)
28551 as_bad_where (fixP->fx_file, fixP->fx_line,
28552 _("bad immediate value for offset (%ld)"), (long) value);
28553 value /= 4;
28554
28555 newval = md_chars_to_number (buf+2, THUMB_SIZE);
28556 newval |= value;
28557 md_number_to_chars (buf+2, newval, THUMB_SIZE);
28558 break;
28559
28560 case BFD_RELOC_ARM_T32_OFFSET_IMM:
28561 /* This is a complicated relocation used for all varieties of Thumb32
28562 load/store instruction with immediate offset:
28563
28564 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
28565 *4, optional writeback(W)
28566 (doubleword load/store)
28567
28568 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
28569 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
28570 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
28571 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
28572 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
28573
28574 Uppercase letters indicate bits that are already encoded at
28575 this point. Lowercase letters are our problem. For the
28576 second block of instructions, the secondary opcode nybble
28577 (bits 8..11) is present, and bit 23 is zero, even if this is
28578 a PC-relative operation. */
28579 newval = md_chars_to_number (buf, THUMB_SIZE);
28580 newval <<= 16;
28581 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
28582
28583 if ((newval & 0xf0000000) == 0xe0000000)
28584 {
28585 /* Doubleword load/store: 8-bit offset, scaled by 4. */
28586 if (value >= 0)
28587 newval |= (1 << 23);
28588 else
28589 value = -value;
28590 if (value % 4 != 0)
28591 {
28592 as_bad_where (fixP->fx_file, fixP->fx_line,
28593 _("offset not a multiple of 4"));
28594 break;
28595 }
28596 value /= 4;
28597 if (value > 0xff)
28598 {
28599 as_bad_where (fixP->fx_file, fixP->fx_line,
28600 _("offset out of range"));
28601 break;
28602 }
28603 newval &= ~0xff;
28604 }
28605 else if ((newval & 0x000f0000) == 0x000f0000)
28606 {
28607 /* PC-relative, 12-bit offset. */
28608 if (value >= 0)
28609 newval |= (1 << 23);
28610 else
28611 value = -value;
28612 if (value > 0xfff)
28613 {
28614 as_bad_where (fixP->fx_file, fixP->fx_line,
28615 _("offset out of range"));
28616 break;
28617 }
28618 newval &= ~0xfff;
28619 }
28620 else if ((newval & 0x00000100) == 0x00000100)
28621 {
28622 /* Writeback: 8-bit, +/- offset. */
28623 if (value >= 0)
28624 newval |= (1 << 9);
28625 else
28626 value = -value;
28627 if (value > 0xff)
28628 {
28629 as_bad_where (fixP->fx_file, fixP->fx_line,
28630 _("offset out of range"));
28631 break;
28632 }
28633 newval &= ~0xff;
28634 }
28635 else if ((newval & 0x00000f00) == 0x00000e00)
28636 {
28637 /* T-instruction: positive 8-bit offset. */
28638 if (value < 0 || value > 0xff)
28639 {
28640 as_bad_where (fixP->fx_file, fixP->fx_line,
28641 _("offset out of range"));
28642 break;
28643 }
28644 newval &= ~0xff;
28645 newval |= value;
28646 }
28647 else
28648 {
28649 /* Positive 12-bit or negative 8-bit offset. */
28650 int limit;
28651 if (value >= 0)
28652 {
28653 newval |= (1 << 23);
28654 limit = 0xfff;
28655 }
28656 else
28657 {
28658 value = -value;
28659 limit = 0xff;
28660 }
28661 if (value > limit)
28662 {
28663 as_bad_where (fixP->fx_file, fixP->fx_line,
28664 _("offset out of range"));
28665 break;
28666 }
28667 newval &= ~limit;
28668 }
28669
28670 newval |= value;
28671 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
28672 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
28673 break;
28674
28675 case BFD_RELOC_ARM_SHIFT_IMM:
28676 newval = md_chars_to_number (buf, INSN_SIZE);
28677 if (((unsigned long) value) > 32
28678 || (value == 32
28679 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
28680 {
28681 as_bad_where (fixP->fx_file, fixP->fx_line,
28682 _("shift expression is too large"));
28683 break;
28684 }
28685
28686 if (value == 0)
28687 /* Shifts of zero must be done as lsl. */
28688 newval &= ~0x60;
28689 else if (value == 32)
28690 value = 0;
28691 newval &= 0xfffff07f;
28692 newval |= (value & 0x1f) << 7;
28693 md_number_to_chars (buf, newval, INSN_SIZE);
28694 break;
28695
28696 case BFD_RELOC_ARM_T32_IMMEDIATE:
28697 case BFD_RELOC_ARM_T32_ADD_IMM:
28698 case BFD_RELOC_ARM_T32_IMM12:
28699 case BFD_RELOC_ARM_T32_ADD_PC12:
28700 /* We claim that this fixup has been processed here,
28701 even if in fact we generate an error because we do
28702 not have a reloc for it, so tc_gen_reloc will reject it. */
28703 fixP->fx_done = 1;
28704
28705 if (fixP->fx_addsy
28706 && ! S_IS_DEFINED (fixP->fx_addsy))
28707 {
28708 as_bad_where (fixP->fx_file, fixP->fx_line,
28709 _("undefined symbol %s used as an immediate value"),
28710 S_GET_NAME (fixP->fx_addsy));
28711 break;
28712 }
28713
28714 newval = md_chars_to_number (buf, THUMB_SIZE);
28715 newval <<= 16;
28716 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
28717
28718 newimm = FAIL;
28719 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
28720 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
28721 Thumb2 modified immediate encoding (T2). */
28722 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
28723 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
28724 {
28725 newimm = encode_thumb32_immediate (value);
28726 if (newimm == (unsigned int) FAIL)
28727 newimm = thumb32_negate_data_op (&newval, value);
28728 }
28729 if (newimm == (unsigned int) FAIL)
28730 {
28731 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
28732 {
28733 /* Turn add/sum into addw/subw. */
28734 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
28735 newval = (newval & 0xfeffffff) | 0x02000000;
28736 /* No flat 12-bit imm encoding for addsw/subsw. */
28737 if ((newval & 0x00100000) == 0)
28738 {
28739 /* 12 bit immediate for addw/subw. */
28740 if (value < 0)
28741 {
28742 value = -value;
28743 newval ^= 0x00a00000;
28744 }
28745 if (value > 0xfff)
28746 newimm = (unsigned int) FAIL;
28747 else
28748 newimm = value;
28749 }
28750 }
28751 else
28752 {
28753 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
28754 UINT16 (T3 encoding), MOVW only accepts UINT16. When
28755 disassembling, MOV is preferred when there is no encoding
28756 overlap. */
28757 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
28758 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
28759 but with the Rn field [19:16] set to 1111. */
28760 && (((newval >> 16) & 0xf) == 0xf)
28761 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
28762 && !((newval >> T2_SBIT_SHIFT) & 0x1)
28763 && value >= 0 && value <= 0xffff)
28764 {
28765 /* Toggle bit[25] to change encoding from T2 to T3. */
28766 newval ^= 1 << 25;
28767 /* Clear bits[19:16]. */
28768 newval &= 0xfff0ffff;
28769 /* Encoding high 4bits imm. Code below will encode the
28770 remaining low 12bits. */
28771 newval |= (value & 0x0000f000) << 4;
28772 newimm = value & 0x00000fff;
28773 }
28774 }
28775 }
28776
28777 if (newimm == (unsigned int)FAIL)
28778 {
28779 as_bad_where (fixP->fx_file, fixP->fx_line,
28780 _("invalid constant (%lx) after fixup"),
28781 (unsigned long) value);
28782 break;
28783 }
28784
28785 newval |= (newimm & 0x800) << 15;
28786 newval |= (newimm & 0x700) << 4;
28787 newval |= (newimm & 0x0ff);
28788
28789 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
28790 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
28791 break;
28792
28793 case BFD_RELOC_ARM_SMC:
28794 if (((unsigned long) value) > 0xf)
28795 as_bad_where (fixP->fx_file, fixP->fx_line,
28796 _("invalid smc expression"));
28797
28798 newval = md_chars_to_number (buf, INSN_SIZE);
28799 newval |= (value & 0xf);
28800 md_number_to_chars (buf, newval, INSN_SIZE);
28801 break;
28802
28803 case BFD_RELOC_ARM_HVC:
28804 if (((unsigned long) value) > 0xffff)
28805 as_bad_where (fixP->fx_file, fixP->fx_line,
28806 _("invalid hvc expression"));
28807 newval = md_chars_to_number (buf, INSN_SIZE);
28808 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
28809 md_number_to_chars (buf, newval, INSN_SIZE);
28810 break;
28811
28812 case BFD_RELOC_ARM_SWI:
28813 if (fixP->tc_fix_data != 0)
28814 {
28815 if (((unsigned long) value) > 0xff)
28816 as_bad_where (fixP->fx_file, fixP->fx_line,
28817 _("invalid swi expression"));
28818 newval = md_chars_to_number (buf, THUMB_SIZE);
28819 newval |= value;
28820 md_number_to_chars (buf, newval, THUMB_SIZE);
28821 }
28822 else
28823 {
28824 if (((unsigned long) value) > 0x00ffffff)
28825 as_bad_where (fixP->fx_file, fixP->fx_line,
28826 _("invalid swi expression"));
28827 newval = md_chars_to_number (buf, INSN_SIZE);
28828 newval |= value;
28829 md_number_to_chars (buf, newval, INSN_SIZE);
28830 }
28831 break;
28832
28833 case BFD_RELOC_ARM_MULTI:
28834 if (((unsigned long) value) > 0xffff)
28835 as_bad_where (fixP->fx_file, fixP->fx_line,
28836 _("invalid expression in load/store multiple"));
28837 newval = value | md_chars_to_number (buf, INSN_SIZE);
28838 md_number_to_chars (buf, newval, INSN_SIZE);
28839 break;
28840
28841#ifdef OBJ_ELF
28842 case BFD_RELOC_ARM_PCREL_CALL:
28843
28844 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
28845 && fixP->fx_addsy
28846 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28847 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28848 && THUMB_IS_FUNC (fixP->fx_addsy))
28849 /* Flip the bl to blx. This is a simple flip
28850 bit here because we generate PCREL_CALL for
28851 unconditional bls. */
28852 {
28853 newval = md_chars_to_number (buf, INSN_SIZE);
28854 newval = newval | 0x10000000;
28855 md_number_to_chars (buf, newval, INSN_SIZE);
28856 temp = 1;
28857 fixP->fx_done = 1;
28858 }
28859 else
28860 temp = 3;
28861 goto arm_branch_common;
28862
28863 case BFD_RELOC_ARM_PCREL_JUMP:
28864 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
28865 && fixP->fx_addsy
28866 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28867 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28868 && THUMB_IS_FUNC (fixP->fx_addsy))
28869 {
28870 /* This would map to a bl<cond>, b<cond>,
28871 b<always> to a Thumb function. We
28872 need to force a relocation for this particular
28873 case. */
28874 newval = md_chars_to_number (buf, INSN_SIZE);
28875 fixP->fx_done = 0;
28876 }
28877 /* Fall through. */
28878
28879 case BFD_RELOC_ARM_PLT32:
28880#endif
28881 case BFD_RELOC_ARM_PCREL_BRANCH:
28882 temp = 3;
28883 goto arm_branch_common;
28884
28885 case BFD_RELOC_ARM_PCREL_BLX:
28886
28887 temp = 1;
28888 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
28889 && fixP->fx_addsy
28890 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28891 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28892 && ARM_IS_FUNC (fixP->fx_addsy))
28893 {
28894 /* Flip the blx to a bl and warn. */
28895 const char *name = S_GET_NAME (fixP->fx_addsy);
28896 newval = 0xeb000000;
28897 as_warn_where (fixP->fx_file, fixP->fx_line,
28898 _("blx to '%s' an ARM ISA state function changed to bl"),
28899 name);
28900 md_number_to_chars (buf, newval, INSN_SIZE);
28901 temp = 3;
28902 fixP->fx_done = 1;
28903 }
28904
28905#ifdef OBJ_ELF
28906 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
28907 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
28908#endif
28909
28910 arm_branch_common:
28911 /* We are going to store value (shifted right by two) in the
28912 instruction, in a 24 bit, signed field. Bits 26 through 32 either
28913 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
28914 also be clear. */
28915 if (value & temp)
28916 as_bad_where (fixP->fx_file, fixP->fx_line,
28917 _("misaligned branch destination"));
28918 if ((value & (offsetT)0xfe000000) != (offsetT)0
28919 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
28920 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28921
28922 if (fixP->fx_done || !seg->use_rela_p)
28923 {
28924 newval = md_chars_to_number (buf, INSN_SIZE);
28925 newval |= (value >> 2) & 0x00ffffff;
28926 /* Set the H bit on BLX instructions. */
28927 if (temp == 1)
28928 {
28929 if (value & 2)
28930 newval |= 0x01000000;
28931 else
28932 newval &= ~0x01000000;
28933 }
28934 md_number_to_chars (buf, newval, INSN_SIZE);
28935 }
28936 break;
28937
28938 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
28939 /* CBZ can only branch forward. */
28940
28941 /* Attempts to use CBZ to branch to the next instruction
28942 (which, strictly speaking, are prohibited) will be turned into
28943 no-ops.
28944
28945 FIXME: It may be better to remove the instruction completely and
28946 perform relaxation. */
28947 if (value == -2)
28948 {
28949 newval = md_chars_to_number (buf, THUMB_SIZE);
28950 newval = 0xbf00; /* NOP encoding T1 */
28951 md_number_to_chars (buf, newval, THUMB_SIZE);
28952 }
28953 else
28954 {
28955 if (value & ~0x7e)
28956 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28957
28958 if (fixP->fx_done || !seg->use_rela_p)
28959 {
28960 newval = md_chars_to_number (buf, THUMB_SIZE);
28961 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
28962 md_number_to_chars (buf, newval, THUMB_SIZE);
28963 }
28964 }
28965 break;
28966
28967 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
28968 if (out_of_range_p (value, 8))
28969 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28970
28971 if (fixP->fx_done || !seg->use_rela_p)
28972 {
28973 newval = md_chars_to_number (buf, THUMB_SIZE);
28974 newval |= (value & 0x1ff) >> 1;
28975 md_number_to_chars (buf, newval, THUMB_SIZE);
28976 }
28977 break;
28978
28979 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
28980 if (out_of_range_p (value, 11))
28981 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28982
28983 if (fixP->fx_done || !seg->use_rela_p)
28984 {
28985 newval = md_chars_to_number (buf, THUMB_SIZE);
28986 newval |= (value & 0xfff) >> 1;
28987 md_number_to_chars (buf, newval, THUMB_SIZE);
28988 }
28989 break;
28990
28991 /* This relocation is misnamed, it should be BRANCH21. */
28992 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28993 if (fixP->fx_addsy
28994 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28995 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28996 && ARM_IS_FUNC (fixP->fx_addsy)
28997 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
28998 {
28999 /* Force a relocation for a branch 20 bits wide. */
29000 fixP->fx_done = 0;
29001 }
29002 if (out_of_range_p (value, 20))
29003 as_bad_where (fixP->fx_file, fixP->fx_line,
29004 _("conditional branch out of range"));
29005
29006 if (fixP->fx_done || !seg->use_rela_p)
29007 {
29008 offsetT newval2;
29009 addressT S, J1, J2, lo, hi;
29010
29011 S = (value & 0x00100000) >> 20;
29012 J2 = (value & 0x00080000) >> 19;
29013 J1 = (value & 0x00040000) >> 18;
29014 hi = (value & 0x0003f000) >> 12;
29015 lo = (value & 0x00000ffe) >> 1;
29016
29017 newval = md_chars_to_number (buf, THUMB_SIZE);
29018 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29019 newval |= (S << 10) | hi;
29020 newval2 |= (J1 << 13) | (J2 << 11) | lo;
29021 md_number_to_chars (buf, newval, THUMB_SIZE);
29022 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
29023 }
29024 break;
29025
29026 case BFD_RELOC_THUMB_PCREL_BLX:
29027 /* If there is a blx from a thumb state function to
29028 another thumb function flip this to a bl and warn
29029 about it. */
29030
29031 if (fixP->fx_addsy
29032 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29033 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29034 && THUMB_IS_FUNC (fixP->fx_addsy))
29035 {
29036 const char *name = S_GET_NAME (fixP->fx_addsy);
29037 as_warn_where (fixP->fx_file, fixP->fx_line,
29038 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
29039 name);
29040 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29041 newval = newval | 0x1000;
29042 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
29043 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
29044 fixP->fx_done = 1;
29045 }
29046
29047
29048 goto thumb_bl_common;
29049
29050 case BFD_RELOC_THUMB_PCREL_BRANCH23:
29051 /* A bl from Thumb state ISA to an internal ARM state function
29052 is converted to a blx. */
29053 if (fixP->fx_addsy
29054 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29055 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29056 && ARM_IS_FUNC (fixP->fx_addsy)
29057 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
29058 {
29059 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29060 newval = newval & ~0x1000;
29061 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
29062 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
29063 fixP->fx_done = 1;
29064 }
29065
29066 thumb_bl_common:
29067
29068 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
29069 /* For a BLX instruction, make sure that the relocation is rounded up
29070 to a word boundary. This follows the semantics of the instruction
29071 which specifies that bit 1 of the target address will come from bit
29072 1 of the base address. */
29073 value = (value + 3) & ~ 3;
29074
29075#ifdef OBJ_ELF
29076 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
29077 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
29078 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
29079#endif
29080
29081 if (out_of_range_p (value, 22))
29082 {
29083 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
29084 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
29085 else if (out_of_range_p (value, 24))
29086 as_bad_where (fixP->fx_file, fixP->fx_line,
29087 _("Thumb2 branch out of range"));
29088 }
29089
29090 if (fixP->fx_done || !seg->use_rela_p)
29091 encode_thumb2_b_bl_offset (buf, value);
29092
29093 break;
29094
29095 case BFD_RELOC_THUMB_PCREL_BRANCH25:
29096 if (out_of_range_p (value, 24))
29097 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
29098
29099 if (fixP->fx_done || !seg->use_rela_p)
29100 encode_thumb2_b_bl_offset (buf, value);
29101
29102 break;
29103
29104 case BFD_RELOC_8:
29105 if (fixP->fx_done || !seg->use_rela_p)
29106 *buf = value;
29107 break;
29108
29109 case BFD_RELOC_16:
29110 if (fixP->fx_done || !seg->use_rela_p)
29111 md_number_to_chars (buf, value, 2);
29112 break;
29113
29114#ifdef OBJ_ELF
29115 case BFD_RELOC_ARM_TLS_CALL:
29116 case BFD_RELOC_ARM_THM_TLS_CALL:
29117 case BFD_RELOC_ARM_TLS_DESCSEQ:
29118 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
29119 case BFD_RELOC_ARM_TLS_GOTDESC:
29120 case BFD_RELOC_ARM_TLS_GD32:
29121 case BFD_RELOC_ARM_TLS_LE32:
29122 case BFD_RELOC_ARM_TLS_IE32:
29123 case BFD_RELOC_ARM_TLS_LDM32:
29124 case BFD_RELOC_ARM_TLS_LDO32:
29125 S_SET_THREAD_LOCAL (fixP->fx_addsy);
29126 break;
29127
29128 /* Same handling as above, but with the arm_fdpic guard. */
29129 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
29130 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
29131 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
29132 if (arm_fdpic)
29133 {
29134 S_SET_THREAD_LOCAL (fixP->fx_addsy);
29135 }
29136 else
29137 {
29138 as_bad_where (fixP->fx_file, fixP->fx_line,
29139 _("Relocation supported only in FDPIC mode"));
29140 }
29141 break;
29142
29143 case BFD_RELOC_ARM_GOT32:
29144 case BFD_RELOC_ARM_GOTOFF:
29145 break;
29146
29147 case BFD_RELOC_ARM_GOT_PREL:
29148 if (fixP->fx_done || !seg->use_rela_p)
29149 md_number_to_chars (buf, value, 4);
29150 break;
29151
29152 case BFD_RELOC_ARM_TARGET2:
29153 /* TARGET2 is not partial-inplace, so we need to write the
29154 addend here for REL targets, because it won't be written out
29155 during reloc processing later. */
29156 if (fixP->fx_done || !seg->use_rela_p)
29157 md_number_to_chars (buf, fixP->fx_offset, 4);
29158 break;
29159
29160 /* Relocations for FDPIC. */
29161 case BFD_RELOC_ARM_GOTFUNCDESC:
29162 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
29163 case BFD_RELOC_ARM_FUNCDESC:
29164 if (arm_fdpic)
29165 {
29166 if (fixP->fx_done || !seg->use_rela_p)
29167 md_number_to_chars (buf, 0, 4);
29168 }
29169 else
29170 {
29171 as_bad_where (fixP->fx_file, fixP->fx_line,
29172 _("Relocation supported only in FDPIC mode"));
29173 }
29174 break;
29175#endif
29176
29177 case BFD_RELOC_RVA:
29178 case BFD_RELOC_32:
29179 case BFD_RELOC_ARM_TARGET1:
29180 case BFD_RELOC_ARM_ROSEGREL32:
29181 case BFD_RELOC_ARM_SBREL32:
29182 case BFD_RELOC_32_PCREL:
29183#ifdef TE_PE
29184 case BFD_RELOC_32_SECREL:
29185#endif
29186 if (fixP->fx_done || !seg->use_rela_p)
29187#ifdef TE_WINCE
29188 /* For WinCE we only do this for pcrel fixups. */
29189 if (fixP->fx_done || fixP->fx_pcrel)
29190#endif
29191 md_number_to_chars (buf, value, 4);
29192 break;
29193
29194#ifdef OBJ_ELF
29195 case BFD_RELOC_ARM_PREL31:
29196 if (fixP->fx_done || !seg->use_rela_p)
29197 {
29198 newval = md_chars_to_number (buf, 4) & 0x80000000;
29199 if ((value ^ (value >> 1)) & 0x40000000)
29200 {
29201 as_bad_where (fixP->fx_file, fixP->fx_line,
29202 _("rel31 relocation overflow"));
29203 }
29204 newval |= value & 0x7fffffff;
29205 md_number_to_chars (buf, newval, 4);
29206 }
29207 break;
29208#endif
29209
29210 case BFD_RELOC_ARM_CP_OFF_IMM:
29211 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
29212 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
29213 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
29214 newval = md_chars_to_number (buf, INSN_SIZE);
29215 else
29216 newval = get_thumb32_insn (buf);
29217 if ((newval & 0x0f200f00) == 0x0d000900)
29218 {
29219 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
29220 has permitted values that are multiples of 2, in the range 0
29221 to 510. */
29222 if (value < -510 || value > 510 || (value & 1))
29223 as_bad_where (fixP->fx_file, fixP->fx_line,
29224 _("co-processor offset out of range"));
29225 }
29226 else if ((newval & 0xfe001f80) == 0xec000f80)
29227 {
29228 if (value < -511 || value > 512 || (value & 3))
29229 as_bad_where (fixP->fx_file, fixP->fx_line,
29230 _("co-processor offset out of range"));
29231 }
29232 else if (value < -1023 || value > 1023 || (value & 3))
29233 as_bad_where (fixP->fx_file, fixP->fx_line,
29234 _("co-processor offset out of range"));
29235 cp_off_common:
29236 sign = value > 0;
29237 if (value < 0)
29238 value = -value;
29239 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
29240 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
29241 newval = md_chars_to_number (buf, INSN_SIZE);
29242 else
29243 newval = get_thumb32_insn (buf);
29244 if (value == 0)
29245 {
29246 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
29247 newval &= 0xffffff80;
29248 else
29249 newval &= 0xffffff00;
29250 }
29251 else
29252 {
29253 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
29254 newval &= 0xff7fff80;
29255 else
29256 newval &= 0xff7fff00;
29257 if ((newval & 0x0f200f00) == 0x0d000900)
29258 {
29259 /* This is a fp16 vstr/vldr.
29260
29261 It requires the immediate offset in the instruction is shifted
29262 left by 1 to be a half-word offset.
29263
29264 Here, left shift by 1 first, and later right shift by 2
29265 should get the right offset. */
29266 value <<= 1;
29267 }
29268 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
29269 }
29270 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
29271 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
29272 md_number_to_chars (buf, newval, INSN_SIZE);
29273 else
29274 put_thumb32_insn (buf, newval);
29275 break;
29276
29277 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
29278 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
29279 if (value < -255 || value > 255)
29280 as_bad_where (fixP->fx_file, fixP->fx_line,
29281 _("co-processor offset out of range"));
29282 value *= 4;
29283 goto cp_off_common;
29284
29285 case BFD_RELOC_ARM_THUMB_OFFSET:
29286 newval = md_chars_to_number (buf, THUMB_SIZE);
29287 /* Exactly what ranges, and where the offset is inserted depends
29288 on the type of instruction, we can establish this from the
29289 top 4 bits. */
29290 switch (newval >> 12)
29291 {
29292 case 4: /* PC load. */
29293 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
29294 forced to zero for these loads; md_pcrel_from has already
29295 compensated for this. */
29296 if (value & 3)
29297 as_bad_where (fixP->fx_file, fixP->fx_line,
29298 _("invalid offset, target not word aligned (0x%08lX)"),
29299 (((unsigned long) fixP->fx_frag->fr_address
29300 + (unsigned long) fixP->fx_where) & ~3)
29301 + (unsigned long) value);
29302 else if (get_recorded_alignment (seg) < 2)
29303 as_warn_where (fixP->fx_file, fixP->fx_line,
29304 _("section does not have enough alignment to ensure safe PC-relative loads"));
29305
29306 if (value & ~0x3fc)
29307 as_bad_where (fixP->fx_file, fixP->fx_line,
29308 _("invalid offset, value too big (0x%08lX)"),
29309 (long) value);
29310
29311 newval |= value >> 2;
29312 break;
29313
29314 case 9: /* SP load/store. */
29315 if (value & ~0x3fc)
29316 as_bad_where (fixP->fx_file, fixP->fx_line,
29317 _("invalid offset, value too big (0x%08lX)"),
29318 (long) value);
29319 newval |= value >> 2;
29320 break;
29321
29322 case 6: /* Word load/store. */
29323 if (value & ~0x7c)
29324 as_bad_where (fixP->fx_file, fixP->fx_line,
29325 _("invalid offset, value too big (0x%08lX)"),
29326 (long) value);
29327 newval |= value << 4; /* 6 - 2. */
29328 break;
29329
29330 case 7: /* Byte load/store. */
29331 if (value & ~0x1f)
29332 as_bad_where (fixP->fx_file, fixP->fx_line,
29333 _("invalid offset, value too big (0x%08lX)"),
29334 (long) value);
29335 newval |= value << 6;
29336 break;
29337
29338 case 8: /* Halfword load/store. */
29339 if (value & ~0x3e)
29340 as_bad_where (fixP->fx_file, fixP->fx_line,
29341 _("invalid offset, value too big (0x%08lX)"),
29342 (long) value);
29343 newval |= value << 5; /* 6 - 1. */
29344 break;
29345
29346 default:
29347 as_bad_where (fixP->fx_file, fixP->fx_line,
29348 "Unable to process relocation for thumb opcode: %lx",
29349 (unsigned long) newval);
29350 break;
29351 }
29352 md_number_to_chars (buf, newval, THUMB_SIZE);
29353 break;
29354
29355 case BFD_RELOC_ARM_THUMB_ADD:
29356 /* This is a complicated relocation, since we use it for all of
29357 the following immediate relocations:
29358
29359 3bit ADD/SUB
29360 8bit ADD/SUB
29361 9bit ADD/SUB SP word-aligned
29362 10bit ADD PC/SP word-aligned
29363
29364 The type of instruction being processed is encoded in the
29365 instruction field:
29366
29367 0x8000 SUB
29368 0x00F0 Rd
29369 0x000F Rs
29370 */
29371 newval = md_chars_to_number (buf, THUMB_SIZE);
29372 {
29373 int rd = (newval >> 4) & 0xf;
29374 int rs = newval & 0xf;
29375 int subtract = !!(newval & 0x8000);
29376
29377 /* Check for HI regs, only very restricted cases allowed:
29378 Adjusting SP, and using PC or SP to get an address. */
29379 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
29380 || (rs > 7 && rs != REG_SP && rs != REG_PC))
29381 as_bad_where (fixP->fx_file, fixP->fx_line,
29382 _("invalid Hi register with immediate"));
29383
29384 /* If value is negative, choose the opposite instruction. */
29385 if (value < 0)
29386 {
29387 value = -value;
29388 subtract = !subtract;
29389 if (value < 0)
29390 as_bad_where (fixP->fx_file, fixP->fx_line,
29391 _("immediate value out of range"));
29392 }
29393
29394 if (rd == REG_SP)
29395 {
29396 if (value & ~0x1fc)
29397 as_bad_where (fixP->fx_file, fixP->fx_line,
29398 _("invalid immediate for stack address calculation"));
29399 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
29400 newval |= value >> 2;
29401 }
29402 else if (rs == REG_PC || rs == REG_SP)
29403 {
29404 /* PR gas/18541. If the addition is for a defined symbol
29405 within range of an ADR instruction then accept it. */
29406 if (subtract
29407 && value == 4
29408 && fixP->fx_addsy != NULL)
29409 {
29410 subtract = 0;
29411
29412 if (! S_IS_DEFINED (fixP->fx_addsy)
29413 || S_GET_SEGMENT (fixP->fx_addsy) != seg
29414 || S_IS_WEAK (fixP->fx_addsy))
29415 {
29416 as_bad_where (fixP->fx_file, fixP->fx_line,
29417 _("address calculation needs a strongly defined nearby symbol"));
29418 }
29419 else
29420 {
29421 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
29422
29423 /* Round up to the next 4-byte boundary. */
29424 if (v & 3)
29425 v = (v + 3) & ~ 3;
29426 else
29427 v += 4;
29428 v = S_GET_VALUE (fixP->fx_addsy) - v;
29429
29430 if (v & ~0x3fc)
29431 {
29432 as_bad_where (fixP->fx_file, fixP->fx_line,
29433 _("symbol too far away"));
29434 }
29435 else
29436 {
29437 fixP->fx_done = 1;
29438 value = v;
29439 }
29440 }
29441 }
29442
29443 if (subtract || value & ~0x3fc)
29444 as_bad_where (fixP->fx_file, fixP->fx_line,
29445 _("invalid immediate for address calculation (value = 0x%08lX)"),
29446 (unsigned long) (subtract ? - value : value));
29447 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
29448 newval |= rd << 8;
29449 newval |= value >> 2;
29450 }
29451 else if (rs == rd)
29452 {
29453 if (value & ~0xff)
29454 as_bad_where (fixP->fx_file, fixP->fx_line,
29455 _("immediate value out of range"));
29456 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
29457 newval |= (rd << 8) | value;
29458 }
29459 else
29460 {
29461 if (value & ~0x7)
29462 as_bad_where (fixP->fx_file, fixP->fx_line,
29463 _("immediate value out of range"));
29464 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
29465 newval |= rd | (rs << 3) | (value << 6);
29466 }
29467 }
29468 md_number_to_chars (buf, newval, THUMB_SIZE);
29469 break;
29470
29471 case BFD_RELOC_ARM_THUMB_IMM:
29472 newval = md_chars_to_number (buf, THUMB_SIZE);
29473 if (value < 0 || value > 255)
29474 as_bad_where (fixP->fx_file, fixP->fx_line,
29475 _("invalid immediate: %ld is out of range"),
29476 (long) value);
29477 newval |= value;
29478 md_number_to_chars (buf, newval, THUMB_SIZE);
29479 break;
29480
29481 case BFD_RELOC_ARM_THUMB_SHIFT:
29482 /* 5bit shift value (0..32). LSL cannot take 32. */
29483 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
29484 temp = newval & 0xf800;
29485 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
29486 as_bad_where (fixP->fx_file, fixP->fx_line,
29487 _("invalid shift value: %ld"), (long) value);
29488 /* Shifts of zero must be encoded as LSL. */
29489 if (value == 0)
29490 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
29491 /* Shifts of 32 are encoded as zero. */
29492 else if (value == 32)
29493 value = 0;
29494 newval |= value << 6;
29495 md_number_to_chars (buf, newval, THUMB_SIZE);
29496 break;
29497
29498 case BFD_RELOC_VTABLE_INHERIT:
29499 case BFD_RELOC_VTABLE_ENTRY:
29500 fixP->fx_done = 0;
29501 return;
29502
29503 case BFD_RELOC_ARM_MOVW:
29504 case BFD_RELOC_ARM_MOVT:
29505 case BFD_RELOC_ARM_THUMB_MOVW:
29506 case BFD_RELOC_ARM_THUMB_MOVT:
29507 if (fixP->fx_done || !seg->use_rela_p)
29508 {
29509 /* REL format relocations are limited to a 16-bit addend. */
29510 if (!fixP->fx_done)
29511 {
29512 if (value < -0x8000 || value > 0x7fff)
29513 as_bad_where (fixP->fx_file, fixP->fx_line,
29514 _("offset out of range"));
29515 }
29516 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
29517 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
29518 {
29519 value >>= 16;
29520 }
29521
29522 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
29523 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
29524 {
29525 newval = get_thumb32_insn (buf);
29526 newval &= 0xfbf08f00;
29527 newval |= (value & 0xf000) << 4;
29528 newval |= (value & 0x0800) << 15;
29529 newval |= (value & 0x0700) << 4;
29530 newval |= (value & 0x00ff);
29531 put_thumb32_insn (buf, newval);
29532 }
29533 else
29534 {
29535 newval = md_chars_to_number (buf, 4);
29536 newval &= 0xfff0f000;
29537 newval |= value & 0x0fff;
29538 newval |= (value & 0xf000) << 4;
29539 md_number_to_chars (buf, newval, 4);
29540 }
29541 }
29542 return;
29543
29544 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
29545 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
29546 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
29547 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
29548 gas_assert (!fixP->fx_done);
29549 {
29550 bfd_vma insn;
29551 bfd_boolean is_mov;
29552 bfd_vma encoded_addend = value;
29553
29554 /* Check that addend can be encoded in instruction. */
29555 if (!seg->use_rela_p && (value < 0 || value > 255))
29556 as_bad_where (fixP->fx_file, fixP->fx_line,
29557 _("the offset 0x%08lX is not representable"),
29558 (unsigned long) encoded_addend);
29559
29560 /* Extract the instruction. */
29561 insn = md_chars_to_number (buf, THUMB_SIZE);
29562 is_mov = (insn & 0xf800) == 0x2000;
29563
29564 /* Encode insn. */
29565 if (is_mov)
29566 {
29567 if (!seg->use_rela_p)
29568 insn |= encoded_addend;
29569 }
29570 else
29571 {
29572 int rd, rs;
29573
29574 /* Extract the instruction. */
29575 /* Encoding is the following
29576 0x8000 SUB
29577 0x00F0 Rd
29578 0x000F Rs
29579 */
29580 /* The following conditions must be true :
29581 - ADD
29582 - Rd == Rs
29583 - Rd <= 7
29584 */
29585 rd = (insn >> 4) & 0xf;
29586 rs = insn & 0xf;
29587 if ((insn & 0x8000) || (rd != rs) || rd > 7)
29588 as_bad_where (fixP->fx_file, fixP->fx_line,
29589 _("Unable to process relocation for thumb opcode: %lx"),
29590 (unsigned long) insn);
29591
29592 /* Encode as ADD immediate8 thumb 1 code. */
29593 insn = 0x3000 | (rd << 8);
29594
29595 /* Place the encoded addend into the first 8 bits of the
29596 instruction. */
29597 if (!seg->use_rela_p)
29598 insn |= encoded_addend;
29599 }
29600
29601 /* Update the instruction. */
29602 md_number_to_chars (buf, insn, THUMB_SIZE);
29603 }
29604 break;
29605
29606 case BFD_RELOC_ARM_ALU_PC_G0_NC:
29607 case BFD_RELOC_ARM_ALU_PC_G0:
29608 case BFD_RELOC_ARM_ALU_PC_G1_NC:
29609 case BFD_RELOC_ARM_ALU_PC_G1:
29610 case BFD_RELOC_ARM_ALU_PC_G2:
29611 case BFD_RELOC_ARM_ALU_SB_G0_NC:
29612 case BFD_RELOC_ARM_ALU_SB_G0:
29613 case BFD_RELOC_ARM_ALU_SB_G1_NC:
29614 case BFD_RELOC_ARM_ALU_SB_G1:
29615 case BFD_RELOC_ARM_ALU_SB_G2:
29616 gas_assert (!fixP->fx_done);
29617 if (!seg->use_rela_p)
29618 {
29619 bfd_vma insn;
29620 bfd_vma encoded_addend;
29621 bfd_vma addend_abs = llabs (value);
29622
29623 /* Check that the absolute value of the addend can be
29624 expressed as an 8-bit constant plus a rotation. */
29625 encoded_addend = encode_arm_immediate (addend_abs);
29626 if (encoded_addend == (unsigned int) FAIL)
29627 as_bad_where (fixP->fx_file, fixP->fx_line,
29628 _("the offset 0x%08lX is not representable"),
29629 (unsigned long) addend_abs);
29630
29631 /* Extract the instruction. */
29632 insn = md_chars_to_number (buf, INSN_SIZE);
29633
29634 /* If the addend is positive, use an ADD instruction.
29635 Otherwise use a SUB. Take care not to destroy the S bit. */
29636 insn &= 0xff1fffff;
29637 if (value < 0)
29638 insn |= 1 << 22;
29639 else
29640 insn |= 1 << 23;
29641
29642 /* Place the encoded addend into the first 12 bits of the
29643 instruction. */
29644 insn &= 0xfffff000;
29645 insn |= encoded_addend;
29646
29647 /* Update the instruction. */
29648 md_number_to_chars (buf, insn, INSN_SIZE);
29649 }
29650 break;
29651
29652 case BFD_RELOC_ARM_LDR_PC_G0:
29653 case BFD_RELOC_ARM_LDR_PC_G1:
29654 case BFD_RELOC_ARM_LDR_PC_G2:
29655 case BFD_RELOC_ARM_LDR_SB_G0:
29656 case BFD_RELOC_ARM_LDR_SB_G1:
29657 case BFD_RELOC_ARM_LDR_SB_G2:
29658 gas_assert (!fixP->fx_done);
29659 if (!seg->use_rela_p)
29660 {
29661 bfd_vma insn;
29662 bfd_vma addend_abs = llabs (value);
29663
29664 /* Check that the absolute value of the addend can be
29665 encoded in 12 bits. */
29666 if (addend_abs >= 0x1000)
29667 as_bad_where (fixP->fx_file, fixP->fx_line,
29668 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
29669 (unsigned long) addend_abs);
29670
29671 /* Extract the instruction. */
29672 insn = md_chars_to_number (buf, INSN_SIZE);
29673
29674 /* If the addend is negative, clear bit 23 of the instruction.
29675 Otherwise set it. */
29676 if (value < 0)
29677 insn &= ~(1 << 23);
29678 else
29679 insn |= 1 << 23;
29680
29681 /* Place the absolute value of the addend into the first 12 bits
29682 of the instruction. */
29683 insn &= 0xfffff000;
29684 insn |= addend_abs;
29685
29686 /* Update the instruction. */
29687 md_number_to_chars (buf, insn, INSN_SIZE);
29688 }
29689 break;
29690
29691 case BFD_RELOC_ARM_LDRS_PC_G0:
29692 case BFD_RELOC_ARM_LDRS_PC_G1:
29693 case BFD_RELOC_ARM_LDRS_PC_G2:
29694 case BFD_RELOC_ARM_LDRS_SB_G0:
29695 case BFD_RELOC_ARM_LDRS_SB_G1:
29696 case BFD_RELOC_ARM_LDRS_SB_G2:
29697 gas_assert (!fixP->fx_done);
29698 if (!seg->use_rela_p)
29699 {
29700 bfd_vma insn;
29701 bfd_vma addend_abs = llabs (value);
29702
29703 /* Check that the absolute value of the addend can be
29704 encoded in 8 bits. */
29705 if (addend_abs >= 0x100)
29706 as_bad_where (fixP->fx_file, fixP->fx_line,
29707 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
29708 (unsigned long) addend_abs);
29709
29710 /* Extract the instruction. */
29711 insn = md_chars_to_number (buf, INSN_SIZE);
29712
29713 /* If the addend is negative, clear bit 23 of the instruction.
29714 Otherwise set it. */
29715 if (value < 0)
29716 insn &= ~(1 << 23);
29717 else
29718 insn |= 1 << 23;
29719
29720 /* Place the first four bits of the absolute value of the addend
29721 into the first 4 bits of the instruction, and the remaining
29722 four into bits 8 .. 11. */
29723 insn &= 0xfffff0f0;
29724 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
29725
29726 /* Update the instruction. */
29727 md_number_to_chars (buf, insn, INSN_SIZE);
29728 }
29729 break;
29730
29731 case BFD_RELOC_ARM_LDC_PC_G0:
29732 case BFD_RELOC_ARM_LDC_PC_G1:
29733 case BFD_RELOC_ARM_LDC_PC_G2:
29734 case BFD_RELOC_ARM_LDC_SB_G0:
29735 case BFD_RELOC_ARM_LDC_SB_G1:
29736 case BFD_RELOC_ARM_LDC_SB_G2:
29737 gas_assert (!fixP->fx_done);
29738 if (!seg->use_rela_p)
29739 {
29740 bfd_vma insn;
29741 bfd_vma addend_abs = llabs (value);
29742
29743 /* Check that the absolute value of the addend is a multiple of
29744 four and, when divided by four, fits in 8 bits. */
29745 if (addend_abs & 0x3)
29746 as_bad_where (fixP->fx_file, fixP->fx_line,
29747 _("bad offset 0x%08lX (must be word-aligned)"),
29748 (unsigned long) addend_abs);
29749
29750 if ((addend_abs >> 2) > 0xff)
29751 as_bad_where (fixP->fx_file, fixP->fx_line,
29752 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
29753 (unsigned long) addend_abs);
29754
29755 /* Extract the instruction. */
29756 insn = md_chars_to_number (buf, INSN_SIZE);
29757
29758 /* If the addend is negative, clear bit 23 of the instruction.
29759 Otherwise set it. */
29760 if (value < 0)
29761 insn &= ~(1 << 23);
29762 else
29763 insn |= 1 << 23;
29764
29765 /* Place the addend (divided by four) into the first eight
29766 bits of the instruction. */
29767 insn &= 0xfffffff0;
29768 insn |= addend_abs >> 2;
29769
29770 /* Update the instruction. */
29771 md_number_to_chars (buf, insn, INSN_SIZE);
29772 }
29773 break;
29774
29775 case BFD_RELOC_THUMB_PCREL_BRANCH5:
29776 if (fixP->fx_addsy
29777 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29778 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29779 && ARM_IS_FUNC (fixP->fx_addsy)
29780 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29781 {
29782 /* Force a relocation for a branch 5 bits wide. */
29783 fixP->fx_done = 0;
29784 }
29785 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
29786 as_bad_where (fixP->fx_file, fixP->fx_line,
29787 BAD_BRANCH_OFF);
29788
29789 if (fixP->fx_done || !seg->use_rela_p)
29790 {
29791 addressT boff = value >> 1;
29792
29793 newval = md_chars_to_number (buf, THUMB_SIZE);
29794 newval |= (boff << 7);
29795 md_number_to_chars (buf, newval, THUMB_SIZE);
29796 }
29797 break;
29798
29799 case BFD_RELOC_THUMB_PCREL_BFCSEL:
29800 if (fixP->fx_addsy
29801 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29802 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29803 && ARM_IS_FUNC (fixP->fx_addsy)
29804 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29805 {
29806 fixP->fx_done = 0;
29807 }
29808 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
29809 as_bad_where (fixP->fx_file, fixP->fx_line,
29810 _("branch out of range"));
29811
29812 if (fixP->fx_done || !seg->use_rela_p)
29813 {
29814 newval = md_chars_to_number (buf, THUMB_SIZE);
29815
29816 addressT boff = ((newval & 0x0780) >> 7) << 1;
29817 addressT diff = value - boff;
29818
29819 if (diff == 4)
29820 {
29821 newval |= 1 << 1; /* T bit. */
29822 }
29823 else if (diff != 2)
29824 {
29825 as_bad_where (fixP->fx_file, fixP->fx_line,
29826 _("out of range label-relative fixup value"));
29827 }
29828 md_number_to_chars (buf, newval, THUMB_SIZE);
29829 }
29830 break;
29831
29832 case BFD_RELOC_ARM_THUMB_BF17:
29833 if (fixP->fx_addsy
29834 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29835 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29836 && ARM_IS_FUNC (fixP->fx_addsy)
29837 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29838 {
29839 /* Force a relocation for a branch 17 bits wide. */
29840 fixP->fx_done = 0;
29841 }
29842
29843 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
29844 as_bad_where (fixP->fx_file, fixP->fx_line,
29845 BAD_BRANCH_OFF);
29846
29847 if (fixP->fx_done || !seg->use_rela_p)
29848 {
29849 offsetT newval2;
29850 addressT immA, immB, immC;
29851
29852 immA = (value & 0x0001f000) >> 12;
29853 immB = (value & 0x00000ffc) >> 2;
29854 immC = (value & 0x00000002) >> 1;
29855
29856 newval = md_chars_to_number (buf, THUMB_SIZE);
29857 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29858 newval |= immA;
29859 newval2 |= (immC << 11) | (immB << 1);
29860 md_number_to_chars (buf, newval, THUMB_SIZE);
29861 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
29862 }
29863 break;
29864
29865 case BFD_RELOC_ARM_THUMB_BF19:
29866 if (fixP->fx_addsy
29867 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29868 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29869 && ARM_IS_FUNC (fixP->fx_addsy)
29870 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29871 {
29872 /* Force a relocation for a branch 19 bits wide. */
29873 fixP->fx_done = 0;
29874 }
29875
29876 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
29877 as_bad_where (fixP->fx_file, fixP->fx_line,
29878 BAD_BRANCH_OFF);
29879
29880 if (fixP->fx_done || !seg->use_rela_p)
29881 {
29882 offsetT newval2;
29883 addressT immA, immB, immC;
29884
29885 immA = (value & 0x0007f000) >> 12;
29886 immB = (value & 0x00000ffc) >> 2;
29887 immC = (value & 0x00000002) >> 1;
29888
29889 newval = md_chars_to_number (buf, THUMB_SIZE);
29890 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29891 newval |= immA;
29892 newval2 |= (immC << 11) | (immB << 1);
29893 md_number_to_chars (buf, newval, THUMB_SIZE);
29894 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
29895 }
29896 break;
29897
29898 case BFD_RELOC_ARM_THUMB_BF13:
29899 if (fixP->fx_addsy
29900 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29901 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29902 && ARM_IS_FUNC (fixP->fx_addsy)
29903 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29904 {
29905 /* Force a relocation for a branch 13 bits wide. */
29906 fixP->fx_done = 0;
29907 }
29908
29909 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
29910 as_bad_where (fixP->fx_file, fixP->fx_line,
29911 BAD_BRANCH_OFF);
29912
29913 if (fixP->fx_done || !seg->use_rela_p)
29914 {
29915 offsetT newval2;
29916 addressT immA, immB, immC;
29917
29918 immA = (value & 0x00001000) >> 12;
29919 immB = (value & 0x00000ffc) >> 2;
29920 immC = (value & 0x00000002) >> 1;
29921
29922 newval = md_chars_to_number (buf, THUMB_SIZE);
29923 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29924 newval |= immA;
29925 newval2 |= (immC << 11) | (immB << 1);
29926 md_number_to_chars (buf, newval, THUMB_SIZE);
29927 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
29928 }
29929 break;
29930
29931 case BFD_RELOC_ARM_THUMB_LOOP12:
29932 if (fixP->fx_addsy
29933 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29934 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29935 && ARM_IS_FUNC (fixP->fx_addsy)
29936 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29937 {
29938 /* Force a relocation for a branch 12 bits wide. */
29939 fixP->fx_done = 0;
29940 }
29941
29942 bfd_vma insn = get_thumb32_insn (buf);
29943 /* le lr, <label>, le <label> or letp lr, <label> */
29944 if (((insn & 0xffffffff) == 0xf00fc001)
29945 || ((insn & 0xffffffff) == 0xf02fc001)
29946 || ((insn & 0xffffffff) == 0xf01fc001))
29947 value = -value;
29948
29949 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
29950 as_bad_where (fixP->fx_file, fixP->fx_line,
29951 BAD_BRANCH_OFF);
29952 if (fixP->fx_done || !seg->use_rela_p)
29953 {
29954 addressT imml, immh;
29955
29956 immh = (value & 0x00000ffc) >> 2;
29957 imml = (value & 0x00000002) >> 1;
29958
29959 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29960 newval |= (imml << 11) | (immh << 1);
29961 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
29962 }
29963 break;
29964
29965 case BFD_RELOC_ARM_V4BX:
29966 /* This will need to go in the object file. */
29967 fixP->fx_done = 0;
29968 break;
29969
29970 case BFD_RELOC_UNUSED:
29971 default:
29972 as_bad_where (fixP->fx_file, fixP->fx_line,
29973 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
29974 }
29975}
29976
29977/* Translate internal representation of relocation info to BFD target
29978 format. */
29979
29980arelent *
29981tc_gen_reloc (asection *section, fixS *fixp)
29982{
29983 arelent * reloc;
29984 bfd_reloc_code_real_type code;
29985
29986 reloc = XNEW (arelent);
29987
29988 reloc->sym_ptr_ptr = XNEW (asymbol *);
29989 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
29990 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
29991
29992 if (fixp->fx_pcrel)
29993 {
29994 if (section->use_rela_p)
29995 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
29996 else
29997 fixp->fx_offset = reloc->address;
29998 }
29999 reloc->addend = fixp->fx_offset;
30000
30001 switch (fixp->fx_r_type)
30002 {
30003 case BFD_RELOC_8:
30004 if (fixp->fx_pcrel)
30005 {
30006 code = BFD_RELOC_8_PCREL;
30007 break;
30008 }
30009 /* Fall through. */
30010
30011 case BFD_RELOC_16:
30012 if (fixp->fx_pcrel)
30013 {
30014 code = BFD_RELOC_16_PCREL;
30015 break;
30016 }
30017 /* Fall through. */
30018
30019 case BFD_RELOC_32:
30020 if (fixp->fx_pcrel)
30021 {
30022 code = BFD_RELOC_32_PCREL;
30023 break;
30024 }
30025 /* Fall through. */
30026
30027 case BFD_RELOC_ARM_MOVW:
30028 if (fixp->fx_pcrel)
30029 {
30030 code = BFD_RELOC_ARM_MOVW_PCREL;
30031 break;
30032 }
30033 /* Fall through. */
30034
30035 case BFD_RELOC_ARM_MOVT:
30036 if (fixp->fx_pcrel)
30037 {
30038 code = BFD_RELOC_ARM_MOVT_PCREL;
30039 break;
30040 }
30041 /* Fall through. */
30042
30043 case BFD_RELOC_ARM_THUMB_MOVW:
30044 if (fixp->fx_pcrel)
30045 {
30046 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
30047 break;
30048 }
30049 /* Fall through. */
30050
30051 case BFD_RELOC_ARM_THUMB_MOVT:
30052 if (fixp->fx_pcrel)
30053 {
30054 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
30055 break;
30056 }
30057 /* Fall through. */
30058
30059 case BFD_RELOC_NONE:
30060 case BFD_RELOC_ARM_PCREL_BRANCH:
30061 case BFD_RELOC_ARM_PCREL_BLX:
30062 case BFD_RELOC_RVA:
30063 case BFD_RELOC_THUMB_PCREL_BRANCH7:
30064 case BFD_RELOC_THUMB_PCREL_BRANCH9:
30065 case BFD_RELOC_THUMB_PCREL_BRANCH12:
30066 case BFD_RELOC_THUMB_PCREL_BRANCH20:
30067 case BFD_RELOC_THUMB_PCREL_BRANCH23:
30068 case BFD_RELOC_THUMB_PCREL_BRANCH25:
30069 case BFD_RELOC_VTABLE_ENTRY:
30070 case BFD_RELOC_VTABLE_INHERIT:
30071#ifdef TE_PE
30072 case BFD_RELOC_32_SECREL:
30073#endif
30074 code = fixp->fx_r_type;
30075 break;
30076
30077 case BFD_RELOC_THUMB_PCREL_BLX:
30078#ifdef OBJ_ELF
30079 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
30080 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
30081 else
30082#endif
30083 code = BFD_RELOC_THUMB_PCREL_BLX;
30084 break;
30085
30086 case BFD_RELOC_ARM_LITERAL:
30087 case BFD_RELOC_ARM_HWLITERAL:
30088 /* If this is called then the a literal has
30089 been referenced across a section boundary. */
30090 as_bad_where (fixp->fx_file, fixp->fx_line,
30091 _("literal referenced across section boundary"));
30092 return NULL;
30093
30094#ifdef OBJ_ELF
30095 case BFD_RELOC_ARM_TLS_CALL:
30096 case BFD_RELOC_ARM_THM_TLS_CALL:
30097 case BFD_RELOC_ARM_TLS_DESCSEQ:
30098 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
30099 case BFD_RELOC_ARM_GOT32:
30100 case BFD_RELOC_ARM_GOTOFF:
30101 case BFD_RELOC_ARM_GOT_PREL:
30102 case BFD_RELOC_ARM_PLT32:
30103 case BFD_RELOC_ARM_TARGET1:
30104 case BFD_RELOC_ARM_ROSEGREL32:
30105 case BFD_RELOC_ARM_SBREL32:
30106 case BFD_RELOC_ARM_PREL31:
30107 case BFD_RELOC_ARM_TARGET2:
30108 case BFD_RELOC_ARM_TLS_LDO32:
30109 case BFD_RELOC_ARM_PCREL_CALL:
30110 case BFD_RELOC_ARM_PCREL_JUMP:
30111 case BFD_RELOC_ARM_ALU_PC_G0_NC:
30112 case BFD_RELOC_ARM_ALU_PC_G0:
30113 case BFD_RELOC_ARM_ALU_PC_G1_NC:
30114 case BFD_RELOC_ARM_ALU_PC_G1:
30115 case BFD_RELOC_ARM_ALU_PC_G2:
30116 case BFD_RELOC_ARM_LDR_PC_G0:
30117 case BFD_RELOC_ARM_LDR_PC_G1:
30118 case BFD_RELOC_ARM_LDR_PC_G2:
30119 case BFD_RELOC_ARM_LDRS_PC_G0:
30120 case BFD_RELOC_ARM_LDRS_PC_G1:
30121 case BFD_RELOC_ARM_LDRS_PC_G2:
30122 case BFD_RELOC_ARM_LDC_PC_G0:
30123 case BFD_RELOC_ARM_LDC_PC_G1:
30124 case BFD_RELOC_ARM_LDC_PC_G2:
30125 case BFD_RELOC_ARM_ALU_SB_G0_NC:
30126 case BFD_RELOC_ARM_ALU_SB_G0:
30127 case BFD_RELOC_ARM_ALU_SB_G1_NC:
30128 case BFD_RELOC_ARM_ALU_SB_G1:
30129 case BFD_RELOC_ARM_ALU_SB_G2:
30130 case BFD_RELOC_ARM_LDR_SB_G0:
30131 case BFD_RELOC_ARM_LDR_SB_G1:
30132 case BFD_RELOC_ARM_LDR_SB_G2:
30133 case BFD_RELOC_ARM_LDRS_SB_G0:
30134 case BFD_RELOC_ARM_LDRS_SB_G1:
30135 case BFD_RELOC_ARM_LDRS_SB_G2:
30136 case BFD_RELOC_ARM_LDC_SB_G0:
30137 case BFD_RELOC_ARM_LDC_SB_G1:
30138 case BFD_RELOC_ARM_LDC_SB_G2:
30139 case BFD_RELOC_ARM_V4BX:
30140 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
30141 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
30142 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
30143 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
30144 case BFD_RELOC_ARM_GOTFUNCDESC:
30145 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
30146 case BFD_RELOC_ARM_FUNCDESC:
30147 case BFD_RELOC_ARM_THUMB_BF17:
30148 case BFD_RELOC_ARM_THUMB_BF19:
30149 case BFD_RELOC_ARM_THUMB_BF13:
30150 code = fixp->fx_r_type;
30151 break;
30152
30153 case BFD_RELOC_ARM_TLS_GOTDESC:
30154 case BFD_RELOC_ARM_TLS_GD32:
30155 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
30156 case BFD_RELOC_ARM_TLS_LE32:
30157 case BFD_RELOC_ARM_TLS_IE32:
30158 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
30159 case BFD_RELOC_ARM_TLS_LDM32:
30160 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
30161 /* BFD will include the symbol's address in the addend.
30162 But we don't want that, so subtract it out again here. */
30163 if (!S_IS_COMMON (fixp->fx_addsy))
30164 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
30165 code = fixp->fx_r_type;
30166 break;
30167#endif
30168
30169 case BFD_RELOC_ARM_IMMEDIATE:
30170 as_bad_where (fixp->fx_file, fixp->fx_line,
30171 _("internal relocation (type: IMMEDIATE) not fixed up"));
30172 return NULL;
30173
30174 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
30175 as_bad_where (fixp->fx_file, fixp->fx_line,
30176 _("ADRL used for a symbol not defined in the same file"));
30177 return NULL;
30178
30179 case BFD_RELOC_THUMB_PCREL_BRANCH5:
30180 case BFD_RELOC_THUMB_PCREL_BFCSEL:
30181 case BFD_RELOC_ARM_THUMB_LOOP12:
30182 as_bad_where (fixp->fx_file, fixp->fx_line,
30183 _("%s used for a symbol not defined in the same file"),
30184 bfd_get_reloc_code_name (fixp->fx_r_type));
30185 return NULL;
30186
30187 case BFD_RELOC_ARM_OFFSET_IMM:
30188 if (section->use_rela_p)
30189 {
30190 code = fixp->fx_r_type;
30191 break;
30192 }
30193
30194 if (fixp->fx_addsy != NULL
30195 && !S_IS_DEFINED (fixp->fx_addsy)
30196 && S_IS_LOCAL (fixp->fx_addsy))
30197 {
30198 as_bad_where (fixp->fx_file, fixp->fx_line,
30199 _("undefined local label `%s'"),
30200 S_GET_NAME (fixp->fx_addsy));
30201 return NULL;
30202 }
30203
30204 as_bad_where (fixp->fx_file, fixp->fx_line,
30205 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
30206 return NULL;
30207
30208 default:
30209 {
30210 const char * type;
30211
30212 switch (fixp->fx_r_type)
30213 {
30214 case BFD_RELOC_NONE: type = "NONE"; break;
30215 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
30216 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
30217 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
30218 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
30219 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
30220 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
30221 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
30222 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
30223 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
30224 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
30225 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
30226 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
30227 default: type = _("<unknown>"); break;
30228 }
30229 as_bad_where (fixp->fx_file, fixp->fx_line,
30230 _("cannot represent %s relocation in this object file format"),
30231 type);
30232 return NULL;
30233 }
30234 }
30235
30236#ifdef OBJ_ELF
30237 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
30238 && GOT_symbol
30239 && fixp->fx_addsy == GOT_symbol)
30240 {
30241 code = BFD_RELOC_ARM_GOTPC;
30242 reloc->addend = fixp->fx_offset = reloc->address;
30243 }
30244#endif
30245
30246 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
30247
30248 if (reloc->howto == NULL)
30249 {
30250 as_bad_where (fixp->fx_file, fixp->fx_line,
30251 _("cannot represent %s relocation in this object file format"),
30252 bfd_get_reloc_code_name (code));
30253 return NULL;
30254 }
30255
30256 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
30257 vtable entry to be used in the relocation's section offset. */
30258 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
30259 reloc->address = fixp->fx_offset;
30260
30261 return reloc;
30262}
30263
30264/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
30265
30266void
30267cons_fix_new_arm (fragS * frag,
30268 int where,
30269 int size,
30270 expressionS * exp,
30271 bfd_reloc_code_real_type reloc)
30272{
30273 int pcrel = 0;
30274
30275 /* Pick a reloc.
30276 FIXME: @@ Should look at CPU word size. */
30277 switch (size)
30278 {
30279 case 1:
30280 reloc = BFD_RELOC_8;
30281 break;
30282 case 2:
30283 reloc = BFD_RELOC_16;
30284 break;
30285 case 4:
30286 default:
30287 reloc = BFD_RELOC_32;
30288 break;
30289 case 8:
30290 reloc = BFD_RELOC_64;
30291 break;
30292 }
30293
30294#ifdef TE_PE
30295 if (exp->X_op == O_secrel)
30296 {
30297 exp->X_op = O_symbol;
30298 reloc = BFD_RELOC_32_SECREL;
30299 }
30300#endif
30301
30302 fix_new_exp (frag, where, size, exp, pcrel, reloc);
30303}
30304
30305#if defined (OBJ_COFF)
30306void
30307arm_validate_fix (fixS * fixP)
30308{
30309 /* If the destination of the branch is a defined symbol which does not have
30310 the THUMB_FUNC attribute, then we must be calling a function which has
30311 the (interfacearm) attribute. We look for the Thumb entry point to that
30312 function and change the branch to refer to that function instead. */
30313 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
30314 && fixP->fx_addsy != NULL
30315 && S_IS_DEFINED (fixP->fx_addsy)
30316 && ! THUMB_IS_FUNC (fixP->fx_addsy))
30317 {
30318 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
30319 }
30320}
30321#endif
30322
30323
30324int
30325arm_force_relocation (struct fix * fixp)
30326{
30327#if defined (OBJ_COFF) && defined (TE_PE)
30328 if (fixp->fx_r_type == BFD_RELOC_RVA)
30329 return 1;
30330#endif
30331
30332 /* In case we have a call or a branch to a function in ARM ISA mode from
30333 a thumb function or vice-versa force the relocation. These relocations
30334 are cleared off for some cores that might have blx and simple transformations
30335 are possible. */
30336
30337#ifdef OBJ_ELF
30338 switch (fixp->fx_r_type)
30339 {
30340 case BFD_RELOC_ARM_PCREL_JUMP:
30341 case BFD_RELOC_ARM_PCREL_CALL:
30342 case BFD_RELOC_THUMB_PCREL_BLX:
30343 if (THUMB_IS_FUNC (fixp->fx_addsy))
30344 return 1;
30345 break;
30346
30347 case BFD_RELOC_ARM_PCREL_BLX:
30348 case BFD_RELOC_THUMB_PCREL_BRANCH25:
30349 case BFD_RELOC_THUMB_PCREL_BRANCH20:
30350 case BFD_RELOC_THUMB_PCREL_BRANCH23:
30351 if (ARM_IS_FUNC (fixp->fx_addsy))
30352 return 1;
30353 break;
30354
30355 default:
30356 break;
30357 }
30358#endif
30359
30360 /* Resolve these relocations even if the symbol is extern or weak.
30361 Technically this is probably wrong due to symbol preemption.
30362 In practice these relocations do not have enough range to be useful
30363 at dynamic link time, and some code (e.g. in the Linux kernel)
30364 expects these references to be resolved. */
30365 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
30366 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
30367 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
30368 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
30369 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
30370 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
30371 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
30372 || fixp->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH12
30373 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
30374 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
30375 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
30376 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
30377 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
30378 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
30379 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
30380 return 0;
30381
30382 /* Always leave these relocations for the linker. */
30383 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
30384 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
30385 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
30386 return 1;
30387
30388 /* Always generate relocations against function symbols. */
30389 if (fixp->fx_r_type == BFD_RELOC_32
30390 && fixp->fx_addsy
30391 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
30392 return 1;
30393
30394 return generic_force_reloc (fixp);
30395}
30396
30397#if defined (OBJ_ELF) || defined (OBJ_COFF)
30398/* Relocations against function names must be left unadjusted,
30399 so that the linker can use this information to generate interworking
30400 stubs. The MIPS version of this function
30401 also prevents relocations that are mips-16 specific, but I do not
30402 know why it does this.
30403
30404 FIXME:
30405 There is one other problem that ought to be addressed here, but
30406 which currently is not: Taking the address of a label (rather
30407 than a function) and then later jumping to that address. Such
30408 addresses also ought to have their bottom bit set (assuming that
30409 they reside in Thumb code), but at the moment they will not. */
30410
30411bfd_boolean
30412arm_fix_adjustable (fixS * fixP)
30413{
30414 if (fixP->fx_addsy == NULL)
30415 return 1;
30416
30417 /* Preserve relocations against symbols with function type. */
30418 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
30419 return FALSE;
30420
30421 if (THUMB_IS_FUNC (fixP->fx_addsy)
30422 && fixP->fx_subsy == NULL)
30423 return FALSE;
30424
30425 /* We need the symbol name for the VTABLE entries. */
30426 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
30427 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
30428 return FALSE;
30429
30430 /* Don't allow symbols to be discarded on GOT related relocs. */
30431 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
30432 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
30433 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
30434 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
30435 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
30436 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
30437 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
30438 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
30439 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
30440 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
30441 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
30442 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
30443 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
30444 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
30445 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
30446 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
30447 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
30448 return FALSE;
30449
30450 /* Similarly for group relocations. */
30451 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
30452 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
30453 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
30454 return FALSE;
30455
30456 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
30457 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
30458 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
30459 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
30460 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
30461 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
30462 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
30463 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
30464 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
30465 return FALSE;
30466
30467 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
30468 offsets, so keep these symbols. */
30469 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
30470 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
30471 return FALSE;
30472
30473 return TRUE;
30474}
30475#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
30476
30477#ifdef OBJ_ELF
30478const char *
30479elf32_arm_target_format (void)
30480{
30481#ifdef TE_SYMBIAN
30482 return (target_big_endian
30483 ? "elf32-bigarm-symbian"
30484 : "elf32-littlearm-symbian");
30485#elif defined (TE_VXWORKS)
30486 return (target_big_endian
30487 ? "elf32-bigarm-vxworks"
30488 : "elf32-littlearm-vxworks");
30489#elif defined (TE_NACL)
30490 return (target_big_endian
30491 ? "elf32-bigarm-nacl"
30492 : "elf32-littlearm-nacl");
30493#else
30494 if (arm_fdpic)
30495 {
30496 if (target_big_endian)
30497 return "elf32-bigarm-fdpic";
30498 else
30499 return "elf32-littlearm-fdpic";
30500 }
30501 else
30502 {
30503 if (target_big_endian)
30504 return "elf32-bigarm";
30505 else
30506 return "elf32-littlearm";
30507 }
30508#endif
30509}
30510
30511void
30512armelf_frob_symbol (symbolS * symp,
30513 int * puntp)
30514{
30515 elf_frob_symbol (symp, puntp);
30516}
30517#endif
30518
30519/* MD interface: Finalization. */
30520
30521void
30522arm_cleanup (void)
30523{
30524 literal_pool * pool;
30525
30526 /* Ensure that all the predication blocks are properly closed. */
30527 check_pred_blocks_finished ();
30528
30529 for (pool = list_of_pools; pool; pool = pool->next)
30530 {
30531 /* Put it at the end of the relevant section. */
30532 subseg_set (pool->section, pool->sub_section);
30533#ifdef OBJ_ELF
30534 arm_elf_change_section ();
30535#endif
30536 s_ltorg (0);
30537 }
30538}
30539
30540#ifdef OBJ_ELF
30541/* Remove any excess mapping symbols generated for alignment frags in
30542 SEC. We may have created a mapping symbol before a zero byte
30543 alignment; remove it if there's a mapping symbol after the
30544 alignment. */
30545static void
30546check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
30547 void *dummy ATTRIBUTE_UNUSED)
30548{
30549 segment_info_type *seginfo = seg_info (sec);
30550 fragS *fragp;
30551
30552 if (seginfo == NULL || seginfo->frchainP == NULL)
30553 return;
30554
30555 for (fragp = seginfo->frchainP->frch_root;
30556 fragp != NULL;
30557 fragp = fragp->fr_next)
30558 {
30559 symbolS *sym = fragp->tc_frag_data.last_map;
30560 fragS *next = fragp->fr_next;
30561
30562 /* Variable-sized frags have been converted to fixed size by
30563 this point. But if this was variable-sized to start with,
30564 there will be a fixed-size frag after it. So don't handle
30565 next == NULL. */
30566 if (sym == NULL || next == NULL)
30567 continue;
30568
30569 if (S_GET_VALUE (sym) < next->fr_address)
30570 /* Not at the end of this frag. */
30571 continue;
30572 know (S_GET_VALUE (sym) == next->fr_address);
30573
30574 do
30575 {
30576 if (next->tc_frag_data.first_map != NULL)
30577 {
30578 /* Next frag starts with a mapping symbol. Discard this
30579 one. */
30580 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
30581 break;
30582 }
30583
30584 if (next->fr_next == NULL)
30585 {
30586 /* This mapping symbol is at the end of the section. Discard
30587 it. */
30588 know (next->fr_fix == 0 && next->fr_var == 0);
30589 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
30590 break;
30591 }
30592
30593 /* As long as we have empty frags without any mapping symbols,
30594 keep looking. */
30595 /* If the next frag is non-empty and does not start with a
30596 mapping symbol, then this mapping symbol is required. */
30597 if (next->fr_address != next->fr_next->fr_address)
30598 break;
30599
30600 next = next->fr_next;
30601 }
30602 while (next != NULL);
30603 }
30604}
30605#endif
30606
30607/* Adjust the symbol table. This marks Thumb symbols as distinct from
30608 ARM ones. */
30609
30610void
30611arm_adjust_symtab (void)
30612{
30613#ifdef OBJ_COFF
30614 symbolS * sym;
30615
30616 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
30617 {
30618 if (ARM_IS_THUMB (sym))
30619 {
30620 if (THUMB_IS_FUNC (sym))
30621 {
30622 /* Mark the symbol as a Thumb function. */
30623 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
30624 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
30625 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
30626
30627 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
30628 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
30629 else
30630 as_bad (_("%s: unexpected function type: %d"),
30631 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
30632 }
30633 else switch (S_GET_STORAGE_CLASS (sym))
30634 {
30635 case C_EXT:
30636 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
30637 break;
30638 case C_STAT:
30639 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
30640 break;
30641 case C_LABEL:
30642 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
30643 break;
30644 default:
30645 /* Do nothing. */
30646 break;
30647 }
30648 }
30649
30650 if (ARM_IS_INTERWORK (sym))
30651 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
30652 }
30653#endif
30654#ifdef OBJ_ELF
30655 symbolS * sym;
30656 char bind;
30657
30658 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
30659 {
30660 if (ARM_IS_THUMB (sym))
30661 {
30662 elf_symbol_type * elf_sym;
30663
30664 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
30665 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
30666
30667 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
30668 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
30669 {
30670 /* If it's a .thumb_func, declare it as so,
30671 otherwise tag label as .code 16. */
30672 if (THUMB_IS_FUNC (sym))
30673 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
30674 ST_BRANCH_TO_THUMB);
30675 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
30676 elf_sym->internal_elf_sym.st_info =
30677 ELF_ST_INFO (bind, STT_ARM_16BIT);
30678 }
30679 }
30680 }
30681
30682 /* Remove any overlapping mapping symbols generated by alignment frags. */
30683 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
30684 /* Now do generic ELF adjustments. */
30685 elf_adjust_symtab ();
30686#endif
30687}
30688
30689/* MD interface: Initialization. */
30690
30691static void
30692set_constant_flonums (void)
30693{
30694 int i;
30695
30696 for (i = 0; i < NUM_FLOAT_VALS; i++)
30697 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
30698 abort ();
30699}
30700
30701/* Auto-select Thumb mode if it's the only available instruction set for the
30702 given architecture. */
30703
30704static void
30705autoselect_thumb_from_cpu_variant (void)
30706{
30707 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
30708 opcode_select (16);
30709}
30710
30711void
30712md_begin (void)
30713{
30714 unsigned mach;
30715 unsigned int i;
30716
30717 if ( (arm_ops_hsh = hash_new ()) == NULL
30718 || (arm_cond_hsh = hash_new ()) == NULL
30719 || (arm_vcond_hsh = hash_new ()) == NULL
30720 || (arm_shift_hsh = hash_new ()) == NULL
30721 || (arm_psr_hsh = hash_new ()) == NULL
30722 || (arm_v7m_psr_hsh = hash_new ()) == NULL
30723 || (arm_reg_hsh = hash_new ()) == NULL
30724 || (arm_reloc_hsh = hash_new ()) == NULL
30725 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
30726 as_fatal (_("virtual memory exhausted"));
30727
30728 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
30729 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
30730 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
30731 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
30732 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
30733 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
30734 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
30735 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
30736 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
30737 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
30738 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
30739 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
30740 (void *) (v7m_psrs + i));
30741 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
30742 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
30743 for (i = 0;
30744 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
30745 i++)
30746 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
30747 (void *) (barrier_opt_names + i));
30748#ifdef OBJ_ELF
30749 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
30750 {
30751 struct reloc_entry * entry = reloc_names + i;
30752
30753 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
30754 /* This makes encode_branch() use the EABI versions of this relocation. */
30755 entry->reloc = BFD_RELOC_UNUSED;
30756
30757 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
30758 }
30759#endif
30760
30761 set_constant_flonums ();
30762
30763 /* Set the cpu variant based on the command-line options. We prefer
30764 -mcpu= over -march= if both are set (as for GCC); and we prefer
30765 -mfpu= over any other way of setting the floating point unit.
30766 Use of legacy options with new options are faulted. */
30767 if (legacy_cpu)
30768 {
30769 if (mcpu_cpu_opt || march_cpu_opt)
30770 as_bad (_("use of old and new-style options to set CPU type"));
30771
30772 selected_arch = *legacy_cpu;
30773 }
30774 else if (mcpu_cpu_opt)
30775 {
30776 selected_arch = *mcpu_cpu_opt;
30777 selected_ext = *mcpu_ext_opt;
30778 }
30779 else if (march_cpu_opt)
30780 {
30781 selected_arch = *march_cpu_opt;
30782 selected_ext = *march_ext_opt;
30783 }
30784 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
30785
30786 if (legacy_fpu)
30787 {
30788 if (mfpu_opt)
30789 as_bad (_("use of old and new-style options to set FPU type"));
30790
30791 selected_fpu = *legacy_fpu;
30792 }
30793 else if (mfpu_opt)
30794 selected_fpu = *mfpu_opt;
30795 else
30796 {
30797#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
30798 || defined (TE_NetBSD) || defined (TE_VXWORKS))
30799 /* Some environments specify a default FPU. If they don't, infer it
30800 from the processor. */
30801 if (mcpu_fpu_opt)
30802 selected_fpu = *mcpu_fpu_opt;
30803 else if (march_fpu_opt)
30804 selected_fpu = *march_fpu_opt;
30805#else
30806 selected_fpu = fpu_default;
30807#endif
30808 }
30809
30810 if (ARM_FEATURE_ZERO (selected_fpu))
30811 {
30812 if (!no_cpu_selected ())
30813 selected_fpu = fpu_default;
30814 else
30815 selected_fpu = fpu_arch_fpa;
30816 }
30817
30818#ifdef CPU_DEFAULT
30819 if (ARM_FEATURE_ZERO (selected_arch))
30820 {
30821 selected_arch = cpu_default;
30822 selected_cpu = selected_arch;
30823 }
30824 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30825#else
30826 /* Autodection of feature mode: allow all features in cpu_variant but leave
30827 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
30828 after all instruction have been processed and we can decide what CPU
30829 should be selected. */
30830 if (ARM_FEATURE_ZERO (selected_arch))
30831 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
30832 else
30833 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30834#endif
30835
30836 autoselect_thumb_from_cpu_variant ();
30837
30838 arm_arch_used = thumb_arch_used = arm_arch_none;
30839
30840#if defined OBJ_COFF || defined OBJ_ELF
30841 {
30842 unsigned int flags = 0;
30843
30844#if defined OBJ_ELF
30845 flags = meabi_flags;
30846
30847 switch (meabi_flags)
30848 {
30849 case EF_ARM_EABI_UNKNOWN:
30850#endif
30851 /* Set the flags in the private structure. */
30852 if (uses_apcs_26) flags |= F_APCS26;
30853 if (support_interwork) flags |= F_INTERWORK;
30854 if (uses_apcs_float) flags |= F_APCS_FLOAT;
30855 if (pic_code) flags |= F_PIC;
30856 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
30857 flags |= F_SOFT_FLOAT;
30858
30859 switch (mfloat_abi_opt)
30860 {
30861 case ARM_FLOAT_ABI_SOFT:
30862 case ARM_FLOAT_ABI_SOFTFP:
30863 flags |= F_SOFT_FLOAT;
30864 break;
30865
30866 case ARM_FLOAT_ABI_HARD:
30867 if (flags & F_SOFT_FLOAT)
30868 as_bad (_("hard-float conflicts with specified fpu"));
30869 break;
30870 }
30871
30872 /* Using pure-endian doubles (even if soft-float). */
30873 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
30874 flags |= F_VFP_FLOAT;
30875
30876#if defined OBJ_ELF
30877 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
30878 flags |= EF_ARM_MAVERICK_FLOAT;
30879 break;
30880
30881 case EF_ARM_EABI_VER4:
30882 case EF_ARM_EABI_VER5:
30883 /* No additional flags to set. */
30884 break;
30885
30886 default:
30887 abort ();
30888 }
30889#endif
30890 bfd_set_private_flags (stdoutput, flags);
30891
30892 /* We have run out flags in the COFF header to encode the
30893 status of ATPCS support, so instead we create a dummy,
30894 empty, debug section called .arm.atpcs. */
30895 if (atpcs)
30896 {
30897 asection * sec;
30898
30899 sec = bfd_make_section (stdoutput, ".arm.atpcs");
30900
30901 if (sec != NULL)
30902 {
30903 bfd_set_section_flags (sec, SEC_READONLY | SEC_DEBUGGING);
30904 bfd_set_section_size (sec, 0);
30905 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
30906 }
30907 }
30908 }
30909#endif
30910
30911 /* Record the CPU type as well. */
30912 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
30913 mach = bfd_mach_arm_iWMMXt2;
30914 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
30915 mach = bfd_mach_arm_iWMMXt;
30916 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
30917 mach = bfd_mach_arm_XScale;
30918 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
30919 mach = bfd_mach_arm_ep9312;
30920 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
30921 mach = bfd_mach_arm_5TE;
30922 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
30923 {
30924 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
30925 mach = bfd_mach_arm_5T;
30926 else
30927 mach = bfd_mach_arm_5;
30928 }
30929 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
30930 {
30931 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
30932 mach = bfd_mach_arm_4T;
30933 else
30934 mach = bfd_mach_arm_4;
30935 }
30936 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
30937 mach = bfd_mach_arm_3M;
30938 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
30939 mach = bfd_mach_arm_3;
30940 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
30941 mach = bfd_mach_arm_2a;
30942 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
30943 mach = bfd_mach_arm_2;
30944 else
30945 mach = bfd_mach_arm_unknown;
30946
30947 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
30948}
30949
30950/* Command line processing. */
30951
30952/* md_parse_option
30953 Invocation line includes a switch not recognized by the base assembler.
30954 See if it's a processor-specific option.
30955
30956 This routine is somewhat complicated by the need for backwards
30957 compatibility (since older releases of gcc can't be changed).
30958 The new options try to make the interface as compatible as
30959 possible with GCC.
30960
30961 New options (supported) are:
30962
30963 -mcpu=<cpu name> Assemble for selected processor
30964 -march=<architecture name> Assemble for selected architecture
30965 -mfpu=<fpu architecture> Assemble for selected FPU.
30966 -EB/-mbig-endian Big-endian
30967 -EL/-mlittle-endian Little-endian
30968 -k Generate PIC code
30969 -mthumb Start in Thumb mode
30970 -mthumb-interwork Code supports ARM/Thumb interworking
30971
30972 -m[no-]warn-deprecated Warn about deprecated features
30973 -m[no-]warn-syms Warn when symbols match instructions
30974
30975 For now we will also provide support for:
30976
30977 -mapcs-32 32-bit Program counter
30978 -mapcs-26 26-bit Program counter
30979 -macps-float Floats passed in FP registers
30980 -mapcs-reentrant Reentrant code
30981 -matpcs
30982 (sometime these will probably be replaced with -mapcs=<list of options>
30983 and -matpcs=<list of options>)
30984
30985 The remaining options are only supported for back-wards compatibility.
30986 Cpu variants, the arm part is optional:
30987 -m[arm]1 Currently not supported.
30988 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
30989 -m[arm]3 Arm 3 processor
30990 -m[arm]6[xx], Arm 6 processors
30991 -m[arm]7[xx][t][[d]m] Arm 7 processors
30992 -m[arm]8[10] Arm 8 processors
30993 -m[arm]9[20][tdmi] Arm 9 processors
30994 -mstrongarm[110[0]] StrongARM processors
30995 -mxscale XScale processors
30996 -m[arm]v[2345[t[e]]] Arm architectures
30997 -mall All (except the ARM1)
30998 FP variants:
30999 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
31000 -mfpe-old (No float load/store multiples)
31001 -mvfpxd VFP Single precision
31002 -mvfp All VFP
31003 -mno-fpu Disable all floating point instructions
31004
31005 The following CPU names are recognized:
31006 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
31007 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
31008 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
31009 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
31010 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
31011 arm10t arm10e, arm1020t, arm1020e, arm10200e,
31012 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
31013
31014 */
31015
31016const char * md_shortopts = "m:k";
31017
31018#ifdef ARM_BI_ENDIAN
31019#define OPTION_EB (OPTION_MD_BASE + 0)
31020#define OPTION_EL (OPTION_MD_BASE + 1)
31021#else
31022#if TARGET_BYTES_BIG_ENDIAN
31023#define OPTION_EB (OPTION_MD_BASE + 0)
31024#else
31025#define OPTION_EL (OPTION_MD_BASE + 1)
31026#endif
31027#endif
31028#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
31029#define OPTION_FDPIC (OPTION_MD_BASE + 3)
31030
31031struct option md_longopts[] =
31032{
31033#ifdef OPTION_EB
31034 {"EB", no_argument, NULL, OPTION_EB},
31035#endif
31036#ifdef OPTION_EL
31037 {"EL", no_argument, NULL, OPTION_EL},
31038#endif
31039 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
31040#ifdef OBJ_ELF
31041 {"fdpic", no_argument, NULL, OPTION_FDPIC},
31042#endif
31043 {NULL, no_argument, NULL, 0}
31044};
31045
31046size_t md_longopts_size = sizeof (md_longopts);
31047
31048struct arm_option_table
31049{
31050 const char * option; /* Option name to match. */
31051 const char * help; /* Help information. */
31052 int * var; /* Variable to change. */
31053 int value; /* What to change it to. */
31054 const char * deprecated; /* If non-null, print this message. */
31055};
31056
31057struct arm_option_table arm_opts[] =
31058{
31059 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
31060 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
31061 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
31062 &support_interwork, 1, NULL},
31063 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
31064 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
31065 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
31066 1, NULL},
31067 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
31068 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
31069 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
31070 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
31071 NULL},
31072
31073 /* These are recognized by the assembler, but have no affect on code. */
31074 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
31075 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
31076
31077 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
31078 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
31079 &warn_on_deprecated, 0, NULL},
31080
31081 {"mwarn-restrict-it", N_("warn about performance deprecated IT instructions"
31082 " in ARMv8-A and ARMv8-R"), &warn_on_restrict_it, 1, NULL},
31083 {"mno-warn-restrict-it", NULL, &warn_on_restrict_it, 0, NULL},
31084
31085 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
31086 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
31087 {NULL, NULL, NULL, 0, NULL}
31088};
31089
31090struct arm_legacy_option_table
31091{
31092 const char * option; /* Option name to match. */
31093 const arm_feature_set ** var; /* Variable to change. */
31094 const arm_feature_set value; /* What to change it to. */
31095 const char * deprecated; /* If non-null, print this message. */
31096};
31097
31098const struct arm_legacy_option_table arm_legacy_opts[] =
31099{
31100 /* DON'T add any new processors to this list -- we want the whole list
31101 to go away... Add them to the processors table instead. */
31102 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
31103 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
31104 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
31105 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
31106 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
31107 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
31108 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
31109 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
31110 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
31111 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
31112 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
31113 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
31114 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
31115 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
31116 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
31117 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
31118 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
31119 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
31120 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
31121 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
31122 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
31123 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
31124 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
31125 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
31126 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
31127 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
31128 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
31129 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
31130 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
31131 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
31132 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
31133 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
31134 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
31135 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
31136 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
31137 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
31138 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
31139 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
31140 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
31141 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
31142 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
31143 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
31144 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
31145 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
31146 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
31147 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
31148 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
31149 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
31150 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
31151 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
31152 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
31153 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
31154 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
31155 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
31156 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
31157 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
31158 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
31159 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
31160 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
31161 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
31162 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
31163 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
31164 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
31165 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
31166 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
31167 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
31168 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
31169 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
31170 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
31171 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
31172 N_("use -mcpu=strongarm110")},
31173 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
31174 N_("use -mcpu=strongarm1100")},
31175 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
31176 N_("use -mcpu=strongarm1110")},
31177 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
31178 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
31179 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
31180
31181 /* Architecture variants -- don't add any more to this list either. */
31182 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
31183 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
31184 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
31185 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
31186 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
31187 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
31188 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
31189 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
31190 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
31191 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
31192 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
31193 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
31194 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
31195 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
31196 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
31197 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
31198 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
31199 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
31200
31201 /* Floating point variants -- don't add any more to this list either. */
31202 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
31203 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
31204 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
31205 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
31206 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
31207
31208 {NULL, NULL, ARM_ARCH_NONE, NULL}
31209};
31210
31211struct arm_cpu_option_table
31212{
31213 const char * name;
31214 size_t name_len;
31215 const arm_feature_set value;
31216 const arm_feature_set ext;
31217 /* For some CPUs we assume an FPU unless the user explicitly sets
31218 -mfpu=... */
31219 const arm_feature_set default_fpu;
31220 /* The canonical name of the CPU, or NULL to use NAME converted to upper
31221 case. */
31222 const char * canonical_name;
31223};
31224
31225/* This list should, at a minimum, contain all the cpu names
31226 recognized by GCC. */
31227#define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
31228
31229static const struct arm_cpu_option_table arm_cpus[] =
31230{
31231 ARM_CPU_OPT ("all", NULL, ARM_ANY,
31232 ARM_ARCH_NONE,
31233 FPU_ARCH_FPA),
31234 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
31235 ARM_ARCH_NONE,
31236 FPU_ARCH_FPA),
31237 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
31238 ARM_ARCH_NONE,
31239 FPU_ARCH_FPA),
31240 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
31241 ARM_ARCH_NONE,
31242 FPU_ARCH_FPA),
31243 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
31244 ARM_ARCH_NONE,
31245 FPU_ARCH_FPA),
31246 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
31247 ARM_ARCH_NONE,
31248 FPU_ARCH_FPA),
31249 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
31250 ARM_ARCH_NONE,
31251 FPU_ARCH_FPA),
31252 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
31253 ARM_ARCH_NONE,
31254 FPU_ARCH_FPA),
31255 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
31256 ARM_ARCH_NONE,
31257 FPU_ARCH_FPA),
31258 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
31259 ARM_ARCH_NONE,
31260 FPU_ARCH_FPA),
31261 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
31262 ARM_ARCH_NONE,
31263 FPU_ARCH_FPA),
31264 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
31265 ARM_ARCH_NONE,
31266 FPU_ARCH_FPA),
31267 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
31268 ARM_ARCH_NONE,
31269 FPU_ARCH_FPA),
31270 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
31271 ARM_ARCH_NONE,
31272 FPU_ARCH_FPA),
31273 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
31274 ARM_ARCH_NONE,
31275 FPU_ARCH_FPA),
31276 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
31277 ARM_ARCH_NONE,
31278 FPU_ARCH_FPA),
31279 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
31280 ARM_ARCH_NONE,
31281 FPU_ARCH_FPA),
31282 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
31283 ARM_ARCH_NONE,
31284 FPU_ARCH_FPA),
31285 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
31286 ARM_ARCH_NONE,
31287 FPU_ARCH_FPA),
31288 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
31289 ARM_ARCH_NONE,
31290 FPU_ARCH_FPA),
31291 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
31292 ARM_ARCH_NONE,
31293 FPU_ARCH_FPA),
31294 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
31295 ARM_ARCH_NONE,
31296 FPU_ARCH_FPA),
31297 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
31298 ARM_ARCH_NONE,
31299 FPU_ARCH_FPA),
31300 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
31301 ARM_ARCH_NONE,
31302 FPU_ARCH_FPA),
31303 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
31304 ARM_ARCH_NONE,
31305 FPU_ARCH_FPA),
31306 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
31307 ARM_ARCH_NONE,
31308 FPU_ARCH_FPA),
31309 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
31310 ARM_ARCH_NONE,
31311 FPU_ARCH_FPA),
31312 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
31313 ARM_ARCH_NONE,
31314 FPU_ARCH_FPA),
31315 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
31316 ARM_ARCH_NONE,
31317 FPU_ARCH_FPA),
31318 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
31319 ARM_ARCH_NONE,
31320 FPU_ARCH_FPA),
31321 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
31322 ARM_ARCH_NONE,
31323 FPU_ARCH_FPA),
31324 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
31325 ARM_ARCH_NONE,
31326 FPU_ARCH_FPA),
31327 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
31328 ARM_ARCH_NONE,
31329 FPU_ARCH_FPA),
31330 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
31331 ARM_ARCH_NONE,
31332 FPU_ARCH_FPA),
31333 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
31334 ARM_ARCH_NONE,
31335 FPU_ARCH_FPA),
31336 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
31337 ARM_ARCH_NONE,
31338 FPU_ARCH_FPA),
31339 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
31340 ARM_ARCH_NONE,
31341 FPU_ARCH_FPA),
31342 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
31343 ARM_ARCH_NONE,
31344 FPU_ARCH_FPA),
31345 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
31346 ARM_ARCH_NONE,
31347 FPU_ARCH_FPA),
31348 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
31349 ARM_ARCH_NONE,
31350 FPU_ARCH_FPA),
31351 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
31352 ARM_ARCH_NONE,
31353 FPU_ARCH_FPA),
31354 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
31355 ARM_ARCH_NONE,
31356 FPU_ARCH_FPA),
31357 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
31358 ARM_ARCH_NONE,
31359 FPU_ARCH_FPA),
31360 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
31361 ARM_ARCH_NONE,
31362 FPU_ARCH_FPA),
31363 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
31364 ARM_ARCH_NONE,
31365 FPU_ARCH_FPA),
31366 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
31367 ARM_ARCH_NONE,
31368 FPU_ARCH_FPA),
31369
31370 /* For V5 or later processors we default to using VFP; but the user
31371 should really set the FPU type explicitly. */
31372 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
31373 ARM_ARCH_NONE,
31374 FPU_ARCH_VFP_V2),
31375 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
31376 ARM_ARCH_NONE,
31377 FPU_ARCH_VFP_V2),
31378 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
31379 ARM_ARCH_NONE,
31380 FPU_ARCH_VFP_V2),
31381 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
31382 ARM_ARCH_NONE,
31383 FPU_ARCH_VFP_V2),
31384 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
31385 ARM_ARCH_NONE,
31386 FPU_ARCH_VFP_V2),
31387 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
31388 ARM_ARCH_NONE,
31389 FPU_ARCH_VFP_V2),
31390 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
31391 ARM_ARCH_NONE,
31392 FPU_ARCH_VFP_V2),
31393 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
31394 ARM_ARCH_NONE,
31395 FPU_ARCH_VFP_V2),
31396 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
31397 ARM_ARCH_NONE,
31398 FPU_ARCH_VFP_V2),
31399 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
31400 ARM_ARCH_NONE,
31401 FPU_ARCH_VFP_V2),
31402 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
31403 ARM_ARCH_NONE,
31404 FPU_ARCH_VFP_V2),
31405 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
31406 ARM_ARCH_NONE,
31407 FPU_ARCH_VFP_V2),
31408 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
31409 ARM_ARCH_NONE,
31410 FPU_ARCH_VFP_V1),
31411 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
31412 ARM_ARCH_NONE,
31413 FPU_ARCH_VFP_V1),
31414 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
31415 ARM_ARCH_NONE,
31416 FPU_ARCH_VFP_V2),
31417 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
31418 ARM_ARCH_NONE,
31419 FPU_ARCH_VFP_V2),
31420 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
31421 ARM_ARCH_NONE,
31422 FPU_ARCH_VFP_V1),
31423 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
31424 ARM_ARCH_NONE,
31425 FPU_ARCH_VFP_V2),
31426 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
31427 ARM_ARCH_NONE,
31428 FPU_ARCH_VFP_V2),
31429 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
31430 ARM_ARCH_NONE,
31431 FPU_ARCH_VFP_V2),
31432 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
31433 ARM_ARCH_NONE,
31434 FPU_ARCH_VFP_V2),
31435 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
31436 ARM_ARCH_NONE,
31437 FPU_ARCH_VFP_V2),
31438 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
31439 ARM_ARCH_NONE,
31440 FPU_ARCH_VFP_V2),
31441 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
31442 ARM_ARCH_NONE,
31443 FPU_ARCH_VFP_V2),
31444 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
31445 ARM_ARCH_NONE,
31446 FPU_ARCH_VFP_V2),
31447 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
31448 ARM_ARCH_NONE,
31449 FPU_ARCH_VFP_V2),
31450 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
31451 ARM_ARCH_NONE,
31452 FPU_NONE),
31453 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
31454 ARM_ARCH_NONE,
31455 FPU_NONE),
31456 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
31457 ARM_ARCH_NONE,
31458 FPU_ARCH_VFP_V2),
31459 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
31460 ARM_ARCH_NONE,
31461 FPU_ARCH_VFP_V2),
31462 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
31463 ARM_ARCH_NONE,
31464 FPU_ARCH_VFP_V2),
31465 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
31466 ARM_ARCH_NONE,
31467 FPU_NONE),
31468 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
31469 ARM_ARCH_NONE,
31470 FPU_NONE),
31471 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
31472 ARM_ARCH_NONE,
31473 FPU_ARCH_VFP_V2),
31474 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
31475 ARM_ARCH_NONE,
31476 FPU_NONE),
31477 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
31478 ARM_ARCH_NONE,
31479 FPU_ARCH_VFP_V2),
31480 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
31481 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
31482 FPU_NONE),
31483 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
31484 ARM_ARCH_NONE,
31485 FPU_ARCH_NEON_VFP_V4),
31486 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
31487 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
31488 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
31489 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
31490 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
31491 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
31492 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
31493 ARM_ARCH_NONE,
31494 FPU_ARCH_NEON_VFP_V4),
31495 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
31496 ARM_ARCH_NONE,
31497 FPU_ARCH_NEON_VFP_V4),
31498 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
31499 ARM_ARCH_NONE,
31500 FPU_ARCH_NEON_VFP_V4),
31501 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
31502 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
31503 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31504 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
31505 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
31506 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31507 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
31508 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
31509 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31510 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
31511 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31512 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
31513 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
31514 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
31515 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31516 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
31517 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
31518 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31519 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
31520 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
31521 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31522 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
31523 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31524 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
31525 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
31526 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31527 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
31528 ARM_CPU_OPT ("cortex-a76ae", "Cortex-A76AE", ARM_ARCH_V8_2A,
31529 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31530 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
31531 ARM_CPU_OPT ("cortex-a77", "Cortex-A77", ARM_ARCH_V8_2A,
31532 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31533 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
31534 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
31535 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31536 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
31537 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
31538 ARM_ARCH_NONE,
31539 FPU_NONE),
31540 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
31541 ARM_ARCH_NONE,
31542 FPU_ARCH_VFP_V3D16),
31543 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
31544 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
31545 FPU_NONE),
31546 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
31547 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
31548 FPU_ARCH_VFP_V3D16),
31549 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
31550 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
31551 FPU_ARCH_VFP_V3D16),
31552 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
31553 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
31554 FPU_ARCH_NEON_VFP_ARMV8),
31555 ARM_CPU_OPT ("cortex-m35p", "Cortex-M35P", ARM_ARCH_V8M_MAIN,
31556 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31557 FPU_NONE),
31558 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
31559 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31560 FPU_NONE),
31561 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
31562 ARM_ARCH_NONE,
31563 FPU_NONE),
31564 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
31565 ARM_ARCH_NONE,
31566 FPU_NONE),
31567 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
31568 ARM_ARCH_NONE,
31569 FPU_NONE),
31570 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
31571 ARM_ARCH_NONE,
31572 FPU_NONE),
31573 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
31574 ARM_ARCH_NONE,
31575 FPU_NONE),
31576 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
31577 ARM_ARCH_NONE,
31578 FPU_NONE),
31579 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
31580 ARM_ARCH_NONE,
31581 FPU_NONE),
31582 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
31583 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
31584 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31585 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
31586 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31587 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
31588 /* ??? XSCALE is really an architecture. */
31589 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
31590 ARM_ARCH_NONE,
31591 FPU_ARCH_VFP_V2),
31592
31593 /* ??? iwmmxt is not a processor. */
31594 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
31595 ARM_ARCH_NONE,
31596 FPU_ARCH_VFP_V2),
31597 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
31598 ARM_ARCH_NONE,
31599 FPU_ARCH_VFP_V2),
31600 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
31601 ARM_ARCH_NONE,
31602 FPU_ARCH_VFP_V2),
31603
31604 /* Maverick. */
31605 ARM_CPU_OPT ("ep9312", "ARM920T",
31606 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
31607 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
31608
31609 /* Marvell processors. */
31610 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
31611 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
31612 FPU_ARCH_VFP_V3D16),
31613 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
31614 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
31615 FPU_ARCH_NEON_VFP_V4),
31616
31617 /* APM X-Gene family. */
31618 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
31619 ARM_ARCH_NONE,
31620 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31621 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
31622 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
31623 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31624
31625 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
31626};
31627#undef ARM_CPU_OPT
31628
31629struct arm_ext_table
31630{
31631 const char * name;
31632 size_t name_len;
31633 const arm_feature_set merge;
31634 const arm_feature_set clear;
31635};
31636
31637struct arm_arch_option_table
31638{
31639 const char * name;
31640 size_t name_len;
31641 const arm_feature_set value;
31642 const arm_feature_set default_fpu;
31643 const struct arm_ext_table * ext_table;
31644};
31645
31646/* Used to add support for +E and +noE extension. */
31647#define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
31648/* Used to add support for a +E extension. */
31649#define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
31650/* Used to add support for a +noE extension. */
31651#define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
31652
31653#define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
31654 ~0 & ~FPU_ENDIAN_PURE)
31655
31656static const struct arm_ext_table armv5te_ext_table[] =
31657{
31658 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
31659 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31660};
31661
31662static const struct arm_ext_table armv7_ext_table[] =
31663{
31664 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
31665 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31666};
31667
31668static const struct arm_ext_table armv7ve_ext_table[] =
31669{
31670 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
31671 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
31672 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
31673 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
31674 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
31675 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
31676 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
31677
31678 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
31679 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
31680
31681 /* Aliases for +simd. */
31682 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
31683
31684 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
31685 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
31686 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
31687
31688 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31689};
31690
31691static const struct arm_ext_table armv7a_ext_table[] =
31692{
31693 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
31694 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
31695 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
31696 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
31697 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
31698 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
31699 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
31700
31701 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
31702 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
31703
31704 /* Aliases for +simd. */
31705 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
31706 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
31707
31708 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
31709 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
31710
31711 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
31712 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
31713 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31714};
31715
31716static const struct arm_ext_table armv7r_ext_table[] =
31717{
31718 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
31719 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
31720 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
31721 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
31722 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
31723 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
31724 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
31725 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
31726 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31727};
31728
31729static const struct arm_ext_table armv7em_ext_table[] =
31730{
31731 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
31732 /* Alias for +fp, used to be known as fpv4-sp-d16. */
31733 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
31734 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
31735 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
31736 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
31737 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31738};
31739
31740static const struct arm_ext_table armv8a_ext_table[] =
31741{
31742 ARM_ADD ("crc", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC)),
31743 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
31744 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
31745 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31746
31747 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31748 should use the +simd option to turn on FP. */
31749 ARM_REMOVE ("fp", ALL_FP),
31750 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
31751 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
31752 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31753};
31754
31755
31756static const struct arm_ext_table armv81a_ext_table[] =
31757{
31758 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
31759 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
31760 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31761
31762 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31763 should use the +simd option to turn on FP. */
31764 ARM_REMOVE ("fp", ALL_FP),
31765 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
31766 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
31767 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31768};
31769
31770static const struct arm_ext_table armv82a_ext_table[] =
31771{
31772 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
31773 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
31774 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
31775 ARM_ADD ("bf16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16)),
31776 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM)),
31777 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
31778 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31779 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
31780
31781 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31782 should use the +simd option to turn on FP. */
31783 ARM_REMOVE ("fp", ALL_FP),
31784 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
31785 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
31786 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31787};
31788
31789static const struct arm_ext_table armv84a_ext_table[] =
31790{
31791 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
31792 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
31793 ARM_ADD ("bf16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16)),
31794 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM)),
31795 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
31796 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31797
31798 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31799 should use the +simd option to turn on FP. */
31800 ARM_REMOVE ("fp", ALL_FP),
31801 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
31802 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
31803 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31804};
31805
31806static const struct arm_ext_table armv85a_ext_table[] =
31807{
31808 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
31809 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
31810 ARM_ADD ("bf16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16)),
31811 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM)),
31812 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
31813 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31814
31815 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31816 should use the +simd option to turn on FP. */
31817 ARM_REMOVE ("fp", ALL_FP),
31818 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31819};
31820
31821static const struct arm_ext_table armv86a_ext_table[] =
31822{
31823 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM)),
31824 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31825};
31826
31827#define CDE_EXTENSIONS \
31828 ARM_ADD ("cdecp0", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE0)), \
31829 ARM_ADD ("cdecp1", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE1)), \
31830 ARM_ADD ("cdecp2", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE2)), \
31831 ARM_ADD ("cdecp3", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE3)), \
31832 ARM_ADD ("cdecp4", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE4)), \
31833 ARM_ADD ("cdecp5", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE5)), \
31834 ARM_ADD ("cdecp6", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE6)), \
31835 ARM_ADD ("cdecp7", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE7))
31836
31837static const struct arm_ext_table armv8m_main_ext_table[] =
31838{
31839 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_AEXT_V8M_MAIN_DSP),
31840 ARM_FEATURE_CORE_LOW (ARM_AEXT_V8M_MAIN_DSP)),
31841 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
31842 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
31843 CDE_EXTENSIONS,
31844 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31845};
31846
31847
31848static const struct arm_ext_table armv8_1m_main_ext_table[] =
31849{
31850 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_AEXT_V8M_MAIN_DSP),
31851 ARM_FEATURE_CORE_LOW (ARM_AEXT_V8M_MAIN_DSP)),
31852 ARM_EXT ("fp",
31853 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
31854 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
31855 ALL_FP),
31856 ARM_ADD ("fp.dp",
31857 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
31858 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
31859 ARM_EXT ("mve", ARM_FEATURE (ARM_AEXT_V8M_MAIN_DSP, ARM_EXT2_MVE, 0),
31860 ARM_FEATURE_CORE_HIGH (ARM_EXT2_MVE | ARM_EXT2_MVE_FP)),
31861 ARM_ADD ("mve.fp",
31862 ARM_FEATURE (ARM_AEXT_V8M_MAIN_DSP,
31863 ARM_EXT2_FP16_INST | ARM_EXT2_MVE | ARM_EXT2_MVE_FP,
31864 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
31865 CDE_EXTENSIONS,
31866 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31867};
31868
31869#undef CDE_EXTENSIONS
31870
31871static const struct arm_ext_table armv8r_ext_table[] =
31872{
31873 ARM_ADD ("crc", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC)),
31874 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
31875 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
31876 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31877 ARM_REMOVE ("fp", ALL_FP),
31878 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
31879 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31880};
31881
31882/* This list should, at a minimum, contain all the architecture names
31883 recognized by GCC. */
31884#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
31885#define ARM_ARCH_OPT2(N, V, DF, ext) \
31886 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
31887
31888static const struct arm_arch_option_table arm_archs[] =
31889{
31890 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
31891 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
31892 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
31893 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
31894 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
31895 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
31896 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
31897 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
31898 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
31899 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
31900 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
31901 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
31902 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
31903 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
31904 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
31905 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
31906 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
31907 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
31908 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
31909 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
31910 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
31911 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
31912 kept to preserve existing behaviour. */
31913 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
31914 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
31915 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
31916 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
31917 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
31918 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
31919 kept to preserve existing behaviour. */
31920 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
31921 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
31922 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
31923 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
31924 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
31925 /* The official spelling of the ARMv7 profile variants is the dashed form.
31926 Accept the non-dashed form for compatibility with old toolchains. */
31927 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
31928 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
31929 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
31930 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
31931 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
31932 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
31933 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
31934 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
31935 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
31936 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
31937 armv8m_main),
31938 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
31939 armv8_1m_main),
31940 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
31941 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
31942 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
31943 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
31944 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
31945 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
31946 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
31947 ARM_ARCH_OPT2 ("armv8.6-a", ARM_ARCH_V8_6A, FPU_ARCH_VFP, armv86a),
31948 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
31949 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
31950 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
31951 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
31952};
31953#undef ARM_ARCH_OPT
31954
31955/* ISA extensions in the co-processor and main instruction set space. */
31956
31957struct arm_option_extension_value_table
31958{
31959 const char * name;
31960 size_t name_len;
31961 const arm_feature_set merge_value;
31962 const arm_feature_set clear_value;
31963 /* List of architectures for which an extension is available. ARM_ARCH_NONE
31964 indicates that an extension is available for all architectures while
31965 ARM_ANY marks an empty entry. */
31966 const arm_feature_set allowed_archs[2];
31967};
31968
31969/* The following table must be in alphabetical order with a NULL last entry. */
31970
31971#define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
31972#define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
31973
31974/* DEPRECATED: Refrain from using this table to add any new extensions, instead
31975 use the context sensitive approach using arm_ext_table's. */
31976static const struct arm_option_extension_value_table arm_extensions[] =
31977{
31978 ARM_EXT_OPT ("crc", ARM_FEATURE_CORE_HIGH(ARM_EXT2_CRC),
31979 ARM_FEATURE_CORE_HIGH(ARM_EXT2_CRC),
31980 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
31981 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
31982 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
31983 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
31984 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
31985 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
31986 ARM_ARCH_V8_2A),
31987 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31988 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31989 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
31990 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
31991 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
31992 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31993 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31994 ARM_ARCH_V8_2A),
31995 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
31996 | ARM_EXT2_FP16_FML),
31997 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
31998 | ARM_EXT2_FP16_FML),
31999 ARM_ARCH_V8_2A),
32000 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
32001 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
32002 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
32003 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
32004 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
32005 Thumb divide instruction. Due to this having the same name as the
32006 previous entry, this will be ignored when doing command-line parsing and
32007 only considered by build attribute selection code. */
32008 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
32009 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
32010 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
32011 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
32012 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
32013 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
32014 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
32015 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
32016 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
32017 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
32018 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
32019 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
32020 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
32021 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
32022 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
32023 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
32024 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
32025 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
32026 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
32027 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
32028 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
32029 ARM_ARCH_V8A),
32030 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
32031 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
32032 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
32033 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
32034 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
32035 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
32036 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
32037 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
32038 ARM_ARCH_V8A),
32039 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
32040 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
32041 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
32042 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
32043 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
32044 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
32045 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
32046 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
32047 | ARM_EXT_DIV),
32048 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
32049 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
32050 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
32051 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
32052 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
32053};
32054#undef ARM_EXT_OPT
32055
32056/* ISA floating-point and Advanced SIMD extensions. */
32057struct arm_option_fpu_value_table
32058{
32059 const char * name;
32060 const arm_feature_set value;
32061};
32062
32063/* This list should, at a minimum, contain all the fpu names
32064 recognized by GCC. */
32065static const struct arm_option_fpu_value_table arm_fpus[] =
32066{
32067 {"softfpa", FPU_NONE},
32068 {"fpe", FPU_ARCH_FPE},
32069 {"fpe2", FPU_ARCH_FPE},
32070 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
32071 {"fpa", FPU_ARCH_FPA},
32072 {"fpa10", FPU_ARCH_FPA},
32073 {"fpa11", FPU_ARCH_FPA},
32074 {"arm7500fe", FPU_ARCH_FPA},
32075 {"softvfp", FPU_ARCH_VFP},
32076 {"softvfp+vfp", FPU_ARCH_VFP_V2},
32077 {"vfp", FPU_ARCH_VFP_V2},
32078 {"vfp9", FPU_ARCH_VFP_V2},
32079 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
32080 {"vfp10", FPU_ARCH_VFP_V2},
32081 {"vfp10-r0", FPU_ARCH_VFP_V1},
32082 {"vfpxd", FPU_ARCH_VFP_V1xD},
32083 {"vfpv2", FPU_ARCH_VFP_V2},
32084 {"vfpv3", FPU_ARCH_VFP_V3},
32085 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
32086 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
32087 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
32088 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
32089 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
32090 {"arm1020t", FPU_ARCH_VFP_V1},
32091 {"arm1020e", FPU_ARCH_VFP_V2},
32092 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
32093 {"arm1136jf-s", FPU_ARCH_VFP_V2},
32094 {"maverick", FPU_ARCH_MAVERICK},
32095 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
32096 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
32097 {"neon-fp16", FPU_ARCH_NEON_FP16},
32098 {"vfpv4", FPU_ARCH_VFP_V4},
32099 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
32100 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
32101 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
32102 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
32103 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
32104 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
32105 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
32106 {"crypto-neon-fp-armv8",
32107 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
32108 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
32109 {"crypto-neon-fp-armv8.1",
32110 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
32111 {NULL, ARM_ARCH_NONE}
32112};
32113
32114struct arm_option_value_table
32115{
32116 const char *name;
32117 long value;
32118};
32119
32120static const struct arm_option_value_table arm_float_abis[] =
32121{
32122 {"hard", ARM_FLOAT_ABI_HARD},
32123 {"softfp", ARM_FLOAT_ABI_SOFTFP},
32124 {"soft", ARM_FLOAT_ABI_SOFT},
32125 {NULL, 0}
32126};
32127
32128#ifdef OBJ_ELF
32129/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
32130static const struct arm_option_value_table arm_eabis[] =
32131{
32132 {"gnu", EF_ARM_EABI_UNKNOWN},
32133 {"4", EF_ARM_EABI_VER4},
32134 {"5", EF_ARM_EABI_VER5},
32135 {NULL, 0}
32136};
32137#endif
32138
32139struct arm_long_option_table
32140{
32141 const char * option; /* Substring to match. */
32142 const char * help; /* Help information. */
32143 int (* func) (const char * subopt); /* Function to decode sub-option. */
32144 const char * deprecated; /* If non-null, print this message. */
32145};
32146
32147static bfd_boolean
32148arm_parse_extension (const char *str, const arm_feature_set *opt_set,
32149 arm_feature_set *ext_set,
32150 const struct arm_ext_table *ext_table)
32151{
32152 /* We insist on extensions being specified in alphabetical order, and with
32153 extensions being added before being removed. We achieve this by having
32154 the global ARM_EXTENSIONS table in alphabetical order, and using the
32155 ADDING_VALUE variable to indicate whether we are adding an extension (1)
32156 or removing it (0) and only allowing it to change in the order
32157 -1 -> 1 -> 0. */
32158 const struct arm_option_extension_value_table * opt = NULL;
32159 const arm_feature_set arm_any = ARM_ANY;
32160 int adding_value = -1;
32161
32162 while (str != NULL && *str != 0)
32163 {
32164 const char *ext;
32165 size_t len;
32166
32167 if (*str != '+')
32168 {
32169 as_bad (_("invalid architectural extension"));
32170 return FALSE;
32171 }
32172
32173 str++;
32174 ext = strchr (str, '+');
32175
32176 if (ext != NULL)
32177 len = ext - str;
32178 else
32179 len = strlen (str);
32180
32181 if (len >= 2 && strncmp (str, "no", 2) == 0)
32182 {
32183 if (adding_value != 0)
32184 {
32185 adding_value = 0;
32186 opt = arm_extensions;
32187 }
32188
32189 len -= 2;
32190 str += 2;
32191 }
32192 else if (len > 0)
32193 {
32194 if (adding_value == -1)
32195 {
32196 adding_value = 1;
32197 opt = arm_extensions;
32198 }
32199 else if (adding_value != 1)
32200 {
32201 as_bad (_("must specify extensions to add before specifying "
32202 "those to remove"));
32203 return FALSE;
32204 }
32205 }
32206
32207 if (len == 0)
32208 {
32209 as_bad (_("missing architectural extension"));
32210 return FALSE;
32211 }
32212
32213 gas_assert (adding_value != -1);
32214 gas_assert (opt != NULL);
32215
32216 if (ext_table != NULL)
32217 {
32218 const struct arm_ext_table * ext_opt = ext_table;
32219 bfd_boolean found = FALSE;
32220 for (; ext_opt->name != NULL; ext_opt++)
32221 if (ext_opt->name_len == len
32222 && strncmp (ext_opt->name, str, len) == 0)
32223 {
32224 if (adding_value)
32225 {
32226 if (ARM_FEATURE_ZERO (ext_opt->merge))
32227 /* TODO: Option not supported. When we remove the
32228 legacy table this case should error out. */
32229 continue;
32230
32231 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
32232 }
32233 else
32234 {
32235 if (ARM_FEATURE_ZERO (ext_opt->clear))
32236 /* TODO: Option not supported. When we remove the
32237 legacy table this case should error out. */
32238 continue;
32239 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
32240 }
32241 found = TRUE;
32242 break;
32243 }
32244 if (found)
32245 {
32246 str = ext;
32247 continue;
32248 }
32249 }
32250
32251 /* Scan over the options table trying to find an exact match. */
32252 for (; opt->name != NULL; opt++)
32253 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
32254 {
32255 int i, nb_allowed_archs =
32256 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
32257 /* Check we can apply the extension to this architecture. */
32258 for (i = 0; i < nb_allowed_archs; i++)
32259 {
32260 /* Empty entry. */
32261 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
32262 continue;
32263 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
32264 break;
32265 }
32266 if (i == nb_allowed_archs)
32267 {
32268 as_bad (_("extension does not apply to the base architecture"));
32269 return FALSE;
32270 }
32271
32272 /* Add or remove the extension. */
32273 if (adding_value)
32274 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
32275 else
32276 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
32277
32278 /* Allowing Thumb division instructions for ARMv7 in autodetection
32279 rely on this break so that duplicate extensions (extensions
32280 with the same name as a previous extension in the list) are not
32281 considered for command-line parsing. */
32282 break;
32283 }
32284
32285 if (opt->name == NULL)
32286 {
32287 /* Did we fail to find an extension because it wasn't specified in
32288 alphabetical order, or because it does not exist? */
32289
32290 for (opt = arm_extensions; opt->name != NULL; opt++)
32291 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
32292 break;
32293
32294 if (opt->name == NULL)
32295 as_bad (_("unknown architectural extension `%s'"), str);
32296 else
32297 as_bad (_("architectural extensions must be specified in "
32298 "alphabetical order"));
32299
32300 return FALSE;
32301 }
32302 else
32303 {
32304 /* We should skip the extension we've just matched the next time
32305 round. */
32306 opt++;
32307 }
32308
32309 str = ext;
32310 };
32311
32312 return TRUE;
32313}
32314
32315static bfd_boolean
32316arm_parse_fp16_opt (const char *str)
32317{
32318 if (strcasecmp (str, "ieee") == 0)
32319 fp16_format = ARM_FP16_FORMAT_IEEE;
32320 else if (strcasecmp (str, "alternative") == 0)
32321 fp16_format = ARM_FP16_FORMAT_ALTERNATIVE;
32322 else
32323 {
32324 as_bad (_("unrecognised float16 format \"%s\""), str);
32325 return FALSE;
32326 }
32327
32328 return TRUE;
32329}
32330
32331static bfd_boolean
32332arm_parse_cpu (const char *str)
32333{
32334 const struct arm_cpu_option_table *opt;
32335 const char *ext = strchr (str, '+');
32336 size_t len;
32337
32338 if (ext != NULL)
32339 len = ext - str;
32340 else
32341 len = strlen (str);
32342
32343 if (len == 0)
32344 {
32345 as_bad (_("missing cpu name `%s'"), str);
32346 return FALSE;
32347 }
32348
32349 for (opt = arm_cpus; opt->name != NULL; opt++)
32350 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
32351 {
32352 mcpu_cpu_opt = &opt->value;
32353 if (mcpu_ext_opt == NULL)
32354 mcpu_ext_opt = XNEW (arm_feature_set);
32355 *mcpu_ext_opt = opt->ext;
32356 mcpu_fpu_opt = &opt->default_fpu;
32357 if (opt->canonical_name)
32358 {
32359 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
32360 strcpy (selected_cpu_name, opt->canonical_name);
32361 }
32362 else
32363 {
32364 size_t i;
32365
32366 if (len >= sizeof selected_cpu_name)
32367 len = (sizeof selected_cpu_name) - 1;
32368
32369 for (i = 0; i < len; i++)
32370 selected_cpu_name[i] = TOUPPER (opt->name[i]);
32371 selected_cpu_name[i] = 0;
32372 }
32373
32374 if (ext != NULL)
32375 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
32376
32377 return TRUE;
32378 }
32379
32380 as_bad (_("unknown cpu `%s'"), str);
32381 return FALSE;
32382}
32383
32384static bfd_boolean
32385arm_parse_arch (const char *str)
32386{
32387 const struct arm_arch_option_table *opt;
32388 const char *ext = strchr (str, '+');
32389 size_t len;
32390
32391 if (ext != NULL)
32392 len = ext - str;
32393 else
32394 len = strlen (str);
32395
32396 if (len == 0)
32397 {
32398 as_bad (_("missing architecture name `%s'"), str);
32399 return FALSE;
32400 }
32401
32402 for (opt = arm_archs; opt->name != NULL; opt++)
32403 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
32404 {
32405 march_cpu_opt = &opt->value;
32406 if (march_ext_opt == NULL)
32407 march_ext_opt = XNEW (arm_feature_set);
32408 *march_ext_opt = arm_arch_none;
32409 march_fpu_opt = &opt->default_fpu;
32410 selected_ctx_ext_table = opt->ext_table;
32411 strcpy (selected_cpu_name, opt->name);
32412
32413 if (ext != NULL)
32414 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
32415 opt->ext_table);
32416
32417 return TRUE;
32418 }
32419
32420 as_bad (_("unknown architecture `%s'\n"), str);
32421 return FALSE;
32422}
32423
32424static bfd_boolean
32425arm_parse_fpu (const char * str)
32426{
32427 const struct arm_option_fpu_value_table * opt;
32428
32429 for (opt = arm_fpus; opt->name != NULL; opt++)
32430 if (streq (opt->name, str))
32431 {
32432 mfpu_opt = &opt->value;
32433 return TRUE;
32434 }
32435
32436 as_bad (_("unknown floating point format `%s'\n"), str);
32437 return FALSE;
32438}
32439
32440static bfd_boolean
32441arm_parse_float_abi (const char * str)
32442{
32443 const struct arm_option_value_table * opt;
32444
32445 for (opt = arm_float_abis; opt->name != NULL; opt++)
32446 if (streq (opt->name, str))
32447 {
32448 mfloat_abi_opt = opt->value;
32449 return TRUE;
32450 }
32451
32452 as_bad (_("unknown floating point abi `%s'\n"), str);
32453 return FALSE;
32454}
32455
32456#ifdef OBJ_ELF
32457static bfd_boolean
32458arm_parse_eabi (const char * str)
32459{
32460 const struct arm_option_value_table *opt;
32461
32462 for (opt = arm_eabis; opt->name != NULL; opt++)
32463 if (streq (opt->name, str))
32464 {
32465 meabi_flags = opt->value;
32466 return TRUE;
32467 }
32468 as_bad (_("unknown EABI `%s'\n"), str);
32469 return FALSE;
32470}
32471#endif
32472
32473static bfd_boolean
32474arm_parse_it_mode (const char * str)
32475{
32476 bfd_boolean ret = TRUE;
32477
32478 if (streq ("arm", str))
32479 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
32480 else if (streq ("thumb", str))
32481 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
32482 else if (streq ("always", str))
32483 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
32484 else if (streq ("never", str))
32485 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
32486 else
32487 {
32488 as_bad (_("unknown implicit IT mode `%s', should be "\
32489 "arm, thumb, always, or never."), str);
32490 ret = FALSE;
32491 }
32492
32493 return ret;
32494}
32495
32496static bfd_boolean
32497arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
32498{
32499 codecomposer_syntax = TRUE;
32500 arm_comment_chars[0] = ';';
32501 arm_line_separator_chars[0] = 0;
32502 return TRUE;
32503}
32504
32505struct arm_long_option_table arm_long_opts[] =
32506{
32507 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
32508 arm_parse_cpu, NULL},
32509 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
32510 arm_parse_arch, NULL},
32511 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
32512 arm_parse_fpu, NULL},
32513 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
32514 arm_parse_float_abi, NULL},
32515#ifdef OBJ_ELF
32516 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
32517 arm_parse_eabi, NULL},
32518#endif
32519 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
32520 arm_parse_it_mode, NULL},
32521 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
32522 arm_ccs_mode, NULL},
32523 {"mfp16-format=",
32524 N_("[ieee|alternative]\n\
32525 set the encoding for half precision floating point "
32526 "numbers to IEEE\n\
32527 or Arm alternative format."),
32528 arm_parse_fp16_opt, NULL },
32529 {NULL, NULL, 0, NULL}
32530};
32531
32532int
32533md_parse_option (int c, const char * arg)
32534{
32535 struct arm_option_table *opt;
32536 const struct arm_legacy_option_table *fopt;
32537 struct arm_long_option_table *lopt;
32538
32539 switch (c)
32540 {
32541#ifdef OPTION_EB
32542 case OPTION_EB:
32543 target_big_endian = 1;
32544 break;
32545#endif
32546
32547#ifdef OPTION_EL
32548 case OPTION_EL:
32549 target_big_endian = 0;
32550 break;
32551#endif
32552
32553 case OPTION_FIX_V4BX:
32554 fix_v4bx = TRUE;
32555 break;
32556
32557#ifdef OBJ_ELF
32558 case OPTION_FDPIC:
32559 arm_fdpic = TRUE;
32560 break;
32561#endif /* OBJ_ELF */
32562
32563 case 'a':
32564 /* Listing option. Just ignore these, we don't support additional
32565 ones. */
32566 return 0;
32567
32568 default:
32569 for (opt = arm_opts; opt->option != NULL; opt++)
32570 {
32571 if (c == opt->option[0]
32572 && ((arg == NULL && opt->option[1] == 0)
32573 || streq (arg, opt->option + 1)))
32574 {
32575 /* If the option is deprecated, tell the user. */
32576 if (warn_on_deprecated && opt->deprecated != NULL)
32577 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
32578 arg ? arg : "", _(opt->deprecated));
32579
32580 if (opt->var != NULL)
32581 *opt->var = opt->value;
32582
32583 return 1;
32584 }
32585 }
32586
32587 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
32588 {
32589 if (c == fopt->option[0]
32590 && ((arg == NULL && fopt->option[1] == 0)
32591 || streq (arg, fopt->option + 1)))
32592 {
32593 /* If the option is deprecated, tell the user. */
32594 if (warn_on_deprecated && fopt->deprecated != NULL)
32595 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
32596 arg ? arg : "", _(fopt->deprecated));
32597
32598 if (fopt->var != NULL)
32599 *fopt->var = &fopt->value;
32600
32601 return 1;
32602 }
32603 }
32604
32605 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
32606 {
32607 /* These options are expected to have an argument. */
32608 if (c == lopt->option[0]
32609 && arg != NULL
32610 && strncmp (arg, lopt->option + 1,
32611 strlen (lopt->option + 1)) == 0)
32612 {
32613 /* If the option is deprecated, tell the user. */
32614 if (warn_on_deprecated && lopt->deprecated != NULL)
32615 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
32616 _(lopt->deprecated));
32617
32618 /* Call the sup-option parser. */
32619 return lopt->func (arg + strlen (lopt->option) - 1);
32620 }
32621 }
32622
32623 return 0;
32624 }
32625
32626 return 1;
32627}
32628
32629void
32630md_show_usage (FILE * fp)
32631{
32632 struct arm_option_table *opt;
32633 struct arm_long_option_table *lopt;
32634
32635 fprintf (fp, _(" ARM-specific assembler options:\n"));
32636
32637 for (opt = arm_opts; opt->option != NULL; opt++)
32638 if (opt->help != NULL)
32639 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
32640
32641 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
32642 if (lopt->help != NULL)
32643 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
32644
32645#ifdef OPTION_EB
32646 fprintf (fp, _("\
32647 -EB assemble code for a big-endian cpu\n"));
32648#endif
32649
32650#ifdef OPTION_EL
32651 fprintf (fp, _("\
32652 -EL assemble code for a little-endian cpu\n"));
32653#endif
32654
32655 fprintf (fp, _("\
32656 --fix-v4bx Allow BX in ARMv4 code\n"));
32657
32658#ifdef OBJ_ELF
32659 fprintf (fp, _("\
32660 --fdpic generate an FDPIC object file\n"));
32661#endif /* OBJ_ELF */
32662}
32663
32664#ifdef OBJ_ELF
32665
32666typedef struct
32667{
32668 int val;
32669 arm_feature_set flags;
32670} cpu_arch_ver_table;
32671
32672/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
32673 chronologically for architectures, with an exception for ARMv6-M and
32674 ARMv6S-M due to legacy reasons. No new architecture should have a
32675 special case. This allows for build attribute selection results to be
32676 stable when new architectures are added. */
32677static const cpu_arch_ver_table cpu_arch_ver[] =
32678{
32679 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
32680 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
32681 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
32682 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
32683 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
32684 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
32685 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
32686 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
32687 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
32688 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
32689 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
32690 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
32691 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
32692 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
32693 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
32694 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
32695 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
32696 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
32697 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
32698 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
32699 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
32700 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
32701 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
32702 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
32703
32704 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
32705 always selected build attributes to match those of ARMv6-M
32706 (resp. ARMv6S-M). However, due to these architectures being a strict
32707 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
32708 would be selected when fully respecting chronology of architectures.
32709 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
32710 move them before ARMv7 architectures. */
32711 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
32712 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
32713
32714 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
32715 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
32716 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
32717 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
32718 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
32719 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
32720 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
32721 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
32722 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
32723 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
32724 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
32725 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
32726 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
32727 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
32728 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
32729 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
32730 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_6A},
32731 {-1, ARM_ARCH_NONE}
32732};
32733
32734/* Set an attribute if it has not already been set by the user. */
32735
32736static void
32737aeabi_set_attribute_int (int tag, int value)
32738{
32739 if (tag < 1
32740 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
32741 || !attributes_set_explicitly[tag])
32742 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
32743}
32744
32745static void
32746aeabi_set_attribute_string (int tag, const char *value)
32747{
32748 if (tag < 1
32749 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
32750 || !attributes_set_explicitly[tag])
32751 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
32752}
32753
32754/* Return whether features in the *NEEDED feature set are available via
32755 extensions for the architecture whose feature set is *ARCH_FSET. */
32756
32757static bfd_boolean
32758have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
32759 const arm_feature_set *needed)
32760{
32761 int i, nb_allowed_archs;
32762 arm_feature_set ext_fset;
32763 const struct arm_option_extension_value_table *opt;
32764
32765 ext_fset = arm_arch_none;
32766 for (opt = arm_extensions; opt->name != NULL; opt++)
32767 {
32768 /* Extension does not provide any feature we need. */
32769 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
32770 continue;
32771
32772 nb_allowed_archs =
32773 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
32774 for (i = 0; i < nb_allowed_archs; i++)
32775 {
32776 /* Empty entry. */
32777 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
32778 break;
32779
32780 /* Extension is available, add it. */
32781 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
32782 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
32783 }
32784 }
32785
32786 /* Can we enable all features in *needed? */
32787 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
32788}
32789
32790/* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
32791 a given architecture feature set *ARCH_EXT_FSET including extension feature
32792 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
32793 - if true, check for an exact match of the architecture modulo extensions;
32794 - otherwise, select build attribute value of the first superset
32795 architecture released so that results remains stable when new architectures
32796 are added.
32797 For -march/-mcpu=all the build attribute value of the most featureful
32798 architecture is returned. Tag_CPU_arch_profile result is returned in
32799 PROFILE. */
32800
32801static int
32802get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
32803 const arm_feature_set *ext_fset,
32804 char *profile, int exact_match)
32805{
32806 arm_feature_set arch_fset;
32807 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
32808
32809 /* Select most featureful architecture with all its extensions if building
32810 for -march=all as the feature sets used to set build attributes. */
32811 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
32812 {
32813 /* Force revisiting of decision for each new architecture. */
32814 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
32815 *profile = 'A';
32816 return TAG_CPU_ARCH_V8;
32817 }
32818
32819 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
32820
32821 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
32822 {
32823 arm_feature_set known_arch_fset;
32824
32825 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
32826 if (exact_match)
32827 {
32828 /* Base architecture match user-specified architecture and
32829 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
32830 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
32831 {
32832 p_ver_ret = p_ver;
32833 goto found;
32834 }
32835 /* Base architecture match user-specified architecture only
32836 (eg. ARMv6-M in the same case as above). Record it in case we
32837 find a match with above condition. */
32838 else if (p_ver_ret == NULL
32839 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
32840 p_ver_ret = p_ver;
32841 }
32842 else
32843 {
32844
32845 /* Architecture has all features wanted. */
32846 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
32847 {
32848 arm_feature_set added_fset;
32849
32850 /* Compute features added by this architecture over the one
32851 recorded in p_ver_ret. */
32852 if (p_ver_ret != NULL)
32853 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
32854 p_ver_ret->flags);
32855 /* First architecture that match incl. with extensions, or the
32856 only difference in features over the recorded match is
32857 features that were optional and are now mandatory. */
32858 if (p_ver_ret == NULL
32859 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
32860 {
32861 p_ver_ret = p_ver;
32862 goto found;
32863 }
32864 }
32865 else if (p_ver_ret == NULL)
32866 {
32867 arm_feature_set needed_ext_fset;
32868
32869 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
32870
32871 /* Architecture has all features needed when using some
32872 extensions. Record it and continue searching in case there
32873 exist an architecture providing all needed features without
32874 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
32875 OS extension). */
32876 if (have_ext_for_needed_feat_p (&known_arch_fset,
32877 &needed_ext_fset))
32878 p_ver_ret = p_ver;
32879 }
32880 }
32881 }
32882
32883 if (p_ver_ret == NULL)
32884 return -1;
32885
32886 found:
32887 /* Tag_CPU_arch_profile. */
32888 if (!ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8r)
32889 && (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
32890 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
32891 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
32892 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only))))
32893 *profile = 'A';
32894 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r)
32895 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8r))
32896 *profile = 'R';
32897 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
32898 *profile = 'M';
32899 else
32900 *profile = '\0';
32901 return p_ver_ret->val;
32902}
32903
32904/* Set the public EABI object attributes. */
32905
32906static void
32907aeabi_set_public_attributes (void)
32908{
32909 char profile = '\0';
32910 int arch = -1;
32911 int virt_sec = 0;
32912 int fp16_optional = 0;
32913 int skip_exact_match = 0;
32914 arm_feature_set flags, flags_arch, flags_ext;
32915
32916 /* Autodetection mode, choose the architecture based the instructions
32917 actually used. */
32918 if (no_cpu_selected ())
32919 {
32920 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
32921
32922 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
32923 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
32924
32925 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
32926 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
32927
32928 /* Code run during relaxation relies on selected_cpu being set. */
32929 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
32930 flags_ext = arm_arch_none;
32931 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
32932 selected_ext = flags_ext;
32933 selected_cpu = flags;
32934 }
32935 /* Otherwise, choose the architecture based on the capabilities of the
32936 requested cpu. */
32937 else
32938 {
32939 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
32940 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
32941 flags_ext = selected_ext;
32942 flags = selected_cpu;
32943 }
32944 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
32945
32946 /* Allow the user to override the reported architecture. */
32947 if (!ARM_FEATURE_ZERO (selected_object_arch))
32948 {
32949 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
32950 flags_ext = arm_arch_none;
32951 }
32952 else
32953 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
32954
32955 /* When this function is run again after relaxation has happened there is no
32956 way to determine whether an architecture or CPU was specified by the user:
32957 - selected_cpu is set above for relaxation to work;
32958 - march_cpu_opt is not set if only -mcpu or .cpu is used;
32959 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
32960 Therefore, if not in -march=all case we first try an exact match and fall
32961 back to autodetection. */
32962 if (!skip_exact_match)
32963 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
32964 if (arch == -1)
32965 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
32966 if (arch == -1)
32967 as_bad (_("no architecture contains all the instructions used\n"));
32968
32969 /* Tag_CPU_name. */
32970 if (selected_cpu_name[0])
32971 {
32972 char *q;
32973
32974 q = selected_cpu_name;
32975 if (strncmp (q, "armv", 4) == 0)
32976 {
32977 int i;
32978
32979 q += 4;
32980 for (i = 0; q[i]; i++)
32981 q[i] = TOUPPER (q[i]);
32982 }
32983 aeabi_set_attribute_string (Tag_CPU_name, q);
32984 }
32985
32986 /* Tag_CPU_arch. */
32987 aeabi_set_attribute_int (Tag_CPU_arch, arch);
32988
32989 /* Tag_CPU_arch_profile. */
32990 if (profile != '\0')
32991 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
32992
32993 /* Tag_DSP_extension. */
32994 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
32995 aeabi_set_attribute_int (Tag_DSP_extension, 1);
32996
32997 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
32998 /* Tag_ARM_ISA_use. */
32999 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
33000 || ARM_FEATURE_ZERO (flags_arch))
33001 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
33002
33003 /* Tag_THUMB_ISA_use. */
33004 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
33005 || ARM_FEATURE_ZERO (flags_arch))
33006 {
33007 int thumb_isa_use;
33008
33009 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
33010 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
33011 thumb_isa_use = 3;
33012 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
33013 thumb_isa_use = 2;
33014 else
33015 thumb_isa_use = 1;
33016 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
33017 }
33018
33019 /* Tag_VFP_arch. */
33020 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
33021 aeabi_set_attribute_int (Tag_VFP_arch,
33022 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
33023 ? 7 : 8);
33024 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
33025 aeabi_set_attribute_int (Tag_VFP_arch,
33026 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
33027 ? 5 : 6);
33028 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
33029 {
33030 fp16_optional = 1;
33031 aeabi_set_attribute_int (Tag_VFP_arch, 3);
33032 }
33033 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
33034 {
33035 aeabi_set_attribute_int (Tag_VFP_arch, 4);
33036 fp16_optional = 1;
33037 }
33038 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
33039 aeabi_set_attribute_int (Tag_VFP_arch, 2);
33040 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
33041 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
33042 aeabi_set_attribute_int (Tag_VFP_arch, 1);
33043
33044 /* Tag_ABI_HardFP_use. */
33045 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
33046 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
33047 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
33048
33049 /* Tag_WMMX_arch. */
33050 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
33051 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
33052 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
33053 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
33054
33055 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
33056 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
33057 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
33058 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
33059 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
33060 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
33061 {
33062 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
33063 {
33064 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
33065 }
33066 else
33067 {
33068 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
33069 fp16_optional = 1;
33070 }
33071 }
33072
33073 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
33074 aeabi_set_attribute_int (Tag_MVE_arch, 2);
33075 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
33076 aeabi_set_attribute_int (Tag_MVE_arch, 1);
33077
33078 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
33079 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
33080 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
33081
33082 /* Tag_DIV_use.
33083
33084 We set Tag_DIV_use to two when integer divide instructions have been used
33085 in ARM state, or when Thumb integer divide instructions have been used,
33086 but we have no architecture profile set, nor have we any ARM instructions.
33087
33088 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
33089 by the base architecture.
33090
33091 For new architectures we will have to check these tests. */
33092 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
33093 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
33094 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
33095 aeabi_set_attribute_int (Tag_DIV_use, 0);
33096 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
33097 || (profile == '\0'
33098 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
33099 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
33100 aeabi_set_attribute_int (Tag_DIV_use, 2);
33101
33102 /* Tag_MP_extension_use. */
33103 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
33104 aeabi_set_attribute_int (Tag_MPextension_use, 1);
33105
33106 /* Tag Virtualization_use. */
33107 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
33108 virt_sec |= 1;
33109 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
33110 virt_sec |= 2;
33111 if (virt_sec != 0)
33112 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
33113
33114 if (fp16_format != ARM_FP16_FORMAT_DEFAULT)
33115 aeabi_set_attribute_int (Tag_ABI_FP_16bit_format, fp16_format);
33116}
33117
33118/* Post relaxation hook. Recompute ARM attributes now that relaxation is
33119 finished and free extension feature bits which will not be used anymore. */
33120
33121void
33122arm_md_post_relax (void)
33123{
33124 aeabi_set_public_attributes ();
33125 XDELETE (mcpu_ext_opt);
33126 mcpu_ext_opt = NULL;
33127 XDELETE (march_ext_opt);
33128 march_ext_opt = NULL;
33129}
33130
33131/* Add the default contents for the .ARM.attributes section. */
33132
33133void
33134arm_md_end (void)
33135{
33136 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
33137 return;
33138
33139 aeabi_set_public_attributes ();
33140}
33141#endif /* OBJ_ELF */
33142
33143/* Parse a .cpu directive. */
33144
33145static void
33146s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
33147{
33148 const struct arm_cpu_option_table *opt;
33149 char *name;
33150 char saved_char;
33151
33152 name = input_line_pointer;
33153 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
33154 input_line_pointer++;
33155 saved_char = *input_line_pointer;
33156 *input_line_pointer = 0;
33157
33158 /* Skip the first "all" entry. */
33159 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
33160 if (streq (opt->name, name))
33161 {
33162 selected_arch = opt->value;
33163 selected_ext = opt->ext;
33164 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
33165 if (opt->canonical_name)
33166 strcpy (selected_cpu_name, opt->canonical_name);
33167 else
33168 {
33169 int i;
33170 for (i = 0; opt->name[i]; i++)
33171 selected_cpu_name[i] = TOUPPER (opt->name[i]);
33172
33173 selected_cpu_name[i] = 0;
33174 }
33175 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
33176
33177 *input_line_pointer = saved_char;
33178 demand_empty_rest_of_line ();
33179 return;
33180 }
33181 as_bad (_("unknown cpu `%s'"), name);
33182 *input_line_pointer = saved_char;
33183 ignore_rest_of_line ();
33184}
33185
33186/* Parse a .arch directive. */
33187
33188static void
33189s_arm_arch (int ignored ATTRIBUTE_UNUSED)
33190{
33191 const struct arm_arch_option_table *opt;
33192 char saved_char;
33193 char *name;
33194
33195 name = input_line_pointer;
33196 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
33197 input_line_pointer++;
33198 saved_char = *input_line_pointer;
33199 *input_line_pointer = 0;
33200
33201 /* Skip the first "all" entry. */
33202 for (opt = arm_archs + 1; opt->name != NULL; opt++)
33203 if (streq (opt->name, name))
33204 {
33205 selected_arch = opt->value;
33206 selected_ctx_ext_table = opt->ext_table;
33207 selected_ext = arm_arch_none;
33208 selected_cpu = selected_arch;
33209 strcpy (selected_cpu_name, opt->name);
33210 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
33211 *input_line_pointer = saved_char;
33212 demand_empty_rest_of_line ();
33213 return;
33214 }
33215
33216 as_bad (_("unknown architecture `%s'\n"), name);
33217 *input_line_pointer = saved_char;
33218 ignore_rest_of_line ();
33219}
33220
33221/* Parse a .object_arch directive. */
33222
33223static void
33224s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
33225{
33226 const struct arm_arch_option_table *opt;
33227 char saved_char;
33228 char *name;
33229
33230 name = input_line_pointer;
33231 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
33232 input_line_pointer++;
33233 saved_char = *input_line_pointer;
33234 *input_line_pointer = 0;
33235
33236 /* Skip the first "all" entry. */
33237 for (opt = arm_archs + 1; opt->name != NULL; opt++)
33238 if (streq (opt->name, name))
33239 {
33240 selected_object_arch = opt->value;
33241 *input_line_pointer = saved_char;
33242 demand_empty_rest_of_line ();
33243 return;
33244 }
33245
33246 as_bad (_("unknown architecture `%s'\n"), name);
33247 *input_line_pointer = saved_char;
33248 ignore_rest_of_line ();
33249}
33250
33251/* Parse a .arch_extension directive. */
33252
33253static void
33254s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
33255{
33256 const struct arm_option_extension_value_table *opt;
33257 char saved_char;
33258 char *name;
33259 int adding_value = 1;
33260
33261 name = input_line_pointer;
33262 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
33263 input_line_pointer++;
33264 saved_char = *input_line_pointer;
33265 *input_line_pointer = 0;
33266
33267 if (strlen (name) >= 2
33268 && strncmp (name, "no", 2) == 0)
33269 {
33270 adding_value = 0;
33271 name += 2;
33272 }
33273
33274 /* Check the context specific extension table */
33275 if (selected_ctx_ext_table)
33276 {
33277 const struct arm_ext_table * ext_opt;
33278 for (ext_opt = selected_ctx_ext_table; ext_opt->name != NULL; ext_opt++)
33279 {
33280 if (streq (ext_opt->name, name))
33281 {
33282 if (adding_value)
33283 {
33284 if (ARM_FEATURE_ZERO (ext_opt->merge))
33285 /* TODO: Option not supported. When we remove the
33286 legacy table this case should error out. */
33287 continue;
33288 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
33289 ext_opt->merge);
33290 }
33291 else
33292 ARM_CLEAR_FEATURE (selected_ext, selected_ext, ext_opt->clear);
33293
33294 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
33295 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
33296 *input_line_pointer = saved_char;
33297 demand_empty_rest_of_line ();
33298 return;
33299 }
33300 }
33301 }
33302
33303 for (opt = arm_extensions; opt->name != NULL; opt++)
33304 if (streq (opt->name, name))
33305 {
33306 int i, nb_allowed_archs =
33307 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
33308 for (i = 0; i < nb_allowed_archs; i++)
33309 {
33310 /* Empty entry. */
33311 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
33312 continue;
33313 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
33314 break;
33315 }
33316
33317 if (i == nb_allowed_archs)
33318 {
33319 as_bad (_("architectural extension `%s' is not allowed for the "
33320 "current base architecture"), name);
33321 break;
33322 }
33323
33324 if (adding_value)
33325 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
33326 opt->merge_value);
33327 else
33328 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
33329
33330 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
33331 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
33332 *input_line_pointer = saved_char;
33333 demand_empty_rest_of_line ();
33334 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
33335 on this return so that duplicate extensions (extensions with the
33336 same name as a previous extension in the list) are not considered
33337 for command-line parsing. */
33338 return;
33339 }
33340
33341 if (opt->name == NULL)
33342 as_bad (_("unknown architecture extension `%s'\n"), name);
33343
33344 *input_line_pointer = saved_char;
33345 ignore_rest_of_line ();
33346}
33347
33348/* Parse a .fpu directive. */
33349
33350static void
33351s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
33352{
33353 const struct arm_option_fpu_value_table *opt;
33354 char saved_char;
33355 char *name;
33356
33357 name = input_line_pointer;
33358 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
33359 input_line_pointer++;
33360 saved_char = *input_line_pointer;
33361 *input_line_pointer = 0;
33362
33363 for (opt = arm_fpus; opt->name != NULL; opt++)
33364 if (streq (opt->name, name))
33365 {
33366 selected_fpu = opt->value;
33367 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, fpu_any);
33368#ifndef CPU_DEFAULT
33369 if (no_cpu_selected ())
33370 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
33371 else
33372#endif
33373 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
33374 *input_line_pointer = saved_char;
33375 demand_empty_rest_of_line ();
33376 return;
33377 }
33378
33379 as_bad (_("unknown floating point format `%s'\n"), name);
33380 *input_line_pointer = saved_char;
33381 ignore_rest_of_line ();
33382}
33383
33384/* Copy symbol information. */
33385
33386void
33387arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
33388{
33389 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
33390}
33391
33392#ifdef OBJ_ELF
33393/* Given a symbolic attribute NAME, return the proper integer value.
33394 Returns -1 if the attribute is not known. */
33395
33396int
33397arm_convert_symbolic_attribute (const char *name)
33398{
33399 static const struct
33400 {
33401 const char * name;
33402 const int tag;
33403 }
33404 attribute_table[] =
33405 {
33406 /* When you modify this table you should
33407 also modify the list in doc/c-arm.texi. */
33408#define T(tag) {#tag, tag}
33409 T (Tag_CPU_raw_name),
33410 T (Tag_CPU_name),
33411 T (Tag_CPU_arch),
33412 T (Tag_CPU_arch_profile),
33413 T (Tag_ARM_ISA_use),
33414 T (Tag_THUMB_ISA_use),
33415 T (Tag_FP_arch),
33416 T (Tag_VFP_arch),
33417 T (Tag_WMMX_arch),
33418 T (Tag_Advanced_SIMD_arch),
33419 T (Tag_PCS_config),
33420 T (Tag_ABI_PCS_R9_use),
33421 T (Tag_ABI_PCS_RW_data),
33422 T (Tag_ABI_PCS_RO_data),
33423 T (Tag_ABI_PCS_GOT_use),
33424 T (Tag_ABI_PCS_wchar_t),
33425 T (Tag_ABI_FP_rounding),
33426 T (Tag_ABI_FP_denormal),
33427 T (Tag_ABI_FP_exceptions),
33428 T (Tag_ABI_FP_user_exceptions),
33429 T (Tag_ABI_FP_number_model),
33430 T (Tag_ABI_align_needed),
33431 T (Tag_ABI_align8_needed),
33432 T (Tag_ABI_align_preserved),
33433 T (Tag_ABI_align8_preserved),
33434 T (Tag_ABI_enum_size),
33435 T (Tag_ABI_HardFP_use),
33436 T (Tag_ABI_VFP_args),
33437 T (Tag_ABI_WMMX_args),
33438 T (Tag_ABI_optimization_goals),
33439 T (Tag_ABI_FP_optimization_goals),
33440 T (Tag_compatibility),
33441 T (Tag_CPU_unaligned_access),
33442 T (Tag_FP_HP_extension),
33443 T (Tag_VFP_HP_extension),
33444 T (Tag_ABI_FP_16bit_format),
33445 T (Tag_MPextension_use),
33446 T (Tag_DIV_use),
33447 T (Tag_nodefaults),
33448 T (Tag_also_compatible_with),
33449 T (Tag_conformance),
33450 T (Tag_T2EE_use),
33451 T (Tag_Virtualization_use),
33452 T (Tag_DSP_extension),
33453 T (Tag_MVE_arch),
33454 /* We deliberately do not include Tag_MPextension_use_legacy. */
33455#undef T
33456 };
33457 unsigned int i;
33458
33459 if (name == NULL)
33460 return -1;
33461
33462 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
33463 if (streq (name, attribute_table[i].name))
33464 return attribute_table[i].tag;
33465
33466 return -1;
33467}
33468
33469/* Apply sym value for relocations only in the case that they are for
33470 local symbols in the same segment as the fixup and you have the
33471 respective architectural feature for blx and simple switches. */
33472
33473int
33474arm_apply_sym_value (struct fix * fixP, segT this_seg)
33475{
33476 if (fixP->fx_addsy
33477 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
33478 /* PR 17444: If the local symbol is in a different section then a reloc
33479 will always be generated for it, so applying the symbol value now
33480 will result in a double offset being stored in the relocation. */
33481 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
33482 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
33483 {
33484 switch (fixP->fx_r_type)
33485 {
33486 case BFD_RELOC_ARM_PCREL_BLX:
33487 case BFD_RELOC_THUMB_PCREL_BRANCH23:
33488 if (ARM_IS_FUNC (fixP->fx_addsy))
33489 return 1;
33490 break;
33491
33492 case BFD_RELOC_ARM_PCREL_CALL:
33493 case BFD_RELOC_THUMB_PCREL_BLX:
33494 if (THUMB_IS_FUNC (fixP->fx_addsy))
33495 return 1;
33496 break;
33497
33498 default:
33499 break;
33500 }
33501
33502 }
33503 return 0;
33504}
33505#endif /* OBJ_ELF */