]> git.ipfire.org Git - thirdparty/gcc.git/blame - libiberty/hashtab.c
libiberty: documentation markup and order fixes.
[thirdparty/gcc.git] / libiberty / hashtab.c
CommitLineData
a2f945c6 1/* An expandable hash tables datatype.
a9429e29 2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2009, 2010
9bf3c9cc 3 Free Software Foundation, Inc.
a2f945c6
VM
4 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6This file is part of the libiberty library.
7Libiberty is free software; you can redistribute it and/or
8modify it under the terms of the GNU Library General Public
9License as published by the Free Software Foundation; either
10version 2 of the License, or (at your option) any later version.
11
12Libiberty is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15Library General Public License for more details.
16
17You should have received a copy of the GNU Library General Public
18License along with libiberty; see the file COPYING.LIB. If
ee58dffd
NC
19not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20Boston, MA 02110-1301, USA. */
a2f945c6
VM
21
22/* This package implements basic hash table functionality. It is possible
23 to search for an entry, create an entry and destroy an entry.
24
25 Elements in the table are generic pointers.
26
27 The size of the table is not fixed; if the occupancy of the table
28 grows too high the hash table will be expanded.
29
30 The abstract data implementation is based on generalized Algorithm D
31 from Knuth's book "The art of computer programming". Hash table is
32 expanded by creation of new hash table and transferring elements from
33 the old table to the new table. */
34
35#ifdef HAVE_CONFIG_H
36#include "config.h"
37#endif
38
6de9b8ff
PDM
39#include <sys/types.h>
40
a2f945c6
VM
41#ifdef HAVE_STDLIB_H
42#include <stdlib.h>
43#endif
d11ec6f0
ZW
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
cf8e4b78
DH
47#ifdef HAVE_MALLOC_H
48#include <malloc.h>
49#endif
9bf3c9cc
RH
50#ifdef HAVE_LIMITS_H
51#include <limits.h>
52#endif
50cb834f
RO
53#ifdef HAVE_INTTYPES_H
54#include <inttypes.h>
55#endif
9bf3c9cc
RH
56#ifdef HAVE_STDINT_H
57#include <stdint.h>
58#endif
cf8e4b78 59
36dd3a44
JL
60#include <stdio.h>
61
a2f945c6 62#include "libiberty.h"
9bf3c9cc 63#include "ansidecl.h"
a2f945c6
VM
64#include "hashtab.h"
65
9bf3c9cc
RH
66#ifndef CHAR_BIT
67#define CHAR_BIT 8
68#endif
69
6da879de
GDR
70static unsigned int higher_prime_index (unsigned long);
71static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
72static hashval_t htab_mod (hashval_t, htab_t);
73static hashval_t htab_mod_m2 (hashval_t, htab_t);
74static hashval_t hash_pointer (const void *);
75static int eq_pointer (const void *, const void *);
76static int htab_expand (htab_t);
77static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
18a94a2f
MM
78
79/* At some point, we could make these be NULL, and modify the
80 hash-table routines to handle NULL specially; that would avoid
81 function-call overhead for the common case of hashing pointers. */
82htab_hash htab_hash_pointer = hash_pointer;
83htab_eq htab_eq_pointer = eq_pointer;
0194e877 84
9bf3c9cc
RH
85/* Table of primes and multiplicative inverses.
86
87 Note that these are not minimally reduced inverses. Unlike when generating
88 code to divide by a constant, we want to be able to use the same algorithm
89 all the time. All of these inverses (are implied to) have bit 32 set.
90
91 For the record, here's the function that computed the table; it's a
92 vastly simplified version of the function of the same name from gcc. */
93
94#if 0
95unsigned int
96ceil_log2 (unsigned int x)
97{
98 int i;
99 for (i = 31; i >= 0 ; --i)
100 if (x > (1u << i))
101 return i+1;
102 abort ();
103}
a2f945c6 104
9bf3c9cc
RH
105unsigned int
106choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
107{
108 unsigned long long mhigh;
109 double nx;
110 int lgup, post_shift;
111 int pow, pow2;
112 int n = 32, precision = 32;
113
114 lgup = ceil_log2 (d);
115 pow = n + lgup;
116 pow2 = n + lgup - precision;
117
118 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
119 mhigh = nx / d;
120
121 *shiftp = lgup - 1;
122 *mlp = mhigh;
123 return mhigh >> 32;
124}
125#endif
126
127struct prime_ent
128{
129 hashval_t prime;
130 hashval_t inv;
131 hashval_t inv_m2; /* inverse of prime-2 */
132 hashval_t shift;
133};
134
135static struct prime_ent const prime_tab[] = {
136 { 7, 0x24924925, 0x9999999b, 2 },
137 { 13, 0x3b13b13c, 0x745d1747, 3 },
138 { 31, 0x08421085, 0x1a7b9612, 4 },
139 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
140 { 127, 0x02040811, 0x0624dd30, 6 },
141 { 251, 0x05197f7e, 0x073260a5, 7 },
142 { 509, 0x01824366, 0x02864fc8, 8 },
143 { 1021, 0x00c0906d, 0x014191f7, 9 },
144 { 2039, 0x0121456f, 0x0161e69e, 10 },
145 { 4093, 0x00300902, 0x00501908, 11 },
146 { 8191, 0x00080041, 0x00180241, 12 },
147 { 16381, 0x000c0091, 0x00140191, 13 },
148 { 32749, 0x002605a5, 0x002a06e6, 14 },
149 { 65521, 0x000f00e2, 0x00110122, 15 },
150 { 131071, 0x00008001, 0x00018003, 16 },
151 { 262139, 0x00014002, 0x0001c004, 17 },
152 { 524287, 0x00002001, 0x00006001, 18 },
153 { 1048573, 0x00003001, 0x00005001, 19 },
154 { 2097143, 0x00004801, 0x00005801, 20 },
155 { 4194301, 0x00000c01, 0x00001401, 21 },
156 { 8388593, 0x00001e01, 0x00002201, 22 },
157 { 16777213, 0x00000301, 0x00000501, 23 },
158 { 33554393, 0x00001381, 0x00001481, 24 },
159 { 67108859, 0x00000141, 0x000001c1, 25 },
160 { 134217689, 0x000004e1, 0x00000521, 26 },
161 { 268435399, 0x00000391, 0x000003b1, 27 },
162 { 536870909, 0x00000019, 0x00000029, 28 },
163 { 1073741789, 0x0000008d, 0x00000095, 29 },
164 { 2147483647, 0x00000003, 0x00000007, 30 },
165 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
166 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
167};
168
169/* The following function returns an index into the above table of the
170 nearest prime number which is greater than N, and near a power of two. */
171
172static unsigned int
6da879de 173higher_prime_index (unsigned long n)
a2f945c6 174{
9bf3c9cc
RH
175 unsigned int low = 0;
176 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
a4c9b97e
MM
177
178 while (low != high)
179 {
9bf3c9cc
RH
180 unsigned int mid = low + (high - low) / 2;
181 if (n > prime_tab[mid].prime)
a4c9b97e
MM
182 low = mid + 1;
183 else
184 high = mid;
185 }
186
187 /* If we've run out of primes, abort. */
9bf3c9cc 188 if (n > prime_tab[low].prime)
a4c9b97e
MM
189 {
190 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
191 abort ();
192 }
193
9bf3c9cc 194 return low;
a2f945c6
VM
195}
196
18a94a2f
MM
197/* Returns a hash code for P. */
198
4feeaae3 199static hashval_t
6da879de 200hash_pointer (const PTR p)
18a94a2f 201{
2e3dac6f 202 return (hashval_t) ((intptr_t)p >> 3);
18a94a2f
MM
203}
204
205/* Returns non-zero if P1 and P2 are equal. */
206
4feeaae3 207static int
6da879de 208eq_pointer (const PTR p1, const PTR p2)
18a94a2f
MM
209{
210 return p1 == p2;
211}
212
d9175b87 213
d7cf8390
GDR
214/* The parens around the function names in the next two definitions
215 are essential in order to prevent macro expansions of the name.
216 The bodies, however, are expanded as expected, so they are not
217 recursive definitions. */
218
219/* Return the current size of given hash table. */
220
221#define htab_size(htab) ((htab)->size)
222
223size_t
224(htab_size) (htab_t htab)
d9175b87 225{
d7cf8390 226 return htab_size (htab);
d9175b87
RH
227}
228
229/* Return the current number of elements in given hash table. */
230
d7cf8390
GDR
231#define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted)
232
233size_t
234(htab_elements) (htab_t htab)
d9175b87 235{
d7cf8390 236 return htab_elements (htab);
d9175b87
RH
237}
238
9bf3c9cc
RH
239/* Return X % Y. */
240
241static inline hashval_t
6da879de 242htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
9bf3c9cc
RH
243{
244 /* The multiplicative inverses computed above are for 32-bit types, and
245 requires that we be able to compute a highpart multiply. */
246#ifdef UNSIGNED_64BIT_TYPE
247 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
248 if (sizeof (hashval_t) * CHAR_BIT <= 32)
249 {
250 hashval_t t1, t2, t3, t4, q, r;
251
252 t1 = ((ull)x * inv) >> 32;
253 t2 = x - t1;
254 t3 = t2 >> 1;
255 t4 = t1 + t3;
256 q = t4 >> shift;
257 r = x - (q * y);
258
259 return r;
260 }
261#endif
262
263 /* Otherwise just use the native division routines. */
264 return x % y;
265}
266
d9175b87
RH
267/* Compute the primary hash for HASH given HTAB's current size. */
268
269static inline hashval_t
6da879de 270htab_mod (hashval_t hash, htab_t htab)
d9175b87 271{
9bf3c9cc
RH
272 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
273 return htab_mod_1 (hash, p->prime, p->inv, p->shift);
d9175b87
RH
274}
275
276/* Compute the secondary hash for HASH given HTAB's current size. */
277
278static inline hashval_t
6da879de 279htab_mod_m2 (hashval_t hash, htab_t htab)
d9175b87 280{
9bf3c9cc
RH
281 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
282 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
d9175b87
RH
283}
284
a2f945c6
VM
285/* This function creates table with length slightly longer than given
286 source length. Created hash table is initiated as empty (all the
a3648cfc 287 hash table entries are HTAB_EMPTY_ENTRY). The function returns the
e2500fed 288 created hash table, or NULL if memory allocation fails. */
a2f945c6 289
5194cf08 290htab_t
6da879de
GDR
291htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
292 htab_del del_f, htab_alloc alloc_f, htab_free free_f)
a9429e29
LB
293{
294 return htab_create_typed_alloc (size, hash_f, eq_f, del_f, alloc_f, alloc_f,
295 free_f);
296}
297
298/* As above, but uses the variants of ALLOC_F and FREE_F which accept
299 an extra argument. */
300
301htab_t
302htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
303 htab_del del_f, void *alloc_arg,
304 htab_alloc_with_arg alloc_f,
305 htab_free_with_arg free_f)
a2f945c6 306{
5194cf08 307 htab_t result;
9bf3c9cc
RH
308 unsigned int size_prime_index;
309
310 size_prime_index = higher_prime_index (size);
311 size = prime_tab[size_prime_index].prime;
a2f945c6 312
a9429e29 313 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
d50d20ec
HPN
314 if (result == NULL)
315 return NULL;
a9429e29 316 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
d50d20ec
HPN
317 if (result->entries == NULL)
318 {
e2500fed 319 if (free_f != NULL)
a9429e29 320 (*free_f) (alloc_arg, result);
d50d20ec
HPN
321 return NULL;
322 }
d50d20ec 323 result->size = size;
9bf3c9cc 324 result->size_prime_index = size_prime_index;
d50d20ec
HPN
325 result->hash_f = hash_f;
326 result->eq_f = eq_f;
327 result->del_f = del_f;
a9429e29
LB
328 result->alloc_arg = alloc_arg;
329 result->alloc_with_arg_f = alloc_f;
330 result->free_with_arg_f = free_f;
a2f945c6
VM
331 return result;
332}
333
a9429e29
LB
334/*
335
996c0cb0
RW
336@deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size}, @
337htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f}, @
338htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f}, @
a9429e29
LB
339htab_free @var{free_f})
340
341This function creates a hash table that uses two different allocators
342@var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself
343and its entries respectively. This is useful when variables of different
344types need to be allocated with different allocators.
345
346The created hash table is slightly larger than @var{size} and it is
347initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}).
348The function returns the created hash table, or @code{NULL} if memory
349allocation fails.
350
351@end deftypefn
352
353*/
74828682
DJ
354
355htab_t
a9429e29
LB
356htab_create_typed_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
357 htab_del del_f, htab_alloc alloc_tab_f,
358 htab_alloc alloc_f, htab_free free_f)
74828682
DJ
359{
360 htab_t result;
9bf3c9cc
RH
361 unsigned int size_prime_index;
362
363 size_prime_index = higher_prime_index (size);
364 size = prime_tab[size_prime_index].prime;
74828682 365
a9429e29 366 result = (htab_t) (*alloc_tab_f) (1, sizeof (struct htab));
74828682
DJ
367 if (result == NULL)
368 return NULL;
a9429e29 369 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
74828682
DJ
370 if (result->entries == NULL)
371 {
372 if (free_f != NULL)
a9429e29 373 (*free_f) (result);
74828682
DJ
374 return NULL;
375 }
376 result->size = size;
9bf3c9cc 377 result->size_prime_index = size_prime_index;
74828682
DJ
378 result->hash_f = hash_f;
379 result->eq_f = eq_f;
380 result->del_f = del_f;
a9429e29
LB
381 result->alloc_f = alloc_f;
382 result->free_f = free_f;
74828682
DJ
383 return result;
384}
385
a9429e29 386
74828682
DJ
387/* Update the function pointers and allocation parameter in the htab_t. */
388
389void
6da879de
GDR
390htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
391 htab_del del_f, PTR alloc_arg,
392 htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
74828682
DJ
393{
394 htab->hash_f = hash_f;
395 htab->eq_f = eq_f;
396 htab->del_f = del_f;
397 htab->alloc_arg = alloc_arg;
398 htab->alloc_with_arg_f = alloc_f;
399 htab->free_with_arg_f = free_f;
400}
401
045b3a49
GK
402/* These functions exist solely for backward compatibility. */
403
404#undef htab_create
405htab_t
6da879de 406htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
045b3a49
GK
407{
408 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
409}
410
411htab_t
6da879de 412htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
045b3a49
GK
413{
414 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
415}
416
a2f945c6
VM
417/* This function frees all memory allocated for given hash table.
418 Naturally the hash table must already exist. */
419
420void
6da879de 421htab_delete (htab_t htab)
a2f945c6 422{
d9175b87
RH
423 size_t size = htab_size (htab);
424 PTR *entries = htab->entries;
5dc9cffd 425 int i;
e38992e8 426
5dc9cffd 427 if (htab->del_f)
d9175b87 428 for (i = size - 1; i >= 0; i--)
a3648cfc 429 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
d9175b87 430 (*htab->del_f) (entries[i]);
5dc9cffd 431
e2500fed
GK
432 if (htab->free_f != NULL)
433 {
d9175b87 434 (*htab->free_f) (entries);
e2500fed
GK
435 (*htab->free_f) (htab);
436 }
74828682
DJ
437 else if (htab->free_with_arg_f != NULL)
438 {
d9175b87 439 (*htab->free_with_arg_f) (htab->alloc_arg, entries);
74828682
DJ
440 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
441 }
a2f945c6
VM
442}
443
444/* This function clears all entries in the given hash table. */
445
446void
6da879de 447htab_empty (htab_t htab)
a2f945c6 448{
d9175b87
RH
449 size_t size = htab_size (htab);
450 PTR *entries = htab->entries;
5dc9cffd 451 int i;
e38992e8 452
5dc9cffd 453 if (htab->del_f)
d9175b87 454 for (i = size - 1; i >= 0; i--)
a3648cfc 455 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
d9175b87 456 (*htab->del_f) (entries[i]);
5dc9cffd 457
3050098b
JH
458 /* Instead of clearing megabyte, downsize the table. */
459 if (size > 1024*1024 / sizeof (PTR))
460 {
461 int nindex = higher_prime_index (1024 / sizeof (PTR));
462 int nsize = prime_tab[nindex].prime;
463
464 if (htab->free_f != NULL)
465 (*htab->free_f) (htab->entries);
466 else if (htab->free_with_arg_f != NULL)
467 (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
468 if (htab->alloc_with_arg_f != NULL)
469 htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
470 sizeof (PTR *));
471 else
472 htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
473 htab->size = nsize;
474 htab->size_prime_index = nindex;
475 }
476 else
477 memset (entries, 0, size * sizeof (PTR));
478 htab->n_deleted = 0;
479 htab->n_elements = 0;
a2f945c6
VM
480}
481
8c5d513f
BS
482/* Similar to htab_find_slot, but without several unwanted side effects:
483 - Does not call htab->eq_f when it finds an existing entry.
484 - Does not change the count of elements/searches/collisions in the
485 hash table.
486 This function also assumes there are no deleted entries in the table.
487 HASH is the hash value for the element to be inserted. */
e38992e8 488
35e9340f 489static PTR *
6da879de 490find_empty_slot_for_expand (htab_t htab, hashval_t hash)
8c5d513f 491{
d9175b87
RH
492 hashval_t index = htab_mod (hash, htab);
493 size_t size = htab_size (htab);
4fc4e478
RH
494 PTR *slot = htab->entries + index;
495 hashval_t hash2;
496
a3648cfc 497 if (*slot == HTAB_EMPTY_ENTRY)
4fc4e478 498 return slot;
a3648cfc 499 else if (*slot == HTAB_DELETED_ENTRY)
4fc4e478 500 abort ();
8c5d513f 501
d9175b87 502 hash2 = htab_mod_m2 (hash, htab);
8c5d513f
BS
503 for (;;)
504 {
4fc4e478
RH
505 index += hash2;
506 if (index >= size)
507 index -= size;
e38992e8 508
4fc4e478 509 slot = htab->entries + index;
a3648cfc 510 if (*slot == HTAB_EMPTY_ENTRY)
8c5d513f 511 return slot;
a3648cfc 512 else if (*slot == HTAB_DELETED_ENTRY)
8c5d513f 513 abort ();
8c5d513f
BS
514 }
515}
516
a2f945c6
VM
517/* The following function changes size of memory allocated for the
518 entries and repeatedly inserts the table elements. The occupancy
519 of the table after the call will be about 50%. Naturally the hash
520 table must already exist. Remember also that the place of the
d50d20ec
HPN
521 table entries is changed. If memory allocation failures are allowed,
522 this function will return zero, indicating that the table could not be
523 expanded. If all goes well, it will return a non-zero value. */
a2f945c6 524
d50d20ec 525static int
6da879de 526htab_expand (htab_t htab)
a2f945c6 527{
35e9340f
HPN
528 PTR *oentries;
529 PTR *olimit;
530 PTR *p;
e2500fed 531 PTR *nentries;
9bf3c9cc
RH
532 size_t nsize, osize, elts;
533 unsigned int oindex, nindex;
5194cf08
ZW
534
535 oentries = htab->entries;
9bf3c9cc
RH
536 oindex = htab->size_prime_index;
537 osize = htab->size;
538 olimit = oentries + osize;
539 elts = htab_elements (htab);
5194cf08 540
0a8e3de3
JH
541 /* Resize only when table after removal of unused elements is either
542 too full or too empty. */
9bf3c9cc
RH
543 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
544 {
545 nindex = higher_prime_index (elts * 2);
546 nsize = prime_tab[nindex].prime;
547 }
0a8e3de3 548 else
9bf3c9cc
RH
549 {
550 nindex = oindex;
551 nsize = osize;
552 }
d50d20ec 553
74828682
DJ
554 if (htab->alloc_with_arg_f != NULL)
555 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
556 sizeof (PTR *));
557 else
558 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
e2500fed
GK
559 if (nentries == NULL)
560 return 0;
561 htab->entries = nentries;
120cdf68 562 htab->size = nsize;
9bf3c9cc 563 htab->size_prime_index = nindex;
5194cf08
ZW
564 htab->n_elements -= htab->n_deleted;
565 htab->n_deleted = 0;
566
567 p = oentries;
568 do
569 {
35e9340f 570 PTR x = *p;
e38992e8 571
a3648cfc 572 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
5194cf08 573 {
35e9340f 574 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
e38992e8 575
5194cf08
ZW
576 *q = x;
577 }
e38992e8 578
5194cf08
ZW
579 p++;
580 }
581 while (p < olimit);
e38992e8 582
e2500fed
GK
583 if (htab->free_f != NULL)
584 (*htab->free_f) (oentries);
74828682
DJ
585 else if (htab->free_with_arg_f != NULL)
586 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
d50d20ec 587 return 1;
a2f945c6
VM
588}
589
5194cf08
ZW
590/* This function searches for a hash table entry equal to the given
591 element. It cannot be used to insert or delete an element. */
592
35e9340f 593PTR
6da879de 594htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
a2f945c6 595{
d9175b87 596 hashval_t index, hash2;
5194cf08 597 size_t size;
35e9340f 598 PTR entry;
5194cf08
ZW
599
600 htab->searches++;
d9175b87
RH
601 size = htab_size (htab);
602 index = htab_mod (hash, htab);
a2f945c6 603
0194e877 604 entry = htab->entries[index];
a3648cfc
DB
605 if (entry == HTAB_EMPTY_ENTRY
606 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
0194e877
ZW
607 return entry;
608
d9175b87 609 hash2 = htab_mod_m2 (hash, htab);
5194cf08 610 for (;;)
a2f945c6 611 {
5194cf08
ZW
612 htab->collisions++;
613 index += hash2;
614 if (index >= size)
615 index -= size;
0194e877
ZW
616
617 entry = htab->entries[index];
a3648cfc
DB
618 if (entry == HTAB_EMPTY_ENTRY
619 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
0194e877 620 return entry;
a2f945c6 621 }
5194cf08
ZW
622}
623
8c5d513f
BS
624/* Like htab_find_slot_with_hash, but compute the hash value from the
625 element. */
e38992e8 626
35e9340f 627PTR
6da879de 628htab_find (htab_t htab, const PTR element)
8c5d513f
BS
629{
630 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
631}
632
5194cf08
ZW
633/* This function searches for a hash table slot containing an entry
634 equal to the given element. To delete an entry, call this with
6a88516c
BE
635 insert=NO_INSERT, then call htab_clear_slot on the slot returned
636 (possibly after doing some checks). To insert an entry, call this
637 with insert=INSERT, then write the value you want into the returned
638 slot. When inserting an entry, NULL may be returned if memory
639 allocation fails. */
5194cf08 640
35e9340f 641PTR *
6da879de
GDR
642htab_find_slot_with_hash (htab_t htab, const PTR element,
643 hashval_t hash, enum insert_option insert)
5194cf08 644{
35e9340f 645 PTR *first_deleted_slot;
d9175b87 646 hashval_t index, hash2;
5194cf08 647 size_t size;
4fc4e478 648 PTR entry;
5194cf08 649
d9175b87
RH
650 size = htab_size (htab);
651 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
652 {
653 if (htab_expand (htab) == 0)
654 return NULL;
655 size = htab_size (htab);
656 }
5194cf08 657
d9175b87 658 index = htab_mod (hash, htab);
5194cf08 659
a2f945c6 660 htab->searches++;
5194cf08
ZW
661 first_deleted_slot = NULL;
662
4fc4e478 663 entry = htab->entries[index];
a3648cfc 664 if (entry == HTAB_EMPTY_ENTRY)
4fc4e478 665 goto empty_entry;
a3648cfc 666 else if (entry == HTAB_DELETED_ENTRY)
4fc4e478
RH
667 first_deleted_slot = &htab->entries[index];
668 else if ((*htab->eq_f) (entry, element))
669 return &htab->entries[index];
670
d9175b87 671 hash2 = htab_mod_m2 (hash, htab);
5194cf08 672 for (;;)
a2f945c6 673 {
4fc4e478
RH
674 htab->collisions++;
675 index += hash2;
676 if (index >= size)
677 index -= size;
678
679 entry = htab->entries[index];
a3648cfc 680 if (entry == HTAB_EMPTY_ENTRY)
4fc4e478 681 goto empty_entry;
a3648cfc 682 else if (entry == HTAB_DELETED_ENTRY)
5194cf08
ZW
683 {
684 if (!first_deleted_slot)
685 first_deleted_slot = &htab->entries[index];
686 }
4fc4e478 687 else if ((*htab->eq_f) (entry, element))
e38992e8 688 return &htab->entries[index];
a2f945c6 689 }
4fc4e478
RH
690
691 empty_entry:
692 if (insert == NO_INSERT)
693 return NULL;
694
4fc4e478
RH
695 if (first_deleted_slot)
696 {
e0432c1c 697 htab->n_deleted--;
a3648cfc 698 *first_deleted_slot = HTAB_EMPTY_ENTRY;
4fc4e478
RH
699 return first_deleted_slot;
700 }
701
e0432c1c 702 htab->n_elements++;
4fc4e478 703 return &htab->entries[index];
a2f945c6
VM
704}
705
8c5d513f
BS
706/* Like htab_find_slot_with_hash, but compute the hash value from the
707 element. */
e38992e8 708
35e9340f 709PTR *
6da879de 710htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
8c5d513f
BS
711{
712 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
713 insert);
714}
715
7f96816a
JL
716/* This function deletes an element with the given value from hash
717 table (the hash is computed from the element). If there is no matching
718 element in the hash table, this function does nothing. */
719
720void
6da879de 721htab_remove_elt (htab_t htab, PTR element)
7f96816a
JL
722{
723 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
724}
725
726
5194cf08
ZW
727/* This function deletes an element with the given value from hash
728 table. If there is no matching element in the hash table, this
729 function does nothing. */
a2f945c6
VM
730
731void
6da879de 732htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
a2f945c6 733{
35e9340f 734 PTR *slot;
a2f945c6 735
7f96816a 736 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
a3648cfc 737 if (*slot == HTAB_EMPTY_ENTRY)
5194cf08
ZW
738 return;
739
5dc9cffd
ZW
740 if (htab->del_f)
741 (*htab->del_f) (*slot);
742
a3648cfc 743 *slot = HTAB_DELETED_ENTRY;
5194cf08 744 htab->n_deleted++;
a2f945c6
VM
745}
746
5194cf08
ZW
747/* This function clears a specified slot in a hash table. It is
748 useful when you've already done the lookup and don't want to do it
749 again. */
ed38f5d5
ZW
750
751void
6da879de 752htab_clear_slot (htab_t htab, PTR *slot)
ed38f5d5 753{
d9175b87 754 if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
a3648cfc 755 || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
ed38f5d5 756 abort ();
e38992e8 757
5dc9cffd
ZW
758 if (htab->del_f)
759 (*htab->del_f) (*slot);
e38992e8 760
a3648cfc 761 *slot = HTAB_DELETED_ENTRY;
5194cf08 762 htab->n_deleted++;
ed38f5d5
ZW
763}
764
765/* This function scans over the entire hash table calling
766 CALLBACK for each live entry. If CALLBACK returns false,
767 the iteration stops. INFO is passed as CALLBACK's second
768 argument. */
769
770void
6da879de 771htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
ed38f5d5 772{
0a8e3de3
JH
773 PTR *slot;
774 PTR *limit;
a3648cfc 775
0a8e3de3 776 slot = htab->entries;
d9175b87 777 limit = slot + htab_size (htab);
e38992e8 778
5194cf08
ZW
779 do
780 {
35e9340f 781 PTR x = *slot;
e38992e8 782
a3648cfc 783 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
8c5d513f 784 if (!(*callback) (slot, info))
5194cf08
ZW
785 break;
786 }
787 while (++slot < limit);
ed38f5d5
ZW
788}
789
dbccdc42
JH
790/* Like htab_traverse_noresize, but does resize the table when it is
791 too empty to improve effectivity of subsequent calls. */
792
793void
6da879de 794htab_traverse (htab_t htab, htab_trav callback, PTR info)
dbccdc42 795{
a46f975b
JJ
796 size_t size = htab_size (htab);
797 if (htab_elements (htab) * 8 < size && size > 32)
dbccdc42
JH
798 htab_expand (htab);
799
800 htab_traverse_noresize (htab, callback, info);
801}
802
e38992e8
RK
803/* Return the fraction of fixed collisions during all work with given
804 hash table. */
a2f945c6 805
5194cf08 806double
6da879de 807htab_collisions (htab_t htab)
a2f945c6 808{
e38992e8 809 if (htab->searches == 0)
5194cf08 810 return 0.0;
e38992e8
RK
811
812 return (double) htab->collisions / (double) htab->searches;
a2f945c6 813}
9e0ba685 814
0ed5305d
RH
815/* Hash P as a null-terminated string.
816
817 Copied from gcc/hashtable.c. Zack had the following to say with respect
818 to applicability, though note that unlike hashtable.c, this hash table
819 implementation re-hashes rather than chain buckets.
820
821 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
822 From: Zack Weinberg <zackw@panix.com>
823 Date: Fri, 17 Aug 2001 02:15:56 -0400
824
825 I got it by extracting all the identifiers from all the source code
826 I had lying around in mid-1999, and testing many recurrences of
827 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
828 prime numbers or the appropriate identity. This was the best one.
829 I don't remember exactly what constituted "best", except I was
830 looking at bucket-length distributions mostly.
831
832 So it should be very good at hashing identifiers, but might not be
833 as good at arbitrary strings.
834
835 I'll add that it thoroughly trounces the hash functions recommended
836 for this use at http://burtleburtle.net/bob/hash/index.html, both
837 on speed and bucket distribution. I haven't tried it against the
838 function they just started using for Perl's hashes. */
9e0ba685
RH
839
840hashval_t
6da879de 841htab_hash_string (const PTR p)
9e0ba685
RH
842{
843 const unsigned char *str = (const unsigned char *) p;
844 hashval_t r = 0;
845 unsigned char c;
846
847 while ((c = *str++) != 0)
848 r = r * 67 + c - 113;
849
850 return r;
851}
5cc5a0d0
JM
852
853/* DERIVED FROM:
854--------------------------------------------------------------------
855lookup2.c, by Bob Jenkins, December 1996, Public Domain.
856hash(), hash2(), hash3, and mix() are externally useful functions.
857Routines to test the hash are included if SELF_TEST is defined.
858You can use this free for any purpose. It has no warranty.
859--------------------------------------------------------------------
860*/
861
862/*
863--------------------------------------------------------------------
864mix -- mix 3 32-bit values reversibly.
865For every delta with one or two bit set, and the deltas of all three
866 high bits or all three low bits, whether the original value of a,b,c
867 is almost all zero or is uniformly distributed,
868* If mix() is run forward or backward, at least 32 bits in a,b,c
869 have at least 1/4 probability of changing.
870* If mix() is run forward, every bit of c will change between 1/3 and
871 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
872mix() was built out of 36 single-cycle latency instructions in a
873 structure that could supported 2x parallelism, like so:
874 a -= b;
875 a -= c; x = (c>>13);
876 b -= c; a ^= x;
877 b -= a; x = (a<<8);
878 c -= a; b ^= x;
879 c -= b; x = (b>>13);
880 ...
881 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
882 of that parallelism. They've also turned some of those single-cycle
883 latency instructions into multi-cycle latency instructions. Still,
884 this is the fastest good hash I could find. There were about 2^^68
885 to choose from. I only looked at a billion or so.
886--------------------------------------------------------------------
887*/
888/* same, but slower, works on systems that might have 8 byte hashval_t's */
889#define mix(a,b,c) \
890{ \
891 a -= b; a -= c; a ^= (c>>13); \
892 b -= c; b -= a; b ^= (a<< 8); \
893 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
894 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
895 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
896 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
897 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
898 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
899 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
900}
901
902/*
903--------------------------------------------------------------------
904hash() -- hash a variable-length key into a 32-bit value
905 k : the key (the unaligned variable-length array of bytes)
906 len : the length of the key, counting by bytes
907 level : can be any 4-byte value
908Returns a 32-bit value. Every bit of the key affects every bit of
909the return value. Every 1-bit and 2-bit delta achieves avalanche.
910About 36+6len instructions.
911
912The best hash table sizes are powers of 2. There is no need to do
913mod a prime (mod is sooo slow!). If you need less than 32 bits,
914use a bitmask. For example, if you need only 10 bits, do
915 h = (h & hashmask(10));
916In which case, the hash table should have hashsize(10) elements.
917
918If you are hashing n strings (ub1 **)k, do it like this:
919 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
920
921By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
922code any way you wish, private, educational, or commercial. It's free.
923
924See http://burtleburtle.net/bob/hash/evahash.html
925Use for hash table lookup, or anything where one collision in 2^32 is
926acceptable. Do NOT use for cryptographic purposes.
927--------------------------------------------------------------------
928*/
929
6da879de
GDR
930hashval_t
931iterative_hash (const PTR k_in /* the key */,
932 register size_t length /* the length of the key */,
933 register hashval_t initval /* the previous hash, or
934 an arbitrary value */)
5cc5a0d0
JM
935{
936 register const unsigned char *k = (const unsigned char *)k_in;
937 register hashval_t a,b,c,len;
938
939 /* Set up the internal state */
940 len = length;
941 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
942 c = initval; /* the previous hash value */
943
944 /*---------------------------------------- handle most of the key */
945#ifndef WORDS_BIGENDIAN
946 /* On a little-endian machine, if the data is 4-byte aligned we can hash
947 by word for better speed. This gives nondeterministic results on
948 big-endian machines. */
949 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
950 while (len >= 12) /* aligned */
951 {
952 a += *(hashval_t *)(k+0);
953 b += *(hashval_t *)(k+4);
954 c += *(hashval_t *)(k+8);
955 mix(a,b,c);
956 k += 12; len -= 12;
957 }
958 else /* unaligned */
959#endif
960 while (len >= 12)
961 {
962 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
963 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
964 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
965 mix(a,b,c);
966 k += 12; len -= 12;
967 }
968
969 /*------------------------------------- handle the last 11 bytes */
970 c += length;
971 switch(len) /* all the case statements fall through */
972 {
973 case 11: c+=((hashval_t)k[10]<<24);
974 case 10: c+=((hashval_t)k[9]<<16);
975 case 9 : c+=((hashval_t)k[8]<<8);
976 /* the first byte of c is reserved for the length */
977 case 8 : b+=((hashval_t)k[7]<<24);
978 case 7 : b+=((hashval_t)k[6]<<16);
979 case 6 : b+=((hashval_t)k[5]<<8);
980 case 5 : b+=k[4];
981 case 4 : a+=((hashval_t)k[3]<<24);
982 case 3 : a+=((hashval_t)k[2]<<16);
983 case 2 : a+=((hashval_t)k[1]<<8);
984 case 1 : a+=k[0];
985 /* case 0: nothing left to add */
986 }
987 mix(a,b,c);
988 /*-------------------------------------------- report the result */
989 return c;
990}