]> git.ipfire.org Git - thirdparty/git.git/blame - blame.c
blame: add a test to cover blame_coalesce()
[thirdparty/git.git] / blame.c
CommitLineData
072bf432
JS
1#include "cache.h"
2#include "refs.h"
cbd53a21 3#include "object-store.h"
072bf432 4#include "cache-tree.h"
b543bb1c
JS
5#include "mergesort.h"
6#include "diff.h"
7#include "diffcore.h"
09002f1b 8#include "tag.h"
f5dd754c 9#include "blame.h"
14ba97f8 10#include "alloc.h"
4e0df4e6
NTND
11#include "commit-slab.h"
12
13define_commit_slab(blame_suspects, struct blame_origin *);
14static struct blame_suspects blame_suspects;
15
16struct blame_origin *get_blame_suspects(struct commit *commit)
17{
18 struct blame_origin **result;
19
20 result = blame_suspects_peek(&blame_suspects, commit);
21
22 return result ? *result : NULL;
23}
24
25static void set_blame_suspects(struct commit *commit, struct blame_origin *origin)
26{
27 *blame_suspects_at(&blame_suspects, commit) = origin;
28}
f5dd754c
JS
29
30void blame_origin_decref(struct blame_origin *o)
31{
32 if (o && --o->refcnt <= 0) {
33 struct blame_origin *p, *l = NULL;
34 if (o->previous)
35 blame_origin_decref(o->previous);
36 free(o->file.ptr);
37 /* Should be present exactly once in commit chain */
4e0df4e6 38 for (p = get_blame_suspects(o->commit); p; l = p, p = p->next) {
f5dd754c
JS
39 if (p == o) {
40 if (l)
41 l->next = p->next;
42 else
4e0df4e6 43 set_blame_suspects(o->commit, p->next);
f5dd754c
JS
44 free(o);
45 return;
46 }
47 }
48 die("internal error in blame_origin_decref");
49 }
50}
51
52/*
53 * Given a commit and a path in it, create a new origin structure.
54 * The callers that add blame to the scoreboard should use
55 * get_origin() to obtain shared, refcounted copy instead of calling
56 * this function directly.
57 */
072bf432 58static struct blame_origin *make_origin(struct commit *commit, const char *path)
f5dd754c
JS
59{
60 struct blame_origin *o;
61 FLEX_ALLOC_STR(o, path, path);
62 o->commit = commit;
63 o->refcnt = 1;
4e0df4e6
NTND
64 o->next = get_blame_suspects(commit);
65 set_blame_suspects(commit, o);
f5dd754c
JS
66 return o;
67}
68
69/*
70 * Locate an existing origin or create a new one.
71 * This moves the origin to front position in the commit util list.
72 */
09002f1b 73static struct blame_origin *get_origin(struct commit *commit, const char *path)
f5dd754c
JS
74{
75 struct blame_origin *o, *l;
76
4e0df4e6 77 for (o = get_blame_suspects(commit), l = NULL; o; l = o, o = o->next) {
f5dd754c
JS
78 if (!strcmp(o->path, path)) {
79 /* bump to front */
80 if (l) {
81 l->next = o->next;
4e0df4e6
NTND
82 o->next = get_blame_suspects(commit);
83 set_blame_suspects(commit, o);
f5dd754c
JS
84 }
85 return blame_origin_incref(o);
86 }
87 }
88 return make_origin(commit, path);
89}
072bf432
JS
90
91
92
a470beea 93static void verify_working_tree_path(struct repository *r,
ecbbc0a5 94 struct commit *work_tree, const char *path)
072bf432
JS
95{
96 struct commit_list *parents;
97 int pos;
98
99 for (parents = work_tree->parents; parents; parents = parents->next) {
100 const struct object_id *commit_oid = &parents->item->object.oid;
101 struct object_id blob_oid;
102 unsigned mode;
103
916bc35b 104 if (!get_tree_entry(commit_oid, path, &blob_oid, &mode) &&
a470beea 105 oid_object_info(r, &blob_oid, NULL) == OBJ_BLOB)
072bf432
JS
106 return;
107 }
108
a470beea 109 pos = index_name_pos(r->index, path, strlen(path));
072bf432
JS
110 if (pos >= 0)
111 ; /* path is in the index */
a470beea
NTND
112 else if (-1 - pos < r->index->cache_nr &&
113 !strcmp(r->index->cache[-1 - pos]->name, path))
072bf432
JS
114 ; /* path is in the index, unmerged */
115 else
116 die("no such path '%s' in HEAD", path);
117}
118
fb998eae
NTND
119static struct commit_list **append_parent(struct repository *r,
120 struct commit_list **tail,
121 const struct object_id *oid)
072bf432
JS
122{
123 struct commit *parent;
124
fb998eae 125 parent = lookup_commit_reference(r, oid);
072bf432
JS
126 if (!parent)
127 die("no such commit %s", oid_to_hex(oid));
128 return &commit_list_insert(parent, tail)->next;
129}
130
fb998eae
NTND
131static void append_merge_parents(struct repository *r,
132 struct commit_list **tail)
072bf432
JS
133{
134 int merge_head;
135 struct strbuf line = STRBUF_INIT;
136
fb998eae 137 merge_head = open(git_path_merge_head(r), O_RDONLY);
072bf432
JS
138 if (merge_head < 0) {
139 if (errno == ENOENT)
140 return;
102de880 141 die("cannot open '%s' for reading",
fb998eae 142 git_path_merge_head(r));
072bf432
JS
143 }
144
145 while (!strbuf_getwholeline_fd(&line, merge_head, '\n')) {
146 struct object_id oid;
147 if (line.len < GIT_SHA1_HEXSZ || get_oid_hex(line.buf, &oid))
102de880 148 die("unknown line in '%s': %s",
fb998eae
NTND
149 git_path_merge_head(r), line.buf);
150 tail = append_parent(r, tail, &oid);
072bf432
JS
151 }
152 close(merge_head);
153 strbuf_release(&line);
154}
155
156/*
157 * This isn't as simple as passing sb->buf and sb->len, because we
158 * want to transfer ownership of the buffer to the commit (so we
159 * must use detach).
160 */
fb998eae
NTND
161static void set_commit_buffer_from_strbuf(struct repository *r,
162 struct commit *c,
163 struct strbuf *sb)
072bf432
JS
164{
165 size_t len;
166 void *buf = strbuf_detach(sb, &len);
fb998eae 167 set_commit_buffer(r, c, buf, len);
072bf432
JS
168}
169
170/*
171 * Prepare a dummy commit that represents the work tree (or staged) item.
172 * Note that annotating work tree item never works in the reverse.
173 */
a470beea 174static struct commit *fake_working_tree_commit(struct repository *r,
ecbbc0a5 175 struct diff_options *opt,
09002f1b
JS
176 const char *path,
177 const char *contents_from)
072bf432
JS
178{
179 struct commit *commit;
180 struct blame_origin *origin;
181 struct commit_list **parent_tail, *parent;
182 struct object_id head_oid;
183 struct strbuf buf = STRBUF_INIT;
184 const char *ident;
185 time_t now;
a849735b 186 int len;
072bf432
JS
187 struct cache_entry *ce;
188 unsigned mode;
189 struct strbuf msg = STRBUF_INIT;
190
a470beea 191 read_index(r->index);
072bf432 192 time(&now);
fb998eae 193 commit = alloc_commit_node(r);
072bf432
JS
194 commit->object.parsed = 1;
195 commit->date = now;
196 parent_tail = &commit->parents;
197
49e61479 198 if (!resolve_ref_unsafe("HEAD", RESOLVE_REF_READING, &head_oid, NULL))
072bf432
JS
199 die("no such ref: HEAD");
200
fb998eae
NTND
201 parent_tail = append_parent(r, parent_tail, &head_oid);
202 append_merge_parents(r, parent_tail);
a470beea 203 verify_working_tree_path(r, commit, path);
072bf432
JS
204
205 origin = make_origin(commit, path);
206
207 ident = fmt_ident("Not Committed Yet", "not.committed.yet", NULL, 0);
208 strbuf_addstr(&msg, "tree 0000000000000000000000000000000000000000\n");
209 for (parent = commit->parents; parent; parent = parent->next)
210 strbuf_addf(&msg, "parent %s\n",
211 oid_to_hex(&parent->item->object.oid));
212 strbuf_addf(&msg,
213 "author %s\n"
214 "committer %s\n\n"
215 "Version of %s from %s\n",
216 ident, ident, path,
217 (!contents_from ? path :
218 (!strcmp(contents_from, "-") ? "standard input" : contents_from)));
fb998eae 219 set_commit_buffer_from_strbuf(r, commit, &msg);
072bf432
JS
220
221 if (!contents_from || strcmp("-", contents_from)) {
222 struct stat st;
223 const char *read_from;
224 char *buf_ptr;
225 unsigned long buf_len;
226
227 if (contents_from) {
228 if (stat(contents_from, &st) < 0)
229 die_errno("Cannot stat '%s'", contents_from);
230 read_from = contents_from;
231 }
232 else {
233 if (lstat(path, &st) < 0)
234 die_errno("Cannot lstat '%s'", path);
235 read_from = path;
236 }
237 mode = canon_mode(st.st_mode);
238
239 switch (st.st_mode & S_IFMT) {
240 case S_IFREG:
0d1e0e78 241 if (opt->flags.allow_textconv &&
6afaf807 242 textconv_object(r, read_from, mode, &null_oid, 0, &buf_ptr, &buf_len))
072bf432
JS
243 strbuf_attach(&buf, buf_ptr, buf_len, buf_len + 1);
244 else if (strbuf_read_file(&buf, read_from, st.st_size) != st.st_size)
245 die_errno("cannot open or read '%s'", read_from);
246 break;
247 case S_IFLNK:
248 if (strbuf_readlink(&buf, read_from, st.st_size) < 0)
249 die_errno("cannot readlink '%s'", read_from);
250 break;
251 default:
252 die("unsupported file type %s", read_from);
253 }
254 }
255 else {
256 /* Reading from stdin */
257 mode = 0;
258 if (strbuf_read(&buf, 0, 0) < 0)
259 die_errno("failed to read from stdin");
260 }
a470beea 261 convert_to_git(r->index, path, buf.buf, buf.len, &buf, 0);
072bf432
JS
262 origin->file.ptr = buf.buf;
263 origin->file.size = buf.len;
829e5c3b 264 pretend_object_file(buf.buf, buf.len, OBJ_BLOB, &origin->blob_oid);
072bf432
JS
265
266 /*
267 * Read the current index, replace the path entry with
268 * origin->blob_sha1 without mucking with its mode or type
269 * bits; we are not going to write this index out -- we just
270 * want to run "diff-index --cached".
271 */
a470beea
NTND
272 discard_index(r->index);
273 read_index(r->index);
072bf432
JS
274
275 len = strlen(path);
276 if (!mode) {
a470beea 277 int pos = index_name_pos(r->index, path, len);
072bf432 278 if (0 <= pos)
a470beea 279 mode = r->index->cache[pos]->ce_mode;
072bf432
JS
280 else
281 /* Let's not bother reading from HEAD tree */
282 mode = S_IFREG | 0644;
283 }
a470beea 284 ce = make_empty_cache_entry(r->index, len);
072bf432
JS
285 oidcpy(&ce->oid, &origin->blob_oid);
286 memcpy(ce->name, path, len);
287 ce->ce_flags = create_ce_flags(0);
288 ce->ce_namelen = len;
289 ce->ce_mode = create_ce_mode(mode);
a470beea 290 add_index_entry(r->index, ce,
ecbbc0a5 291 ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
072bf432 292
a470beea 293 cache_tree_invalidate_path(r->index, path);
072bf432
JS
294
295 return commit;
296}
b543bb1c
JS
297
298
299
300static int diff_hunks(mmfile_t *file_a, mmfile_t *file_b,
301 xdl_emit_hunk_consume_func_t hunk_func, void *cb_data, int xdl_opts)
302{
303 xpparam_t xpp = {0};
304 xdemitconf_t xecfg = {0};
305 xdemitcb_t ecb = {NULL};
306
307 xpp.flags = xdl_opts;
308 xecfg.hunk_func = hunk_func;
309 ecb.priv = cb_data;
310 return xdi_diff(file_a, file_b, &xpp, &xecfg, &ecb);
311}
312
1fc73384
BR
313static const char *get_next_line(const char *start, const char *end)
314{
315 const char *nl = memchr(start, '\n', end - start);
316
317 return nl ? nl + 1 : end;
318}
319
320static int find_line_starts(int **line_starts, const char *buf,
321 unsigned long len)
322{
323 const char *end = buf + len;
324 const char *p;
325 int *lineno;
326 int num = 0;
327
328 for (p = buf; p < end; p = get_next_line(p, end))
329 num++;
330
331 ALLOC_ARRAY(*line_starts, num + 1);
332 lineno = *line_starts;
333
334 for (p = buf; p < end; p = get_next_line(p, end))
335 *lineno++ = p - buf;
336
337 *lineno = len;
338
339 return num;
340}
341
1d028dc6
MP
342struct fingerprint_entry;
343
344/* A fingerprint is intended to loosely represent a string, such that two
345 * fingerprints can be quickly compared to give an indication of the similarity
346 * of the strings that they represent.
347 *
348 * A fingerprint is represented as a multiset of the lower-cased byte pairs in
349 * the string that it represents. Whitespace is added at each end of the
350 * string. Whitespace pairs are ignored. Whitespace is converted to '\0'.
351 * For example, the string "Darth Radar" will be converted to the following
352 * fingerprint:
353 * {"\0d", "da", "da", "ar", "ar", "rt", "th", "h\0", "\0r", "ra", "ad", "r\0"}
354 *
355 * The similarity between two fingerprints is the size of the intersection of
356 * their multisets, including repeated elements. See fingerprint_similarity for
357 * examples.
358 *
359 * For ease of implementation, the fingerprint is implemented as a map
360 * of byte pairs to the count of that byte pair in the string, instead of
361 * allowing repeated elements in a set.
362 */
363struct fingerprint {
364 struct hashmap map;
365 /* As we know the maximum number of entries in advance, it's
366 * convenient to store the entries in a single array instead of having
367 * the hashmap manage the memory.
368 */
369 struct fingerprint_entry *entries;
370};
371
372/* A byte pair in a fingerprint. Stores the number of times the byte pair
373 * occurs in the string that the fingerprint represents.
374 */
375struct fingerprint_entry {
376 /* The hashmap entry - the hash represents the byte pair in its
377 * entirety so we don't need to store the byte pair separately.
378 */
379 struct hashmap_entry entry;
380 /* The number of times the byte pair occurs in the string that the
381 * fingerprint represents.
382 */
383 int count;
384};
385
386/* See `struct fingerprint` for an explanation of what a fingerprint is.
387 * \param result the fingerprint of the string is stored here. This must be
388 * freed later using free_fingerprint.
389 * \param line_begin the start of the string
390 * \param line_end the end of the string
391 */
392static void get_fingerprint(struct fingerprint *result,
393 const char *line_begin,
394 const char *line_end)
395{
396 unsigned int hash, c0 = 0, c1;
397 const char *p;
398 int max_map_entry_count = 1 + line_end - line_begin;
399 struct fingerprint_entry *entry = xcalloc(max_map_entry_count,
400 sizeof(struct fingerprint_entry));
401 struct fingerprint_entry *found_entry;
402
403 hashmap_init(&result->map, NULL, NULL, max_map_entry_count);
404 result->entries = entry;
405 for (p = line_begin; p <= line_end; ++p, c0 = c1) {
406 /* Always terminate the string with whitespace.
407 * Normalise whitespace to 0, and normalise letters to
408 * lower case. This won't work for multibyte characters but at
409 * worst will match some unrelated characters.
410 */
411 if ((p == line_end) || isspace(*p))
412 c1 = 0;
413 else
414 c1 = tolower(*p);
415 hash = c0 | (c1 << 8);
416 /* Ignore whitespace pairs */
417 if (hash == 0)
418 continue;
419 hashmap_entry_init(entry, hash);
420
421 found_entry = hashmap_get(&result->map, entry, NULL);
422 if (found_entry) {
423 found_entry->count += 1;
424 } else {
425 entry->count = 1;
426 hashmap_add(&result->map, entry);
427 ++entry;
428 }
429 }
430}
431
432static void free_fingerprint(struct fingerprint *f)
433{
434 hashmap_free(&f->map, 0);
435 free(f->entries);
436}
437
438/* Calculates the similarity between two fingerprints as the size of the
439 * intersection of their multisets, including repeated elements. See
440 * `struct fingerprint` for an explanation of the fingerprint representation.
441 * The similarity between "cat mat" and "father rather" is 2 because "at" is
442 * present twice in both strings while the similarity between "tim" and "mit"
443 * is 0.
444 */
445static int fingerprint_similarity(struct fingerprint *a, struct fingerprint *b)
446{
447 int intersection = 0;
448 struct hashmap_iter iter;
449 const struct fingerprint_entry *entry_a, *entry_b;
450
451 hashmap_iter_init(&b->map, &iter);
452
453 while ((entry_b = hashmap_iter_next(&iter))) {
454 if ((entry_a = hashmap_get(&a->map, entry_b, NULL))) {
455 intersection += entry_a->count < entry_b->count ?
456 entry_a->count : entry_b->count;
457 }
458 }
459 return intersection;
460}
461
462/* Subtracts byte-pair elements in B from A, modifying A in place.
463 */
464static void fingerprint_subtract(struct fingerprint *a, struct fingerprint *b)
465{
466 struct hashmap_iter iter;
467 struct fingerprint_entry *entry_a;
468 const struct fingerprint_entry *entry_b;
469
470 hashmap_iter_init(&b->map, &iter);
471
472 while ((entry_b = hashmap_iter_next(&iter))) {
473 if ((entry_a = hashmap_get(&a->map, entry_b, NULL))) {
474 if (entry_a->count <= entry_b->count)
475 hashmap_remove(&a->map, entry_b, NULL);
476 else
477 entry_a->count -= entry_b->count;
478 }
479 }
480}
481
482/* Calculate fingerprints for a series of lines.
483 * Puts the fingerprints in the fingerprints array, which must have been
484 * preallocated to allow storing line_count elements.
485 */
486static void get_line_fingerprints(struct fingerprint *fingerprints,
487 const char *content, const int *line_starts,
488 long first_line, long line_count)
489{
490 int i;
491 const char *linestart, *lineend;
492
493 line_starts += first_line;
494 for (i = 0; i < line_count; ++i) {
495 linestart = content + line_starts[i];
496 lineend = content + line_starts[i + 1];
497 get_fingerprint(fingerprints + i, linestart, lineend);
498 }
499}
500
501static void free_line_fingerprints(struct fingerprint *fingerprints,
502 int nr_fingerprints)
503{
504 int i;
505
506 for (i = 0; i < nr_fingerprints; i++)
507 free_fingerprint(&fingerprints[i]);
508}
509
510/* This contains the data necessary to linearly map a line number in one half
511 * of a diff chunk to the line in the other half of the diff chunk that is
512 * closest in terms of its position as a fraction of the length of the chunk.
513 */
514struct line_number_mapping {
515 int destination_start, destination_length,
516 source_start, source_length;
517};
518
519/* Given a line number in one range, offset and scale it to map it onto the
520 * other range.
521 * Essentially this mapping is a simple linear equation but the calculation is
522 * more complicated to allow performing it with integer operations.
523 * Another complication is that if a line could map onto many lines in the
524 * destination range then we want to choose the line at the center of those
525 * possibilities.
526 * Example: if the chunk is 2 lines long in A and 10 lines long in B then the
527 * first 5 lines in B will map onto the first line in the A chunk, while the
528 * last 5 lines will all map onto the second line in the A chunk.
529 * Example: if the chunk is 10 lines long in A and 2 lines long in B then line
530 * 0 in B will map onto line 2 in A, and line 1 in B will map onto line 7 in A.
531 */
532static int map_line_number(int line_number,
533 const struct line_number_mapping *mapping)
534{
535 return ((line_number - mapping->source_start) * 2 + 1) *
536 mapping->destination_length /
537 (mapping->source_length * 2) +
538 mapping->destination_start;
539}
540
541/* Get a pointer to the element storing the similarity between a line in A
542 * and a line in B.
543 *
544 * The similarities are stored in a 2-dimensional array. Each "row" in the
545 * array contains the similarities for a line in B. The similarities stored in
546 * a row are the similarities between the line in B and the nearby lines in A.
547 * To keep the length of each row the same, it is padded out with values of -1
548 * where the search range extends beyond the lines in A.
549 * For example, if max_search_distance_a is 2 and the two sides of a diff chunk
550 * look like this:
551 * a | m
552 * b | n
553 * c | o
554 * d | p
555 * e | q
556 * Then the similarity array will contain:
557 * [-1, -1, am, bm, cm,
558 * -1, an, bn, cn, dn,
559 * ao, bo, co, do, eo,
560 * bp, cp, dp, ep, -1,
561 * cq, dq, eq, -1, -1]
562 * Where similarities are denoted either by -1 for invalid, or the
563 * concatenation of the two lines in the diff being compared.
564 *
565 * \param similarities array of similarities between lines in A and B
566 * \param line_a the index of the line in A, in the same frame of reference as
567 * closest_line_a.
568 * \param local_line_b the index of the line in B, relative to the first line
569 * in B that similarities represents.
570 * \param closest_line_a the index of the line in A that is deemed to be
571 * closest to local_line_b. This must be in the same
572 * frame of reference as line_a. This value defines
573 * where similarities is centered for the line in B.
574 * \param max_search_distance_a maximum distance in lines from the closest line
575 * in A for other lines in A for which
576 * similarities may be calculated.
577 */
578static int *get_similarity(int *similarities,
579 int line_a, int local_line_b,
580 int closest_line_a, int max_search_distance_a)
581{
582 assert(abs(line_a - closest_line_a) <=
583 max_search_distance_a);
584 return similarities + line_a - closest_line_a +
585 max_search_distance_a +
586 local_line_b * (max_search_distance_a * 2 + 1);
587}
588
589#define CERTAIN_NOTHING_MATCHES -2
590#define CERTAINTY_NOT_CALCULATED -1
591
592/* Given a line in B, first calculate its similarities with nearby lines in A
593 * if not already calculated, then identify the most similar and second most
594 * similar lines. The "certainty" is calculated based on those two
595 * similarities.
596 *
597 * \param start_a the index of the first line of the chunk in A
598 * \param length_a the length in lines of the chunk in A
599 * \param local_line_b the index of the line in B, relative to the first line
600 * in the chunk.
601 * \param fingerprints_a array of fingerprints for the chunk in A
602 * \param fingerprints_b array of fingerprints for the chunk in B
603 * \param similarities 2-dimensional array of similarities between lines in A
604 * and B. See get_similarity() for more details.
605 * \param certainties array of values indicating how strongly a line in B is
606 * matched with some line in A.
607 * \param second_best_result array of absolute indices in A for the second
608 * closest match of a line in B.
609 * \param result array of absolute indices in A for the closest match of a line
610 * in B.
611 * \param max_search_distance_a maximum distance in lines from the closest line
612 * in A for other lines in A for which
613 * similarities may be calculated.
614 * \param map_line_number_in_b_to_a parameter to map_line_number().
615 */
616static void find_best_line_matches(
617 int start_a,
618 int length_a,
619 int start_b,
620 int local_line_b,
621 struct fingerprint *fingerprints_a,
622 struct fingerprint *fingerprints_b,
623 int *similarities,
624 int *certainties,
625 int *second_best_result,
626 int *result,
627 const int max_search_distance_a,
628 const struct line_number_mapping *map_line_number_in_b_to_a)
629{
630
631 int i, search_start, search_end, closest_local_line_a, *similarity,
632 best_similarity = 0, second_best_similarity = 0,
633 best_similarity_index = 0, second_best_similarity_index = 0;
634
635 /* certainty has already been calculated so no need to redo the work */
636 if (certainties[local_line_b] != CERTAINTY_NOT_CALCULATED)
637 return;
638
639 closest_local_line_a = map_line_number(
640 local_line_b + start_b, map_line_number_in_b_to_a) - start_a;
641
642 search_start = closest_local_line_a - max_search_distance_a;
643 if (search_start < 0)
644 search_start = 0;
645
646 search_end = closest_local_line_a + max_search_distance_a + 1;
647 if (search_end > length_a)
648 search_end = length_a;
649
650 for (i = search_start; i < search_end; ++i) {
651 similarity = get_similarity(similarities,
652 i, local_line_b,
653 closest_local_line_a,
654 max_search_distance_a);
655 if (*similarity == -1) {
656 /* This value will never exceed 10 but assert just in
657 * case
658 */
659 assert(abs(i - closest_local_line_a) < 1000);
660 /* scale the similarity by (1000 - distance from
661 * closest line) to act as a tie break between lines
662 * that otherwise are equally similar.
663 */
664 *similarity = fingerprint_similarity(
665 fingerprints_b + local_line_b,
666 fingerprints_a + i) *
667 (1000 - abs(i - closest_local_line_a));
668 }
669 if (*similarity > best_similarity) {
670 second_best_similarity = best_similarity;
671 second_best_similarity_index = best_similarity_index;
672 best_similarity = *similarity;
673 best_similarity_index = i;
674 } else if (*similarity > second_best_similarity) {
675 second_best_similarity = *similarity;
676 second_best_similarity_index = i;
677 }
678 }
679
680 if (best_similarity == 0) {
681 /* this line definitely doesn't match with anything. Mark it
682 * with this special value so it doesn't get invalidated and
683 * won't be recalculated.
684 */
685 certainties[local_line_b] = CERTAIN_NOTHING_MATCHES;
686 result[local_line_b] = -1;
687 } else {
688 /* Calculate the certainty with which this line matches.
689 * If the line matches well with two lines then that reduces
690 * the certainty. However we still want to prioritise matching
691 * a line that matches very well with two lines over matching a
692 * line that matches poorly with one line, hence doubling
693 * best_similarity.
694 * This means that if we have
695 * line X that matches only one line with a score of 3,
696 * line Y that matches two lines equally with a score of 5,
697 * and line Z that matches only one line with a score or 2,
698 * then the lines in order of certainty are X, Y, Z.
699 */
700 certainties[local_line_b] = best_similarity * 2 -
701 second_best_similarity;
702
703 /* We keep both the best and second best results to allow us to
704 * check at a later stage of the matching process whether the
705 * result needs to be invalidated.
706 */
707 result[local_line_b] = start_a + best_similarity_index;
708 second_best_result[local_line_b] =
709 start_a + second_best_similarity_index;
710 }
711}
712
713/*
714 * This finds the line that we can match with the most confidence, and
715 * uses it as a partition. It then calls itself on the lines on either side of
716 * that partition. In this way we avoid lines appearing out of order, and
717 * retain a sensible line ordering.
718 * \param start_a index of the first line in A with which lines in B may be
719 * compared.
720 * \param start_b index of the first line in B for which matching should be
721 * done.
722 * \param length_a number of lines in A with which lines in B may be compared.
723 * \param length_b number of lines in B for which matching should be done.
724 * \param fingerprints_a mutable array of fingerprints in A. The first element
725 * corresponds to the line at start_a.
726 * \param fingerprints_b array of fingerprints in B. The first element
727 * corresponds to the line at start_b.
728 * \param similarities 2-dimensional array of similarities between lines in A
729 * and B. See get_similarity() for more details.
730 * \param certainties array of values indicating how strongly a line in B is
731 * matched with some line in A.
732 * \param second_best_result array of absolute indices in A for the second
733 * closest match of a line in B.
734 * \param result array of absolute indices in A for the closest match of a line
735 * in B.
736 * \param max_search_distance_a maximum distance in lines from the closest line
737 * in A for other lines in A for which
738 * similarities may be calculated.
739 * \param max_search_distance_b an upper bound on the greatest possible
740 * distance between lines in B such that they will
741 * both be compared with the same line in A
742 * according to max_search_distance_a.
743 * \param map_line_number_in_b_to_a parameter to map_line_number().
744 */
745static void fuzzy_find_matching_lines_recurse(
746 int start_a, int start_b,
747 int length_a, int length_b,
748 struct fingerprint *fingerprints_a,
749 struct fingerprint *fingerprints_b,
750 int *similarities,
751 int *certainties,
752 int *second_best_result,
753 int *result,
754 int max_search_distance_a,
755 int max_search_distance_b,
756 const struct line_number_mapping *map_line_number_in_b_to_a)
757{
758 int i, invalidate_min, invalidate_max, offset_b,
759 second_half_start_a, second_half_start_b,
760 second_half_length_a, second_half_length_b,
761 most_certain_line_a, most_certain_local_line_b = -1,
762 most_certain_line_certainty = -1,
763 closest_local_line_a;
764
765 for (i = 0; i < length_b; ++i) {
766 find_best_line_matches(start_a,
767 length_a,
768 start_b,
769 i,
770 fingerprints_a,
771 fingerprints_b,
772 similarities,
773 certainties,
774 second_best_result,
775 result,
776 max_search_distance_a,
777 map_line_number_in_b_to_a);
778
779 if (certainties[i] > most_certain_line_certainty) {
780 most_certain_line_certainty = certainties[i];
781 most_certain_local_line_b = i;
782 }
783 }
784
785 /* No matches. */
786 if (most_certain_local_line_b == -1)
787 return;
788
789 most_certain_line_a = result[most_certain_local_line_b];
790
791 /*
792 * Subtract the most certain line's fingerprint in B from the matched
793 * fingerprint in A. This means that other lines in B can't also match
794 * the same parts of the line in A.
795 */
796 fingerprint_subtract(fingerprints_a + most_certain_line_a - start_a,
797 fingerprints_b + most_certain_local_line_b);
798
799 /* Invalidate results that may be affected by the choice of most
800 * certain line.
801 */
802 invalidate_min = most_certain_local_line_b - max_search_distance_b;
803 invalidate_max = most_certain_local_line_b + max_search_distance_b + 1;
804 if (invalidate_min < 0)
805 invalidate_min = 0;
806 if (invalidate_max > length_b)
807 invalidate_max = length_b;
808
809 /* As the fingerprint in A has changed, discard previously calculated
810 * similarity values with that fingerprint.
811 */
812 for (i = invalidate_min; i < invalidate_max; ++i) {
813 closest_local_line_a = map_line_number(
814 i + start_b, map_line_number_in_b_to_a) - start_a;
815
816 /* Check that the lines in A and B are close enough that there
817 * is a similarity value for them.
818 */
819 if (abs(most_certain_line_a - start_a - closest_local_line_a) >
820 max_search_distance_a) {
821 continue;
822 }
823
824 *get_similarity(similarities, most_certain_line_a - start_a,
825 i, closest_local_line_a,
826 max_search_distance_a) = -1;
827 }
828
829 /* More invalidating of results that may be affected by the choice of
830 * most certain line.
831 * Discard the matches for lines in B that are currently matched with a
832 * line in A such that their ordering contradicts the ordering imposed
833 * by the choice of most certain line.
834 */
835 for (i = most_certain_local_line_b - 1; i >= invalidate_min; --i) {
836 /* In this loop we discard results for lines in B that are
837 * before most-certain-line-B but are matched with a line in A
838 * that is after most-certain-line-A.
839 */
840 if (certainties[i] >= 0 &&
841 (result[i] >= most_certain_line_a ||
842 second_best_result[i] >= most_certain_line_a)) {
843 certainties[i] = CERTAINTY_NOT_CALCULATED;
844 }
845 }
846 for (i = most_certain_local_line_b + 1; i < invalidate_max; ++i) {
847 /* In this loop we discard results for lines in B that are
848 * after most-certain-line-B but are matched with a line in A
849 * that is before most-certain-line-A.
850 */
851 if (certainties[i] >= 0 &&
852 (result[i] <= most_certain_line_a ||
853 second_best_result[i] <= most_certain_line_a)) {
854 certainties[i] = CERTAINTY_NOT_CALCULATED;
855 }
856 }
857
858 /* Repeat the matching process for lines before the most certain line.
859 */
860 if (most_certain_local_line_b > 0) {
861 fuzzy_find_matching_lines_recurse(
862 start_a, start_b,
863 most_certain_line_a + 1 - start_a,
864 most_certain_local_line_b,
865 fingerprints_a, fingerprints_b, similarities,
866 certainties, second_best_result, result,
867 max_search_distance_a,
868 max_search_distance_b,
869 map_line_number_in_b_to_a);
870 }
871 /* Repeat the matching process for lines after the most certain line.
872 */
873 if (most_certain_local_line_b + 1 < length_b) {
874 second_half_start_a = most_certain_line_a;
875 offset_b = most_certain_local_line_b + 1;
876 second_half_start_b = start_b + offset_b;
877 second_half_length_a =
878 length_a + start_a - second_half_start_a;
879 second_half_length_b =
880 length_b + start_b - second_half_start_b;
881 fuzzy_find_matching_lines_recurse(
882 second_half_start_a, second_half_start_b,
883 second_half_length_a, second_half_length_b,
884 fingerprints_a + second_half_start_a - start_a,
885 fingerprints_b + offset_b,
886 similarities +
887 offset_b * (max_search_distance_a * 2 + 1),
888 certainties + offset_b,
889 second_best_result + offset_b, result + offset_b,
890 max_search_distance_a,
891 max_search_distance_b,
892 map_line_number_in_b_to_a);
893 }
894}
895
896/* Find the lines in the parent line range that most closely match the lines in
897 * the target line range. This is accomplished by matching fingerprints in each
898 * blame_origin, and choosing the best matches that preserve the line ordering.
899 * See struct fingerprint for details of fingerprint matching, and
900 * fuzzy_find_matching_lines_recurse for details of preserving line ordering.
901 *
902 * The performance is believed to be O(n log n) in the typical case and O(n^2)
903 * in a pathological case, where n is the number of lines in the target range.
904 */
905static int *fuzzy_find_matching_lines(struct blame_origin *parent,
906 struct blame_origin *target,
907 int tlno, int parent_slno, int same,
908 int parent_len)
909{
910 /* We use the terminology "A" for the left hand side of the diff AKA
911 * parent, and "B" for the right hand side of the diff AKA target. */
912 int start_a = parent_slno;
913 int length_a = parent_len;
914 int start_b = tlno;
915 int length_b = same - tlno;
916
917 struct line_number_mapping map_line_number_in_b_to_a = {
918 start_a, length_a, start_b, length_b
919 };
920
921 struct fingerprint *fingerprints_a = parent->fingerprints;
922 struct fingerprint *fingerprints_b = target->fingerprints;
923
924 int i, *result, *second_best_result,
925 *certainties, *similarities, similarity_count;
926
927 /*
928 * max_search_distance_a means that given a line in B, compare it to
929 * the line in A that is closest to its position, and the lines in A
930 * that are no greater than max_search_distance_a lines away from the
931 * closest line in A.
932 *
933 * max_search_distance_b is an upper bound on the greatest possible
934 * distance between lines in B such that they will both be compared
935 * with the same line in A according to max_search_distance_a.
936 */
937 int max_search_distance_a = 10, max_search_distance_b;
938
939 if (length_a <= 0)
940 return NULL;
941
942 if (max_search_distance_a >= length_a)
943 max_search_distance_a = length_a ? length_a - 1 : 0;
944
945 max_search_distance_b = ((2 * max_search_distance_a + 1) * length_b
946 - 1) / length_a;
947
948 result = xcalloc(sizeof(int), length_b);
949 second_best_result = xcalloc(sizeof(int), length_b);
950 certainties = xcalloc(sizeof(int), length_b);
951
952 /* See get_similarity() for details of similarities. */
953 similarity_count = length_b * (max_search_distance_a * 2 + 1);
954 similarities = xcalloc(sizeof(int), similarity_count);
955
956 for (i = 0; i < length_b; ++i) {
957 result[i] = -1;
958 second_best_result[i] = -1;
959 certainties[i] = CERTAINTY_NOT_CALCULATED;
960 }
961
962 for (i = 0; i < similarity_count; ++i)
963 similarities[i] = -1;
964
965 fuzzy_find_matching_lines_recurse(start_a, start_b,
966 length_a, length_b,
967 fingerprints_a + start_a,
968 fingerprints_b + start_b,
969 similarities,
970 certainties,
971 second_best_result,
972 result,
973 max_search_distance_a,
974 max_search_distance_b,
975 &map_line_number_in_b_to_a);
976
977 free(similarities);
978 free(certainties);
979 free(second_best_result);
980
981 return result;
982}
983
1fc73384
BR
984static void fill_origin_fingerprints(struct blame_origin *o, mmfile_t *file)
985{
986 int *line_starts;
987
988 if (o->fingerprints)
989 return;
990 o->num_lines = find_line_starts(&line_starts, o->file.ptr,
991 o->file.size);
a07a9776
BR
992 o->fingerprints = xcalloc(sizeof(struct fingerprint), o->num_lines);
993 get_line_fingerprints(o->fingerprints, o->file.ptr, line_starts,
994 0, o->num_lines);
1fc73384
BR
995 free(line_starts);
996}
997
998static void drop_origin_fingerprints(struct blame_origin *o)
999{
a07a9776
BR
1000 if (o->fingerprints) {
1001 free_line_fingerprints(o->fingerprints, o->num_lines);
1002 o->num_lines = 0;
1003 FREE_AND_NULL(o->fingerprints);
1004 }
1fc73384
BR
1005}
1006
b543bb1c
JS
1007/*
1008 * Given an origin, prepare mmfile_t structure to be used by the
1009 * diff machinery
1010 */
1011static void fill_origin_blob(struct diff_options *opt,
1fc73384
BR
1012 struct blame_origin *o, mmfile_t *file,
1013 int *num_read_blob, int fill_fingerprints)
b543bb1c
JS
1014{
1015 if (!o->file.ptr) {
1016 enum object_type type;
1017 unsigned long file_size;
1018
1019 (*num_read_blob)++;
0d1e0e78 1020 if (opt->flags.allow_textconv &&
6afaf807
NTND
1021 textconv_object(opt->repo, o->path, o->mode,
1022 &o->blob_oid, 1, &file->ptr, &file_size))
b543bb1c
JS
1023 ;
1024 else
b4f5aca4 1025 file->ptr = read_object_file(&o->blob_oid, &type,
1026 &file_size);
b543bb1c
JS
1027 file->size = file_size;
1028
1029 if (!file->ptr)
1030 die("Cannot read blob %s for path %s",
1031 oid_to_hex(&o->blob_oid),
1032 o->path);
1033 o->file = *file;
1034 }
1035 else
1036 *file = o->file;
1fc73384
BR
1037 if (fill_fingerprints)
1038 fill_origin_fingerprints(o, file);
b543bb1c
JS
1039}
1040
1041static void drop_origin_blob(struct blame_origin *o)
1042{
ce528de0 1043 FREE_AND_NULL(o->file.ptr);
1fc73384 1044 drop_origin_fingerprints(o);
b543bb1c
JS
1045}
1046
1047/*
1048 * Any merge of blames happens on lists of blames that arrived via
1049 * different parents in a single suspect. In this case, we want to
1050 * sort according to the suspect line numbers as opposed to the final
1051 * image line numbers. The function body is somewhat longish because
1052 * it avoids unnecessary writes.
1053 */
1054
1055static struct blame_entry *blame_merge(struct blame_entry *list1,
1056 struct blame_entry *list2)
1057{
1058 struct blame_entry *p1 = list1, *p2 = list2,
1059 **tail = &list1;
1060
1061 if (!p1)
1062 return p2;
1063 if (!p2)
1064 return p1;
1065
1066 if (p1->s_lno <= p2->s_lno) {
1067 do {
1068 tail = &p1->next;
1069 if ((p1 = *tail) == NULL) {
1070 *tail = p2;
1071 return list1;
1072 }
1073 } while (p1->s_lno <= p2->s_lno);
1074 }
1075 for (;;) {
1076 *tail = p2;
1077 do {
1078 tail = &p2->next;
1079 if ((p2 = *tail) == NULL) {
1080 *tail = p1;
1081 return list1;
1082 }
1083 } while (p1->s_lno > p2->s_lno);
1084 *tail = p1;
1085 do {
1086 tail = &p1->next;
1087 if ((p1 = *tail) == NULL) {
1088 *tail = p2;
1089 return list1;
1090 }
1091 } while (p1->s_lno <= p2->s_lno);
1092 }
1093}
1094
1095static void *get_next_blame(const void *p)
1096{
1097 return ((struct blame_entry *)p)->next;
1098}
1099
1100static void set_next_blame(void *p1, void *p2)
1101{
1102 ((struct blame_entry *)p1)->next = p2;
1103}
1104
1105/*
1106 * Final image line numbers are all different, so we don't need a
1107 * three-way comparison here.
1108 */
1109
1110static int compare_blame_final(const void *p1, const void *p2)
1111{
1112 return ((struct blame_entry *)p1)->lno > ((struct blame_entry *)p2)->lno
1113 ? 1 : -1;
1114}
1115
1116static int compare_blame_suspect(const void *p1, const void *p2)
1117{
1118 const struct blame_entry *s1 = p1, *s2 = p2;
1119 /*
1120 * to allow for collating suspects, we sort according to the
1121 * respective pointer value as the primary sorting criterion.
1122 * The actual relation is pretty unimportant as long as it
1123 * establishes a total order. Comparing as integers gives us
1124 * that.
1125 */
1126 if (s1->suspect != s2->suspect)
1127 return (intptr_t)s1->suspect > (intptr_t)s2->suspect ? 1 : -1;
1128 if (s1->s_lno == s2->s_lno)
1129 return 0;
1130 return s1->s_lno > s2->s_lno ? 1 : -1;
1131}
1132
1133void blame_sort_final(struct blame_scoreboard *sb)
1134{
1135 sb->ent = llist_mergesort(sb->ent, get_next_blame, set_next_blame,
1136 compare_blame_final);
1137}
1138
09002f1b
JS
1139static int compare_commits_by_reverse_commit_date(const void *a,
1140 const void *b,
1141 void *c)
1142{
1143 return -compare_commits_by_commit_date(a, b, c);
1144}
1145
b543bb1c
JS
1146/*
1147 * For debugging -- origin is refcounted, and this asserts that
1148 * we do not underflow.
1149 */
1150static void sanity_check_refcnt(struct blame_scoreboard *sb)
1151{
1152 int baa = 0;
1153 struct blame_entry *ent;
1154
1155 for (ent = sb->ent; ent; ent = ent->next) {
1156 /* Nobody should have zero or negative refcnt */
1157 if (ent->suspect->refcnt <= 0) {
1158 fprintf(stderr, "%s in %s has negative refcnt %d\n",
1159 ent->suspect->path,
1160 oid_to_hex(&ent->suspect->commit->object.oid),
1161 ent->suspect->refcnt);
1162 baa = 1;
1163 }
1164 }
1165 if (baa)
1166 sb->on_sanity_fail(sb, baa);
1167}
1168
1169/*
1170 * If two blame entries that are next to each other came from
1171 * contiguous lines in the same origin (i.e. <commit, path> pair),
1172 * merge them together.
1173 */
1174void blame_coalesce(struct blame_scoreboard *sb)
1175{
1176 struct blame_entry *ent, *next;
1177
1178 for (ent = sb->ent; ent && (next = ent->next); ent = next) {
1179 if (ent->suspect == next->suspect &&
8934ac8c
BR
1180 ent->s_lno + ent->num_lines == next->s_lno &&
1181 ent->ignored == next->ignored &&
1182 ent->unblamable == next->unblamable) {
b543bb1c
JS
1183 ent->num_lines += next->num_lines;
1184 ent->next = next->next;
1185 blame_origin_decref(next->suspect);
1186 free(next);
1187 ent->score = 0;
1188 next = ent; /* again */
1189 }
1190 }
1191
1192 if (sb->debug) /* sanity */
1193 sanity_check_refcnt(sb);
1194}
1195
1196/*
1197 * Merge the given sorted list of blames into a preexisting origin.
1198 * If there were no previous blames to that commit, it is entered into
1199 * the commit priority queue of the score board.
1200 */
1201
1202static void queue_blames(struct blame_scoreboard *sb, struct blame_origin *porigin,
1203 struct blame_entry *sorted)
1204{
1205 if (porigin->suspects)
1206 porigin->suspects = blame_merge(porigin->suspects, sorted);
1207 else {
1208 struct blame_origin *o;
4e0df4e6 1209 for (o = get_blame_suspects(porigin->commit); o; o = o->next) {
b543bb1c
JS
1210 if (o->suspects) {
1211 porigin->suspects = sorted;
1212 return;
1213 }
1214 }
1215 porigin->suspects = sorted;
1216 prio_queue_put(&sb->commits, porigin->commit);
1217 }
1218}
1219
09002f1b
JS
1220/*
1221 * Fill the blob_sha1 field of an origin if it hasn't, so that later
1222 * call to fill_origin_blob() can use it to locate the data. blob_sha1
1223 * for an origin is also used to pass the blame for the entire file to
1224 * the parent to detect the case where a child's blob is identical to
1225 * that of its parent's.
1226 *
1227 * This also fills origin->mode for corresponding tree path.
1228 */
a470beea 1229static int fill_blob_sha1_and_mode(struct repository *r,
ecbbc0a5 1230 struct blame_origin *origin)
09002f1b
JS
1231{
1232 if (!is_null_oid(&origin->blob_oid))
1233 return 0;
916bc35b 1234 if (get_tree_entry(&origin->commit->object.oid, origin->path, &origin->blob_oid, &origin->mode))
09002f1b 1235 goto error_out;
a470beea 1236 if (oid_object_info(r, &origin->blob_oid, NULL) != OBJ_BLOB)
09002f1b
JS
1237 goto error_out;
1238 return 0;
1239 error_out:
1240 oidclr(&origin->blob_oid);
1241 origin->mode = S_IFINVALID;
1242 return -1;
1243}
1244
b543bb1c
JS
1245/*
1246 * We have an origin -- check if the same path exists in the
1247 * parent and return an origin structure to represent it.
1248 */
e6757652
NTND
1249static struct blame_origin *find_origin(struct repository *r,
1250 struct commit *parent,
1251 struct blame_origin *origin)
b543bb1c
JS
1252{
1253 struct blame_origin *porigin;
1254 struct diff_options diff_opts;
1255 const char *paths[2];
1256
1257 /* First check any existing origins */
4e0df4e6 1258 for (porigin = get_blame_suspects(parent); porigin; porigin = porigin->next)
b543bb1c
JS
1259 if (!strcmp(porigin->path, origin->path)) {
1260 /*
1261 * The same path between origin and its parent
1262 * without renaming -- the most common case.
1263 */
1264 return blame_origin_incref (porigin);
1265 }
1266
1267 /* See if the origin->path is different between parent
1268 * and origin first. Most of the time they are the
1269 * same and diff-tree is fairly efficient about this.
1270 */
e6757652 1271 repo_diff_setup(r, &diff_opts);
0d1e0e78 1272 diff_opts.flags.recursive = 1;
b543bb1c
JS
1273 diff_opts.detect_rename = 0;
1274 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
1275 paths[0] = origin->path;
1276 paths[1] = NULL;
1277
1278 parse_pathspec(&diff_opts.pathspec,
1279 PATHSPEC_ALL_MAGIC & ~PATHSPEC_LITERAL,
1280 PATHSPEC_LITERAL_PATH, "", paths);
1281 diff_setup_done(&diff_opts);
1282
1283 if (is_null_oid(&origin->commit->object.oid))
2e27bd77 1284 do_diff_cache(get_commit_tree_oid(parent), &diff_opts);
b543bb1c 1285 else
2e27bd77
DS
1286 diff_tree_oid(get_commit_tree_oid(parent),
1287 get_commit_tree_oid(origin->commit),
a6f38c10 1288 "", &diff_opts);
b543bb1c
JS
1289 diffcore_std(&diff_opts);
1290
1291 if (!diff_queued_diff.nr) {
1292 /* The path is the same as parent */
1293 porigin = get_origin(parent, origin->path);
1294 oidcpy(&porigin->blob_oid, &origin->blob_oid);
1295 porigin->mode = origin->mode;
1296 } else {
1297 /*
1298 * Since origin->path is a pathspec, if the parent
1299 * commit had it as a directory, we will see a whole
1300 * bunch of deletion of files in the directory that we
1301 * do not care about.
1302 */
1303 int i;
1304 struct diff_filepair *p = NULL;
1305 for (i = 0; i < diff_queued_diff.nr; i++) {
1306 const char *name;
1307 p = diff_queued_diff.queue[i];
1308 name = p->one->path ? p->one->path : p->two->path;
1309 if (!strcmp(name, origin->path))
1310 break;
1311 }
1312 if (!p)
1313 die("internal error in blame::find_origin");
1314 switch (p->status) {
1315 default:
1316 die("internal error in blame::find_origin (%c)",
1317 p->status);
1318 case 'M':
1319 porigin = get_origin(parent, origin->path);
1320 oidcpy(&porigin->blob_oid, &p->one->oid);
1321 porigin->mode = p->one->mode;
1322 break;
1323 case 'A':
1324 case 'T':
1325 /* Did not exist in parent, or type changed */
1326 break;
1327 }
1328 }
1329 diff_flush(&diff_opts);
1330 clear_pathspec(&diff_opts.pathspec);
1331 return porigin;
1332}
1333
1334/*
1335 * We have an origin -- find the path that corresponds to it in its
1336 * parent and return an origin structure to represent it.
1337 */
e6757652
NTND
1338static struct blame_origin *find_rename(struct repository *r,
1339 struct commit *parent,
1340 struct blame_origin *origin)
b543bb1c
JS
1341{
1342 struct blame_origin *porigin = NULL;
1343 struct diff_options diff_opts;
1344 int i;
1345
e6757652 1346 repo_diff_setup(r, &diff_opts);
0d1e0e78 1347 diff_opts.flags.recursive = 1;
b543bb1c
JS
1348 diff_opts.detect_rename = DIFF_DETECT_RENAME;
1349 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
1350 diff_opts.single_follow = origin->path;
1351 diff_setup_done(&diff_opts);
1352
1353 if (is_null_oid(&origin->commit->object.oid))
2e27bd77 1354 do_diff_cache(get_commit_tree_oid(parent), &diff_opts);
b543bb1c 1355 else
2e27bd77
DS
1356 diff_tree_oid(get_commit_tree_oid(parent),
1357 get_commit_tree_oid(origin->commit),
a6f38c10 1358 "", &diff_opts);
b543bb1c
JS
1359 diffcore_std(&diff_opts);
1360
1361 for (i = 0; i < diff_queued_diff.nr; i++) {
1362 struct diff_filepair *p = diff_queued_diff.queue[i];
1363 if ((p->status == 'R' || p->status == 'C') &&
1364 !strcmp(p->two->path, origin->path)) {
1365 porigin = get_origin(parent, p->one->path);
1366 oidcpy(&porigin->blob_oid, &p->one->oid);
1367 porigin->mode = p->one->mode;
1368 break;
1369 }
1370 }
1371 diff_flush(&diff_opts);
1372 clear_pathspec(&diff_opts.pathspec);
1373 return porigin;
1374}
1375
1376/*
1377 * Append a new blame entry to a given output queue.
1378 */
1379static void add_blame_entry(struct blame_entry ***queue,
1380 const struct blame_entry *src)
1381{
1382 struct blame_entry *e = xmalloc(sizeof(*e));
1383 memcpy(e, src, sizeof(*e));
1384 blame_origin_incref(e->suspect);
1385
1386 e->next = **queue;
1387 **queue = e;
1388 *queue = &e->next;
1389}
1390
1391/*
1392 * src typically is on-stack; we want to copy the information in it to
1393 * a malloced blame_entry that gets added to the given queue. The
1394 * origin of dst loses a refcnt.
1395 */
1396static void dup_entry(struct blame_entry ***queue,
1397 struct blame_entry *dst, struct blame_entry *src)
1398{
1399 blame_origin_incref(src->suspect);
1400 blame_origin_decref(dst->suspect);
1401 memcpy(dst, src, sizeof(*src));
1402 dst->next = **queue;
1403 **queue = dst;
1404 *queue = &dst->next;
1405}
1406
1407const char *blame_nth_line(struct blame_scoreboard *sb, long lno)
1408{
1409 return sb->final_buf + sb->lineno[lno];
1410}
1411
1412/*
1413 * It is known that lines between tlno to same came from parent, and e
1414 * has an overlap with that range. it also is known that parent's
1415 * line plno corresponds to e's line tlno.
1416 *
1417 * <---- e ----->
1418 * <------>
1419 * <------------>
1420 * <------------>
1421 * <------------------>
1422 *
1423 * Split e into potentially three parts; before this chunk, the chunk
1424 * to be blamed for the parent, and after that portion.
1425 */
1426static void split_overlap(struct blame_entry *split,
1427 struct blame_entry *e,
1428 int tlno, int plno, int same,
1429 struct blame_origin *parent)
1430{
1431 int chunk_end_lno;
8934ac8c 1432 int i;
b543bb1c
JS
1433 memset(split, 0, sizeof(struct blame_entry [3]));
1434
8934ac8c
BR
1435 for (i = 0; i < 3; i++) {
1436 split[i].ignored = e->ignored;
1437 split[i].unblamable = e->unblamable;
1438 }
1439
b543bb1c
JS
1440 if (e->s_lno < tlno) {
1441 /* there is a pre-chunk part not blamed on parent */
1442 split[0].suspect = blame_origin_incref(e->suspect);
1443 split[0].lno = e->lno;
1444 split[0].s_lno = e->s_lno;
1445 split[0].num_lines = tlno - e->s_lno;
1446 split[1].lno = e->lno + tlno - e->s_lno;
1447 split[1].s_lno = plno;
1448 }
1449 else {
1450 split[1].lno = e->lno;
1451 split[1].s_lno = plno + (e->s_lno - tlno);
1452 }
1453
1454 if (same < e->s_lno + e->num_lines) {
1455 /* there is a post-chunk part not blamed on parent */
1456 split[2].suspect = blame_origin_incref(e->suspect);
1457 split[2].lno = e->lno + (same - e->s_lno);
1458 split[2].s_lno = e->s_lno + (same - e->s_lno);
1459 split[2].num_lines = e->s_lno + e->num_lines - same;
1460 chunk_end_lno = split[2].lno;
1461 }
1462 else
1463 chunk_end_lno = e->lno + e->num_lines;
1464 split[1].num_lines = chunk_end_lno - split[1].lno;
1465
1466 /*
1467 * if it turns out there is nothing to blame the parent for,
1468 * forget about the splitting. !split[1].suspect signals this.
1469 */
1470 if (split[1].num_lines < 1)
1471 return;
1472 split[1].suspect = blame_origin_incref(parent);
1473}
1474
1475/*
1476 * split_overlap() divided an existing blame e into up to three parts
1477 * in split. Any assigned blame is moved to queue to
1478 * reflect the split.
1479 */
1480static void split_blame(struct blame_entry ***blamed,
1481 struct blame_entry ***unblamed,
1482 struct blame_entry *split,
1483 struct blame_entry *e)
1484{
1485 if (split[0].suspect && split[2].suspect) {
1486 /* The first part (reuse storage for the existing entry e) */
1487 dup_entry(unblamed, e, &split[0]);
1488
1489 /* The last part -- me */
1490 add_blame_entry(unblamed, &split[2]);
1491
1492 /* ... and the middle part -- parent */
1493 add_blame_entry(blamed, &split[1]);
1494 }
1495 else if (!split[0].suspect && !split[2].suspect)
1496 /*
1497 * The parent covers the entire area; reuse storage for
1498 * e and replace it with the parent.
1499 */
1500 dup_entry(blamed, e, &split[1]);
1501 else if (split[0].suspect) {
1502 /* me and then parent */
1503 dup_entry(unblamed, e, &split[0]);
1504 add_blame_entry(blamed, &split[1]);
1505 }
1506 else {
1507 /* parent and then me */
1508 dup_entry(blamed, e, &split[1]);
1509 add_blame_entry(unblamed, &split[2]);
1510 }
1511}
1512
1513/*
1514 * After splitting the blame, the origins used by the
1515 * on-stack blame_entry should lose one refcnt each.
1516 */
1517static void decref_split(struct blame_entry *split)
1518{
1519 int i;
1520
1521 for (i = 0; i < 3; i++)
1522 blame_origin_decref(split[i].suspect);
1523}
1524
1525/*
1526 * reverse_blame reverses the list given in head, appending tail.
1527 * That allows us to build lists in reverse order, then reverse them
1528 * afterwards. This can be faster than building the list in proper
1529 * order right away. The reason is that building in proper order
1530 * requires writing a link in the _previous_ element, while building
1531 * in reverse order just requires placing the list head into the
1532 * _current_ element.
1533 */
1534
1535static struct blame_entry *reverse_blame(struct blame_entry *head,
1536 struct blame_entry *tail)
1537{
1538 while (head) {
1539 struct blame_entry *next = head->next;
1540 head->next = tail;
1541 tail = head;
1542 head = next;
1543 }
1544 return tail;
1545}
1546
55f808fb
BR
1547/*
1548 * Splits a blame entry into two entries at 'len' lines. The original 'e'
1549 * consists of len lines, i.e. [e->lno, e->lno + len), and the second part,
1550 * which is returned, consists of the remainder: [e->lno + len, e->lno +
1551 * e->num_lines). The caller needs to sort out the reference counting for the
1552 * new entry's suspect.
1553 */
1554static struct blame_entry *split_blame_at(struct blame_entry *e, int len,
1555 struct blame_origin *new_suspect)
1556{
1557 struct blame_entry *n = xcalloc(1, sizeof(struct blame_entry));
1558
1559 n->suspect = new_suspect;
8934ac8c
BR
1560 n->ignored = e->ignored;
1561 n->unblamable = e->unblamable;
55f808fb
BR
1562 n->lno = e->lno + len;
1563 n->s_lno = e->s_lno + len;
1564 n->num_lines = e->num_lines - len;
1565 e->num_lines = len;
1566 e->score = 0;
1567 return n;
1568}
1569
ae3f36de
BR
1570struct blame_line_tracker {
1571 int is_parent;
1572 int s_lno;
1573};
1574
1575static int are_lines_adjacent(struct blame_line_tracker *first,
1576 struct blame_line_tracker *second)
1577{
1578 return first->is_parent == second->is_parent &&
1579 first->s_lno + 1 == second->s_lno;
1580}
1581
a07a9776
BR
1582static int scan_parent_range(struct fingerprint *p_fps,
1583 struct fingerprint *t_fps, int t_idx,
1584 int from, int nr_lines)
1585{
1586 int sim, p_idx;
1587 #define FINGERPRINT_FILE_THRESHOLD 10
1588 int best_sim_val = FINGERPRINT_FILE_THRESHOLD;
1589 int best_sim_idx = -1;
1590
1591 for (p_idx = from; p_idx < from + nr_lines; p_idx++) {
1592 sim = fingerprint_similarity(&t_fps[t_idx], &p_fps[p_idx]);
1593 if (sim < best_sim_val)
1594 continue;
1595 /* Break ties with the closest-to-target line number */
1596 if (sim == best_sim_val && best_sim_idx != -1 &&
1597 abs(best_sim_idx - t_idx) < abs(p_idx - t_idx))
1598 continue;
1599 best_sim_val = sim;
1600 best_sim_idx = p_idx;
1601 }
1602 return best_sim_idx;
1603}
1604
ae3f36de 1605/*
a07a9776
BR
1606 * The first pass checks the blame entry (from the target) against the parent's
1607 * diff chunk. If that fails for a line, the second pass tries to match that
1608 * line to any part of parent file. That catches cases where a change was
1609 * broken into two chunks by 'context.'
ae3f36de
BR
1610 */
1611static void guess_line_blames(struct blame_origin *parent,
1612 struct blame_origin *target,
1613 int tlno, int offset, int same, int parent_len,
1614 struct blame_line_tracker *line_blames)
1615{
1616 int i, best_idx, target_idx;
1617 int parent_slno = tlno + offset;
a07a9776 1618 int *fuzzy_matches;
ae3f36de 1619
a07a9776
BR
1620 fuzzy_matches = fuzzy_find_matching_lines(parent, target,
1621 tlno, parent_slno, same,
1622 parent_len);
ae3f36de
BR
1623 for (i = 0; i < same - tlno; i++) {
1624 target_idx = tlno + i;
a07a9776
BR
1625 if (fuzzy_matches && fuzzy_matches[i] >= 0) {
1626 best_idx = fuzzy_matches[i];
1627 } else {
1628 best_idx = scan_parent_range(parent->fingerprints,
1629 target->fingerprints,
1630 target_idx, 0,
1631 parent->num_lines);
1632 }
1633 if (best_idx >= 0) {
ae3f36de
BR
1634 line_blames[i].is_parent = 1;
1635 line_blames[i].s_lno = best_idx;
1636 } else {
1637 line_blames[i].is_parent = 0;
1638 line_blames[i].s_lno = target_idx;
1639 }
1640 }
a07a9776 1641 free(fuzzy_matches);
ae3f36de
BR
1642}
1643
1644/*
1645 * This decides which parts of a blame entry go to the parent (added to the
1646 * ignoredp list) and which stay with the target (added to the diffp list). The
1647 * actual decision was made in a separate heuristic function, and those answers
1648 * for the lines in 'e' are in line_blames. This consumes e, essentially
1649 * putting it on a list.
1650 *
1651 * Note that the blame entries on the ignoredp list are not necessarily sorted
1652 * with respect to the parent's line numbers yet.
1653 */
1654static void ignore_blame_entry(struct blame_entry *e,
1655 struct blame_origin *parent,
1656 struct blame_origin *target,
1657 struct blame_entry **diffp,
1658 struct blame_entry **ignoredp,
1659 struct blame_line_tracker *line_blames)
1660{
1661 int entry_len, nr_lines, i;
1662
1663 /*
1664 * We carve new entries off the front of e. Each entry comes from a
1665 * contiguous chunk of lines: adjacent lines from the same origin
1666 * (either the parent or the target).
1667 */
1668 entry_len = 1;
1669 nr_lines = e->num_lines; /* e changes in the loop */
1670 for (i = 0; i < nr_lines; i++) {
1671 struct blame_entry *next = NULL;
1672
1673 /*
1674 * We are often adjacent to the next line - only split the blame
1675 * entry when we have to.
1676 */
1677 if (i + 1 < nr_lines) {
1678 if (are_lines_adjacent(&line_blames[i],
1679 &line_blames[i + 1])) {
1680 entry_len++;
1681 continue;
1682 }
1683 next = split_blame_at(e, entry_len,
1684 blame_origin_incref(e->suspect));
1685 }
1686 if (line_blames[i].is_parent) {
8934ac8c 1687 e->ignored = 1;
ae3f36de
BR
1688 blame_origin_decref(e->suspect);
1689 e->suspect = blame_origin_incref(parent);
1690 e->s_lno = line_blames[i - entry_len + 1].s_lno;
1691 e->next = *ignoredp;
1692 *ignoredp = e;
1693 } else {
8934ac8c 1694 e->unblamable = 1;
ae3f36de
BR
1695 /* e->s_lno is already in the target's address space. */
1696 e->next = *diffp;
1697 *diffp = e;
1698 }
1699 assert(e->num_lines == entry_len);
1700 e = next;
1701 entry_len = 1;
1702 }
1703 assert(!e);
1704}
1705
b543bb1c
JS
1706/*
1707 * Process one hunk from the patch between the current suspect for
1708 * blame_entry e and its parent. This first blames any unfinished
1709 * entries before the chunk (which is where target and parent start
1710 * differing) on the parent, and then splits blame entries at the
1711 * start and at the end of the difference region. Since use of -M and
1712 * -C options may lead to overlapping/duplicate source line number
1713 * ranges, all we can rely on from sorting/merging is the order of the
1714 * first suspect line number.
ae3f36de
BR
1715 *
1716 * tlno: line number in the target where this chunk begins
1717 * same: line number in the target where this chunk ends
1718 * offset: add to tlno to get the chunk starting point in the parent
1719 * parent_len: number of lines in the parent chunk
b543bb1c
JS
1720 */
1721static void blame_chunk(struct blame_entry ***dstq, struct blame_entry ***srcq,
ae3f36de
BR
1722 int tlno, int offset, int same, int parent_len,
1723 struct blame_origin *parent,
1724 struct blame_origin *target, int ignore_diffs)
b543bb1c
JS
1725{
1726 struct blame_entry *e = **srcq;
ae3f36de
BR
1727 struct blame_entry *samep = NULL, *diffp = NULL, *ignoredp = NULL;
1728 struct blame_line_tracker *line_blames = NULL;
b543bb1c
JS
1729
1730 while (e && e->s_lno < tlno) {
1731 struct blame_entry *next = e->next;
1732 /*
1733 * current record starts before differing portion. If
1734 * it reaches into it, we need to split it up and
1735 * examine the second part separately.
1736 */
1737 if (e->s_lno + e->num_lines > tlno) {
1738 /* Move second half to a new record */
55f808fb
BR
1739 struct blame_entry *n;
1740
1741 n = split_blame_at(e, tlno - e->s_lno, e->suspect);
b543bb1c
JS
1742 /* Push new record to diffp */
1743 n->next = diffp;
1744 diffp = n;
1745 } else
1746 blame_origin_decref(e->suspect);
1747 /* Pass blame for everything before the differing
1748 * chunk to the parent */
1749 e->suspect = blame_origin_incref(parent);
1750 e->s_lno += offset;
1751 e->next = samep;
1752 samep = e;
1753 e = next;
1754 }
1755 /*
1756 * As we don't know how much of a common stretch after this
1757 * diff will occur, the currently blamed parts are all that we
1758 * can assign to the parent for now.
1759 */
1760
1761 if (samep) {
1762 **dstq = reverse_blame(samep, **dstq);
1763 *dstq = &samep->next;
1764 }
1765 /*
1766 * Prepend the split off portions: everything after e starts
1767 * after the blameable portion.
1768 */
1769 e = reverse_blame(diffp, e);
1770
1771 /*
1772 * Now retain records on the target while parts are different
1773 * from the parent.
1774 */
1775 samep = NULL;
1776 diffp = NULL;
ae3f36de
BR
1777
1778 if (ignore_diffs && same - tlno > 0) {
1779 line_blames = xcalloc(sizeof(struct blame_line_tracker),
1780 same - tlno);
1781 guess_line_blames(parent, target, tlno, offset, same,
1782 parent_len, line_blames);
1783 }
1784
b543bb1c
JS
1785 while (e && e->s_lno < same) {
1786 struct blame_entry *next = e->next;
1787
1788 /*
1789 * If current record extends into sameness, need to split.
1790 */
1791 if (e->s_lno + e->num_lines > same) {
1792 /*
1793 * Move second half to a new record to be
1794 * processed by later chunks
1795 */
55f808fb
BR
1796 struct blame_entry *n;
1797
1798 n = split_blame_at(e, same - e->s_lno,
1799 blame_origin_incref(e->suspect));
b543bb1c
JS
1800 /* Push new record to samep */
1801 n->next = samep;
1802 samep = n;
1803 }
ae3f36de
BR
1804 if (ignore_diffs) {
1805 ignore_blame_entry(e, parent, target, &diffp, &ignoredp,
1806 line_blames + e->s_lno - tlno);
1807 } else {
1808 e->next = diffp;
1809 diffp = e;
1810 }
b543bb1c
JS
1811 e = next;
1812 }
ae3f36de
BR
1813 free(line_blames);
1814 if (ignoredp) {
1815 /*
1816 * Note ignoredp is not sorted yet, and thus neither is dstq.
1817 * That list must be sorted before we queue_blames(). We defer
1818 * sorting until after all diff hunks are processed, so that
1819 * guess_line_blames() can pick *any* line in the parent. The
1820 * slight drawback is that we end up sorting all blame entries
1821 * passed to the parent, including those that are unrelated to
1822 * changes made by the ignored commit.
1823 */
1824 **dstq = reverse_blame(ignoredp, **dstq);
1825 *dstq = &ignoredp->next;
1826 }
b543bb1c
JS
1827 **srcq = reverse_blame(diffp, reverse_blame(samep, e));
1828 /* Move across elements that are in the unblamable portion */
1829 if (diffp)
1830 *srcq = &diffp->next;
1831}
1832
1833struct blame_chunk_cb_data {
1834 struct blame_origin *parent;
ae3f36de 1835 struct blame_origin *target;
b543bb1c 1836 long offset;
ae3f36de 1837 int ignore_diffs;
b543bb1c
JS
1838 struct blame_entry **dstq;
1839 struct blame_entry **srcq;
1840};
1841
1842/* diff chunks are from parent to target */
1843static int blame_chunk_cb(long start_a, long count_a,
1844 long start_b, long count_b, void *data)
1845{
1846 struct blame_chunk_cb_data *d = data;
1847 if (start_a - start_b != d->offset)
1848 die("internal error in blame::blame_chunk_cb");
1849 blame_chunk(&d->dstq, &d->srcq, start_b, start_a - start_b,
ae3f36de
BR
1850 start_b + count_b, count_a, d->parent, d->target,
1851 d->ignore_diffs);
b543bb1c
JS
1852 d->offset = start_a + count_a - (start_b + count_b);
1853 return 0;
1854}
1855
1856/*
1857 * We are looking at the origin 'target' and aiming to pass blame
1858 * for the lines it is suspected to its parent. Run diff to find
1859 * which lines came from parent and pass blame for them.
1860 */
1861static void pass_blame_to_parent(struct blame_scoreboard *sb,
1862 struct blame_origin *target,
ae3f36de 1863 struct blame_origin *parent, int ignore_diffs)
b543bb1c
JS
1864{
1865 mmfile_t file_p, file_o;
1866 struct blame_chunk_cb_data d;
1867 struct blame_entry *newdest = NULL;
1868
1869 if (!target->suspects)
1870 return; /* nothing remains for this target */
1871
1872 d.parent = parent;
ae3f36de 1873 d.target = target;
b543bb1c 1874 d.offset = 0;
ae3f36de 1875 d.ignore_diffs = ignore_diffs;
b543bb1c
JS
1876 d.dstq = &newdest; d.srcq = &target->suspects;
1877
1fc73384
BR
1878 fill_origin_blob(&sb->revs->diffopt, parent, &file_p,
1879 &sb->num_read_blob, ignore_diffs);
1880 fill_origin_blob(&sb->revs->diffopt, target, &file_o,
1881 &sb->num_read_blob, ignore_diffs);
b543bb1c
JS
1882 sb->num_get_patch++;
1883
1884 if (diff_hunks(&file_p, &file_o, blame_chunk_cb, &d, sb->xdl_opts))
1885 die("unable to generate diff (%s -> %s)",
1886 oid_to_hex(&parent->commit->object.oid),
1887 oid_to_hex(&target->commit->object.oid));
1888 /* The rest are the same as the parent */
ae3f36de
BR
1889 blame_chunk(&d.dstq, &d.srcq, INT_MAX, d.offset, INT_MAX, 0,
1890 parent, target, 0);
b543bb1c 1891 *d.dstq = NULL;
ae3f36de
BR
1892 if (ignore_diffs)
1893 newdest = llist_mergesort(newdest, get_next_blame,
1894 set_next_blame,
1895 compare_blame_suspect);
b543bb1c
JS
1896 queue_blames(sb, parent, newdest);
1897
1898 return;
1899}
1900
1901/*
1902 * The lines in blame_entry after splitting blames many times can become
1903 * very small and trivial, and at some point it becomes pointless to
1904 * blame the parents. E.g. "\t\t}\n\t}\n\n" appears everywhere in any
1905 * ordinary C program, and it is not worth to say it was copied from
1906 * totally unrelated file in the parent.
1907 *
1908 * Compute how trivial the lines in the blame_entry are.
1909 */
1910unsigned blame_entry_score(struct blame_scoreboard *sb, struct blame_entry *e)
1911{
1912 unsigned score;
1913 const char *cp, *ep;
1914
1915 if (e->score)
1916 return e->score;
1917
1918 score = 1;
1919 cp = blame_nth_line(sb, e->lno);
1920 ep = blame_nth_line(sb, e->lno + e->num_lines);
1921 while (cp < ep) {
1922 unsigned ch = *((unsigned char *)cp);
1923 if (isalnum(ch))
1924 score++;
1925 cp++;
1926 }
1927 e->score = score;
1928 return score;
1929}
1930
1931/*
abeacb25
BW
1932 * best_so_far[] and potential[] are both a split of an existing blame_entry
1933 * that passes blame to the parent. Maintain best_so_far the best split so
1934 * far, by comparing potential and best_so_far and copying potential into
b543bb1c
JS
1935 * bst_so_far as needed.
1936 */
1937static void copy_split_if_better(struct blame_scoreboard *sb,
1938 struct blame_entry *best_so_far,
abeacb25 1939 struct blame_entry *potential)
b543bb1c
JS
1940{
1941 int i;
1942
abeacb25 1943 if (!potential[1].suspect)
b543bb1c
JS
1944 return;
1945 if (best_so_far[1].suspect) {
abeacb25
BW
1946 if (blame_entry_score(sb, &potential[1]) <
1947 blame_entry_score(sb, &best_so_far[1]))
b543bb1c
JS
1948 return;
1949 }
1950
1951 for (i = 0; i < 3; i++)
abeacb25 1952 blame_origin_incref(potential[i].suspect);
b543bb1c 1953 decref_split(best_so_far);
abeacb25 1954 memcpy(best_so_far, potential, sizeof(struct blame_entry[3]));
b543bb1c
JS
1955}
1956
1957/*
1958 * We are looking at a part of the final image represented by
1959 * ent (tlno and same are offset by ent->s_lno).
1960 * tlno is where we are looking at in the final image.
1961 * up to (but not including) same match preimage.
1962 * plno is where we are looking at in the preimage.
1963 *
1964 * <-------------- final image ---------------------->
1965 * <------ent------>
1966 * ^tlno ^same
1967 * <---------preimage----->
1968 * ^plno
1969 *
1970 * All line numbers are 0-based.
1971 */
1972static void handle_split(struct blame_scoreboard *sb,
1973 struct blame_entry *ent,
1974 int tlno, int plno, int same,
1975 struct blame_origin *parent,
1976 struct blame_entry *split)
1977{
1978 if (ent->num_lines <= tlno)
1979 return;
1980 if (tlno < same) {
abeacb25 1981 struct blame_entry potential[3];
b543bb1c
JS
1982 tlno += ent->s_lno;
1983 same += ent->s_lno;
abeacb25
BW
1984 split_overlap(potential, ent, tlno, plno, same, parent);
1985 copy_split_if_better(sb, split, potential);
1986 decref_split(potential);
b543bb1c
JS
1987 }
1988}
1989
1990struct handle_split_cb_data {
1991 struct blame_scoreboard *sb;
1992 struct blame_entry *ent;
1993 struct blame_origin *parent;
1994 struct blame_entry *split;
1995 long plno;
1996 long tlno;
1997};
1998
1999static int handle_split_cb(long start_a, long count_a,
2000 long start_b, long count_b, void *data)
2001{
2002 struct handle_split_cb_data *d = data;
2003 handle_split(d->sb, d->ent, d->tlno, d->plno, start_b, d->parent,
2004 d->split);
2005 d->plno = start_a + count_a;
2006 d->tlno = start_b + count_b;
2007 return 0;
2008}
2009
2010/*
2011 * Find the lines from parent that are the same as ent so that
2012 * we can pass blames to it. file_p has the blob contents for
2013 * the parent.
2014 */
2015static void find_copy_in_blob(struct blame_scoreboard *sb,
2016 struct blame_entry *ent,
2017 struct blame_origin *parent,
2018 struct blame_entry *split,
2019 mmfile_t *file_p)
2020{
2021 const char *cp;
2022 mmfile_t file_o;
2023 struct handle_split_cb_data d;
2024
2025 memset(&d, 0, sizeof(d));
2026 d.sb = sb; d.ent = ent; d.parent = parent; d.split = split;
2027 /*
2028 * Prepare mmfile that contains only the lines in ent.
2029 */
2030 cp = blame_nth_line(sb, ent->lno);
2031 file_o.ptr = (char *) cp;
2032 file_o.size = blame_nth_line(sb, ent->lno + ent->num_lines) - cp;
2033
2034 /*
2035 * file_o is a part of final image we are annotating.
2036 * file_p partially may match that image.
2037 */
2038 memset(split, 0, sizeof(struct blame_entry [3]));
2039 if (diff_hunks(file_p, &file_o, handle_split_cb, &d, sb->xdl_opts))
2040 die("unable to generate diff (%s)",
2041 oid_to_hex(&parent->commit->object.oid));
2042 /* remainder, if any, all match the preimage */
2043 handle_split(sb, ent, d.tlno, d.plno, ent->num_lines, parent, split);
2044}
2045
2046/* Move all blame entries from list *source that have a score smaller
2047 * than score_min to the front of list *small.
2048 * Returns a pointer to the link pointing to the old head of the small list.
2049 */
2050
2051static struct blame_entry **filter_small(struct blame_scoreboard *sb,
2052 struct blame_entry **small,
2053 struct blame_entry **source,
2054 unsigned score_min)
2055{
2056 struct blame_entry *p = *source;
2057 struct blame_entry *oldsmall = *small;
2058 while (p) {
2059 if (blame_entry_score(sb, p) <= score_min) {
2060 *small = p;
2061 small = &p->next;
2062 p = *small;
2063 } else {
2064 *source = p;
2065 source = &p->next;
2066 p = *source;
2067 }
2068 }
2069 *small = oldsmall;
2070 *source = NULL;
2071 return small;
2072}
2073
2074/*
2075 * See if lines currently target is suspected for can be attributed to
2076 * parent.
2077 */
2078static void find_move_in_parent(struct blame_scoreboard *sb,
2079 struct blame_entry ***blamed,
2080 struct blame_entry **toosmall,
2081 struct blame_origin *target,
2082 struct blame_origin *parent)
2083{
2084 struct blame_entry *e, split[3];
2085 struct blame_entry *unblamed = target->suspects;
2086 struct blame_entry *leftover = NULL;
2087 mmfile_t file_p;
2088
2089 if (!unblamed)
2090 return; /* nothing remains for this target */
2091
1fc73384
BR
2092 fill_origin_blob(&sb->revs->diffopt, parent, &file_p,
2093 &sb->num_read_blob, 0);
b543bb1c
JS
2094 if (!file_p.ptr)
2095 return;
2096
2097 /* At each iteration, unblamed has a NULL-terminated list of
2098 * entries that have not yet been tested for blame. leftover
2099 * contains the reversed list of entries that have been tested
2100 * without being assignable to the parent.
2101 */
2102 do {
2103 struct blame_entry **unblamedtail = &unblamed;
2104 struct blame_entry *next;
2105 for (e = unblamed; e; e = next) {
2106 next = e->next;
2107 find_copy_in_blob(sb, e, parent, split, &file_p);
2108 if (split[1].suspect &&
2109 sb->move_score < blame_entry_score(sb, &split[1])) {
2110 split_blame(blamed, &unblamedtail, split, e);
2111 } else {
2112 e->next = leftover;
2113 leftover = e;
2114 }
2115 decref_split(split);
2116 }
2117 *unblamedtail = NULL;
2118 toosmall = filter_small(sb, toosmall, &unblamed, sb->move_score);
2119 } while (unblamed);
2120 target->suspects = reverse_blame(leftover, NULL);
2121}
2122
2123struct blame_list {
2124 struct blame_entry *ent;
2125 struct blame_entry split[3];
2126};
2127
2128/*
2129 * Count the number of entries the target is suspected for,
2130 * and prepare a list of entry and the best split.
2131 */
2132static struct blame_list *setup_blame_list(struct blame_entry *unblamed,
2133 int *num_ents_p)
2134{
2135 struct blame_entry *e;
2136 int num_ents, i;
2137 struct blame_list *blame_list = NULL;
2138
2139 for (e = unblamed, num_ents = 0; e; e = e->next)
2140 num_ents++;
2141 if (num_ents) {
2142 blame_list = xcalloc(num_ents, sizeof(struct blame_list));
2143 for (e = unblamed, i = 0; e; e = e->next)
2144 blame_list[i++].ent = e;
2145 }
2146 *num_ents_p = num_ents;
2147 return blame_list;
2148}
2149
2150/*
2151 * For lines target is suspected for, see if we can find code movement
2152 * across file boundary from the parent commit. porigin is the path
2153 * in the parent we already tried.
2154 */
2155static void find_copy_in_parent(struct blame_scoreboard *sb,
2156 struct blame_entry ***blamed,
2157 struct blame_entry **toosmall,
2158 struct blame_origin *target,
2159 struct commit *parent,
2160 struct blame_origin *porigin,
2161 int opt)
2162{
2163 struct diff_options diff_opts;
2164 int i, j;
2165 struct blame_list *blame_list;
2166 int num_ents;
2167 struct blame_entry *unblamed = target->suspects;
2168 struct blame_entry *leftover = NULL;
2169
2170 if (!unblamed)
2171 return; /* nothing remains for this target */
2172
e6757652 2173 repo_diff_setup(sb->repo, &diff_opts);
0d1e0e78 2174 diff_opts.flags.recursive = 1;
b543bb1c
JS
2175 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
2176
2177 diff_setup_done(&diff_opts);
2178
2179 /* Try "find copies harder" on new path if requested;
2180 * we do not want to use diffcore_rename() actually to
2181 * match things up; find_copies_harder is set only to
a6f38c10 2182 * force diff_tree_oid() to feed all filepairs to diff_queue,
b543bb1c
JS
2183 * and this code needs to be after diff_setup_done(), which
2184 * usually makes find-copies-harder imply copy detection.
2185 */
2186 if ((opt & PICKAXE_BLAME_COPY_HARDEST)
2187 || ((opt & PICKAXE_BLAME_COPY_HARDER)
2188 && (!porigin || strcmp(target->path, porigin->path))))
0d1e0e78 2189 diff_opts.flags.find_copies_harder = 1;
b543bb1c
JS
2190
2191 if (is_null_oid(&target->commit->object.oid))
2e27bd77 2192 do_diff_cache(get_commit_tree_oid(parent), &diff_opts);
b543bb1c 2193 else
2e27bd77
DS
2194 diff_tree_oid(get_commit_tree_oid(parent),
2195 get_commit_tree_oid(target->commit),
a6f38c10 2196 "", &diff_opts);
b543bb1c 2197
0d1e0e78 2198 if (!diff_opts.flags.find_copies_harder)
b543bb1c
JS
2199 diffcore_std(&diff_opts);
2200
2201 do {
2202 struct blame_entry **unblamedtail = &unblamed;
2203 blame_list = setup_blame_list(unblamed, &num_ents);
2204
2205 for (i = 0; i < diff_queued_diff.nr; i++) {
2206 struct diff_filepair *p = diff_queued_diff.queue[i];
2207 struct blame_origin *norigin;
2208 mmfile_t file_p;
abeacb25 2209 struct blame_entry potential[3];
b543bb1c
JS
2210
2211 if (!DIFF_FILE_VALID(p->one))
2212 continue; /* does not exist in parent */
2213 if (S_ISGITLINK(p->one->mode))
2214 continue; /* ignore git links */
2215 if (porigin && !strcmp(p->one->path, porigin->path))
2216 /* find_move already dealt with this path */
2217 continue;
2218
2219 norigin = get_origin(parent, p->one->path);
2220 oidcpy(&norigin->blob_oid, &p->one->oid);
2221 norigin->mode = p->one->mode;
1fc73384
BR
2222 fill_origin_blob(&sb->revs->diffopt, norigin, &file_p,
2223 &sb->num_read_blob, 0);
b543bb1c
JS
2224 if (!file_p.ptr)
2225 continue;
2226
2227 for (j = 0; j < num_ents; j++) {
2228 find_copy_in_blob(sb, blame_list[j].ent,
abeacb25 2229 norigin, potential, &file_p);
b543bb1c 2230 copy_split_if_better(sb, blame_list[j].split,
abeacb25
BW
2231 potential);
2232 decref_split(potential);
b543bb1c
JS
2233 }
2234 blame_origin_decref(norigin);
2235 }
2236
2237 for (j = 0; j < num_ents; j++) {
2238 struct blame_entry *split = blame_list[j].split;
2239 if (split[1].suspect &&
2240 sb->copy_score < blame_entry_score(sb, &split[1])) {
2241 split_blame(blamed, &unblamedtail, split,
2242 blame_list[j].ent);
2243 } else {
2244 blame_list[j].ent->next = leftover;
2245 leftover = blame_list[j].ent;
2246 }
2247 decref_split(split);
2248 }
2249 free(blame_list);
2250 *unblamedtail = NULL;
2251 toosmall = filter_small(sb, toosmall, &unblamed, sb->copy_score);
2252 } while (unblamed);
2253 target->suspects = reverse_blame(leftover, NULL);
2254 diff_flush(&diff_opts);
2255 clear_pathspec(&diff_opts.pathspec);
2256}
2257
2258/*
2259 * The blobs of origin and porigin exactly match, so everything
2260 * origin is suspected for can be blamed on the parent.
2261 */
2262static void pass_whole_blame(struct blame_scoreboard *sb,
2263 struct blame_origin *origin, struct blame_origin *porigin)
2264{
2265 struct blame_entry *e, *suspects;
2266
2267 if (!porigin->file.ptr && origin->file.ptr) {
2268 /* Steal its file */
2269 porigin->file = origin->file;
2270 origin->file.ptr = NULL;
2271 }
2272 suspects = origin->suspects;
2273 origin->suspects = NULL;
2274 for (e = suspects; e; e = e->next) {
2275 blame_origin_incref(porigin);
2276 blame_origin_decref(e->suspect);
2277 e->suspect = porigin;
2278 }
2279 queue_blames(sb, porigin, suspects);
2280}
2281
2282/*
2283 * We pass blame from the current commit to its parents. We keep saying
2284 * "parent" (and "porigin"), but what we mean is to find scapegoat to
2285 * exonerate ourselves.
2286 */
2287static struct commit_list *first_scapegoat(struct rev_info *revs, struct commit *commit,
2288 int reverse)
2289{
2290 if (!reverse) {
2291 if (revs->first_parent_only &&
2292 commit->parents &&
2293 commit->parents->next) {
2294 free_commit_list(commit->parents->next);
2295 commit->parents->next = NULL;
2296 }
2297 return commit->parents;
2298 }
2299 return lookup_decoration(&revs->children, &commit->object);
2300}
2301
2302static int num_scapegoats(struct rev_info *revs, struct commit *commit, int reverse)
2303{
2304 struct commit_list *l = first_scapegoat(revs, commit, reverse);
2305 return commit_list_count(l);
2306}
2307
2308/* Distribute collected unsorted blames to the respected sorted lists
2309 * in the various origins.
2310 */
2311static void distribute_blame(struct blame_scoreboard *sb, struct blame_entry *blamed)
2312{
2313 blamed = llist_mergesort(blamed, get_next_blame, set_next_blame,
2314 compare_blame_suspect);
2315 while (blamed)
2316 {
2317 struct blame_origin *porigin = blamed->suspect;
2318 struct blame_entry *suspects = NULL;
2319 do {
2320 struct blame_entry *next = blamed->next;
2321 blamed->next = suspects;
2322 suspects = blamed;
2323 blamed = next;
2324 } while (blamed && blamed->suspect == porigin);
2325 suspects = reverse_blame(suspects, NULL);
2326 queue_blames(sb, porigin, suspects);
2327 }
2328}
2329
2330#define MAXSG 16
2331
2332static void pass_blame(struct blame_scoreboard *sb, struct blame_origin *origin, int opt)
2333{
2334 struct rev_info *revs = sb->revs;
2335 int i, pass, num_sg;
2336 struct commit *commit = origin->commit;
2337 struct commit_list *sg;
2338 struct blame_origin *sg_buf[MAXSG];
2339 struct blame_origin *porigin, **sg_origin = sg_buf;
2340 struct blame_entry *toosmall = NULL;
2341 struct blame_entry *blames, **blametail = &blames;
2342
2343 num_sg = num_scapegoats(revs, commit, sb->reverse);
2344 if (!num_sg)
2345 goto finish;
2346 else if (num_sg < ARRAY_SIZE(sg_buf))
2347 memset(sg_buf, 0, sizeof(sg_buf));
2348 else
2349 sg_origin = xcalloc(num_sg, sizeof(*sg_origin));
2350
2351 /*
2352 * The first pass looks for unrenamed path to optimize for
2353 * common cases, then we look for renames in the second pass.
2354 */
2355 for (pass = 0; pass < 2 - sb->no_whole_file_rename; pass++) {
e6757652 2356 struct blame_origin *(*find)(struct repository *, struct commit *, struct blame_origin *);
b543bb1c
JS
2357 find = pass ? find_rename : find_origin;
2358
2359 for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2360 i < num_sg && sg;
2361 sg = sg->next, i++) {
2362 struct commit *p = sg->item;
2363 int j, same;
2364
2365 if (sg_origin[i])
2366 continue;
2367 if (parse_commit(p))
2368 continue;
e6757652 2369 porigin = find(sb->repo, p, origin);
b543bb1c
JS
2370 if (!porigin)
2371 continue;
4a7e27e9 2372 if (oideq(&porigin->blob_oid, &origin->blob_oid)) {
b543bb1c
JS
2373 pass_whole_blame(sb, origin, porigin);
2374 blame_origin_decref(porigin);
2375 goto finish;
2376 }
2377 for (j = same = 0; j < i; j++)
2378 if (sg_origin[j] &&
4a7e27e9 2379 oideq(&sg_origin[j]->blob_oid, &porigin->blob_oid)) {
b543bb1c
JS
2380 same = 1;
2381 break;
2382 }
2383 if (!same)
2384 sg_origin[i] = porigin;
2385 else
2386 blame_origin_decref(porigin);
2387 }
2388 }
2389
2390 sb->num_commits++;
2391 for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2392 i < num_sg && sg;
2393 sg = sg->next, i++) {
2394 struct blame_origin *porigin = sg_origin[i];
2395 if (!porigin)
2396 continue;
2397 if (!origin->previous) {
2398 blame_origin_incref(porigin);
2399 origin->previous = porigin;
2400 }
ae3f36de 2401 pass_blame_to_parent(sb, origin, porigin, 0);
b543bb1c
JS
2402 if (!origin->suspects)
2403 goto finish;
2404 }
2405
ae3f36de
BR
2406 /*
2407 * Pass remaining suspects for ignored commits to their parents.
2408 */
2409 if (oidset_contains(&sb->ignore_list, &commit->object.oid)) {
2410 for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2411 i < num_sg && sg;
2412 sg = sg->next, i++) {
2413 struct blame_origin *porigin = sg_origin[i];
2414
2415 if (!porigin)
2416 continue;
2417 pass_blame_to_parent(sb, origin, porigin, 1);
a07a9776
BR
2418 /*
2419 * Preemptively drop porigin so we can refresh the
2420 * fingerprints if we use the parent again, which can
2421 * occur if you ignore back-to-back commits.
2422 */
2423 drop_origin_blob(porigin);
ae3f36de
BR
2424 if (!origin->suspects)
2425 goto finish;
2426 }
2427 }
2428
b543bb1c
JS
2429 /*
2430 * Optionally find moves in parents' files.
2431 */
2432 if (opt & PICKAXE_BLAME_MOVE) {
2433 filter_small(sb, &toosmall, &origin->suspects, sb->move_score);
2434 if (origin->suspects) {
2435 for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2436 i < num_sg && sg;
2437 sg = sg->next, i++) {
2438 struct blame_origin *porigin = sg_origin[i];
2439 if (!porigin)
2440 continue;
2441 find_move_in_parent(sb, &blametail, &toosmall, origin, porigin);
2442 if (!origin->suspects)
2443 break;
2444 }
2445 }
2446 }
2447
2448 /*
2449 * Optionally find copies from parents' files.
2450 */
2451 if (opt & PICKAXE_BLAME_COPY) {
2452 if (sb->copy_score > sb->move_score)
2453 filter_small(sb, &toosmall, &origin->suspects, sb->copy_score);
2454 else if (sb->copy_score < sb->move_score) {
2455 origin->suspects = blame_merge(origin->suspects, toosmall);
2456 toosmall = NULL;
2457 filter_small(sb, &toosmall, &origin->suspects, sb->copy_score);
2458 }
2459 if (!origin->suspects)
2460 goto finish;
2461
2462 for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2463 i < num_sg && sg;
2464 sg = sg->next, i++) {
2465 struct blame_origin *porigin = sg_origin[i];
2466 find_copy_in_parent(sb, &blametail, &toosmall,
2467 origin, sg->item, porigin, opt);
2468 if (!origin->suspects)
2469 goto finish;
2470 }
2471 }
2472
2473finish:
2474 *blametail = NULL;
2475 distribute_blame(sb, blames);
2476 /*
2477 * prepend toosmall to origin->suspects
2478 *
2479 * There is no point in sorting: this ends up on a big
2480 * unsorted list in the caller anyway.
2481 */
2482 if (toosmall) {
2483 struct blame_entry **tail = &toosmall;
2484 while (*tail)
2485 tail = &(*tail)->next;
2486 *tail = origin->suspects;
2487 origin->suspects = toosmall;
2488 }
2489 for (i = 0; i < num_sg; i++) {
2490 if (sg_origin[i]) {
2491 drop_origin_blob(sg_origin[i]);
2492 blame_origin_decref(sg_origin[i]);
2493 }
2494 }
2495 drop_origin_blob(origin);
2496 if (sg_buf != sg_origin)
2497 free(sg_origin);
2498}
2499
2500/*
2501 * The main loop -- while we have blobs with lines whose true origin
2502 * is still unknown, pick one blob, and allow its lines to pass blames
2503 * to its parents. */
2504void assign_blame(struct blame_scoreboard *sb, int opt)
2505{
2506 struct rev_info *revs = sb->revs;
2507 struct commit *commit = prio_queue_get(&sb->commits);
2508
2509 while (commit) {
2510 struct blame_entry *ent;
4e0df4e6 2511 struct blame_origin *suspect = get_blame_suspects(commit);
b543bb1c
JS
2512
2513 /* find one suspect to break down */
2514 while (suspect && !suspect->suspects)
2515 suspect = suspect->next;
2516
2517 if (!suspect) {
2518 commit = prio_queue_get(&sb->commits);
2519 continue;
2520 }
2521
2522 assert(commit == suspect->commit);
2523
2524 /*
2525 * We will use this suspect later in the loop,
2526 * so hold onto it in the meantime.
2527 */
2528 blame_origin_incref(suspect);
2529 parse_commit(commit);
2530 if (sb->reverse ||
2531 (!(commit->object.flags & UNINTERESTING) &&
2532 !(revs->max_age != -1 && commit->date < revs->max_age)))
2533 pass_blame(sb, suspect, opt);
2534 else {
2535 commit->object.flags |= UNINTERESTING;
2536 if (commit->object.parsed)
2537 mark_parents_uninteresting(commit);
2538 }
2539 /* treat root commit as boundary */
2540 if (!commit->parents && !sb->show_root)
2541 commit->object.flags |= UNINTERESTING;
2542
2543 /* Take responsibility for the remaining entries */
2544 ent = suspect->suspects;
2545 if (ent) {
2546 suspect->guilty = 1;
2547 for (;;) {
2548 struct blame_entry *next = ent->next;
2549 if (sb->found_guilty_entry)
2550 sb->found_guilty_entry(ent, sb->found_guilty_entry_data);
2551 if (next) {
2552 ent = next;
2553 continue;
2554 }
2555 ent->next = sb->ent;
2556 sb->ent = suspect->suspects;
2557 suspect->suspects = NULL;
2558 break;
2559 }
2560 }
2561 blame_origin_decref(suspect);
2562
2563 if (sb->debug) /* sanity */
2564 sanity_check_refcnt(sb);
2565 }
2566}
09002f1b 2567
09002f1b
JS
2568/*
2569 * To allow quick access to the contents of nth line in the
2570 * final image, prepare an index in the scoreboard.
2571 */
2572static int prepare_lines(struct blame_scoreboard *sb)
2573{
1fc73384
BR
2574 sb->num_lines = find_line_starts(&sb->lineno, sb->final_buf,
2575 sb->final_buf_size);
09002f1b
JS
2576 return sb->num_lines;
2577}
2578
2579static struct commit *find_single_final(struct rev_info *revs,
2580 const char **name_p)
2581{
2582 int i;
2583 struct commit *found = NULL;
2584 const char *name = NULL;
2585
2586 for (i = 0; i < revs->pending.nr; i++) {
2587 struct object *obj = revs->pending.objects[i].item;
2588 if (obj->flags & UNINTERESTING)
2589 continue;
fb998eae 2590 obj = deref_tag(revs->repo, obj, NULL, 0);
09002f1b
JS
2591 if (obj->type != OBJ_COMMIT)
2592 die("Non commit %s?", revs->pending.objects[i].name);
2593 if (found)
2594 die("More than one commit to dig from %s and %s?",
2595 revs->pending.objects[i].name, name);
2596 found = (struct commit *)obj;
2597 name = revs->pending.objects[i].name;
2598 }
2599 if (name_p)
9e7d8a9b 2600 *name_p = xstrdup_or_null(name);
09002f1b
JS
2601 return found;
2602}
2603
2604static struct commit *dwim_reverse_initial(struct rev_info *revs,
2605 const char **name_p)
2606{
2607 /*
2608 * DWIM "git blame --reverse ONE -- PATH" as
2609 * "git blame --reverse ONE..HEAD -- PATH" but only do so
2610 * when it makes sense.
2611 */
2612 struct object *obj;
2613 struct commit *head_commit;
583c6a22 2614 struct object_id head_oid;
09002f1b
JS
2615
2616 if (revs->pending.nr != 1)
2617 return NULL;
2618
2619 /* Is that sole rev a committish? */
2620 obj = revs->pending.objects[0].item;
fb998eae 2621 obj = deref_tag(revs->repo, obj, NULL, 0);
09002f1b
JS
2622 if (obj->type != OBJ_COMMIT)
2623 return NULL;
2624
2625 /* Do we have HEAD? */
49e61479 2626 if (!resolve_ref_unsafe("HEAD", RESOLVE_REF_READING, &head_oid, NULL))
09002f1b 2627 return NULL;
fb998eae 2628 head_commit = lookup_commit_reference_gently(revs->repo,
21e1ee8f 2629 &head_oid, 1);
09002f1b
JS
2630 if (!head_commit)
2631 return NULL;
2632
2633 /* Turn "ONE" into "ONE..HEAD" then */
2634 obj->flags |= UNINTERESTING;
2635 add_pending_object(revs, &head_commit->object, "HEAD");
2636
2637 if (name_p)
2638 *name_p = revs->pending.objects[0].name;
2639 return (struct commit *)obj;
2640}
2641
2642static struct commit *find_single_initial(struct rev_info *revs,
2643 const char **name_p)
2644{
2645 int i;
2646 struct commit *found = NULL;
2647 const char *name = NULL;
2648
2649 /*
2650 * There must be one and only one negative commit, and it must be
2651 * the boundary.
2652 */
2653 for (i = 0; i < revs->pending.nr; i++) {
2654 struct object *obj = revs->pending.objects[i].item;
2655 if (!(obj->flags & UNINTERESTING))
2656 continue;
fb998eae 2657 obj = deref_tag(revs->repo, obj, NULL, 0);
09002f1b
JS
2658 if (obj->type != OBJ_COMMIT)
2659 die("Non commit %s?", revs->pending.objects[i].name);
2660 if (found)
2661 die("More than one commit to dig up from, %s and %s?",
2662 revs->pending.objects[i].name, name);
2663 found = (struct commit *) obj;
2664 name = revs->pending.objects[i].name;
2665 }
2666
2667 if (!name)
2668 found = dwim_reverse_initial(revs, &name);
2669 if (!name)
2670 die("No commit to dig up from?");
2671
2672 if (name_p)
9e7d8a9b 2673 *name_p = xstrdup(name);
09002f1b
JS
2674 return found;
2675}
2676
2677void init_scoreboard(struct blame_scoreboard *sb)
2678{
2679 memset(sb, 0, sizeof(struct blame_scoreboard));
2680 sb->move_score = BLAME_DEFAULT_MOVE_SCORE;
2681 sb->copy_score = BLAME_DEFAULT_COPY_SCORE;
2682}
2683
ecbbc0a5
NTND
2684void setup_scoreboard(struct blame_scoreboard *sb,
2685 const char *path,
2686 struct blame_origin **orig)
09002f1b
JS
2687{
2688 const char *final_commit_name = NULL;
2689 struct blame_origin *o;
2690 struct commit *final_commit = NULL;
2691 enum object_type type;
2692
4e0df4e6
NTND
2693 init_blame_suspects(&blame_suspects);
2694
09002f1b
JS
2695 if (sb->reverse && sb->contents_from)
2696 die(_("--contents and --reverse do not blend well."));
2697
ecbbc0a5
NTND
2698 if (!sb->repo)
2699 BUG("repo is NULL");
2700
09002f1b
JS
2701 if (!sb->reverse) {
2702 sb->final = find_single_final(sb->revs, &final_commit_name);
2703 sb->commits.compare = compare_commits_by_commit_date;
2704 } else {
2705 sb->final = find_single_initial(sb->revs, &final_commit_name);
2706 sb->commits.compare = compare_commits_by_reverse_commit_date;
2707 }
2708
2709 if (sb->final && sb->contents_from)
2710 die(_("cannot use --contents with final commit object name"));
2711
2712 if (sb->reverse && sb->revs->first_parent_only)
2713 sb->revs->children.name = NULL;
2714
2715 if (!sb->final) {
2716 /*
2717 * "--not A B -- path" without anything positive;
2718 * do not default to HEAD, but use the working tree
2719 * or "--contents".
2720 */
2721 setup_work_tree();
ecbbc0a5
NTND
2722 sb->final = fake_working_tree_commit(sb->repo,
2723 &sb->revs->diffopt,
09002f1b
JS
2724 path, sb->contents_from);
2725 add_pending_object(sb->revs, &(sb->final->object), ":");
2726 }
2727
2728 if (sb->reverse && sb->revs->first_parent_only) {
2729 final_commit = find_single_final(sb->revs, NULL);
2730 if (!final_commit)
2731 die(_("--reverse and --first-parent together require specified latest commit"));
2732 }
2733
2734 /*
2735 * If we have bottom, this will mark the ancestors of the
2736 * bottom commits we would reach while traversing as
2737 * uninteresting.
2738 */
2739 if (prepare_revision_walk(sb->revs))
2740 die(_("revision walk setup failed"));
2741
2742 if (sb->reverse && sb->revs->first_parent_only) {
2743 struct commit *c = final_commit;
2744
2745 sb->revs->children.name = "children";
2746 while (c->parents &&
9001dc2a 2747 !oideq(&c->object.oid, &sb->final->object.oid)) {
09002f1b
JS
2748 struct commit_list *l = xcalloc(1, sizeof(*l));
2749
2750 l->item = c;
2751 if (add_decoration(&sb->revs->children,
2752 &c->parents->item->object, l))
033abf97 2753 BUG("not unique item in first-parent chain");
09002f1b
JS
2754 c = c->parents->item;
2755 }
2756
9001dc2a 2757 if (!oideq(&c->object.oid, &sb->final->object.oid))
09002f1b
JS
2758 die(_("--reverse --first-parent together require range along first-parent chain"));
2759 }
2760
2761 if (is_null_oid(&sb->final->object.oid)) {
4e0df4e6 2762 o = get_blame_suspects(sb->final);
09002f1b
JS
2763 sb->final_buf = xmemdupz(o->file.ptr, o->file.size);
2764 sb->final_buf_size = o->file.size;
2765 }
2766 else {
2767 o = get_origin(sb->final, path);
ecbbc0a5 2768 if (fill_blob_sha1_and_mode(sb->repo, o))
09002f1b
JS
2769 die(_("no such path %s in %s"), path, final_commit_name);
2770
0d1e0e78 2771 if (sb->revs->diffopt.flags.allow_textconv &&
6afaf807 2772 textconv_object(sb->repo, path, o->mode, &o->blob_oid, 1, (char **) &sb->final_buf,
09002f1b
JS
2773 &sb->final_buf_size))
2774 ;
2775 else
b4f5aca4 2776 sb->final_buf = read_object_file(&o->blob_oid, &type,
2777 &sb->final_buf_size);
09002f1b
JS
2778
2779 if (!sb->final_buf)
2780 die(_("cannot read blob %s for path %s"),
2781 oid_to_hex(&o->blob_oid),
2782 path);
2783 }
2784 sb->num_read_blob++;
2785 prepare_lines(sb);
2786
2787 if (orig)
2788 *orig = o;
9e7d8a9b
SG
2789
2790 free((char *)final_commit_name);
09002f1b 2791}
bd481de7
JS
2792
2793
2794
2795struct blame_entry *blame_entry_prepend(struct blame_entry *head,
2796 long start, long end,
2797 struct blame_origin *o)
2798{
2799 struct blame_entry *new_head = xcalloc(1, sizeof(struct blame_entry));
2800 new_head->lno = start;
2801 new_head->num_lines = end - start;
2802 new_head->suspect = o;
2803 new_head->s_lno = start;
2804 new_head->next = head;
2805 blame_origin_incref(o);
2806 return new_head;
2807}