]> git.ipfire.org Git - thirdparty/git.git/blame - refs/refs-internal.h
resolve_gitlink_ref(): rename path parameter to submodule
[thirdparty/git.git] / refs / refs-internal.h
CommitLineData
4cb77009
MH
1#ifndef REFS_REFS_INTERNAL_H
2#define REFS_REFS_INTERNAL_H
3
4/*
5 * Data structures and functions for the internal use of the refs
6 * module. Code outside of the refs module should use only the public
7 * functions defined in "refs.h", and should *not* include this file.
8 */
9
10/*
11 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken
12 * refs (i.e., because the reference is about to be deleted anyway).
13 */
14#define REF_DELETING 0x02
15
16/*
17 * Used as a flag in ref_update::flags when a loose ref is being
c52ce248 18 * pruned. This flag must only be used when REF_NODEREF is set.
4cb77009
MH
19 */
20#define REF_ISPRUNING 0x04
21
22/*
23 * Used as a flag in ref_update::flags when the reference should be
24 * updated to new_sha1.
25 */
26#define REF_HAVE_NEW 0x08
27
28/*
29 * Used as a flag in ref_update::flags when old_sha1 should be
30 * checked.
31 */
32#define REF_HAVE_OLD 0x10
33
34/*
35 * Used as a flag in ref_update::flags when the lockfile needs to be
36 * committed.
37 */
38#define REF_NEEDS_COMMIT 0x20
39
40/*
41 * 0x40 is REF_FORCE_CREATE_REFLOG, so skip it if you're adding a
42 * value to ref_update::flags
43 */
44
d99aa884
DT
45/*
46 * Used as a flag in ref_update::flags when we want to log a ref
47 * update but not actually perform it. This is used when a symbolic
48 * ref update is split up.
49 */
50#define REF_LOG_ONLY 0x80
51
92b1551b
MH
52/*
53 * Internal flag, meaning that the containing ref_update was via an
54 * update to HEAD.
55 */
56#define REF_UPDATE_VIA_HEAD 0x100
57
4cb77009
MH
58/*
59 * Return true iff refname is minimally safe. "Safe" here means that
60 * deleting a loose reference by this name will not do any damage, for
61 * example by causing a file that is not a reference to be deleted.
62 * This function does not check that the reference name is legal; for
63 * that, use check_refname_format().
64 *
65 * We consider a refname that starts with "refs/" to be safe as long
66 * as any ".." components that it might contain do not escape "refs/".
67 * Names that do not start with "refs/" are considered safe iff they
68 * consist entirely of upper case characters and '_' (like "HEAD" and
69 * "MERGE_HEAD" but not "config" or "FOO/BAR").
70 */
71int refname_is_safe(const char *refname);
72
73enum peel_status {
74 /* object was peeled successfully: */
75 PEEL_PEELED = 0,
76
77 /*
78 * object cannot be peeled because the named object (or an
79 * object referred to by a tag in the peel chain), does not
80 * exist.
81 */
82 PEEL_INVALID = -1,
83
84 /* object cannot be peeled because it is not a tag: */
85 PEEL_NON_TAG = -2,
86
87 /* ref_entry contains no peeled value because it is a symref: */
88 PEEL_IS_SYMREF = -3,
89
90 /*
91 * ref_entry cannot be peeled because it is broken (i.e., the
92 * symbolic reference cannot even be resolved to an object
93 * name):
94 */
95 PEEL_BROKEN = -4
96};
97
98/*
99 * Peel the named object; i.e., if the object is a tag, resolve the
100 * tag recursively until a non-tag is found. If successful, store the
101 * result to sha1 and return PEEL_PEELED. If the object is not a tag
102 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
103 * and leave sha1 unchanged.
104 */
105enum peel_status peel_object(const unsigned char *name, unsigned char *sha1);
106
107/*
108 * Return 0 if a reference named refname could be created without
109 * conflicting with the name of an existing reference. Otherwise,
110 * return a negative value and write an explanation to err. If extras
111 * is non-NULL, it is a list of additional refnames with which refname
112 * is not allowed to conflict. If skip is non-NULL, ignore potential
113 * conflicts with refs in skip (e.g., because they are scheduled for
114 * deletion in the same operation). Behavior is undefined if the same
115 * name is listed in both extras and skip.
116 *
117 * Two reference names conflict if one of them exactly matches the
118 * leading components of the other; e.g., "foo/bar" conflicts with
119 * both "foo" and with "foo/bar/baz" but not with "foo/bar" or
120 * "foo/barbados".
121 *
122 * extras and skip must be sorted.
123 */
124int verify_refname_available(const char *newname,
3a8af7be
MH
125 const struct string_list *extras,
126 const struct string_list *skip,
4cb77009
MH
127 struct strbuf *err);
128
129/*
130 * Copy the reflog message msg to buf, which has been allocated sufficiently
131 * large, while cleaning up the whitespaces. Especially, convert LF to space,
132 * because reflog file is one line per entry.
133 */
134int copy_reflog_msg(char *buf, const char *msg);
135
136int should_autocreate_reflog(const char *refname);
137
138/**
139 * Information needed for a single ref update. Set new_sha1 to the new
140 * value or to null_sha1 to delete the ref. To check the old value
141 * while the ref is locked, set (flags & REF_HAVE_OLD) and set
142 * old_sha1 to the old value, or to null_sha1 to ensure the ref does
143 * not exist before update.
144 */
145struct ref_update {
6e30b2f6 146
4cb77009
MH
147 /*
148 * If (flags & REF_HAVE_NEW), set the reference to this value:
149 */
150 unsigned char new_sha1[20];
6e30b2f6 151
4cb77009
MH
152 /*
153 * If (flags & REF_HAVE_OLD), check that the reference
154 * previously had this value:
155 */
156 unsigned char old_sha1[20];
6e30b2f6 157
4cb77009
MH
158 /*
159 * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF,
92b1551b
MH
160 * REF_DELETING, REF_ISPRUNING, REF_LOG_ONLY, and
161 * REF_UPDATE_VIA_HEAD:
4cb77009
MH
162 */
163 unsigned int flags;
6e30b2f6 164
4cb77009 165 struct ref_lock *lock;
92b1551b 166 unsigned int type;
4cb77009 167 char *msg;
6e30b2f6
MH
168
169 /*
170 * If this ref_update was split off of a symref update via
171 * split_symref_update(), then this member points at that
172 * update. This is used for two purposes:
173 * 1. When reporting errors, we report the refname under which
174 * the update was originally requested.
175 * 2. When we read the old value of this reference, we
176 * propagate it back to its parent update for recording in
177 * the latter's reflog.
178 */
179 struct ref_update *parent_update;
180
4cb77009
MH
181 const char refname[FLEX_ARRAY];
182};
183
71564516
MH
184/*
185 * Add a ref_update with the specified properties to transaction, and
186 * return a pointer to the new object. This function does not verify
187 * that refname is well-formed. new_sha1 and old_sha1 are only
188 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits,
189 * respectively, are set in flags.
190 */
191struct ref_update *ref_transaction_add_update(
192 struct ref_transaction *transaction,
193 const char *refname, unsigned int flags,
194 const unsigned char *new_sha1,
195 const unsigned char *old_sha1,
196 const char *msg);
197
4cb77009
MH
198/*
199 * Transaction states.
200 * OPEN: The transaction is in a valid state and can accept new updates.
201 * An OPEN transaction can be committed.
202 * CLOSED: A closed transaction is no longer active and no other operations
203 * than free can be used on it in this state.
204 * A transaction can either become closed by successfully committing
205 * an active transaction or if there is a failure while building
206 * the transaction thus rendering it failed/inactive.
207 */
208enum ref_transaction_state {
209 REF_TRANSACTION_OPEN = 0,
210 REF_TRANSACTION_CLOSED = 1
211};
212
213/*
214 * Data structure for holding a reference transaction, which can
215 * consist of checks and updates to multiple references, carried out
216 * as atomically as possible. This structure is opaque to callers.
217 */
218struct ref_transaction {
219 struct ref_update **updates;
220 size_t alloc;
221 size_t nr;
222 enum ref_transaction_state state;
223};
224
5f3c3a4e
DT
225int files_log_ref_write(const char *refname, const unsigned char *old_sha1,
226 const unsigned char *new_sha1, const char *msg,
227 int flags, struct strbuf *err);
228
0845122c
DT
229/*
230 * Check for entries in extras that are within the specified
231 * directory, where dirname is a reference directory name including
232 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any
233 * conflicting references that are found in skip. If there is a
234 * conflicting reference, return its name.
235 *
236 * extras and skip must be sorted lists of reference names. Either one
237 * can be NULL, signifying the empty list.
238 */
239const char *find_descendant_ref(const char *dirname,
240 const struct string_list *extras,
241 const struct string_list *skip);
242
ff3a299c
DT
243/*
244 * Check whether an attempt to rename old_refname to new_refname would
245 * cause a D/F conflict with any existing reference (other than
246 * possibly old_refname). If there would be a conflict, emit an error
247 * message and return false; otherwise, return true.
248 *
249 * Note that this function is not safe against all races with other
250 * processes (though rename_ref() catches some races that might get by
251 * this check).
252 */
253int rename_ref_available(const char *old_refname, const char *new_refname);
0845122c 254
2d0663b2
DT
255/* We allow "recursive" symbolic refs. Only within reason, though */
256#define SYMREF_MAXDEPTH 5
93770590
DT
257
258/* Include broken references in a do_for_each_ref*() iteration: */
259#define DO_FOR_EACH_INCLUDE_BROKEN 0x01
260
3bc581b9
MH
261/*
262 * Reference iterators
263 *
264 * A reference iterator encapsulates the state of an in-progress
265 * iteration over references. Create an instance of `struct
266 * ref_iterator` via one of the functions in this module.
267 *
268 * A freshly-created ref_iterator doesn't yet point at a reference. To
269 * advance the iterator, call ref_iterator_advance(). If successful,
270 * this sets the iterator's refname, oid, and flags fields to describe
271 * the next reference and returns ITER_OK. The data pointed at by
272 * refname and oid belong to the iterator; if you want to retain them
273 * after calling ref_iterator_advance() again or calling
274 * ref_iterator_abort(), you must make a copy. When the iteration has
275 * been exhausted, ref_iterator_advance() releases any resources
276 * assocated with the iteration, frees the ref_iterator object, and
277 * returns ITER_DONE. If you want to abort the iteration early, call
278 * ref_iterator_abort(), which also frees the ref_iterator object and
279 * any associated resources. If there was an internal error advancing
280 * to the next entry, ref_iterator_advance() aborts the iteration,
281 * frees the ref_iterator, and returns ITER_ERROR.
282 *
283 * The reference currently being looked at can be peeled by calling
284 * ref_iterator_peel(). This function is often faster than peel_ref(),
285 * so it should be preferred when iterating over references.
286 *
287 * Putting it all together, a typical iteration looks like this:
288 *
289 * int ok;
290 * struct ref_iterator *iter = ...;
291 *
292 * while ((ok = ref_iterator_advance(iter)) == ITER_OK) {
293 * if (want_to_stop_iteration()) {
294 * ok = ref_iterator_abort(iter);
295 * break;
296 * }
297 *
298 * // Access information about the current reference:
299 * if (!(iter->flags & REF_ISSYMREF))
300 * printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid));
301 *
302 * // If you need to peel the reference:
303 * ref_iterator_peel(iter, &oid);
304 * }
305 *
306 * if (ok != ITER_DONE)
307 * handle_error();
308 */
309struct ref_iterator {
310 struct ref_iterator_vtable *vtable;
311 const char *refname;
312 const struct object_id *oid;
313 unsigned int flags;
314};
315
316/*
317 * Advance the iterator to the first or next item and return ITER_OK.
318 * If the iteration is exhausted, free the resources associated with
319 * the ref_iterator and return ITER_DONE. On errors, free the iterator
320 * resources and return ITER_ERROR. It is a bug to use ref_iterator or
321 * call this function again after it has returned ITER_DONE or
322 * ITER_ERROR.
323 */
324int ref_iterator_advance(struct ref_iterator *ref_iterator);
325
326/*
327 * If possible, peel the reference currently being viewed by the
328 * iterator. Return 0 on success.
329 */
330int ref_iterator_peel(struct ref_iterator *ref_iterator,
331 struct object_id *peeled);
332
333/*
334 * End the iteration before it has been exhausted, freeing the
335 * reference iterator and any associated resources and returning
336 * ITER_DONE. If the abort itself failed, return ITER_ERROR.
337 */
338int ref_iterator_abort(struct ref_iterator *ref_iterator);
339
340/*
341 * An iterator over nothing (its first ref_iterator_advance() call
342 * returns ITER_DONE).
343 */
344struct ref_iterator *empty_ref_iterator_begin(void);
345
346/*
347 * Return true iff ref_iterator is an empty_ref_iterator.
348 */
349int is_empty_ref_iterator(struct ref_iterator *ref_iterator);
350
351/*
352 * A callback function used to instruct merge_ref_iterator how to
353 * interleave the entries from iter0 and iter1. The function should
354 * return one of the constants defined in enum iterator_selection. It
355 * must not advance either of the iterators itself.
356 *
357 * The function must be prepared to handle the case that iter0 and/or
358 * iter1 is NULL, which indicates that the corresponding sub-iterator
359 * has been exhausted. Its return value must be consistent with the
360 * current states of the iterators; e.g., it must not return
361 * ITER_SKIP_1 if iter1 has already been exhausted.
362 */
363typedef enum iterator_selection ref_iterator_select_fn(
364 struct ref_iterator *iter0, struct ref_iterator *iter1,
365 void *cb_data);
366
367/*
368 * Iterate over the entries from iter0 and iter1, with the values
369 * interleaved as directed by the select function. The iterator takes
370 * ownership of iter0 and iter1 and frees them when the iteration is
371 * over.
372 */
373struct ref_iterator *merge_ref_iterator_begin(
374 struct ref_iterator *iter0, struct ref_iterator *iter1,
375 ref_iterator_select_fn *select, void *cb_data);
376
377/*
378 * An iterator consisting of the union of the entries from front and
379 * back. If there are entries common to the two sub-iterators, use the
380 * one from front. Each iterator must iterate over its entries in
381 * strcmp() order by refname for this to work.
382 *
383 * The new iterator takes ownership of its arguments and frees them
384 * when the iteration is over. As a convenience to callers, if front
385 * or back is an empty_ref_iterator, then abort that one immediately
386 * and return the other iterator directly, without wrapping it.
387 */
388struct ref_iterator *overlay_ref_iterator_begin(
389 struct ref_iterator *front, struct ref_iterator *back);
390
391/*
392 * Wrap iter0, only letting through the references whose names start
393 * with prefix. If trim is set, set iter->refname to the name of the
394 * reference with that many characters trimmed off the front;
395 * otherwise set it to the full refname. The new iterator takes over
396 * ownership of iter0 and frees it when iteration is over. It makes
397 * its own copy of prefix.
398 *
399 * As an convenience to callers, if prefix is the empty string and
400 * trim is zero, this function returns iter0 directly, without
401 * wrapping it.
402 */
403struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0,
404 const char *prefix,
405 int trim);
406
407/*
408 * Iterate over the packed and loose references in the specified
409 * submodule that are within find_containing_dir(prefix). If prefix is
410 * NULL or the empty string, iterate over all references in the
411 * submodule.
412 */
413struct ref_iterator *files_ref_iterator_begin(const char *submodule,
414 const char *prefix,
415 unsigned int flags);
416
2880d16f
MH
417/*
418 * Iterate over the references in the main ref_store that have a
419 * reflog. The paths within a directory are iterated over in arbitrary
420 * order.
421 */
422struct ref_iterator *files_reflog_iterator_begin(void);
423
3bc581b9
MH
424/* Internal implementation of reference iteration: */
425
426/*
427 * Base class constructor for ref_iterators. Initialize the
428 * ref_iterator part of iter, setting its vtable pointer as specified.
429 * This is meant to be called only by the initializers of derived
430 * classes.
431 */
432void base_ref_iterator_init(struct ref_iterator *iter,
433 struct ref_iterator_vtable *vtable);
434
435/*
436 * Base class destructor for ref_iterators. Destroy the ref_iterator
437 * part of iter and shallow-free the object. This is meant to be
438 * called only by the destructors of derived classes.
439 */
440void base_ref_iterator_free(struct ref_iterator *iter);
441
442/* Virtual function declarations for ref_iterators: */
443
444typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator);
445
446typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator,
447 struct object_id *peeled);
448
449/*
450 * Implementations of this function should free any resources specific
451 * to the derived class, then call base_ref_iterator_free() to clean
452 * up and free the ref_iterator object.
453 */
454typedef int ref_iterator_abort_fn(struct ref_iterator *ref_iterator);
455
456struct ref_iterator_vtable {
457 ref_iterator_advance_fn *advance;
458 ref_iterator_peel_fn *peel;
459 ref_iterator_abort_fn *abort;
460};
461
93770590 462/*
4c4de895
MH
463 * current_ref_iter is a performance hack: when iterating over
464 * references using the for_each_ref*() functions, current_ref_iter is
465 * set to the reference iterator before calling the callback function.
466 * If the callback function calls peel_ref(), then peel_ref() first
467 * checks whether the reference to be peeled is the one referred to by
468 * the iterator (it usually is) and if so, asks the iterator for the
469 * peeled version of the reference if it is available. This avoids a
470 * refname lookup in a common case. current_ref_iter is set to NULL
471 * when the iteration is over.
472 */
473extern struct ref_iterator *current_ref_iter;
474
475/*
476 * The common backend for the for_each_*ref* functions. Call fn for
477 * each reference in iter. If the iterator itself ever returns
478 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop
479 * the iteration and return that value. Otherwise, return 0. In any
480 * case, free the iterator when done. This function is basically an
481 * adapter between the callback style of reference iteration and the
482 * iterator style.
483 */
484int do_for_each_ref_iterator(struct ref_iterator *iter,
485 each_ref_fn fn, void *cb_data);
2d0663b2 486
34c7ad8f
MH
487struct ref_store;
488
cf596442 489/*
34c7ad8f
MH
490 * Read a reference from the specified reference store, non-recursively.
491 * Set type to describe the reference, and:
cf596442
MH
492 *
493 * - If refname is the name of a normal reference, fill in sha1
494 * (leaving referent unchanged).
495 *
496 * - If refname is the name of a symbolic reference, write the full
497 * name of the reference to which it refers (e.g.
498 * "refs/heads/master") to referent and set the REF_ISSYMREF bit in
499 * type (leaving sha1 unchanged). The caller is responsible for
500 * validating that referent is a valid reference name.
501 *
502 * WARNING: refname might be used as part of a filename, so it is
503 * important from a security standpoint that it be safe in the sense
504 * of refname_is_safe(). Moreover, for symrefs this function sets
505 * referent to whatever the repository says, which might not be a
506 * properly-formatted or even safe reference name. NEITHER INPUT NOR
507 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION.
508 *
509 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT
510 * and return -1. If the ref exists but is neither a symbolic ref nor
511 * a sha1, it is broken; set REF_ISBROKEN in type, set errno to
512 * EINVAL, and return -1. If there is another error reading the ref,
513 * set errno appropriately and return -1.
514 *
515 * Backend-specific flags might be set in type as well, regardless of
516 * outcome.
517 *
518 * It is OK for refname to point into referent. If so:
519 *
520 * - if the function succeeds with REF_ISSYMREF, referent will be
521 * overwritten and the memory formerly pointed to by it might be
522 * changed or even freed.
523 *
524 * - in all other cases, referent will be untouched, and therefore
525 * refname will still be valid and unchanged.
526 */
34c7ad8f
MH
527int read_raw_ref(struct ref_store *ref_store,
528 const char *refname, unsigned char *sha1,
92b38093 529 struct strbuf *referent, unsigned int *type);
2d0663b2 530
3dce444f 531/* refs backends */
00eebe35
MH
532
533/*
534 * Initialize the ref_store for the specified submodule, or for the
535 * main repository if submodule == NULL. These functions should call
536 * base_ref_store_init() to initialize the shared part of the
537 * ref_store and to record the ref_store for later lookup.
538 */
539typedef struct ref_store *ref_store_init_fn(const char *submodule);
540
127b42a1
RS
541typedef int ref_transaction_commit_fn(struct ref_store *refs,
542 struct ref_transaction *transaction,
543 struct strbuf *err);
544
3dce444f
RS
545struct ref_storage_be {
546 struct ref_storage_be *next;
547 const char *name;
00eebe35 548 ref_store_init_fn *init;
127b42a1 549 ref_transaction_commit_fn *transaction_commit;
3dce444f
RS
550};
551
552extern struct ref_storage_be refs_be_files;
553
00eebe35
MH
554/*
555 * A representation of the reference store for the main repository or
556 * a submodule. The ref_store instances for submodules are kept in a
557 * linked list.
558 */
559struct ref_store {
560 /* The backend describing this ref_store's storage scheme: */
561 const struct ref_storage_be *be;
562
563 /*
564 * The name of the submodule represented by this object, or
565 * the empty string if it represents the main repository's
566 * reference store:
567 */
568 const char *submodule;
569
570 /*
571 * Submodule reference store instances are stored in a linked
572 * list using this pointer.
573 */
574 struct ref_store *next;
575};
576
577/*
578 * Fill in the generic part of refs for the specified submodule and
579 * add it to our collection of reference stores.
580 */
581void base_ref_store_init(struct ref_store *refs,
582 const struct ref_storage_be *be,
583 const char *submodule);
584
585/*
586 * Create, record, and return a ref_store instance for the specified
587 * submodule (or the main repository if submodule is NULL).
588 *
589 * For backwards compatibility, submodule=="" is treated the same as
590 * submodule==NULL.
591 */
592struct ref_store *ref_store_init(const char *submodule);
593
594/*
595 * Return the ref_store instance for the specified submodule (or the
596 * main repository if submodule is NULL). If that ref_store hasn't
597 * been initialized yet, return NULL.
598 *
599 * For backwards compatibility, submodule=="" is treated the same as
600 * submodule==NULL.
601 */
602struct ref_store *lookup_ref_store(const char *submodule);
603
604/*
605 * Return the ref_store instance for the specified submodule. For the
606 * main repository, use submodule==NULL; such a call cannot fail. For
607 * a submodule, the submodule must exist and be a nonbare repository,
608 * otherwise return NULL. If the requested reference store has not yet
609 * been initialized, initialize it first.
610 *
611 * For backwards compatibility, submodule=="" is treated the same as
612 * submodule==NULL.
613 */
614struct ref_store *get_ref_store(const char *submodule);
615
616/*
617 * Die if refs is for a submodule (i.e., not for the main repository).
618 * caller is used in any necessary error messages.
619 */
620void assert_main_repository(struct ref_store *refs, const char *caller);
621
4cb77009 622#endif /* REFS_REFS_INTERNAL_H */