]> git.ipfire.org Git - thirdparty/hostap.git/blame - src/eap_peer/eap.c
Remove the GPL notification from files contributed by Jouni Malinen
[thirdparty/hostap.git] / src / eap_peer / eap.c
CommitLineData
6fc6879b
JM
1/*
2 * EAP peer state machines (RFC 4137)
00468b46 3 * Copyright (c) 2004-2010, Jouni Malinen <j@w1.fi>
6fc6879b 4 *
0f3d578e
JM
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
6fc6879b
JM
7 *
8 * This file implements the Peer State Machine as defined in RFC 4137. The used
9 * states and state transitions match mostly with the RFC. However, there are
10 * couple of additional transitions for working around small issues noticed
11 * during testing. These exceptions are explained in comments within the
12 * functions in this file. The method functions, m.func(), are similar to the
13 * ones used in RFC 4137, but some small changes have used here to optimize
14 * operations and to add functionality needed for fast re-authentication
15 * (session resumption).
16 */
17
18#include "includes.h"
19
20#include "common.h"
6fc6879b 21#include "pcsc_funcs.h"
6fc6879b 22#include "state_machine.h"
03da66bd
JM
23#include "crypto/crypto.h"
24#include "crypto/tls.h"
25#include "common/wpa_ctrl.h"
ad08c363 26#include "eap_common/eap_wsc_common.h"
03da66bd
JM
27#include "eap_i.h"
28#include "eap_config.h"
6fc6879b
JM
29
30#define STATE_MACHINE_DATA struct eap_sm
31#define STATE_MACHINE_DEBUG_PREFIX "EAP"
32
33#define EAP_MAX_AUTH_ROUNDS 50
d3e01b9d 34#define EAP_CLIENT_TIMEOUT_DEFAULT 60
6fc6879b
JM
35
36
37static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
38 EapType method);
39static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
40static void eap_sm_processIdentity(struct eap_sm *sm,
41 const struct wpabuf *req);
42static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
43static struct wpabuf * eap_sm_buildNotify(int id);
44static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
45#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
46static const char * eap_sm_method_state_txt(EapMethodState state);
47static const char * eap_sm_decision_txt(EapDecision decision);
48#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
49
50
51
52static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
53{
54 return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
55}
56
57
58static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
59 Boolean value)
60{
61 sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
62}
63
64
65static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
66{
67 return sm->eapol_cb->get_int(sm->eapol_ctx, var);
68}
69
70
71static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
72 unsigned int value)
73{
74 sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
75}
76
77
78static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
79{
80 return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
81}
82
83
84static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
85{
86 if (sm->m == NULL || sm->eap_method_priv == NULL)
87 return;
88
89 wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
90 "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
91 sm->m->deinit(sm, sm->eap_method_priv);
92 sm->eap_method_priv = NULL;
93 sm->m = NULL;
94}
95
96
97/**
98 * eap_allowed_method - Check whether EAP method is allowed
99 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
100 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
101 * @method: EAP type
102 * Returns: 1 = allowed EAP method, 0 = not allowed
103 */
01b05694 104int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
6fc6879b
JM
105{
106 struct eap_peer_config *config = eap_get_config(sm);
107 int i;
108 struct eap_method_type *m;
109
110 if (config == NULL || config->eap_methods == NULL)
111 return 1;
112
113 m = config->eap_methods;
114 for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
115 m[i].method != EAP_TYPE_NONE; i++) {
116 if (m[i].vendor == vendor && m[i].method == method)
117 return 1;
118 }
119 return 0;
120}
121
122
123/*
124 * This state initializes state machine variables when the machine is
125 * activated (portEnabled = TRUE). This is also used when re-starting
126 * authentication (eapRestart == TRUE).
127 */
128SM_STATE(EAP, INITIALIZE)
129{
130 SM_ENTRY(EAP, INITIALIZE);
131 if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
f2d8fc3d
JM
132 sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
133 !sm->prev_failure) {
6fc6879b
JM
134 wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
135 "fast reauthentication");
136 sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
137 } else {
138 eap_deinit_prev_method(sm, "INITIALIZE");
139 }
140 sm->selectedMethod = EAP_TYPE_NONE;
141 sm->methodState = METHOD_NONE;
142 sm->allowNotifications = TRUE;
143 sm->decision = DECISION_FAIL;
54e9c5fc 144 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
6fc6879b
JM
145 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
146 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
147 eapol_set_bool(sm, EAPOL_eapFail, FALSE);
148 os_free(sm->eapKeyData);
149 sm->eapKeyData = NULL;
150 sm->eapKeyAvailable = FALSE;
151 eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
152 sm->lastId = -1; /* new session - make sure this does not match with
153 * the first EAP-Packet */
154 /*
155 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
156 * seemed to be able to trigger cases where both were set and if EAPOL
157 * state machine uses eapNoResp first, it may end up not sending a real
158 * reply correctly. This occurred when the workaround in FAIL state set
159 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
160 * something else(?)
161 */
162 eapol_set_bool(sm, EAPOL_eapResp, FALSE);
163 eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
164 sm->num_rounds = 0;
f2d8fc3d 165 sm->prev_failure = 0;
6fc6879b
JM
166}
167
168
169/*
170 * This state is reached whenever service from the lower layer is interrupted
171 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
172 * occurs when the port becomes enabled.
173 */
174SM_STATE(EAP, DISABLED)
175{
176 SM_ENTRY(EAP, DISABLED);
177 sm->num_rounds = 0;
178}
179
180
181/*
182 * The state machine spends most of its time here, waiting for something to
183 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
184 * SEND_RESPONSE states.
185 */
186SM_STATE(EAP, IDLE)
187{
188 SM_ENTRY(EAP, IDLE);
189}
190
191
192/*
193 * This state is entered when an EAP packet is received (eapReq == TRUE) to
194 * parse the packet header.
195 */
196SM_STATE(EAP, RECEIVED)
197{
198 const struct wpabuf *eapReqData;
199
200 SM_ENTRY(EAP, RECEIVED);
201 eapReqData = eapol_get_eapReqData(sm);
202 /* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
203 eap_sm_parseEapReq(sm, eapReqData);
204 sm->num_rounds++;
205}
206
207
208/*
209 * This state is entered when a request for a new type comes in. Either the
210 * correct method is started, or a Nak response is built.
211 */
212SM_STATE(EAP, GET_METHOD)
213{
214 int reinit;
215 EapType method;
216
217 SM_ENTRY(EAP, GET_METHOD);
218
219 if (sm->reqMethod == EAP_TYPE_EXPANDED)
220 method = sm->reqVendorMethod;
221 else
222 method = sm->reqMethod;
223
224 if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
225 wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
226 sm->reqVendor, method);
7796f20e
JM
227 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
228 "vendor=%u method=%u -> NAK",
229 sm->reqVendor, method);
6fc6879b
JM
230 goto nak;
231 }
232
7796f20e
JM
233 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
234 "vendor=%u method=%u", sm->reqVendor, method);
235
6fc6879b
JM
236 /*
237 * RFC 4137 does not define specific operation for fast
238 * re-authentication (session resumption). The design here is to allow
239 * the previously used method data to be maintained for
240 * re-authentication if the method support session resumption.
241 * Otherwise, the previously used method data is freed and a new method
242 * is allocated here.
243 */
244 if (sm->fast_reauth &&
245 sm->m && sm->m->vendor == sm->reqVendor &&
246 sm->m->method == method &&
247 sm->m->has_reauth_data &&
248 sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
249 wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
250 " for fast re-authentication");
251 reinit = 1;
252 } else {
253 eap_deinit_prev_method(sm, "GET_METHOD");
254 reinit = 0;
255 }
256
257 sm->selectedMethod = sm->reqMethod;
258 if (sm->m == NULL)
259 sm->m = eap_peer_get_eap_method(sm->reqVendor, method);
260 if (!sm->m) {
261 wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
262 "vendor %d method %d",
263 sm->reqVendor, method);
264 goto nak;
265 }
266
d3e01b9d
JM
267 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
268
6fc6879b
JM
269 wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
270 "vendor %u method %u (%s)",
271 sm->reqVendor, method, sm->m->name);
272 if (reinit)
273 sm->eap_method_priv = sm->m->init_for_reauth(
274 sm, sm->eap_method_priv);
275 else
276 sm->eap_method_priv = sm->m->init(sm);
277
278 if (sm->eap_method_priv == NULL) {
279 struct eap_peer_config *config = eap_get_config(sm);
280 wpa_msg(sm->msg_ctx, MSG_INFO,
281 "EAP: Failed to initialize EAP method: vendor %u "
282 "method %u (%s)",
283 sm->reqVendor, method, sm->m->name);
284 sm->m = NULL;
285 sm->methodState = METHOD_NONE;
286 sm->selectedMethod = EAP_TYPE_NONE;
287 if (sm->reqMethod == EAP_TYPE_TLS && config &&
288 (config->pending_req_pin ||
289 config->pending_req_passphrase)) {
290 /*
291 * Return without generating Nak in order to allow
292 * entering of PIN code or passphrase to retry the
293 * current EAP packet.
294 */
295 wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
296 "request - skip Nak");
297 return;
298 }
299
300 goto nak;
301 }
302
303 sm->methodState = METHOD_INIT;
304 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
305 "EAP vendor %u method %u (%s) selected",
306 sm->reqVendor, method, sm->m->name);
307 return;
308
309nak:
310 wpabuf_free(sm->eapRespData);
311 sm->eapRespData = NULL;
312 sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
313}
314
315
316/*
317 * The method processing happens here. The request from the authenticator is
318 * processed, and an appropriate response packet is built.
319 */
320SM_STATE(EAP, METHOD)
321{
322 struct wpabuf *eapReqData;
323 struct eap_method_ret ret;
324
325 SM_ENTRY(EAP, METHOD);
326 if (sm->m == NULL) {
327 wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
328 return;
329 }
330
331 eapReqData = eapol_get_eapReqData(sm);
332
333 /*
334 * Get ignore, methodState, decision, allowNotifications, and
335 * eapRespData. RFC 4137 uses three separate method procedure (check,
336 * process, and buildResp) in this state. These have been combined into
337 * a single function call to m->process() in order to optimize EAP
338 * method implementation interface a bit. These procedures are only
339 * used from within this METHOD state, so there is no need to keep
340 * these as separate C functions.
341 *
342 * The RFC 4137 procedures return values as follows:
343 * ignore = m.check(eapReqData)
344 * (methodState, decision, allowNotifications) = m.process(eapReqData)
345 * eapRespData = m.buildResp(reqId)
346 */
347 os_memset(&ret, 0, sizeof(ret));
348 ret.ignore = sm->ignore;
349 ret.methodState = sm->methodState;
350 ret.decision = sm->decision;
351 ret.allowNotifications = sm->allowNotifications;
352 wpabuf_free(sm->eapRespData);
353 sm->eapRespData = NULL;
354 sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
355 eapReqData);
356 wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
357 "methodState=%s decision=%s",
358 ret.ignore ? "TRUE" : "FALSE",
359 eap_sm_method_state_txt(ret.methodState),
360 eap_sm_decision_txt(ret.decision));
361
362 sm->ignore = ret.ignore;
363 if (sm->ignore)
364 return;
365 sm->methodState = ret.methodState;
366 sm->decision = ret.decision;
367 sm->allowNotifications = ret.allowNotifications;
368
369 if (sm->m->isKeyAvailable && sm->m->getKey &&
370 sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
371 os_free(sm->eapKeyData);
372 sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
373 &sm->eapKeyDataLen);
374 }
375}
376
377
378/*
379 * This state signals the lower layer that a response packet is ready to be
380 * sent.
381 */
382SM_STATE(EAP, SEND_RESPONSE)
383{
384 SM_ENTRY(EAP, SEND_RESPONSE);
385 wpabuf_free(sm->lastRespData);
386 if (sm->eapRespData) {
387 if (sm->workaround)
388 os_memcpy(sm->last_md5, sm->req_md5, 16);
389 sm->lastId = sm->reqId;
390 sm->lastRespData = wpabuf_dup(sm->eapRespData);
391 eapol_set_bool(sm, EAPOL_eapResp, TRUE);
392 } else
393 sm->lastRespData = NULL;
394 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
395 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
396}
397
398
399/*
400 * This state signals the lower layer that the request was discarded, and no
401 * response packet will be sent at this time.
402 */
403SM_STATE(EAP, DISCARD)
404{
405 SM_ENTRY(EAP, DISCARD);
406 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
407 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
408}
409
410
411/*
412 * Handles requests for Identity method and builds a response.
413 */
414SM_STATE(EAP, IDENTITY)
415{
416 const struct wpabuf *eapReqData;
417
418 SM_ENTRY(EAP, IDENTITY);
419 eapReqData = eapol_get_eapReqData(sm);
420 eap_sm_processIdentity(sm, eapReqData);
421 wpabuf_free(sm->eapRespData);
422 sm->eapRespData = NULL;
423 sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
424}
425
426
427/*
428 * Handles requests for Notification method and builds a response.
429 */
430SM_STATE(EAP, NOTIFICATION)
431{
432 const struct wpabuf *eapReqData;
433
434 SM_ENTRY(EAP, NOTIFICATION);
435 eapReqData = eapol_get_eapReqData(sm);
436 eap_sm_processNotify(sm, eapReqData);
437 wpabuf_free(sm->eapRespData);
438 sm->eapRespData = NULL;
439 sm->eapRespData = eap_sm_buildNotify(sm->reqId);
440}
441
442
443/*
444 * This state retransmits the previous response packet.
445 */
446SM_STATE(EAP, RETRANSMIT)
447{
448 SM_ENTRY(EAP, RETRANSMIT);
449 wpabuf_free(sm->eapRespData);
450 if (sm->lastRespData)
451 sm->eapRespData = wpabuf_dup(sm->lastRespData);
452 else
453 sm->eapRespData = NULL;
454}
455
456
457/*
458 * This state is entered in case of a successful completion of authentication
459 * and state machine waits here until port is disabled or EAP authentication is
460 * restarted.
461 */
462SM_STATE(EAP, SUCCESS)
463{
464 SM_ENTRY(EAP, SUCCESS);
465 if (sm->eapKeyData != NULL)
466 sm->eapKeyAvailable = TRUE;
467 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
468
469 /*
470 * RFC 4137 does not clear eapReq here, but this seems to be required
471 * to avoid processing the same request twice when state machine is
472 * initialized.
473 */
474 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
475
476 /*
477 * RFC 4137 does not set eapNoResp here, but this seems to be required
478 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
479 * addition, either eapResp or eapNoResp is required to be set after
480 * processing the received EAP frame.
481 */
482 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
483
484 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
485 "EAP authentication completed successfully");
486}
487
488
489/*
490 * This state is entered in case of a failure and state machine waits here
491 * until port is disabled or EAP authentication is restarted.
492 */
493SM_STATE(EAP, FAILURE)
494{
495 SM_ENTRY(EAP, FAILURE);
496 eapol_set_bool(sm, EAPOL_eapFail, TRUE);
497
498 /*
499 * RFC 4137 does not clear eapReq here, but this seems to be required
500 * to avoid processing the same request twice when state machine is
501 * initialized.
502 */
503 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
504
505 /*
506 * RFC 4137 does not set eapNoResp here. However, either eapResp or
507 * eapNoResp is required to be set after processing the received EAP
508 * frame.
509 */
510 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
511
512 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
513 "EAP authentication failed");
f2d8fc3d
JM
514
515 sm->prev_failure = 1;
6fc6879b
JM
516}
517
518
519static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
520{
521 /*
522 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
523 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
524 * RFC 4137 require that reqId == lastId. In addition, it looks like
525 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
526 *
527 * Accept this kind of Id if EAP workarounds are enabled. These are
528 * unauthenticated plaintext messages, so this should have minimal
529 * security implications (bit easier to fake EAP-Success/Failure).
530 */
531 if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
532 reqId == ((lastId + 2) & 0xff))) {
533 wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
534 "identifier field in EAP Success: "
535 "reqId=%d lastId=%d (these are supposed to be "
536 "same)", reqId, lastId);
537 return 1;
538 }
539 wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
540 "lastId=%d", reqId, lastId);
541 return 0;
542}
543
544
545/*
546 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
547 */
548
549static void eap_peer_sm_step_idle(struct eap_sm *sm)
550{
551 /*
552 * The first three transitions are from RFC 4137. The last two are
553 * local additions to handle special cases with LEAP and PEAP server
554 * not sending EAP-Success in some cases.
555 */
556 if (eapol_get_bool(sm, EAPOL_eapReq))
557 SM_ENTER(EAP, RECEIVED);
558 else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
559 sm->decision != DECISION_FAIL) ||
560 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
561 sm->decision == DECISION_UNCOND_SUCC))
562 SM_ENTER(EAP, SUCCESS);
563 else if (eapol_get_bool(sm, EAPOL_altReject) ||
564 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
565 sm->decision != DECISION_UNCOND_SUCC) ||
566 (eapol_get_bool(sm, EAPOL_altAccept) &&
567 sm->methodState != METHOD_CONT &&
568 sm->decision == DECISION_FAIL))
569 SM_ENTER(EAP, FAILURE);
570 else if (sm->selectedMethod == EAP_TYPE_LEAP &&
571 sm->leap_done && sm->decision != DECISION_FAIL &&
572 sm->methodState == METHOD_DONE)
573 SM_ENTER(EAP, SUCCESS);
574 else if (sm->selectedMethod == EAP_TYPE_PEAP &&
575 sm->peap_done && sm->decision != DECISION_FAIL &&
576 sm->methodState == METHOD_DONE)
577 SM_ENTER(EAP, SUCCESS);
578}
579
580
581static int eap_peer_req_is_duplicate(struct eap_sm *sm)
582{
583 int duplicate;
584
585 duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
586 if (sm->workaround && duplicate &&
587 os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) {
588 /*
589 * RFC 4137 uses (reqId == lastId) as the only verification for
590 * duplicate EAP requests. However, this misses cases where the
591 * AS is incorrectly using the same id again; and
592 * unfortunately, such implementations exist. Use MD5 hash as
593 * an extra verification for the packets being duplicate to
594 * workaround these issues.
595 */
596 wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
597 "EAP packets were not identical");
598 wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
599 "duplicate packet");
600 duplicate = 0;
601 }
602
603 return duplicate;
604}
605
606
607static void eap_peer_sm_step_received(struct eap_sm *sm)
608{
609 int duplicate = eap_peer_req_is_duplicate(sm);
610
611 /*
612 * Two special cases below for LEAP are local additions to work around
613 * odd LEAP behavior (EAP-Success in the middle of authentication and
614 * then swapped roles). Other transitions are based on RFC 4137.
615 */
616 if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
617 (sm->reqId == sm->lastId ||
618 eap_success_workaround(sm, sm->reqId, sm->lastId)))
619 SM_ENTER(EAP, SUCCESS);
620 else if (sm->methodState != METHOD_CONT &&
621 ((sm->rxFailure &&
622 sm->decision != DECISION_UNCOND_SUCC) ||
623 (sm->rxSuccess && sm->decision == DECISION_FAIL &&
624 (sm->selectedMethod != EAP_TYPE_LEAP ||
625 sm->methodState != METHOD_MAY_CONT))) &&
626 (sm->reqId == sm->lastId ||
627 eap_success_workaround(sm, sm->reqId, sm->lastId)))
628 SM_ENTER(EAP, FAILURE);
629 else if (sm->rxReq && duplicate)
630 SM_ENTER(EAP, RETRANSMIT);
631 else if (sm->rxReq && !duplicate &&
632 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
633 sm->allowNotifications)
634 SM_ENTER(EAP, NOTIFICATION);
635 else if (sm->rxReq && !duplicate &&
636 sm->selectedMethod == EAP_TYPE_NONE &&
637 sm->reqMethod == EAP_TYPE_IDENTITY)
638 SM_ENTER(EAP, IDENTITY);
639 else if (sm->rxReq && !duplicate &&
640 sm->selectedMethod == EAP_TYPE_NONE &&
641 sm->reqMethod != EAP_TYPE_IDENTITY &&
642 sm->reqMethod != EAP_TYPE_NOTIFICATION)
643 SM_ENTER(EAP, GET_METHOD);
644 else if (sm->rxReq && !duplicate &&
645 sm->reqMethod == sm->selectedMethod &&
646 sm->methodState != METHOD_DONE)
647 SM_ENTER(EAP, METHOD);
648 else if (sm->selectedMethod == EAP_TYPE_LEAP &&
649 (sm->rxSuccess || sm->rxResp))
650 SM_ENTER(EAP, METHOD);
651 else
652 SM_ENTER(EAP, DISCARD);
653}
654
655
656static void eap_peer_sm_step_local(struct eap_sm *sm)
657{
658 switch (sm->EAP_state) {
659 case EAP_INITIALIZE:
660 SM_ENTER(EAP, IDLE);
661 break;
662 case EAP_DISABLED:
663 if (eapol_get_bool(sm, EAPOL_portEnabled) &&
664 !sm->force_disabled)
665 SM_ENTER(EAP, INITIALIZE);
666 break;
667 case EAP_IDLE:
668 eap_peer_sm_step_idle(sm);
669 break;
670 case EAP_RECEIVED:
671 eap_peer_sm_step_received(sm);
672 break;
673 case EAP_GET_METHOD:
674 if (sm->selectedMethod == sm->reqMethod)
675 SM_ENTER(EAP, METHOD);
676 else
677 SM_ENTER(EAP, SEND_RESPONSE);
678 break;
679 case EAP_METHOD:
680 if (sm->ignore)
681 SM_ENTER(EAP, DISCARD);
682 else
683 SM_ENTER(EAP, SEND_RESPONSE);
684 break;
685 case EAP_SEND_RESPONSE:
686 SM_ENTER(EAP, IDLE);
687 break;
688 case EAP_DISCARD:
689 SM_ENTER(EAP, IDLE);
690 break;
691 case EAP_IDENTITY:
692 SM_ENTER(EAP, SEND_RESPONSE);
693 break;
694 case EAP_NOTIFICATION:
695 SM_ENTER(EAP, SEND_RESPONSE);
696 break;
697 case EAP_RETRANSMIT:
698 SM_ENTER(EAP, SEND_RESPONSE);
699 break;
700 case EAP_SUCCESS:
701 break;
702 case EAP_FAILURE:
703 break;
704 }
705}
706
707
708SM_STEP(EAP)
709{
710 /* Global transitions */
711 if (eapol_get_bool(sm, EAPOL_eapRestart) &&
712 eapol_get_bool(sm, EAPOL_portEnabled))
713 SM_ENTER_GLOBAL(EAP, INITIALIZE);
714 else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
715 SM_ENTER_GLOBAL(EAP, DISABLED);
716 else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
717 /* RFC 4137 does not place any limit on number of EAP messages
718 * in an authentication session. However, some error cases have
719 * ended up in a state were EAP messages were sent between the
720 * peer and server in a loop (e.g., TLS ACK frame in both
721 * direction). Since this is quite undesired outcome, limit the
722 * total number of EAP round-trips and abort authentication if
723 * this limit is exceeded.
724 */
725 if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
726 wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
727 "authentication rounds - abort",
728 EAP_MAX_AUTH_ROUNDS);
729 sm->num_rounds++;
730 SM_ENTER_GLOBAL(EAP, FAILURE);
731 }
732 } else {
733 /* Local transitions */
734 eap_peer_sm_step_local(sm);
735 }
736}
737
738
739static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
740 EapType method)
741{
742 if (!eap_allowed_method(sm, vendor, method)) {
743 wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
744 "vendor %u method %u", vendor, method);
745 return FALSE;
746 }
747 if (eap_peer_get_eap_method(vendor, method))
748 return TRUE;
749 wpa_printf(MSG_DEBUG, "EAP: not included in build: "
750 "vendor %u method %u", vendor, method);
751 return FALSE;
752}
753
754
755static struct wpabuf * eap_sm_build_expanded_nak(
756 struct eap_sm *sm, int id, const struct eap_method *methods,
757 size_t count)
758{
759 struct wpabuf *resp;
760 int found = 0;
761 const struct eap_method *m;
762
763 wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
764
765 /* RFC 3748 - 5.3.2: Expanded Nak */
766 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
767 8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
768 if (resp == NULL)
769 return NULL;
770
771 wpabuf_put_be24(resp, EAP_VENDOR_IETF);
772 wpabuf_put_be32(resp, EAP_TYPE_NAK);
773
774 for (m = methods; m; m = m->next) {
775 if (sm->reqVendor == m->vendor &&
776 sm->reqVendorMethod == m->method)
777 continue; /* do not allow the current method again */
778 if (eap_allowed_method(sm, m->vendor, m->method)) {
779 wpa_printf(MSG_DEBUG, "EAP: allowed type: "
780 "vendor=%u method=%u",
781 m->vendor, m->method);
782 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
783 wpabuf_put_be24(resp, m->vendor);
784 wpabuf_put_be32(resp, m->method);
785
786 found++;
787 }
788 }
789 if (!found) {
790 wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
791 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
792 wpabuf_put_be24(resp, EAP_VENDOR_IETF);
793 wpabuf_put_be32(resp, EAP_TYPE_NONE);
794 }
795
796 eap_update_len(resp);
797
798 return resp;
799}
800
801
802static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
803{
804 struct wpabuf *resp;
805 u8 *start;
806 int found = 0, expanded_found = 0;
807 size_t count;
808 const struct eap_method *methods, *m;
809
810 wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
811 "vendor=%u method=%u not allowed)", sm->reqMethod,
812 sm->reqVendor, sm->reqVendorMethod);
813 methods = eap_peer_get_methods(&count);
814 if (methods == NULL)
815 return NULL;
816 if (sm->reqMethod == EAP_TYPE_EXPANDED)
817 return eap_sm_build_expanded_nak(sm, id, methods, count);
818
819 /* RFC 3748 - 5.3.1: Legacy Nak */
820 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
821 sizeof(struct eap_hdr) + 1 + count + 1,
822 EAP_CODE_RESPONSE, id);
823 if (resp == NULL)
824 return NULL;
825
826 start = wpabuf_put(resp, 0);
827 for (m = methods; m; m = m->next) {
828 if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
829 continue; /* do not allow the current method again */
830 if (eap_allowed_method(sm, m->vendor, m->method)) {
831 if (m->vendor != EAP_VENDOR_IETF) {
832 if (expanded_found)
833 continue;
834 expanded_found = 1;
835 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
836 } else
837 wpabuf_put_u8(resp, m->method);
838 found++;
839 }
840 }
841 if (!found)
842 wpabuf_put_u8(resp, EAP_TYPE_NONE);
843 wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
844
845 eap_update_len(resp);
846
847 return resp;
848}
849
850
851static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
852{
853 const struct eap_hdr *hdr = wpabuf_head(req);
854 const u8 *pos = (const u8 *) (hdr + 1);
855 pos++;
856
857 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
858 "EAP authentication started");
859
860 /*
861 * RFC 3748 - 5.1: Identity
862 * Data field may contain a displayable message in UTF-8. If this
863 * includes NUL-character, only the data before that should be
864 * displayed. Some EAP implementasitons may piggy-back additional
865 * options after the NUL.
866 */
867 /* TODO: could save displayable message so that it can be shown to the
868 * user in case of interaction is required */
869 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
870 pos, be_to_host16(hdr->length) - 5);
871}
872
873
874#ifdef PCSC_FUNCS
2d7d0ab3 875
e6c62749
JM
876/*
877 * Rules for figuring out MNC length based on IMSI for SIM cards that do not
878 * include MNC length field.
879 */
880static int mnc_len_from_imsi(const char *imsi)
881{
882 char mcc_str[4];
883 unsigned int mcc;
884
885 os_memcpy(mcc_str, imsi, 3);
886 mcc_str[3] = '\0';
887 mcc = atoi(mcc_str);
888
889 if (mcc == 244)
890 return 2; /* Networks in Finland use 2-digit MNC */
891
892 return -1;
893}
894
895
a3e01056
JM
896static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
897 size_t max_len, size_t *imsi_len)
2d7d0ab3 898{
2d7d0ab3 899 int mnc_len;
a3e01056 900 char *pos, mnc[4];
2d7d0ab3 901
a3e01056
JM
902 if (*imsi_len + 36 > max_len) {
903 wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
2d7d0ab3
SB
904 return -1;
905 }
906
2d7d0ab3
SB
907 /* MNC (2 or 3 digits) */
908 mnc_len = scard_get_mnc_len(sm->scard_ctx);
e6c62749
JM
909 if (mnc_len < 0)
910 mnc_len = mnc_len_from_imsi(imsi);
2d7d0ab3
SB
911 if (mnc_len < 0) {
912 wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
913 "assuming 3");
914 mnc_len = 3;
915 }
916
917 if (mnc_len == 2) {
a3e01056
JM
918 mnc[0] = '0';
919 mnc[1] = imsi[3];
920 mnc[2] = imsi[4];
2d7d0ab3 921 } else if (mnc_len == 3) {
a3e01056
JM
922 mnc[0] = imsi[3];
923 mnc[1] = imsi[4];
924 mnc[2] = imsi[5];
2d7d0ab3 925 }
a3e01056 926 mnc[3] = '\0';
2d7d0ab3 927
a3e01056
JM
928 pos = imsi + *imsi_len;
929 pos += os_snprintf(pos, imsi + max_len - pos,
930 "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
931 mnc, imsi[0], imsi[1], imsi[2]);
932 *imsi_len = pos - imsi;
2d7d0ab3
SB
933
934 return 0;
935}
936
937
6fc6879b
JM
938static int eap_sm_imsi_identity(struct eap_sm *sm,
939 struct eap_peer_config *conf)
940{
941 int aka = 0;
942 char imsi[100];
943 size_t imsi_len;
944 struct eap_method_type *m = conf->eap_methods;
945 int i;
946
947 imsi_len = sizeof(imsi);
948 if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
949 wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
950 return -1;
951 }
952
953 wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
954
4646ee67
JM
955 if (imsi_len < 7) {
956 wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
957 return -1;
958 }
959
a3e01056
JM
960 if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) {
961 wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
962 return -1;
963 }
964 wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
965
6fc6879b
JM
966 for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
967 m[i].method != EAP_TYPE_NONE); i++) {
968 if (m[i].vendor == EAP_VENDOR_IETF &&
969 m[i].method == EAP_TYPE_AKA) {
970 aka = 1;
971 break;
972 }
973 }
974
975 os_free(conf->identity);
976 conf->identity = os_malloc(1 + imsi_len);
977 if (conf->identity == NULL) {
978 wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
979 "IMSI-based identity");
980 return -1;
981 }
982
983 conf->identity[0] = aka ? '0' : '1';
984 os_memcpy(conf->identity + 1, imsi, imsi_len);
985 conf->identity_len = 1 + imsi_len;
986
a3e01056 987 return 0;
6fc6879b 988}
2d7d0ab3 989
6fc6879b
JM
990#endif /* PCSC_FUNCS */
991
992
6982784e
JM
993static int eap_sm_set_scard_pin(struct eap_sm *sm,
994 struct eap_peer_config *conf)
6fc6879b
JM
995{
996#ifdef PCSC_FUNCS
997 if (scard_set_pin(sm->scard_ctx, conf->pin)) {
998 /*
999 * Make sure the same PIN is not tried again in order to avoid
1000 * blocking SIM.
1001 */
1002 os_free(conf->pin);
1003 conf->pin = NULL;
1004
1005 wpa_printf(MSG_WARNING, "PIN validation failed");
1006 eap_sm_request_pin(sm);
1007 return -1;
1008 }
6982784e
JM
1009 return 0;
1010#else /* PCSC_FUNCS */
1011 return -1;
1012#endif /* PCSC_FUNCS */
1013}
1014
1015static int eap_sm_get_scard_identity(struct eap_sm *sm,
1016 struct eap_peer_config *conf)
1017{
1018#ifdef PCSC_FUNCS
1019 if (eap_sm_set_scard_pin(sm, conf))
1020 return -1;
6fc6879b
JM
1021
1022 return eap_sm_imsi_identity(sm, conf);
1023#else /* PCSC_FUNCS */
1024 return -1;
1025#endif /* PCSC_FUNCS */
1026}
1027
1028
1029/**
1030 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
1031 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1032 * @id: EAP identifier for the packet
1033 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
1034 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
1035 * failure
1036 *
1037 * This function allocates and builds an EAP-Identity/Response packet for the
1038 * current network. The caller is responsible for freeing the returned data.
1039 */
1040struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
1041{
1042 struct eap_peer_config *config = eap_get_config(sm);
1043 struct wpabuf *resp;
1044 const u8 *identity;
1045 size_t identity_len;
1046
1047 if (config == NULL) {
1048 wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
1049 "was not available");
1050 return NULL;
1051 }
1052
1053 if (sm->m && sm->m->get_identity &&
1054 (identity = sm->m->get_identity(sm, sm->eap_method_priv,
1055 &identity_len)) != NULL) {
1056 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
1057 "identity", identity, identity_len);
1058 } else if (!encrypted && config->anonymous_identity) {
1059 identity = config->anonymous_identity;
1060 identity_len = config->anonymous_identity_len;
1061 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
1062 identity, identity_len);
1063 } else {
1064 identity = config->identity;
1065 identity_len = config->identity_len;
1066 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
1067 identity, identity_len);
1068 }
1069
1070 if (identity == NULL) {
1071 wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
1072 "configuration was not available");
1073 if (config->pcsc) {
1074 if (eap_sm_get_scard_identity(sm, config) < 0)
1075 return NULL;
1076 identity = config->identity;
1077 identity_len = config->identity_len;
1078 wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
1079 "IMSI", identity, identity_len);
1080 } else {
1081 eap_sm_request_identity(sm);
1082 return NULL;
1083 }
6982784e
JM
1084 } else if (config->pcsc) {
1085 if (eap_sm_set_scard_pin(sm, config) < 0)
1086 return NULL;
6fc6879b
JM
1087 }
1088
1089 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
1090 EAP_CODE_RESPONSE, id);
1091 if (resp == NULL)
1092 return NULL;
1093
1094 wpabuf_put_data(resp, identity, identity_len);
1095
1096 return resp;
1097}
1098
1099
1100static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1101{
1102 const u8 *pos;
1103 char *msg;
1104 size_t i, msg_len;
1105
1106 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1107 &msg_len);
1108 if (pos == NULL)
1109 return;
1110 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1111 pos, msg_len);
1112
1113 msg = os_malloc(msg_len + 1);
1114 if (msg == NULL)
1115 return;
1116 for (i = 0; i < msg_len; i++)
1117 msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1118 msg[msg_len] = '\0';
1119 wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1120 WPA_EVENT_EAP_NOTIFICATION, msg);
1121 os_free(msg);
1122}
1123
1124
1125static struct wpabuf * eap_sm_buildNotify(int id)
1126{
1127 struct wpabuf *resp;
1128
1129 wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1130 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1131 EAP_CODE_RESPONSE, id);
1132 if (resp == NULL)
1133 return NULL;
1134
1135 return resp;
1136}
1137
1138
1139static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
1140{
1141 const struct eap_hdr *hdr;
1142 size_t plen;
1143 const u8 *pos;
1144
1145 sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1146 sm->reqId = 0;
1147 sm->reqMethod = EAP_TYPE_NONE;
1148 sm->reqVendor = EAP_VENDOR_IETF;
1149 sm->reqVendorMethod = EAP_TYPE_NONE;
1150
1151 if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
1152 return;
1153
1154 hdr = wpabuf_head(req);
1155 plen = be_to_host16(hdr->length);
1156 if (plen > wpabuf_len(req)) {
1157 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1158 "(len=%lu plen=%lu)",
1159 (unsigned long) wpabuf_len(req),
1160 (unsigned long) plen);
1161 return;
1162 }
1163
1164 sm->reqId = hdr->identifier;
1165
1166 if (sm->workaround) {
1167 const u8 *addr[1];
1168 addr[0] = wpabuf_head(req);
1169 md5_vector(1, addr, &plen, sm->req_md5);
1170 }
1171
1172 switch (hdr->code) {
1173 case EAP_CODE_REQUEST:
1174 if (plen < sizeof(*hdr) + 1) {
1175 wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1176 "no Type field");
1177 return;
1178 }
1179 sm->rxReq = TRUE;
1180 pos = (const u8 *) (hdr + 1);
1181 sm->reqMethod = *pos++;
1182 if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1183 if (plen < sizeof(*hdr) + 8) {
1184 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1185 "expanded EAP-Packet (plen=%lu)",
1186 (unsigned long) plen);
1187 return;
1188 }
1189 sm->reqVendor = WPA_GET_BE24(pos);
1190 pos += 3;
1191 sm->reqVendorMethod = WPA_GET_BE32(pos);
1192 }
1193 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
1194 "method=%u vendor=%u vendorMethod=%u",
1195 sm->reqId, sm->reqMethod, sm->reqVendor,
1196 sm->reqVendorMethod);
1197 break;
1198 case EAP_CODE_RESPONSE:
1199 if (sm->selectedMethod == EAP_TYPE_LEAP) {
1200 /*
1201 * LEAP differs from RFC 4137 by using reversed roles
1202 * for mutual authentication and because of this, we
1203 * need to accept EAP-Response frames if LEAP is used.
1204 */
1205 if (plen < sizeof(*hdr) + 1) {
1206 wpa_printf(MSG_DEBUG, "EAP: Too short "
1207 "EAP-Response - no Type field");
1208 return;
1209 }
1210 sm->rxResp = TRUE;
1211 pos = (const u8 *) (hdr + 1);
1212 sm->reqMethod = *pos;
1213 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
1214 "LEAP method=%d id=%d",
1215 sm->reqMethod, sm->reqId);
1216 break;
1217 }
1218 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
1219 break;
1220 case EAP_CODE_SUCCESS:
1221 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
1222 sm->rxSuccess = TRUE;
1223 break;
1224 case EAP_CODE_FAILURE:
1225 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
1226 sm->rxFailure = TRUE;
1227 break;
1228 default:
1229 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
1230 "code %d", hdr->code);
1231 break;
1232 }
1233}
1234
1235
00468b46
JM
1236static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
1237 union tls_event_data *data)
1238{
1239 struct eap_sm *sm = ctx;
1240 char *hash_hex = NULL;
00468b46
JM
1241
1242 switch (ev) {
1243 case TLS_CERT_CHAIN_FAILURE:
1244 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
1245 "reason=%d depth=%d subject='%s' err='%s'",
1246 data->cert_fail.reason,
1247 data->cert_fail.depth,
1248 data->cert_fail.subject,
1249 data->cert_fail.reason_txt);
1250 break;
1251 case TLS_PEER_CERTIFICATE:
4f525d8e
JM
1252 if (!sm->eapol_cb->notify_cert)
1253 break;
1254
00468b46
JM
1255 if (data->peer_cert.hash) {
1256 size_t len = data->peer_cert.hash_len * 2 + 1;
1257 hash_hex = os_malloc(len);
1258 if (hash_hex) {
1259 wpa_snprintf_hex(hash_hex, len,
1260 data->peer_cert.hash,
1261 data->peer_cert.hash_len);
1262 }
1263 }
4f525d8e
JM
1264
1265 sm->eapol_cb->notify_cert(sm->eapol_ctx,
1266 data->peer_cert.depth,
1267 data->peer_cert.subject,
1268 hash_hex, data->peer_cert.cert);
00468b46
JM
1269 break;
1270 }
1271
1272 os_free(hash_hex);
00468b46
JM
1273}
1274
1275
6fc6879b
JM
1276/**
1277 * eap_peer_sm_init - Allocate and initialize EAP peer state machine
1278 * @eapol_ctx: Context data to be used with eapol_cb calls
1279 * @eapol_cb: Pointer to EAPOL callback functions
1280 * @msg_ctx: Context data for wpa_msg() calls
1281 * @conf: EAP configuration
1282 * Returns: Pointer to the allocated EAP state machine or %NULL on failure
1283 *
1284 * This function allocates and initializes an EAP state machine. In addition,
1285 * this initializes TLS library for the new EAP state machine. eapol_cb pointer
1286 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
1287 * state machine. Consequently, the caller must make sure that this data
1288 * structure remains alive while the EAP state machine is active.
1289 */
1290struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
1291 struct eapol_callbacks *eapol_cb,
1292 void *msg_ctx, struct eap_config *conf)
1293{
1294 struct eap_sm *sm;
1295 struct tls_config tlsconf;
1296
1297 sm = os_zalloc(sizeof(*sm));
1298 if (sm == NULL)
1299 return NULL;
1300 sm->eapol_ctx = eapol_ctx;
1301 sm->eapol_cb = eapol_cb;
1302 sm->msg_ctx = msg_ctx;
d3e01b9d 1303 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
116654ce 1304 sm->wps = conf->wps;
6fc6879b
JM
1305
1306 os_memset(&tlsconf, 0, sizeof(tlsconf));
1307 tlsconf.opensc_engine_path = conf->opensc_engine_path;
1308 tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
1309 tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
76f04b38
JM
1310#ifdef CONFIG_FIPS
1311 tlsconf.fips_mode = 1;
1312#endif /* CONFIG_FIPS */
00468b46
JM
1313 tlsconf.event_cb = eap_peer_sm_tls_event;
1314 tlsconf.cb_ctx = sm;
1b414f59 1315 tlsconf.cert_in_cb = conf->cert_in_cb;
6fc6879b
JM
1316 sm->ssl_ctx = tls_init(&tlsconf);
1317 if (sm->ssl_ctx == NULL) {
1318 wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
1319 "context.");
1320 os_free(sm);
1321 return NULL;
1322 }
1323
1324 return sm;
1325}
1326
1327
1328/**
1329 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
1330 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1331 *
1332 * This function deinitializes EAP state machine and frees all allocated
1333 * resources.
1334 */
1335void eap_peer_sm_deinit(struct eap_sm *sm)
1336{
1337 if (sm == NULL)
1338 return;
1339 eap_deinit_prev_method(sm, "EAP deinit");
1340 eap_sm_abort(sm);
1341 tls_deinit(sm->ssl_ctx);
1342 os_free(sm);
1343}
1344
1345
1346/**
1347 * eap_peer_sm_step - Step EAP peer state machine
1348 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1349 * Returns: 1 if EAP state was changed or 0 if not
1350 *
1351 * This function advances EAP state machine to a new state to match with the
1352 * current variables. This should be called whenever variables used by the EAP
1353 * state machine have changed.
1354 */
1355int eap_peer_sm_step(struct eap_sm *sm)
1356{
1357 int res = 0;
1358 do {
1359 sm->changed = FALSE;
1360 SM_STEP_RUN(EAP);
1361 if (sm->changed)
1362 res = 1;
1363 } while (sm->changed);
1364 return res;
1365}
1366
1367
1368/**
1369 * eap_sm_abort - Abort EAP authentication
1370 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1371 *
1372 * Release system resources that have been allocated for the authentication
1373 * session without fully deinitializing the EAP state machine.
1374 */
1375void eap_sm_abort(struct eap_sm *sm)
1376{
1377 wpabuf_free(sm->lastRespData);
1378 sm->lastRespData = NULL;
1379 wpabuf_free(sm->eapRespData);
1380 sm->eapRespData = NULL;
1381 os_free(sm->eapKeyData);
1382 sm->eapKeyData = NULL;
1383
1384 /* This is not clearly specified in the EAP statemachines draft, but
1385 * it seems necessary to make sure that some of the EAPOL variables get
1386 * cleared for the next authentication. */
1387 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
1388}
1389
1390
1391#ifdef CONFIG_CTRL_IFACE
1392static const char * eap_sm_state_txt(int state)
1393{
1394 switch (state) {
1395 case EAP_INITIALIZE:
1396 return "INITIALIZE";
1397 case EAP_DISABLED:
1398 return "DISABLED";
1399 case EAP_IDLE:
1400 return "IDLE";
1401 case EAP_RECEIVED:
1402 return "RECEIVED";
1403 case EAP_GET_METHOD:
1404 return "GET_METHOD";
1405 case EAP_METHOD:
1406 return "METHOD";
1407 case EAP_SEND_RESPONSE:
1408 return "SEND_RESPONSE";
1409 case EAP_DISCARD:
1410 return "DISCARD";
1411 case EAP_IDENTITY:
1412 return "IDENTITY";
1413 case EAP_NOTIFICATION:
1414 return "NOTIFICATION";
1415 case EAP_RETRANSMIT:
1416 return "RETRANSMIT";
1417 case EAP_SUCCESS:
1418 return "SUCCESS";
1419 case EAP_FAILURE:
1420 return "FAILURE";
1421 default:
1422 return "UNKNOWN";
1423 }
1424}
1425#endif /* CONFIG_CTRL_IFACE */
1426
1427
1428#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
1429static const char * eap_sm_method_state_txt(EapMethodState state)
1430{
1431 switch (state) {
1432 case METHOD_NONE:
1433 return "NONE";
1434 case METHOD_INIT:
1435 return "INIT";
1436 case METHOD_CONT:
1437 return "CONT";
1438 case METHOD_MAY_CONT:
1439 return "MAY_CONT";
1440 case METHOD_DONE:
1441 return "DONE";
1442 default:
1443 return "UNKNOWN";
1444 }
1445}
1446
1447
1448static const char * eap_sm_decision_txt(EapDecision decision)
1449{
1450 switch (decision) {
1451 case DECISION_FAIL:
1452 return "FAIL";
1453 case DECISION_COND_SUCC:
1454 return "COND_SUCC";
1455 case DECISION_UNCOND_SUCC:
1456 return "UNCOND_SUCC";
1457 default:
1458 return "UNKNOWN";
1459 }
1460}
1461#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1462
1463
1464#ifdef CONFIG_CTRL_IFACE
1465
1466/**
1467 * eap_sm_get_status - Get EAP state machine status
1468 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1469 * @buf: Buffer for status information
1470 * @buflen: Maximum buffer length
1471 * @verbose: Whether to include verbose status information
1472 * Returns: Number of bytes written to buf.
1473 *
1474 * Query EAP state machine for status information. This function fills in a
1475 * text area with current status information from the EAPOL state machine. If
1476 * the buffer (buf) is not large enough, status information will be truncated
1477 * to fit the buffer.
1478 */
1479int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
1480{
1481 int len, ret;
1482
1483 if (sm == NULL)
1484 return 0;
1485
1486 len = os_snprintf(buf, buflen,
1487 "EAP state=%s\n",
1488 eap_sm_state_txt(sm->EAP_state));
1489 if (len < 0 || (size_t) len >= buflen)
1490 return 0;
1491
1492 if (sm->selectedMethod != EAP_TYPE_NONE) {
1493 const char *name;
1494 if (sm->m) {
1495 name = sm->m->name;
1496 } else {
1497 const struct eap_method *m =
1498 eap_peer_get_eap_method(EAP_VENDOR_IETF,
1499 sm->selectedMethod);
1500 if (m)
1501 name = m->name;
1502 else
1503 name = "?";
1504 }
1505 ret = os_snprintf(buf + len, buflen - len,
1506 "selectedMethod=%d (EAP-%s)\n",
1507 sm->selectedMethod, name);
1508 if (ret < 0 || (size_t) ret >= buflen - len)
1509 return len;
1510 len += ret;
1511
1512 if (sm->m && sm->m->get_status) {
1513 len += sm->m->get_status(sm, sm->eap_method_priv,
1514 buf + len, buflen - len,
1515 verbose);
1516 }
1517 }
1518
1519 if (verbose) {
1520 ret = os_snprintf(buf + len, buflen - len,
1521 "reqMethod=%d\n"
1522 "methodState=%s\n"
1523 "decision=%s\n"
1524 "ClientTimeout=%d\n",
1525 sm->reqMethod,
1526 eap_sm_method_state_txt(sm->methodState),
1527 eap_sm_decision_txt(sm->decision),
1528 sm->ClientTimeout);
1529 if (ret < 0 || (size_t) ret >= buflen - len)
1530 return len;
1531 len += ret;
1532 }
1533
1534 return len;
1535}
1536#endif /* CONFIG_CTRL_IFACE */
1537
1538
1539#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
9ef1aaae 1540static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
6fc6879b
JM
1541 const char *msg, size_t msglen)
1542{
1543 struct eap_peer_config *config;
9ef1aaae 1544 char *txt = NULL, *tmp;
6fc6879b
JM
1545
1546 if (sm == NULL)
1547 return;
1548 config = eap_get_config(sm);
1549 if (config == NULL)
1550 return;
1551
9ef1aaae
DW
1552 switch (field) {
1553 case WPA_CTRL_REQ_EAP_IDENTITY:
6fc6879b
JM
1554 config->pending_req_identity++;
1555 break;
9ef1aaae 1556 case WPA_CTRL_REQ_EAP_PASSWORD:
6fc6879b
JM
1557 config->pending_req_password++;
1558 break;
9ef1aaae 1559 case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
6fc6879b
JM
1560 config->pending_req_new_password++;
1561 break;
9ef1aaae 1562 case WPA_CTRL_REQ_EAP_PIN:
6fc6879b
JM
1563 config->pending_req_pin++;
1564 break;
9ef1aaae 1565 case WPA_CTRL_REQ_EAP_OTP:
6fc6879b
JM
1566 if (msg) {
1567 tmp = os_malloc(msglen + 3);
1568 if (tmp == NULL)
1569 return;
1570 tmp[0] = '[';
1571 os_memcpy(tmp + 1, msg, msglen);
1572 tmp[msglen + 1] = ']';
1573 tmp[msglen + 2] = '\0';
1574 txt = tmp;
1575 os_free(config->pending_req_otp);
1576 config->pending_req_otp = tmp;
1577 config->pending_req_otp_len = msglen + 3;
1578 } else {
1579 if (config->pending_req_otp == NULL)
1580 return;
1581 txt = config->pending_req_otp;
1582 }
1583 break;
9ef1aaae 1584 case WPA_CTRL_REQ_EAP_PASSPHRASE:
6fc6879b
JM
1585 config->pending_req_passphrase++;
1586 break;
1587 default:
1588 return;
1589 }
1590
1591 if (sm->eapol_cb->eap_param_needed)
1592 sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
1593}
1594#else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1595#define eap_sm_request(sm, type, msg, msglen) do { } while (0)
1596#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1597
8813e4d5
PS
1598const char * eap_sm_get_method_name(struct eap_sm *sm)
1599{
1600 if (sm->m == NULL)
1601 return "UNKNOWN";
1602 return sm->m->name;
1603}
1604
6fc6879b
JM
1605
1606/**
1607 * eap_sm_request_identity - Request identity from user (ctrl_iface)
1608 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1609 *
1610 * EAP methods can call this function to request identity information for the
1611 * current network. This is normally called when the identity is not included
1612 * in the network configuration. The request will be sent to monitor programs
1613 * through the control interface.
1614 */
1615void eap_sm_request_identity(struct eap_sm *sm)
1616{
9ef1aaae 1617 eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
6fc6879b
JM
1618}
1619
1620
1621/**
1622 * eap_sm_request_password - Request password from user (ctrl_iface)
1623 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1624 *
1625 * EAP methods can call this function to request password information for the
1626 * current network. This is normally called when the password is not included
1627 * in the network configuration. The request will be sent to monitor programs
1628 * through the control interface.
1629 */
1630void eap_sm_request_password(struct eap_sm *sm)
1631{
9ef1aaae 1632 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
6fc6879b
JM
1633}
1634
1635
1636/**
1637 * eap_sm_request_new_password - Request new password from user (ctrl_iface)
1638 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1639 *
1640 * EAP methods can call this function to request new password information for
1641 * the current network. This is normally called when the EAP method indicates
1642 * that the current password has expired and password change is required. The
1643 * request will be sent to monitor programs through the control interface.
1644 */
1645void eap_sm_request_new_password(struct eap_sm *sm)
1646{
9ef1aaae 1647 eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
6fc6879b
JM
1648}
1649
1650
1651/**
1652 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
1653 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1654 *
1655 * EAP methods can call this function to request SIM or smart card PIN
1656 * information for the current network. This is normally called when the PIN is
1657 * not included in the network configuration. The request will be sent to
1658 * monitor programs through the control interface.
1659 */
1660void eap_sm_request_pin(struct eap_sm *sm)
1661{
9ef1aaae 1662 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
6fc6879b
JM
1663}
1664
1665
1666/**
1667 * eap_sm_request_otp - Request one time password from user (ctrl_iface)
1668 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1669 * @msg: Message to be displayed to the user when asking for OTP
1670 * @msg_len: Length of the user displayable message
1671 *
1672 * EAP methods can call this function to request open time password (OTP) for
1673 * the current network. The request will be sent to monitor programs through
1674 * the control interface.
1675 */
1676void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
1677{
9ef1aaae 1678 eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
6fc6879b
JM
1679}
1680
1681
1682/**
1683 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
1684 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1685 *
1686 * EAP methods can call this function to request passphrase for a private key
1687 * for the current network. This is normally called when the passphrase is not
1688 * included in the network configuration. The request will be sent to monitor
1689 * programs through the control interface.
1690 */
1691void eap_sm_request_passphrase(struct eap_sm *sm)
1692{
9ef1aaae 1693 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
6fc6879b
JM
1694}
1695
1696
1697/**
1698 * eap_sm_notify_ctrl_attached - Notification of attached monitor
1699 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1700 *
1701 * Notify EAP state machines that a monitor was attached to the control
1702 * interface to trigger re-sending of pending requests for user input.
1703 */
1704void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
1705{
1706 struct eap_peer_config *config = eap_get_config(sm);
1707
1708 if (config == NULL)
1709 return;
1710
1711 /* Re-send any pending requests for user data since a new control
1712 * interface was added. This handles cases where the EAP authentication
1713 * starts immediately after system startup when the user interface is
1714 * not yet running. */
1715 if (config->pending_req_identity)
1716 eap_sm_request_identity(sm);
1717 if (config->pending_req_password)
1718 eap_sm_request_password(sm);
1719 if (config->pending_req_new_password)
1720 eap_sm_request_new_password(sm);
1721 if (config->pending_req_otp)
1722 eap_sm_request_otp(sm, NULL, 0);
1723 if (config->pending_req_pin)
1724 eap_sm_request_pin(sm);
1725 if (config->pending_req_passphrase)
1726 eap_sm_request_passphrase(sm);
1727}
1728
1729
1730static int eap_allowed_phase2_type(int vendor, int type)
1731{
1732 if (vendor != EAP_VENDOR_IETF)
1733 return 0;
1734 return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
1735 type != EAP_TYPE_FAST;
1736}
1737
1738
1739/**
1740 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
1741 * @name: EAP method name, e.g., MD5
1742 * @vendor: Buffer for returning EAP Vendor-Id
1743 * Returns: EAP method type or %EAP_TYPE_NONE if not found
1744 *
1745 * This function maps EAP type names into EAP type numbers that are allowed for
1746 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
1747 * EAP-PEAP, EAP-TTLS, and EAP-FAST.
1748 */
1749u32 eap_get_phase2_type(const char *name, int *vendor)
1750{
1751 int v;
1752 u8 type = eap_peer_get_type(name, &v);
1753 if (eap_allowed_phase2_type(v, type)) {
1754 *vendor = v;
1755 return type;
1756 }
1757 *vendor = EAP_VENDOR_IETF;
1758 return EAP_TYPE_NONE;
1759}
1760
1761
1762/**
1763 * eap_get_phase2_types - Get list of allowed EAP phase 2 types
1764 * @config: Pointer to a network configuration
1765 * @count: Pointer to a variable to be filled with number of returned EAP types
1766 * Returns: Pointer to allocated type list or %NULL on failure
1767 *
1768 * This function generates an array of allowed EAP phase 2 (tunneled) types for
1769 * the given network configuration.
1770 */
1771struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
1772 size_t *count)
1773{
1774 struct eap_method_type *buf;
1775 u32 method;
1776 int vendor;
1777 size_t mcount;
1778 const struct eap_method *methods, *m;
1779
1780 methods = eap_peer_get_methods(&mcount);
1781 if (methods == NULL)
1782 return NULL;
1783 *count = 0;
1784 buf = os_malloc(mcount * sizeof(struct eap_method_type));
1785 if (buf == NULL)
1786 return NULL;
1787
1788 for (m = methods; m; m = m->next) {
1789 vendor = m->vendor;
1790 method = m->method;
1791 if (eap_allowed_phase2_type(vendor, method)) {
1792 if (vendor == EAP_VENDOR_IETF &&
1793 method == EAP_TYPE_TLS && config &&
1794 config->private_key2 == NULL)
1795 continue;
1796 buf[*count].vendor = vendor;
1797 buf[*count].method = method;
1798 (*count)++;
1799 }
1800 }
1801
1802 return buf;
1803}
1804
1805
1806/**
1807 * eap_set_fast_reauth - Update fast_reauth setting
1808 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1809 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
1810 */
1811void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
1812{
1813 sm->fast_reauth = enabled;
1814}
1815
1816
1817/**
1818 * eap_set_workaround - Update EAP workarounds setting
1819 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1820 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
1821 */
1822void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
1823{
1824 sm->workaround = workaround;
1825}
1826
1827
1828/**
1829 * eap_get_config - Get current network configuration
1830 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1831 * Returns: Pointer to the current network configuration or %NULL if not found
1832 *
1833 * EAP peer methods should avoid using this function if they can use other
1834 * access functions, like eap_get_config_identity() and
1835 * eap_get_config_password(), that do not require direct access to
1836 * struct eap_peer_config.
1837 */
1838struct eap_peer_config * eap_get_config(struct eap_sm *sm)
1839{
1840 return sm->eapol_cb->get_config(sm->eapol_ctx);
1841}
1842
1843
1844/**
1845 * eap_get_config_identity - Get identity from the network configuration
1846 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1847 * @len: Buffer for the length of the identity
1848 * Returns: Pointer to the identity or %NULL if not found
1849 */
1850const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
1851{
1852 struct eap_peer_config *config = eap_get_config(sm);
1853 if (config == NULL)
1854 return NULL;
1855 *len = config->identity_len;
1856 return config->identity;
1857}
1858
1859
1860/**
1861 * eap_get_config_password - Get password from the network configuration
1862 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1863 * @len: Buffer for the length of the password
1864 * Returns: Pointer to the password or %NULL if not found
1865 */
1866const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
1867{
1868 struct eap_peer_config *config = eap_get_config(sm);
1869 if (config == NULL)
1870 return NULL;
1871 *len = config->password_len;
1872 return config->password;
1873}
1874
1875
1876/**
1877 * eap_get_config_password2 - Get password from the network configuration
1878 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1879 * @len: Buffer for the length of the password
1880 * @hash: Buffer for returning whether the password is stored as a
1881 * NtPasswordHash instead of plaintext password; can be %NULL if this
1882 * information is not needed
1883 * Returns: Pointer to the password or %NULL if not found
1884 */
1885const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
1886{
1887 struct eap_peer_config *config = eap_get_config(sm);
1888 if (config == NULL)
1889 return NULL;
1890 *len = config->password_len;
1891 if (hash)
1892 *hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
1893 return config->password;
1894}
1895
1896
1897/**
1898 * eap_get_config_new_password - Get new password from network configuration
1899 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1900 * @len: Buffer for the length of the new password
1901 * Returns: Pointer to the new password or %NULL if not found
1902 */
1903const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
1904{
1905 struct eap_peer_config *config = eap_get_config(sm);
1906 if (config == NULL)
1907 return NULL;
1908 *len = config->new_password_len;
1909 return config->new_password;
1910}
1911
1912
1913/**
1914 * eap_get_config_otp - Get one-time password from the network configuration
1915 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1916 * @len: Buffer for the length of the one-time password
1917 * Returns: Pointer to the one-time password or %NULL if not found
1918 */
1919const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
1920{
1921 struct eap_peer_config *config = eap_get_config(sm);
1922 if (config == NULL)
1923 return NULL;
1924 *len = config->otp_len;
1925 return config->otp;
1926}
1927
1928
1929/**
1930 * eap_clear_config_otp - Clear used one-time password
1931 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1932 *
1933 * This function clears a used one-time password (OTP) from the current network
1934 * configuration. This should be called when the OTP has been used and is not
1935 * needed anymore.
1936 */
1937void eap_clear_config_otp(struct eap_sm *sm)
1938{
1939 struct eap_peer_config *config = eap_get_config(sm);
1940 if (config == NULL)
1941 return;
1942 os_memset(config->otp, 0, config->otp_len);
1943 os_free(config->otp);
1944 config->otp = NULL;
1945 config->otp_len = 0;
1946}
1947
1948
1949/**
1950 * eap_get_config_phase1 - Get phase1 data from the network configuration
1951 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1952 * Returns: Pointer to the phase1 data or %NULL if not found
1953 */
1954const char * eap_get_config_phase1(struct eap_sm *sm)
1955{
1956 struct eap_peer_config *config = eap_get_config(sm);
1957 if (config == NULL)
1958 return NULL;
1959 return config->phase1;
1960}
1961
1962
1963/**
1964 * eap_get_config_phase2 - Get phase2 data from the network configuration
1965 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1966 * Returns: Pointer to the phase1 data or %NULL if not found
1967 */
1968const char * eap_get_config_phase2(struct eap_sm *sm)
1969{
1970 struct eap_peer_config *config = eap_get_config(sm);
1971 if (config == NULL)
1972 return NULL;
1973 return config->phase2;
1974}
1975
1976
f3a3e698
JM
1977int eap_get_config_fragment_size(struct eap_sm *sm)
1978{
1979 struct eap_peer_config *config = eap_get_config(sm);
1980 if (config == NULL)
1981 return -1;
1982 return config->fragment_size;
1983}
1984
1985
6fc6879b
JM
1986/**
1987 * eap_key_available - Get key availability (eapKeyAvailable variable)
1988 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1989 * Returns: 1 if EAP keying material is available, 0 if not
1990 */
1991int eap_key_available(struct eap_sm *sm)
1992{
1993 return sm ? sm->eapKeyAvailable : 0;
1994}
1995
1996
1997/**
1998 * eap_notify_success - Notify EAP state machine about external success trigger
1999 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2000 *
2001 * This function is called when external event, e.g., successful completion of
2002 * WPA-PSK key handshake, is indicating that EAP state machine should move to
2003 * success state. This is mainly used with security modes that do not use EAP
2004 * state machine (e.g., WPA-PSK).
2005 */
2006void eap_notify_success(struct eap_sm *sm)
2007{
2008 if (sm) {
2009 sm->decision = DECISION_COND_SUCC;
2010 sm->EAP_state = EAP_SUCCESS;
2011 }
2012}
2013
2014
2015/**
2016 * eap_notify_lower_layer_success - Notification of lower layer success
2017 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2018 *
2019 * Notify EAP state machines that a lower layer has detected a successful
2020 * authentication. This is used to recover from dropped EAP-Success messages.
2021 */
2022void eap_notify_lower_layer_success(struct eap_sm *sm)
2023{
2024 if (sm == NULL)
2025 return;
2026
2027 if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
2028 sm->decision == DECISION_FAIL ||
2029 (sm->methodState != METHOD_MAY_CONT &&
2030 sm->methodState != METHOD_DONE))
2031 return;
2032
2033 if (sm->eapKeyData != NULL)
2034 sm->eapKeyAvailable = TRUE;
2035 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
2036 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
2037 "EAP authentication completed successfully (based on lower "
2038 "layer success)");
2039}
2040
2041
2042/**
2043 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
2044 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2045 * @len: Pointer to variable that will be set to number of bytes in the key
2046 * Returns: Pointer to the EAP keying data or %NULL on failure
2047 *
2048 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
2049 * key is available only after a successful authentication. EAP state machine
2050 * continues to manage the key data and the caller must not change or free the
2051 * returned data.
2052 */
2053const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
2054{
2055 if (sm == NULL || sm->eapKeyData == NULL) {
2056 *len = 0;
2057 return NULL;
2058 }
2059
2060 *len = sm->eapKeyDataLen;
2061 return sm->eapKeyData;
2062}
2063
2064
2065/**
2066 * eap_get_eapKeyData - Get EAP response data
2067 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2068 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
2069 *
2070 * Fetch EAP response (eapRespData) from the EAP state machine. This data is
2071 * available when EAP state machine has processed an incoming EAP request. The
2072 * EAP state machine does not maintain a reference to the response after this
2073 * function is called and the caller is responsible for freeing the data.
2074 */
2075struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
2076{
2077 struct wpabuf *resp;
2078
2079 if (sm == NULL || sm->eapRespData == NULL)
2080 return NULL;
2081
2082 resp = sm->eapRespData;
2083 sm->eapRespData = NULL;
2084
2085 return resp;
2086}
2087
2088
2089/**
2090 * eap_sm_register_scard_ctx - Notification of smart card context
2091 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2092 * @ctx: Context data for smart card operations
2093 *
2094 * Notify EAP state machines of context data for smart card operations. This
2095 * context data will be used as a parameter for scard_*() functions.
2096 */
2097void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
2098{
2099 if (sm)
2100 sm->scard_ctx = ctx;
2101}
2102
2103
2104/**
2105 * eap_set_config_blob - Set or add a named configuration blob
2106 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2107 * @blob: New value for the blob
2108 *
2109 * Adds a new configuration blob or replaces the current value of an existing
2110 * blob.
2111 */
2112void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
2113{
2114#ifndef CONFIG_NO_CONFIG_BLOBS
2115 sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
2116#endif /* CONFIG_NO_CONFIG_BLOBS */
2117}
2118
2119
2120/**
2121 * eap_get_config_blob - Get a named configuration blob
2122 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2123 * @name: Name of the blob
2124 * Returns: Pointer to blob data or %NULL if not found
2125 */
2126const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
2127 const char *name)
2128{
2129#ifndef CONFIG_NO_CONFIG_BLOBS
2130 return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
2131#else /* CONFIG_NO_CONFIG_BLOBS */
2132 return NULL;
2133#endif /* CONFIG_NO_CONFIG_BLOBS */
2134}
2135
2136
2137/**
2138 * eap_set_force_disabled - Set force_disabled flag
2139 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2140 * @disabled: 1 = EAP disabled, 0 = EAP enabled
2141 *
2142 * This function is used to force EAP state machine to be disabled when it is
2143 * not in use (e.g., with WPA-PSK or plaintext connections).
2144 */
2145void eap_set_force_disabled(struct eap_sm *sm, int disabled)
2146{
2147 sm->force_disabled = disabled;
2148}
2149
2150
2151 /**
2152 * eap_notify_pending - Notify that EAP method is ready to re-process a request
2153 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2154 *
2155 * An EAP method can perform a pending operation (e.g., to get a response from
2156 * an external process). Once the response is available, this function can be
2157 * used to request EAPOL state machine to retry delivering the previously
2158 * received (and still unanswered) EAP request to EAP state machine.
2159 */
2160void eap_notify_pending(struct eap_sm *sm)
2161{
2162 sm->eapol_cb->notify_pending(sm->eapol_ctx);
2163}
2164
2165
2166/**
2167 * eap_invalidate_cached_session - Mark cached session data invalid
2168 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2169 */
2170void eap_invalidate_cached_session(struct eap_sm *sm)
2171{
2172 if (sm)
2173 eap_deinit_prev_method(sm, "invalidate");
2174}
ad08c363
JM
2175
2176
2177int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
2178{
2179 if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2180 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2181 return 0; /* Not a WPS Enrollee */
2182
2183 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
2184 return 0; /* Not using PBC */
2185
2186 return 1;
2187}
2188
2189
2190int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
2191{
2192 if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2193 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2194 return 0; /* Not a WPS Enrollee */
2195
2196 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
2197 return 0; /* Not using PIN */
2198
2199 return 1;
2200}