]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - arch/xtensa/kernel/process.c
Merge tag 'xtensa-20240502' of https://github.com/jcmvbkbc/linux-xtensa
[thirdparty/kernel/linux.git] / arch / xtensa / kernel / process.c
CommitLineData
5a0015d6
CZ
1/*
2 * arch/xtensa/kernel/process.c
3 *
4 * Xtensa Processor version.
5 *
6 * This file is subject to the terms and conditions of the GNU General Public
7 * License. See the file "COPYING" in the main directory of this archive
8 * for more details.
9 *
10 * Copyright (C) 2001 - 2005 Tensilica Inc.
11 *
12 * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
13 * Chris Zankel <chris@zankel.net>
14 * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
15 * Kevin Chea
16 */
17
5a0015d6
CZ
18#include <linux/errno.h>
19#include <linux/sched.h>
b17b0153 20#include <linux/sched/debug.h>
29930025 21#include <linux/sched/task.h>
68db0cf1 22#include <linux/sched/task_stack.h>
5a0015d6
CZ
23#include <linux/kernel.h>
24#include <linux/mm.h>
25#include <linux/smp.h>
5a0015d6
CZ
26#include <linux/stddef.h>
27#include <linux/unistd.h>
28#include <linux/ptrace.h>
5a0015d6 29#include <linux/elf.h>
c91e02bd 30#include <linux/hw_breakpoint.h>
5a0015d6
CZ
31#include <linux/init.h>
32#include <linux/prctl.h>
33#include <linux/init_task.h>
34#include <linux/module.h>
35#include <linux/mqueue.h>
73089cbf 36#include <linux/fs.h>
5a0e3ad6 37#include <linux/slab.h>
11ad47a0 38#include <linux/rcupdate.h>
5a0015d6 39
7c0f6ba6 40#include <linux/uaccess.h>
5a0015d6
CZ
41#include <asm/io.h>
42#include <asm/processor.h>
43#include <asm/platform.h>
44#include <asm/mmu.h>
45#include <asm/irq.h>
60063497 46#include <linux/atomic.h>
0013a854 47#include <asm/asm-offsets.h>
173d6681 48#include <asm/regs.h>
c91e02bd 49#include <asm/hw_breakpoint.h>
0e60f0b7 50#include <asm/sections.h>
11e969bc 51#include <asm/traps.h>
5a0015d6
CZ
52
53extern void ret_from_fork(void);
3306a726 54extern void ret_from_kernel_thread(void);
5a0015d6 55
47f3fc94
AB
56void (*pm_power_off)(void) = NULL;
57EXPORT_SYMBOL(pm_power_off);
58
5a0015d6 59
050e9baa 60#ifdef CONFIG_STACKPROTECTOR
40d1a07b
MF
61#include <linux/stackprotector.h>
62unsigned long __stack_chk_guard __read_mostly;
63EXPORT_SYMBOL(__stack_chk_guard);
64#endif
65
c658eac6
CZ
66#if XTENSA_HAVE_COPROCESSORS
67
11e969bc 68void local_coprocessors_flush_release_all(void)
c658eac6 69{
11e969bc
MF
70 struct thread_info **coprocessor_owner;
71 struct thread_info *unique_owner[XCHAL_CP_MAX];
72 int n = 0;
73 int i, j;
c658eac6 74
11e969bc
MF
75 coprocessor_owner = this_cpu_ptr(&exc_table)->coprocessor_owner;
76 xtensa_set_sr(XCHAL_CP_MASK, cpenable);
c658eac6 77
11e969bc
MF
78 for (i = 0; i < XCHAL_CP_MAX; i++) {
79 struct thread_info *ti = coprocessor_owner[i];
c658eac6 80
11e969bc
MF
81 if (ti) {
82 coprocessor_flush(ti, i);
c658eac6 83
11e969bc
MF
84 for (j = 0; j < n; j++)
85 if (unique_owner[j] == ti)
86 break;
87 if (j == n)
88 unique_owner[n++] = ti;
c658eac6 89
11e969bc 90 coprocessor_owner[i] = NULL;
c658eac6
CZ
91 }
92 }
11e969bc
MF
93 for (i = 0; i < n; i++) {
94 /* pairs with memw (1) in fast_coprocessor and memw in switch_to */
95 smp_wmb();
96 unique_owner[i]->cpenable = 0;
97 }
98 xtensa_set_sr(0, cpenable);
99}
c658eac6 100
11e969bc
MF
101static void local_coprocessor_release_all(void *info)
102{
103 struct thread_info *ti = info;
104 struct thread_info **coprocessor_owner;
105 int i;
106
107 coprocessor_owner = this_cpu_ptr(&exc_table)->coprocessor_owner;
108
109 /* Walk through all cp owners and release it for the requested one. */
110
111 for (i = 0; i < XCHAL_CP_MAX; i++) {
112 if (coprocessor_owner[i] == ti)
113 coprocessor_owner[i] = NULL;
114 }
115 /* pairs with memw (1) in fast_coprocessor and memw in switch_to */
116 smp_wmb();
117 ti->cpenable = 0;
be38e4f2
MF
118 if (ti == current_thread_info())
119 xtensa_set_sr(0, cpenable);
11e969bc 120}
c658eac6 121
11e969bc
MF
122void coprocessor_release_all(struct thread_info *ti)
123{
124 if (ti->cpenable) {
125 /* pairs with memw (2) in fast_coprocessor */
126 smp_rmb();
127 smp_call_function_single(ti->cp_owner_cpu,
128 local_coprocessor_release_all,
129 ti, true);
130 }
c658eac6
CZ
131}
132
11e969bc 133static void local_coprocessor_flush_all(void *info)
c658eac6 134{
11e969bc
MF
135 struct thread_info *ti = info;
136 struct thread_info **coprocessor_owner;
137 unsigned long old_cpenable;
c658eac6
CZ
138 int i;
139
11e969bc
MF
140 coprocessor_owner = this_cpu_ptr(&exc_table)->coprocessor_owner;
141 old_cpenable = xtensa_xsr(ti->cpenable, cpenable);
c658eac6
CZ
142
143 for (i = 0; i < XCHAL_CP_MAX; i++) {
11e969bc 144 if (coprocessor_owner[i] == ti)
c658eac6 145 coprocessor_flush(ti, i);
c658eac6 146 }
cad6fade 147 xtensa_set_sr(old_cpenable, cpenable);
11e969bc
MF
148}
149
150void coprocessor_flush_all(struct thread_info *ti)
151{
152 if (ti->cpenable) {
153 /* pairs with memw (2) in fast_coprocessor */
154 smp_rmb();
155 smp_call_function_single(ti->cp_owner_cpu,
156 local_coprocessor_flush_all,
157 ti, true);
158 }
159}
160
161static void local_coprocessor_flush_release_all(void *info)
162{
163 local_coprocessor_flush_all(info);
164 local_coprocessor_release_all(info);
165}
c658eac6 166
11e969bc
MF
167void coprocessor_flush_release_all(struct thread_info *ti)
168{
169 if (ti->cpenable) {
170 /* pairs with memw (2) in fast_coprocessor */
171 smp_rmb();
172 smp_call_function_single(ti->cp_owner_cpu,
173 local_coprocessor_flush_release_all,
174 ti, true);
175 }
c658eac6
CZ
176}
177
178#endif
179
180
5a0015d6
CZ
181/*
182 * Powermanagement idle function, if any is provided by the platform.
183 */
f4e2e9a4 184void arch_cpu_idle(void)
5a0015d6 185{
f4e2e9a4 186 platform_idle();
89b30987 187 raw_local_irq_disable();
5a0015d6
CZ
188}
189
190/*
c658eac6 191 * This is called when the thread calls exit().
5a0015d6 192 */
e6464694 193void exit_thread(struct task_struct *tsk)
5a0015d6 194{
c658eac6 195#if XTENSA_HAVE_COPROCESSORS
e6464694 196 coprocessor_release_all(task_thread_info(tsk));
c658eac6 197#endif
5a0015d6
CZ
198}
199
c658eac6
CZ
200/*
201 * Flush thread state. This is called when a thread does an execve()
202 * Note that we flush coprocessor registers for the case execve fails.
203 */
5a0015d6
CZ
204void flush_thread(void)
205{
c658eac6
CZ
206#if XTENSA_HAVE_COPROCESSORS
207 struct thread_info *ti = current_thread_info();
11e969bc 208 coprocessor_flush_release_all(ti);
c658eac6 209#endif
c91e02bd 210 flush_ptrace_hw_breakpoint(current);
c658eac6
CZ
211}
212
213/*
55ccf3fe
SS
214 * this gets called so that we can store coprocessor state into memory and
215 * copy the current task into the new thread.
c658eac6 216 */
55ccf3fe 217int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
c658eac6
CZ
218{
219#if XTENSA_HAVE_COPROCESSORS
55ccf3fe 220 coprocessor_flush_all(task_thread_info(src));
c658eac6 221#endif
55ccf3fe
SS
222 *dst = *src;
223 return 0;
5a0015d6
CZ
224}
225
226/*
227 * Copy thread.
228 *
3306a726
MF
229 * There are two modes in which this function is called:
230 * 1) Userspace thread creation,
231 * regs != NULL, usp_thread_fn is userspace stack pointer.
232 * It is expected to copy parent regs (in case CLONE_VM is not set
233 * in the clone_flags) and set up passed usp in the childregs.
234 * 2) Kernel thread creation,
235 * regs == NULL, usp_thread_fn is the function to run in the new thread
236 * and thread_fn_arg is its parameter.
237 * childregs are not used for the kernel threads.
238 *
5a0015d6
CZ
239 * The stack layout for the new thread looks like this:
240 *
3306a726 241 * +------------------------+
5a0015d6
CZ
242 * | childregs |
243 * +------------------------+ <- thread.sp = sp in dummy-frame
244 * | dummy-frame | (saved in dummy-frame spill-area)
245 * +------------------------+
246 *
3306a726
MF
247 * We create a dummy frame to return to either ret_from_fork or
248 * ret_from_kernel_thread:
249 * a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
5a0015d6 250 * sp points to itself (thread.sp)
3306a726
MF
251 * a2, a3 are unused for userspace threads,
252 * a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
5a0015d6
CZ
253 *
254 * Note: This is a pristine frame, so we don't need any spill region on top of
255 * childregs.
84ed3053
MG
256 *
257 * The fun part: if we're keeping the same VM (i.e. cloning a thread,
258 * not an entire process), we're normally given a new usp, and we CANNOT share
259 * any live address register windows. If we just copy those live frames over,
260 * the two threads (parent and child) will overflow the same frames onto the
261 * parent stack at different times, likely corrupting the parent stack (esp.
262 * if the parent returns from functions that called clone() and calls new
263 * ones, before the child overflows its now old copies of its parent windows).
264 * One solution is to spill windows to the parent stack, but that's fairly
265 * involved. Much simpler to just not copy those live frames across.
5a0015d6
CZ
266 */
267
c5febea0 268int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
5a0015d6 269{
c5febea0
EB
270 unsigned long clone_flags = args->flags;
271 unsigned long usp_thread_fn = args->stack;
c5febea0 272 unsigned long tls = args->tls;
3306a726 273 struct pt_regs *childregs = task_pt_regs(p);
5a0015d6 274
39070cb8
CZ
275#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
276 struct thread_info *ti;
277#endif
278
0b537257 279#if defined(__XTENSA_WINDOWED_ABI__)
5a0015d6 280 /* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
062b1c19
MF
281 SPILL_SLOT(childregs, 1) = (unsigned long)childregs;
282 SPILL_SLOT(childregs, 0) = 0;
5a0015d6 283
5a0015d6 284 p->thread.sp = (unsigned long)childregs;
0b537257
MF
285#elif defined(__XTENSA_CALL0_ABI__)
286 /* Reserve 16 bytes for the _switch_to stack frame. */
287 p->thread.sp = (unsigned long)childregs - 16;
288#else
289#error Unsupported Xtensa ABI
290#endif
c658eac6 291
5bd2e97c 292 if (!args->fn) {
3306a726
MF
293 struct pt_regs *regs = current_pt_regs();
294 unsigned long usp = usp_thread_fn ?
295 usp_thread_fn : regs->areg[1];
296
297 p->thread.ra = MAKE_RA_FOR_CALL(
298 (unsigned long)ret_from_fork, 0x1);
5a0015d6 299
3306a726 300 *childregs = *regs;
5a0015d6 301 childregs->areg[1] = usp;
3306a726 302 childregs->areg[2] = 0;
6ebe7da2
CZ
303
304 /* When sharing memory with the parent thread, the child
305 usually starts on a pristine stack, so we have to reset
306 windowbase, windowstart and wmask.
307 (Note that such a new thread is required to always create
308 an initial call4 frame)
309 The exception is vfork, where the new thread continues to
310 run on the parent's stack until it calls execve. This could
311 be a call8 or call12, which requires a legal stack frame
312 of the previous caller for the overflow handlers to work.
313 (Note that it's always legal to overflow live registers).
314 In this case, ensure to spill at least the stack pointer
315 of that frame. */
316
84ed3053 317 if (clone_flags & CLONE_VM) {
6ebe7da2
CZ
318 /* check that caller window is live and same stack */
319 int len = childregs->wmask & ~0xf;
320 if (regs->areg[1] == usp && len != 0) {
321 int callinc = (regs->areg[0] >> 30) & 3;
322 int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
323 put_user(regs->areg[caller_ars+1],
324 (unsigned __user*)(usp - 12));
325 }
326 childregs->wmask = 1;
327 childregs->windowstart = 1;
328 childregs->windowbase = 0;
84ed3053 329 }
c50842df 330
5a0015d6 331 if (clone_flags & CLONE_SETTLS)
c346b94f 332 childregs->threadptr = tls;
5a0015d6 333 } else {
3306a726
MF
334 p->thread.ra = MAKE_RA_FOR_CALL(
335 (unsigned long)ret_from_kernel_thread, 1);
336
0b537257
MF
337 /* pass parameters to ret_from_kernel_thread: */
338#if defined(__XTENSA_WINDOWED_ABI__)
339 /*
340 * a2 = thread_fn, a3 = thread_fn arg.
341 * Window underflow will load registers from the
342 * spill slots on the stack on return from _switch_to.
3306a726 343 */
5bd2e97c
EB
344 SPILL_SLOT(childregs, 2) = (unsigned long)args->fn;
345 SPILL_SLOT(childregs, 3) = (unsigned long)args->fn_arg;
0b537257
MF
346#elif defined(__XTENSA_CALL0_ABI__)
347 /*
348 * a12 = thread_fn, a13 = thread_fn arg.
349 * _switch_to epilogue will load registers from the stack.
350 */
5bd2e97c
EB
351 ((unsigned long *)p->thread.sp)[0] = (unsigned long)args->fn;
352 ((unsigned long *)p->thread.sp)[1] = (unsigned long)args->fn_arg;
0b537257
MF
353#else
354#error Unsupported Xtensa ABI
355#endif
3306a726
MF
356
357 /* Childregs are only used when we're going to userspace
358 * in which case start_thread will set them up.
359 */
5a0015d6 360 }
c658eac6
CZ
361
362#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
363 ti = task_thread_info(p);
364 ti->cpenable = 0;
365#endif
366
c91e02bd
MF
367 clear_ptrace_hw_breakpoint(p);
368
5a0015d6
CZ
369 return 0;
370}
371
372
5a0015d6
CZ
373/*
374 * These bracket the sleeping functions..
375 */
376
42a20f86 377unsigned long __get_wchan(struct task_struct *p)
5a0015d6
CZ
378{
379 unsigned long sp, pc;
04fe6faf 380 unsigned long stack_page = (unsigned long) task_stack_page(p);
5a0015d6
CZ
381 int count = 0;
382
5a0015d6 383 sp = p->thread.sp;
0e60f0b7 384 pc = MAKE_PC_FROM_RA(p->thread.ra, _text);
5a0015d6
CZ
385
386 do {
387 if (sp < stack_page + sizeof(struct task_struct) ||
388 sp >= (stack_page + THREAD_SIZE) ||
389 pc == 0)
390 return 0;
391 if (!in_sched_functions(pc))
392 return pc;
393
394 /* Stack layout: sp-4: ra, sp-3: sp' */
395
0e60f0b7 396 pc = MAKE_PC_FROM_RA(SPILL_SLOT(sp, 0), _text);
d90b88fd 397 sp = SPILL_SLOT(sp, 1);
5a0015d6
CZ
398 } while (count++ < 16);
399 return 0;
400}