]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
mdmon: use activate spare for re-add
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2007 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20#include "mdadm.h"
c2a1e7da 21#include "mdmon.h"
cdddbdbc
DW
22#include <values.h>
23#include <scsi/sg.h>
24#include <ctype.h>
25
26/* MPB == Metadata Parameter Block */
27#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
28#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
29#define MPB_VERSION_RAID0 "1.0.00"
30#define MPB_VERSION_RAID1 "1.1.00"
31#define MPB_VERSION_RAID5 "1.2.02"
32#define MAX_SIGNATURE_LENGTH 32
33#define MAX_RAID_SERIAL_LEN 16
c2c087e6
DW
34#define MPB_SECTOR_CNT 418
35#define IMSM_RESERVED_SECTORS 4096
cdddbdbc
DW
36
37/* Disk configuration info. */
38#define IMSM_MAX_DEVICES 255
39struct imsm_disk {
40 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
41 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
42 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
43 __u32 status; /* 0xF0 - 0xF3 */
44#define SPARE_DISK 0x01 /* Spare */
45#define CONFIGURED_DISK 0x02 /* Member of some RaidDev */
46#define FAILED_DISK 0x04 /* Permanent failure */
47#define USABLE_DISK 0x08 /* Fully usable unless FAILED_DISK is set */
48
49#define IMSM_DISK_FILLERS 5
50 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
51};
52
53/* RAID map configuration infos. */
54struct imsm_map {
55 __u32 pba_of_lba0; /* start address of partition */
56 __u32 blocks_per_member;/* blocks per member */
57 __u32 num_data_stripes; /* number of data stripes */
58 __u16 blocks_per_strip;
59 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
60#define IMSM_T_STATE_NORMAL 0
61#define IMSM_T_STATE_UNINITIALIZED 1
62#define IMSM_T_STATE_DEGRADED 2 /* FIXME: is this correct? */
63#define IMSM_T_STATE_FAILED 3 /* FIXME: is this correct? */
64 __u8 raid_level;
65#define IMSM_T_RAID0 0
66#define IMSM_T_RAID1 1
67#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
68 __u8 num_members; /* number of member disks */
69 __u8 reserved[3];
70 __u32 filler[7]; /* expansion area */
71 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
72 top byte special */
73} __attribute__ ((packed));
74
75struct imsm_vol {
76 __u32 reserved[2];
77 __u8 migr_state; /* Normal or Migrating */
78 __u8 migr_type; /* Initializing, Rebuilding, ... */
79 __u8 dirty;
80 __u8 fill[1];
81 __u32 filler[5];
82 struct imsm_map map[1];
83 /* here comes another one if migr_state */
84} __attribute__ ((packed));
85
86struct imsm_dev {
87 __u8 volume[MAX_RAID_SERIAL_LEN];
88 __u32 size_low;
89 __u32 size_high;
90 __u32 status; /* Persistent RaidDev status */
91 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
92#define IMSM_DEV_FILLERS 12
93 __u32 filler[IMSM_DEV_FILLERS];
94 struct imsm_vol vol;
95} __attribute__ ((packed));
96
97struct imsm_super {
98 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
99 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
100 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
101 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
102 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
103 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
104 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
105 __u8 num_disks; /* 0x38 Number of configured disks */
106 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
107 __u8 error_log_pos; /* 0x3A */
108 __u8 fill[1]; /* 0x3B */
109 __u32 cache_size; /* 0x3c - 0x40 in mb */
110 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
111 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
112 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
113#define IMSM_FILLERS 35
114 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
115 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
116 /* here comes imsm_dev[num_raid_devs] */
604b746f 117 /* here comes BBM logs */
cdddbdbc
DW
118} __attribute__ ((packed));
119
604b746f
JD
120#define BBM_LOG_MAX_ENTRIES 254
121
122struct bbm_log_entry {
123 __u64 defective_block_start;
124#define UNREADABLE 0xFFFFFFFF
125 __u32 spare_block_offset;
126 __u16 remapped_marked_count;
127 __u16 disk_ordinal;
128} __attribute__ ((__packed__));
129
130struct bbm_log {
131 __u32 signature; /* 0xABADB10C */
132 __u32 entry_count;
133 __u32 reserved_spare_block_count; /* 0 */
134 __u32 reserved; /* 0xFFFF */
135 __u64 first_spare_lba;
136 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
137} __attribute__ ((__packed__));
138
139
cdddbdbc
DW
140#ifndef MDASSEMBLE
141static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
142#endif
143
87eb16df 144static unsigned int sector_count(__u32 bytes)
cdddbdbc 145{
87eb16df
DW
146 return ((bytes + (512-1)) & (~(512-1))) / 512;
147}
cdddbdbc 148
87eb16df
DW
149static unsigned int mpb_sectors(struct imsm_super *mpb)
150{
151 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
152}
153
154/* internal representation of IMSM metadata */
155struct intel_super {
156 union {
949c47a0
DW
157 void *buf; /* O_DIRECT buffer for reading/writing metadata */
158 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 159 };
949c47a0 160 size_t len; /* size of the 'buf' allocation */
c2c087e6
DW
161 int updates_pending; /* count of pending updates for mdmon */
162 int creating_imsm; /* flag to indicate container creation */
bf5a934a 163 int current_vol; /* index of raid device undergoing creation */
949c47a0
DW
164 #define IMSM_MAX_RAID_DEVS 2
165 struct imsm_dev *dev_tbl[IMSM_MAX_RAID_DEVS];
cdddbdbc
DW
166 struct dl {
167 struct dl *next;
168 int index;
169 __u8 serial[MAX_RAID_SERIAL_LEN];
170 int major, minor;
171 char *devname;
b9f594fe 172 struct imsm_disk disk;
cdddbdbc
DW
173 int fd;
174 } *disks;
604b746f 175 struct bbm_log *bbm_log;
cdddbdbc
DW
176};
177
c2c087e6
DW
178struct extent {
179 unsigned long long start, size;
180};
181
88758e9d
DW
182/* definition of messages passed to imsm_process_update */
183enum imsm_update_type {
184 update_activate_spare,
8273f55e 185 update_create_array,
88758e9d
DW
186};
187
188struct imsm_update_activate_spare {
189 enum imsm_update_type type;
d23fe947 190 struct dl *dl;
88758e9d
DW
191 int slot;
192 int array;
193 struct imsm_update_activate_spare *next;
194};
195
8273f55e
DW
196struct imsm_update_create_array {
197 enum imsm_update_type type;
198 struct imsm_dev dev;
199 int dev_idx;
200};
201
0030e8d6
DW
202static int imsm_env_devname_as_serial(void)
203{
204 char *val = getenv("IMSM_DEVNAME_AS_SERIAL");
205
206 if (val && atoi(val) == 1)
207 return 1;
208
209 return 0;
210}
211
212
cdddbdbc
DW
213static struct supertype *match_metadata_desc_imsm(char *arg)
214{
215 struct supertype *st;
216
217 if (strcmp(arg, "imsm") != 0 &&
218 strcmp(arg, "default") != 0
219 )
220 return NULL;
221
222 st = malloc(sizeof(*st));
ef609477 223 memset(st, 0, sizeof(*st));
cdddbdbc
DW
224 st->ss = &super_imsm;
225 st->max_devs = IMSM_MAX_DEVICES;
226 st->minor_version = 0;
227 st->sb = NULL;
228 return st;
229}
230
cdddbdbc
DW
231static __u8 *get_imsm_version(struct imsm_super *mpb)
232{
233 return &mpb->sig[MPB_SIG_LEN];
234}
235
949c47a0
DW
236/* retrieve a disk directly from the anchor when the anchor is known to be
237 * up-to-date, currently only at load time
238 */
239static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 240{
949c47a0 241 if (index >= mpb->num_disks)
cdddbdbc
DW
242 return NULL;
243 return &mpb->disk[index];
244}
245
b9f594fe 246/* retrieve a disk from the parsed metadata */
949c47a0
DW
247static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
248{
b9f594fe
DW
249 struct dl *d;
250
251 for (d = super->disks; d; d = d->next)
252 if (d->index == index)
253 return &d->disk;
254
255 return NULL;
949c47a0
DW
256}
257
258/* generate a checksum directly from the anchor when the anchor is known to be
259 * up-to-date, currently only at load or write_super after coalescing
260 */
261static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
262{
263 __u32 end = mpb->mpb_size / sizeof(end);
264 __u32 *p = (__u32 *) mpb;
265 __u32 sum = 0;
266
267 while (end--)
268 sum += __le32_to_cpu(*p++);
269
270 return sum - __le32_to_cpu(mpb->check_sum);
271}
272
a965f303
DW
273static size_t sizeof_imsm_map(struct imsm_map *map)
274{
275 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
276}
277
278struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 279{
a965f303
DW
280 struct imsm_map *map = &dev->vol.map[0];
281
282 if (second_map && !dev->vol.migr_state)
283 return NULL;
284 else if (second_map) {
285 void *ptr = map;
286
287 return ptr + sizeof_imsm_map(map);
288 } else
289 return map;
290
291}
cdddbdbc 292
3393c6af
DW
293/* return the size of the device.
294 * migr_state increases the returned size if map[0] were to be duplicated
295 */
296static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
297{
298 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
299 sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
300
301 /* migrating means an additional map */
a965f303
DW
302 if (dev->vol.migr_state)
303 size += sizeof_imsm_map(get_imsm_map(dev, 1));
3393c6af
DW
304 else if (migr_state)
305 size += sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
306
307 return size;
308}
309
949c47a0 310static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
311{
312 int offset;
313 int i;
314 void *_mpb = mpb;
315
949c47a0 316 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
317 return NULL;
318
319 /* devices start after all disks */
320 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
321
322 for (i = 0; i <= index; i++)
323 if (i == index)
324 return _mpb + offset;
325 else
3393c6af 326 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
327
328 return NULL;
329}
330
949c47a0
DW
331static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
332{
333 if (index >= super->anchor->num_raid_devs)
334 return NULL;
335 return super->dev_tbl[index];
336}
337
cdddbdbc
DW
338static __u32 get_imsm_disk_idx(struct imsm_map *map, int slot)
339{
340 __u32 *ord_tbl = &map->disk_ord_tbl[slot];
341
342 /* top byte is 'special' */
343 return __le32_to_cpu(*ord_tbl & ~(0xff << 24));
344}
345
cdddbdbc
DW
346static int get_imsm_raid_level(struct imsm_map *map)
347{
348 if (map->raid_level == 1) {
349 if (map->num_members == 2)
350 return 1;
351 else
352 return 10;
353 }
354
355 return map->raid_level;
356}
357
c2c087e6
DW
358static int cmp_extent(const void *av, const void *bv)
359{
360 const struct extent *a = av;
361 const struct extent *b = bv;
362 if (a->start < b->start)
363 return -1;
364 if (a->start > b->start)
365 return 1;
366 return 0;
367}
368
369static struct extent *get_extents(struct intel_super *super, struct dl *dl)
370{
371 /* find a list of used extents on the given physical device */
c2c087e6
DW
372 struct extent *rv, *e;
373 int i, j;
374 int memberships = 0;
375
949c47a0
DW
376 for (i = 0; i < super->anchor->num_raid_devs; i++) {
377 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 378 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6
DW
379
380 for (j = 0; j < map->num_members; j++) {
381 __u32 index = get_imsm_disk_idx(map, j);
382
383 if (index == dl->index)
384 memberships++;
385 }
386 }
387 rv = malloc(sizeof(struct extent) * (memberships + 1));
388 if (!rv)
389 return NULL;
390 e = rv;
391
949c47a0
DW
392 for (i = 0; i < super->anchor->num_raid_devs; i++) {
393 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 394 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6
DW
395
396 for (j = 0; j < map->num_members; j++) {
397 __u32 index = get_imsm_disk_idx(map, j);
398
399 if (index == dl->index) {
400 e->start = __le32_to_cpu(map->pba_of_lba0);
401 e->size = __le32_to_cpu(map->blocks_per_member);
402 e++;
403 }
404 }
405 }
406 qsort(rv, memberships, sizeof(*rv), cmp_extent);
407
b9f594fe 408 e->start = __le32_to_cpu(dl->disk.total_blocks) -
c2c087e6
DW
409 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
410 e->size = 0;
411 return rv;
412}
413
4f5bc454 414#ifndef MDASSEMBLE
cdddbdbc
DW
415static void print_imsm_dev(struct imsm_dev *dev, int index)
416{
417 __u64 sz;
418 int slot;
a965f303 419 struct imsm_map *map = get_imsm_map(dev, 0);
cdddbdbc
DW
420
421 printf("\n");
422 printf("[%s]:\n", dev->volume);
423 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
424 printf(" Members : %d\n", map->num_members);
425 for (slot = 0; slot < map->num_members; slot++)
426 if (index == get_imsm_disk_idx(map, slot))
427 break;
428 if (slot < map->num_members)
429 printf(" This Slot : %d\n", slot);
430 else
431 printf(" This Slot : ?\n");
432 sz = __le32_to_cpu(dev->size_high);
433 sz <<= 32;
434 sz += __le32_to_cpu(dev->size_low);
435 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
436 human_size(sz * 512));
437 sz = __le32_to_cpu(map->blocks_per_member);
438 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
439 human_size(sz * 512));
440 printf(" Sector Offset : %u\n",
441 __le32_to_cpu(map->pba_of_lba0));
442 printf(" Num Stripes : %u\n",
443 __le32_to_cpu(map->num_data_stripes));
444 printf(" Chunk Size : %u KiB\n",
445 __le16_to_cpu(map->blocks_per_strip) / 2);
446 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
3393c6af
DW
447 printf(" Migrate State : %s", dev->vol.migr_state ? "migrating" : "idle");
448 if (dev->vol.migr_state)
449 printf(": %s", dev->vol.migr_type ? "rebuilding" : "initializing");
450 printf("\n");
451 printf(" Map State : %s", map_state_str[map->map_state]);
452 if (dev->vol.migr_state) {
453 struct imsm_map *map = get_imsm_map(dev, 1);
454 printf(", %s", map_state_str[map->map_state]);
455 }
456 printf("\n");
cdddbdbc 457 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
458}
459
460static void print_imsm_disk(struct imsm_super *mpb, int index)
461{
949c47a0 462 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
cdddbdbc
DW
463 char str[MAX_RAID_SERIAL_LEN];
464 __u32 s;
465 __u64 sz;
466
e9d82038
DW
467 if (index < 0)
468 return;
469
cdddbdbc
DW
470 printf("\n");
471 snprintf(str, MAX_RAID_SERIAL_LEN, "%s", disk->serial);
472 printf(" Disk%02d Serial : %s\n", index, str);
473 s = __le32_to_cpu(disk->status);
474 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
475 s&CONFIGURED_DISK ? " active" : "",
476 s&FAILED_DISK ? " failed" : "",
477 s&USABLE_DISK ? " usable" : "");
478 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
c2c087e6
DW
479 sz = __le32_to_cpu(disk->total_blocks) -
480 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS * mpb->num_raid_devs);
cdddbdbc
DW
481 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
482 human_size(sz * 512));
483}
484
485static void examine_super_imsm(struct supertype *st, char *homehost)
486{
487 struct intel_super *super = st->sb;
949c47a0 488 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
489 char str[MAX_SIGNATURE_LENGTH];
490 int i;
491 __u32 sum;
492
493 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
494 printf(" Magic : %s\n", str);
495 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
496 printf(" Version : %s\n", get_imsm_version(mpb));
497 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
498 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
499 sum = __le32_to_cpu(mpb->check_sum);
500 printf(" Checksum : %08x %s\n", sum,
949c47a0 501 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 502 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
503 printf(" Disks : %d\n", mpb->num_disks);
504 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
505 print_imsm_disk(mpb, super->disks->index);
604b746f
JD
506 if (super->bbm_log) {
507 struct bbm_log *log = super->bbm_log;
508
509 printf("\n");
510 printf("Bad Block Management Log:\n");
511 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
512 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
513 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
514 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
515 printf(" First Spare : %llx\n", __le64_to_cpu(log->first_spare_lba));
516 }
cdddbdbc 517 for (i = 0; i < mpb->num_raid_devs; i++)
949c47a0 518 print_imsm_dev(__get_imsm_dev(mpb, i), super->disks->index);
cdddbdbc
DW
519 for (i = 0; i < mpb->num_disks; i++) {
520 if (i == super->disks->index)
521 continue;
522 print_imsm_disk(mpb, i);
523 }
524}
525
526static void brief_examine_super_imsm(struct supertype *st)
527{
828408eb 528 printf("ARRAY /dev/imsm metadata=imsm\n");
cdddbdbc
DW
529}
530
531static void detail_super_imsm(struct supertype *st, char *homehost)
532{
533 printf("%s\n", __FUNCTION__);
534}
535
536static void brief_detail_super_imsm(struct supertype *st)
537{
538 printf("%s\n", __FUNCTION__);
539}
540#endif
541
542static int match_home_imsm(struct supertype *st, char *homehost)
543{
544 printf("%s\n", __FUNCTION__);
545
546 return 0;
547}
548
549static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
550{
551 printf("%s\n", __FUNCTION__);
552}
553
0d481d37 554#if 0
4f5bc454
DW
555static void
556get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 557{
cdddbdbc
DW
558 __u8 *v = get_imsm_version(mpb);
559 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
560 char major[] = { 0, 0, 0 };
561 char minor[] = { 0 ,0, 0 };
562 char patch[] = { 0, 0, 0 };
563 char *ver_parse[] = { major, minor, patch };
564 int i, j;
565
566 i = j = 0;
567 while (*v != '\0' && v < end) {
568 if (*v != '.' && j < 2)
569 ver_parse[i][j++] = *v;
570 else {
571 i++;
572 j = 0;
573 }
574 v++;
575 }
576
4f5bc454
DW
577 *m = strtol(minor, NULL, 0);
578 *p = strtol(patch, NULL, 0);
579}
0d481d37 580#endif
4f5bc454 581
c2c087e6
DW
582static int imsm_level_to_layout(int level)
583{
584 switch (level) {
585 case 0:
586 case 1:
587 return 0;
588 case 5:
589 case 6:
a380c027 590 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6
DW
591 case 10:
592 return 0x102; //FIXME is this correct?
593 }
594 return -1;
595}
596
bf5a934a
DW
597static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
598{
599 struct intel_super *super = st->sb;
949c47a0 600 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
a965f303 601 struct imsm_map *map = get_imsm_map(dev, 0);
bf5a934a
DW
602
603 info->container_member = super->current_vol;
604 info->array.raid_disks = map->num_members;
605 info->array.level = get_imsm_raid_level(map);
606 info->array.layout = imsm_level_to_layout(info->array.level);
607 info->array.md_minor = -1;
608 info->array.ctime = 0;
609 info->array.utime = 0;
610 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip * 512);
611
612 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
613 info->component_size = __le32_to_cpu(map->blocks_per_member);
614
615 info->disk.major = 0;
616 info->disk.minor = 0;
617
618 sprintf(info->text_version, "/%s/%d",
619 devnum2devname(st->container_dev),
620 info->container_member);
621}
622
623
4f5bc454
DW
624static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
625{
626 struct intel_super *super = st->sb;
4f5bc454
DW
627 struct imsm_disk *disk;
628 __u32 s;
4f5bc454 629
bf5a934a
DW
630 if (super->current_vol >= 0) {
631 getinfo_super_imsm_volume(st, info);
632 return;
633 }
d23fe947
DW
634
635 /* Set raid_disks to zero so that Assemble will always pull in valid
636 * spares
637 */
638 info->array.raid_disks = 0;
cdddbdbc
DW
639 info->array.level = LEVEL_CONTAINER;
640 info->array.layout = 0;
641 info->array.md_minor = -1;
c2c087e6 642 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
643 info->array.utime = 0;
644 info->array.chunk_size = 0;
645
646 info->disk.major = 0;
647 info->disk.minor = 0;
cdddbdbc 648 info->disk.raid_disk = -1;
c2c087e6
DW
649 info->reshape_active = 0;
650 strcpy(info->text_version, "imsm");
651 info->disk.number = -1;
652 info->disk.state = 0;
653
4a04ec6c 654 if (super->disks) {
b9f594fe 655 disk = &super->disks->disk;
4a04ec6c
DW
656 info->disk.number = super->disks->index;
657 info->disk.raid_disk = super->disks->index;
bf5a934a
DW
658 info->data_offset = __le32_to_cpu(disk->total_blocks) -
659 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
660 info->component_size = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
4a04ec6c
DW
661 s = __le32_to_cpu(disk->status);
662 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
663 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
664 info->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
cdddbdbc 665 }
cdddbdbc
DW
666}
667
cdddbdbc
DW
668static int update_super_imsm(struct supertype *st, struct mdinfo *info,
669 char *update, char *devname, int verbose,
670 int uuid_set, char *homehost)
671{
f352c545
DW
672 /* FIXME */
673
674 /* For 'assemble' and 'force' we need to return non-zero if any
675 * change was made. For others, the return value is ignored.
676 * Update options are:
677 * force-one : This device looks a bit old but needs to be included,
678 * update age info appropriately.
679 * assemble: clear any 'faulty' flag to allow this device to
680 * be assembled.
681 * force-array: Array is degraded but being forced, mark it clean
682 * if that will be needed to assemble it.
683 *
684 * newdev: not used ????
685 * grow: Array has gained a new device - this is currently for
686 * linear only
687 * resync: mark as dirty so a resync will happen.
688 * name: update the name - preserving the homehost
689 *
690 * Following are not relevant for this imsm:
691 * sparc2.2 : update from old dodgey metadata
692 * super-minor: change the preferred_minor number
693 * summaries: update redundant counters.
694 * uuid: Change the uuid of the array to match watch is given
695 * homehost: update the recorded homehost
696 * _reshape_progress: record new reshape_progress position.
697 */
698 int rv = 0;
699 //struct intel_super *super = st->sb;
700 //struct imsm_super *mpb = super->mpb;
701
702 if (strcmp(update, "grow") == 0) {
703 }
704 if (strcmp(update, "resync") == 0) {
705 /* dev->vol.dirty = 1; */
706 }
707
708 /* IMSM has no concept of UUID or homehost */
709
710 return rv;
cdddbdbc
DW
711}
712
c2c087e6 713static size_t disks_to_mpb_size(int disks)
cdddbdbc 714{
c2c087e6 715 size_t size;
cdddbdbc 716
c2c087e6
DW
717 size = sizeof(struct imsm_super);
718 size += (disks - 1) * sizeof(struct imsm_disk);
719 size += 2 * sizeof(struct imsm_dev);
720 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
721 size += (4 - 2) * sizeof(struct imsm_map);
722 /* 4 possible disk_ord_tbl's */
723 size += 4 * (disks - 1) * sizeof(__u32);
724
725 return size;
726}
727
728static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
729{
730 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
731 return 0;
732
733 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
734}
735
736static int compare_super_imsm(struct supertype *st, struct supertype *tst)
737{
738 /*
739 * return:
740 * 0 same, or first was empty, and second was copied
741 * 1 second had wrong number
742 * 2 wrong uuid
743 * 3 wrong other info
744 */
745 struct intel_super *first = st->sb;
746 struct intel_super *sec = tst->sb;
747
748 if (!first) {
749 st->sb = tst->sb;
750 tst->sb = NULL;
751 return 0;
752 }
753
949c47a0 754 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
cdddbdbc 755 return 3;
d23fe947
DW
756
757 /* if an anchor does not have num_raid_devs set then it is a free
758 * floating spare
759 */
760 if (first->anchor->num_raid_devs > 0 &&
761 sec->anchor->num_raid_devs > 0) {
762 if (first->anchor->family_num != sec->anchor->family_num)
763 return 3;
764 if (first->anchor->mpb_size != sec->anchor->mpb_size)
765 return 3;
766 if (first->anchor->check_sum != sec->anchor->check_sum)
767 return 3;
768 }
cdddbdbc
DW
769
770 return 0;
771}
772
0030e8d6
DW
773static void fd2devname(int fd, char *name)
774{
775 struct stat st;
776 char path[256];
777 char dname[100];
778 char *nm;
779 int rv;
780
781 name[0] = '\0';
782 if (fstat(fd, &st) != 0)
783 return;
784 sprintf(path, "/sys/dev/block/%d:%d",
785 major(st.st_rdev), minor(st.st_rdev));
786
787 rv = readlink(path, dname, sizeof(dname));
788 if (rv <= 0)
789 return;
790
791 dname[rv] = '\0';
792 nm = strrchr(dname, '/');
793 nm++;
794 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
795}
796
797
cdddbdbc
DW
798extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
799
800static int imsm_read_serial(int fd, char *devname,
801 __u8 serial[MAX_RAID_SERIAL_LEN])
802{
803 unsigned char scsi_serial[255];
cdddbdbc
DW
804 int rv;
805 int rsp_len;
806 int i, cnt;
807
808 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 809
0030e8d6
DW
810 if (imsm_env_devname_as_serial()) {
811 char name[MAX_RAID_SERIAL_LEN];
812
813 fd2devname(fd, name);
814 strcpy((char *) serial, name);
815 return 0;
816 }
817
755c99fa 818 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
cdddbdbc
DW
819
820 if (rv != 0) {
821 if (devname)
822 fprintf(stderr,
823 Name ": Failed to retrieve serial for %s\n",
824 devname);
825 return rv;
826 }
827
828 rsp_len = scsi_serial[3];
829 for (i = 0, cnt = 0; i < rsp_len; i++) {
830 if (!isspace(scsi_serial[4 + i]))
831 serial[cnt++] = scsi_serial[4 + i];
832 if (cnt == MAX_RAID_SERIAL_LEN)
833 break;
834 }
835
836 serial[MAX_RAID_SERIAL_LEN - 1] = '\0';
837
838 return 0;
839}
840
841static int
842load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
843{
cdddbdbc
DW
844 struct dl *dl;
845 struct stat stb;
cdddbdbc
DW
846 int rv;
847 int i;
d23fe947
DW
848 int alloc = 1;
849 __u8 serial[MAX_RAID_SERIAL_LEN];
850
851 rv = imsm_read_serial(fd, devname, serial);
852
853 if (rv != 0)
854 return 2;
855
856 /* check if this is a disk we have seen before. it may be a spare in
857 * super->disks while the current anchor believes it is a raid member,
858 * check if we need to update dl->index
859 */
860 for (dl = super->disks; dl; dl = dl->next)
861 if (memcmp(dl->serial, serial, MAX_RAID_SERIAL_LEN) == 0)
862 break;
863
864 if (!dl)
865 dl = malloc(sizeof(*dl));
866 else
867 alloc = 0;
cdddbdbc 868
b9f594fe 869 if (!dl) {
cdddbdbc
DW
870 if (devname)
871 fprintf(stderr,
872 Name ": failed to allocate disk buffer for %s\n",
873 devname);
874 return 2;
875 }
cdddbdbc 876
d23fe947
DW
877 if (alloc) {
878 fstat(fd, &stb);
879 dl->major = major(stb.st_rdev);
880 dl->minor = minor(stb.st_rdev);
881 dl->next = super->disks;
882 dl->fd = keep_fd ? fd : -1;
883 dl->devname = devname ? strdup(devname) : NULL;
884 strncpy((char *) dl->serial, (char *) serial, MAX_RAID_SERIAL_LEN);
885 } else if (keep_fd) {
886 close(dl->fd);
887 dl->fd = fd;
888 }
cdddbdbc 889
d23fe947 890 /* look up this disk's index in the current anchor */
949c47a0
DW
891 for (i = 0; i < super->anchor->num_disks; i++) {
892 struct imsm_disk *disk_iter;
893
894 disk_iter = __get_imsm_disk(super->anchor, i);
cdddbdbc 895
949c47a0
DW
896 if (memcmp(disk_iter->serial, dl->serial,
897 MAX_RAID_SERIAL_LEN) == 0) {
d23fe947
DW
898 __u32 status;
899
b9f594fe 900 dl->disk = *disk_iter;
d23fe947
DW
901 status = __le32_to_cpu(dl->disk.status);
902 /* only set index on disks that are a member of a
903 * populated contianer, i.e. one with raid_devs
904 */
905 if (status & SPARE_DISK)
906 dl->index = -1;
907 else
908 dl->index = i;
cdddbdbc 909 break;
949c47a0 910 }
cdddbdbc
DW
911 }
912
d23fe947 913 if (i == super->anchor->num_disks && alloc) {
e9d82038
DW
914 if (devname)
915 fprintf(stderr,
d23fe947 916 Name ": failed to load disk with serial \'%s\' for %s\n",
e9d82038 917 dl->serial, devname);
d23fe947
DW
918 free(dl);
919 return 1;
920 }
921 if (i == super->anchor->num_disks && dl->index >= 0) {
922 if (devname)
923 fprintf(stderr,
924 Name ": confused... disk %d with serial \'%s\' "
925 "is not listed in the current anchor\n",
926 dl->index, dl->serial);
927 return 1;
e9d82038 928 }
cdddbdbc 929
d23fe947
DW
930 if (alloc)
931 super->disks = dl;
932
949c47a0
DW
933 return 0;
934}
935
936static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
937{
3393c6af
DW
938 memcpy(dest, src, sizeof_imsm_dev(src, 0));
939}
940
941static void dup_map(struct imsm_dev *dev)
942{
943 struct imsm_map *dest = get_imsm_map(dev, 1);
944 struct imsm_map *src = get_imsm_map(dev, 0);
945
946 memcpy(dest, src, sizeof_imsm_map(src));
949c47a0
DW
947}
948
949static int parse_raid_devices(struct intel_super *super)
950{
951 int i;
952 struct imsm_dev *dev_new;
953 size_t len;
954
955 for (i = 0; i < super->anchor->num_raid_devs; i++) {
956 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
957
3393c6af 958 len = sizeof_imsm_dev(dev_iter, 1);
949c47a0
DW
959 dev_new = malloc(len);
960 if (!dev_new)
961 return 1;
962 imsm_copy_dev(dev_new, dev_iter);
963 super->dev_tbl[i] = dev_new;
964 }
cdddbdbc
DW
965
966 return 0;
967}
968
604b746f
JD
969/* retrieve a pointer to the bbm log which starts after all raid devices */
970struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
971{
972 void *ptr = NULL;
973
974 if (__le32_to_cpu(mpb->bbm_log_size)) {
975 ptr = mpb;
976 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
977 }
978
979 return ptr;
980}
981
d23fe947 982static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 983
cdddbdbc
DW
984/* load_imsm_mpb - read matrix metadata
985 * allocates super->mpb to be freed by free_super
986 */
987static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
988{
989 unsigned long long dsize;
cdddbdbc
DW
990 unsigned long long sectors;
991 struct stat;
6416d527 992 struct imsm_super *anchor;
cdddbdbc 993 __u32 check_sum;
949c47a0 994 int rc;
cdddbdbc 995
cdddbdbc
DW
996 get_dev_size(fd, NULL, &dsize);
997
998 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
999 if (devname)
1000 fprintf(stderr,
1001 Name ": Cannot seek to anchor block on %s: %s\n",
1002 devname, strerror(errno));
1003 return 1;
1004 }
1005
949c47a0 1006 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e
DW
1007 if (devname)
1008 fprintf(stderr,
1009 Name ": Failed to allocate imsm anchor buffer"
1010 " on %s\n", devname);
1011 return 1;
1012 }
949c47a0 1013 if (read(fd, anchor, 512) != 512) {
cdddbdbc
DW
1014 if (devname)
1015 fprintf(stderr,
1016 Name ": Cannot read anchor block on %s: %s\n",
1017 devname, strerror(errno));
6416d527 1018 free(anchor);
cdddbdbc
DW
1019 return 1;
1020 }
1021
6416d527 1022 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc
DW
1023 if (devname)
1024 fprintf(stderr,
1025 Name ": no IMSM anchor on %s\n", devname);
6416d527 1026 free(anchor);
cdddbdbc
DW
1027 return 2;
1028 }
1029
d23fe947 1030 __free_imsm(super, 0);
949c47a0
DW
1031 super->len = __le32_to_cpu(anchor->mpb_size);
1032 super->len = ROUND_UP(anchor->mpb_size, 512);
1033 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc
DW
1034 if (devname)
1035 fprintf(stderr,
1036 Name ": unable to allocate %zu byte mpb buffer\n",
949c47a0 1037 super->len);
6416d527 1038 free(anchor);
cdddbdbc
DW
1039 return 2;
1040 }
949c47a0 1041 memcpy(super->buf, anchor, 512);
cdddbdbc 1042
6416d527
NB
1043 sectors = mpb_sectors(anchor) - 1;
1044 free(anchor);
949c47a0
DW
1045 if (!sectors) {
1046 rc = load_imsm_disk(fd, super, devname, 0);
1047 if (rc == 0)
1048 rc = parse_raid_devices(super);
1049 return rc;
1050 }
cdddbdbc
DW
1051
1052 /* read the extended mpb */
1053 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1054 if (devname)
1055 fprintf(stderr,
1056 Name ": Cannot seek to extended mpb on %s: %s\n",
1057 devname, strerror(errno));
1058 return 1;
1059 }
1060
949c47a0 1061 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc
DW
1062 if (devname)
1063 fprintf(stderr,
1064 Name ": Cannot read extended mpb on %s: %s\n",
1065 devname, strerror(errno));
1066 return 2;
1067 }
1068
949c47a0
DW
1069 check_sum = __gen_imsm_checksum(super->anchor);
1070 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc
DW
1071 if (devname)
1072 fprintf(stderr,
1073 Name ": IMSM checksum %x != %x on %s\n",
949c47a0 1074 check_sum, __le32_to_cpu(super->anchor->check_sum),
cdddbdbc
DW
1075 devname);
1076 return 2;
1077 }
1078
604b746f
JD
1079 /* FIXME the BBM log is disk specific so we cannot use this global
1080 * buffer for all disks. Ok for now since we only look at the global
1081 * bbm_log_size parameter to gate assembly
1082 */
1083 super->bbm_log = __get_imsm_bbm_log(super->anchor);
1084
949c47a0
DW
1085 rc = load_imsm_disk(fd, super, devname, 0);
1086 if (rc == 0)
1087 rc = parse_raid_devices(super);
1088 return rc;
cdddbdbc
DW
1089}
1090
cdddbdbc
DW
1091static void free_imsm_disks(struct intel_super *super)
1092{
1093 while (super->disks) {
1094 struct dl *d = super->disks;
1095
1096 super->disks = d->next;
1097 if (d->fd >= 0)
1098 close(d->fd);
1099 if (d->devname)
1100 free(d->devname);
1101 free(d);
1102 }
1103}
1104
9ca2c81c 1105/* free all the pieces hanging off of a super pointer */
d23fe947 1106static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 1107{
949c47a0
DW
1108 int i;
1109
9ca2c81c 1110 if (super->buf) {
949c47a0 1111 free(super->buf);
9ca2c81c
DW
1112 super->buf = NULL;
1113 }
d23fe947
DW
1114 if (free_disks)
1115 free_imsm_disks(super);
949c47a0 1116 for (i = 0; i < IMSM_MAX_RAID_DEVS; i++)
9ca2c81c 1117 if (super->dev_tbl[i]) {
949c47a0 1118 free(super->dev_tbl[i]);
9ca2c81c
DW
1119 super->dev_tbl[i] = NULL;
1120 }
cdddbdbc
DW
1121}
1122
9ca2c81c
DW
1123static void free_imsm(struct intel_super *super)
1124{
d23fe947 1125 __free_imsm(super, 1);
9ca2c81c
DW
1126 free(super);
1127}
cdddbdbc
DW
1128
1129static void free_super_imsm(struct supertype *st)
1130{
1131 struct intel_super *super = st->sb;
1132
1133 if (!super)
1134 return;
1135
1136 free_imsm(super);
1137 st->sb = NULL;
1138}
1139
c2c087e6
DW
1140static struct intel_super *alloc_super(int creating_imsm)
1141{
1142 struct intel_super *super = malloc(sizeof(*super));
1143
1144 if (super) {
1145 memset(super, 0, sizeof(*super));
1146 super->creating_imsm = creating_imsm;
bf5a934a 1147 super->current_vol = -1;
c2c087e6
DW
1148 }
1149
1150 return super;
1151}
1152
cdddbdbc
DW
1153#ifndef MDASSEMBLE
1154static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
1155 char *devname, int keep_fd)
1156{
1157 struct mdinfo *sra;
1158 struct intel_super *super;
1159 struct mdinfo *sd, *best = NULL;
1160 __u32 bestgen = 0;
1161 __u32 gen;
1162 char nm[20];
1163 int dfd;
1164 int rv;
1165
1166 /* check if this disk is a member of an active array */
1167 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
1168 if (!sra)
1169 return 1;
1170
1171 if (sra->array.major_version != -1 ||
1172 sra->array.minor_version != -2 ||
1173 strcmp(sra->text_version, "imsm") != 0)
1174 return 1;
1175
c2c087e6 1176 super = alloc_super(0);
cdddbdbc
DW
1177 if (!super)
1178 return 1;
1179
d23fe947 1180 /* find the most up to date disk in this array, skipping spares */
cdddbdbc
DW
1181 for (sd = sra->devs; sd; sd = sd->next) {
1182 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1183 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
1184 if (!dfd) {
1185 free_imsm(super);
1186 return 2;
1187 }
1188 rv = load_imsm_mpb(dfd, super, NULL);
1189 if (!keep_fd)
1190 close(dfd);
1191 if (rv == 0) {
d23fe947
DW
1192 if (super->anchor->num_raid_devs == 0)
1193 gen = 0;
1194 else
1195 gen = __le32_to_cpu(super->anchor->generation_num);
cdddbdbc
DW
1196 if (!best || gen > bestgen) {
1197 bestgen = gen;
1198 best = sd;
1199 }
1200 } else {
1201 free_imsm(super);
1202 return 2;
1203 }
1204 }
1205
1206 if (!best) {
1207 free_imsm(super);
1208 return 1;
1209 }
1210
1211 /* load the most up to date anchor */
1212 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
1213 dfd = dev_open(nm, O_RDONLY);
1214 if (!dfd) {
1215 free_imsm(super);
1216 return 1;
1217 }
1218 rv = load_imsm_mpb(dfd, super, NULL);
1219 close(dfd);
1220 if (rv != 0) {
1221 free_imsm(super);
1222 return 2;
1223 }
1224
d23fe947 1225 /* re-parse the disk list with the current anchor */
cdddbdbc
DW
1226 for (sd = sra->devs ; sd ; sd = sd->next) {
1227 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1228 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
1229 if (!dfd) {
1230 free_imsm(super);
1231 return 2;
1232 }
1233 load_imsm_disk(dfd, super, NULL, keep_fd);
1234 if (!keep_fd)
1235 close(dfd);
1236 }
1237
f7e7067b 1238 if (st->subarray[0]) {
949c47a0 1239 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
bf5a934a
DW
1240 super->current_vol = atoi(st->subarray);
1241 else
1242 return 1;
f7e7067b
NB
1243 }
1244
cdddbdbc
DW
1245 *sbp = super;
1246 if (st->ss == NULL) {
bf5a934a 1247 st->ss = &super_imsm;
cdddbdbc
DW
1248 st->minor_version = 0;
1249 st->max_devs = IMSM_MAX_DEVICES;
f4d11639 1250 st->container_dev = fd2devnum(fd);
cdddbdbc
DW
1251 }
1252
1253 return 0;
1254}
1255#endif
1256
1257static int load_super_imsm(struct supertype *st, int fd, char *devname)
1258{
1259 struct intel_super *super;
1260 int rv;
1261
1262#ifndef MDASSEMBLE
3dbccbcf 1263 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
cdddbdbc
DW
1264 return 0;
1265#endif
f7e7067b
NB
1266 if (st->subarray[0])
1267 return 1; /* FIXME */
cdddbdbc 1268
c2c087e6 1269 super = alloc_super(0);
cdddbdbc
DW
1270 if (!super) {
1271 fprintf(stderr,
1272 Name ": malloc of %zu failed.\n",
1273 sizeof(*super));
1274 return 1;
1275 }
1276
1277 rv = load_imsm_mpb(fd, super, devname);
1278
1279 if (rv) {
1280 if (devname)
1281 fprintf(stderr,
1282 Name ": Failed to load all information "
1283 "sections on %s\n", devname);
1284 free_imsm(super);
1285 return rv;
1286 }
1287
1288 st->sb = super;
1289 if (st->ss == NULL) {
1290 st->ss = &super_imsm;
1291 st->minor_version = 0;
1292 st->max_devs = IMSM_MAX_DEVICES;
1293 }
1294
1295 return 0;
1296}
1297
ef6ffade
DW
1298static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
1299{
1300 if (info->level == 1)
1301 return 128;
1302 return info->chunk_size >> 9;
1303}
1304
1305static __u32 info_to_num_data_stripes(mdu_array_info_t *info)
1306{
1307 __u32 num_stripes;
1308
1309 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
1310 if (info->level == 1)
1311 num_stripes /= 2;
1312
1313 return num_stripes;
1314}
1315
fcfd9599
DW
1316static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
1317{
1318 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
1319}
1320
8b353278
DW
1321static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
1322 unsigned long long size, char *name,
1323 char *homehost, int *uuid)
cdddbdbc 1324{
c2c087e6
DW
1325 /* We are creating a volume inside a pre-existing container.
1326 * so st->sb is already set.
1327 */
1328 struct intel_super *super = st->sb;
949c47a0 1329 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
1330 struct imsm_dev *dev;
1331 struct imsm_vol *vol;
1332 struct imsm_map *map;
1333 int idx = mpb->num_raid_devs;
1334 int i;
1335 unsigned long long array_blocks;
c2c087e6 1336 __u32 offset = 0;
2c092cad 1337 size_t size_old, size_new;
cdddbdbc 1338
c2c087e6
DW
1339 if (mpb->num_raid_devs >= 2) {
1340 fprintf(stderr, Name": This imsm-container already has the "
1341 "maximum of 2 volumes\n");
1342 return 0;
1343 }
1344
2c092cad
DW
1345 /* ensure the mpb is large enough for the new data */
1346 size_old = __le32_to_cpu(mpb->mpb_size);
1347 size_new = disks_to_mpb_size(info->nr_disks);
1348 if (size_new > size_old) {
1349 void *mpb_new;
1350 size_t size_round = ROUND_UP(size_new, 512);
1351
1352 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
1353 fprintf(stderr, Name": could not allocate new mpb\n");
1354 return 0;
1355 }
1356 memcpy(mpb_new, mpb, size_old);
1357 free(mpb);
1358 mpb = mpb_new;
949c47a0 1359 super->anchor = mpb_new;
2c092cad
DW
1360 mpb->mpb_size = __cpu_to_le32(size_new);
1361 memset(mpb_new + size_old, 0, size_round - size_old);
1362 }
bf5a934a 1363 super->current_vol = idx;
d23fe947
DW
1364 /* when creating the first raid device in this container set num_disks
1365 * to zero, i.e. delete this spare and add raid member devices in
1366 * add_to_super_imsm_volume()
1367 */
1368 if (super->current_vol == 0)
1369 mpb->num_disks = 0;
bf5a934a 1370 sprintf(st->subarray, "%d", idx);
949c47a0
DW
1371 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
1372 if (!dev) {
1373 fprintf(stderr, Name": could not allocate raid device\n");
1374 return 0;
1375 }
c2c087e6
DW
1376 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
1377 array_blocks = calc_array_size(info->level, info->raid_disks,
1378 info->layout, info->chunk_size,
1379 info->size*2);
1380 dev->size_low = __cpu_to_le32((__u32) array_blocks);
1381 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1382 dev->status = __cpu_to_le32(0);
1383 dev->reserved_blocks = __cpu_to_le32(0);
1384 vol = &dev->vol;
1385 vol->migr_state = 0;
1386 vol->migr_type = 0;
1387 vol->dirty = 0;
1388 for (i = 0; i < idx; i++) {
949c47a0 1389 struct imsm_dev *prev = get_imsm_dev(super, i);
a965f303 1390 struct imsm_map *pmap = get_imsm_map(prev, 0);
c2c087e6
DW
1391
1392 offset += __le32_to_cpu(pmap->blocks_per_member);
1393 offset += IMSM_RESERVED_SECTORS;
1394 }
a965f303 1395 map = get_imsm_map(dev, 0);
c2c087e6 1396 map->pba_of_lba0 = __cpu_to_le32(offset);
fcfd9599 1397 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
ef6ffade
DW
1398 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
1399 map->num_data_stripes = __cpu_to_le32(info_to_num_data_stripes(info));
c2c087e6
DW
1400 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
1401 IMSM_T_STATE_NORMAL;
ef6ffade
DW
1402
1403 if (info->level == 1 && info->raid_disks > 2) {
1404 fprintf(stderr, Name": imsm does not support more than 2 disks"
1405 "in a raid1 volume\n");
1406 return 0;
1407 }
c2c087e6
DW
1408 if (info->level == 10)
1409 map->raid_level = 1;
1410 else
1411 map->raid_level = info->level;
ef6ffade 1412
c2c087e6
DW
1413 map->num_members = info->raid_disks;
1414 for (i = 0; i < map->num_members; i++) {
1415 /* initialized in add_to_super */
1416 map->disk_ord_tbl[i] = __cpu_to_le32(0);
1417 }
949c47a0
DW
1418 mpb->num_raid_devs++;
1419 super->dev_tbl[super->current_vol] = dev;
c2c087e6
DW
1420
1421 return 1;
cdddbdbc
DW
1422}
1423
bf5a934a
DW
1424static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
1425 unsigned long long size, char *name,
1426 char *homehost, int *uuid)
1427{
1428 /* This is primarily called by Create when creating a new array.
1429 * We will then get add_to_super called for each component, and then
1430 * write_init_super called to write it out to each device.
1431 * For IMSM, Create can create on fresh devices or on a pre-existing
1432 * array.
1433 * To create on a pre-existing array a different method will be called.
1434 * This one is just for fresh drives.
1435 */
1436 struct intel_super *super;
1437 struct imsm_super *mpb;
1438 size_t mpb_size;
1439
1440 if (!info) {
1441 st->sb = NULL;
1442 return 0;
1443 }
1444 if (st->sb)
1445 return init_super_imsm_volume(st, info, size, name, homehost,
1446 uuid);
1447
1448 super = alloc_super(1);
1449 if (!super)
1450 return 0;
1451 mpb_size = disks_to_mpb_size(info->nr_disks);
ef649044 1452 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a
DW
1453 free(super);
1454 return 0;
1455 }
ef649044 1456 mpb = super->buf;
bf5a934a
DW
1457 memset(mpb, 0, mpb_size);
1458
1459 memcpy(mpb->sig, MPB_SIGNATURE, strlen(MPB_SIGNATURE));
1460 memcpy(mpb->sig + strlen(MPB_SIGNATURE), MPB_VERSION_RAID5,
1461 strlen(MPB_VERSION_RAID5));
1462 mpb->mpb_size = mpb_size;
1463
bf5a934a
DW
1464 st->sb = super;
1465 return 1;
1466}
1467
1468static void add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
1469 int fd, char *devname)
1470{
1471 struct intel_super *super = st->sb;
d23fe947 1472 struct imsm_super *mpb = super->anchor;
bf5a934a
DW
1473 struct dl *dl;
1474 struct imsm_dev *dev;
1475 struct imsm_map *map;
bf5a934a
DW
1476 __u32 status;
1477
949c47a0 1478 dev = get_imsm_dev(super, super->current_vol);
a965f303 1479 map = get_imsm_map(dev, 0);
bf5a934a
DW
1480
1481 for (dl = super->disks; dl ; dl = dl->next)
1482 if (dl->major == dk->major &&
1483 dl->minor == dk->minor)
1484 break;
d23fe947 1485
bf5a934a
DW
1486 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1487 return;
1488
d23fe947
DW
1489 /* add a pristine spare to the metadata */
1490 if (dl->index < 0) {
1491 dl->index = super->anchor->num_disks;
1492 super->anchor->num_disks++;
1493 }
bf5a934a 1494 map->disk_ord_tbl[dk->number] = __cpu_to_le32(dl->index);
bf5a934a 1495 status = CONFIGURED_DISK | USABLE_DISK;
d23fe947
DW
1496 dl->disk.status = __cpu_to_le32(status);
1497
1498 /* if we are creating the first raid device update the family number */
1499 if (super->current_vol == 0) {
1500 __u32 sum;
1501 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
1502 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
1503
1504 *_dev = *dev;
1505 *_disk = dl->disk;
1506 sum = __gen_imsm_checksum(mpb);
1507 mpb->family_num = __cpu_to_le32(sum);
1508 }
bf5a934a
DW
1509}
1510
c2c087e6 1511static void add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
cdddbdbc
DW
1512 int fd, char *devname)
1513{
c2c087e6 1514 struct intel_super *super = st->sb;
c2c087e6
DW
1515 struct dl *dd;
1516 unsigned long long size;
1517 __u32 status, id;
1518 int rv;
1519 struct stat stb;
1520
bf5a934a
DW
1521 if (super->current_vol >= 0) {
1522 add_to_super_imsm_volume(st, dk, fd, devname);
1523 return;
1524 }
1525
c2c087e6
DW
1526 fstat(fd, &stb);
1527 dd = malloc(sizeof(*dd));
b9f594fe 1528 if (!dd) {
c2c087e6
DW
1529 fprintf(stderr,
1530 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
1531 abort();
1532 }
1533 memset(dd, 0, sizeof(*dd));
1534 dd->major = major(stb.st_rdev);
1535 dd->minor = minor(stb.st_rdev);
b9f594fe 1536 dd->index = -1;
c2c087e6
DW
1537 dd->devname = devname ? strdup(devname) : NULL;
1538 dd->next = super->disks;
1539 dd->fd = fd;
1540 rv = imsm_read_serial(fd, devname, dd->serial);
1541 if (rv) {
1542 fprintf(stderr,
0030e8d6 1543 Name ": failed to retrieve scsi serial, aborting\n");
949c47a0 1544 free(dd);
0030e8d6 1545 abort();
c2c087e6
DW
1546 }
1547
c2c087e6
DW
1548 get_dev_size(fd, NULL, &size);
1549 size /= 512;
1550 status = USABLE_DISK | SPARE_DISK;
b9f594fe
DW
1551 strcpy((char *) dd->disk.serial, (char *) dd->serial);
1552 dd->disk.total_blocks = __cpu_to_le32(size);
1553 dd->disk.status = __cpu_to_le32(status);
c2c087e6 1554 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 1555 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 1556 else
b9f594fe 1557 dd->disk.scsi_id = __cpu_to_le32(0);
c2c087e6 1558 super->disks = dd;
cdddbdbc
DW
1559}
1560
c2c087e6
DW
1561static int store_imsm_mpb(int fd, struct intel_super *super);
1562
d23fe947
DW
1563/* spare records have their own family number and do not have any defined raid
1564 * devices
1565 */
1566static int write_super_imsm_spares(struct intel_super *super, int doclose)
1567{
1568 struct imsm_super mpb_save;
1569 struct imsm_super *mpb = super->anchor;
1570 __u32 sum;
1571 struct dl *d;
1572
1573 mpb_save = *mpb;
1574 mpb->num_raid_devs = 0;
1575 mpb->num_disks = 1;
1576 mpb->mpb_size = sizeof(struct imsm_super);
1577 mpb->generation_num = __cpu_to_le32(1UL);
1578
1579 for (d = super->disks; d; d = d->next) {
1580 if (d->index >= 0)
1581 continue;
1582
1583 mpb->disk[0] = d->disk;
1584 sum = __gen_imsm_checksum(mpb);
1585 mpb->family_num = __cpu_to_le32(sum);
1586 sum = __gen_imsm_checksum(mpb);
1587 mpb->check_sum = __cpu_to_le32(sum);
1588
1589 if (store_imsm_mpb(d->fd, super)) {
1590 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1591 __func__, d->major, d->minor, strerror(errno));
1592 *mpb = mpb_save;
1593 return 0;
1594 }
1595 if (doclose) {
1596 close(d->fd);
1597 d->fd = -1;
1598 }
1599 }
1600
1601 *mpb = mpb_save;
1602 return 1;
1603}
1604
c2c087e6 1605static int write_super_imsm(struct intel_super *super, int doclose)
cdddbdbc 1606{
949c47a0 1607 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
1608 struct dl *d;
1609 __u32 generation;
1610 __u32 sum;
d23fe947
DW
1611 int spares = 0;
1612 int raid_disks = 0;
949c47a0 1613 int i;
cdddbdbc 1614
c2c087e6
DW
1615 /* 'generation' is incremented everytime the metadata is written */
1616 generation = __le32_to_cpu(mpb->generation_num);
1617 generation++;
1618 mpb->generation_num = __cpu_to_le32(generation);
1619
d23fe947
DW
1620 for (d = super->disks; d; d = d->next) {
1621 if (d->index < 0)
1622 spares++;
1623 else {
1624 raid_disks++;
1625 mpb->disk[d->index] = d->disk;
1626 }
1627 }
1628 if (raid_disks != mpb->num_disks) {
1629 fprintf(stderr, "%s: expected %d disks only found %d\n",
1630 __func__, mpb->num_disks, raid_disks);
1631 return 0;
1632 }
b9f594fe 1633
949c47a0
DW
1634 for (i = 0; i < mpb->num_raid_devs; i++) {
1635 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1636
1637 imsm_copy_dev(dev, super->dev_tbl[i]);
1638 }
1639
c2c087e6 1640 /* recalculate checksum */
949c47a0 1641 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
1642 mpb->check_sum = __cpu_to_le32(sum);
1643
d23fe947 1644 /* write the mpb for disks that compose raid devices */
c2c087e6 1645 for (d = super->disks; d ; d = d->next) {
d23fe947
DW
1646 if (d->index < 0)
1647 continue;
c2c087e6
DW
1648 if (store_imsm_mpb(d->fd, super)) {
1649 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1650 __func__, d->major, d->minor, strerror(errno));
1651 return 0;
1652 }
1653 if (doclose) {
1654 close(d->fd);
1655 d->fd = -1;
1656 }
1657 }
1658
d23fe947
DW
1659 if (spares)
1660 return write_super_imsm_spares(super, doclose);
1661
c2c087e6
DW
1662 return 1;
1663}
1664
1665static int write_init_super_imsm(struct supertype *st)
1666{
8273f55e
DW
1667 if (st->update_tail) {
1668 /* queue the recently created array as a metadata update */
1669 size_t len;
1670 struct imsm_update_create_array *u;
1671 struct intel_super *super = st->sb;
8273f55e 1672 struct imsm_dev *dev;
8273f55e
DW
1673 struct dl *d;
1674
1675 if (super->current_vol < 0 ||
949c47a0 1676 !(dev = get_imsm_dev(super, super->current_vol))) {
8273f55e
DW
1677 fprintf(stderr, "%s: could not determine sub-array\n",
1678 __func__);
1679 return 1;
1680 }
1681
1682
3393c6af 1683 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0);
8273f55e
DW
1684 u = malloc(len);
1685 if (!u) {
1686 fprintf(stderr, "%s: failed to allocate update buffer\n",
1687 __func__);
1688 return 1;
1689 }
1690
1691 u->type = update_create_array;
1692 u->dev_idx = super->current_vol;
949c47a0 1693 imsm_copy_dev(&u->dev, dev);
8273f55e
DW
1694 append_metadata_update(st, u, len);
1695
1696 for (d = super->disks; d ; d = d->next) {
1697 close(d->fd);
1698 d->fd = -1;
1699 }
1700
1701 return 0;
1702 } else
1703 return write_super_imsm(st->sb, 1);
cdddbdbc
DW
1704}
1705
1706static int store_zero_imsm(struct supertype *st, int fd)
1707{
551c80c1 1708 unsigned long long dsize;
6416d527 1709 void *buf;
551c80c1
DW
1710
1711 get_dev_size(fd, NULL, &dsize);
1712
1713 /* first block is stored on second to last sector of the disk */
1714 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
1715 return 1;
1716
ad97895e
DW
1717 if (posix_memalign(&buf, 512, 512) != 0)
1718 return 1;
1719
eb7ea463
DW
1720 memset(buf, 0, 512);
1721 if (write(fd, buf, 512) != 512)
551c80c1 1722 return 1;
cdddbdbc
DW
1723 return 0;
1724}
1725
cdddbdbc
DW
1726static int validate_geometry_imsm_container(struct supertype *st, int level,
1727 int layout, int raiddisks, int chunk,
c2c087e6 1728 unsigned long long size, char *dev,
2c514b71
NB
1729 unsigned long long *freesize,
1730 int verbose)
cdddbdbc 1731{
c2c087e6
DW
1732 int fd;
1733 unsigned long long ldsize;
cdddbdbc 1734
c2c087e6
DW
1735 if (level != LEVEL_CONTAINER)
1736 return 0;
1737 if (!dev)
1738 return 1;
1739
1740 fd = open(dev, O_RDONLY|O_EXCL, 0);
1741 if (fd < 0) {
2c514b71
NB
1742 if (verbose)
1743 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
1744 dev, strerror(errno));
c2c087e6
DW
1745 return 0;
1746 }
1747 if (!get_dev_size(fd, dev, &ldsize)) {
1748 close(fd);
1749 return 0;
1750 }
1751 close(fd);
1752
1753 *freesize = avail_size_imsm(st, ldsize >> 9);
1754
1755 return 1;
cdddbdbc
DW
1756}
1757
c2c087e6
DW
1758/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
1759 * FIX ME add ahci details
1760 */
8b353278
DW
1761static int validate_geometry_imsm_volume(struct supertype *st, int level,
1762 int layout, int raiddisks, int chunk,
c2c087e6 1763 unsigned long long size, char *dev,
2c514b71
NB
1764 unsigned long long *freesize,
1765 int verbose)
cdddbdbc 1766{
c2c087e6
DW
1767 struct stat stb;
1768 struct intel_super *super = st->sb;
1769 struct dl *dl;
1770 unsigned long long pos = 0;
1771 unsigned long long maxsize;
1772 struct extent *e;
1773 int i;
cdddbdbc 1774
c2c087e6
DW
1775 if (level == LEVEL_CONTAINER)
1776 return 0;
1777
1778 if (level == 1 && raiddisks > 2) {
2c514b71
NB
1779 if (verbose)
1780 fprintf(stderr, Name ": imsm does not support more "
1781 "than 2 in a raid1 configuration\n");
c2c087e6
DW
1782 return 0;
1783 }
1784
1785 /* We must have the container info already read in. */
1786 if (!super)
1787 return 0;
1788
1789 if (!dev) {
1790 /* General test: make sure there is space for
2da8544a
DW
1791 * 'raiddisks' device extents of size 'size' at a given
1792 * offset
c2c087e6
DW
1793 */
1794 unsigned long long minsize = size*2 /* convert to blocks */;
2da8544a 1795 unsigned long long start_offset = ~0ULL;
c2c087e6
DW
1796 int dcnt = 0;
1797 if (minsize == 0)
1798 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1799 for (dl = super->disks; dl ; dl = dl->next) {
1800 int found = 0;
1801
bf5a934a 1802 pos = 0;
c2c087e6
DW
1803 i = 0;
1804 e = get_extents(super, dl);
1805 if (!e) continue;
1806 do {
1807 unsigned long long esize;
1808 esize = e[i].start - pos;
1809 if (esize >= minsize)
1810 found = 1;
2da8544a
DW
1811 if (found && start_offset == ~0ULL) {
1812 start_offset = pos;
1813 break;
1814 } else if (found && pos != start_offset) {
1815 found = 0;
1816 break;
1817 }
c2c087e6
DW
1818 pos = e[i].start + e[i].size;
1819 i++;
1820 } while (e[i-1].size);
1821 if (found)
1822 dcnt++;
1823 free(e);
1824 }
1825 if (dcnt < raiddisks) {
2c514b71
NB
1826 if (verbose)
1827 fprintf(stderr, Name ": imsm: Not enough "
1828 "devices with space for this array "
1829 "(%d < %d)\n",
1830 dcnt, raiddisks);
c2c087e6
DW
1831 return 0;
1832 }
1833 return 1;
1834 }
1835 /* This device must be a member of the set */
1836 if (stat(dev, &stb) < 0)
1837 return 0;
1838 if ((S_IFMT & stb.st_mode) != S_IFBLK)
1839 return 0;
1840 for (dl = super->disks ; dl ; dl = dl->next) {
1841 if (dl->major == major(stb.st_rdev) &&
1842 dl->minor == minor(stb.st_rdev))
1843 break;
1844 }
1845 if (!dl) {
2c514b71
NB
1846 if (verbose)
1847 fprintf(stderr, Name ": %s is not in the "
1848 "same imsm set\n", dev);
c2c087e6
DW
1849 return 0;
1850 }
1851 e = get_extents(super, dl);
1852 maxsize = 0;
1853 i = 0;
1854 if (e) do {
1855 unsigned long long esize;
1856 esize = e[i].start - pos;
1857 if (esize >= maxsize)
1858 maxsize = esize;
1859 pos = e[i].start + e[i].size;
1860 i++;
1861 } while (e[i-1].size);
1862 *freesize = maxsize;
1863
1864 return 1;
cdddbdbc
DW
1865}
1866
604b746f
JD
1867int imsm_bbm_log_size(struct imsm_super *mpb)
1868{
1869 return __le32_to_cpu(mpb->bbm_log_size);
1870}
1871
bf5a934a
DW
1872static int validate_geometry_imsm(struct supertype *st, int level, int layout,
1873 int raiddisks, int chunk, unsigned long long size,
1874 char *dev, unsigned long long *freesize,
1875 int verbose)
1876{
1877 int fd, cfd;
1878 struct mdinfo *sra;
1879
1880 /* if given unused devices create a container
1881 * if given given devices in a container create a member volume
1882 */
1883 if (level == LEVEL_CONTAINER) {
1884 /* Must be a fresh device to add to a container */
1885 return validate_geometry_imsm_container(st, level, layout,
1886 raiddisks, chunk, size,
1887 dev, freesize,
1888 verbose);
1889 }
1890
1891 if (st->sb) {
1892 /* creating in a given container */
1893 return validate_geometry_imsm_volume(st, level, layout,
1894 raiddisks, chunk, size,
1895 dev, freesize, verbose);
1896 }
1897
1898 /* limit creation to the following levels */
1899 if (!dev)
1900 switch (level) {
1901 case 0:
1902 case 1:
1903 case 10:
1904 case 5:
1905 break;
1906 default:
1907 return 1;
1908 }
1909
1910 /* This device needs to be a device in an 'imsm' container */
1911 fd = open(dev, O_RDONLY|O_EXCL, 0);
1912 if (fd >= 0) {
1913 if (verbose)
1914 fprintf(stderr,
1915 Name ": Cannot create this array on device %s\n",
1916 dev);
1917 close(fd);
1918 return 0;
1919 }
1920 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
1921 if (verbose)
1922 fprintf(stderr, Name ": Cannot open %s: %s\n",
1923 dev, strerror(errno));
1924 return 0;
1925 }
1926 /* Well, it is in use by someone, maybe an 'imsm' container. */
1927 cfd = open_container(fd);
1928 if (cfd < 0) {
1929 close(fd);
1930 if (verbose)
1931 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
1932 dev);
1933 return 0;
1934 }
1935 sra = sysfs_read(cfd, 0, GET_VERSION);
1936 close(fd);
1937 if (sra && sra->array.major_version == -1 &&
1938 strcmp(sra->text_version, "imsm") == 0) {
1939 /* This is a member of a imsm container. Load the container
1940 * and try to create a volume
1941 */
1942 struct intel_super *super;
1943
1944 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
1945 st->sb = super;
1946 st->container_dev = fd2devnum(cfd);
1947 close(cfd);
1948 return validate_geometry_imsm_volume(st, level, layout,
1949 raiddisks, chunk,
1950 size, dev,
1951 freesize, verbose);
1952 }
1953 close(cfd);
1954 } else /* may belong to another container */
1955 return 0;
1956
1957 return 1;
1958}
1959
cdddbdbc
DW
1960static struct mdinfo *container_content_imsm(struct supertype *st)
1961{
4f5bc454
DW
1962 /* Given a container loaded by load_super_imsm_all,
1963 * extract information about all the arrays into
1964 * an mdinfo tree.
1965 *
1966 * For each imsm_dev create an mdinfo, fill it in,
1967 * then look for matching devices in super->disks
1968 * and create appropriate device mdinfo.
1969 */
1970 struct intel_super *super = st->sb;
949c47a0 1971 struct imsm_super *mpb = super->anchor;
4f5bc454
DW
1972 struct mdinfo *rest = NULL;
1973 int i;
cdddbdbc 1974
604b746f
JD
1975 /* do not assemble arrays that might have bad blocks */
1976 if (imsm_bbm_log_size(super->anchor)) {
1977 fprintf(stderr, Name ": BBM log found in metadata. "
1978 "Cannot activate array(s).\n");
1979 return NULL;
1980 }
1981
4f5bc454 1982 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 1983 struct imsm_dev *dev = get_imsm_dev(super, i);
4f5bc454 1984 struct imsm_vol *vol = &dev->vol;
a965f303 1985 struct imsm_map *map = get_imsm_map(dev, 0);
4f5bc454 1986 struct mdinfo *this;
4f5bc454
DW
1987 int slot;
1988
1989 this = malloc(sizeof(*this));
1990 memset(this, 0, sizeof(*this));
1991 this->next = rest;
1992 rest = this;
1993
4f5bc454
DW
1994 this->array.level = get_imsm_raid_level(map);
1995 this->array.raid_disks = map->num_members;
c2c087e6 1996 this->array.layout = imsm_level_to_layout(this->array.level);
4f5bc454
DW
1997 this->array.md_minor = -1;
1998 this->array.ctime = 0;
1999 this->array.utime = 0;
2000 this->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
2001 this->array.state = !vol->dirty;
2002 this->container_member = i;
0fd5c350
DW
2003 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
2004 this->resync_start = 0;
2005 else
2006 this->resync_start = ~0ULL;
2007
4f5bc454
DW
2008 strncpy(this->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2009 this->name[MAX_RAID_SERIAL_LEN] = 0;
2010
159c3a1a
NB
2011 sprintf(this->text_version, "/%s/%d",
2012 devnum2devname(st->container_dev),
2013 this->container_member);
2014
4f5bc454
DW
2015 memset(this->uuid, 0, sizeof(this->uuid));
2016
f54e6321 2017 this->component_size = __le32_to_cpu(map->blocks_per_member);
4f5bc454
DW
2018
2019 for (slot = 0 ; slot < map->num_members; slot++) {
4f5bc454
DW
2020 struct mdinfo *info_d;
2021 struct dl *d;
2022 int idx;
2023 __u32 s;
2024
d23fe947 2025 idx = get_imsm_disk_idx(map, slot);
4f5bc454
DW
2026 for (d = super->disks; d ; d = d->next)
2027 if (d->index == idx)
2028 break;
2029
2030 if (d == NULL)
2031 break; /* shouldn't this be continue ?? */
2032
2033 info_d = malloc(sizeof(*info_d));
2034 if (!info_d)
2035 break; /* ditto ?? */
2036 memset(info_d, 0, sizeof(*info_d));
2037 info_d->next = this->devs;
2038 this->devs = info_d;
2039
b9f594fe 2040 s = __le32_to_cpu(d->disk.status);
4f5bc454
DW
2041
2042 info_d->disk.number = d->index;
2043 info_d->disk.major = d->major;
2044 info_d->disk.minor = d->minor;
2045 info_d->disk.raid_disk = slot;
2046 info_d->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
2047 info_d->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
2048 info_d->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
2049
2050 this->array.working_disks++;
2051
2052 info_d->events = __le32_to_cpu(mpb->generation_num);
2053 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
2054 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
2055 if (d->devname)
2056 strcpy(info_d->name, d->devname);
2057 }
2058 }
2059
2060 return rest;
cdddbdbc
DW
2061}
2062
845dea95 2063
cba0191b
NB
2064static int imsm_open_new(struct supertype *c, struct active_array *a,
2065 char *inst)
845dea95 2066{
0372d5a2 2067 struct intel_super *super = c->sb;
949c47a0 2068 struct imsm_super *mpb = super->anchor;
0372d5a2 2069
949c47a0 2070 if (atoi(inst) >= mpb->num_raid_devs) {
0372d5a2
DW
2071 fprintf(stderr, "%s: subarry index %d, out of range\n",
2072 __func__, atoi(inst));
2073 return -ENODEV;
2074 }
2075
4e6e574a 2076 dprintf("imsm: open_new %s\n", inst);
cba0191b 2077 a->info.container_member = atoi(inst);
845dea95
NB
2078 return 0;
2079}
2080
949c47a0 2081static __u8 imsm_check_degraded(struct intel_super *super, int n, int failed)
c2a1e7da 2082{
949c47a0 2083 struct imsm_dev *dev = get_imsm_dev(super, n);
a965f303 2084 struct imsm_map *map = get_imsm_map(dev, 0);
c2a1e7da
DW
2085
2086 if (!failed)
3393c6af
DW
2087 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
2088 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
2089
2090 switch (get_imsm_raid_level(map)) {
2091 case 0:
2092 return IMSM_T_STATE_FAILED;
2093 break;
2094 case 1:
2095 if (failed < map->num_members)
2096 return IMSM_T_STATE_DEGRADED;
2097 else
2098 return IMSM_T_STATE_FAILED;
2099 break;
2100 case 10:
2101 {
2102 /**
2103 * check to see if any mirrors have failed,
2104 * otherwise we are degraded
2105 */
2106 int device_per_mirror = 2; /* FIXME is this always the case?
2107 * and are they always adjacent?
2108 */
2109 int failed = 0;
2110 int i;
2111
2112 for (i = 0; i < map->num_members; i++) {
2113 int idx = get_imsm_disk_idx(map, i);
949c47a0 2114 struct imsm_disk *disk = get_imsm_disk(super, idx);
c2a1e7da
DW
2115
2116 if (__le32_to_cpu(disk->status) & FAILED_DISK)
2117 failed++;
2118
2119 if (failed >= device_per_mirror)
2120 return IMSM_T_STATE_FAILED;
2121
2122 /* reset 'failed' for next mirror set */
2123 if (!((i + 1) % device_per_mirror))
2124 failed = 0;
2125 }
2126
2127 return IMSM_T_STATE_DEGRADED;
2128 }
2129 case 5:
2130 if (failed < 2)
2131 return IMSM_T_STATE_DEGRADED;
2132 else
2133 return IMSM_T_STATE_FAILED;
2134 break;
2135 default:
2136 break;
2137 }
2138
2139 return map->map_state;
2140}
2141
949c47a0 2142static int imsm_count_failed(struct intel_super *super, struct imsm_map *map)
c2a1e7da
DW
2143{
2144 int i;
2145 int failed = 0;
2146 struct imsm_disk *disk;
2147
2148 for (i = 0; i < map->num_members; i++) {
2149 int idx = get_imsm_disk_idx(map, i);
2150
949c47a0 2151 disk = get_imsm_disk(super, idx);
c2a1e7da
DW
2152 if (__le32_to_cpu(disk->status) & FAILED_DISK)
2153 failed++;
2154 }
2155
2156 return failed;
845dea95
NB
2157}
2158
a862209d
DW
2159static void imsm_set_array_state(struct active_array *a, int consistent)
2160{
2161 int inst = a->info.container_member;
2162 struct intel_super *super = a->container->sb;
949c47a0 2163 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 2164 struct imsm_map *map = get_imsm_map(dev, 0);
a862209d
DW
2165 int dirty = !consistent;
2166 int failed;
2167 __u8 map_state;
2168
3393c6af
DW
2169 failed = imsm_count_failed(super, map);
2170 map_state = imsm_check_degraded(super, inst, failed);
2171
272906ef
DW
2172 if (consistent && !dev->vol.dirty &&
2173 (dev->vol.migr_state || map_state != IMSM_T_STATE_NORMAL))
2174 a->resync_start = 0ULL;
2175
a862209d 2176 if (a->resync_start == ~0ULL) {
115c3803 2177 /* complete recovery or initial resync */
a862209d 2178 if (map->map_state != map_state) {
4e6e574a 2179 dprintf("imsm: map_state %d: %d\n",
a862209d
DW
2180 inst, map_state);
2181 map->map_state = map_state;
2182 super->updates_pending++;
2183 }
3393c6af
DW
2184 if (dev->vol.migr_state) {
2185 dprintf("imsm: mark resync complete\n");
2186 dev->vol.migr_state = 0;
2187 dev->vol.migr_type = 0;
115c3803 2188 super->updates_pending++;
115c3803 2189 }
3393c6af
DW
2190 } else if (!dev->vol.migr_state) {
2191 dprintf("imsm: mark '%s' (%llu)\n",
2192 failed ? "rebuild" : "initializing", a->resync_start);
2193 /* mark that we are rebuilding */
2194 map->map_state = failed ? map_state : IMSM_T_STATE_NORMAL;
2195 dev->vol.migr_state = 1;
2196 dev->vol.migr_type = failed ? 1 : 0;
2197 dup_map(dev);
272906ef 2198 a->check_degraded = 1;
3393c6af 2199 super->updates_pending++;
115c3803 2200 }
a862209d 2201
3393c6af
DW
2202 /* mark dirty / clean */
2203 if (dirty != dev->vol.dirty) {
2204 dprintf("imsm: mark '%s' (%llu)\n",
2205 dirty ? "dirty" : "clean", a->resync_start);
2206 dev->vol.dirty = dirty;
a862209d
DW
2207 super->updates_pending++;
2208 }
2209}
2210
8d45d196 2211static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 2212{
8d45d196
DW
2213 int inst = a->info.container_member;
2214 struct intel_super *super = a->container->sb;
949c47a0 2215 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 2216 struct imsm_map *map = get_imsm_map(dev, 0);
8d45d196
DW
2217 struct imsm_disk *disk;
2218 __u32 status;
2219 int failed = 0;
2220 int new_failure = 0;
2221
2222 if (n > map->num_members)
2223 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
2224 n, map->num_members - 1);
2225
2226 if (n < 0)
2227 return;
2228
4e6e574a 2229 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 2230
949c47a0 2231 disk = get_imsm_disk(super, get_imsm_disk_idx(map, n));
8d45d196 2232
5802a811 2233 /* check for new failures */
8d45d196
DW
2234 status = __le32_to_cpu(disk->status);
2235 if ((state & DS_FAULTY) && !(status & FAILED_DISK)) {
2236 status |= FAILED_DISK;
2237 disk->status = __cpu_to_le32(status);
2238 new_failure = 1;
5802a811 2239 super->updates_pending++;
8d45d196 2240 }
19859edc
DW
2241 /* check if in_sync */
2242 if ((state & DS_INSYNC) && !(status & USABLE_DISK)) {
2243 status |= USABLE_DISK;
2244 disk->status = __cpu_to_le32(status);
2245 super->updates_pending++;
2246 }
8d45d196 2247
5802a811 2248 /* the number of failures have changed, count up 'failed' to determine
8d45d196
DW
2249 * degraded / failed status
2250 */
2251 if (new_failure && map->map_state != IMSM_T_STATE_FAILED)
949c47a0 2252 failed = imsm_count_failed(super, map);
8d45d196 2253
5802a811 2254 /* determine map_state based on failed or in_sync count */
8d45d196 2255 if (failed)
949c47a0 2256 map->map_state = imsm_check_degraded(super, inst, failed);
5802a811
DW
2257 else if (map->map_state == IMSM_T_STATE_DEGRADED) {
2258 struct mdinfo *d;
2259 int working = 0;
8d45d196 2260
5802a811
DW
2261 for (d = a->info.devs ; d ; d = d->next)
2262 if (d->curr_state & DS_INSYNC)
2263 working++;
2264
2265 if (working == a->info.array.raid_disks) {
2266 map->map_state = IMSM_T_STATE_NORMAL;
3393c6af
DW
2267 dev->vol.migr_state = 0;
2268 dev->vol.migr_type = 0;
5802a811
DW
2269 super->updates_pending++;
2270 }
2271 }
845dea95
NB
2272}
2273
c2a1e7da
DW
2274static int store_imsm_mpb(int fd, struct intel_super *super)
2275{
949c47a0 2276 struct imsm_super *mpb = super->anchor;
c2a1e7da
DW
2277 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
2278 unsigned long long dsize;
2279 unsigned long long sectors;
2280
2281 get_dev_size(fd, NULL, &dsize);
2282
272f648f
DW
2283 if (mpb_size > 512) {
2284 /* -1 to account for anchor */
2285 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 2286
272f648f
DW
2287 /* write the extended mpb to the sectors preceeding the anchor */
2288 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
2289 return 1;
c2a1e7da 2290
99e29264 2291 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
272f648f
DW
2292 return 1;
2293 }
c2a1e7da 2294
272f648f
DW
2295 /* first block is stored on second to last sector of the disk */
2296 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
2297 return 1;
2298
272f648f 2299 if (write(fd, super->buf, 512) != 512)
c2a1e7da
DW
2300 return 1;
2301
c2a1e7da
DW
2302 return 0;
2303}
2304
2e735d19 2305static void imsm_sync_metadata(struct supertype *container)
845dea95 2306{
2e735d19 2307 struct intel_super *super = container->sb;
c2a1e7da
DW
2308
2309 if (!super->updates_pending)
2310 return;
2311
c2c087e6 2312 write_super_imsm(super, 0);
c2a1e7da
DW
2313
2314 super->updates_pending = 0;
845dea95
NB
2315}
2316
272906ef
DW
2317static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
2318{
2319 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2320 struct imsm_map *map = get_imsm_map(dev, 0);
2321 int i = get_imsm_disk_idx(map, idx);
2322 struct dl *dl;
2323
2324 for (dl = super->disks; dl; dl = dl->next)
2325 if (dl->index == i)
2326 break;
2327
2328 if (__le32_to_cpu(dl->disk.status) & FAILED_DISK)
2329 dl = NULL;
2330
2331 if (dl)
2332 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
2333
2334 return dl;
2335}
2336
2337static struct dl *imsm_add_spare(struct intel_super *super, int idx, struct active_array *a)
2338{
2339 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2340 struct imsm_map *map = get_imsm_map(dev, 0);
2341 unsigned long long esize;
2342 unsigned long long pos;
2343 struct mdinfo *d;
2344 struct extent *ex;
2345 int j;
2346 int found;
2347 __u32 array_start;
2348 struct dl *dl;
2349
2350 for (dl = super->disks; dl; dl = dl->next) {
2351 /* If in this array, skip */
2352 for (d = a->info.devs ; d ; d = d->next)
2353 if (d->disk.major == dl->major &&
2354 d->disk.minor == dl->minor) {
2355 dprintf("%x:%x already in array\n", dl->major, dl->minor);
2356 break;
2357 }
2358 if (d)
2359 continue;
2360
2361 /* Does this unused device have the requisite free space?
2362 * We need a->info.component_size sectors
2363 */
2364 ex = get_extents(super, dl);
2365 if (!ex) {
2366 dprintf("cannot get extents\n");
2367 continue;
2368 }
2369 found = 0;
2370 j = 0;
2371 pos = 0;
2372 array_start = __le32_to_cpu(map->pba_of_lba0);
2373
2374 do {
2375 /* check that we can start at pba_of_lba0 with
2376 * a->info.component_size of space
2377 */
2378 esize = ex[j].start - pos;
2379 if (array_start >= pos &&
2380 array_start + a->info.component_size < ex[j].start) {
2381 found = 1;
2382 break;
2383 }
2384 pos = ex[j].start + ex[j].size;
2385 j++;
2386
2387 } while (ex[j-1].size);
2388
2389 free(ex);
2390 if (!found) {
2391 dprintf("%x:%x does not have %llu at %d\n",
2392 dl->major, dl->minor,
2393 a->info.component_size,
2394 __le32_to_cpu(map->pba_of_lba0));
2395 /* No room */
2396 continue;
2397 } else
2398 break;
2399 }
2400
2401 return dl;
2402}
2403
88758e9d
DW
2404static struct mdinfo *imsm_activate_spare(struct active_array *a,
2405 struct metadata_update **updates)
2406{
2407 /**
d23fe947
DW
2408 * Find a device with unused free space and use it to replace a
2409 * failed/vacant region in an array. We replace failed regions one a
2410 * array at a time. The result is that a new spare disk will be added
2411 * to the first failed array and after the monitor has finished
2412 * propagating failures the remainder will be consumed.
88758e9d 2413 *
d23fe947
DW
2414 * FIXME add a capability for mdmon to request spares from another
2415 * container.
88758e9d
DW
2416 */
2417
2418 struct intel_super *super = a->container->sb;
88758e9d 2419 int inst = a->info.container_member;
949c47a0 2420 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 2421 struct imsm_map *map = get_imsm_map(dev, 0);
88758e9d
DW
2422 int failed = a->info.array.raid_disks;
2423 struct mdinfo *rv = NULL;
2424 struct mdinfo *d;
2425 struct mdinfo *di;
2426 struct metadata_update *mu;
2427 struct dl *dl;
2428 struct imsm_update_activate_spare *u;
2429 int num_spares = 0;
2430 int i;
2431
2432 for (d = a->info.devs ; d ; d = d->next) {
2433 if ((d->curr_state & DS_FAULTY) &&
2434 d->state_fd >= 0)
2435 /* wait for Removal to happen */
2436 return NULL;
2437 if (d->state_fd >= 0)
2438 failed--;
2439 }
2440
2441 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
2442 inst, failed, a->info.array.raid_disks, a->info.array.level);
949c47a0 2443 if (imsm_check_degraded(super, inst, failed) != IMSM_T_STATE_DEGRADED)
88758e9d
DW
2444 return NULL;
2445
2446 /* For each slot, if it is not working, find a spare */
88758e9d
DW
2447 for (i = 0; i < a->info.array.raid_disks; i++) {
2448 for (d = a->info.devs ; d ; d = d->next)
2449 if (d->disk.raid_disk == i)
2450 break;
2451 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
2452 if (d && (d->state_fd >= 0))
2453 continue;
2454
272906ef
DW
2455 /*
2456 * OK, this device needs recovery. Try to re-add the previous
2457 * occupant of this slot, if this fails add a new spare
2458 */
2459 dl = imsm_readd(super, i, a);
2460 if (!dl)
2461 dl = imsm_add_spare(super, i, a);
2462 if (!dl)
2463 continue;
2464
2465 /* found a usable disk with enough space */
2466 di = malloc(sizeof(*di));
2467 memset(di, 0, sizeof(*di));
2468
2469 /* dl->index will be -1 in the case we are activating a
2470 * pristine spare. imsm_process_update() will create a
2471 * new index in this case. Once a disk is found to be
2472 * failed in all member arrays it is kicked from the
2473 * metadata
2474 */
2475 di->disk.number = dl->index;
d23fe947 2476
272906ef
DW
2477 /* (ab)use di->devs to store a pointer to the device
2478 * we chose
2479 */
2480 di->devs = (struct mdinfo *) dl;
2481
2482 di->disk.raid_disk = i;
2483 di->disk.major = dl->major;
2484 di->disk.minor = dl->minor;
2485 di->disk.state = 0;
2486 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
2487 di->component_size = a->info.component_size;
2488 di->container_member = inst;
2489 di->next = rv;
2490 rv = di;
2491 num_spares++;
2492 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
2493 i, di->data_offset);
88758e9d 2494
272906ef 2495 break;
88758e9d
DW
2496 }
2497
2498 if (!rv)
2499 /* No spares found */
2500 return rv;
2501 /* Now 'rv' has a list of devices to return.
2502 * Create a metadata_update record to update the
2503 * disk_ord_tbl for the array
2504 */
2505 mu = malloc(sizeof(*mu));
2506 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
2507 mu->space = NULL;
2508 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
2509 mu->next = *updates;
2510 u = (struct imsm_update_activate_spare *) mu->buf;
2511
2512 for (di = rv ; di ; di = di->next) {
2513 u->type = update_activate_spare;
d23fe947
DW
2514 u->dl = (struct dl *) di->devs;
2515 di->devs = NULL;
88758e9d
DW
2516 u->slot = di->disk.raid_disk;
2517 u->array = inst;
2518 u->next = u + 1;
2519 u++;
2520 }
2521 (u-1)->next = NULL;
2522 *updates = mu;
2523
2524 return rv;
2525}
2526
8273f55e
DW
2527static int disks_overlap(struct imsm_map *m1, struct imsm_map *m2)
2528{
2529 int i;
2530 int j;
2531 int idx;
2532
2533 for (i = 0; i < m1->num_members; i++) {
2534 idx = get_imsm_disk_idx(m1, i);
2535 for (j = 0; j < m2->num_members; j++)
2536 if (idx == get_imsm_disk_idx(m2, j))
2537 return 1;
2538 }
2539
2540 return 0;
2541}
2542
e8319a19
DW
2543static void imsm_process_update(struct supertype *st,
2544 struct metadata_update *update)
2545{
2546 /**
2547 * crack open the metadata_update envelope to find the update record
2548 * update can be one of:
2549 * update_activate_spare - a spare device has replaced a failed
2550 * device in an array, update the disk_ord_tbl. If this disk is
2551 * present in all member arrays then also clear the SPARE_DISK
2552 * flag
2553 */
2554 struct intel_super *super = st->sb;
949c47a0 2555 struct imsm_super *mpb = super->anchor;
e8319a19
DW
2556 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2557
2558 switch (type) {
2559 case update_activate_spare: {
2560 struct imsm_update_activate_spare *u = (void *) update->buf;
949c47a0 2561 struct imsm_dev *dev = get_imsm_dev(super, u->array);
a965f303 2562 struct imsm_map *map = get_imsm_map(dev, 0);
e8319a19
DW
2563 struct active_array *a;
2564 struct imsm_disk *disk;
2565 __u32 status;
2566 struct dl *dl;
e8319a19
DW
2567 unsigned int found;
2568 int victim;
2569 int i;
2570
2571 for (dl = super->disks; dl; dl = dl->next)
d23fe947 2572 if (dl == u->dl)
e8319a19
DW
2573 break;
2574
2575 if (!dl) {
2576 fprintf(stderr, "error: imsm_activate_spare passed "
d23fe947
DW
2577 "an unknown disk (index: %d serial: %s)\n",
2578 u->dl->index, u->dl->serial);
e8319a19
DW
2579 return;
2580 }
2581
2582 super->updates_pending++;
2583
d23fe947
DW
2584 /* adding a pristine spare, assign a new index */
2585 if (dl->index < 0) {
2586 dl->index = super->anchor->num_disks;
2587 super->anchor->num_disks++;
2588 }
e8319a19 2589 victim = get_imsm_disk_idx(map, u->slot);
d23fe947
DW
2590 map->disk_ord_tbl[u->slot] = __cpu_to_le32(dl->index);
2591 disk = &dl->disk;
e8319a19
DW
2592 status = __le32_to_cpu(disk->status);
2593 status |= CONFIGURED_DISK;
19859edc 2594 status &= ~(SPARE_DISK | USABLE_DISK);
e8319a19
DW
2595 disk->status = __cpu_to_le32(status);
2596
e8319a19
DW
2597 /* count arrays using the victim in the metadata */
2598 found = 0;
2599 for (a = st->arrays; a ; a = a->next) {
949c47a0 2600 dev = get_imsm_dev(super, a->info.container_member);
a965f303 2601 map = get_imsm_map(dev, 0);
e8319a19
DW
2602 for (i = 0; i < map->num_members; i++)
2603 if (victim == get_imsm_disk_idx(map, i))
2604 found++;
2605 }
2606
2607 /* clear some flags if the victim is no longer being
2608 * utilized anywhere
2609 */
e8319a19 2610 if (!found) {
d23fe947 2611 disk = get_imsm_disk(super, victim);
e8319a19
DW
2612 status = __le32_to_cpu(disk->status);
2613 status &= ~(CONFIGURED_DISK | USABLE_DISK);
2614 disk->status = __cpu_to_le32(status);
d23fe947
DW
2615 /* at this point the disk can be removed from the
2616 * metadata, however we need to guarantee that we do
2617 * not race with any manager thread routine that relies
2618 * on dl->index or map->disk_ord_tbl
2619 */
e8319a19 2620 }
8273f55e
DW
2621 break;
2622 }
2623 case update_create_array: {
2624 /* someone wants to create a new array, we need to be aware of
2625 * a few races/collisions:
2626 * 1/ 'Create' called by two separate instances of mdadm
2627 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
2628 * devices that have since been assimilated via
2629 * activate_spare.
2630 * In the event this update can not be carried out mdadm will
2631 * (FIX ME) notice that its update did not take hold.
2632 */
2633 struct imsm_update_create_array *u = (void *) update->buf;
2634 struct imsm_dev *dev;
2635 struct imsm_map *map, *new_map;
2636 unsigned long long start, end;
2637 unsigned long long new_start, new_end;
2638 int i;
2639 int overlap = 0;
2640
2641 /* handle racing creates: first come first serve */
2642 if (u->dev_idx < mpb->num_raid_devs) {
2643 dprintf("%s: subarray %d already defined\n",
2644 __func__, u->dev_idx);
2645 return;
2646 }
2647
2648 /* check update is next in sequence */
2649 if (u->dev_idx != mpb->num_raid_devs) {
2650 dprintf("%s: can not create arrays out of sequence\n",
2651 __func__);
2652 return;
2653 }
2654
a965f303 2655 new_map = get_imsm_map(&u->dev, 0);
8273f55e
DW
2656 new_start = __le32_to_cpu(new_map->pba_of_lba0);
2657 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
2658
2659 /* handle activate_spare versus create race:
2660 * check to make sure that overlapping arrays do not include
2661 * overalpping disks
2662 */
2663 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 2664 dev = get_imsm_dev(super, i);
a965f303 2665 map = get_imsm_map(dev, 0);
8273f55e
DW
2666 start = __le32_to_cpu(map->pba_of_lba0);
2667 end = start + __le32_to_cpu(map->blocks_per_member);
2668 if ((new_start >= start && new_start <= end) ||
2669 (start >= new_start && start <= new_end))
2670 overlap = 1;
2671 if (overlap && disks_overlap(map, new_map)) {
2672 dprintf("%s: arrays overlap\n", __func__);
2673 return;
2674 }
2675 }
2676 /* check num_members sanity */
2677 if (new_map->num_members > mpb->num_disks) {
2678 dprintf("%s: num_disks out of range\n", __func__);
2679 return;
2680 }
2681
949c47a0
DW
2682 /* check that prepare update was successful */
2683 if (!update->space) {
2684 dprintf("%s: prepare update failed\n", __func__);
2685 return;
2686 }
2687
8273f55e 2688 super->updates_pending++;
949c47a0
DW
2689 dev = update->space;
2690 update->space = NULL;
2691 imsm_copy_dev(dev, &u->dev);
2692 super->dev_tbl[u->dev_idx] = dev;
8273f55e 2693 mpb->num_raid_devs++;
8273f55e
DW
2694
2695 /* fix up flags, if arrays overlap then the drives can not be
2696 * spares
2697 */
2698 for (i = 0; i < map->num_members; i++) {
2699 struct imsm_disk *disk;
2700 __u32 status;
2701
949c47a0 2702 disk = get_imsm_disk(super, get_imsm_disk_idx(map, i));
8273f55e
DW
2703 status = __le32_to_cpu(disk->status);
2704 status |= CONFIGURED_DISK;
2705 if (overlap)
2706 status &= ~SPARE_DISK;
2707 disk->status = __cpu_to_le32(status);
2708 }
2709 break;
e8319a19
DW
2710 }
2711 }
2712}
88758e9d 2713
8273f55e
DW
2714static void imsm_prepare_update(struct supertype *st,
2715 struct metadata_update *update)
2716{
949c47a0
DW
2717 /**
2718 * Allocate space to hold new disk entries, raid-device entries or a
2719 * new mpb if necessary. We currently maintain an mpb large enough to
2720 * hold 2 subarrays for the given number of disks. This may not be
2721 * sufficient when reshaping.
8273f55e
DW
2722 *
2723 * FIX ME handle the reshape case.
2724 *
2725 * The monitor will be able to safely change super->mpb by arranging
2726 * for it to be freed in check_update_queue(). I.e. the monitor thread
2727 * will start using the new pointer and the manager can continue to use
2728 * the old value until check_update_queue() runs.
2729 */
949c47a0
DW
2730 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2731
2732 switch (type) {
2733 case update_create_array: {
2734 struct imsm_update_create_array *u = (void *) update->buf;
3393c6af 2735 size_t len = sizeof_imsm_dev(&u->dev, 1);
949c47a0
DW
2736
2737 update->space = malloc(len);
2738 break;
2739 default:
2740 break;
2741 }
2742 }
8273f55e
DW
2743
2744 return;
2745}
2746
cdddbdbc
DW
2747struct superswitch super_imsm = {
2748#ifndef MDASSEMBLE
2749 .examine_super = examine_super_imsm,
2750 .brief_examine_super = brief_examine_super_imsm,
2751 .detail_super = detail_super_imsm,
2752 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 2753 .write_init_super = write_init_super_imsm,
cdddbdbc
DW
2754#endif
2755 .match_home = match_home_imsm,
2756 .uuid_from_super= uuid_from_super_imsm,
2757 .getinfo_super = getinfo_super_imsm,
2758 .update_super = update_super_imsm,
2759
2760 .avail_size = avail_size_imsm,
2761
2762 .compare_super = compare_super_imsm,
2763
2764 .load_super = load_super_imsm,
bf5a934a
DW
2765 .init_super = init_super_imsm,
2766 .add_to_super = add_to_super_imsm,
cdddbdbc
DW
2767 .store_super = store_zero_imsm,
2768 .free_super = free_super_imsm,
2769 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 2770 .container_content = container_content_imsm,
cdddbdbc
DW
2771
2772 .validate_geometry = validate_geometry_imsm,
cdddbdbc 2773 .external = 1,
845dea95
NB
2774
2775/* for mdmon */
2776 .open_new = imsm_open_new,
2777 .load_super = load_super_imsm,
ed9d66aa 2778 .set_array_state= imsm_set_array_state,
845dea95
NB
2779 .set_disk = imsm_set_disk,
2780 .sync_metadata = imsm_sync_metadata,
88758e9d 2781 .activate_spare = imsm_activate_spare,
e8319a19 2782 .process_update = imsm_process_update,
8273f55e 2783 .prepare_update = imsm_prepare_update,
cdddbdbc 2784};