]> git.ipfire.org Git - thirdparty/mdadm.git/blame_incremental - super-intel.c
imsm: Check if array degradation has been changed
[thirdparty/mdadm.git] / super-intel.c
... / ...
CommitLineData
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20#define HAVE_STDINT_H 1
21#include "mdadm.h"
22#include "mdmon.h"
23#include "sha1.h"
24#include "platform-intel.h"
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
28#include <dirent.h>
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37#define MPB_VERSION_RAID5 "1.2.02"
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
43
44#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45#define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
54#define MPB_SECTOR_CNT 2210
55#define IMSM_RESERVED_SECTORS 4096
56#define SECT_PER_MB_SHIFT 11
57
58/* Disk configuration info. */
59#define IMSM_MAX_DEVICES 255
60struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
64#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
67 __u32 status; /* 0xF0 - 0xF3 */
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69#define IMSM_DISK_FILLERS 4
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71};
72
73/* RAID map configuration infos. */
74struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80#define IMSM_T_STATE_NORMAL 0
81#define IMSM_T_STATE_UNINITIALIZED 1
82#define IMSM_T_STATE_DEGRADED 2
83#define IMSM_T_STATE_FAILED 3
84 __u8 raid_level;
85#define IMSM_T_RAID0 0
86#define IMSM_T_RAID1 1
87#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
91 __u8 ddf;
92 __u32 filler[7]; /* expansion area */
93#define IMSM_ORD_REBUILD (1 << 24)
94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
95 * top byte contains some flags
96 */
97} __attribute__ ((packed));
98
99struct imsm_vol {
100 __u32 curr_migr_unit;
101 __u32 checkpoint_id; /* id to access curr_migr_unit */
102 __u8 migr_state; /* Normal or Migrating */
103#define MIGR_INIT 0
104#define MIGR_REBUILD 1
105#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106#define MIGR_GEN_MIGR 3
107#define MIGR_STATE_CHANGE 4
108#define MIGR_REPAIR 5
109 __u8 migr_type; /* Initializing, Rebuilding, ... */
110 __u8 dirty;
111 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
112 __u16 verify_errors; /* number of mismatches */
113 __u16 bad_blocks; /* number of bad blocks during verify */
114 __u32 filler[4];
115 struct imsm_map map[1];
116 /* here comes another one if migr_state */
117} __attribute__ ((packed));
118
119struct imsm_dev {
120 __u8 volume[MAX_RAID_SERIAL_LEN];
121 __u32 size_low;
122 __u32 size_high;
123#define DEV_BOOTABLE __cpu_to_le32(0x01)
124#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
125#define DEV_READ_COALESCING __cpu_to_le32(0x04)
126#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
127#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
128#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
129#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
130#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
131#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
132#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
133#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
134#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
135#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
136 __u32 status; /* Persistent RaidDev status */
137 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
138 __u8 migr_priority;
139 __u8 num_sub_vols;
140 __u8 tid;
141 __u8 cng_master_disk;
142 __u16 cache_policy;
143 __u8 cng_state;
144 __u8 cng_sub_state;
145#define IMSM_DEV_FILLERS 10
146 __u32 filler[IMSM_DEV_FILLERS];
147 struct imsm_vol vol;
148} __attribute__ ((packed));
149
150struct imsm_super {
151 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
152 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
153 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
154 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
155 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
156 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
157 __u32 attributes; /* 0x34 - 0x37 */
158 __u8 num_disks; /* 0x38 Number of configured disks */
159 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
160 __u8 error_log_pos; /* 0x3A */
161 __u8 fill[1]; /* 0x3B */
162 __u32 cache_size; /* 0x3c - 0x40 in mb */
163 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
164 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
165 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
166#define IMSM_FILLERS 35
167 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
168 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
169 /* here comes imsm_dev[num_raid_devs] */
170 /* here comes BBM logs */
171} __attribute__ ((packed));
172
173#define BBM_LOG_MAX_ENTRIES 254
174
175struct bbm_log_entry {
176 __u64 defective_block_start;
177#define UNREADABLE 0xFFFFFFFF
178 __u32 spare_block_offset;
179 __u16 remapped_marked_count;
180 __u16 disk_ordinal;
181} __attribute__ ((__packed__));
182
183struct bbm_log {
184 __u32 signature; /* 0xABADB10C */
185 __u32 entry_count;
186 __u32 reserved_spare_block_count; /* 0 */
187 __u32 reserved; /* 0xFFFF */
188 __u64 first_spare_lba;
189 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
190} __attribute__ ((__packed__));
191
192
193#ifndef MDASSEMBLE
194static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
195#endif
196
197#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
198
199#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
200
201#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
202 * be recovered using srcMap */
203#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
204 * already been migrated and must
205 * be recovered from checkpoint area */
206struct migr_record {
207 __u32 rec_status; /* Status used to determine how to restart
208 * migration in case it aborts
209 * in some fashion */
210 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
211 __u32 family_num; /* Family number of MPB
212 * containing the RaidDev
213 * that is migrating */
214 __u32 ascending_migr; /* True if migrating in increasing
215 * order of lbas */
216 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
217 __u32 dest_depth_per_unit; /* Num member blocks each destMap
218 * member disk
219 * advances per unit-of-operation */
220 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
221 __u32 dest_1st_member_lba; /* First member lba on first
222 * stripe of destination */
223 __u32 num_migr_units; /* Total num migration units-of-op */
224 __u32 post_migr_vol_cap; /* Size of volume after
225 * migration completes */
226 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
227 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
228 * migration ckpt record was read from
229 * (for recovered migrations) */
230} __attribute__ ((__packed__));
231
232static __u8 migr_type(struct imsm_dev *dev)
233{
234 if (dev->vol.migr_type == MIGR_VERIFY &&
235 dev->status & DEV_VERIFY_AND_FIX)
236 return MIGR_REPAIR;
237 else
238 return dev->vol.migr_type;
239}
240
241static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
242{
243 /* for compatibility with older oroms convert MIGR_REPAIR, into
244 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
245 */
246 if (migr_type == MIGR_REPAIR) {
247 dev->vol.migr_type = MIGR_VERIFY;
248 dev->status |= DEV_VERIFY_AND_FIX;
249 } else {
250 dev->vol.migr_type = migr_type;
251 dev->status &= ~DEV_VERIFY_AND_FIX;
252 }
253}
254
255static unsigned int sector_count(__u32 bytes)
256{
257 return ((bytes + (512-1)) & (~(512-1))) / 512;
258}
259
260static unsigned int mpb_sectors(struct imsm_super *mpb)
261{
262 return sector_count(__le32_to_cpu(mpb->mpb_size));
263}
264
265struct intel_dev {
266 struct imsm_dev *dev;
267 struct intel_dev *next;
268 unsigned index;
269};
270
271struct intel_hba {
272 enum sys_dev_type type;
273 char *path;
274 char *pci_id;
275 struct intel_hba *next;
276};
277
278enum action {
279 DISK_REMOVE = 1,
280 DISK_ADD
281};
282/* internal representation of IMSM metadata */
283struct intel_super {
284 union {
285 void *buf; /* O_DIRECT buffer for reading/writing metadata */
286 struct imsm_super *anchor; /* immovable parameters */
287 };
288 union {
289 void *migr_rec_buf; /* buffer for I/O operations */
290 struct migr_record *migr_rec; /* migration record */
291 };
292 size_t len; /* size of the 'buf' allocation */
293 void *next_buf; /* for realloc'ing buf from the manager */
294 size_t next_len;
295 int updates_pending; /* count of pending updates for mdmon */
296 int current_vol; /* index of raid device undergoing creation */
297 __u32 create_offset; /* common start for 'current_vol' */
298 __u32 random; /* random data for seeding new family numbers */
299 struct intel_dev *devlist;
300 struct dl {
301 struct dl *next;
302 int index;
303 __u8 serial[MAX_RAID_SERIAL_LEN];
304 int major, minor;
305 char *devname;
306 struct imsm_disk disk;
307 int fd;
308 int extent_cnt;
309 struct extent *e; /* for determining freespace @ create */
310 int raiddisk; /* slot to fill in autolayout */
311 enum action action;
312 } *disks;
313 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
314 active */
315 struct dl *missing; /* disks removed while we weren't looking */
316 struct bbm_log *bbm_log;
317 struct intel_hba *hba; /* device path of the raid controller for this metadata */
318 const struct imsm_orom *orom; /* platform firmware support */
319 struct intel_super *next; /* (temp) list for disambiguating family_num */
320};
321
322struct intel_disk {
323 struct imsm_disk disk;
324 #define IMSM_UNKNOWN_OWNER (-1)
325 int owner;
326 struct intel_disk *next;
327};
328
329struct extent {
330 unsigned long long start, size;
331};
332
333/* definitions of reshape process types */
334enum imsm_reshape_type {
335 CH_TAKEOVER,
336 CH_MIGRATION,
337};
338
339/* definition of messages passed to imsm_process_update */
340enum imsm_update_type {
341 update_activate_spare,
342 update_create_array,
343 update_kill_array,
344 update_rename_array,
345 update_add_remove_disk,
346 update_reshape_container_disks,
347 update_reshape_migration,
348 update_takeover
349};
350
351struct imsm_update_activate_spare {
352 enum imsm_update_type type;
353 struct dl *dl;
354 int slot;
355 int array;
356 struct imsm_update_activate_spare *next;
357};
358
359struct geo_params {
360 int dev_id;
361 char *dev_name;
362 long long size;
363 int level;
364 int layout;
365 int chunksize;
366 int raid_disks;
367};
368
369enum takeover_direction {
370 R10_TO_R0,
371 R0_TO_R10
372};
373struct imsm_update_takeover {
374 enum imsm_update_type type;
375 int subarray;
376 enum takeover_direction direction;
377};
378
379struct imsm_update_reshape {
380 enum imsm_update_type type;
381 int old_raid_disks;
382 int new_raid_disks;
383
384 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
385};
386
387struct imsm_update_reshape_migration {
388 enum imsm_update_type type;
389 int old_raid_disks;
390 int new_raid_disks;
391 /* fields for array migration changes
392 */
393 int subdev;
394 int new_level;
395 int new_layout;
396 int new_chunksize;
397
398 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
399};
400
401struct disk_info {
402 __u8 serial[MAX_RAID_SERIAL_LEN];
403};
404
405struct imsm_update_create_array {
406 enum imsm_update_type type;
407 int dev_idx;
408 struct imsm_dev dev;
409};
410
411struct imsm_update_kill_array {
412 enum imsm_update_type type;
413 int dev_idx;
414};
415
416struct imsm_update_rename_array {
417 enum imsm_update_type type;
418 __u8 name[MAX_RAID_SERIAL_LEN];
419 int dev_idx;
420};
421
422struct imsm_update_add_remove_disk {
423 enum imsm_update_type type;
424};
425
426
427static const char *_sys_dev_type[] = {
428 [SYS_DEV_UNKNOWN] = "Unknown",
429 [SYS_DEV_SAS] = "SAS",
430 [SYS_DEV_SATA] = "SATA"
431};
432
433const char *get_sys_dev_type(enum sys_dev_type type)
434{
435 if (type >= SYS_DEV_MAX)
436 type = SYS_DEV_UNKNOWN;
437
438 return _sys_dev_type[type];
439}
440
441static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
442{
443 struct intel_hba *result = malloc(sizeof(*result));
444 if (result) {
445 result->type = device->type;
446 result->path = strdup(device->path);
447 result->next = NULL;
448 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
449 result->pci_id++;
450 }
451 return result;
452}
453
454static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
455{
456 struct intel_hba *result=NULL;
457 for (result = hba; result; result = result->next) {
458 if (result->type == device->type && strcmp(result->path, device->path) == 0)
459 break;
460 }
461 return result;
462}
463
464static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
465{
466 struct intel_hba *hba;
467
468 /* check if disk attached to Intel HBA */
469 hba = find_intel_hba(super->hba, device);
470 if (hba != NULL)
471 return 1;
472 /* Check if HBA is already attached to super */
473 if (super->hba == NULL) {
474 super->hba = alloc_intel_hba(device);
475 return 1;
476 }
477
478 hba = super->hba;
479 /* Intel metadata allows for all disks attached to the same type HBA.
480 * Do not sypport odf HBA types mixing
481 */
482 if (device->type != hba->type)
483 return 2;
484
485 while (hba->next)
486 hba = hba->next;
487
488 hba->next = alloc_intel_hba(device);
489 return 1;
490}
491
492static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
493{
494 struct sys_dev *list, *elem, *prev;
495 char *disk_path;
496
497 if ((list = find_intel_devices()) == NULL)
498 return 0;
499
500 if (fd < 0)
501 disk_path = (char *) devname;
502 else
503 disk_path = diskfd_to_devpath(fd);
504
505 if (!disk_path) {
506 free_sys_dev(&list);
507 return 0;
508 }
509
510 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
511 if (path_attached_to_hba(disk_path, elem->path)) {
512 if (prev == NULL)
513 list = list->next;
514 else
515 prev->next = elem->next;
516 elem->next = NULL;
517 if (disk_path != devname)
518 free(disk_path);
519 free_sys_dev(&list);
520 return elem;
521 }
522 }
523 if (disk_path != devname)
524 free(disk_path);
525 free_sys_dev(&list);
526
527 return NULL;
528}
529
530
531static int find_intel_hba_capability(int fd, struct intel_super *super,
532 char *devname);
533
534static struct supertype *match_metadata_desc_imsm(char *arg)
535{
536 struct supertype *st;
537
538 if (strcmp(arg, "imsm") != 0 &&
539 strcmp(arg, "default") != 0
540 )
541 return NULL;
542
543 st = malloc(sizeof(*st));
544 if (!st)
545 return NULL;
546 memset(st, 0, sizeof(*st));
547 st->container_dev = NoMdDev;
548 st->ss = &super_imsm;
549 st->max_devs = IMSM_MAX_DEVICES;
550 st->minor_version = 0;
551 st->sb = NULL;
552 return st;
553}
554
555#ifndef MDASSEMBLE
556static __u8 *get_imsm_version(struct imsm_super *mpb)
557{
558 return &mpb->sig[MPB_SIG_LEN];
559}
560#endif
561
562/* retrieve a disk directly from the anchor when the anchor is known to be
563 * up-to-date, currently only at load time
564 */
565static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
566{
567 if (index >= mpb->num_disks)
568 return NULL;
569 return &mpb->disk[index];
570}
571
572/* retrieve the disk description based on a index of the disk
573 * in the sub-array
574 */
575static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
576{
577 struct dl *d;
578
579 for (d = super->disks; d; d = d->next)
580 if (d->index == index)
581 return d;
582
583 return NULL;
584}
585/* retrieve a disk from the parsed metadata */
586static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
587{
588 struct dl *dl;
589
590 dl = get_imsm_dl_disk(super, index);
591 if (dl)
592 return &dl->disk;
593
594 return NULL;
595}
596
597/* generate a checksum directly from the anchor when the anchor is known to be
598 * up-to-date, currently only at load or write_super after coalescing
599 */
600static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
601{
602 __u32 end = mpb->mpb_size / sizeof(end);
603 __u32 *p = (__u32 *) mpb;
604 __u32 sum = 0;
605
606 while (end--) {
607 sum += __le32_to_cpu(*p);
608 p++;
609 }
610
611 return sum - __le32_to_cpu(mpb->check_sum);
612}
613
614static size_t sizeof_imsm_map(struct imsm_map *map)
615{
616 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
617}
618
619struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
620{
621 /* A device can have 2 maps if it is in the middle of a migration.
622 * If second_map is:
623 * 0 - we return the first map
624 * 1 - we return the second map if it exists, else NULL
625 * -1 - we return the second map if it exists, else the first
626 */
627 struct imsm_map *map = &dev->vol.map[0];
628
629 if (second_map == 1 && !dev->vol.migr_state)
630 return NULL;
631 else if (second_map == 1 ||
632 (second_map < 0 && dev->vol.migr_state)) {
633 void *ptr = map;
634
635 return ptr + sizeof_imsm_map(map);
636 } else
637 return map;
638
639}
640
641/* return the size of the device.
642 * migr_state increases the returned size if map[0] were to be duplicated
643 */
644static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
645{
646 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
647 sizeof_imsm_map(get_imsm_map(dev, 0));
648
649 /* migrating means an additional map */
650 if (dev->vol.migr_state)
651 size += sizeof_imsm_map(get_imsm_map(dev, 1));
652 else if (migr_state)
653 size += sizeof_imsm_map(get_imsm_map(dev, 0));
654
655 return size;
656}
657
658#ifndef MDASSEMBLE
659/* retrieve disk serial number list from a metadata update */
660static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
661{
662 void *u = update;
663 struct disk_info *inf;
664
665 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
666 sizeof_imsm_dev(&update->dev, 0);
667
668 return inf;
669}
670#endif
671
672static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
673{
674 int offset;
675 int i;
676 void *_mpb = mpb;
677
678 if (index >= mpb->num_raid_devs)
679 return NULL;
680
681 /* devices start after all disks */
682 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
683
684 for (i = 0; i <= index; i++)
685 if (i == index)
686 return _mpb + offset;
687 else
688 offset += sizeof_imsm_dev(_mpb + offset, 0);
689
690 return NULL;
691}
692
693static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
694{
695 struct intel_dev *dv;
696
697 if (index >= super->anchor->num_raid_devs)
698 return NULL;
699 for (dv = super->devlist; dv; dv = dv->next)
700 if (dv->index == index)
701 return dv->dev;
702 return NULL;
703}
704
705/*
706 * for second_map:
707 * == 0 get first map
708 * == 1 get second map
709 * == -1 than get map according to the current migr_state
710 */
711static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
712 int slot,
713 int second_map)
714{
715 struct imsm_map *map;
716
717 map = get_imsm_map(dev, second_map);
718
719 /* top byte identifies disk under rebuild */
720 return __le32_to_cpu(map->disk_ord_tbl[slot]);
721}
722
723#define ord_to_idx(ord) (((ord) << 8) >> 8)
724static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
725{
726 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
727
728 return ord_to_idx(ord);
729}
730
731static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
732{
733 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
734}
735
736static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
737{
738 int slot;
739 __u32 ord;
740
741 for (slot = 0; slot < map->num_members; slot++) {
742 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
743 if (ord_to_idx(ord) == idx)
744 return slot;
745 }
746
747 return -1;
748}
749
750static int get_imsm_raid_level(struct imsm_map *map)
751{
752 if (map->raid_level == 1) {
753 if (map->num_members == 2)
754 return 1;
755 else
756 return 10;
757 }
758
759 return map->raid_level;
760}
761
762static int cmp_extent(const void *av, const void *bv)
763{
764 const struct extent *a = av;
765 const struct extent *b = bv;
766 if (a->start < b->start)
767 return -1;
768 if (a->start > b->start)
769 return 1;
770 return 0;
771}
772
773static int count_memberships(struct dl *dl, struct intel_super *super)
774{
775 int memberships = 0;
776 int i;
777
778 for (i = 0; i < super->anchor->num_raid_devs; i++) {
779 struct imsm_dev *dev = get_imsm_dev(super, i);
780 struct imsm_map *map = get_imsm_map(dev, 0);
781
782 if (get_imsm_disk_slot(map, dl->index) >= 0)
783 memberships++;
784 }
785
786 return memberships;
787}
788
789static struct extent *get_extents(struct intel_super *super, struct dl *dl)
790{
791 /* find a list of used extents on the given physical device */
792 struct extent *rv, *e;
793 int i;
794 int memberships = count_memberships(dl, super);
795 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
796
797 rv = malloc(sizeof(struct extent) * (memberships + 1));
798 if (!rv)
799 return NULL;
800 e = rv;
801
802 for (i = 0; i < super->anchor->num_raid_devs; i++) {
803 struct imsm_dev *dev = get_imsm_dev(super, i);
804 struct imsm_map *map = get_imsm_map(dev, 0);
805
806 if (get_imsm_disk_slot(map, dl->index) >= 0) {
807 e->start = __le32_to_cpu(map->pba_of_lba0);
808 e->size = __le32_to_cpu(map->blocks_per_member);
809 e++;
810 }
811 }
812 qsort(rv, memberships, sizeof(*rv), cmp_extent);
813
814 /* determine the start of the metadata
815 * when no raid devices are defined use the default
816 * ...otherwise allow the metadata to truncate the value
817 * as is the case with older versions of imsm
818 */
819 if (memberships) {
820 struct extent *last = &rv[memberships - 1];
821 __u32 remainder;
822
823 remainder = __le32_to_cpu(dl->disk.total_blocks) -
824 (last->start + last->size);
825 /* round down to 1k block to satisfy precision of the kernel
826 * 'size' interface
827 */
828 remainder &= ~1UL;
829 /* make sure remainder is still sane */
830 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
831 remainder = ROUND_UP(super->len, 512) >> 9;
832 if (reservation > remainder)
833 reservation = remainder;
834 }
835 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
836 e->size = 0;
837 return rv;
838}
839
840/* try to determine how much space is reserved for metadata from
841 * the last get_extents() entry, otherwise fallback to the
842 * default
843 */
844static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
845{
846 struct extent *e;
847 int i;
848 __u32 rv;
849
850 /* for spares just return a minimal reservation which will grow
851 * once the spare is picked up by an array
852 */
853 if (dl->index == -1)
854 return MPB_SECTOR_CNT;
855
856 e = get_extents(super, dl);
857 if (!e)
858 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
859
860 /* scroll to last entry */
861 for (i = 0; e[i].size; i++)
862 continue;
863
864 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
865
866 free(e);
867
868 return rv;
869}
870
871static int is_spare(struct imsm_disk *disk)
872{
873 return (disk->status & SPARE_DISK) == SPARE_DISK;
874}
875
876static int is_configured(struct imsm_disk *disk)
877{
878 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
879}
880
881static int is_failed(struct imsm_disk *disk)
882{
883 return (disk->status & FAILED_DISK) == FAILED_DISK;
884}
885
886/* Return minimum size of a spare that can be used in this array*/
887static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
888{
889 struct intel_super *super = st->sb;
890 struct dl *dl;
891 struct extent *e;
892 int i;
893 unsigned long long rv = 0;
894
895 if (!super)
896 return rv;
897 /* find first active disk in array */
898 dl = super->disks;
899 while (dl && (is_failed(&dl->disk) || dl->index == -1))
900 dl = dl->next;
901 if (!dl)
902 return rv;
903 /* find last lba used by subarrays */
904 e = get_extents(super, dl);
905 if (!e)
906 return rv;
907 for (i = 0; e[i].size; i++)
908 continue;
909 if (i > 0)
910 rv = e[i-1].start + e[i-1].size;
911 free(e);
912 /* add the amount of space needed for metadata */
913 rv = rv + MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
914 return rv * 512;
915}
916
917#ifndef MDASSEMBLE
918static __u64 blocks_per_migr_unit(struct imsm_dev *dev);
919
920static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
921{
922 __u64 sz;
923 int slot, i;
924 struct imsm_map *map = get_imsm_map(dev, 0);
925 struct imsm_map *map2 = get_imsm_map(dev, 1);
926 __u32 ord;
927
928 printf("\n");
929 printf("[%.16s]:\n", dev->volume);
930 printf(" UUID : %s\n", uuid);
931 printf(" RAID Level : %d", get_imsm_raid_level(map));
932 if (map2)
933 printf(" <-- %d", get_imsm_raid_level(map2));
934 printf("\n");
935 printf(" Members : %d", map->num_members);
936 if (map2)
937 printf(" <-- %d", map2->num_members);
938 printf("\n");
939 printf(" Slots : [");
940 for (i = 0; i < map->num_members; i++) {
941 ord = get_imsm_ord_tbl_ent(dev, i, 0);
942 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
943 }
944 printf("]");
945 if (map2) {
946 printf(" <-- [");
947 for (i = 0; i < map2->num_members; i++) {
948 ord = get_imsm_ord_tbl_ent(dev, i, 1);
949 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
950 }
951 printf("]");
952 }
953 printf("\n");
954 printf(" Failed disk : ");
955 if (map->failed_disk_num == 0xff)
956 printf("none");
957 else
958 printf("%i", map->failed_disk_num);
959 printf("\n");
960 slot = get_imsm_disk_slot(map, disk_idx);
961 if (slot >= 0) {
962 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
963 printf(" This Slot : %d%s\n", slot,
964 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
965 } else
966 printf(" This Slot : ?\n");
967 sz = __le32_to_cpu(dev->size_high);
968 sz <<= 32;
969 sz += __le32_to_cpu(dev->size_low);
970 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
971 human_size(sz * 512));
972 sz = __le32_to_cpu(map->blocks_per_member);
973 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
974 human_size(sz * 512));
975 printf(" Sector Offset : %u\n",
976 __le32_to_cpu(map->pba_of_lba0));
977 printf(" Num Stripes : %u\n",
978 __le32_to_cpu(map->num_data_stripes));
979 printf(" Chunk Size : %u KiB",
980 __le16_to_cpu(map->blocks_per_strip) / 2);
981 if (map2)
982 printf(" <-- %u KiB",
983 __le16_to_cpu(map2->blocks_per_strip) / 2);
984 printf("\n");
985 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
986 printf(" Migrate State : ");
987 if (dev->vol.migr_state) {
988 if (migr_type(dev) == MIGR_INIT)
989 printf("initialize\n");
990 else if (migr_type(dev) == MIGR_REBUILD)
991 printf("rebuild\n");
992 else if (migr_type(dev) == MIGR_VERIFY)
993 printf("check\n");
994 else if (migr_type(dev) == MIGR_GEN_MIGR)
995 printf("general migration\n");
996 else if (migr_type(dev) == MIGR_STATE_CHANGE)
997 printf("state change\n");
998 else if (migr_type(dev) == MIGR_REPAIR)
999 printf("repair\n");
1000 else
1001 printf("<unknown:%d>\n", migr_type(dev));
1002 } else
1003 printf("idle\n");
1004 printf(" Map State : %s", map_state_str[map->map_state]);
1005 if (dev->vol.migr_state) {
1006 struct imsm_map *map = get_imsm_map(dev, 1);
1007
1008 printf(" <-- %s", map_state_str[map->map_state]);
1009 printf("\n Checkpoint : %u (%llu)",
1010 __le32_to_cpu(dev->vol.curr_migr_unit),
1011 (unsigned long long)blocks_per_migr_unit(dev));
1012 }
1013 printf("\n");
1014 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1015}
1016
1017static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
1018{
1019 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
1020 char str[MAX_RAID_SERIAL_LEN + 1];
1021 __u64 sz;
1022
1023 if (index < 0 || !disk)
1024 return;
1025
1026 printf("\n");
1027 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1028 printf(" Disk%02d Serial : %s\n", index, str);
1029 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1030 is_configured(disk) ? " active" : "",
1031 is_failed(disk) ? " failed" : "");
1032 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1033 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1034 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1035 human_size(sz * 512));
1036}
1037
1038static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1039
1040static void examine_super_imsm(struct supertype *st, char *homehost)
1041{
1042 struct intel_super *super = st->sb;
1043 struct imsm_super *mpb = super->anchor;
1044 char str[MAX_SIGNATURE_LENGTH];
1045 int i;
1046 struct mdinfo info;
1047 char nbuf[64];
1048 __u32 sum;
1049 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1050 struct dl *dl;
1051
1052 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1053 printf(" Magic : %s\n", str);
1054 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1055 printf(" Version : %s\n", get_imsm_version(mpb));
1056 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1057 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1058 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1059 getinfo_super_imsm(st, &info, NULL);
1060 fname_from_uuid(st, &info, nbuf, ':');
1061 printf(" UUID : %s\n", nbuf + 5);
1062 sum = __le32_to_cpu(mpb->check_sum);
1063 printf(" Checksum : %08x %s\n", sum,
1064 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1065 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1066 printf(" Disks : %d\n", mpb->num_disks);
1067 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1068 print_imsm_disk(mpb, super->disks->index, reserved);
1069 if (super->bbm_log) {
1070 struct bbm_log *log = super->bbm_log;
1071
1072 printf("\n");
1073 printf("Bad Block Management Log:\n");
1074 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1075 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1076 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1077 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1078 printf(" First Spare : %llx\n",
1079 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1080 }
1081 for (i = 0; i < mpb->num_raid_devs; i++) {
1082 struct mdinfo info;
1083 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1084
1085 super->current_vol = i;
1086 getinfo_super_imsm(st, &info, NULL);
1087 fname_from_uuid(st, &info, nbuf, ':');
1088 print_imsm_dev(dev, nbuf + 5, super->disks->index);
1089 }
1090 for (i = 0; i < mpb->num_disks; i++) {
1091 if (i == super->disks->index)
1092 continue;
1093 print_imsm_disk(mpb, i, reserved);
1094 }
1095 for (dl = super->disks ; dl; dl = dl->next) {
1096 struct imsm_disk *disk;
1097 char str[MAX_RAID_SERIAL_LEN + 1];
1098 __u64 sz;
1099
1100 if (dl->index >= 0)
1101 continue;
1102
1103 disk = &dl->disk;
1104 printf("\n");
1105 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1106 printf(" Disk Serial : %s\n", str);
1107 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1108 is_configured(disk) ? " active" : "",
1109 is_failed(disk) ? " failed" : "");
1110 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1111 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1112 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1113 human_size(sz * 512));
1114 }
1115}
1116
1117static void brief_examine_super_imsm(struct supertype *st, int verbose)
1118{
1119 /* We just write a generic IMSM ARRAY entry */
1120 struct mdinfo info;
1121 char nbuf[64];
1122 struct intel_super *super = st->sb;
1123
1124 if (!super->anchor->num_raid_devs) {
1125 printf("ARRAY metadata=imsm\n");
1126 return;
1127 }
1128
1129 getinfo_super_imsm(st, &info, NULL);
1130 fname_from_uuid(st, &info, nbuf, ':');
1131 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1132}
1133
1134static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1135{
1136 /* We just write a generic IMSM ARRAY entry */
1137 struct mdinfo info;
1138 char nbuf[64];
1139 char nbuf1[64];
1140 struct intel_super *super = st->sb;
1141 int i;
1142
1143 if (!super->anchor->num_raid_devs)
1144 return;
1145
1146 getinfo_super_imsm(st, &info, NULL);
1147 fname_from_uuid(st, &info, nbuf, ':');
1148 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1149 struct imsm_dev *dev = get_imsm_dev(super, i);
1150
1151 super->current_vol = i;
1152 getinfo_super_imsm(st, &info, NULL);
1153 fname_from_uuid(st, &info, nbuf1, ':');
1154 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1155 dev->volume, nbuf + 5, i, nbuf1 + 5);
1156 }
1157}
1158
1159static void export_examine_super_imsm(struct supertype *st)
1160{
1161 struct intel_super *super = st->sb;
1162 struct imsm_super *mpb = super->anchor;
1163 struct mdinfo info;
1164 char nbuf[64];
1165
1166 getinfo_super_imsm(st, &info, NULL);
1167 fname_from_uuid(st, &info, nbuf, ':');
1168 printf("MD_METADATA=imsm\n");
1169 printf("MD_LEVEL=container\n");
1170 printf("MD_UUID=%s\n", nbuf+5);
1171 printf("MD_DEVICES=%u\n", mpb->num_disks);
1172}
1173
1174static void detail_super_imsm(struct supertype *st, char *homehost)
1175{
1176 struct mdinfo info;
1177 char nbuf[64];
1178
1179 getinfo_super_imsm(st, &info, NULL);
1180 fname_from_uuid(st, &info, nbuf, ':');
1181 printf("\n UUID : %s\n", nbuf + 5);
1182}
1183
1184static void brief_detail_super_imsm(struct supertype *st)
1185{
1186 struct mdinfo info;
1187 char nbuf[64];
1188 getinfo_super_imsm(st, &info, NULL);
1189 fname_from_uuid(st, &info, nbuf, ':');
1190 printf(" UUID=%s", nbuf + 5);
1191}
1192
1193static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1194static void fd2devname(int fd, char *name);
1195
1196static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1197{
1198 /* dump an unsorted list of devices attached to AHCI Intel storage
1199 * controller, as well as non-connected ports
1200 */
1201 int hba_len = strlen(hba_path) + 1;
1202 struct dirent *ent;
1203 DIR *dir;
1204 char *path = NULL;
1205 int err = 0;
1206 unsigned long port_mask = (1 << port_count) - 1;
1207
1208 if (port_count > (int)sizeof(port_mask) * 8) {
1209 if (verbose)
1210 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1211 return 2;
1212 }
1213
1214 /* scroll through /sys/dev/block looking for devices attached to
1215 * this hba
1216 */
1217 dir = opendir("/sys/dev/block");
1218 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1219 int fd;
1220 char model[64];
1221 char vendor[64];
1222 char buf[1024];
1223 int major, minor;
1224 char *device;
1225 char *c;
1226 int port;
1227 int type;
1228
1229 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1230 continue;
1231 path = devt_to_devpath(makedev(major, minor));
1232 if (!path)
1233 continue;
1234 if (!path_attached_to_hba(path, hba_path)) {
1235 free(path);
1236 path = NULL;
1237 continue;
1238 }
1239
1240 /* retrieve the scsi device type */
1241 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1242 if (verbose)
1243 fprintf(stderr, Name ": failed to allocate 'device'\n");
1244 err = 2;
1245 break;
1246 }
1247 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1248 if (load_sys(device, buf) != 0) {
1249 if (verbose)
1250 fprintf(stderr, Name ": failed to read device type for %s\n",
1251 path);
1252 err = 2;
1253 free(device);
1254 break;
1255 }
1256 type = strtoul(buf, NULL, 10);
1257
1258 /* if it's not a disk print the vendor and model */
1259 if (!(type == 0 || type == 7 || type == 14)) {
1260 vendor[0] = '\0';
1261 model[0] = '\0';
1262 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1263 if (load_sys(device, buf) == 0) {
1264 strncpy(vendor, buf, sizeof(vendor));
1265 vendor[sizeof(vendor) - 1] = '\0';
1266 c = (char *) &vendor[sizeof(vendor) - 1];
1267 while (isspace(*c) || *c == '\0')
1268 *c-- = '\0';
1269
1270 }
1271 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1272 if (load_sys(device, buf) == 0) {
1273 strncpy(model, buf, sizeof(model));
1274 model[sizeof(model) - 1] = '\0';
1275 c = (char *) &model[sizeof(model) - 1];
1276 while (isspace(*c) || *c == '\0')
1277 *c-- = '\0';
1278 }
1279
1280 if (vendor[0] && model[0])
1281 sprintf(buf, "%.64s %.64s", vendor, model);
1282 else
1283 switch (type) { /* numbers from hald/linux/device.c */
1284 case 1: sprintf(buf, "tape"); break;
1285 case 2: sprintf(buf, "printer"); break;
1286 case 3: sprintf(buf, "processor"); break;
1287 case 4:
1288 case 5: sprintf(buf, "cdrom"); break;
1289 case 6: sprintf(buf, "scanner"); break;
1290 case 8: sprintf(buf, "media_changer"); break;
1291 case 9: sprintf(buf, "comm"); break;
1292 case 12: sprintf(buf, "raid"); break;
1293 default: sprintf(buf, "unknown");
1294 }
1295 } else
1296 buf[0] = '\0';
1297 free(device);
1298
1299 /* chop device path to 'host%d' and calculate the port number */
1300 c = strchr(&path[hba_len], '/');
1301 if (!c) {
1302 if (verbose)
1303 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1304 err = 2;
1305 break;
1306 }
1307 *c = '\0';
1308 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1309 port -= host_base;
1310 else {
1311 if (verbose) {
1312 *c = '/'; /* repair the full string */
1313 fprintf(stderr, Name ": failed to determine port number for %s\n",
1314 path);
1315 }
1316 err = 2;
1317 break;
1318 }
1319
1320 /* mark this port as used */
1321 port_mask &= ~(1 << port);
1322
1323 /* print out the device information */
1324 if (buf[0]) {
1325 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1326 continue;
1327 }
1328
1329 fd = dev_open(ent->d_name, O_RDONLY);
1330 if (fd < 0)
1331 printf(" Port%d : - disk info unavailable -\n", port);
1332 else {
1333 fd2devname(fd, buf);
1334 printf(" Port%d : %s", port, buf);
1335 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1336 printf(" (%s)\n", buf);
1337 else
1338 printf("()\n");
1339 }
1340 close(fd);
1341 free(path);
1342 path = NULL;
1343 }
1344 if (path)
1345 free(path);
1346 if (dir)
1347 closedir(dir);
1348 if (err == 0) {
1349 int i;
1350
1351 for (i = 0; i < port_count; i++)
1352 if (port_mask & (1 << i))
1353 printf(" Port%d : - no device attached -\n", i);
1354 }
1355
1356 return err;
1357}
1358
1359
1360
1361static void print_found_intel_controllers(struct sys_dev *elem)
1362{
1363 for (; elem; elem = elem->next) {
1364 fprintf(stderr, Name ": found Intel(R) ");
1365 if (elem->type == SYS_DEV_SATA)
1366 fprintf(stderr, "SATA ");
1367 else if (elem->type == SYS_DEV_SAS)
1368 fprintf(stderr, "SAS ");
1369 fprintf(stderr, "RAID controller");
1370 if (elem->pci_id)
1371 fprintf(stderr, " at %s", elem->pci_id);
1372 fprintf(stderr, ".\n");
1373 }
1374 fflush(stderr);
1375}
1376
1377static int ahci_get_port_count(const char *hba_path, int *port_count)
1378{
1379 struct dirent *ent;
1380 DIR *dir;
1381 int host_base = -1;
1382
1383 *port_count = 0;
1384 if ((dir = opendir(hba_path)) == NULL)
1385 return -1;
1386
1387 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1388 int host;
1389
1390 if (sscanf(ent->d_name, "host%d", &host) != 1)
1391 continue;
1392 if (*port_count == 0)
1393 host_base = host;
1394 else if (host < host_base)
1395 host_base = host;
1396
1397 if (host + 1 > *port_count + host_base)
1398 *port_count = host + 1 - host_base;
1399 }
1400 closedir(dir);
1401 return host_base;
1402}
1403
1404static void print_imsm_capability(const struct imsm_orom *orom)
1405{
1406 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1407 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1408 orom->hotfix_ver, orom->build);
1409 printf(" RAID Levels :%s%s%s%s%s\n",
1410 imsm_orom_has_raid0(orom) ? " raid0" : "",
1411 imsm_orom_has_raid1(orom) ? " raid1" : "",
1412 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1413 imsm_orom_has_raid10(orom) ? " raid10" : "",
1414 imsm_orom_has_raid5(orom) ? " raid5" : "");
1415 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1416 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1417 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1418 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1419 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1420 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1421 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1422 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1423 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1424 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1425 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1426 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1427 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1428 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1429 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1430 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1431 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1432 printf(" Max Disks : %d\n", orom->tds);
1433 printf(" Max Volumes : %d\n", orom->vpa);
1434 return;
1435}
1436
1437static int detail_platform_imsm(int verbose, int enumerate_only)
1438{
1439 /* There are two components to imsm platform support, the ahci SATA
1440 * controller and the option-rom. To find the SATA controller we
1441 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1442 * controller with the Intel vendor id is present. This approach
1443 * allows mdadm to leverage the kernel's ahci detection logic, with the
1444 * caveat that if ahci.ko is not loaded mdadm will not be able to
1445 * detect platform raid capabilities. The option-rom resides in a
1446 * platform "Adapter ROM". We scan for its signature to retrieve the
1447 * platform capabilities. If raid support is disabled in the BIOS the
1448 * option-rom capability structure will not be available.
1449 */
1450 const struct imsm_orom *orom;
1451 struct sys_dev *list, *hba;
1452 int host_base = 0;
1453 int port_count = 0;
1454 int result=0;
1455
1456 if (enumerate_only) {
1457 if (check_env("IMSM_NO_PLATFORM"))
1458 return 0;
1459 list = find_intel_devices();
1460 if (!list)
1461 return 2;
1462 for (hba = list; hba; hba = hba->next) {
1463 orom = find_imsm_capability(hba->type);
1464 if (!orom) {
1465 result = 2;
1466 break;
1467 }
1468 }
1469 free_sys_dev(&list);
1470 return result;
1471 }
1472
1473 list = find_intel_devices();
1474 if (!list) {
1475 if (verbose)
1476 fprintf(stderr, Name ": no active Intel(R) RAID "
1477 "controller found.\n");
1478 free_sys_dev(&list);
1479 return 2;
1480 } else if (verbose)
1481 print_found_intel_controllers(list);
1482
1483 for (hba = list; hba; hba = hba->next) {
1484 orom = find_imsm_capability(hba->type);
1485 if (!orom)
1486 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1487 hba->path, get_sys_dev_type(hba->type));
1488 else
1489 print_imsm_capability(orom);
1490 }
1491
1492 for (hba = list; hba; hba = hba->next) {
1493 printf(" I/O Controller : %s (%s)\n",
1494 hba->path, get_sys_dev_type(hba->type));
1495
1496 if (hba->type == SYS_DEV_SATA) {
1497 host_base = ahci_get_port_count(hba->path, &port_count);
1498 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1499 if (verbose)
1500 fprintf(stderr, Name ": failed to enumerate "
1501 "ports on SATA controller at %s.", hba->pci_id);
1502 result |= 2;
1503 }
1504 }
1505 }
1506
1507 free_sys_dev(&list);
1508 return result;
1509}
1510#endif
1511
1512static int match_home_imsm(struct supertype *st, char *homehost)
1513{
1514 /* the imsm metadata format does not specify any host
1515 * identification information. We return -1 since we can never
1516 * confirm nor deny whether a given array is "meant" for this
1517 * host. We rely on compare_super and the 'family_num' fields to
1518 * exclude member disks that do not belong, and we rely on
1519 * mdadm.conf to specify the arrays that should be assembled.
1520 * Auto-assembly may still pick up "foreign" arrays.
1521 */
1522
1523 return -1;
1524}
1525
1526static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1527{
1528 /* The uuid returned here is used for:
1529 * uuid to put into bitmap file (Create, Grow)
1530 * uuid for backup header when saving critical section (Grow)
1531 * comparing uuids when re-adding a device into an array
1532 * In these cases the uuid required is that of the data-array,
1533 * not the device-set.
1534 * uuid to recognise same set when adding a missing device back
1535 * to an array. This is a uuid for the device-set.
1536 *
1537 * For each of these we can make do with a truncated
1538 * or hashed uuid rather than the original, as long as
1539 * everyone agrees.
1540 * In each case the uuid required is that of the data-array,
1541 * not the device-set.
1542 */
1543 /* imsm does not track uuid's so we synthesis one using sha1 on
1544 * - The signature (Which is constant for all imsm array, but no matter)
1545 * - the orig_family_num of the container
1546 * - the index number of the volume
1547 * - the 'serial' number of the volume.
1548 * Hopefully these are all constant.
1549 */
1550 struct intel_super *super = st->sb;
1551
1552 char buf[20];
1553 struct sha1_ctx ctx;
1554 struct imsm_dev *dev = NULL;
1555 __u32 family_num;
1556
1557 /* some mdadm versions failed to set ->orig_family_num, in which
1558 * case fall back to ->family_num. orig_family_num will be
1559 * fixed up with the first metadata update.
1560 */
1561 family_num = super->anchor->orig_family_num;
1562 if (family_num == 0)
1563 family_num = super->anchor->family_num;
1564 sha1_init_ctx(&ctx);
1565 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1566 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1567 if (super->current_vol >= 0)
1568 dev = get_imsm_dev(super, super->current_vol);
1569 if (dev) {
1570 __u32 vol = super->current_vol;
1571 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1572 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1573 }
1574 sha1_finish_ctx(&ctx, buf);
1575 memcpy(uuid, buf, 4*4);
1576}
1577
1578#if 0
1579static void
1580get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1581{
1582 __u8 *v = get_imsm_version(mpb);
1583 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1584 char major[] = { 0, 0, 0 };
1585 char minor[] = { 0 ,0, 0 };
1586 char patch[] = { 0, 0, 0 };
1587 char *ver_parse[] = { major, minor, patch };
1588 int i, j;
1589
1590 i = j = 0;
1591 while (*v != '\0' && v < end) {
1592 if (*v != '.' && j < 2)
1593 ver_parse[i][j++] = *v;
1594 else {
1595 i++;
1596 j = 0;
1597 }
1598 v++;
1599 }
1600
1601 *m = strtol(minor, NULL, 0);
1602 *p = strtol(patch, NULL, 0);
1603}
1604#endif
1605
1606static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1607{
1608 /* migr_strip_size when repairing or initializing parity */
1609 struct imsm_map *map = get_imsm_map(dev, 0);
1610 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1611
1612 switch (get_imsm_raid_level(map)) {
1613 case 5:
1614 case 10:
1615 return chunk;
1616 default:
1617 return 128*1024 >> 9;
1618 }
1619}
1620
1621static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1622{
1623 /* migr_strip_size when rebuilding a degraded disk, no idea why
1624 * this is different than migr_strip_size_resync(), but it's good
1625 * to be compatible
1626 */
1627 struct imsm_map *map = get_imsm_map(dev, 1);
1628 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1629
1630 switch (get_imsm_raid_level(map)) {
1631 case 1:
1632 case 10:
1633 if (map->num_members % map->num_domains == 0)
1634 return 128*1024 >> 9;
1635 else
1636 return chunk;
1637 case 5:
1638 return max((__u32) 64*1024 >> 9, chunk);
1639 default:
1640 return 128*1024 >> 9;
1641 }
1642}
1643
1644static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1645{
1646 struct imsm_map *lo = get_imsm_map(dev, 0);
1647 struct imsm_map *hi = get_imsm_map(dev, 1);
1648 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1649 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1650
1651 return max((__u32) 1, hi_chunk / lo_chunk);
1652}
1653
1654static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1655{
1656 struct imsm_map *lo = get_imsm_map(dev, 0);
1657 int level = get_imsm_raid_level(lo);
1658
1659 if (level == 1 || level == 10) {
1660 struct imsm_map *hi = get_imsm_map(dev, 1);
1661
1662 return hi->num_domains;
1663 } else
1664 return num_stripes_per_unit_resync(dev);
1665}
1666
1667static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1668{
1669 /* named 'imsm_' because raid0, raid1 and raid10
1670 * counter-intuitively have the same number of data disks
1671 */
1672 struct imsm_map *map = get_imsm_map(dev, second_map);
1673
1674 switch (get_imsm_raid_level(map)) {
1675 case 0:
1676 case 1:
1677 case 10:
1678 return map->num_members;
1679 case 5:
1680 return map->num_members - 1;
1681 default:
1682 dprintf("%s: unsupported raid level\n", __func__);
1683 return 0;
1684 }
1685}
1686
1687static __u32 parity_segment_depth(struct imsm_dev *dev)
1688{
1689 struct imsm_map *map = get_imsm_map(dev, 0);
1690 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1691
1692 switch(get_imsm_raid_level(map)) {
1693 case 1:
1694 case 10:
1695 return chunk * map->num_domains;
1696 case 5:
1697 return chunk * map->num_members;
1698 default:
1699 return chunk;
1700 }
1701}
1702
1703static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1704{
1705 struct imsm_map *map = get_imsm_map(dev, 1);
1706 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1707 __u32 strip = block / chunk;
1708
1709 switch (get_imsm_raid_level(map)) {
1710 case 1:
1711 case 10: {
1712 __u32 vol_strip = (strip * map->num_domains) + 1;
1713 __u32 vol_stripe = vol_strip / map->num_members;
1714
1715 return vol_stripe * chunk + block % chunk;
1716 } case 5: {
1717 __u32 stripe = strip / (map->num_members - 1);
1718
1719 return stripe * chunk + block % chunk;
1720 }
1721 default:
1722 return 0;
1723 }
1724}
1725
1726static __u64 blocks_per_migr_unit(struct imsm_dev *dev)
1727{
1728 /* calculate the conversion factor between per member 'blocks'
1729 * (md/{resync,rebuild}_start) and imsm migration units, return
1730 * 0 for the 'not migrating' and 'unsupported migration' cases
1731 */
1732 if (!dev->vol.migr_state)
1733 return 0;
1734
1735 switch (migr_type(dev)) {
1736 case MIGR_GEN_MIGR:
1737 case MIGR_VERIFY:
1738 case MIGR_REPAIR:
1739 case MIGR_INIT: {
1740 struct imsm_map *map = get_imsm_map(dev, 0);
1741 __u32 stripes_per_unit;
1742 __u32 blocks_per_unit;
1743 __u32 parity_depth;
1744 __u32 migr_chunk;
1745 __u32 block_map;
1746 __u32 block_rel;
1747 __u32 segment;
1748 __u32 stripe;
1749 __u8 disks;
1750
1751 /* yes, this is really the translation of migr_units to
1752 * per-member blocks in the 'resync' case
1753 */
1754 stripes_per_unit = num_stripes_per_unit_resync(dev);
1755 migr_chunk = migr_strip_blocks_resync(dev);
1756 disks = imsm_num_data_members(dev, 0);
1757 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1758 stripe = __le32_to_cpu(map->blocks_per_strip) * disks;
1759 segment = blocks_per_unit / stripe;
1760 block_rel = blocks_per_unit - segment * stripe;
1761 parity_depth = parity_segment_depth(dev);
1762 block_map = map_migr_block(dev, block_rel);
1763 return block_map + parity_depth * segment;
1764 }
1765 case MIGR_REBUILD: {
1766 __u32 stripes_per_unit;
1767 __u32 migr_chunk;
1768
1769 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
1770 migr_chunk = migr_strip_blocks_rebuild(dev);
1771 return migr_chunk * stripes_per_unit;
1772 }
1773 case MIGR_STATE_CHANGE:
1774 default:
1775 return 0;
1776 }
1777}
1778
1779static int imsm_level_to_layout(int level)
1780{
1781 switch (level) {
1782 case 0:
1783 case 1:
1784 return 0;
1785 case 5:
1786 case 6:
1787 return ALGORITHM_LEFT_ASYMMETRIC;
1788 case 10:
1789 return 0x102;
1790 }
1791 return UnSet;
1792}
1793
1794/*******************************************************************************
1795 * Function: read_imsm_migr_rec
1796 * Description: Function reads imsm migration record from last sector of disk
1797 * Parameters:
1798 * fd : disk descriptor
1799 * super : metadata info
1800 * Returns:
1801 * 0 : success,
1802 * -1 : fail
1803 ******************************************************************************/
1804static int read_imsm_migr_rec(int fd, struct intel_super *super)
1805{
1806 int ret_val = -1;
1807 unsigned long long dsize;
1808
1809 get_dev_size(fd, NULL, &dsize);
1810 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
1811 fprintf(stderr,
1812 Name ": Cannot seek to anchor block: %s\n",
1813 strerror(errno));
1814 goto out;
1815 }
1816 if (read(fd, super->migr_rec_buf, 512) != 512) {
1817 fprintf(stderr,
1818 Name ": Cannot read migr record block: %s\n",
1819 strerror(errno));
1820 goto out;
1821 }
1822 ret_val = 0;
1823
1824out:
1825 return ret_val;
1826}
1827
1828/*******************************************************************************
1829 * Function: load_imsm_migr_rec
1830 * Description: Function reads imsm migration record (it is stored at the last
1831 * sector of disk)
1832 * Parameters:
1833 * super : imsm internal array info
1834 * info : general array info
1835 * Returns:
1836 * 0 : success
1837 * -1 : fail
1838 ******************************************************************************/
1839static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
1840{
1841 struct mdinfo *sd;
1842 struct dl *dl = NULL;
1843 char nm[30];
1844 int retval = -1;
1845 int fd = -1;
1846
1847 if (info) {
1848 for (sd = info->devs ; sd ; sd = sd->next) {
1849 /* read only from one of the first two slots */
1850 if ((sd->disk.raid_disk > 1) ||
1851 (sd->disk.raid_disk < 0))
1852 continue;
1853 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1854 fd = dev_open(nm, O_RDONLY);
1855 if (fd >= 0)
1856 break;
1857 }
1858 }
1859 if (fd < 0) {
1860 for (dl = super->disks; dl; dl = dl->next) {
1861 /* read only from one of the first two slots */
1862 if (dl->index > 1)
1863 continue;
1864 sprintf(nm, "%d:%d", dl->major, dl->minor);
1865 fd = dev_open(nm, O_RDONLY);
1866 if (fd >= 0)
1867 break;
1868 }
1869 }
1870 if (fd < 0)
1871 goto out;
1872 retval = read_imsm_migr_rec(fd, super);
1873
1874out:
1875 if (fd >= 0)
1876 close(fd);
1877 return retval;
1878}
1879
1880/*******************************************************************************
1881 * Function: write_imsm_migr_rec
1882 * Description: Function writes imsm migration record
1883 * (at the last sector of disk)
1884 * Parameters:
1885 * super : imsm internal array info
1886 * Returns:
1887 * 0 : success
1888 * -1 : if fail
1889 ******************************************************************************/
1890static int write_imsm_migr_rec(struct supertype *st)
1891{
1892 struct intel_super *super = st->sb;
1893 unsigned long long dsize;
1894 char nm[30];
1895 int fd = -1;
1896 int retval = -1;
1897 struct dl *sd;
1898
1899 for (sd = super->disks ; sd ; sd = sd->next) {
1900 /* write to 2 first slots only */
1901 if ((sd->index < 0) || (sd->index > 1))
1902 continue;
1903 sprintf(nm, "%d:%d", sd->major, sd->minor);
1904 fd = dev_open(nm, O_RDWR);
1905 if (fd < 0)
1906 continue;
1907 get_dev_size(fd, NULL, &dsize);
1908 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
1909 fprintf(stderr,
1910 Name ": Cannot seek to anchor block: %s\n",
1911 strerror(errno));
1912 goto out;
1913 }
1914 if (write(fd, super->migr_rec_buf, 512) != 512) {
1915 fprintf(stderr,
1916 Name ": Cannot write migr record block: %s\n",
1917 strerror(errno));
1918 goto out;
1919 }
1920 close(fd);
1921 fd = -1;
1922 }
1923
1924 retval = 0;
1925 out:
1926 if (fd >= 0)
1927 close(fd);
1928 return retval;
1929}
1930
1931static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
1932{
1933 struct intel_super *super = st->sb;
1934 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1935 struct imsm_map *map = get_imsm_map(dev, 0);
1936 struct imsm_map *prev_map = get_imsm_map(dev, 1);
1937 struct imsm_map *map_to_analyse = map;
1938 struct dl *dl;
1939 char *devname;
1940 unsigned int component_size_alligment;
1941 int map_disks = info->array.raid_disks;
1942
1943 memset(info, 0, sizeof(*info));
1944 if (prev_map)
1945 map_to_analyse = prev_map;
1946
1947 for (dl = super->disks; dl; dl = dl->next)
1948 if (dl->raiddisk == info->disk.raid_disk)
1949 break;
1950 info->container_member = super->current_vol;
1951 info->array.raid_disks = map->num_members;
1952 info->array.level = get_imsm_raid_level(map_to_analyse);
1953 info->array.layout = imsm_level_to_layout(info->array.level);
1954 info->array.md_minor = -1;
1955 info->array.ctime = 0;
1956 info->array.utime = 0;
1957 info->array.chunk_size =
1958 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
1959 info->array.state = !dev->vol.dirty;
1960 info->custom_array_size = __le32_to_cpu(dev->size_high);
1961 info->custom_array_size <<= 32;
1962 info->custom_array_size |= __le32_to_cpu(dev->size_low);
1963 if (prev_map && map->map_state == prev_map->map_state) {
1964 info->reshape_active = 1;
1965 info->new_level = get_imsm_raid_level(map);
1966 info->new_layout = imsm_level_to_layout(info->new_level);
1967 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
1968 info->delta_disks = map->num_members - prev_map->num_members;
1969 if (info->delta_disks) {
1970 /* this needs to be applied to every array
1971 * in the container.
1972 */
1973 info->reshape_active = 2;
1974 }
1975 /* We shape information that we give to md might have to be
1976 * modify to cope with md's requirement for reshaping arrays.
1977 * For example, when reshaping a RAID0, md requires it to be
1978 * presented as a degraded RAID4.
1979 * Also if a RAID0 is migrating to a RAID5 we need to specify
1980 * the array as already being RAID5, but the 'before' layout
1981 * is a RAID4-like layout.
1982 */
1983 switch (info->array.level) {
1984 case 0:
1985 switch(info->new_level) {
1986 case 0:
1987 /* conversion is happening as RAID4 */
1988 info->array.level = 4;
1989 info->array.raid_disks += 1;
1990 break;
1991 case 5:
1992 /* conversion is happening as RAID5 */
1993 info->array.level = 5;
1994 info->array.layout = ALGORITHM_PARITY_N;
1995 info->array.raid_disks += 1;
1996 info->delta_disks -= 1;
1997 break;
1998 default:
1999 /* FIXME error message */
2000 info->array.level = UnSet;
2001 break;
2002 }
2003 break;
2004 }
2005 } else {
2006 info->new_level = UnSet;
2007 info->new_layout = UnSet;
2008 info->new_chunk = info->array.chunk_size;
2009 info->delta_disks = 0;
2010 }
2011 info->disk.major = 0;
2012 info->disk.minor = 0;
2013 if (dl) {
2014 info->disk.major = dl->major;
2015 info->disk.minor = dl->minor;
2016 }
2017
2018 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2019 info->component_size =
2020 __le32_to_cpu(map_to_analyse->blocks_per_member);
2021
2022 /* check component size aligment
2023 */
2024 component_size_alligment =
2025 info->component_size % (info->array.chunk_size/512);
2026
2027 if (component_size_alligment &&
2028 (info->array.level != 1) && (info->array.level != UnSet)) {
2029 dprintf("imsm: reported component size alligned from %llu ",
2030 info->component_size);
2031 info->component_size -= component_size_alligment;
2032 dprintf("to %llu (%i).\n",
2033 info->component_size, component_size_alligment);
2034 }
2035
2036 memset(info->uuid, 0, sizeof(info->uuid));
2037 info->recovery_start = MaxSector;
2038
2039 info->reshape_progress = 0;
2040 info->resync_start = MaxSector;
2041 if (map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2042 dev->vol.dirty) {
2043 info->resync_start = 0;
2044 }
2045 if (dev->vol.migr_state) {
2046 switch (migr_type(dev)) {
2047 case MIGR_REPAIR:
2048 case MIGR_INIT: {
2049 __u64 blocks_per_unit = blocks_per_migr_unit(dev);
2050 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2051
2052 info->resync_start = blocks_per_unit * units;
2053 break;
2054 }
2055 case MIGR_GEN_MIGR: {
2056 __u64 blocks_per_unit = blocks_per_migr_unit(dev);
2057 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2058 unsigned long long array_blocks;
2059 int used_disks;
2060
2061 info->reshape_progress = blocks_per_unit * units;
2062
2063 dprintf("IMSM: General Migration checkpoint : %llu "
2064 "(%llu) -> read reshape progress : %llu\n",
2065 units, blocks_per_unit, info->reshape_progress);
2066
2067 used_disks = imsm_num_data_members(dev, 1);
2068 if (used_disks > 0) {
2069 array_blocks = map->blocks_per_member *
2070 used_disks;
2071 /* round array size down to closest MB
2072 */
2073 info->custom_array_size = (array_blocks
2074 >> SECT_PER_MB_SHIFT)
2075 << SECT_PER_MB_SHIFT;
2076 }
2077 }
2078 case MIGR_VERIFY:
2079 /* we could emulate the checkpointing of
2080 * 'sync_action=check' migrations, but for now
2081 * we just immediately complete them
2082 */
2083 case MIGR_REBUILD:
2084 /* this is handled by container_content_imsm() */
2085 case MIGR_STATE_CHANGE:
2086 /* FIXME handle other migrations */
2087 default:
2088 /* we are not dirty, so... */
2089 info->resync_start = MaxSector;
2090 }
2091 }
2092
2093 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2094 info->name[MAX_RAID_SERIAL_LEN] = 0;
2095
2096 info->array.major_version = -1;
2097 info->array.minor_version = -2;
2098 devname = devnum2devname(st->container_dev);
2099 *info->text_version = '\0';
2100 if (devname)
2101 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2102 free(devname);
2103 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2104 uuid_from_super_imsm(st, info->uuid);
2105
2106 if (dmap) {
2107 int i, j;
2108 for (i=0; i<map_disks; i++) {
2109 dmap[i] = 0;
2110 if (i < info->array.raid_disks) {
2111 struct imsm_disk *dsk;
2112 j = get_imsm_disk_idx(dev, i, -1);
2113 dsk = get_imsm_disk(super, j);
2114 if (dsk && (dsk->status & CONFIGURED_DISK))
2115 dmap[i] = 1;
2116 }
2117 }
2118 }
2119}
2120
2121static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
2122static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
2123
2124static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2125{
2126 struct dl *d;
2127
2128 for (d = super->missing; d; d = d->next)
2129 if (d->index == index)
2130 return &d->disk;
2131 return NULL;
2132}
2133
2134static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2135{
2136 struct intel_super *super = st->sb;
2137 struct imsm_disk *disk;
2138 int map_disks = info->array.raid_disks;
2139 int max_enough = -1;
2140 int i;
2141 struct imsm_super *mpb;
2142
2143 if (super->current_vol >= 0) {
2144 getinfo_super_imsm_volume(st, info, map);
2145 return;
2146 }
2147 memset(info, 0, sizeof(*info));
2148
2149 /* Set raid_disks to zero so that Assemble will always pull in valid
2150 * spares
2151 */
2152 info->array.raid_disks = 0;
2153 info->array.level = LEVEL_CONTAINER;
2154 info->array.layout = 0;
2155 info->array.md_minor = -1;
2156 info->array.ctime = 0; /* N/A for imsm */
2157 info->array.utime = 0;
2158 info->array.chunk_size = 0;
2159
2160 info->disk.major = 0;
2161 info->disk.minor = 0;
2162 info->disk.raid_disk = -1;
2163 info->reshape_active = 0;
2164 info->array.major_version = -1;
2165 info->array.minor_version = -2;
2166 strcpy(info->text_version, "imsm");
2167 info->safe_mode_delay = 0;
2168 info->disk.number = -1;
2169 info->disk.state = 0;
2170 info->name[0] = 0;
2171 info->recovery_start = MaxSector;
2172
2173 /* do we have the all the insync disks that we expect? */
2174 mpb = super->anchor;
2175
2176 for (i = 0; i < mpb->num_raid_devs; i++) {
2177 struct imsm_dev *dev = get_imsm_dev(super, i);
2178 int failed, enough, j, missing = 0;
2179 struct imsm_map *map;
2180 __u8 state;
2181
2182 failed = imsm_count_failed(super, dev);
2183 state = imsm_check_degraded(super, dev, failed);
2184 map = get_imsm_map(dev, dev->vol.migr_state);
2185
2186 /* any newly missing disks?
2187 * (catches single-degraded vs double-degraded)
2188 */
2189 for (j = 0; j < map->num_members; j++) {
2190 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
2191 __u32 idx = ord_to_idx(ord);
2192
2193 if (!(ord & IMSM_ORD_REBUILD) &&
2194 get_imsm_missing(super, idx)) {
2195 missing = 1;
2196 break;
2197 }
2198 }
2199
2200 if (state == IMSM_T_STATE_FAILED)
2201 enough = -1;
2202 else if (state == IMSM_T_STATE_DEGRADED &&
2203 (state != map->map_state || missing))
2204 enough = 0;
2205 else /* we're normal, or already degraded */
2206 enough = 1;
2207
2208 /* in the missing/failed disk case check to see
2209 * if at least one array is runnable
2210 */
2211 max_enough = max(max_enough, enough);
2212 }
2213 dprintf("%s: enough: %d\n", __func__, max_enough);
2214 info->container_enough = max_enough;
2215
2216 if (super->disks) {
2217 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2218
2219 disk = &super->disks->disk;
2220 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2221 info->component_size = reserved;
2222 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2223 /* we don't change info->disk.raid_disk here because
2224 * this state will be finalized in mdmon after we have
2225 * found the 'most fresh' version of the metadata
2226 */
2227 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2228 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2229 }
2230
2231 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2232 * ->compare_super may have updated the 'num_raid_devs' field for spares
2233 */
2234 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2235 uuid_from_super_imsm(st, info->uuid);
2236 else
2237 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2238
2239 /* I don't know how to compute 'map' on imsm, so use safe default */
2240 if (map) {
2241 int i;
2242 for (i = 0; i < map_disks; i++)
2243 map[i] = 1;
2244 }
2245
2246}
2247
2248/* allocates memory and fills disk in mdinfo structure
2249 * for each disk in array */
2250struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2251{
2252 struct mdinfo *mddev = NULL;
2253 struct intel_super *super = st->sb;
2254 struct imsm_disk *disk;
2255 int count = 0;
2256 struct dl *dl;
2257 if (!super || !super->disks)
2258 return NULL;
2259 dl = super->disks;
2260 mddev = malloc(sizeof(*mddev));
2261 if (!mddev) {
2262 fprintf(stderr, Name ": Failed to allocate memory.\n");
2263 return NULL;
2264 }
2265 memset(mddev, 0, sizeof(*mddev));
2266 while (dl) {
2267 struct mdinfo *tmp;
2268 disk = &dl->disk;
2269 tmp = malloc(sizeof(*tmp));
2270 if (!tmp) {
2271 fprintf(stderr, Name ": Failed to allocate memory.\n");
2272 if (mddev)
2273 sysfs_free(mddev);
2274 return NULL;
2275 }
2276 memset(tmp, 0, sizeof(*tmp));
2277 if (mddev->devs)
2278 tmp->next = mddev->devs;
2279 mddev->devs = tmp;
2280 tmp->disk.number = count++;
2281 tmp->disk.major = dl->major;
2282 tmp->disk.minor = dl->minor;
2283 tmp->disk.state = is_configured(disk) ?
2284 (1 << MD_DISK_ACTIVE) : 0;
2285 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2286 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2287 tmp->disk.raid_disk = -1;
2288 dl = dl->next;
2289 }
2290 return mddev;
2291}
2292
2293static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2294 char *update, char *devname, int verbose,
2295 int uuid_set, char *homehost)
2296{
2297 /* For 'assemble' and 'force' we need to return non-zero if any
2298 * change was made. For others, the return value is ignored.
2299 * Update options are:
2300 * force-one : This device looks a bit old but needs to be included,
2301 * update age info appropriately.
2302 * assemble: clear any 'faulty' flag to allow this device to
2303 * be assembled.
2304 * force-array: Array is degraded but being forced, mark it clean
2305 * if that will be needed to assemble it.
2306 *
2307 * newdev: not used ????
2308 * grow: Array has gained a new device - this is currently for
2309 * linear only
2310 * resync: mark as dirty so a resync will happen.
2311 * name: update the name - preserving the homehost
2312 * uuid: Change the uuid of the array to match watch is given
2313 *
2314 * Following are not relevant for this imsm:
2315 * sparc2.2 : update from old dodgey metadata
2316 * super-minor: change the preferred_minor number
2317 * summaries: update redundant counters.
2318 * homehost: update the recorded homehost
2319 * _reshape_progress: record new reshape_progress position.
2320 */
2321 int rv = 1;
2322 struct intel_super *super = st->sb;
2323 struct imsm_super *mpb;
2324
2325 /* we can only update container info */
2326 if (!super || super->current_vol >= 0 || !super->anchor)
2327 return 1;
2328
2329 mpb = super->anchor;
2330
2331 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
2332 rv = -1;
2333 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2334 mpb->orig_family_num = *((__u32 *) info->update_private);
2335 rv = 0;
2336 } else if (strcmp(update, "uuid") == 0) {
2337 __u32 *new_family = malloc(sizeof(*new_family));
2338
2339 /* update orig_family_number with the incoming random
2340 * data, report the new effective uuid, and store the
2341 * new orig_family_num for future updates.
2342 */
2343 if (new_family) {
2344 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2345 uuid_from_super_imsm(st, info->uuid);
2346 *new_family = mpb->orig_family_num;
2347 info->update_private = new_family;
2348 rv = 0;
2349 }
2350 } else if (strcmp(update, "assemble") == 0)
2351 rv = 0;
2352 else
2353 rv = -1;
2354
2355 /* successful update? recompute checksum */
2356 if (rv == 0)
2357 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2358
2359 return rv;
2360}
2361
2362static size_t disks_to_mpb_size(int disks)
2363{
2364 size_t size;
2365
2366 size = sizeof(struct imsm_super);
2367 size += (disks - 1) * sizeof(struct imsm_disk);
2368 size += 2 * sizeof(struct imsm_dev);
2369 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2370 size += (4 - 2) * sizeof(struct imsm_map);
2371 /* 4 possible disk_ord_tbl's */
2372 size += 4 * (disks - 1) * sizeof(__u32);
2373
2374 return size;
2375}
2376
2377static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2378{
2379 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2380 return 0;
2381
2382 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2383}
2384
2385static void free_devlist(struct intel_super *super)
2386{
2387 struct intel_dev *dv;
2388
2389 while (super->devlist) {
2390 dv = super->devlist->next;
2391 free(super->devlist->dev);
2392 free(super->devlist);
2393 super->devlist = dv;
2394 }
2395}
2396
2397static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2398{
2399 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2400}
2401
2402static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2403{
2404 /*
2405 * return:
2406 * 0 same, or first was empty, and second was copied
2407 * 1 second had wrong number
2408 * 2 wrong uuid
2409 * 3 wrong other info
2410 */
2411 struct intel_super *first = st->sb;
2412 struct intel_super *sec = tst->sb;
2413
2414 if (!first) {
2415 st->sb = tst->sb;
2416 tst->sb = NULL;
2417 return 0;
2418 }
2419 /* in platform dependent environment test if the disks
2420 * use the same Intel hba
2421 */
2422 if (!check_env("IMSM_NO_PLATFORM")) {
2423 if (!first->hba || !sec->hba ||
2424 (first->hba->type != sec->hba->type)) {
2425 fprintf(stderr,
2426 "HBAs of devices does not match %s != %s\n",
2427 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2428 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
2429 return 3;
2430 }
2431 }
2432
2433 /* if an anchor does not have num_raid_devs set then it is a free
2434 * floating spare
2435 */
2436 if (first->anchor->num_raid_devs > 0 &&
2437 sec->anchor->num_raid_devs > 0) {
2438 /* Determine if these disks might ever have been
2439 * related. Further disambiguation can only take place
2440 * in load_super_imsm_all
2441 */
2442 __u32 first_family = first->anchor->orig_family_num;
2443 __u32 sec_family = sec->anchor->orig_family_num;
2444
2445 if (memcmp(first->anchor->sig, sec->anchor->sig,
2446 MAX_SIGNATURE_LENGTH) != 0)
2447 return 3;
2448
2449 if (first_family == 0)
2450 first_family = first->anchor->family_num;
2451 if (sec_family == 0)
2452 sec_family = sec->anchor->family_num;
2453
2454 if (first_family != sec_family)
2455 return 3;
2456
2457 }
2458
2459
2460 /* if 'first' is a spare promote it to a populated mpb with sec's
2461 * family number
2462 */
2463 if (first->anchor->num_raid_devs == 0 &&
2464 sec->anchor->num_raid_devs > 0) {
2465 int i;
2466 struct intel_dev *dv;
2467 struct imsm_dev *dev;
2468
2469 /* we need to copy raid device info from sec if an allocation
2470 * fails here we don't associate the spare
2471 */
2472 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
2473 dv = malloc(sizeof(*dv));
2474 if (!dv)
2475 break;
2476 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2477 if (!dev) {
2478 free(dv);
2479 break;
2480 }
2481 dv->dev = dev;
2482 dv->index = i;
2483 dv->next = first->devlist;
2484 first->devlist = dv;
2485 }
2486 if (i < sec->anchor->num_raid_devs) {
2487 /* allocation failure */
2488 free_devlist(first);
2489 fprintf(stderr, "imsm: failed to associate spare\n");
2490 return 3;
2491 }
2492 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
2493 first->anchor->orig_family_num = sec->anchor->orig_family_num;
2494 first->anchor->family_num = sec->anchor->family_num;
2495 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
2496 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2497 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
2498 }
2499
2500 return 0;
2501}
2502
2503static void fd2devname(int fd, char *name)
2504{
2505 struct stat st;
2506 char path[256];
2507 char dname[PATH_MAX];
2508 char *nm;
2509 int rv;
2510
2511 name[0] = '\0';
2512 if (fstat(fd, &st) != 0)
2513 return;
2514 sprintf(path, "/sys/dev/block/%d:%d",
2515 major(st.st_rdev), minor(st.st_rdev));
2516
2517 rv = readlink(path, dname, sizeof(dname));
2518 if (rv <= 0)
2519 return;
2520
2521 dname[rv] = '\0';
2522 nm = strrchr(dname, '/');
2523 nm++;
2524 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2525}
2526
2527extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2528
2529static int imsm_read_serial(int fd, char *devname,
2530 __u8 serial[MAX_RAID_SERIAL_LEN])
2531{
2532 unsigned char scsi_serial[255];
2533 int rv;
2534 int rsp_len;
2535 int len;
2536 char *dest;
2537 char *src;
2538 char *rsp_buf;
2539 int i;
2540
2541 memset(scsi_serial, 0, sizeof(scsi_serial));
2542
2543 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2544
2545 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
2546 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2547 fd2devname(fd, (char *) serial);
2548 return 0;
2549 }
2550
2551 if (rv != 0) {
2552 if (devname)
2553 fprintf(stderr,
2554 Name ": Failed to retrieve serial for %s\n",
2555 devname);
2556 return rv;
2557 }
2558
2559 rsp_len = scsi_serial[3];
2560 if (!rsp_len) {
2561 if (devname)
2562 fprintf(stderr,
2563 Name ": Failed to retrieve serial for %s\n",
2564 devname);
2565 return 2;
2566 }
2567 rsp_buf = (char *) &scsi_serial[4];
2568
2569 /* trim all whitespace and non-printable characters and convert
2570 * ':' to ';'
2571 */
2572 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2573 src = &rsp_buf[i];
2574 if (*src > 0x20) {
2575 /* ':' is reserved for use in placeholder serial
2576 * numbers for missing disks
2577 */
2578 if (*src == ':')
2579 *dest++ = ';';
2580 else
2581 *dest++ = *src;
2582 }
2583 }
2584 len = dest - rsp_buf;
2585 dest = rsp_buf;
2586
2587 /* truncate leading characters */
2588 if (len > MAX_RAID_SERIAL_LEN) {
2589 dest += len - MAX_RAID_SERIAL_LEN;
2590 len = MAX_RAID_SERIAL_LEN;
2591 }
2592
2593 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2594 memcpy(serial, dest, len);
2595
2596 return 0;
2597}
2598
2599static int serialcmp(__u8 *s1, __u8 *s2)
2600{
2601 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2602}
2603
2604static void serialcpy(__u8 *dest, __u8 *src)
2605{
2606 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2607}
2608
2609#ifndef MDASSEMBLE
2610static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2611{
2612 struct dl *dl;
2613
2614 for (dl = super->disks; dl; dl = dl->next)
2615 if (serialcmp(dl->serial, serial) == 0)
2616 break;
2617
2618 return dl;
2619}
2620#endif
2621
2622static struct imsm_disk *
2623__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2624{
2625 int i;
2626
2627 for (i = 0; i < mpb->num_disks; i++) {
2628 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2629
2630 if (serialcmp(disk->serial, serial) == 0) {
2631 if (idx)
2632 *idx = i;
2633 return disk;
2634 }
2635 }
2636
2637 return NULL;
2638}
2639
2640static int
2641load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2642{
2643 struct imsm_disk *disk;
2644 struct dl *dl;
2645 struct stat stb;
2646 int rv;
2647 char name[40];
2648 __u8 serial[MAX_RAID_SERIAL_LEN];
2649
2650 rv = imsm_read_serial(fd, devname, serial);
2651
2652 if (rv != 0)
2653 return 2;
2654
2655 dl = calloc(1, sizeof(*dl));
2656 if (!dl) {
2657 if (devname)
2658 fprintf(stderr,
2659 Name ": failed to allocate disk buffer for %s\n",
2660 devname);
2661 return 2;
2662 }
2663
2664 fstat(fd, &stb);
2665 dl->major = major(stb.st_rdev);
2666 dl->minor = minor(stb.st_rdev);
2667 dl->next = super->disks;
2668 dl->fd = keep_fd ? fd : -1;
2669 assert(super->disks == NULL);
2670 super->disks = dl;
2671 serialcpy(dl->serial, serial);
2672 dl->index = -2;
2673 dl->e = NULL;
2674 fd2devname(fd, name);
2675 if (devname)
2676 dl->devname = strdup(devname);
2677 else
2678 dl->devname = strdup(name);
2679
2680 /* look up this disk's index in the current anchor */
2681 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
2682 if (disk) {
2683 dl->disk = *disk;
2684 /* only set index on disks that are a member of a
2685 * populated contianer, i.e. one with raid_devs
2686 */
2687 if (is_failed(&dl->disk))
2688 dl->index = -2;
2689 else if (is_spare(&dl->disk))
2690 dl->index = -1;
2691 }
2692
2693 return 0;
2694}
2695
2696#ifndef MDASSEMBLE
2697/* When migrating map0 contains the 'destination' state while map1
2698 * contains the current state. When not migrating map0 contains the
2699 * current state. This routine assumes that map[0].map_state is set to
2700 * the current array state before being called.
2701 *
2702 * Migration is indicated by one of the following states
2703 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
2704 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
2705 * map1state=unitialized)
2706 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
2707 * map1state=normal)
2708 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
2709 * map1state=degraded)
2710 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
2711 * map1state=normal)
2712 */
2713static void migrate(struct imsm_dev *dev, struct intel_super *super,
2714 __u8 to_state, int migr_type)
2715{
2716 struct imsm_map *dest;
2717 struct imsm_map *src = get_imsm_map(dev, 0);
2718
2719 dev->vol.migr_state = 1;
2720 set_migr_type(dev, migr_type);
2721 dev->vol.curr_migr_unit = 0;
2722 dest = get_imsm_map(dev, 1);
2723
2724 /* duplicate and then set the target end state in map[0] */
2725 memcpy(dest, src, sizeof_imsm_map(src));
2726 if ((migr_type == MIGR_REBUILD) ||
2727 (migr_type == MIGR_GEN_MIGR)) {
2728 __u32 ord;
2729 int i;
2730
2731 for (i = 0; i < src->num_members; i++) {
2732 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
2733 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
2734 }
2735 }
2736
2737 if (migr_type == MIGR_GEN_MIGR)
2738 /* Clear migration record */
2739 memset(super->migr_rec, 0, sizeof(struct migr_record));
2740
2741 src->map_state = to_state;
2742}
2743
2744static void end_migration(struct imsm_dev *dev, __u8 map_state)
2745{
2746 struct imsm_map *map = get_imsm_map(dev, 0);
2747 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
2748 int i, j;
2749
2750 /* merge any IMSM_ORD_REBUILD bits that were not successfully
2751 * completed in the last migration.
2752 *
2753 * FIXME add support for raid-level-migration
2754 */
2755 for (i = 0; i < prev->num_members; i++)
2756 for (j = 0; j < map->num_members; j++)
2757 /* during online capacity expansion
2758 * disks position can be changed if takeover is used
2759 */
2760 if (ord_to_idx(map->disk_ord_tbl[j]) ==
2761 ord_to_idx(prev->disk_ord_tbl[i])) {
2762 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
2763 break;
2764 }
2765
2766 dev->vol.migr_state = 0;
2767 dev->vol.migr_type = 0;
2768 dev->vol.curr_migr_unit = 0;
2769 map->map_state = map_state;
2770}
2771#endif
2772
2773static int parse_raid_devices(struct intel_super *super)
2774{
2775 int i;
2776 struct imsm_dev *dev_new;
2777 size_t len, len_migr;
2778 size_t max_len = 0;
2779 size_t space_needed = 0;
2780 struct imsm_super *mpb = super->anchor;
2781
2782 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2783 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
2784 struct intel_dev *dv;
2785
2786 len = sizeof_imsm_dev(dev_iter, 0);
2787 len_migr = sizeof_imsm_dev(dev_iter, 1);
2788 if (len_migr > len)
2789 space_needed += len_migr - len;
2790
2791 dv = malloc(sizeof(*dv));
2792 if (!dv)
2793 return 1;
2794 if (max_len < len_migr)
2795 max_len = len_migr;
2796 if (max_len > len_migr)
2797 space_needed += max_len - len_migr;
2798 dev_new = malloc(max_len);
2799 if (!dev_new) {
2800 free(dv);
2801 return 1;
2802 }
2803 imsm_copy_dev(dev_new, dev_iter);
2804 dv->dev = dev_new;
2805 dv->index = i;
2806 dv->next = super->devlist;
2807 super->devlist = dv;
2808 }
2809
2810 /* ensure that super->buf is large enough when all raid devices
2811 * are migrating
2812 */
2813 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
2814 void *buf;
2815
2816 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
2817 if (posix_memalign(&buf, 512, len) != 0)
2818 return 1;
2819
2820 memcpy(buf, super->buf, super->len);
2821 memset(buf + super->len, 0, len - super->len);
2822 free(super->buf);
2823 super->buf = buf;
2824 super->len = len;
2825 }
2826
2827 return 0;
2828}
2829
2830/* retrieve a pointer to the bbm log which starts after all raid devices */
2831struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
2832{
2833 void *ptr = NULL;
2834
2835 if (__le32_to_cpu(mpb->bbm_log_size)) {
2836 ptr = mpb;
2837 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
2838 }
2839
2840 return ptr;
2841}
2842
2843/*******************************************************************************
2844 * Function: check_mpb_migr_compatibility
2845 * Description: Function checks for unsupported migration features:
2846 * - migration optimization area (pba_of_lba0)
2847 * - descending reshape (ascending_migr)
2848 * Parameters:
2849 * super : imsm metadata information
2850 * Returns:
2851 * 0 : migration is compatible
2852 * -1 : migration is not compatible
2853 ******************************************************************************/
2854int check_mpb_migr_compatibility(struct intel_super *super)
2855{
2856 struct imsm_map *map0, *map1;
2857 struct migr_record *migr_rec = super->migr_rec;
2858 int i;
2859
2860 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2861 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
2862
2863 if (dev_iter &&
2864 dev_iter->vol.migr_state == 1 &&
2865 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
2866 /* This device is migrating */
2867 map0 = get_imsm_map(dev_iter, 0);
2868 map1 = get_imsm_map(dev_iter, 1);
2869 if (map0->pba_of_lba0 != map1->pba_of_lba0)
2870 /* migration optimization area was used */
2871 return -1;
2872 if (migr_rec->ascending_migr == 0
2873 && migr_rec->dest_depth_per_unit > 0)
2874 /* descending reshape not supported yet */
2875 return -1;
2876 }
2877 }
2878 return 0;
2879}
2880
2881static void __free_imsm(struct intel_super *super, int free_disks);
2882
2883/* load_imsm_mpb - read matrix metadata
2884 * allocates super->mpb to be freed by free_imsm
2885 */
2886static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
2887{
2888 unsigned long long dsize;
2889 unsigned long long sectors;
2890 struct stat;
2891 struct imsm_super *anchor;
2892 __u32 check_sum;
2893
2894 get_dev_size(fd, NULL, &dsize);
2895 if (dsize < 1024) {
2896 if (devname)
2897 fprintf(stderr,
2898 Name ": %s: device to small for imsm\n",
2899 devname);
2900 return 1;
2901 }
2902
2903 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
2904 if (devname)
2905 fprintf(stderr,
2906 Name ": Cannot seek to anchor block on %s: %s\n",
2907 devname, strerror(errno));
2908 return 1;
2909 }
2910
2911 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
2912 if (devname)
2913 fprintf(stderr,
2914 Name ": Failed to allocate imsm anchor buffer"
2915 " on %s\n", devname);
2916 return 1;
2917 }
2918 if (read(fd, anchor, 512) != 512) {
2919 if (devname)
2920 fprintf(stderr,
2921 Name ": Cannot read anchor block on %s: %s\n",
2922 devname, strerror(errno));
2923 free(anchor);
2924 return 1;
2925 }
2926
2927 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
2928 if (devname)
2929 fprintf(stderr,
2930 Name ": no IMSM anchor on %s\n", devname);
2931 free(anchor);
2932 return 2;
2933 }
2934
2935 __free_imsm(super, 0);
2936 /* reload capability and hba */
2937
2938 /* capability and hba must be updated with new super allocation */
2939 find_intel_hba_capability(fd, super, devname);
2940 super->len = ROUND_UP(anchor->mpb_size, 512);
2941 if (posix_memalign(&super->buf, 512, super->len) != 0) {
2942 if (devname)
2943 fprintf(stderr,
2944 Name ": unable to allocate %zu byte mpb buffer\n",
2945 super->len);
2946 free(anchor);
2947 return 2;
2948 }
2949 memcpy(super->buf, anchor, 512);
2950
2951 sectors = mpb_sectors(anchor) - 1;
2952 free(anchor);
2953
2954 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
2955 fprintf(stderr, Name
2956 ": %s could not allocate migr_rec buffer\n", __func__);
2957 free(super->buf);
2958 return 2;
2959 }
2960
2961 if (!sectors) {
2962 check_sum = __gen_imsm_checksum(super->anchor);
2963 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2964 if (devname)
2965 fprintf(stderr,
2966 Name ": IMSM checksum %x != %x on %s\n",
2967 check_sum,
2968 __le32_to_cpu(super->anchor->check_sum),
2969 devname);
2970 return 2;
2971 }
2972
2973 return 0;
2974 }
2975
2976 /* read the extended mpb */
2977 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
2978 if (devname)
2979 fprintf(stderr,
2980 Name ": Cannot seek to extended mpb on %s: %s\n",
2981 devname, strerror(errno));
2982 return 1;
2983 }
2984
2985 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
2986 if (devname)
2987 fprintf(stderr,
2988 Name ": Cannot read extended mpb on %s: %s\n",
2989 devname, strerror(errno));
2990 return 2;
2991 }
2992
2993 check_sum = __gen_imsm_checksum(super->anchor);
2994 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2995 if (devname)
2996 fprintf(stderr,
2997 Name ": IMSM checksum %x != %x on %s\n",
2998 check_sum, __le32_to_cpu(super->anchor->check_sum),
2999 devname);
3000 return 3;
3001 }
3002
3003 /* FIXME the BBM log is disk specific so we cannot use this global
3004 * buffer for all disks. Ok for now since we only look at the global
3005 * bbm_log_size parameter to gate assembly
3006 */
3007 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3008
3009 return 0;
3010}
3011
3012static int read_imsm_migr_rec(int fd, struct intel_super *super);
3013
3014static int
3015load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3016{
3017 int err;
3018
3019 err = load_imsm_mpb(fd, super, devname);
3020 if (err)
3021 return err;
3022 err = load_imsm_disk(fd, super, devname, keep_fd);
3023 if (err)
3024 return err;
3025 err = parse_raid_devices(super);
3026
3027 return err;
3028}
3029
3030static void __free_imsm_disk(struct dl *d)
3031{
3032 if (d->fd >= 0)
3033 close(d->fd);
3034 if (d->devname)
3035 free(d->devname);
3036 if (d->e)
3037 free(d->e);
3038 free(d);
3039
3040}
3041
3042static void free_imsm_disks(struct intel_super *super)
3043{
3044 struct dl *d;
3045
3046 while (super->disks) {
3047 d = super->disks;
3048 super->disks = d->next;
3049 __free_imsm_disk(d);
3050 }
3051 while (super->disk_mgmt_list) {
3052 d = super->disk_mgmt_list;
3053 super->disk_mgmt_list = d->next;
3054 __free_imsm_disk(d);
3055 }
3056 while (super->missing) {
3057 d = super->missing;
3058 super->missing = d->next;
3059 __free_imsm_disk(d);
3060 }
3061
3062}
3063
3064/* free all the pieces hanging off of a super pointer */
3065static void __free_imsm(struct intel_super *super, int free_disks)
3066{
3067 struct intel_hba *elem, *next;
3068
3069 if (super->buf) {
3070 free(super->buf);
3071 super->buf = NULL;
3072 }
3073 /* unlink capability description */
3074 super->orom = NULL;
3075 if (super->migr_rec_buf) {
3076 free(super->migr_rec_buf);
3077 super->migr_rec_buf = NULL;
3078 }
3079 if (free_disks)
3080 free_imsm_disks(super);
3081 free_devlist(super);
3082 elem = super->hba;
3083 while (elem) {
3084 if (elem->path)
3085 free((void *)elem->path);
3086 next = elem->next;
3087 free(elem);
3088 elem = next;
3089 }
3090 super->hba = NULL;
3091}
3092
3093static void free_imsm(struct intel_super *super)
3094{
3095 __free_imsm(super, 1);
3096 free(super);
3097}
3098
3099static void free_super_imsm(struct supertype *st)
3100{
3101 struct intel_super *super = st->sb;
3102
3103 if (!super)
3104 return;
3105
3106 free_imsm(super);
3107 st->sb = NULL;
3108}
3109
3110static struct intel_super *alloc_super(void)
3111{
3112 struct intel_super *super = malloc(sizeof(*super));
3113
3114 if (super) {
3115 memset(super, 0, sizeof(*super));
3116 super->current_vol = -1;
3117 super->create_offset = ~((__u32 ) 0);
3118 }
3119 return super;
3120}
3121
3122/*
3123 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3124 */
3125static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3126{
3127 struct sys_dev *hba_name;
3128 int rv = 0;
3129
3130 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3131 super->orom = NULL;
3132 super->hba = NULL;
3133 return 0;
3134 }
3135 hba_name = find_disk_attached_hba(fd, NULL);
3136 if (!hba_name) {
3137 if (devname)
3138 fprintf(stderr,
3139 Name ": %s is not attached to Intel(R) RAID controller.\n",
3140 devname);
3141 return 1;
3142 }
3143 rv = attach_hba_to_super(super, hba_name);
3144 if (rv == 2) {
3145 if (devname) {
3146 struct intel_hba *hba = super->hba;
3147
3148 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3149 "controller (%s),\n"
3150 " but the container is assigned to Intel(R) "
3151 "%s RAID controller (",
3152 devname,
3153 hba_name->path,
3154 hba_name->pci_id ? : "Err!",
3155 get_sys_dev_type(hba_name->type));
3156
3157 while (hba) {
3158 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3159 if (hba->next)
3160 fprintf(stderr, ", ");
3161 hba = hba->next;
3162 }
3163
3164 fprintf(stderr, ").\n"
3165 " Mixing devices attached to different controllers "
3166 "is not allowed.\n");
3167 }
3168 free_sys_dev(&hba_name);
3169 return 2;
3170 }
3171 super->orom = find_imsm_capability(hba_name->type);
3172 free_sys_dev(&hba_name);
3173 if (!super->orom)
3174 return 3;
3175 return 0;
3176}
3177
3178#ifndef MDASSEMBLE
3179/* find_missing - helper routine for load_super_imsm_all that identifies
3180 * disks that have disappeared from the system. This routine relies on
3181 * the mpb being uptodate, which it is at load time.
3182 */
3183static int find_missing(struct intel_super *super)
3184{
3185 int i;
3186 struct imsm_super *mpb = super->anchor;
3187 struct dl *dl;
3188 struct imsm_disk *disk;
3189
3190 for (i = 0; i < mpb->num_disks; i++) {
3191 disk = __get_imsm_disk(mpb, i);
3192 dl = serial_to_dl(disk->serial, super);
3193 if (dl)
3194 continue;
3195
3196 dl = malloc(sizeof(*dl));
3197 if (!dl)
3198 return 1;
3199 dl->major = 0;
3200 dl->minor = 0;
3201 dl->fd = -1;
3202 dl->devname = strdup("missing");
3203 dl->index = i;
3204 serialcpy(dl->serial, disk->serial);
3205 dl->disk = *disk;
3206 dl->e = NULL;
3207 dl->next = super->missing;
3208 super->missing = dl;
3209 }
3210
3211 return 0;
3212}
3213
3214static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3215{
3216 struct intel_disk *idisk = disk_list;
3217
3218 while (idisk) {
3219 if (serialcmp(idisk->disk.serial, serial) == 0)
3220 break;
3221 idisk = idisk->next;
3222 }
3223
3224 return idisk;
3225}
3226
3227static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3228 struct intel_super *super,
3229 struct intel_disk **disk_list)
3230{
3231 struct imsm_disk *d = &super->disks->disk;
3232 struct imsm_super *mpb = super->anchor;
3233 int i, j;
3234
3235 for (i = 0; i < tbl_size; i++) {
3236 struct imsm_super *tbl_mpb = table[i]->anchor;
3237 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3238
3239 if (tbl_mpb->family_num == mpb->family_num) {
3240 if (tbl_mpb->check_sum == mpb->check_sum) {
3241 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3242 __func__, super->disks->major,
3243 super->disks->minor,
3244 table[i]->disks->major,
3245 table[i]->disks->minor);
3246 break;
3247 }
3248
3249 if (((is_configured(d) && !is_configured(tbl_d)) ||
3250 is_configured(d) == is_configured(tbl_d)) &&
3251 tbl_mpb->generation_num < mpb->generation_num) {
3252 /* current version of the mpb is a
3253 * better candidate than the one in
3254 * super_table, but copy over "cross
3255 * generational" status
3256 */
3257 struct intel_disk *idisk;
3258
3259 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3260 __func__, super->disks->major,
3261 super->disks->minor,
3262 table[i]->disks->major,
3263 table[i]->disks->minor);
3264
3265 idisk = disk_list_get(tbl_d->serial, *disk_list);
3266 if (idisk && is_failed(&idisk->disk))
3267 tbl_d->status |= FAILED_DISK;
3268 break;
3269 } else {
3270 struct intel_disk *idisk;
3271 struct imsm_disk *disk;
3272
3273 /* tbl_mpb is more up to date, but copy
3274 * over cross generational status before
3275 * returning
3276 */
3277 disk = __serial_to_disk(d->serial, mpb, NULL);
3278 if (disk && is_failed(disk))
3279 d->status |= FAILED_DISK;
3280
3281 idisk = disk_list_get(d->serial, *disk_list);
3282 if (idisk) {
3283 idisk->owner = i;
3284 if (disk && is_configured(disk))
3285 idisk->disk.status |= CONFIGURED_DISK;
3286 }
3287
3288 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3289 __func__, super->disks->major,
3290 super->disks->minor,
3291 table[i]->disks->major,
3292 table[i]->disks->minor);
3293
3294 return tbl_size;
3295 }
3296 }
3297 }
3298
3299 if (i >= tbl_size)
3300 table[tbl_size++] = super;
3301 else
3302 table[i] = super;
3303
3304 /* update/extend the merged list of imsm_disk records */
3305 for (j = 0; j < mpb->num_disks; j++) {
3306 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3307 struct intel_disk *idisk;
3308
3309 idisk = disk_list_get(disk->serial, *disk_list);
3310 if (idisk) {
3311 idisk->disk.status |= disk->status;
3312 if (is_configured(&idisk->disk) ||
3313 is_failed(&idisk->disk))
3314 idisk->disk.status &= ~(SPARE_DISK);
3315 } else {
3316 idisk = calloc(1, sizeof(*idisk));
3317 if (!idisk)
3318 return -1;
3319 idisk->owner = IMSM_UNKNOWN_OWNER;
3320 idisk->disk = *disk;
3321 idisk->next = *disk_list;
3322 *disk_list = idisk;
3323 }
3324
3325 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3326 idisk->owner = i;
3327 }
3328
3329 return tbl_size;
3330}
3331
3332static struct intel_super *
3333validate_members(struct intel_super *super, struct intel_disk *disk_list,
3334 const int owner)
3335{
3336 struct imsm_super *mpb = super->anchor;
3337 int ok_count = 0;
3338 int i;
3339
3340 for (i = 0; i < mpb->num_disks; i++) {
3341 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3342 struct intel_disk *idisk;
3343
3344 idisk = disk_list_get(disk->serial, disk_list);
3345 if (idisk) {
3346 if (idisk->owner == owner ||
3347 idisk->owner == IMSM_UNKNOWN_OWNER)
3348 ok_count++;
3349 else
3350 dprintf("%s: '%.16s' owner %d != %d\n",
3351 __func__, disk->serial, idisk->owner,
3352 owner);
3353 } else {
3354 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3355 __func__, __le32_to_cpu(mpb->family_num), i,
3356 disk->serial);
3357 break;
3358 }
3359 }
3360
3361 if (ok_count == mpb->num_disks)
3362 return super;
3363 return NULL;
3364}
3365
3366static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3367{
3368 struct intel_super *s;
3369
3370 for (s = super_list; s; s = s->next) {
3371 if (family_num != s->anchor->family_num)
3372 continue;
3373 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3374 __le32_to_cpu(family_num), s->disks->devname);
3375 }
3376}
3377
3378static struct intel_super *
3379imsm_thunderdome(struct intel_super **super_list, int len)
3380{
3381 struct intel_super *super_table[len];
3382 struct intel_disk *disk_list = NULL;
3383 struct intel_super *champion, *spare;
3384 struct intel_super *s, **del;
3385 int tbl_size = 0;
3386 int conflict;
3387 int i;
3388
3389 memset(super_table, 0, sizeof(super_table));
3390 for (s = *super_list; s; s = s->next)
3391 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3392
3393 for (i = 0; i < tbl_size; i++) {
3394 struct imsm_disk *d;
3395 struct intel_disk *idisk;
3396 struct imsm_super *mpb = super_table[i]->anchor;
3397
3398 s = super_table[i];
3399 d = &s->disks->disk;
3400
3401 /* 'd' must appear in merged disk list for its
3402 * configuration to be valid
3403 */
3404 idisk = disk_list_get(d->serial, disk_list);
3405 if (idisk && idisk->owner == i)
3406 s = validate_members(s, disk_list, i);
3407 else
3408 s = NULL;
3409
3410 if (!s)
3411 dprintf("%s: marking family: %#x from %d:%d offline\n",
3412 __func__, mpb->family_num,
3413 super_table[i]->disks->major,
3414 super_table[i]->disks->minor);
3415 super_table[i] = s;
3416 }
3417
3418 /* This is where the mdadm implementation differs from the Windows
3419 * driver which has no strict concept of a container. We can only
3420 * assemble one family from a container, so when returning a prodigal
3421 * array member to this system the code will not be able to disambiguate
3422 * the container contents that should be assembled ("foreign" versus
3423 * "local"). It requires user intervention to set the orig_family_num
3424 * to a new value to establish a new container. The Windows driver in
3425 * this situation fixes up the volume name in place and manages the
3426 * foreign array as an independent entity.
3427 */
3428 s = NULL;
3429 spare = NULL;
3430 conflict = 0;
3431 for (i = 0; i < tbl_size; i++) {
3432 struct intel_super *tbl_ent = super_table[i];
3433 int is_spare = 0;
3434
3435 if (!tbl_ent)
3436 continue;
3437
3438 if (tbl_ent->anchor->num_raid_devs == 0) {
3439 spare = tbl_ent;
3440 is_spare = 1;
3441 }
3442
3443 if (s && !is_spare) {
3444 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3445 conflict++;
3446 } else if (!s && !is_spare)
3447 s = tbl_ent;
3448 }
3449
3450 if (!s)
3451 s = spare;
3452 if (!s) {
3453 champion = NULL;
3454 goto out;
3455 }
3456 champion = s;
3457
3458 if (conflict)
3459 fprintf(stderr, "Chose family %#x on '%s', "
3460 "assemble conflicts to new container with '--update=uuid'\n",
3461 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3462
3463 /* collect all dl's onto 'champion', and update them to
3464 * champion's version of the status
3465 */
3466 for (s = *super_list; s; s = s->next) {
3467 struct imsm_super *mpb = champion->anchor;
3468 struct dl *dl = s->disks;
3469
3470 if (s == champion)
3471 continue;
3472
3473 for (i = 0; i < mpb->num_disks; i++) {
3474 struct imsm_disk *disk;
3475
3476 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3477 if (disk) {
3478 dl->disk = *disk;
3479 /* only set index on disks that are a member of
3480 * a populated contianer, i.e. one with
3481 * raid_devs
3482 */
3483 if (is_failed(&dl->disk))
3484 dl->index = -2;
3485 else if (is_spare(&dl->disk))
3486 dl->index = -1;
3487 break;
3488 }
3489 }
3490
3491 if (i >= mpb->num_disks) {
3492 struct intel_disk *idisk;
3493
3494 idisk = disk_list_get(dl->serial, disk_list);
3495 if (idisk && is_spare(&idisk->disk) &&
3496 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3497 dl->index = -1;
3498 else {
3499 dl->index = -2;
3500 continue;
3501 }
3502 }
3503
3504 dl->next = champion->disks;
3505 champion->disks = dl;
3506 s->disks = NULL;
3507 }
3508
3509 /* delete 'champion' from super_list */
3510 for (del = super_list; *del; ) {
3511 if (*del == champion) {
3512 *del = (*del)->next;
3513 break;
3514 } else
3515 del = &(*del)->next;
3516 }
3517 champion->next = NULL;
3518
3519 out:
3520 while (disk_list) {
3521 struct intel_disk *idisk = disk_list;
3522
3523 disk_list = disk_list->next;
3524 free(idisk);
3525 }
3526
3527 return champion;
3528}
3529
3530static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
3531 char *devname)
3532{
3533 struct mdinfo *sra;
3534 struct intel_super *super_list = NULL;
3535 struct intel_super *super = NULL;
3536 int devnum = fd2devnum(fd);
3537 struct mdinfo *sd;
3538 int retry;
3539 int err = 0;
3540 int i;
3541
3542 /* check if 'fd' an opened container */
3543 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
3544 if (!sra)
3545 return 1;
3546
3547 if (sra->array.major_version != -1 ||
3548 sra->array.minor_version != -2 ||
3549 strcmp(sra->text_version, "imsm") != 0) {
3550 err = 1;
3551 goto error;
3552 }
3553 /* load all mpbs */
3554 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
3555 struct intel_super *s = alloc_super();
3556 char nm[32];
3557 int dfd;
3558 int rv;
3559
3560 err = 1;
3561 if (!s)
3562 goto error;
3563 s->next = super_list;
3564 super_list = s;
3565
3566 err = 2;
3567 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3568 dfd = dev_open(nm, O_RDWR);
3569 if (dfd < 0)
3570 goto error;
3571
3572 rv = find_intel_hba_capability(dfd, s, devname);
3573 /* no orom/efi or non-intel hba of the disk */
3574 if (rv != 0)
3575 goto error;
3576
3577 err = load_and_parse_mpb(dfd, s, NULL, 1);
3578
3579 /* retry the load if we might have raced against mdmon */
3580 if (err == 3 && mdmon_running(devnum))
3581 for (retry = 0; retry < 3; retry++) {
3582 usleep(3000);
3583 err = load_and_parse_mpb(dfd, s, NULL, 1);
3584 if (err != 3)
3585 break;
3586 }
3587 if (err)
3588 goto error;
3589 }
3590
3591 /* all mpbs enter, maybe one leaves */
3592 super = imsm_thunderdome(&super_list, i);
3593 if (!super) {
3594 err = 1;
3595 goto error;
3596 }
3597
3598 if (find_missing(super) != 0) {
3599 free_imsm(super);
3600 err = 2;
3601 goto error;
3602 }
3603
3604 /* load migration record */
3605 err = load_imsm_migr_rec(super, NULL);
3606 if (err) {
3607 err = 4;
3608 goto error;
3609 }
3610
3611 /* Check migration compatibility */
3612 if (check_mpb_migr_compatibility(super) != 0) {
3613 fprintf(stderr, Name ": Unsupported migration detected");
3614 if (devname)
3615 fprintf(stderr, " on %s\n", devname);
3616 else
3617 fprintf(stderr, " (IMSM).\n");
3618
3619 err = 5;
3620 goto error;
3621 }
3622
3623 err = 0;
3624
3625 error:
3626 while (super_list) {
3627 struct intel_super *s = super_list;
3628
3629 super_list = super_list->next;
3630 free_imsm(s);
3631 }
3632 sysfs_free(sra);
3633
3634 if (err)
3635 return err;
3636
3637 *sbp = super;
3638 st->container_dev = devnum;
3639 if (err == 0 && st->ss == NULL) {
3640 st->ss = &super_imsm;
3641 st->minor_version = 0;
3642 st->max_devs = IMSM_MAX_DEVICES;
3643 }
3644 return 0;
3645}
3646
3647static int load_container_imsm(struct supertype *st, int fd, char *devname)
3648{
3649 return load_super_imsm_all(st, fd, &st->sb, devname);
3650}
3651#endif
3652
3653static int load_super_imsm(struct supertype *st, int fd, char *devname)
3654{
3655 struct intel_super *super;
3656 int rv;
3657
3658 if (test_partition(fd))
3659 /* IMSM not allowed on partitions */
3660 return 1;
3661
3662 free_super_imsm(st);
3663
3664 super = alloc_super();
3665 if (!super) {
3666 fprintf(stderr,
3667 Name ": malloc of %zu failed.\n",
3668 sizeof(*super));
3669 return 1;
3670 }
3671 /* Load hba and capabilities if they exist.
3672 * But do not preclude loading metadata in case capabilities or hba are
3673 * non-compliant and ignore_hw_compat is set.
3674 */
3675 rv = find_intel_hba_capability(fd, super, devname);
3676 /* no orom/efi or non-intel hba of the disk */
3677 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
3678 if (devname)
3679 fprintf(stderr,
3680 Name ": No OROM/EFI properties for %s\n", devname);
3681 free_imsm(super);
3682 return 2;
3683 }
3684 rv = load_and_parse_mpb(fd, super, devname, 0);
3685
3686 if (rv) {
3687 if (devname)
3688 fprintf(stderr,
3689 Name ": Failed to load all information "
3690 "sections on %s\n", devname);
3691 free_imsm(super);
3692 return rv;
3693 }
3694
3695 st->sb = super;
3696 if (st->ss == NULL) {
3697 st->ss = &super_imsm;
3698 st->minor_version = 0;
3699 st->max_devs = IMSM_MAX_DEVICES;
3700 }
3701
3702 /* load migration record */
3703 load_imsm_migr_rec(super, NULL);
3704
3705 /* Check for unsupported migration features */
3706 if (check_mpb_migr_compatibility(super) != 0) {
3707 fprintf(stderr, Name ": Unsupported migration detected");
3708 if (devname)
3709 fprintf(stderr, " on %s\n", devname);
3710 else
3711 fprintf(stderr, " (IMSM).\n");
3712 return 3;
3713 }
3714
3715 return 0;
3716}
3717
3718static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
3719{
3720 if (info->level == 1)
3721 return 128;
3722 return info->chunk_size >> 9;
3723}
3724
3725static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
3726{
3727 __u32 num_stripes;
3728
3729 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
3730 num_stripes /= num_domains;
3731
3732 return num_stripes;
3733}
3734
3735static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
3736{
3737 if (info->level == 1)
3738 return info->size * 2;
3739 else
3740 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
3741}
3742
3743static void imsm_update_version_info(struct intel_super *super)
3744{
3745 /* update the version and attributes */
3746 struct imsm_super *mpb = super->anchor;
3747 char *version;
3748 struct imsm_dev *dev;
3749 struct imsm_map *map;
3750 int i;
3751
3752 for (i = 0; i < mpb->num_raid_devs; i++) {
3753 dev = get_imsm_dev(super, i);
3754 map = get_imsm_map(dev, 0);
3755 if (__le32_to_cpu(dev->size_high) > 0)
3756 mpb->attributes |= MPB_ATTRIB_2TB;
3757
3758 /* FIXME detect when an array spans a port multiplier */
3759 #if 0
3760 mpb->attributes |= MPB_ATTRIB_PM;
3761 #endif
3762
3763 if (mpb->num_raid_devs > 1 ||
3764 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
3765 version = MPB_VERSION_ATTRIBS;
3766 switch (get_imsm_raid_level(map)) {
3767 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
3768 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
3769 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
3770 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
3771 }
3772 } else {
3773 if (map->num_members >= 5)
3774 version = MPB_VERSION_5OR6_DISK_ARRAY;
3775 else if (dev->status == DEV_CLONE_N_GO)
3776 version = MPB_VERSION_CNG;
3777 else if (get_imsm_raid_level(map) == 5)
3778 version = MPB_VERSION_RAID5;
3779 else if (map->num_members >= 3)
3780 version = MPB_VERSION_3OR4_DISK_ARRAY;
3781 else if (get_imsm_raid_level(map) == 1)
3782 version = MPB_VERSION_RAID1;
3783 else
3784 version = MPB_VERSION_RAID0;
3785 }
3786 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
3787 }
3788}
3789
3790static int check_name(struct intel_super *super, char *name, int quiet)
3791{
3792 struct imsm_super *mpb = super->anchor;
3793 char *reason = NULL;
3794 int i;
3795
3796 if (strlen(name) > MAX_RAID_SERIAL_LEN)
3797 reason = "must be 16 characters or less";
3798
3799 for (i = 0; i < mpb->num_raid_devs; i++) {
3800 struct imsm_dev *dev = get_imsm_dev(super, i);
3801
3802 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
3803 reason = "already exists";
3804 break;
3805 }
3806 }
3807
3808 if (reason && !quiet)
3809 fprintf(stderr, Name ": imsm volume name %s\n", reason);
3810
3811 return !reason;
3812}
3813
3814static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
3815 unsigned long long size, char *name,
3816 char *homehost, int *uuid)
3817{
3818 /* We are creating a volume inside a pre-existing container.
3819 * so st->sb is already set.
3820 */
3821 struct intel_super *super = st->sb;
3822 struct imsm_super *mpb = super->anchor;
3823 struct intel_dev *dv;
3824 struct imsm_dev *dev;
3825 struct imsm_vol *vol;
3826 struct imsm_map *map;
3827 int idx = mpb->num_raid_devs;
3828 int i;
3829 unsigned long long array_blocks;
3830 size_t size_old, size_new;
3831 __u32 num_data_stripes;
3832
3833 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
3834 fprintf(stderr, Name": This imsm-container already has the "
3835 "maximum of %d volumes\n", super->orom->vpa);
3836 return 0;
3837 }
3838
3839 /* ensure the mpb is large enough for the new data */
3840 size_old = __le32_to_cpu(mpb->mpb_size);
3841 size_new = disks_to_mpb_size(info->nr_disks);
3842 if (size_new > size_old) {
3843 void *mpb_new;
3844 size_t size_round = ROUND_UP(size_new, 512);
3845
3846 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
3847 fprintf(stderr, Name": could not allocate new mpb\n");
3848 return 0;
3849 }
3850 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3851 fprintf(stderr, Name
3852 ": %s could not allocate migr_rec buffer\n",
3853 __func__);
3854 free(super->buf);
3855 free(super);
3856 return 0;
3857 }
3858 memcpy(mpb_new, mpb, size_old);
3859 free(mpb);
3860 mpb = mpb_new;
3861 super->anchor = mpb_new;
3862 mpb->mpb_size = __cpu_to_le32(size_new);
3863 memset(mpb_new + size_old, 0, size_round - size_old);
3864 }
3865 super->current_vol = idx;
3866 /* when creating the first raid device in this container set num_disks
3867 * to zero, i.e. delete this spare and add raid member devices in
3868 * add_to_super_imsm_volume()
3869 */
3870 if (super->current_vol == 0)
3871 mpb->num_disks = 0;
3872
3873 if (!check_name(super, name, 0))
3874 return 0;
3875 dv = malloc(sizeof(*dv));
3876 if (!dv) {
3877 fprintf(stderr, Name ": failed to allocate device list entry\n");
3878 return 0;
3879 }
3880 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
3881 if (!dev) {
3882 free(dv);
3883 fprintf(stderr, Name": could not allocate raid device\n");
3884 return 0;
3885 }
3886
3887 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
3888 if (info->level == 1)
3889 array_blocks = info_to_blocks_per_member(info);
3890 else
3891 array_blocks = calc_array_size(info->level, info->raid_disks,
3892 info->layout, info->chunk_size,
3893 info->size*2);
3894 /* round array size down to closest MB */
3895 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
3896
3897 dev->size_low = __cpu_to_le32((__u32) array_blocks);
3898 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
3899 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
3900 vol = &dev->vol;
3901 vol->migr_state = 0;
3902 set_migr_type(dev, MIGR_INIT);
3903 vol->dirty = 0;
3904 vol->curr_migr_unit = 0;
3905 map = get_imsm_map(dev, 0);
3906 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
3907 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
3908 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
3909 map->failed_disk_num = ~0;
3910 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
3911 IMSM_T_STATE_NORMAL;
3912 map->ddf = 1;
3913
3914 if (info->level == 1 && info->raid_disks > 2) {
3915 free(dev);
3916 free(dv);
3917 fprintf(stderr, Name": imsm does not support more than 2 disks"
3918 "in a raid1 volume\n");
3919 return 0;
3920 }
3921
3922 map->raid_level = info->level;
3923 if (info->level == 10) {
3924 map->raid_level = 1;
3925 map->num_domains = info->raid_disks / 2;
3926 } else if (info->level == 1)
3927 map->num_domains = info->raid_disks;
3928 else
3929 map->num_domains = 1;
3930
3931 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
3932 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
3933
3934 map->num_members = info->raid_disks;
3935 for (i = 0; i < map->num_members; i++) {
3936 /* initialized in add_to_super */
3937 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
3938 }
3939 mpb->num_raid_devs++;
3940
3941 dv->dev = dev;
3942 dv->index = super->current_vol;
3943 dv->next = super->devlist;
3944 super->devlist = dv;
3945
3946 imsm_update_version_info(super);
3947
3948 return 1;
3949}
3950
3951static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
3952 unsigned long long size, char *name,
3953 char *homehost, int *uuid)
3954{
3955 /* This is primarily called by Create when creating a new array.
3956 * We will then get add_to_super called for each component, and then
3957 * write_init_super called to write it out to each device.
3958 * For IMSM, Create can create on fresh devices or on a pre-existing
3959 * array.
3960 * To create on a pre-existing array a different method will be called.
3961 * This one is just for fresh drives.
3962 */
3963 struct intel_super *super;
3964 struct imsm_super *mpb;
3965 size_t mpb_size;
3966 char *version;
3967
3968 if (st->sb)
3969 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
3970
3971 if (info)
3972 mpb_size = disks_to_mpb_size(info->nr_disks);
3973 else
3974 mpb_size = 512;
3975
3976 super = alloc_super();
3977 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
3978 free(super);
3979 super = NULL;
3980 }
3981 if (!super) {
3982 fprintf(stderr, Name
3983 ": %s could not allocate superblock\n", __func__);
3984 return 0;
3985 }
3986 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3987 fprintf(stderr, Name
3988 ": %s could not allocate migr_rec buffer\n", __func__);
3989 free(super->buf);
3990 free(super);
3991 return 0;
3992 }
3993 memset(super->buf, 0, mpb_size);
3994 mpb = super->buf;
3995 mpb->mpb_size = __cpu_to_le32(mpb_size);
3996 st->sb = super;
3997
3998 if (info == NULL) {
3999 /* zeroing superblock */
4000 return 0;
4001 }
4002
4003 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4004
4005 version = (char *) mpb->sig;
4006 strcpy(version, MPB_SIGNATURE);
4007 version += strlen(MPB_SIGNATURE);
4008 strcpy(version, MPB_VERSION_RAID0);
4009
4010 return 1;
4011}
4012
4013#ifndef MDASSEMBLE
4014static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4015 int fd, char *devname)
4016{
4017 struct intel_super *super = st->sb;
4018 struct imsm_super *mpb = super->anchor;
4019 struct dl *dl;
4020 struct imsm_dev *dev;
4021 struct imsm_map *map;
4022 int slot;
4023
4024 dev = get_imsm_dev(super, super->current_vol);
4025 map = get_imsm_map(dev, 0);
4026
4027 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4028 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4029 devname);
4030 return 1;
4031 }
4032
4033 if (fd == -1) {
4034 /* we're doing autolayout so grab the pre-marked (in
4035 * validate_geometry) raid_disk
4036 */
4037 for (dl = super->disks; dl; dl = dl->next)
4038 if (dl->raiddisk == dk->raid_disk)
4039 break;
4040 } else {
4041 for (dl = super->disks; dl ; dl = dl->next)
4042 if (dl->major == dk->major &&
4043 dl->minor == dk->minor)
4044 break;
4045 }
4046
4047 if (!dl) {
4048 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
4049 return 1;
4050 }
4051
4052 /* add a pristine spare to the metadata */
4053 if (dl->index < 0) {
4054 dl->index = super->anchor->num_disks;
4055 super->anchor->num_disks++;
4056 }
4057 /* Check the device has not already been added */
4058 slot = get_imsm_disk_slot(map, dl->index);
4059 if (slot >= 0 &&
4060 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4061 fprintf(stderr, Name ": %s has been included in this array twice\n",
4062 devname);
4063 return 1;
4064 }
4065 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
4066 dl->disk.status = CONFIGURED_DISK;
4067
4068 /* if we are creating the first raid device update the family number */
4069 if (super->current_vol == 0) {
4070 __u32 sum;
4071 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4072 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
4073
4074 if (!_dev || !_disk) {
4075 fprintf(stderr, Name ": BUG mpb setup error\n");
4076 return 1;
4077 }
4078 *_dev = *dev;
4079 *_disk = dl->disk;
4080 sum = random32();
4081 sum += __gen_imsm_checksum(mpb);
4082 mpb->family_num = __cpu_to_le32(sum);
4083 mpb->orig_family_num = mpb->family_num;
4084 }
4085
4086 return 0;
4087}
4088
4089
4090static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
4091 int fd, char *devname)
4092{
4093 struct intel_super *super = st->sb;
4094 struct dl *dd;
4095 unsigned long long size;
4096 __u32 id;
4097 int rv;
4098 struct stat stb;
4099
4100 /* If we are on an RAID enabled platform check that the disk is
4101 * attached to the raid controller.
4102 * We do not need to test disks attachment for container based additions,
4103 * they shall be already tested when container was created/assembled.
4104 */
4105 rv = find_intel_hba_capability(fd, super, devname);
4106 /* no orom/efi or non-intel hba of the disk */
4107 if (rv != 0) {
4108 dprintf("capability: %p fd: %d ret: %d\n",
4109 super->orom, fd, rv);
4110 return 1;
4111 }
4112
4113 if (super->current_vol >= 0)
4114 return add_to_super_imsm_volume(st, dk, fd, devname);
4115
4116 fstat(fd, &stb);
4117 dd = malloc(sizeof(*dd));
4118 if (!dd) {
4119 fprintf(stderr,
4120 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4121 return 1;
4122 }
4123 memset(dd, 0, sizeof(*dd));
4124 dd->major = major(stb.st_rdev);
4125 dd->minor = minor(stb.st_rdev);
4126 dd->index = -1;
4127 dd->devname = devname ? strdup(devname) : NULL;
4128 dd->fd = fd;
4129 dd->e = NULL;
4130 dd->action = DISK_ADD;
4131 rv = imsm_read_serial(fd, devname, dd->serial);
4132 if (rv) {
4133 fprintf(stderr,
4134 Name ": failed to retrieve scsi serial, aborting\n");
4135 free(dd);
4136 abort();
4137 }
4138
4139 get_dev_size(fd, NULL, &size);
4140 size /= 512;
4141 serialcpy(dd->disk.serial, dd->serial);
4142 dd->disk.total_blocks = __cpu_to_le32(size);
4143 dd->disk.status = SPARE_DISK;
4144 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
4145 dd->disk.scsi_id = __cpu_to_le32(id);
4146 else
4147 dd->disk.scsi_id = __cpu_to_le32(0);
4148
4149 if (st->update_tail) {
4150 dd->next = super->disk_mgmt_list;
4151 super->disk_mgmt_list = dd;
4152 } else {
4153 dd->next = super->disks;
4154 super->disks = dd;
4155 super->updates_pending++;
4156 }
4157
4158 return 0;
4159}
4160
4161
4162static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4163{
4164 struct intel_super *super = st->sb;
4165 struct dl *dd;
4166
4167 /* remove from super works only in mdmon - for communication
4168 * manager - monitor. Check if communication memory buffer
4169 * is prepared.
4170 */
4171 if (!st->update_tail) {
4172 fprintf(stderr,
4173 Name ": %s shall be used in mdmon context only"
4174 "(line %d).\n", __func__, __LINE__);
4175 return 1;
4176 }
4177 dd = malloc(sizeof(*dd));
4178 if (!dd) {
4179 fprintf(stderr,
4180 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4181 return 1;
4182 }
4183 memset(dd, 0, sizeof(*dd));
4184 dd->major = dk->major;
4185 dd->minor = dk->minor;
4186 dd->index = -1;
4187 dd->fd = -1;
4188 dd->disk.status = SPARE_DISK;
4189 dd->action = DISK_REMOVE;
4190
4191 dd->next = super->disk_mgmt_list;
4192 super->disk_mgmt_list = dd;
4193
4194
4195 return 0;
4196}
4197
4198static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4199
4200static union {
4201 char buf[512];
4202 struct imsm_super anchor;
4203} spare_record __attribute__ ((aligned(512)));
4204
4205/* spare records have their own family number and do not have any defined raid
4206 * devices
4207 */
4208static int write_super_imsm_spares(struct intel_super *super, int doclose)
4209{
4210 struct imsm_super *mpb = super->anchor;
4211 struct imsm_super *spare = &spare_record.anchor;
4212 __u32 sum;
4213 struct dl *d;
4214
4215 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4216 spare->generation_num = __cpu_to_le32(1UL),
4217 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4218 spare->num_disks = 1,
4219 spare->num_raid_devs = 0,
4220 spare->cache_size = mpb->cache_size,
4221 spare->pwr_cycle_count = __cpu_to_le32(1),
4222
4223 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4224 MPB_SIGNATURE MPB_VERSION_RAID0);
4225
4226 for (d = super->disks; d; d = d->next) {
4227 if (d->index != -1)
4228 continue;
4229
4230 spare->disk[0] = d->disk;
4231 sum = __gen_imsm_checksum(spare);
4232 spare->family_num = __cpu_to_le32(sum);
4233 spare->orig_family_num = 0;
4234 sum = __gen_imsm_checksum(spare);
4235 spare->check_sum = __cpu_to_le32(sum);
4236
4237 if (store_imsm_mpb(d->fd, spare)) {
4238 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4239 __func__, d->major, d->minor, strerror(errno));
4240 return 1;
4241 }
4242 if (doclose) {
4243 close(d->fd);
4244 d->fd = -1;
4245 }
4246 }
4247
4248 return 0;
4249}
4250
4251static int write_super_imsm(struct supertype *st, int doclose)
4252{
4253 struct intel_super *super = st->sb;
4254 struct imsm_super *mpb = super->anchor;
4255 struct dl *d;
4256 __u32 generation;
4257 __u32 sum;
4258 int spares = 0;
4259 int i;
4260 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
4261 int num_disks = 0;
4262
4263 /* 'generation' is incremented everytime the metadata is written */
4264 generation = __le32_to_cpu(mpb->generation_num);
4265 generation++;
4266 mpb->generation_num = __cpu_to_le32(generation);
4267
4268 /* fix up cases where previous mdadm releases failed to set
4269 * orig_family_num
4270 */
4271 if (mpb->orig_family_num == 0)
4272 mpb->orig_family_num = mpb->family_num;
4273
4274 for (d = super->disks; d; d = d->next) {
4275 if (d->index == -1)
4276 spares++;
4277 else {
4278 mpb->disk[d->index] = d->disk;
4279 num_disks++;
4280 }
4281 }
4282 for (d = super->missing; d; d = d->next) {
4283 mpb->disk[d->index] = d->disk;
4284 num_disks++;
4285 }
4286 mpb->num_disks = num_disks;
4287 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
4288
4289 for (i = 0; i < mpb->num_raid_devs; i++) {
4290 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
4291 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4292 if (dev && dev2) {
4293 imsm_copy_dev(dev, dev2);
4294 mpb_size += sizeof_imsm_dev(dev, 0);
4295 }
4296 }
4297 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4298 mpb->mpb_size = __cpu_to_le32(mpb_size);
4299
4300 /* recalculate checksum */
4301 sum = __gen_imsm_checksum(mpb);
4302 mpb->check_sum = __cpu_to_le32(sum);
4303
4304 /* write the mpb for disks that compose raid devices */
4305 for (d = super->disks; d ; d = d->next) {
4306 if (d->index < 0)
4307 continue;
4308 if (store_imsm_mpb(d->fd, mpb))
4309 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4310 __func__, d->major, d->minor, strerror(errno));
4311 if (doclose) {
4312 close(d->fd);
4313 d->fd = -1;
4314 }
4315 }
4316
4317 if (spares)
4318 return write_super_imsm_spares(super, doclose);
4319
4320 return 0;
4321}
4322
4323
4324static int create_array(struct supertype *st, int dev_idx)
4325{
4326 size_t len;
4327 struct imsm_update_create_array *u;
4328 struct intel_super *super = st->sb;
4329 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
4330 struct imsm_map *map = get_imsm_map(dev, 0);
4331 struct disk_info *inf;
4332 struct imsm_disk *disk;
4333 int i;
4334
4335 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4336 sizeof(*inf) * map->num_members;
4337 u = malloc(len);
4338 if (!u) {
4339 fprintf(stderr, "%s: failed to allocate update buffer\n",
4340 __func__);
4341 return 1;
4342 }
4343
4344 u->type = update_create_array;
4345 u->dev_idx = dev_idx;
4346 imsm_copy_dev(&u->dev, dev);
4347 inf = get_disk_info(u);
4348 for (i = 0; i < map->num_members; i++) {
4349 int idx = get_imsm_disk_idx(dev, i, -1);
4350
4351 disk = get_imsm_disk(super, idx);
4352 serialcpy(inf[i].serial, disk->serial);
4353 }
4354 append_metadata_update(st, u, len);
4355
4356 return 0;
4357}
4358
4359static int mgmt_disk(struct supertype *st)
4360{
4361 struct intel_super *super = st->sb;
4362 size_t len;
4363 struct imsm_update_add_remove_disk *u;
4364
4365 if (!super->disk_mgmt_list)
4366 return 0;
4367
4368 len = sizeof(*u);
4369 u = malloc(len);
4370 if (!u) {
4371 fprintf(stderr, "%s: failed to allocate update buffer\n",
4372 __func__);
4373 return 1;
4374 }
4375
4376 u->type = update_add_remove_disk;
4377 append_metadata_update(st, u, len);
4378
4379 return 0;
4380}
4381
4382static int write_init_super_imsm(struct supertype *st)
4383{
4384 struct intel_super *super = st->sb;
4385 int current_vol = super->current_vol;
4386
4387 /* we are done with current_vol reset it to point st at the container */
4388 super->current_vol = -1;
4389
4390 if (st->update_tail) {
4391 /* queue the recently created array / added disk
4392 * as a metadata update */
4393 int rv;
4394
4395 /* determine if we are creating a volume or adding a disk */
4396 if (current_vol < 0) {
4397 /* in the mgmt (add/remove) disk case we are running
4398 * in mdmon context, so don't close fd's
4399 */
4400 return mgmt_disk(st);
4401 } else
4402 rv = create_array(st, current_vol);
4403
4404 return rv;
4405 } else {
4406 struct dl *d;
4407 for (d = super->disks; d; d = d->next)
4408 Kill(d->devname, NULL, 0, 1, 1);
4409 return write_super_imsm(st, 1);
4410 }
4411}
4412#endif
4413
4414static int store_super_imsm(struct supertype *st, int fd)
4415{
4416 struct intel_super *super = st->sb;
4417 struct imsm_super *mpb = super ? super->anchor : NULL;
4418
4419 if (!mpb)
4420 return 1;
4421
4422#ifndef MDASSEMBLE
4423 return store_imsm_mpb(fd, mpb);
4424#else
4425 return 1;
4426#endif
4427}
4428
4429static int imsm_bbm_log_size(struct imsm_super *mpb)
4430{
4431 return __le32_to_cpu(mpb->bbm_log_size);
4432}
4433
4434#ifndef MDASSEMBLE
4435static int validate_geometry_imsm_container(struct supertype *st, int level,
4436 int layout, int raiddisks, int chunk,
4437 unsigned long long size, char *dev,
4438 unsigned long long *freesize,
4439 int verbose)
4440{
4441 int fd;
4442 unsigned long long ldsize;
4443 struct intel_super *super=NULL;
4444 int rv = 0;
4445
4446 if (level != LEVEL_CONTAINER)
4447 return 0;
4448 if (!dev)
4449 return 1;
4450
4451 fd = open(dev, O_RDONLY|O_EXCL, 0);
4452 if (fd < 0) {
4453 if (verbose)
4454 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4455 dev, strerror(errno));
4456 return 0;
4457 }
4458 if (!get_dev_size(fd, dev, &ldsize)) {
4459 close(fd);
4460 return 0;
4461 }
4462
4463 /* capabilities retrieve could be possible
4464 * note that there is no fd for the disks in array.
4465 */
4466 super = alloc_super();
4467 if (!super) {
4468 fprintf(stderr,
4469 Name ": malloc of %zu failed.\n",
4470 sizeof(*super));
4471 close(fd);
4472 return 0;
4473 }
4474
4475 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
4476 if (rv != 0) {
4477#if DEBUG
4478 char str[256];
4479 fd2devname(fd, str);
4480 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4481 fd, str, super->orom, rv, raiddisks);
4482#endif
4483 /* no orom/efi or non-intel hba of the disk */
4484 close(fd);
4485 free_imsm(super);
4486 return 0;
4487 }
4488 close(fd);
4489 if (super->orom && raiddisks > super->orom->tds) {
4490 if (verbose)
4491 fprintf(stderr, Name ": %d exceeds maximum number of"
4492 " platform supported disks: %d\n",
4493 raiddisks, super->orom->tds);
4494
4495 free_imsm(super);
4496 return 0;
4497 }
4498
4499 *freesize = avail_size_imsm(st, ldsize >> 9);
4500 free_imsm(super);
4501
4502 return 1;
4503}
4504
4505static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4506{
4507 const unsigned long long base_start = e[*idx].start;
4508 unsigned long long end = base_start + e[*idx].size;
4509 int i;
4510
4511 if (base_start == end)
4512 return 0;
4513
4514 *idx = *idx + 1;
4515 for (i = *idx; i < num_extents; i++) {
4516 /* extend overlapping extents */
4517 if (e[i].start >= base_start &&
4518 e[i].start <= end) {
4519 if (e[i].size == 0)
4520 return 0;
4521 if (e[i].start + e[i].size > end)
4522 end = e[i].start + e[i].size;
4523 } else if (e[i].start > end) {
4524 *idx = i;
4525 break;
4526 }
4527 }
4528
4529 return end - base_start;
4530}
4531
4532static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4533{
4534 /* build a composite disk with all known extents and generate a new
4535 * 'maxsize' given the "all disks in an array must share a common start
4536 * offset" constraint
4537 */
4538 struct extent *e = calloc(sum_extents, sizeof(*e));
4539 struct dl *dl;
4540 int i, j;
4541 int start_extent;
4542 unsigned long long pos;
4543 unsigned long long start = 0;
4544 unsigned long long maxsize;
4545 unsigned long reserve;
4546
4547 if (!e)
4548 return 0;
4549
4550 /* coalesce and sort all extents. also, check to see if we need to
4551 * reserve space between member arrays
4552 */
4553 j = 0;
4554 for (dl = super->disks; dl; dl = dl->next) {
4555 if (!dl->e)
4556 continue;
4557 for (i = 0; i < dl->extent_cnt; i++)
4558 e[j++] = dl->e[i];
4559 }
4560 qsort(e, sum_extents, sizeof(*e), cmp_extent);
4561
4562 /* merge extents */
4563 i = 0;
4564 j = 0;
4565 while (i < sum_extents) {
4566 e[j].start = e[i].start;
4567 e[j].size = find_size(e, &i, sum_extents);
4568 j++;
4569 if (e[j-1].size == 0)
4570 break;
4571 }
4572
4573 pos = 0;
4574 maxsize = 0;
4575 start_extent = 0;
4576 i = 0;
4577 do {
4578 unsigned long long esize;
4579
4580 esize = e[i].start - pos;
4581 if (esize >= maxsize) {
4582 maxsize = esize;
4583 start = pos;
4584 start_extent = i;
4585 }
4586 pos = e[i].start + e[i].size;
4587 i++;
4588 } while (e[i-1].size);
4589 free(e);
4590
4591 if (maxsize == 0)
4592 return 0;
4593
4594 /* FIXME assumes volume at offset 0 is the first volume in a
4595 * container
4596 */
4597 if (start_extent > 0)
4598 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
4599 else
4600 reserve = 0;
4601
4602 if (maxsize < reserve)
4603 return 0;
4604
4605 super->create_offset = ~((__u32) 0);
4606 if (start + reserve > super->create_offset)
4607 return 0; /* start overflows create_offset */
4608 super->create_offset = start + reserve;
4609
4610 return maxsize - reserve;
4611}
4612
4613static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
4614{
4615 if (level < 0 || level == 6 || level == 4)
4616 return 0;
4617
4618 /* if we have an orom prevent invalid raid levels */
4619 if (orom)
4620 switch (level) {
4621 case 0: return imsm_orom_has_raid0(orom);
4622 case 1:
4623 if (raiddisks > 2)
4624 return imsm_orom_has_raid1e(orom);
4625 return imsm_orom_has_raid1(orom) && raiddisks == 2;
4626 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
4627 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
4628 }
4629 else
4630 return 1; /* not on an Intel RAID platform so anything goes */
4631
4632 return 0;
4633}
4634
4635
4636#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
4637/*
4638 * validate volume parameters with OROM/EFI capabilities
4639 */
4640static int
4641validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
4642 int raiddisks, int *chunk, int verbose)
4643{
4644#if DEBUG
4645 verbose = 1;
4646#endif
4647 /* validate container capabilities */
4648 if (super->orom && raiddisks > super->orom->tds) {
4649 if (verbose)
4650 fprintf(stderr, Name ": %d exceeds maximum number of"
4651 " platform supported disks: %d\n",
4652 raiddisks, super->orom->tds);
4653 return 0;
4654 }
4655
4656 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
4657 if (super->orom && (!is_raid_level_supported(super->orom, level,
4658 raiddisks))) {
4659 pr_vrb(": platform does not support raid%d with %d disk%s\n",
4660 level, raiddisks, raiddisks > 1 ? "s" : "");
4661 return 0;
4662 }
4663 if (super->orom && level != 1) {
4664 if (chunk && (*chunk == 0 || *chunk == UnSet))
4665 *chunk = imsm_orom_default_chunk(super->orom);
4666 else if (chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
4667 pr_vrb(": platform does not support a chunk size of: "
4668 "%d\n", *chunk);
4669 return 0;
4670 }
4671 }
4672 if (layout != imsm_level_to_layout(level)) {
4673 if (level == 5)
4674 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
4675 else if (level == 10)
4676 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
4677 else
4678 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
4679 layout, level);
4680 return 0;
4681 }
4682 return 1;
4683}
4684
4685/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
4686 * FIX ME add ahci details
4687 */
4688static int validate_geometry_imsm_volume(struct supertype *st, int level,
4689 int layout, int raiddisks, int *chunk,
4690 unsigned long long size, char *dev,
4691 unsigned long long *freesize,
4692 int verbose)
4693{
4694 struct stat stb;
4695 struct intel_super *super = st->sb;
4696 struct imsm_super *mpb = super->anchor;
4697 struct dl *dl;
4698 unsigned long long pos = 0;
4699 unsigned long long maxsize;
4700 struct extent *e;
4701 int i;
4702
4703 /* We must have the container info already read in. */
4704 if (!super)
4705 return 0;
4706
4707 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
4708 fprintf(stderr, Name ": RAID gemetry validation failed. "
4709 "Cannot proceed with the action(s).\n");
4710 return 0;
4711 }
4712 if (!dev) {
4713 /* General test: make sure there is space for
4714 * 'raiddisks' device extents of size 'size' at a given
4715 * offset
4716 */
4717 unsigned long long minsize = size;
4718 unsigned long long start_offset = MaxSector;
4719 int dcnt = 0;
4720 if (minsize == 0)
4721 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
4722 for (dl = super->disks; dl ; dl = dl->next) {
4723 int found = 0;
4724
4725 pos = 0;
4726 i = 0;
4727 e = get_extents(super, dl);
4728 if (!e) continue;
4729 do {
4730 unsigned long long esize;
4731 esize = e[i].start - pos;
4732 if (esize >= minsize)
4733 found = 1;
4734 if (found && start_offset == MaxSector) {
4735 start_offset = pos;
4736 break;
4737 } else if (found && pos != start_offset) {
4738 found = 0;
4739 break;
4740 }
4741 pos = e[i].start + e[i].size;
4742 i++;
4743 } while (e[i-1].size);
4744 if (found)
4745 dcnt++;
4746 free(e);
4747 }
4748 if (dcnt < raiddisks) {
4749 if (verbose)
4750 fprintf(stderr, Name ": imsm: Not enough "
4751 "devices with space for this array "
4752 "(%d < %d)\n",
4753 dcnt, raiddisks);
4754 return 0;
4755 }
4756 return 1;
4757 }
4758
4759 /* This device must be a member of the set */
4760 if (stat(dev, &stb) < 0)
4761 return 0;
4762 if ((S_IFMT & stb.st_mode) != S_IFBLK)
4763 return 0;
4764 for (dl = super->disks ; dl ; dl = dl->next) {
4765 if (dl->major == (int)major(stb.st_rdev) &&
4766 dl->minor == (int)minor(stb.st_rdev))
4767 break;
4768 }
4769 if (!dl) {
4770 if (verbose)
4771 fprintf(stderr, Name ": %s is not in the "
4772 "same imsm set\n", dev);
4773 return 0;
4774 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
4775 /* If a volume is present then the current creation attempt
4776 * cannot incorporate new spares because the orom may not
4777 * understand this configuration (all member disks must be
4778 * members of each array in the container).
4779 */
4780 fprintf(stderr, Name ": %s is a spare and a volume"
4781 " is already defined for this container\n", dev);
4782 fprintf(stderr, Name ": The option-rom requires all member"
4783 " disks to be a member of all volumes\n");
4784 return 0;
4785 }
4786
4787 /* retrieve the largest free space block */
4788 e = get_extents(super, dl);
4789 maxsize = 0;
4790 i = 0;
4791 if (e) {
4792 do {
4793 unsigned long long esize;
4794
4795 esize = e[i].start - pos;
4796 if (esize >= maxsize)
4797 maxsize = esize;
4798 pos = e[i].start + e[i].size;
4799 i++;
4800 } while (e[i-1].size);
4801 dl->e = e;
4802 dl->extent_cnt = i;
4803 } else {
4804 if (verbose)
4805 fprintf(stderr, Name ": unable to determine free space for: %s\n",
4806 dev);
4807 return 0;
4808 }
4809 if (maxsize < size) {
4810 if (verbose)
4811 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
4812 dev, maxsize, size);
4813 return 0;
4814 }
4815
4816 /* count total number of extents for merge */
4817 i = 0;
4818 for (dl = super->disks; dl; dl = dl->next)
4819 if (dl->e)
4820 i += dl->extent_cnt;
4821
4822 maxsize = merge_extents(super, i);
4823 if (maxsize < size || maxsize == 0) {
4824 if (verbose)
4825 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
4826 maxsize, size);
4827 return 0;
4828 }
4829
4830 *freesize = maxsize;
4831
4832 return 1;
4833}
4834
4835static int reserve_space(struct supertype *st, int raiddisks,
4836 unsigned long long size, int chunk,
4837 unsigned long long *freesize)
4838{
4839 struct intel_super *super = st->sb;
4840 struct imsm_super *mpb = super->anchor;
4841 struct dl *dl;
4842 int i;
4843 int extent_cnt;
4844 struct extent *e;
4845 unsigned long long maxsize;
4846 unsigned long long minsize;
4847 int cnt;
4848 int used;
4849
4850 /* find the largest common start free region of the possible disks */
4851 used = 0;
4852 extent_cnt = 0;
4853 cnt = 0;
4854 for (dl = super->disks; dl; dl = dl->next) {
4855 dl->raiddisk = -1;
4856
4857 if (dl->index >= 0)
4858 used++;
4859
4860 /* don't activate new spares if we are orom constrained
4861 * and there is already a volume active in the container
4862 */
4863 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
4864 continue;
4865
4866 e = get_extents(super, dl);
4867 if (!e)
4868 continue;
4869 for (i = 1; e[i-1].size; i++)
4870 ;
4871 dl->e = e;
4872 dl->extent_cnt = i;
4873 extent_cnt += i;
4874 cnt++;
4875 }
4876
4877 maxsize = merge_extents(super, extent_cnt);
4878 minsize = size;
4879 if (size == 0)
4880 /* chunk is in K */
4881 minsize = chunk * 2;
4882
4883 if (cnt < raiddisks ||
4884 (super->orom && used && used != raiddisks) ||
4885 maxsize < minsize ||
4886 maxsize == 0) {
4887 fprintf(stderr, Name ": not enough devices with space to create array.\n");
4888 return 0; /* No enough free spaces large enough */
4889 }
4890
4891 if (size == 0) {
4892 size = maxsize;
4893 if (chunk) {
4894 size /= 2 * chunk;
4895 size *= 2 * chunk;
4896 }
4897 }
4898
4899 cnt = 0;
4900 for (dl = super->disks; dl; dl = dl->next)
4901 if (dl->e)
4902 dl->raiddisk = cnt++;
4903
4904 *freesize = size;
4905
4906 return 1;
4907}
4908
4909static int validate_geometry_imsm(struct supertype *st, int level, int layout,
4910 int raiddisks, int *chunk, unsigned long long size,
4911 char *dev, unsigned long long *freesize,
4912 int verbose)
4913{
4914 int fd, cfd;
4915 struct mdinfo *sra;
4916 int is_member = 0;
4917
4918 /* load capability
4919 * if given unused devices create a container
4920 * if given given devices in a container create a member volume
4921 */
4922 if (level == LEVEL_CONTAINER) {
4923 /* Must be a fresh device to add to a container */
4924 return validate_geometry_imsm_container(st, level, layout,
4925 raiddisks,
4926 chunk?*chunk:0, size,
4927 dev, freesize,
4928 verbose);
4929 }
4930
4931 if (!dev) {
4932 if (st->sb && freesize) {
4933 /* we are being asked to automatically layout a
4934 * new volume based on the current contents of
4935 * the container. If the the parameters can be
4936 * satisfied reserve_space will record the disks,
4937 * start offset, and size of the volume to be
4938 * created. add_to_super and getinfo_super
4939 * detect when autolayout is in progress.
4940 */
4941 if (!validate_geometry_imsm_orom(st->sb, level, layout,
4942 raiddisks, chunk,
4943 verbose))
4944 return 0;
4945 return reserve_space(st, raiddisks, size,
4946 chunk?*chunk:0, freesize);
4947 }
4948 return 1;
4949 }
4950 if (st->sb) {
4951 /* creating in a given container */
4952 return validate_geometry_imsm_volume(st, level, layout,
4953 raiddisks, chunk, size,
4954 dev, freesize, verbose);
4955 }
4956
4957 /* This device needs to be a device in an 'imsm' container */
4958 fd = open(dev, O_RDONLY|O_EXCL, 0);
4959 if (fd >= 0) {
4960 if (verbose)
4961 fprintf(stderr,
4962 Name ": Cannot create this array on device %s\n",
4963 dev);
4964 close(fd);
4965 return 0;
4966 }
4967 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
4968 if (verbose)
4969 fprintf(stderr, Name ": Cannot open %s: %s\n",
4970 dev, strerror(errno));
4971 return 0;
4972 }
4973 /* Well, it is in use by someone, maybe an 'imsm' container. */
4974 cfd = open_container(fd);
4975 close(fd);
4976 if (cfd < 0) {
4977 if (verbose)
4978 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
4979 dev);
4980 return 0;
4981 }
4982 sra = sysfs_read(cfd, 0, GET_VERSION);
4983 if (sra && sra->array.major_version == -1 &&
4984 strcmp(sra->text_version, "imsm") == 0)
4985 is_member = 1;
4986 sysfs_free(sra);
4987 if (is_member) {
4988 /* This is a member of a imsm container. Load the container
4989 * and try to create a volume
4990 */
4991 struct intel_super *super;
4992
4993 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
4994 st->sb = super;
4995 st->container_dev = fd2devnum(cfd);
4996 close(cfd);
4997 return validate_geometry_imsm_volume(st, level, layout,
4998 raiddisks, chunk,
4999 size, dev,
5000 freesize, verbose);
5001 }
5002 }
5003
5004 if (verbose)
5005 fprintf(stderr, Name ": failed container membership check\n");
5006
5007 close(cfd);
5008 return 0;
5009}
5010
5011static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
5012{
5013 struct intel_super *super = st->sb;
5014
5015 if (level && *level == UnSet)
5016 *level = LEVEL_CONTAINER;
5017
5018 if (level && layout && *layout == UnSet)
5019 *layout = imsm_level_to_layout(*level);
5020
5021 if (chunk && (*chunk == UnSet || *chunk == 0) &&
5022 super && super->orom)
5023 *chunk = imsm_orom_default_chunk(super->orom);
5024}
5025
5026static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5027
5028static int kill_subarray_imsm(struct supertype *st)
5029{
5030 /* remove the subarray currently referenced by ->current_vol */
5031 __u8 i;
5032 struct intel_dev **dp;
5033 struct intel_super *super = st->sb;
5034 __u8 current_vol = super->current_vol;
5035 struct imsm_super *mpb = super->anchor;
5036
5037 if (super->current_vol < 0)
5038 return 2;
5039 super->current_vol = -1; /* invalidate subarray cursor */
5040
5041 /* block deletions that would change the uuid of active subarrays
5042 *
5043 * FIXME when immutable ids are available, but note that we'll
5044 * also need to fixup the invalidated/active subarray indexes in
5045 * mdstat
5046 */
5047 for (i = 0; i < mpb->num_raid_devs; i++) {
5048 char subarray[4];
5049
5050 if (i < current_vol)
5051 continue;
5052 sprintf(subarray, "%u", i);
5053 if (is_subarray_active(subarray, st->devname)) {
5054 fprintf(stderr,
5055 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5056 current_vol, i);
5057
5058 return 2;
5059 }
5060 }
5061
5062 if (st->update_tail) {
5063 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5064
5065 if (!u)
5066 return 2;
5067 u->type = update_kill_array;
5068 u->dev_idx = current_vol;
5069 append_metadata_update(st, u, sizeof(*u));
5070
5071 return 0;
5072 }
5073
5074 for (dp = &super->devlist; *dp;)
5075 if ((*dp)->index == current_vol) {
5076 *dp = (*dp)->next;
5077 } else {
5078 handle_missing(super, (*dp)->dev);
5079 if ((*dp)->index > current_vol)
5080 (*dp)->index--;
5081 dp = &(*dp)->next;
5082 }
5083
5084 /* no more raid devices, all active components are now spares,
5085 * but of course failed are still failed
5086 */
5087 if (--mpb->num_raid_devs == 0) {
5088 struct dl *d;
5089
5090 for (d = super->disks; d; d = d->next)
5091 if (d->index > -2) {
5092 d->index = -1;
5093 d->disk.status = SPARE_DISK;
5094 }
5095 }
5096
5097 super->updates_pending++;
5098
5099 return 0;
5100}
5101
5102static int update_subarray_imsm(struct supertype *st, char *subarray,
5103 char *update, struct mddev_ident *ident)
5104{
5105 /* update the subarray currently referenced by ->current_vol */
5106 struct intel_super *super = st->sb;
5107 struct imsm_super *mpb = super->anchor;
5108
5109 if (strcmp(update, "name") == 0) {
5110 char *name = ident->name;
5111 char *ep;
5112 int vol;
5113
5114 if (is_subarray_active(subarray, st->devname)) {
5115 fprintf(stderr,
5116 Name ": Unable to update name of active subarray\n");
5117 return 2;
5118 }
5119
5120 if (!check_name(super, name, 0))
5121 return 2;
5122
5123 vol = strtoul(subarray, &ep, 10);
5124 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5125 return 2;
5126
5127 if (st->update_tail) {
5128 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5129
5130 if (!u)
5131 return 2;
5132 u->type = update_rename_array;
5133 u->dev_idx = vol;
5134 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5135 append_metadata_update(st, u, sizeof(*u));
5136 } else {
5137 struct imsm_dev *dev;
5138 int i;
5139
5140 dev = get_imsm_dev(super, vol);
5141 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5142 for (i = 0; i < mpb->num_raid_devs; i++) {
5143 dev = get_imsm_dev(super, i);
5144 handle_missing(super, dev);
5145 }
5146 super->updates_pending++;
5147 }
5148 } else
5149 return 2;
5150
5151 return 0;
5152}
5153
5154static int is_gen_migration(struct imsm_dev *dev)
5155{
5156 if (!dev->vol.migr_state)
5157 return 0;
5158
5159 if (migr_type(dev) == MIGR_GEN_MIGR)
5160 return 1;
5161
5162 return 0;
5163}
5164#endif /* MDASSEMBLE */
5165
5166static int is_rebuilding(struct imsm_dev *dev)
5167{
5168 struct imsm_map *migr_map;
5169
5170 if (!dev->vol.migr_state)
5171 return 0;
5172
5173 if (migr_type(dev) != MIGR_REBUILD)
5174 return 0;
5175
5176 migr_map = get_imsm_map(dev, 1);
5177
5178 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5179 return 1;
5180 else
5181 return 0;
5182}
5183
5184static void update_recovery_start(struct imsm_dev *dev, struct mdinfo *array)
5185{
5186 struct mdinfo *rebuild = NULL;
5187 struct mdinfo *d;
5188 __u32 units;
5189
5190 if (!is_rebuilding(dev))
5191 return;
5192
5193 /* Find the rebuild target, but punt on the dual rebuild case */
5194 for (d = array->devs; d; d = d->next)
5195 if (d->recovery_start == 0) {
5196 if (rebuild)
5197 return;
5198 rebuild = d;
5199 }
5200
5201 if (!rebuild) {
5202 /* (?) none of the disks are marked with
5203 * IMSM_ORD_REBUILD, so assume they are missing and the
5204 * disk_ord_tbl was not correctly updated
5205 */
5206 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5207 return;
5208 }
5209
5210 units = __le32_to_cpu(dev->vol.curr_migr_unit);
5211 rebuild->recovery_start = units * blocks_per_migr_unit(dev);
5212}
5213
5214
5215static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
5216{
5217 /* Given a container loaded by load_super_imsm_all,
5218 * extract information about all the arrays into
5219 * an mdinfo tree.
5220 * If 'subarray' is given, just extract info about that array.
5221 *
5222 * For each imsm_dev create an mdinfo, fill it in,
5223 * then look for matching devices in super->disks
5224 * and create appropriate device mdinfo.
5225 */
5226 struct intel_super *super = st->sb;
5227 struct imsm_super *mpb = super->anchor;
5228 struct mdinfo *rest = NULL;
5229 unsigned int i;
5230 int bbm_errors = 0;
5231 struct dl *d;
5232 int spare_disks = 0;
5233
5234 /* check for bad blocks */
5235 if (imsm_bbm_log_size(super->anchor))
5236 bbm_errors = 1;
5237
5238 /* count spare devices, not used in maps
5239 */
5240 for (d = super->disks; d; d = d->next)
5241 if (d->index == -1)
5242 spare_disks++;
5243
5244 for (i = 0; i < mpb->num_raid_devs; i++) {
5245 struct imsm_dev *dev;
5246 struct imsm_map *map;
5247 struct imsm_map *map2;
5248 struct mdinfo *this;
5249 int slot, chunk;
5250 char *ep;
5251
5252 if (subarray &&
5253 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5254 continue;
5255
5256 dev = get_imsm_dev(super, i);
5257 map = get_imsm_map(dev, 0);
5258 map2 = get_imsm_map(dev, 1);
5259
5260 /* do not publish arrays that are in the middle of an
5261 * unsupported migration
5262 */
5263 if (dev->vol.migr_state &&
5264 (migr_type(dev) == MIGR_STATE_CHANGE)) {
5265 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5266 " unsupported migration in progress\n",
5267 dev->volume);
5268 continue;
5269 }
5270 /* do not publish arrays that are not support by controller's
5271 * OROM/EFI
5272 */
5273
5274 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
5275#ifndef MDASSEMBLE
5276 if (!validate_geometry_imsm_orom(super,
5277 get_imsm_raid_level(map), /* RAID level */
5278 imsm_level_to_layout(get_imsm_raid_level(map)),
5279 map->num_members, /* raid disks */
5280 &chunk,
5281 1 /* verbose */)) {
5282 fprintf(stderr, Name ": RAID gemetry validation failed. "
5283 "Cannot proceed with the action(s).\n");
5284 continue;
5285 }
5286#endif /* MDASSEMBLE */
5287 this = malloc(sizeof(*this));
5288 if (!this) {
5289 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
5290 sizeof(*this));
5291 break;
5292 }
5293 memset(this, 0, sizeof(*this));
5294 this->next = rest;
5295
5296 super->current_vol = i;
5297 getinfo_super_imsm_volume(st, this, NULL);
5298 for (slot = 0 ; slot < map->num_members; slot++) {
5299 unsigned long long recovery_start;
5300 struct mdinfo *info_d;
5301 struct dl *d;
5302 int idx;
5303 int skip;
5304 __u32 ord;
5305
5306 skip = 0;
5307 idx = get_imsm_disk_idx(dev, slot, 0);
5308 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
5309 for (d = super->disks; d ; d = d->next)
5310 if (d->index == idx)
5311 break;
5312
5313 recovery_start = MaxSector;
5314 if (d == NULL)
5315 skip = 1;
5316 if (d && is_failed(&d->disk))
5317 skip = 1;
5318 if (ord & IMSM_ORD_REBUILD)
5319 recovery_start = 0;
5320
5321 /*
5322 * if we skip some disks the array will be assmebled degraded;
5323 * reset resync start to avoid a dirty-degraded
5324 * situation when performing the intial sync
5325 *
5326 * FIXME handle dirty degraded
5327 */
5328 if ((skip || recovery_start == 0) && !dev->vol.dirty)
5329 this->resync_start = MaxSector;
5330 if (skip)
5331 continue;
5332
5333 info_d = calloc(1, sizeof(*info_d));
5334 if (!info_d) {
5335 fprintf(stderr, Name ": failed to allocate disk"
5336 " for volume %.16s\n", dev->volume);
5337 info_d = this->devs;
5338 while (info_d) {
5339 struct mdinfo *d = info_d->next;
5340
5341 free(info_d);
5342 info_d = d;
5343 }
5344 free(this);
5345 this = rest;
5346 break;
5347 }
5348 info_d->next = this->devs;
5349 this->devs = info_d;
5350
5351 info_d->disk.number = d->index;
5352 info_d->disk.major = d->major;
5353 info_d->disk.minor = d->minor;
5354 info_d->disk.raid_disk = slot;
5355 info_d->recovery_start = recovery_start;
5356 if (map2) {
5357 if (slot < map2->num_members)
5358 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5359 else
5360 this->array.spare_disks++;
5361 } else {
5362 if (slot < map->num_members)
5363 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5364 else
5365 this->array.spare_disks++;
5366 }
5367 if (info_d->recovery_start == MaxSector)
5368 this->array.working_disks++;
5369
5370 info_d->events = __le32_to_cpu(mpb->generation_num);
5371 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5372 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
5373 }
5374 /* now that the disk list is up-to-date fixup recovery_start */
5375 update_recovery_start(dev, this);
5376 this->array.spare_disks += spare_disks;
5377 rest = this;
5378 }
5379
5380 /* if array has bad blocks, set suitable bit in array status */
5381 if (bbm_errors)
5382 rest->array.state |= (1<<MD_SB_BBM_ERRORS);
5383
5384 return rest;
5385}
5386
5387
5388static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
5389{
5390 struct imsm_map *map = get_imsm_map(dev, 0);
5391
5392 if (!failed)
5393 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5394 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
5395
5396 switch (get_imsm_raid_level(map)) {
5397 case 0:
5398 return IMSM_T_STATE_FAILED;
5399 break;
5400 case 1:
5401 if (failed < map->num_members)
5402 return IMSM_T_STATE_DEGRADED;
5403 else
5404 return IMSM_T_STATE_FAILED;
5405 break;
5406 case 10:
5407 {
5408 /**
5409 * check to see if any mirrors have failed, otherwise we
5410 * are degraded. Even numbered slots are mirrored on
5411 * slot+1
5412 */
5413 int i;
5414 /* gcc -Os complains that this is unused */
5415 int insync = insync;
5416
5417 for (i = 0; i < map->num_members; i++) {
5418 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
5419 int idx = ord_to_idx(ord);
5420 struct imsm_disk *disk;
5421
5422 /* reset the potential in-sync count on even-numbered
5423 * slots. num_copies is always 2 for imsm raid10
5424 */
5425 if ((i & 1) == 0)
5426 insync = 2;
5427
5428 disk = get_imsm_disk(super, idx);
5429 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5430 insync--;
5431
5432 /* no in-sync disks left in this mirror the
5433 * array has failed
5434 */
5435 if (insync == 0)
5436 return IMSM_T_STATE_FAILED;
5437 }
5438
5439 return IMSM_T_STATE_DEGRADED;
5440 }
5441 case 5:
5442 if (failed < 2)
5443 return IMSM_T_STATE_DEGRADED;
5444 else
5445 return IMSM_T_STATE_FAILED;
5446 break;
5447 default:
5448 break;
5449 }
5450
5451 return map->map_state;
5452}
5453
5454static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
5455{
5456 int i;
5457 int failed = 0;
5458 struct imsm_disk *disk;
5459 struct imsm_map *map = get_imsm_map(dev, 0);
5460 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
5461 __u32 ord;
5462 int idx;
5463
5464 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5465 * disks that are being rebuilt. New failures are recorded to
5466 * map[0]. So we look through all the disks we started with and
5467 * see if any failures are still present, or if any new ones
5468 * have arrived
5469 *
5470 * FIXME add support for online capacity expansion and
5471 * raid-level-migration
5472 */
5473 for (i = 0; i < prev->num_members; i++) {
5474 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
5475 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
5476 idx = ord_to_idx(ord);
5477
5478 disk = get_imsm_disk(super, idx);
5479 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5480 failed++;
5481 }
5482
5483 return failed;
5484}
5485
5486#ifndef MDASSEMBLE
5487static int imsm_open_new(struct supertype *c, struct active_array *a,
5488 char *inst)
5489{
5490 struct intel_super *super = c->sb;
5491 struct imsm_super *mpb = super->anchor;
5492
5493 if (atoi(inst) >= mpb->num_raid_devs) {
5494 fprintf(stderr, "%s: subarry index %d, out of range\n",
5495 __func__, atoi(inst));
5496 return -ENODEV;
5497 }
5498
5499 dprintf("imsm: open_new %s\n", inst);
5500 a->info.container_member = atoi(inst);
5501 return 0;
5502}
5503
5504static int is_resyncing(struct imsm_dev *dev)
5505{
5506 struct imsm_map *migr_map;
5507
5508 if (!dev->vol.migr_state)
5509 return 0;
5510
5511 if (migr_type(dev) == MIGR_INIT ||
5512 migr_type(dev) == MIGR_REPAIR)
5513 return 1;
5514
5515 if (migr_type(dev) == MIGR_GEN_MIGR)
5516 return 0;
5517
5518 migr_map = get_imsm_map(dev, 1);
5519
5520 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
5521 (dev->vol.migr_type != MIGR_GEN_MIGR))
5522 return 1;
5523 else
5524 return 0;
5525}
5526
5527/* return true if we recorded new information */
5528static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5529{
5530 __u32 ord;
5531 int slot;
5532 struct imsm_map *map;
5533
5534 /* new failures are always set in map[0] */
5535 map = get_imsm_map(dev, 0);
5536
5537 slot = get_imsm_disk_slot(map, idx);
5538 if (slot < 0)
5539 return 0;
5540
5541 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
5542 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
5543 return 0;
5544
5545 disk->status |= FAILED_DISK;
5546 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
5547 if (map->failed_disk_num == 0xff)
5548 map->failed_disk_num = slot;
5549 return 1;
5550}
5551
5552static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5553{
5554 mark_failure(dev, disk, idx);
5555
5556 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
5557 return;
5558
5559 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5560 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
5561}
5562
5563static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
5564{
5565 __u8 map_state;
5566 struct dl *dl;
5567 int failed;
5568
5569 if (!super->missing)
5570 return;
5571 failed = imsm_count_failed(super, dev);
5572 map_state = imsm_check_degraded(super, dev, failed);
5573
5574 dprintf("imsm: mark missing\n");
5575 end_migration(dev, map_state);
5576 for (dl = super->missing; dl; dl = dl->next)
5577 mark_missing(dev, &dl->disk, dl->index);
5578 super->updates_pending++;
5579}
5580
5581static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
5582{
5583 int used_disks = imsm_num_data_members(dev, 0);
5584 unsigned long long array_blocks;
5585 struct imsm_map *map;
5586
5587 if (used_disks == 0) {
5588 /* when problems occures
5589 * return current array_blocks value
5590 */
5591 array_blocks = __le32_to_cpu(dev->size_high);
5592 array_blocks = array_blocks << 32;
5593 array_blocks += __le32_to_cpu(dev->size_low);
5594
5595 return array_blocks;
5596 }
5597
5598 /* set array size in metadata
5599 */
5600 map = get_imsm_map(dev, 0);
5601 array_blocks = map->blocks_per_member * used_disks;
5602
5603 /* round array size down to closest MB
5604 */
5605 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
5606 dev->size_low = __cpu_to_le32((__u32)array_blocks);
5607 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
5608
5609 return array_blocks;
5610}
5611
5612static void imsm_set_disk(struct active_array *a, int n, int state);
5613
5614static void imsm_progress_container_reshape(struct intel_super *super)
5615{
5616 /* if no device has a migr_state, but some device has a
5617 * different number of members than the previous device, start
5618 * changing the number of devices in this device to match
5619 * previous.
5620 */
5621 struct imsm_super *mpb = super->anchor;
5622 int prev_disks = -1;
5623 int i;
5624 int copy_map_size;
5625
5626 for (i = 0; i < mpb->num_raid_devs; i++) {
5627 struct imsm_dev *dev = get_imsm_dev(super, i);
5628 struct imsm_map *map = get_imsm_map(dev, 0);
5629 struct imsm_map *map2;
5630 int prev_num_members;
5631
5632 if (dev->vol.migr_state)
5633 return;
5634
5635 if (prev_disks == -1)
5636 prev_disks = map->num_members;
5637 if (prev_disks == map->num_members)
5638 continue;
5639
5640 /* OK, this array needs to enter reshape mode.
5641 * i.e it needs a migr_state
5642 */
5643
5644 copy_map_size = sizeof_imsm_map(map);
5645 prev_num_members = map->num_members;
5646 map->num_members = prev_disks;
5647 dev->vol.migr_state = 1;
5648 dev->vol.curr_migr_unit = 0;
5649 dev->vol.migr_type = MIGR_GEN_MIGR;
5650 for (i = prev_num_members;
5651 i < map->num_members; i++)
5652 set_imsm_ord_tbl_ent(map, i, i);
5653 map2 = get_imsm_map(dev, 1);
5654 /* Copy the current map */
5655 memcpy(map2, map, copy_map_size);
5656 map2->num_members = prev_num_members;
5657
5658 imsm_set_array_size(dev);
5659 super->updates_pending++;
5660 }
5661}
5662
5663/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
5664 * states are handled in imsm_set_disk() with one exception, when a
5665 * resync is stopped due to a new failure this routine will set the
5666 * 'degraded' state for the array.
5667 */
5668static int imsm_set_array_state(struct active_array *a, int consistent)
5669{
5670 int inst = a->info.container_member;
5671 struct intel_super *super = a->container->sb;
5672 struct imsm_dev *dev = get_imsm_dev(super, inst);
5673 struct imsm_map *map = get_imsm_map(dev, 0);
5674 int failed = imsm_count_failed(super, dev);
5675 __u8 map_state = imsm_check_degraded(super, dev, failed);
5676 __u32 blocks_per_unit;
5677
5678 if (dev->vol.migr_state &&
5679 dev->vol.migr_type == MIGR_GEN_MIGR) {
5680 /* array state change is blocked due to reshape action
5681 * We might need to
5682 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
5683 * - finish the reshape (if last_checkpoint is big and action != reshape)
5684 * - update curr_migr_unit
5685 */
5686 if (a->curr_action == reshape) {
5687 /* still reshaping, maybe update curr_migr_unit */
5688 goto mark_checkpoint;
5689 } else {
5690 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
5691 /* for some reason we aborted the reshape.
5692 * Better clean up
5693 */
5694 struct imsm_map *map2 = get_imsm_map(dev, 1);
5695 dev->vol.migr_state = 0;
5696 dev->vol.migr_type = 0;
5697 dev->vol.curr_migr_unit = 0;
5698 memcpy(map, map2, sizeof_imsm_map(map2));
5699 super->updates_pending++;
5700 }
5701 if (a->last_checkpoint >= a->info.component_size) {
5702 unsigned long long array_blocks;
5703 int used_disks;
5704 struct mdinfo *mdi;
5705
5706 used_disks = imsm_num_data_members(dev, 0);
5707 if (used_disks > 0) {
5708 array_blocks =
5709 map->blocks_per_member *
5710 used_disks;
5711 /* round array size down to closest MB
5712 */
5713 array_blocks = (array_blocks
5714 >> SECT_PER_MB_SHIFT)
5715 << SECT_PER_MB_SHIFT;
5716 a->info.custom_array_size = array_blocks;
5717 /* encourage manager to update array
5718 * size
5719 */
5720
5721 a->check_reshape = 1;
5722 }
5723 /* finalize online capacity expansion/reshape */
5724 for (mdi = a->info.devs; mdi; mdi = mdi->next)
5725 imsm_set_disk(a,
5726 mdi->disk.raid_disk,
5727 mdi->curr_state);
5728
5729 imsm_progress_container_reshape(super);
5730 }
5731 }
5732 }
5733
5734 /* before we activate this array handle any missing disks */
5735 if (consistent == 2)
5736 handle_missing(super, dev);
5737
5738 if (consistent == 2 &&
5739 (!is_resync_complete(&a->info) ||
5740 map_state != IMSM_T_STATE_NORMAL ||
5741 dev->vol.migr_state))
5742 consistent = 0;
5743
5744 if (is_resync_complete(&a->info)) {
5745 /* complete intialization / resync,
5746 * recovery and interrupted recovery is completed in
5747 * ->set_disk
5748 */
5749 if (is_resyncing(dev)) {
5750 dprintf("imsm: mark resync done\n");
5751 end_migration(dev, map_state);
5752 super->updates_pending++;
5753 a->last_checkpoint = 0;
5754 }
5755 } else if (!is_resyncing(dev) && !failed) {
5756 /* mark the start of the init process if nothing is failed */
5757 dprintf("imsm: mark resync start\n");
5758 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
5759 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
5760 else
5761 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
5762 super->updates_pending++;
5763 }
5764
5765mark_checkpoint:
5766 /* check if we can update curr_migr_unit from resync_start, recovery_start */
5767 blocks_per_unit = blocks_per_migr_unit(dev);
5768 if (blocks_per_unit) {
5769 __u32 units32;
5770 __u64 units;
5771
5772 units = a->last_checkpoint / blocks_per_unit;
5773 units32 = units;
5774
5775 /* check that we did not overflow 32-bits, and that
5776 * curr_migr_unit needs updating
5777 */
5778 if (units32 == units &&
5779 units32 != 0 &&
5780 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
5781 dprintf("imsm: mark checkpoint (%u)\n", units32);
5782 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
5783 super->updates_pending++;
5784 }
5785 }
5786
5787 /* mark dirty / clean */
5788 if (dev->vol.dirty != !consistent) {
5789 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
5790 if (consistent)
5791 dev->vol.dirty = 0;
5792 else
5793 dev->vol.dirty = 1;
5794 super->updates_pending++;
5795 }
5796
5797 return consistent;
5798}
5799
5800static void imsm_set_disk(struct active_array *a, int n, int state)
5801{
5802 int inst = a->info.container_member;
5803 struct intel_super *super = a->container->sb;
5804 struct imsm_dev *dev = get_imsm_dev(super, inst);
5805 struct imsm_map *map = get_imsm_map(dev, 0);
5806 struct imsm_disk *disk;
5807 int failed;
5808 __u32 ord;
5809 __u8 map_state;
5810
5811 if (n > map->num_members)
5812 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
5813 n, map->num_members - 1);
5814
5815 if (n < 0)
5816 return;
5817
5818 dprintf("imsm: set_disk %d:%x\n", n, state);
5819
5820 ord = get_imsm_ord_tbl_ent(dev, n, -1);
5821 disk = get_imsm_disk(super, ord_to_idx(ord));
5822
5823 /* check for new failures */
5824 if (state & DS_FAULTY) {
5825 if (mark_failure(dev, disk, ord_to_idx(ord)))
5826 super->updates_pending++;
5827 }
5828
5829 /* check if in_sync */
5830 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
5831 struct imsm_map *migr_map = get_imsm_map(dev, 1);
5832
5833 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
5834 super->updates_pending++;
5835 }
5836
5837 failed = imsm_count_failed(super, dev);
5838 map_state = imsm_check_degraded(super, dev, failed);
5839
5840 /* check if recovery complete, newly degraded, or failed */
5841 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
5842 end_migration(dev, map_state);
5843 map = get_imsm_map(dev, 0);
5844 map->failed_disk_num = ~0;
5845 super->updates_pending++;
5846 a->last_checkpoint = 0;
5847 } else if (map_state == IMSM_T_STATE_DEGRADED &&
5848 map->map_state != map_state &&
5849 !dev->vol.migr_state) {
5850 dprintf("imsm: mark degraded\n");
5851 map->map_state = map_state;
5852 super->updates_pending++;
5853 a->last_checkpoint = 0;
5854 } else if (map_state == IMSM_T_STATE_FAILED &&
5855 map->map_state != map_state) {
5856 dprintf("imsm: mark failed\n");
5857 end_migration(dev, map_state);
5858 super->updates_pending++;
5859 a->last_checkpoint = 0;
5860 } else if (is_gen_migration(dev)) {
5861 dprintf("imsm: Detected General Migration in state: ");
5862 if (map_state == IMSM_T_STATE_NORMAL) {
5863 end_migration(dev, map_state);
5864 map = get_imsm_map(dev, 0);
5865 map->failed_disk_num = ~0;
5866 dprintf("normal\n");
5867 } else {
5868 if (map_state == IMSM_T_STATE_DEGRADED) {
5869 printf("degraded\n");
5870 end_migration(dev, map_state);
5871 } else {
5872 dprintf("failed\n");
5873 }
5874 map->map_state = map_state;
5875 }
5876 super->updates_pending++;
5877 }
5878}
5879
5880static int store_imsm_mpb(int fd, struct imsm_super *mpb)
5881{
5882 void *buf = mpb;
5883 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
5884 unsigned long long dsize;
5885 unsigned long long sectors;
5886
5887 get_dev_size(fd, NULL, &dsize);
5888
5889 if (mpb_size > 512) {
5890 /* -1 to account for anchor */
5891 sectors = mpb_sectors(mpb) - 1;
5892
5893 /* write the extended mpb to the sectors preceeding the anchor */
5894 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
5895 return 1;
5896
5897 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
5898 != 512 * sectors)
5899 return 1;
5900 }
5901
5902 /* first block is stored on second to last sector of the disk */
5903 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
5904 return 1;
5905
5906 if (write(fd, buf, 512) != 512)
5907 return 1;
5908
5909 return 0;
5910}
5911
5912static void imsm_sync_metadata(struct supertype *container)
5913{
5914 struct intel_super *super = container->sb;
5915
5916 dprintf("sync metadata: %d\n", super->updates_pending);
5917 if (!super->updates_pending)
5918 return;
5919
5920 write_super_imsm(container, 0);
5921
5922 super->updates_pending = 0;
5923}
5924
5925static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
5926{
5927 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
5928 int i = get_imsm_disk_idx(dev, idx, -1);
5929 struct dl *dl;
5930
5931 for (dl = super->disks; dl; dl = dl->next)
5932 if (dl->index == i)
5933 break;
5934
5935 if (dl && is_failed(&dl->disk))
5936 dl = NULL;
5937
5938 if (dl)
5939 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
5940
5941 return dl;
5942}
5943
5944static struct dl *imsm_add_spare(struct intel_super *super, int slot,
5945 struct active_array *a, int activate_new,
5946 struct mdinfo *additional_test_list)
5947{
5948 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
5949 int idx = get_imsm_disk_idx(dev, slot, -1);
5950 struct imsm_super *mpb = super->anchor;
5951 struct imsm_map *map;
5952 unsigned long long pos;
5953 struct mdinfo *d;
5954 struct extent *ex;
5955 int i, j;
5956 int found;
5957 __u32 array_start = 0;
5958 __u32 array_end = 0;
5959 struct dl *dl;
5960 struct mdinfo *test_list;
5961
5962 for (dl = super->disks; dl; dl = dl->next) {
5963 /* If in this array, skip */
5964 for (d = a->info.devs ; d ; d = d->next)
5965 if (d->state_fd >= 0 &&
5966 d->disk.major == dl->major &&
5967 d->disk.minor == dl->minor) {
5968 dprintf("%x:%x already in array\n",
5969 dl->major, dl->minor);
5970 break;
5971 }
5972 if (d)
5973 continue;
5974 test_list = additional_test_list;
5975 while (test_list) {
5976 if (test_list->disk.major == dl->major &&
5977 test_list->disk.minor == dl->minor) {
5978 dprintf("%x:%x already in additional test list\n",
5979 dl->major, dl->minor);
5980 break;
5981 }
5982 test_list = test_list->next;
5983 }
5984 if (test_list)
5985 continue;
5986
5987 /* skip in use or failed drives */
5988 if (is_failed(&dl->disk) || idx == dl->index ||
5989 dl->index == -2) {
5990 dprintf("%x:%x status (failed: %d index: %d)\n",
5991 dl->major, dl->minor, is_failed(&dl->disk), idx);
5992 continue;
5993 }
5994
5995 /* skip pure spares when we are looking for partially
5996 * assimilated drives
5997 */
5998 if (dl->index == -1 && !activate_new)
5999 continue;
6000
6001 /* Does this unused device have the requisite free space?
6002 * It needs to be able to cover all member volumes
6003 */
6004 ex = get_extents(super, dl);
6005 if (!ex) {
6006 dprintf("cannot get extents\n");
6007 continue;
6008 }
6009 for (i = 0; i < mpb->num_raid_devs; i++) {
6010 dev = get_imsm_dev(super, i);
6011 map = get_imsm_map(dev, 0);
6012
6013 /* check if this disk is already a member of
6014 * this array
6015 */
6016 if (get_imsm_disk_slot(map, dl->index) >= 0)
6017 continue;
6018
6019 found = 0;
6020 j = 0;
6021 pos = 0;
6022 array_start = __le32_to_cpu(map->pba_of_lba0);
6023 array_end = array_start +
6024 __le32_to_cpu(map->blocks_per_member) - 1;
6025
6026 do {
6027 /* check that we can start at pba_of_lba0 with
6028 * blocks_per_member of space
6029 */
6030 if (array_start >= pos && array_end < ex[j].start) {
6031 found = 1;
6032 break;
6033 }
6034 pos = ex[j].start + ex[j].size;
6035 j++;
6036 } while (ex[j-1].size);
6037
6038 if (!found)
6039 break;
6040 }
6041
6042 free(ex);
6043 if (i < mpb->num_raid_devs) {
6044 dprintf("%x:%x does not have %u to %u available\n",
6045 dl->major, dl->minor, array_start, array_end);
6046 /* No room */
6047 continue;
6048 }
6049 return dl;
6050 }
6051
6052 return dl;
6053}
6054
6055
6056static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6057{
6058 struct imsm_dev *dev2;
6059 struct imsm_map *map;
6060 struct dl *idisk;
6061 int slot;
6062 int idx;
6063 __u8 state;
6064
6065 dev2 = get_imsm_dev(cont->sb, dev_idx);
6066 if (dev2) {
6067 state = imsm_check_degraded(cont->sb, dev2, failed);
6068 if (state == IMSM_T_STATE_FAILED) {
6069 map = get_imsm_map(dev2, 0);
6070 if (!map)
6071 return 1;
6072 for (slot = 0; slot < map->num_members; slot++) {
6073 /*
6074 * Check if failed disks are deleted from intel
6075 * disk list or are marked to be deleted
6076 */
6077 idx = get_imsm_disk_idx(dev2, slot, -1);
6078 idisk = get_imsm_dl_disk(cont->sb, idx);
6079 /*
6080 * Do not rebuild the array if failed disks
6081 * from failed sub-array are not removed from
6082 * container.
6083 */
6084 if (idisk &&
6085 is_failed(&idisk->disk) &&
6086 (idisk->action != DISK_REMOVE))
6087 return 0;
6088 }
6089 }
6090 }
6091 return 1;
6092}
6093
6094static struct mdinfo *imsm_activate_spare(struct active_array *a,
6095 struct metadata_update **updates)
6096{
6097 /**
6098 * Find a device with unused free space and use it to replace a
6099 * failed/vacant region in an array. We replace failed regions one a
6100 * array at a time. The result is that a new spare disk will be added
6101 * to the first failed array and after the monitor has finished
6102 * propagating failures the remainder will be consumed.
6103 *
6104 * FIXME add a capability for mdmon to request spares from another
6105 * container.
6106 */
6107
6108 struct intel_super *super = a->container->sb;
6109 int inst = a->info.container_member;
6110 struct imsm_dev *dev = get_imsm_dev(super, inst);
6111 struct imsm_map *map = get_imsm_map(dev, 0);
6112 int failed = a->info.array.raid_disks;
6113 struct mdinfo *rv = NULL;
6114 struct mdinfo *d;
6115 struct mdinfo *di;
6116 struct metadata_update *mu;
6117 struct dl *dl;
6118 struct imsm_update_activate_spare *u;
6119 int num_spares = 0;
6120 int i;
6121 int allowed;
6122
6123 for (d = a->info.devs ; d ; d = d->next) {
6124 if ((d->curr_state & DS_FAULTY) &&
6125 d->state_fd >= 0)
6126 /* wait for Removal to happen */
6127 return NULL;
6128 if (d->state_fd >= 0)
6129 failed--;
6130 }
6131
6132 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6133 inst, failed, a->info.array.raid_disks, a->info.array.level);
6134
6135 if (dev->vol.migr_state &&
6136 dev->vol.migr_type == MIGR_GEN_MIGR)
6137 /* No repair during migration */
6138 return NULL;
6139
6140 if (a->info.array.level == 4)
6141 /* No repair for takeovered array
6142 * imsm doesn't support raid4
6143 */
6144 return NULL;
6145
6146 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
6147 return NULL;
6148
6149 /*
6150 * If there are any failed disks check state of the other volume.
6151 * Block rebuild if the another one is failed until failed disks
6152 * are removed from container.
6153 */
6154 if (failed) {
6155 dprintf("found failed disks in %s, check if there another"
6156 "failed sub-array.\n",
6157 dev->volume);
6158 /* check if states of the other volumes allow for rebuild */
6159 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6160 if (i != inst) {
6161 allowed = imsm_rebuild_allowed(a->container,
6162 i, failed);
6163 if (!allowed)
6164 return NULL;
6165 }
6166 }
6167 }
6168
6169 /* For each slot, if it is not working, find a spare */
6170 for (i = 0; i < a->info.array.raid_disks; i++) {
6171 for (d = a->info.devs ; d ; d = d->next)
6172 if (d->disk.raid_disk == i)
6173 break;
6174 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6175 if (d && (d->state_fd >= 0))
6176 continue;
6177
6178 /*
6179 * OK, this device needs recovery. Try to re-add the
6180 * previous occupant of this slot, if this fails see if
6181 * we can continue the assimilation of a spare that was
6182 * partially assimilated, finally try to activate a new
6183 * spare.
6184 */
6185 dl = imsm_readd(super, i, a);
6186 if (!dl)
6187 dl = imsm_add_spare(super, i, a, 0, NULL);
6188 if (!dl)
6189 dl = imsm_add_spare(super, i, a, 1, NULL);
6190 if (!dl)
6191 continue;
6192
6193 /* found a usable disk with enough space */
6194 di = malloc(sizeof(*di));
6195 if (!di)
6196 continue;
6197 memset(di, 0, sizeof(*di));
6198
6199 /* dl->index will be -1 in the case we are activating a
6200 * pristine spare. imsm_process_update() will create a
6201 * new index in this case. Once a disk is found to be
6202 * failed in all member arrays it is kicked from the
6203 * metadata
6204 */
6205 di->disk.number = dl->index;
6206
6207 /* (ab)use di->devs to store a pointer to the device
6208 * we chose
6209 */
6210 di->devs = (struct mdinfo *) dl;
6211
6212 di->disk.raid_disk = i;
6213 di->disk.major = dl->major;
6214 di->disk.minor = dl->minor;
6215 di->disk.state = 0;
6216 di->recovery_start = 0;
6217 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6218 di->component_size = a->info.component_size;
6219 di->container_member = inst;
6220 super->random = random32();
6221 di->next = rv;
6222 rv = di;
6223 num_spares++;
6224 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6225 i, di->data_offset);
6226
6227 break;
6228 }
6229
6230 if (!rv)
6231 /* No spares found */
6232 return rv;
6233 /* Now 'rv' has a list of devices to return.
6234 * Create a metadata_update record to update the
6235 * disk_ord_tbl for the array
6236 */
6237 mu = malloc(sizeof(*mu));
6238 if (mu) {
6239 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6240 if (mu->buf == NULL) {
6241 free(mu);
6242 mu = NULL;
6243 }
6244 }
6245 if (!mu) {
6246 while (rv) {
6247 struct mdinfo *n = rv->next;
6248
6249 free(rv);
6250 rv = n;
6251 }
6252 return NULL;
6253 }
6254
6255 mu->space = NULL;
6256 mu->space_list = NULL;
6257 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6258 mu->next = *updates;
6259 u = (struct imsm_update_activate_spare *) mu->buf;
6260
6261 for (di = rv ; di ; di = di->next) {
6262 u->type = update_activate_spare;
6263 u->dl = (struct dl *) di->devs;
6264 di->devs = NULL;
6265 u->slot = di->disk.raid_disk;
6266 u->array = inst;
6267 u->next = u + 1;
6268 u++;
6269 }
6270 (u-1)->next = NULL;
6271 *updates = mu;
6272
6273 return rv;
6274}
6275
6276static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
6277{
6278 struct imsm_dev *dev = get_imsm_dev(super, idx);
6279 struct imsm_map *map = get_imsm_map(dev, 0);
6280 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6281 struct disk_info *inf = get_disk_info(u);
6282 struct imsm_disk *disk;
6283 int i;
6284 int j;
6285
6286 for (i = 0; i < map->num_members; i++) {
6287 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
6288 for (j = 0; j < new_map->num_members; j++)
6289 if (serialcmp(disk->serial, inf[j].serial) == 0)
6290 return 1;
6291 }
6292
6293 return 0;
6294}
6295
6296
6297static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6298{
6299 struct dl *dl = NULL;
6300 for (dl = super->disks; dl; dl = dl->next)
6301 if ((dl->major == major) && (dl->minor == minor))
6302 return dl;
6303 return NULL;
6304}
6305
6306static int remove_disk_super(struct intel_super *super, int major, int minor)
6307{
6308 struct dl *prev = NULL;
6309 struct dl *dl;
6310
6311 prev = NULL;
6312 for (dl = super->disks; dl; dl = dl->next) {
6313 if ((dl->major == major) && (dl->minor == minor)) {
6314 /* remove */
6315 if (prev)
6316 prev->next = dl->next;
6317 else
6318 super->disks = dl->next;
6319 dl->next = NULL;
6320 __free_imsm_disk(dl);
6321 dprintf("%s: removed %x:%x\n",
6322 __func__, major, minor);
6323 break;
6324 }
6325 prev = dl;
6326 }
6327 return 0;
6328}
6329
6330static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
6331
6332static int add_remove_disk_update(struct intel_super *super)
6333{
6334 int check_degraded = 0;
6335 struct dl *disk = NULL;
6336 /* add/remove some spares to/from the metadata/contrainer */
6337 while (super->disk_mgmt_list) {
6338 struct dl *disk_cfg;
6339
6340 disk_cfg = super->disk_mgmt_list;
6341 super->disk_mgmt_list = disk_cfg->next;
6342 disk_cfg->next = NULL;
6343
6344 if (disk_cfg->action == DISK_ADD) {
6345 disk_cfg->next = super->disks;
6346 super->disks = disk_cfg;
6347 check_degraded = 1;
6348 dprintf("%s: added %x:%x\n",
6349 __func__, disk_cfg->major,
6350 disk_cfg->minor);
6351 } else if (disk_cfg->action == DISK_REMOVE) {
6352 dprintf("Disk remove action processed: %x.%x\n",
6353 disk_cfg->major, disk_cfg->minor);
6354 disk = get_disk_super(super,
6355 disk_cfg->major,
6356 disk_cfg->minor);
6357 if (disk) {
6358 /* store action status */
6359 disk->action = DISK_REMOVE;
6360 /* remove spare disks only */
6361 if (disk->index == -1) {
6362 remove_disk_super(super,
6363 disk_cfg->major,
6364 disk_cfg->minor);
6365 }
6366 }
6367 /* release allocate disk structure */
6368 __free_imsm_disk(disk_cfg);
6369 }
6370 }
6371 return check_degraded;
6372}
6373
6374
6375static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6376 struct intel_super *super,
6377 void ***space_list)
6378{
6379 struct intel_dev *id;
6380 void **tofree = NULL;
6381 int ret_val = 0;
6382
6383 dprintf("apply_reshape_migration_update()\n");
6384 if ((u->subdev < 0) ||
6385 (u->subdev > 1)) {
6386 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6387 return ret_val;
6388 }
6389 if ((space_list == NULL) || (*space_list == NULL)) {
6390 dprintf("imsm: Error: Memory is not allocated\n");
6391 return ret_val;
6392 }
6393
6394 for (id = super->devlist ; id; id = id->next) {
6395 if (id->index == (unsigned)u->subdev) {
6396 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6397 struct imsm_map *map;
6398 struct imsm_dev *new_dev =
6399 (struct imsm_dev *)*space_list;
6400 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6401 int to_state;
6402 struct dl *new_disk;
6403
6404 if (new_dev == NULL)
6405 return ret_val;
6406 *space_list = **space_list;
6407 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
6408 map = get_imsm_map(new_dev, 0);
6409 if (migr_map) {
6410 dprintf("imsm: Error: migration in progress");
6411 return ret_val;
6412 }
6413
6414 to_state = map->map_state;
6415 if ((u->new_level == 5) && (map->raid_level == 0)) {
6416 map->num_members++;
6417 /* this should not happen */
6418 if (u->new_disks[0] < 0) {
6419 map->failed_disk_num =
6420 map->num_members - 1;
6421 to_state = IMSM_T_STATE_DEGRADED;
6422 } else
6423 to_state = IMSM_T_STATE_NORMAL;
6424 }
6425 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
6426 if (u->new_level > -1)
6427 map->raid_level = u->new_level;
6428 migr_map = get_imsm_map(new_dev, 1);
6429 if ((u->new_level == 5) &&
6430 (migr_map->raid_level == 0)) {
6431 int ord = map->num_members - 1;
6432 migr_map->num_members--;
6433 if (u->new_disks[0] < 0)
6434 ord |= IMSM_ORD_REBUILD;
6435 set_imsm_ord_tbl_ent(map,
6436 map->num_members - 1,
6437 ord);
6438 }
6439 id->dev = new_dev;
6440 tofree = (void **)dev;
6441
6442 /* update chunk size
6443 */
6444 if (u->new_chunksize > 0)
6445 map->blocks_per_strip =
6446 __cpu_to_le16(u->new_chunksize * 2);
6447
6448 /* add disk
6449 */
6450 if ((u->new_level != 5) ||
6451 (migr_map->raid_level != 0) ||
6452 (migr_map->raid_level == map->raid_level))
6453 goto skip_disk_add;
6454
6455 if (u->new_disks[0] >= 0) {
6456 /* use passes spare
6457 */
6458 new_disk = get_disk_super(super,
6459 major(u->new_disks[0]),
6460 minor(u->new_disks[0]));
6461 dprintf("imsm: new disk for reshape is: %i:%i "
6462 "(%p, index = %i)\n",
6463 major(u->new_disks[0]),
6464 minor(u->new_disks[0]),
6465 new_disk, new_disk->index);
6466 if (new_disk == NULL)
6467 goto error_disk_add;
6468
6469 new_disk->index = map->num_members - 1;
6470 /* slot to fill in autolayout
6471 */
6472 new_disk->raiddisk = new_disk->index;
6473 new_disk->disk.status |= CONFIGURED_DISK;
6474 new_disk->disk.status &= ~SPARE_DISK;
6475 } else
6476 goto error_disk_add;
6477
6478skip_disk_add:
6479 *tofree = *space_list;
6480 /* calculate new size
6481 */
6482 imsm_set_array_size(new_dev);
6483
6484 ret_val = 1;
6485 }
6486 }
6487
6488 if (tofree)
6489 *space_list = tofree;
6490 return ret_val;
6491
6492error_disk_add:
6493 dprintf("Error: imsm: Cannot find disk.\n");
6494 return ret_val;
6495}
6496
6497
6498static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
6499 struct intel_super *super,
6500 void ***space_list)
6501{
6502 struct dl *new_disk;
6503 struct intel_dev *id;
6504 int i;
6505 int delta_disks = u->new_raid_disks - u->old_raid_disks;
6506 int disk_count = u->old_raid_disks;
6507 void **tofree = NULL;
6508 int devices_to_reshape = 1;
6509 struct imsm_super *mpb = super->anchor;
6510 int ret_val = 0;
6511 unsigned int dev_id;
6512
6513 dprintf("imsm: apply_reshape_container_disks_update()\n");
6514
6515 /* enable spares to use in array */
6516 for (i = 0; i < delta_disks; i++) {
6517 new_disk = get_disk_super(super,
6518 major(u->new_disks[i]),
6519 minor(u->new_disks[i]));
6520 dprintf("imsm: new disk for reshape is: %i:%i "
6521 "(%p, index = %i)\n",
6522 major(u->new_disks[i]), minor(u->new_disks[i]),
6523 new_disk, new_disk->index);
6524 if ((new_disk == NULL) ||
6525 ((new_disk->index >= 0) &&
6526 (new_disk->index < u->old_raid_disks)))
6527 goto update_reshape_exit;
6528 new_disk->index = disk_count++;
6529 /* slot to fill in autolayout
6530 */
6531 new_disk->raiddisk = new_disk->index;
6532 new_disk->disk.status |=
6533 CONFIGURED_DISK;
6534 new_disk->disk.status &= ~SPARE_DISK;
6535 }
6536
6537 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
6538 mpb->num_raid_devs);
6539 /* manage changes in volume
6540 */
6541 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
6542 void **sp = *space_list;
6543 struct imsm_dev *newdev;
6544 struct imsm_map *newmap, *oldmap;
6545
6546 for (id = super->devlist ; id; id = id->next) {
6547 if (id->index == dev_id)
6548 break;
6549 }
6550 if (id == NULL)
6551 break;
6552 if (!sp)
6553 continue;
6554 *space_list = *sp;
6555 newdev = (void*)sp;
6556 /* Copy the dev, but not (all of) the map */
6557 memcpy(newdev, id->dev, sizeof(*newdev));
6558 oldmap = get_imsm_map(id->dev, 0);
6559 newmap = get_imsm_map(newdev, 0);
6560 /* Copy the current map */
6561 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6562 /* update one device only
6563 */
6564 if (devices_to_reshape) {
6565 dprintf("imsm: modifying subdev: %i\n",
6566 id->index);
6567 devices_to_reshape--;
6568 newdev->vol.migr_state = 1;
6569 newdev->vol.curr_migr_unit = 0;
6570 newdev->vol.migr_type = MIGR_GEN_MIGR;
6571 newmap->num_members = u->new_raid_disks;
6572 for (i = 0; i < delta_disks; i++) {
6573 set_imsm_ord_tbl_ent(newmap,
6574 u->old_raid_disks + i,
6575 u->old_raid_disks + i);
6576 }
6577 /* New map is correct, now need to save old map
6578 */
6579 newmap = get_imsm_map(newdev, 1);
6580 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6581
6582 imsm_set_array_size(newdev);
6583 }
6584
6585 sp = (void **)id->dev;
6586 id->dev = newdev;
6587 *sp = tofree;
6588 tofree = sp;
6589
6590 /* Clear migration record */
6591 memset(super->migr_rec, 0, sizeof(struct migr_record));
6592 }
6593 if (tofree)
6594 *space_list = tofree;
6595 ret_val = 1;
6596
6597update_reshape_exit:
6598
6599 return ret_val;
6600}
6601
6602static int apply_takeover_update(struct imsm_update_takeover *u,
6603 struct intel_super *super,
6604 void ***space_list)
6605{
6606 struct imsm_dev *dev = NULL;
6607 struct intel_dev *dv;
6608 struct imsm_dev *dev_new;
6609 struct imsm_map *map;
6610 struct dl *dm, *du;
6611 int i;
6612
6613 for (dv = super->devlist; dv; dv = dv->next)
6614 if (dv->index == (unsigned int)u->subarray) {
6615 dev = dv->dev;
6616 break;
6617 }
6618
6619 if (dev == NULL)
6620 return 0;
6621
6622 map = get_imsm_map(dev, 0);
6623
6624 if (u->direction == R10_TO_R0) {
6625 /* Number of failed disks must be half of initial disk number */
6626 if (imsm_count_failed(super, dev) != (map->num_members / 2))
6627 return 0;
6628
6629 /* iterate through devices to mark removed disks as spare */
6630 for (dm = super->disks; dm; dm = dm->next) {
6631 if (dm->disk.status & FAILED_DISK) {
6632 int idx = dm->index;
6633 /* update indexes on the disk list */
6634/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
6635 the index values will end up being correct.... NB */
6636 for (du = super->disks; du; du = du->next)
6637 if (du->index > idx)
6638 du->index--;
6639 /* mark as spare disk */
6640 dm->disk.status = SPARE_DISK;
6641 dm->index = -1;
6642 }
6643 }
6644 /* update map */
6645 map->num_members = map->num_members / 2;
6646 map->map_state = IMSM_T_STATE_NORMAL;
6647 map->num_domains = 1;
6648 map->raid_level = 0;
6649 map->failed_disk_num = -1;
6650 }
6651
6652 if (u->direction == R0_TO_R10) {
6653 void **space;
6654 /* update slots in current disk list */
6655 for (dm = super->disks; dm; dm = dm->next) {
6656 if (dm->index >= 0)
6657 dm->index *= 2;
6658 }
6659 /* create new *missing* disks */
6660 for (i = 0; i < map->num_members; i++) {
6661 space = *space_list;
6662 if (!space)
6663 continue;
6664 *space_list = *space;
6665 du = (void *)space;
6666 memcpy(du, super->disks, sizeof(*du));
6667 du->fd = -1;
6668 du->minor = 0;
6669 du->major = 0;
6670 du->index = (i * 2) + 1;
6671 sprintf((char *)du->disk.serial,
6672 " MISSING_%d", du->index);
6673 sprintf((char *)du->serial,
6674 "MISSING_%d", du->index);
6675 du->next = super->missing;
6676 super->missing = du;
6677 }
6678 /* create new dev and map */
6679 space = *space_list;
6680 if (!space)
6681 return 0;
6682 *space_list = *space;
6683 dev_new = (void *)space;
6684 memcpy(dev_new, dev, sizeof(*dev));
6685 /* update new map */
6686 map = get_imsm_map(dev_new, 0);
6687 map->num_members = map->num_members * 2;
6688 map->map_state = IMSM_T_STATE_DEGRADED;
6689 map->num_domains = 2;
6690 map->raid_level = 1;
6691 /* replace dev<->dev_new */
6692 dv->dev = dev_new;
6693 }
6694 /* update disk order table */
6695 for (du = super->disks; du; du = du->next)
6696 if (du->index >= 0)
6697 set_imsm_ord_tbl_ent(map, du->index, du->index);
6698 for (du = super->missing; du; du = du->next)
6699 if (du->index >= 0) {
6700 set_imsm_ord_tbl_ent(map, du->index, du->index);
6701 mark_missing(dev_new, &du->disk, du->index);
6702 }
6703
6704 return 1;
6705}
6706
6707static void imsm_process_update(struct supertype *st,
6708 struct metadata_update *update)
6709{
6710 /**
6711 * crack open the metadata_update envelope to find the update record
6712 * update can be one of:
6713 * update_reshape_container_disks - all the arrays in the container
6714 * are being reshaped to have more devices. We need to mark
6715 * the arrays for general migration and convert selected spares
6716 * into active devices.
6717 * update_activate_spare - a spare device has replaced a failed
6718 * device in an array, update the disk_ord_tbl. If this disk is
6719 * present in all member arrays then also clear the SPARE_DISK
6720 * flag
6721 * update_create_array
6722 * update_kill_array
6723 * update_rename_array
6724 * update_add_remove_disk
6725 */
6726 struct intel_super *super = st->sb;
6727 struct imsm_super *mpb;
6728 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
6729
6730 /* update requires a larger buf but the allocation failed */
6731 if (super->next_len && !super->next_buf) {
6732 super->next_len = 0;
6733 return;
6734 }
6735
6736 if (super->next_buf) {
6737 memcpy(super->next_buf, super->buf, super->len);
6738 free(super->buf);
6739 super->len = super->next_len;
6740 super->buf = super->next_buf;
6741
6742 super->next_len = 0;
6743 super->next_buf = NULL;
6744 }
6745
6746 mpb = super->anchor;
6747
6748 switch (type) {
6749 case update_takeover: {
6750 struct imsm_update_takeover *u = (void *)update->buf;
6751 if (apply_takeover_update(u, super, &update->space_list)) {
6752 imsm_update_version_info(super);
6753 super->updates_pending++;
6754 }
6755 break;
6756 }
6757
6758 case update_reshape_container_disks: {
6759 struct imsm_update_reshape *u = (void *)update->buf;
6760 if (apply_reshape_container_disks_update(
6761 u, super, &update->space_list))
6762 super->updates_pending++;
6763 break;
6764 }
6765 case update_reshape_migration: {
6766 struct imsm_update_reshape_migration *u = (void *)update->buf;
6767 if (apply_reshape_migration_update(
6768 u, super, &update->space_list))
6769 super->updates_pending++;
6770 break;
6771 }
6772 case update_activate_spare: {
6773 struct imsm_update_activate_spare *u = (void *) update->buf;
6774 struct imsm_dev *dev = get_imsm_dev(super, u->array);
6775 struct imsm_map *map = get_imsm_map(dev, 0);
6776 struct imsm_map *migr_map;
6777 struct active_array *a;
6778 struct imsm_disk *disk;
6779 __u8 to_state;
6780 struct dl *dl;
6781 unsigned int found;
6782 int failed;
6783 int victim = get_imsm_disk_idx(dev, u->slot, -1);
6784 int i;
6785
6786 for (dl = super->disks; dl; dl = dl->next)
6787 if (dl == u->dl)
6788 break;
6789
6790 if (!dl) {
6791 fprintf(stderr, "error: imsm_activate_spare passed "
6792 "an unknown disk (index: %d)\n",
6793 u->dl->index);
6794 return;
6795 }
6796
6797 super->updates_pending++;
6798 /* count failures (excluding rebuilds and the victim)
6799 * to determine map[0] state
6800 */
6801 failed = 0;
6802 for (i = 0; i < map->num_members; i++) {
6803 if (i == u->slot)
6804 continue;
6805 disk = get_imsm_disk(super,
6806 get_imsm_disk_idx(dev, i, -1));
6807 if (!disk || is_failed(disk))
6808 failed++;
6809 }
6810
6811 /* adding a pristine spare, assign a new index */
6812 if (dl->index < 0) {
6813 dl->index = super->anchor->num_disks;
6814 super->anchor->num_disks++;
6815 }
6816 disk = &dl->disk;
6817 disk->status |= CONFIGURED_DISK;
6818 disk->status &= ~SPARE_DISK;
6819
6820 /* mark rebuild */
6821 to_state = imsm_check_degraded(super, dev, failed);
6822 map->map_state = IMSM_T_STATE_DEGRADED;
6823 migrate(dev, super, to_state, MIGR_REBUILD);
6824 migr_map = get_imsm_map(dev, 1);
6825 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
6826 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
6827
6828 /* update the family_num to mark a new container
6829 * generation, being careful to record the existing
6830 * family_num in orig_family_num to clean up after
6831 * earlier mdadm versions that neglected to set it.
6832 */
6833 if (mpb->orig_family_num == 0)
6834 mpb->orig_family_num = mpb->family_num;
6835 mpb->family_num += super->random;
6836
6837 /* count arrays using the victim in the metadata */
6838 found = 0;
6839 for (a = st->arrays; a ; a = a->next) {
6840 dev = get_imsm_dev(super, a->info.container_member);
6841 map = get_imsm_map(dev, 0);
6842
6843 if (get_imsm_disk_slot(map, victim) >= 0)
6844 found++;
6845 }
6846
6847 /* delete the victim if it is no longer being
6848 * utilized anywhere
6849 */
6850 if (!found) {
6851 struct dl **dlp;
6852
6853 /* We know that 'manager' isn't touching anything,
6854 * so it is safe to delete
6855 */
6856 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
6857 if ((*dlp)->index == victim)
6858 break;
6859
6860 /* victim may be on the missing list */
6861 if (!*dlp)
6862 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
6863 if ((*dlp)->index == victim)
6864 break;
6865 imsm_delete(super, dlp, victim);
6866 }
6867 break;
6868 }
6869 case update_create_array: {
6870 /* someone wants to create a new array, we need to be aware of
6871 * a few races/collisions:
6872 * 1/ 'Create' called by two separate instances of mdadm
6873 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
6874 * devices that have since been assimilated via
6875 * activate_spare.
6876 * In the event this update can not be carried out mdadm will
6877 * (FIX ME) notice that its update did not take hold.
6878 */
6879 struct imsm_update_create_array *u = (void *) update->buf;
6880 struct intel_dev *dv;
6881 struct imsm_dev *dev;
6882 struct imsm_map *map, *new_map;
6883 unsigned long long start, end;
6884 unsigned long long new_start, new_end;
6885 int i;
6886 struct disk_info *inf;
6887 struct dl *dl;
6888
6889 /* handle racing creates: first come first serve */
6890 if (u->dev_idx < mpb->num_raid_devs) {
6891 dprintf("%s: subarray %d already defined\n",
6892 __func__, u->dev_idx);
6893 goto create_error;
6894 }
6895
6896 /* check update is next in sequence */
6897 if (u->dev_idx != mpb->num_raid_devs) {
6898 dprintf("%s: can not create array %d expected index %d\n",
6899 __func__, u->dev_idx, mpb->num_raid_devs);
6900 goto create_error;
6901 }
6902
6903 new_map = get_imsm_map(&u->dev, 0);
6904 new_start = __le32_to_cpu(new_map->pba_of_lba0);
6905 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
6906 inf = get_disk_info(u);
6907
6908 /* handle activate_spare versus create race:
6909 * check to make sure that overlapping arrays do not include
6910 * overalpping disks
6911 */
6912 for (i = 0; i < mpb->num_raid_devs; i++) {
6913 dev = get_imsm_dev(super, i);
6914 map = get_imsm_map(dev, 0);
6915 start = __le32_to_cpu(map->pba_of_lba0);
6916 end = start + __le32_to_cpu(map->blocks_per_member);
6917 if ((new_start >= start && new_start <= end) ||
6918 (start >= new_start && start <= new_end))
6919 /* overlap */;
6920 else
6921 continue;
6922
6923 if (disks_overlap(super, i, u)) {
6924 dprintf("%s: arrays overlap\n", __func__);
6925 goto create_error;
6926 }
6927 }
6928
6929 /* check that prepare update was successful */
6930 if (!update->space) {
6931 dprintf("%s: prepare update failed\n", __func__);
6932 goto create_error;
6933 }
6934
6935 /* check that all disks are still active before committing
6936 * changes. FIXME: could we instead handle this by creating a
6937 * degraded array? That's probably not what the user expects,
6938 * so better to drop this update on the floor.
6939 */
6940 for (i = 0; i < new_map->num_members; i++) {
6941 dl = serial_to_dl(inf[i].serial, super);
6942 if (!dl) {
6943 dprintf("%s: disk disappeared\n", __func__);
6944 goto create_error;
6945 }
6946 }
6947
6948 super->updates_pending++;
6949
6950 /* convert spares to members and fixup ord_tbl */
6951 for (i = 0; i < new_map->num_members; i++) {
6952 dl = serial_to_dl(inf[i].serial, super);
6953 if (dl->index == -1) {
6954 dl->index = mpb->num_disks;
6955 mpb->num_disks++;
6956 dl->disk.status |= CONFIGURED_DISK;
6957 dl->disk.status &= ~SPARE_DISK;
6958 }
6959 set_imsm_ord_tbl_ent(new_map, i, dl->index);
6960 }
6961
6962 dv = update->space;
6963 dev = dv->dev;
6964 update->space = NULL;
6965 imsm_copy_dev(dev, &u->dev);
6966 dv->index = u->dev_idx;
6967 dv->next = super->devlist;
6968 super->devlist = dv;
6969 mpb->num_raid_devs++;
6970
6971 imsm_update_version_info(super);
6972 break;
6973 create_error:
6974 /* mdmon knows how to release update->space, but not
6975 * ((struct intel_dev *) update->space)->dev
6976 */
6977 if (update->space) {
6978 dv = update->space;
6979 free(dv->dev);
6980 }
6981 break;
6982 }
6983 case update_kill_array: {
6984 struct imsm_update_kill_array *u = (void *) update->buf;
6985 int victim = u->dev_idx;
6986 struct active_array *a;
6987 struct intel_dev **dp;
6988 struct imsm_dev *dev;
6989
6990 /* sanity check that we are not affecting the uuid of
6991 * active arrays, or deleting an active array
6992 *
6993 * FIXME when immutable ids are available, but note that
6994 * we'll also need to fixup the invalidated/active
6995 * subarray indexes in mdstat
6996 */
6997 for (a = st->arrays; a; a = a->next)
6998 if (a->info.container_member >= victim)
6999 break;
7000 /* by definition if mdmon is running at least one array
7001 * is active in the container, so checking
7002 * mpb->num_raid_devs is just extra paranoia
7003 */
7004 dev = get_imsm_dev(super, victim);
7005 if (a || !dev || mpb->num_raid_devs == 1) {
7006 dprintf("failed to delete subarray-%d\n", victim);
7007 break;
7008 }
7009
7010 for (dp = &super->devlist; *dp;)
7011 if ((*dp)->index == (unsigned)super->current_vol) {
7012 *dp = (*dp)->next;
7013 } else {
7014 if ((*dp)->index > (unsigned)victim)
7015 (*dp)->index--;
7016 dp = &(*dp)->next;
7017 }
7018 mpb->num_raid_devs--;
7019 super->updates_pending++;
7020 break;
7021 }
7022 case update_rename_array: {
7023 struct imsm_update_rename_array *u = (void *) update->buf;
7024 char name[MAX_RAID_SERIAL_LEN+1];
7025 int target = u->dev_idx;
7026 struct active_array *a;
7027 struct imsm_dev *dev;
7028
7029 /* sanity check that we are not affecting the uuid of
7030 * an active array
7031 */
7032 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7033 name[MAX_RAID_SERIAL_LEN] = '\0';
7034 for (a = st->arrays; a; a = a->next)
7035 if (a->info.container_member == target)
7036 break;
7037 dev = get_imsm_dev(super, u->dev_idx);
7038 if (a || !dev || !check_name(super, name, 1)) {
7039 dprintf("failed to rename subarray-%d\n", target);
7040 break;
7041 }
7042
7043 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
7044 super->updates_pending++;
7045 break;
7046 }
7047 case update_add_remove_disk: {
7048 /* we may be able to repair some arrays if disks are
7049 * being added, check teh status of add_remove_disk
7050 * if discs has been added.
7051 */
7052 if (add_remove_disk_update(super)) {
7053 struct active_array *a;
7054
7055 super->updates_pending++;
7056 for (a = st->arrays; a; a = a->next)
7057 a->check_degraded = 1;
7058 }
7059 break;
7060 }
7061 default:
7062 fprintf(stderr, "error: unsuported process update type:"
7063 "(type: %d)\n", type);
7064 }
7065}
7066
7067static struct mdinfo *get_spares_for_grow(struct supertype *st);
7068
7069static void imsm_prepare_update(struct supertype *st,
7070 struct metadata_update *update)
7071{
7072 /**
7073 * Allocate space to hold new disk entries, raid-device entries or a new
7074 * mpb if necessary. The manager synchronously waits for updates to
7075 * complete in the monitor, so new mpb buffers allocated here can be
7076 * integrated by the monitor thread without worrying about live pointers
7077 * in the manager thread.
7078 */
7079 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7080 struct intel_super *super = st->sb;
7081 struct imsm_super *mpb = super->anchor;
7082 size_t buf_len;
7083 size_t len = 0;
7084
7085 switch (type) {
7086 case update_takeover: {
7087 struct imsm_update_takeover *u = (void *)update->buf;
7088 if (u->direction == R0_TO_R10) {
7089 void **tail = (void **)&update->space_list;
7090 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7091 struct imsm_map *map = get_imsm_map(dev, 0);
7092 int num_members = map->num_members;
7093 void *space;
7094 int size, i;
7095 int err = 0;
7096 /* allocate memory for added disks */
7097 for (i = 0; i < num_members; i++) {
7098 size = sizeof(struct dl);
7099 space = malloc(size);
7100 if (!space) {
7101 err++;
7102 break;
7103 }
7104 *tail = space;
7105 tail = space;
7106 *tail = NULL;
7107 }
7108 /* allocate memory for new device */
7109 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7110 (num_members * sizeof(__u32));
7111 space = malloc(size);
7112 if (!space)
7113 err++;
7114 else {
7115 *tail = space;
7116 tail = space;
7117 *tail = NULL;
7118 }
7119 if (!err) {
7120 len = disks_to_mpb_size(num_members * 2);
7121 } else {
7122 /* if allocation didn't success, free buffer */
7123 while (update->space_list) {
7124 void **sp = update->space_list;
7125 update->space_list = *sp;
7126 free(sp);
7127 }
7128 }
7129 }
7130
7131 break;
7132 }
7133 case update_reshape_container_disks: {
7134 /* Every raid device in the container is about to
7135 * gain some more devices, and we will enter a
7136 * reconfiguration.
7137 * So each 'imsm_map' will be bigger, and the imsm_vol
7138 * will now hold 2 of them.
7139 * Thus we need new 'struct imsm_dev' allocations sized
7140 * as sizeof_imsm_dev but with more devices in both maps.
7141 */
7142 struct imsm_update_reshape *u = (void *)update->buf;
7143 struct intel_dev *dl;
7144 void **space_tail = (void**)&update->space_list;
7145
7146 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7147
7148 for (dl = super->devlist; dl; dl = dl->next) {
7149 int size = sizeof_imsm_dev(dl->dev, 1);
7150 void *s;
7151 if (u->new_raid_disks > u->old_raid_disks)
7152 size += sizeof(__u32)*2*
7153 (u->new_raid_disks - u->old_raid_disks);
7154 s = malloc(size);
7155 if (!s)
7156 break;
7157 *space_tail = s;
7158 space_tail = s;
7159 *space_tail = NULL;
7160 }
7161
7162 len = disks_to_mpb_size(u->new_raid_disks);
7163 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7164 break;
7165 }
7166 case update_reshape_migration: {
7167 /* for migration level 0->5 we need to add disks
7168 * so the same as for container operation we will copy
7169 * device to the bigger location.
7170 * in memory prepared device and new disk area are prepared
7171 * for usage in process update
7172 */
7173 struct imsm_update_reshape_migration *u = (void *)update->buf;
7174 struct intel_dev *id;
7175 void **space_tail = (void **)&update->space_list;
7176 int size;
7177 void *s;
7178 int current_level = -1;
7179
7180 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7181
7182 /* add space for bigger array in update
7183 */
7184 for (id = super->devlist; id; id = id->next) {
7185 if (id->index == (unsigned)u->subdev) {
7186 size = sizeof_imsm_dev(id->dev, 1);
7187 if (u->new_raid_disks > u->old_raid_disks)
7188 size += sizeof(__u32)*2*
7189 (u->new_raid_disks - u->old_raid_disks);
7190 s = malloc(size);
7191 if (!s)
7192 break;
7193 *space_tail = s;
7194 space_tail = s;
7195 *space_tail = NULL;
7196 break;
7197 }
7198 }
7199 if (update->space_list == NULL)
7200 break;
7201
7202 /* add space for disk in update
7203 */
7204 size = sizeof(struct dl);
7205 s = malloc(size);
7206 if (!s) {
7207 free(update->space_list);
7208 update->space_list = NULL;
7209 break;
7210 }
7211 *space_tail = s;
7212 space_tail = s;
7213 *space_tail = NULL;
7214
7215 /* add spare device to update
7216 */
7217 for (id = super->devlist ; id; id = id->next)
7218 if (id->index == (unsigned)u->subdev) {
7219 struct imsm_dev *dev;
7220 struct imsm_map *map;
7221
7222 dev = get_imsm_dev(super, u->subdev);
7223 map = get_imsm_map(dev, 0);
7224 current_level = map->raid_level;
7225 break;
7226 }
7227 if ((u->new_level == 5) && (u->new_level != current_level)) {
7228 struct mdinfo *spares;
7229
7230 spares = get_spares_for_grow(st);
7231 if (spares) {
7232 struct dl *dl;
7233 struct mdinfo *dev;
7234
7235 dev = spares->devs;
7236 if (dev) {
7237 u->new_disks[0] =
7238 makedev(dev->disk.major,
7239 dev->disk.minor);
7240 dl = get_disk_super(super,
7241 dev->disk.major,
7242 dev->disk.minor);
7243 dl->index = u->old_raid_disks;
7244 dev = dev->next;
7245 }
7246 sysfs_free(spares);
7247 }
7248 }
7249 len = disks_to_mpb_size(u->new_raid_disks);
7250 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7251 break;
7252 }
7253 case update_create_array: {
7254 struct imsm_update_create_array *u = (void *) update->buf;
7255 struct intel_dev *dv;
7256 struct imsm_dev *dev = &u->dev;
7257 struct imsm_map *map = get_imsm_map(dev, 0);
7258 struct dl *dl;
7259 struct disk_info *inf;
7260 int i;
7261 int activate = 0;
7262
7263 inf = get_disk_info(u);
7264 len = sizeof_imsm_dev(dev, 1);
7265 /* allocate a new super->devlist entry */
7266 dv = malloc(sizeof(*dv));
7267 if (dv) {
7268 dv->dev = malloc(len);
7269 if (dv->dev)
7270 update->space = dv;
7271 else {
7272 free(dv);
7273 update->space = NULL;
7274 }
7275 }
7276
7277 /* count how many spares will be converted to members */
7278 for (i = 0; i < map->num_members; i++) {
7279 dl = serial_to_dl(inf[i].serial, super);
7280 if (!dl) {
7281 /* hmm maybe it failed?, nothing we can do about
7282 * it here
7283 */
7284 continue;
7285 }
7286 if (count_memberships(dl, super) == 0)
7287 activate++;
7288 }
7289 len += activate * sizeof(struct imsm_disk);
7290 break;
7291 default:
7292 break;
7293 }
7294 }
7295
7296 /* check if we need a larger metadata buffer */
7297 if (super->next_buf)
7298 buf_len = super->next_len;
7299 else
7300 buf_len = super->len;
7301
7302 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7303 /* ok we need a larger buf than what is currently allocated
7304 * if this allocation fails process_update will notice that
7305 * ->next_len is set and ->next_buf is NULL
7306 */
7307 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7308 if (super->next_buf)
7309 free(super->next_buf);
7310
7311 super->next_len = buf_len;
7312 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7313 memset(super->next_buf, 0, buf_len);
7314 else
7315 super->next_buf = NULL;
7316 }
7317}
7318
7319/* must be called while manager is quiesced */
7320static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
7321{
7322 struct imsm_super *mpb = super->anchor;
7323 struct dl *iter;
7324 struct imsm_dev *dev;
7325 struct imsm_map *map;
7326 int i, j, num_members;
7327 __u32 ord;
7328
7329 dprintf("%s: deleting device[%d] from imsm_super\n",
7330 __func__, index);
7331
7332 /* shift all indexes down one */
7333 for (iter = super->disks; iter; iter = iter->next)
7334 if (iter->index > (int)index)
7335 iter->index--;
7336 for (iter = super->missing; iter; iter = iter->next)
7337 if (iter->index > (int)index)
7338 iter->index--;
7339
7340 for (i = 0; i < mpb->num_raid_devs; i++) {
7341 dev = get_imsm_dev(super, i);
7342 map = get_imsm_map(dev, 0);
7343 num_members = map->num_members;
7344 for (j = 0; j < num_members; j++) {
7345 /* update ord entries being careful not to propagate
7346 * ord-flags to the first map
7347 */
7348 ord = get_imsm_ord_tbl_ent(dev, j, -1);
7349
7350 if (ord_to_idx(ord) <= index)
7351 continue;
7352
7353 map = get_imsm_map(dev, 0);
7354 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
7355 map = get_imsm_map(dev, 1);
7356 if (map)
7357 set_imsm_ord_tbl_ent(map, j, ord - 1);
7358 }
7359 }
7360
7361 mpb->num_disks--;
7362 super->updates_pending++;
7363 if (*dlp) {
7364 struct dl *dl = *dlp;
7365
7366 *dlp = (*dlp)->next;
7367 __free_imsm_disk(dl);
7368 }
7369}
7370
7371/*******************************************************************************
7372 * Function: open_backup_targets
7373 * Description: Function opens file descriptors for all devices given in
7374 * info->devs
7375 * Parameters:
7376 * info : general array info
7377 * raid_disks : number of disks
7378 * raid_fds : table of device's file descriptors
7379 * Returns:
7380 * 0 : success
7381 * -1 : fail
7382 ******************************************************************************/
7383int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds)
7384{
7385 struct mdinfo *sd;
7386
7387 for (sd = info->devs ; sd ; sd = sd->next) {
7388 char *dn;
7389
7390 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
7391 dprintf("disk is faulty!!\n");
7392 continue;
7393 }
7394
7395 if ((sd->disk.raid_disk >= raid_disks) ||
7396 (sd->disk.raid_disk < 0))
7397 continue;
7398
7399 dn = map_dev(sd->disk.major,
7400 sd->disk.minor, 1);
7401 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
7402 if (raid_fds[sd->disk.raid_disk] < 0) {
7403 fprintf(stderr, "cannot open component\n");
7404 return -1;
7405 }
7406 }
7407 return 0;
7408}
7409
7410/*******************************************************************************
7411 * Function: init_migr_record_imsm
7412 * Description: Function inits imsm migration record
7413 * Parameters:
7414 * super : imsm internal array info
7415 * dev : device under migration
7416 * info : general array info to find the smallest device
7417 * Returns:
7418 * none
7419 ******************************************************************************/
7420void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
7421 struct mdinfo *info)
7422{
7423 struct intel_super *super = st->sb;
7424 struct migr_record *migr_rec = super->migr_rec;
7425 int new_data_disks;
7426 unsigned long long dsize, dev_sectors;
7427 long long unsigned min_dev_sectors = -1LLU;
7428 struct mdinfo *sd;
7429 char nm[30];
7430 int fd;
7431 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7432 struct imsm_map *map_src = get_imsm_map(dev, 1);
7433 unsigned long long num_migr_units;
7434
7435 unsigned long long array_blocks =
7436 (((unsigned long long)__le32_to_cpu(dev->size_high)) << 32) +
7437 __le32_to_cpu(dev->size_low);
7438
7439 memset(migr_rec, 0, sizeof(struct migr_record));
7440 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
7441
7442 /* only ascending reshape supported now */
7443 migr_rec->ascending_migr = __cpu_to_le32(1);
7444
7445 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
7446 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
7447 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
7448 new_data_disks = imsm_num_data_members(dev, 0);
7449 migr_rec->blocks_per_unit =
7450 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
7451 migr_rec->dest_depth_per_unit =
7452 __cpu_to_le32(migr_rec->dest_depth_per_unit);
7453
7454 num_migr_units =
7455 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
7456
7457 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
7458 num_migr_units++;
7459 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
7460
7461 migr_rec->post_migr_vol_cap = dev->size_low;
7462 migr_rec->post_migr_vol_cap_hi = dev->size_high;
7463
7464
7465 /* Find the smallest dev */
7466 for (sd = info->devs ; sd ; sd = sd->next) {
7467 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
7468 fd = dev_open(nm, O_RDONLY);
7469 if (fd < 0)
7470 continue;
7471 get_dev_size(fd, NULL, &dsize);
7472 dev_sectors = dsize / 512;
7473 if (dev_sectors < min_dev_sectors)
7474 min_dev_sectors = dev_sectors;
7475 close(fd);
7476 }
7477 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
7478 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
7479
7480 write_imsm_migr_rec(st);
7481
7482 return;
7483}
7484
7485/*******************************************************************************
7486 * Function: save_backup_imsm
7487 * Description: Function saves critical data stripes to Migration Copy Area
7488 * and updates the current migration unit status.
7489 * Use restore_stripes() to form a destination stripe,
7490 * and to write it to the Copy Area.
7491 * Parameters:
7492 * st : supertype information
7493 * info : general array info
7494 * buf : input buffer
7495 * write_offset : address of data to backup
7496 * length : length of data to backup (blocks_per_unit)
7497 * Returns:
7498 * 0 : success
7499 *, -1 : fail
7500 ******************************************************************************/
7501int save_backup_imsm(struct supertype *st,
7502 struct imsm_dev *dev,
7503 struct mdinfo *info,
7504 void *buf,
7505 int new_data,
7506 int length)
7507{
7508 int rv = -1;
7509 struct intel_super *super = st->sb;
7510 unsigned long long *target_offsets = NULL;
7511 int *targets = NULL;
7512 int i;
7513 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7514 int new_disks = map_dest->num_members;
7515
7516 targets = malloc(new_disks * sizeof(int));
7517 if (!targets)
7518 goto abort;
7519
7520 target_offsets = malloc(new_disks * sizeof(unsigned long long));
7521 if (!target_offsets)
7522 goto abort;
7523
7524 for (i = 0; i < new_disks; i++) {
7525 targets[i] = -1;
7526 target_offsets[i] = (unsigned long long)
7527 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
7528 }
7529
7530 if (open_backup_targets(info, new_disks, targets))
7531 goto abort;
7532
7533 if (restore_stripes(targets, /* list of dest devices */
7534 target_offsets, /* migration record offsets */
7535 new_disks,
7536 info->new_chunk,
7537 info->new_level,
7538 info->new_layout,
7539 -1, /* source backup file descriptor */
7540 0, /* input buf offset
7541 * always 0 buf is already offset */
7542 0,
7543 length,
7544 buf) != 0) {
7545 fprintf(stderr, Name ": Error restoring stripes\n");
7546 goto abort;
7547 }
7548
7549 rv = 0;
7550
7551abort:
7552 if (targets) {
7553 for (i = 0; i < new_disks; i++)
7554 if (targets[i] >= 0)
7555 close(targets[i]);
7556 free(targets);
7557 }
7558 free(target_offsets);
7559
7560 return rv;
7561}
7562
7563/*******************************************************************************
7564 * Function: save_checkpoint_imsm
7565 * Description: Function called for current unit status update
7566 * in the migration record. It writes it to disk.
7567 * Parameters:
7568 * super : imsm internal array info
7569 * info : general array info
7570 * Returns:
7571 * 0: success
7572 * 1: failure
7573 ******************************************************************************/
7574int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
7575{
7576 struct intel_super *super = st->sb;
7577 load_imsm_migr_rec(super, info);
7578 if (__le32_to_cpu(super->migr_rec->blocks_per_unit) == 0) {
7579 dprintf("ERROR: blocks_per_unit = 0!!!\n");
7580 return 1;
7581 }
7582
7583 super->migr_rec->curr_migr_unit =
7584 __cpu_to_le32(info->reshape_progress /
7585 __le32_to_cpu(super->migr_rec->blocks_per_unit));
7586 super->migr_rec->rec_status = __cpu_to_le32(state);
7587 super->migr_rec->dest_1st_member_lba =
7588 __cpu_to_le32((__le32_to_cpu(super->migr_rec->curr_migr_unit))
7589 * __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
7590 if (write_imsm_migr_rec(st) < 0) {
7591 dprintf("imsm: Cannot write migration record "
7592 "outside backup area\n");
7593 return 1;
7594 }
7595
7596 return 0;
7597}
7598
7599static char disk_by_path[] = "/dev/disk/by-path/";
7600
7601static const char *imsm_get_disk_controller_domain(const char *path)
7602{
7603 char disk_path[PATH_MAX];
7604 char *drv=NULL;
7605 struct stat st;
7606
7607 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
7608 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
7609 if (stat(disk_path, &st) == 0) {
7610 struct sys_dev* hba;
7611 char *path=NULL;
7612
7613 path = devt_to_devpath(st.st_rdev);
7614 if (path == NULL)
7615 return "unknown";
7616 hba = find_disk_attached_hba(-1, path);
7617 if (hba && hba->type == SYS_DEV_SAS)
7618 drv = "isci";
7619 else if (hba && hba->type == SYS_DEV_SATA)
7620 drv = "ahci";
7621 else
7622 drv = "unknown";
7623 dprintf("path: %s hba: %s attached: %s\n",
7624 path, (hba) ? hba->path : "NULL", drv);
7625 free(path);
7626 if (hba)
7627 free_sys_dev(&hba);
7628 }
7629 return drv;
7630}
7631
7632static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
7633{
7634 char subdev_name[20];
7635 struct mdstat_ent *mdstat;
7636
7637 sprintf(subdev_name, "%d", subdev);
7638 mdstat = mdstat_by_subdev(subdev_name, container);
7639 if (!mdstat)
7640 return -1;
7641
7642 *minor = mdstat->devnum;
7643 free_mdstat(mdstat);
7644 return 0;
7645}
7646
7647static int imsm_reshape_is_allowed_on_container(struct supertype *st,
7648 struct geo_params *geo,
7649 int *old_raid_disks)
7650{
7651 /* currently we only support increasing the number of devices
7652 * for a container. This increases the number of device for each
7653 * member array. They must all be RAID0 or RAID5.
7654 */
7655 int ret_val = 0;
7656 struct mdinfo *info, *member;
7657 int devices_that_can_grow = 0;
7658
7659 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
7660 "st->devnum = (%i)\n",
7661 st->devnum);
7662
7663 if (geo->size != -1 ||
7664 geo->level != UnSet ||
7665 geo->layout != UnSet ||
7666 geo->chunksize != 0 ||
7667 geo->raid_disks == UnSet) {
7668 dprintf("imsm: Container operation is allowed for "
7669 "raid disks number change only.\n");
7670 return ret_val;
7671 }
7672
7673 info = container_content_imsm(st, NULL);
7674 for (member = info; member; member = member->next) {
7675 int result;
7676 int minor;
7677
7678 dprintf("imsm: checking device_num: %i\n",
7679 member->container_member);
7680
7681 if (geo->raid_disks <= member->array.raid_disks) {
7682 /* we work on container for Online Capacity Expansion
7683 * only so raid_disks has to grow
7684 */
7685 dprintf("imsm: for container operation raid disks "
7686 "increase is required\n");
7687 break;
7688 }
7689
7690 if ((info->array.level != 0) &&
7691 (info->array.level != 5)) {
7692 /* we cannot use this container with other raid level
7693 */
7694 dprintf("imsm: for container operation wrong"
7695 " raid level (%i) detected\n",
7696 info->array.level);
7697 break;
7698 } else {
7699 /* check for platform support
7700 * for this raid level configuration
7701 */
7702 struct intel_super *super = st->sb;
7703 if (!is_raid_level_supported(super->orom,
7704 member->array.level,
7705 geo->raid_disks)) {
7706 dprintf("platform does not support raid%d with"
7707 " %d disk%s\n",
7708 info->array.level,
7709 geo->raid_disks,
7710 geo->raid_disks > 1 ? "s" : "");
7711 break;
7712 }
7713 /* check if component size is aligned to chunk size
7714 */
7715 if (info->component_size %
7716 (info->array.chunk_size/512)) {
7717 dprintf("Component size is not aligned to "
7718 "chunk size\n");
7719 break;
7720 }
7721 }
7722
7723 if (*old_raid_disks &&
7724 info->array.raid_disks != *old_raid_disks)
7725 break;
7726 *old_raid_disks = info->array.raid_disks;
7727
7728 /* All raid5 and raid0 volumes in container
7729 * have to be ready for Online Capacity Expansion
7730 * so they need to be assembled. We have already
7731 * checked that no recovery etc is happening.
7732 */
7733 result = imsm_find_array_minor_by_subdev(member->container_member,
7734 st->container_dev,
7735 &minor);
7736 if (result < 0) {
7737 dprintf("imsm: cannot find array\n");
7738 break;
7739 }
7740 devices_that_can_grow++;
7741 }
7742 sysfs_free(info);
7743 if (!member && devices_that_can_grow)
7744 ret_val = 1;
7745
7746 if (ret_val)
7747 dprintf("\tContainer operation allowed\n");
7748 else
7749 dprintf("\tError: %i\n", ret_val);
7750
7751 return ret_val;
7752}
7753
7754/* Function: get_spares_for_grow
7755 * Description: Allocates memory and creates list of spare devices
7756 * avaliable in container. Checks if spare drive size is acceptable.
7757 * Parameters: Pointer to the supertype structure
7758 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
7759 * NULL if fail
7760 */
7761static struct mdinfo *get_spares_for_grow(struct supertype *st)
7762{
7763 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
7764 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
7765}
7766
7767/******************************************************************************
7768 * function: imsm_create_metadata_update_for_reshape
7769 * Function creates update for whole IMSM container.
7770 *
7771 ******************************************************************************/
7772static int imsm_create_metadata_update_for_reshape(
7773 struct supertype *st,
7774 struct geo_params *geo,
7775 int old_raid_disks,
7776 struct imsm_update_reshape **updatep)
7777{
7778 struct intel_super *super = st->sb;
7779 struct imsm_super *mpb = super->anchor;
7780 int update_memory_size = 0;
7781 struct imsm_update_reshape *u = NULL;
7782 struct mdinfo *spares = NULL;
7783 int i;
7784 int delta_disks = 0;
7785 struct mdinfo *dev;
7786
7787 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
7788 geo->raid_disks);
7789
7790 delta_disks = geo->raid_disks - old_raid_disks;
7791
7792 /* size of all update data without anchor */
7793 update_memory_size = sizeof(struct imsm_update_reshape);
7794
7795 /* now add space for spare disks that we need to add. */
7796 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
7797
7798 u = calloc(1, update_memory_size);
7799 if (u == NULL) {
7800 dprintf("error: "
7801 "cannot get memory for imsm_update_reshape update\n");
7802 return 0;
7803 }
7804 u->type = update_reshape_container_disks;
7805 u->old_raid_disks = old_raid_disks;
7806 u->new_raid_disks = geo->raid_disks;
7807
7808 /* now get spare disks list
7809 */
7810 spares = get_spares_for_grow(st);
7811
7812 if (spares == NULL
7813 || delta_disks > spares->array.spare_disks) {
7814 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
7815 "for %s.\n", geo->dev_name);
7816 goto abort;
7817 }
7818
7819 /* we have got spares
7820 * update disk list in imsm_disk list table in anchor
7821 */
7822 dprintf("imsm: %i spares are available.\n\n",
7823 spares->array.spare_disks);
7824
7825 dev = spares->devs;
7826 for (i = 0; i < delta_disks; i++) {
7827 struct dl *dl;
7828
7829 if (dev == NULL)
7830 break;
7831 u->new_disks[i] = makedev(dev->disk.major,
7832 dev->disk.minor);
7833 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
7834 dl->index = mpb->num_disks;
7835 mpb->num_disks++;
7836 dev = dev->next;
7837 }
7838
7839abort:
7840 /* free spares
7841 */
7842 sysfs_free(spares);
7843
7844 dprintf("imsm: reshape update preparation :");
7845 if (i == delta_disks) {
7846 dprintf(" OK\n");
7847 *updatep = u;
7848 return update_memory_size;
7849 }
7850 free(u);
7851 dprintf(" Error\n");
7852
7853 return 0;
7854}
7855
7856/******************************************************************************
7857 * function: imsm_create_metadata_update_for_migration()
7858 * Creates update for IMSM array.
7859 *
7860 ******************************************************************************/
7861static int imsm_create_metadata_update_for_migration(
7862 struct supertype *st,
7863 struct geo_params *geo,
7864 struct imsm_update_reshape_migration **updatep)
7865{
7866 struct intel_super *super = st->sb;
7867 int update_memory_size = 0;
7868 struct imsm_update_reshape_migration *u = NULL;
7869 struct imsm_dev *dev;
7870 int previous_level = -1;
7871
7872 dprintf("imsm_create_metadata_update_for_migration(enter)"
7873 " New Level = %i\n", geo->level);
7874
7875 /* size of all update data without anchor */
7876 update_memory_size = sizeof(struct imsm_update_reshape_migration);
7877
7878 u = calloc(1, update_memory_size);
7879 if (u == NULL) {
7880 dprintf("error: cannot get memory for "
7881 "imsm_create_metadata_update_for_migration\n");
7882 return 0;
7883 }
7884 u->type = update_reshape_migration;
7885 u->subdev = super->current_vol;
7886 u->new_level = geo->level;
7887 u->new_layout = geo->layout;
7888 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
7889 u->new_disks[0] = -1;
7890 u->new_chunksize = -1;
7891
7892 dev = get_imsm_dev(super, u->subdev);
7893 if (dev) {
7894 struct imsm_map *map;
7895
7896 map = get_imsm_map(dev, 0);
7897 if (map) {
7898 int current_chunk_size =
7899 __le16_to_cpu(map->blocks_per_strip) / 2;
7900
7901 if (geo->chunksize != current_chunk_size) {
7902 u->new_chunksize = geo->chunksize / 1024;
7903 dprintf("imsm: "
7904 "chunk size change from %i to %i\n",
7905 current_chunk_size, u->new_chunksize);
7906 }
7907 previous_level = map->raid_level;
7908 }
7909 }
7910 if ((geo->level == 5) && (previous_level == 0)) {
7911 struct mdinfo *spares = NULL;
7912
7913 u->new_raid_disks++;
7914 spares = get_spares_for_grow(st);
7915 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
7916 free(u);
7917 sysfs_free(spares);
7918 update_memory_size = 0;
7919 dprintf("error: cannot get spare device "
7920 "for requested migration");
7921 return 0;
7922 }
7923 sysfs_free(spares);
7924 }
7925 dprintf("imsm: reshape update preparation : OK\n");
7926 *updatep = u;
7927
7928 return update_memory_size;
7929}
7930
7931static void imsm_update_metadata_locally(struct supertype *st,
7932 void *buf, int len)
7933{
7934 struct metadata_update mu;
7935
7936 mu.buf = buf;
7937 mu.len = len;
7938 mu.space = NULL;
7939 mu.space_list = NULL;
7940 mu.next = NULL;
7941 imsm_prepare_update(st, &mu);
7942 imsm_process_update(st, &mu);
7943
7944 while (mu.space_list) {
7945 void **space = mu.space_list;
7946 mu.space_list = *space;
7947 free(space);
7948 }
7949}
7950
7951/***************************************************************************
7952* Function: imsm_analyze_change
7953* Description: Function analyze change for single volume
7954* and validate if transition is supported
7955* Parameters: Geometry parameters, supertype structure
7956* Returns: Operation type code on success, -1 if fail
7957****************************************************************************/
7958enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
7959 struct geo_params *geo)
7960{
7961 struct mdinfo info;
7962 int change = -1;
7963 int check_devs = 0;
7964 int chunk;
7965
7966 getinfo_super_imsm_volume(st, &info, NULL);
7967
7968 if ((geo->level != info.array.level) &&
7969 (geo->level >= 0) &&
7970 (geo->level != UnSet)) {
7971 switch (info.array.level) {
7972 case 0:
7973 if (geo->level == 5) {
7974 change = CH_MIGRATION;
7975 check_devs = 1;
7976 }
7977 if (geo->level == 10) {
7978 change = CH_TAKEOVER;
7979 check_devs = 1;
7980 }
7981 break;
7982 case 1:
7983 if (geo->level == 0) {
7984 change = CH_TAKEOVER;
7985 check_devs = 1;
7986 }
7987 break;
7988 case 10:
7989 if (geo->level == 0) {
7990 change = CH_TAKEOVER;
7991 check_devs = 1;
7992 }
7993 break;
7994 }
7995 if (change == -1) {
7996 fprintf(stderr,
7997 Name " Error. Level Migration from %d to %d "
7998 "not supported!\n",
7999 info.array.level, geo->level);
8000 goto analyse_change_exit;
8001 }
8002 } else
8003 geo->level = info.array.level;
8004
8005 if ((geo->layout != info.array.layout)
8006 && ((geo->layout != UnSet) && (geo->layout != -1))) {
8007 change = CH_MIGRATION;
8008 if ((info.array.layout == 0)
8009 && (info.array.level == 5)
8010 && (geo->layout == 5)) {
8011 /* reshape 5 -> 4 */
8012 } else if ((info.array.layout == 5)
8013 && (info.array.level == 5)
8014 && (geo->layout == 0)) {
8015 /* reshape 4 -> 5 */
8016 geo->layout = 0;
8017 geo->level = 5;
8018 } else {
8019 fprintf(stderr,
8020 Name " Error. Layout Migration from %d to %d "
8021 "not supported!\n",
8022 info.array.layout, geo->layout);
8023 change = -1;
8024 goto analyse_change_exit;
8025 }
8026 } else
8027 geo->layout = info.array.layout;
8028
8029 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8030 && (geo->chunksize != info.array.chunk_size))
8031 change = CH_MIGRATION;
8032 else
8033 geo->chunksize = info.array.chunk_size;
8034
8035 chunk = geo->chunksize / 1024;
8036 if (!validate_geometry_imsm(st,
8037 geo->level,
8038 geo->layout,
8039 geo->raid_disks,
8040 &chunk,
8041 geo->size,
8042 0, 0, 1))
8043 change = -1;
8044
8045 if (check_devs) {
8046 struct intel_super *super = st->sb;
8047 struct imsm_super *mpb = super->anchor;
8048
8049 if (mpb->num_raid_devs > 1) {
8050 fprintf(stderr,
8051 Name " Error. Cannot perform operation on %s"
8052 "- for this operation it MUST be single "
8053 "array in container\n",
8054 geo->dev_name);
8055 change = -1;
8056 }
8057 }
8058
8059analyse_change_exit:
8060
8061 return change;
8062}
8063
8064int imsm_takeover(struct supertype *st, struct geo_params *geo)
8065{
8066 struct intel_super *super = st->sb;
8067 struct imsm_update_takeover *u;
8068
8069 u = malloc(sizeof(struct imsm_update_takeover));
8070 if (u == NULL)
8071 return 1;
8072
8073 u->type = update_takeover;
8074 u->subarray = super->current_vol;
8075
8076 /* 10->0 transition */
8077 if (geo->level == 0)
8078 u->direction = R10_TO_R0;
8079
8080 /* 0->10 transition */
8081 if (geo->level == 10)
8082 u->direction = R0_TO_R10;
8083
8084 /* update metadata locally */
8085 imsm_update_metadata_locally(st, u,
8086 sizeof(struct imsm_update_takeover));
8087 /* and possibly remotely */
8088 if (st->update_tail)
8089 append_metadata_update(st, u,
8090 sizeof(struct imsm_update_takeover));
8091 else
8092 free(u);
8093
8094 return 0;
8095}
8096
8097static int warn_user_about_risk(void)
8098{
8099 int rv = 0;
8100
8101 fprintf(stderr,
8102 "\nThis is an experimental feature. Data on the RAID volume(s) "
8103 "can be lost!!!\n\n"
8104 "To continue command execution please make sure that\n"
8105 "the grow process will not be interrupted. Use safe power\n"
8106 "supply to avoid unexpected system reboot. Make sure that\n"
8107 "reshaped container is not assembled automatically during\n"
8108 "system boot.\n"
8109 "If reshape is interrupted, assemble array manually\n"
8110 "using e.g. '-Ac' option and up to date mdadm.conf file.\n"
8111 "Assembly in scan mode is not possible in such case.\n"
8112 "Growing container with boot array is not possible.\n"
8113 "If boot array reshape is interrupted, whole file system\n"
8114 "can be lost.\n\n");
8115 rv = ask("Do you want to continue? ");
8116 fprintf(stderr, "\n");
8117
8118 return rv;
8119}
8120
8121static int imsm_reshape_super(struct supertype *st, long long size, int level,
8122 int layout, int chunksize, int raid_disks,
8123 int delta_disks, char *backup, char *dev,
8124 int verbose)
8125{
8126 int ret_val = 1;
8127 struct geo_params geo;
8128
8129 dprintf("imsm: reshape_super called.\n");
8130
8131 memset(&geo, 0, sizeof(struct geo_params));
8132
8133 geo.dev_name = dev;
8134 geo.dev_id = st->devnum;
8135 geo.size = size;
8136 geo.level = level;
8137 geo.layout = layout;
8138 geo.chunksize = chunksize;
8139 geo.raid_disks = raid_disks;
8140 if (delta_disks != UnSet)
8141 geo.raid_disks += delta_disks;
8142
8143 dprintf("\tfor level : %i\n", geo.level);
8144 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
8145
8146 if (experimental() == 0)
8147 return ret_val;
8148
8149 if (st->container_dev == st->devnum) {
8150 /* On container level we can only increase number of devices. */
8151 dprintf("imsm: info: Container operation\n");
8152 int old_raid_disks = 0;
8153
8154 /* this warning will be removed when imsm checkpointing
8155 * will be implemented, and restoring from check-point
8156 * operation will be transparent for reboot process
8157 */
8158 if (warn_user_about_risk() == 0)
8159 return ret_val;
8160
8161 if (imsm_reshape_is_allowed_on_container(
8162 st, &geo, &old_raid_disks)) {
8163 struct imsm_update_reshape *u = NULL;
8164 int len;
8165
8166 len = imsm_create_metadata_update_for_reshape(
8167 st, &geo, old_raid_disks, &u);
8168
8169 if (len <= 0) {
8170 dprintf("imsm: Cannot prepare update\n");
8171 goto exit_imsm_reshape_super;
8172 }
8173
8174 ret_val = 0;
8175 /* update metadata locally */
8176 imsm_update_metadata_locally(st, u, len);
8177 /* and possibly remotely */
8178 if (st->update_tail)
8179 append_metadata_update(st, u, len);
8180 else
8181 free(u);
8182
8183 } else {
8184 fprintf(stderr, Name ": (imsm) Operation "
8185 "is not allowed on this container\n");
8186 }
8187 } else {
8188 /* On volume level we support following operations
8189 * - takeover: raid10 -> raid0; raid0 -> raid10
8190 * - chunk size migration
8191 * - migration: raid5 -> raid0; raid0 -> raid5
8192 */
8193 struct intel_super *super = st->sb;
8194 struct intel_dev *dev = super->devlist;
8195 int change, devnum;
8196 dprintf("imsm: info: Volume operation\n");
8197 /* find requested device */
8198 while (dev) {
8199 imsm_find_array_minor_by_subdev(dev->index, st->container_dev, &devnum);
8200 if (devnum == geo.dev_id)
8201 break;
8202 dev = dev->next;
8203 }
8204 if (dev == NULL) {
8205 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
8206 geo.dev_name, geo.dev_id);
8207 goto exit_imsm_reshape_super;
8208 }
8209 super->current_vol = dev->index;
8210 change = imsm_analyze_change(st, &geo);
8211 switch (change) {
8212 case CH_TAKEOVER:
8213 ret_val = imsm_takeover(st, &geo);
8214 break;
8215 case CH_MIGRATION: {
8216 struct imsm_update_reshape_migration *u = NULL;
8217 int len =
8218 imsm_create_metadata_update_for_migration(
8219 st, &geo, &u);
8220 if (len < 1) {
8221 dprintf("imsm: "
8222 "Cannot prepare update\n");
8223 break;
8224 }
8225 ret_val = 0;
8226 /* update metadata locally */
8227 imsm_update_metadata_locally(st, u, len);
8228 /* and possibly remotely */
8229 if (st->update_tail)
8230 append_metadata_update(st, u, len);
8231 else
8232 free(u);
8233 }
8234 break;
8235 default:
8236 ret_val = 1;
8237 }
8238 }
8239
8240exit_imsm_reshape_super:
8241 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
8242 return ret_val;
8243}
8244
8245/*******************************************************************************
8246 * Function: wait_for_reshape_imsm
8247 * Description: Function writes new sync_max value and waits until
8248 * reshape process reach new position
8249 * Parameters:
8250 * sra : general array info
8251 * to_complete : new sync_max position
8252 * ndata : number of disks in new array's layout
8253 * Returns:
8254 * 0 : success,
8255 * 1 : there is no reshape in progress,
8256 * -1 : fail
8257 ******************************************************************************/
8258int wait_for_reshape_imsm(struct mdinfo *sra, unsigned long long to_complete,
8259 int ndata)
8260{
8261 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
8262 unsigned long long completed;
8263
8264 struct timeval timeout;
8265
8266 if (fd < 0)
8267 return 1;
8268
8269 sysfs_fd_get_ll(fd, &completed);
8270
8271 if (to_complete == 0) {/* reshape till the end of array */
8272 sysfs_set_str(sra, NULL, "sync_max", "max");
8273 to_complete = MaxSector;
8274 } else {
8275 if (completed > to_complete)
8276 return -1;
8277 if (sysfs_set_num(sra, NULL, "sync_max",
8278 to_complete / ndata) != 0) {
8279 close(fd);
8280 return -1;
8281 }
8282 }
8283
8284 /* FIXME should not need a timeout at all */
8285 timeout.tv_sec = 30;
8286 timeout.tv_usec = 0;
8287 do {
8288 char action[20];
8289 fd_set rfds;
8290 FD_ZERO(&rfds);
8291 FD_SET(fd, &rfds);
8292 select(fd+1, NULL, NULL, &rfds, &timeout);
8293 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8294 close(fd);
8295 return 1;
8296 }
8297 if (sysfs_get_str(sra, NULL, "sync_action",
8298 action, 20) > 0 &&
8299 strncmp(action, "reshape", 7) != 0)
8300 break;
8301 } while (completed < to_complete);
8302 close(fd);
8303 return 0;
8304
8305}
8306
8307/*******************************************************************************
8308 * Function: check_degradation_change
8309 * Description: Check that array hasn't become failed.
8310 * Parameters:
8311 * info : for sysfs access
8312 * sources : source disks descriptors
8313 * degraded: previous degradation level
8314 * Returns:
8315 * degradation level
8316 ******************************************************************************/
8317int check_degradation_change(struct mdinfo *info,
8318 int *sources,
8319 int degraded)
8320{
8321 unsigned long long new_degraded;
8322 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
8323 if (new_degraded != (unsigned long long)degraded) {
8324 /* check each device to ensure it is still working */
8325 struct mdinfo *sd;
8326 new_degraded = 0;
8327 for (sd = info->devs ; sd ; sd = sd->next) {
8328 if (sd->disk.state & (1<<MD_DISK_FAULTY))
8329 continue;
8330 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
8331 char sbuf[20];
8332 if (sysfs_get_str(info,
8333 sd, "state", sbuf, 20) < 0 ||
8334 strstr(sbuf, "faulty") ||
8335 strstr(sbuf, "in_sync") == NULL) {
8336 /* this device is dead */
8337 sd->disk.state = (1<<MD_DISK_FAULTY);
8338 if (sd->disk.raid_disk >= 0 &&
8339 sources[sd->disk.raid_disk] >= 0) {
8340 close(sources[
8341 sd->disk.raid_disk]);
8342 sources[sd->disk.raid_disk] =
8343 -1;
8344 }
8345 new_degraded++;
8346 }
8347 }
8348 }
8349 }
8350
8351 return new_degraded;
8352}
8353
8354/*******************************************************************************
8355 * Function: imsm_manage_reshape
8356 * Description: Function finds array under reshape and it manages reshape
8357 * process. It creates stripes backups (if required) and sets
8358 * checheckpoits.
8359 * Parameters:
8360 * afd : Backup handle (nattive) - not used
8361 * sra : general array info
8362 * reshape : reshape parameters - not used
8363 * st : supertype structure
8364 * blocks : size of critical section [blocks]
8365 * fds : table of source device descriptor
8366 * offsets : start of array (offest per devices)
8367 * dests : not used
8368 * destfd : table of destination device descriptor
8369 * destoffsets : table of destination offsets (per device)
8370 * Returns:
8371 * 1 : success, reshape is done
8372 * 0 : fail
8373 ******************************************************************************/
8374static int imsm_manage_reshape(
8375 int afd, struct mdinfo *sra, struct reshape *reshape,
8376 struct supertype *st, unsigned long backup_blocks,
8377 int *fds, unsigned long long *offsets,
8378 int dests, int *destfd, unsigned long long *destoffsets)
8379{
8380 int ret_val = 0;
8381 struct intel_super *super = st->sb;
8382 struct intel_dev *dv = NULL;
8383 struct imsm_dev *dev = NULL;
8384 struct imsm_map *map_src, *map_dest;
8385 int migr_vol_qan = 0;
8386 int ndata, odata; /* [bytes] */
8387 int chunk; /* [bytes] */
8388 struct migr_record *migr_rec;
8389 char *buf = NULL;
8390 unsigned int buf_size; /* [bytes] */
8391 unsigned long long max_position; /* array size [bytes] */
8392 unsigned long long next_step; /* [blocks]/[bytes] */
8393 unsigned long long old_data_stripe_length;
8394 unsigned long long new_data_stripe_length;
8395 unsigned long long start_src; /* [bytes] */
8396 unsigned long long start; /* [bytes] */
8397 unsigned long long start_buf_shift; /* [bytes] */
8398 int degraded = 0;
8399
8400 if (!fds || !offsets || !destfd || !destoffsets || !sra)
8401 goto abort;
8402
8403 /* Find volume during the reshape */
8404 for (dv = super->devlist; dv; dv = dv->next) {
8405 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
8406 && dv->dev->vol.migr_state == 1) {
8407 dev = dv->dev;
8408 migr_vol_qan++;
8409 }
8410 }
8411 /* Only one volume can migrate at the same time */
8412 if (migr_vol_qan != 1) {
8413 fprintf(stderr, Name " : %s", migr_vol_qan ?
8414 "Number of migrating volumes greater than 1\n" :
8415 "There is no volume during migrationg\n");
8416 goto abort;
8417 }
8418
8419 map_src = get_imsm_map(dev, 1);
8420 if (map_src == NULL)
8421 goto abort;
8422 map_dest = get_imsm_map(dev, 0);
8423
8424 ndata = imsm_num_data_members(dev, 0);
8425 odata = imsm_num_data_members(dev, 1);
8426
8427 chunk = map_src->blocks_per_strip * 512;
8428 old_data_stripe_length = odata * chunk;
8429
8430 migr_rec = super->migr_rec;
8431
8432 /* [bytes] */
8433 sra->new_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8434 sra->new_level = map_dest->raid_level;
8435 new_data_stripe_length = sra->new_chunk * ndata;
8436
8437 /* initialize migration record for start condition */
8438 if (sra->reshape_progress == 0)
8439 init_migr_record_imsm(st, dev, sra);
8440
8441 /* size for data */
8442 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
8443 /* extend buffer size for parity disk */
8444 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8445 /* add space for stripe aligment */
8446 buf_size += old_data_stripe_length;
8447 if (posix_memalign((void **)&buf, 4096, buf_size)) {
8448 dprintf("imsm: Cannot allocate checpoint buffer\n");
8449 goto abort;
8450 }
8451
8452 max_position =
8453 __le32_to_cpu(migr_rec->post_migr_vol_cap) +
8454 ((unsigned long long)__le32_to_cpu(
8455 migr_rec->post_migr_vol_cap_hi) << 32);
8456
8457 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
8458 __le32_to_cpu(migr_rec->num_migr_units)) {
8459 /* current reshape position [blocks] */
8460 unsigned long long current_position =
8461 __le32_to_cpu(migr_rec->blocks_per_unit)
8462 * __le32_to_cpu(migr_rec->curr_migr_unit);
8463 unsigned long long border;
8464
8465 /* Check that array hasn't become failed.
8466 */
8467 degraded = check_degradation_change(sra, fds, degraded);
8468 if (degraded > 1) {
8469 dprintf("imsm: Abort reshape due to degradation"
8470 " level (%i)\n", degraded);
8471 goto abort;
8472 }
8473
8474 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
8475
8476 if ((current_position + next_step) > max_position)
8477 next_step = max_position - current_position;
8478
8479 start = (map_src->pba_of_lba0 + dev->reserved_blocks +
8480 current_position) * 512;
8481
8482 /* allign reading start to old geometry */
8483 start_buf_shift = start % old_data_stripe_length;
8484 start_src = start - start_buf_shift;
8485
8486 border = (start_src / odata) - (start / ndata);
8487 border /= 512;
8488 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
8489 /* save critical stripes to buf
8490 * start - start address of current unit
8491 * to backup [bytes]
8492 * start_src - start address of current unit
8493 * to backup alligned to source array
8494 * [bytes]
8495 */
8496 unsigned long long next_step_filler = 0;
8497 unsigned long long copy_length = next_step * 512;
8498
8499 /* allign copy area length to stripe in old geometry */
8500 next_step_filler = ((copy_length + start_buf_shift)
8501 % old_data_stripe_length);
8502 if (next_step_filler)
8503 next_step_filler = (old_data_stripe_length
8504 - next_step_filler);
8505 dprintf("save_stripes() parameters: start = %llu,"
8506 "\tstart_src = %llu,\tnext_step*512 = %llu,"
8507 "\tstart_in_buf_shift = %llu,"
8508 "\tnext_step_filler = %llu\n",
8509 start, start_src, copy_length,
8510 start_buf_shift, next_step_filler);
8511
8512 if (save_stripes(fds, offsets, map_src->num_members,
8513 chunk, sra->array.level,
8514 sra->array.layout, 0, NULL, start_src,
8515 copy_length +
8516 next_step_filler + start_buf_shift,
8517 buf)) {
8518 dprintf("imsm: Cannot save stripes"
8519 " to buffer\n");
8520 goto abort;
8521 }
8522 /* Convert data to destination format and store it
8523 * in backup general migration area
8524 */
8525 if (save_backup_imsm(st, dev, sra,
8526 buf + start_buf_shift,
8527 ndata, copy_length)) {
8528 dprintf("imsm: Cannot save stripes to "
8529 "target devices\n");
8530 goto abort;
8531 }
8532 if (save_checkpoint_imsm(st, sra,
8533 UNIT_SRC_IN_CP_AREA)) {
8534 dprintf("imsm: Cannot write checkpoint to "
8535 "migration record (UNIT_SRC_IN_CP_AREA)\n");
8536 goto abort;
8537 }
8538 /* decrease backup_blocks */
8539 if (backup_blocks > (unsigned long)next_step)
8540 backup_blocks -= next_step;
8541 else
8542 backup_blocks = 0;
8543 }
8544 /* When data backed up, checkpoint stored,
8545 * kick the kernel to reshape unit of data
8546 */
8547 next_step = next_step + sra->reshape_progress;
8548 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
8549 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
8550
8551 /* wait until reshape finish */
8552 if (wait_for_reshape_imsm(sra, next_step, ndata) < 0)
8553 dprintf("wait_for_reshape_imsm returned error,"
8554 " but we ignore it!\n");
8555
8556 sra->reshape_progress = next_step;
8557
8558 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL)) {
8559 dprintf("imsm: Cannot write checkpoint to "
8560 "migration record (UNIT_SRC_NORMAL)\n");
8561 goto abort;
8562 }
8563
8564 }
8565
8566 /* return '1' if done */
8567 ret_val = 1;
8568abort:
8569 free(buf);
8570 abort_reshape(sra);
8571
8572 return ret_val;
8573}
8574#endif /* MDASSEMBLE */
8575
8576struct superswitch super_imsm = {
8577#ifndef MDASSEMBLE
8578 .examine_super = examine_super_imsm,
8579 .brief_examine_super = brief_examine_super_imsm,
8580 .brief_examine_subarrays = brief_examine_subarrays_imsm,
8581 .export_examine_super = export_examine_super_imsm,
8582 .detail_super = detail_super_imsm,
8583 .brief_detail_super = brief_detail_super_imsm,
8584 .write_init_super = write_init_super_imsm,
8585 .validate_geometry = validate_geometry_imsm,
8586 .add_to_super = add_to_super_imsm,
8587 .remove_from_super = remove_from_super_imsm,
8588 .detail_platform = detail_platform_imsm,
8589 .kill_subarray = kill_subarray_imsm,
8590 .update_subarray = update_subarray_imsm,
8591 .load_container = load_container_imsm,
8592 .default_geometry = default_geometry_imsm,
8593 .get_disk_controller_domain = imsm_get_disk_controller_domain,
8594 .reshape_super = imsm_reshape_super,
8595 .manage_reshape = imsm_manage_reshape,
8596#endif
8597 .match_home = match_home_imsm,
8598 .uuid_from_super= uuid_from_super_imsm,
8599 .getinfo_super = getinfo_super_imsm,
8600 .getinfo_super_disks = getinfo_super_disks_imsm,
8601 .update_super = update_super_imsm,
8602
8603 .avail_size = avail_size_imsm,
8604 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
8605
8606 .compare_super = compare_super_imsm,
8607
8608 .load_super = load_super_imsm,
8609 .init_super = init_super_imsm,
8610 .store_super = store_super_imsm,
8611 .free_super = free_super_imsm,
8612 .match_metadata_desc = match_metadata_desc_imsm,
8613 .container_content = container_content_imsm,
8614
8615 .external = 1,
8616 .name = "imsm",
8617
8618#ifndef MDASSEMBLE
8619/* for mdmon */
8620 .open_new = imsm_open_new,
8621 .set_array_state= imsm_set_array_state,
8622 .set_disk = imsm_set_disk,
8623 .sync_metadata = imsm_sync_metadata,
8624 .activate_spare = imsm_activate_spare,
8625 .process_update = imsm_process_update,
8626 .prepare_update = imsm_prepare_update,
8627#endif /* MDASSEMBLE */
8628};