]> git.ipfire.org Git - thirdparty/openssl.git/blame - crypto/bn/asm/ia64.S
Remove email addresses from source code.
[thirdparty/openssl.git] / crypto / bn / asm / ia64.S
CommitLineData
52c0d300 1.explicit
4cb73bf8 2.text
e2f2a9af 3.ident "ia64.S, Version 2.1"
e3713c36 4.ident "IA-64 ISA artwork by Andy Polyakov <appro@openssl.org>"
4cb73bf8 5
44c8a5e2
RS
6// Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved.
7//
8// Licensed under the OpenSSL license (the "License"). You may not use
9// this file except in compliance with the License. You can obtain a copy
10// in the file LICENSE in the source distribution or at
11// https://www.openssl.org/source/license.html
12
4cb73bf8
AP
13//
14// ====================================================================
e3713c36 15// Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
4cb73bf8
AP
16// project.
17//
18// Rights for redistribution and usage in source and binary forms are
19// granted according to the OpenSSL license. Warranty of any kind is
20// disclaimed.
21// ====================================================================
22//
722d17cb
AP
23// Version 2.x is Itanium2 re-tune. Few words about how Itanum2 is
24// different from Itanium to this module viewpoint. Most notably, is it
25// "wider" than Itanium? Can you experience loop scalability as
26// discussed in commentary sections? Not really:-( Itanium2 has 6
27// integer ALU ports, i.e. it's 2 ports wider, but it's not enough to
28// spin twice as fast, as I need 8 IALU ports. Amount of floating point
29// ports is the same, i.e. 2, while I need 4. In other words, to this
30// module Itanium2 remains effectively as "wide" as Itanium. Yet it's
31// essentially different in respect to this module, and a re-tune was
60250017 32// required. Well, because some instruction latencies has changed. Most
722d17cb
AP
33// noticeably those intensively used:
34//
35// Itanium Itanium2
36// ldf8 9 6 L2 hit
37// ld8 2 1 L1 hit
38// getf 2 5
39// xma[->getf] 7[+1] 4[+0]
40// add[->st8] 1[+1] 1[+0]
41//
42// What does it mean? You might ratiocinate that the original code
43// should run just faster... Because sum of latencies is smaller...
44// Wrong! Note that getf latency increased. This means that if a loop is
e2f2a9af 45// scheduled for lower latency (as they were), then it will suffer from
722d17cb
AP
46// stall condition and the code will therefore turn anti-scalable, e.g.
47// original bn_mul_words spun at 5*n or 2.5 times slower than expected
48// on Itanium2! What to do? Reschedule loops for Itanium2? But then
49// Itanium would exhibit anti-scalability. So I've chosen to reschedule
50// for worst latency for every instruction aiming for best *all-round*
51// performance.
4cb73bf8
AP
52
53// Q. How much faster does it get?
54// A. Here is the output from 'openssl speed rsa dsa' for vanilla
55// 0.9.6a compiled with gcc version 2.96 20000731 (Red Hat
56// Linux 7.1 2.96-81):
57//
58// sign verify sign/s verify/s
59// rsa 512 bits 0.0036s 0.0003s 275.3 2999.2
60// rsa 1024 bits 0.0203s 0.0011s 49.3 894.1
61// rsa 2048 bits 0.1331s 0.0040s 7.5 250.9
62// rsa 4096 bits 0.9270s 0.0147s 1.1 68.1
63// sign verify sign/s verify/s
64// dsa 512 bits 0.0035s 0.0043s 288.3 234.8
65// dsa 1024 bits 0.0111s 0.0135s 90.0 74.2
66//
67// And here is similar output but for this assembler
68// implementation:-)
69//
70// sign verify sign/s verify/s
71// rsa 512 bits 0.0021s 0.0001s 549.4 9638.5
72// rsa 1024 bits 0.0055s 0.0002s 183.8 4481.1
73// rsa 2048 bits 0.0244s 0.0006s 41.4 1726.3
74// rsa 4096 bits 0.1295s 0.0018s 7.7 561.5
75// sign verify sign/s verify/s
76// dsa 512 bits 0.0012s 0.0013s 891.9 756.6
77// dsa 1024 bits 0.0023s 0.0028s 440.4 376.2
78//
79// Yes, you may argue that it's not fair comparison as it's
80// possible to craft the C implementation with BN_UMULT_HIGH
81// inline assembler macro. But of course! Here is the output
82// with the macro:
83//
84// sign verify sign/s verify/s
85// rsa 512 bits 0.0020s 0.0002s 495.0 6561.0
86// rsa 1024 bits 0.0086s 0.0004s 116.2 2235.7
87// rsa 2048 bits 0.0519s 0.0015s 19.3 667.3
88// rsa 4096 bits 0.3464s 0.0053s 2.9 187.7
89// sign verify sign/s verify/s
90// dsa 512 bits 0.0016s 0.0020s 613.1 510.5
91// dsa 1024 bits 0.0045s 0.0054s 221.0 183.9
92//
93// My code is still way faster, huh:-) And I believe that even
94// higher performance can be achieved. Note that as keys get
95// longer, performance gain is larger. Why? According to the
96// profiler there is another player in the field, namely
97// BN_from_montgomery consuming larger and larger portion of CPU
98// time as keysize decreases. I therefore consider putting effort
99// to assembler implementation of the following routine:
100//
101// void bn_mul_add_mont (BN_ULONG *rp,BN_ULONG *np,int nl,BN_ULONG n0)
102// {
103// int i,j;
104// BN_ULONG v;
105//
106// for (i=0; i<nl; i++)
107// {
108// v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2);
109// nrp++;
110// rp++;
111// if (((nrp[-1]+=v)&BN_MASK2) < v)
112// for (j=0; ((++nrp[j])&BN_MASK2) == 0; j++) ;
113// }
114// }
115//
116// It might as well be beneficial to implement even combaX
117// variants, as it appears as it can literally unleash the
118// performance (see comment section to bn_mul_comba8 below).
119//
120// And finally for your reference the output for 0.9.6a compiled
121// with SGIcc version 0.01.0-12 (keep in mind that for the moment
122// of this writing it's not possible to convince SGIcc to use
123// BN_UMULT_HIGH inline assembler macro, yet the code is fast,
124// i.e. for a compiler generated one:-):
125//
126// sign verify sign/s verify/s
127// rsa 512 bits 0.0022s 0.0002s 452.7 5894.3
128// rsa 1024 bits 0.0097s 0.0005s 102.7 2002.9
129// rsa 2048 bits 0.0578s 0.0017s 17.3 600.2
130// rsa 4096 bits 0.3838s 0.0061s 2.6 164.5
131// sign verify sign/s verify/s
132// dsa 512 bits 0.0018s 0.0022s 547.3 459.6
133// dsa 1024 bits 0.0051s 0.0062s 196.6 161.3
134//
135// Oh! Benchmarks were performed on 733MHz Lion-class Itanium
136// system running Redhat Linux 7.1 (very special thanks to Ray
137// McCaffity of Williams Communications for providing an account).
138//
139// Q. What's the heck with 'rum 1<<5' at the end of every function?
140// A. Well, by clearing the "upper FP registers written" bit of the
141// User Mask I want to excuse the kernel from preserving upper
142// (f32-f128) FP register bank over process context switch, thus
143// minimizing bus bandwidth consumption during the switch (i.e.
144// after PKI opration completes and the program is off doing
145// something else like bulk symmetric encryption). Having said
146// this, I also want to point out that it might be good idea
147// to compile the whole toolkit (as well as majority of the
148// programs for that matter) with -mfixed-range=f32-f127 command
149// line option. No, it doesn't prevent the compiler from writing
150// to upper bank, but at least discourages to do so. If you don't
151// like the idea you have the option to compile the module with
152// -Drum=nop.m in command line.
153//
154
e2f2a9af
AP
155#if defined(_HPUX_SOURCE) && !defined(_LP64)
156#define ADDP addp4
157#else
158#define ADDP add
159#endif
160
4cb73bf8
AP
161#if 1
162//
163// bn_[add|sub]_words routines.
164//
165// Loops are spinning in 2*(n+5) ticks on Itanuim (provided that the
166// data reside in L1 cache, i.e. 2 ticks away). It's possible to
167// compress the epilogue and get down to 2*n+6, but at the cost of
168// scalability (the neat feature of this implementation is that it
169// shall automagically spin in n+5 on "wider" IA-64 implementations:-)
170// I consider that the epilogue is short enough as it is to trade tiny
171// performance loss on Itanium for scalability.
172//
173// BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)
174//
175.global bn_add_words#
176.proc bn_add_words#
177.align 64
622d3d35 178.skip 32 // makes the loop body aligned at 64-byte boundary
4cb73bf8
AP
179bn_add_words:
180 .prologue
4cb73bf8 181 .save ar.pfs,r2
622d3d35 182{ .mii; alloc r2=ar.pfs,4,12,0,16
4cb73bf8 183 cmp4.le p6,p0=r35,r0 };;
622d3d35 184{ .mfb; mov r8=r0 // return value
4cb73bf8
AP
185(p6) br.ret.spnt.many b0 };;
186
622d3d35 187{ .mib; sub r10=r35,r0,1
ef428d56 188 .save ar.lc,r3
4cb73bf8
AP
189 mov r3=ar.lc
190 brp.loop.imp .L_bn_add_words_ctop,.L_bn_add_words_cend-16
191 }
e2f2a9af 192{ .mib; ADDP r14=0,r32 // rp
7cfe2a5e 193 .save pr,r9
4cb73bf8 194 mov r9=pr };;
7cfe2a5e 195 .body
e2f2a9af 196{ .mii; ADDP r15=0,r33 // ap
4cb73bf8
AP
197 mov ar.lc=r10
198 mov ar.ec=6 }
e2f2a9af 199{ .mib; ADDP r16=0,r34 // bp
622d3d35 200 mov pr.rot=1<<16 };;
4cb73bf8 201
622d3d35
AP
202.L_bn_add_words_ctop:
203{ .mii; (p16) ld8 r32=[r16],8 // b=*(bp++)
4cb73bf8
AP
204 (p18) add r39=r37,r34
205 (p19) cmp.ltu.unc p56,p0=r40,r38 }
622d3d35 206{ .mfb; (p0) nop.m 0x0
4cb73bf8
AP
207 (p0) nop.f 0x0
208 (p0) nop.b 0x0 }
622d3d35 209{ .mii; (p16) ld8 r35=[r15],8 // a=*(ap++)
4cb73bf8
AP
210 (p58) cmp.eq.or p57,p0=-1,r41 // (p20)
211 (p58) add r41=1,r41 } // (p20)
622d3d35 212{ .mfb; (p21) st8 [r14]=r42,8 // *(rp++)=r
4cb73bf8
AP
213 (p0) nop.f 0x0
214 br.ctop.sptk .L_bn_add_words_ctop };;
215.L_bn_add_words_cend:
216
622d3d35 217{ .mii;
4cb73bf8 218(p59) add r8=1,r8 // return value
46a0d4fb 219 mov pr=r9,0x1ffff
4cb73bf8 220 mov ar.lc=r3 }
622d3d35 221{ .mbb; nop.b 0x0
4cb73bf8
AP
222 br.ret.sptk.many b0 };;
223.endp bn_add_words#
224
225//
226// BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)
227//
228.global bn_sub_words#
229.proc bn_sub_words#
230.align 64
622d3d35 231.skip 32 // makes the loop body aligned at 64-byte boundary
4cb73bf8
AP
232bn_sub_words:
233 .prologue
4cb73bf8 234 .save ar.pfs,r2
622d3d35 235{ .mii; alloc r2=ar.pfs,4,12,0,16
4cb73bf8 236 cmp4.le p6,p0=r35,r0 };;
622d3d35 237{ .mfb; mov r8=r0 // return value
4cb73bf8
AP
238(p6) br.ret.spnt.many b0 };;
239
622d3d35 240{ .mib; sub r10=r35,r0,1
ef428d56 241 .save ar.lc,r3
4cb73bf8
AP
242 mov r3=ar.lc
243 brp.loop.imp .L_bn_sub_words_ctop,.L_bn_sub_words_cend-16
244 }
e2f2a9af 245{ .mib; ADDP r14=0,r32 // rp
7cfe2a5e 246 .save pr,r9
4cb73bf8 247 mov r9=pr };;
7cfe2a5e 248 .body
e2f2a9af 249{ .mii; ADDP r15=0,r33 // ap
4cb73bf8
AP
250 mov ar.lc=r10
251 mov ar.ec=6 }
e2f2a9af 252{ .mib; ADDP r16=0,r34 // bp
622d3d35 253 mov pr.rot=1<<16 };;
4cb73bf8 254
622d3d35
AP
255.L_bn_sub_words_ctop:
256{ .mii; (p16) ld8 r32=[r16],8 // b=*(bp++)
4cb73bf8
AP
257 (p18) sub r39=r37,r34
258 (p19) cmp.gtu.unc p56,p0=r40,r38 }
622d3d35 259{ .mfb; (p0) nop.m 0x0
4cb73bf8
AP
260 (p0) nop.f 0x0
261 (p0) nop.b 0x0 }
622d3d35 262{ .mii; (p16) ld8 r35=[r15],8 // a=*(ap++)
4cb73bf8
AP
263 (p58) cmp.eq.or p57,p0=0,r41 // (p20)
264 (p58) add r41=-1,r41 } // (p20)
622d3d35 265{ .mbb; (p21) st8 [r14]=r42,8 // *(rp++)=r
4cb73bf8
AP
266 (p0) nop.b 0x0
267 br.ctop.sptk .L_bn_sub_words_ctop };;
268.L_bn_sub_words_cend:
269
622d3d35 270{ .mii;
4cb73bf8 271(p59) add r8=1,r8 // return value
46a0d4fb 272 mov pr=r9,0x1ffff
4cb73bf8 273 mov ar.lc=r3 }
622d3d35 274{ .mbb; nop.b 0x0
4cb73bf8
AP
275 br.ret.sptk.many b0 };;
276.endp bn_sub_words#
277#endif
278
279#if 0
280#define XMA_TEMPTATION
281#endif
282
283#if 1
284//
285// BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
286//
287.global bn_mul_words#
288.proc bn_mul_words#
289.align 64
622d3d35 290.skip 32 // makes the loop body aligned at 64-byte boundary
4cb73bf8
AP
291bn_mul_words:
292 .prologue
4cb73bf8
AP
293 .save ar.pfs,r2
294#ifdef XMA_TEMPTATION
622d3d35 295{ .mfi; alloc r2=ar.pfs,4,0,0,0 };;
4cb73bf8 296#else
722d17cb 297{ .mfi; alloc r2=ar.pfs,4,12,0,16 };;
4cb73bf8 298#endif
622d3d35 299{ .mib; mov r8=r0 // return value
4cb73bf8
AP
300 cmp4.le p6,p0=r34,r0
301(p6) br.ret.spnt.many b0 };;
302
622d3d35 303{ .mii; sub r10=r34,r0,1
ef428d56 304 .save ar.lc,r3
4cb73bf8 305 mov r3=ar.lc
7cfe2a5e 306 .save pr,r9
4cb73bf8
AP
307 mov r9=pr };;
308
309 .body
622d3d35 310{ .mib; setf.sig f8=r35 // w
722d17cb
AP
311 mov pr.rot=0x800001<<16
312 // ------^----- serves as (p50) at first (p27)
4cb73bf8
AP
313 brp.loop.imp .L_bn_mul_words_ctop,.L_bn_mul_words_cend-16
314 }
315
316#ifndef XMA_TEMPTATION
317
e2f2a9af
AP
318{ .mmi; ADDP r14=0,r32 // rp
319 ADDP r15=0,r33 // ap
4cb73bf8 320 mov ar.lc=r10 }
e2f2a9af 321{ .mmi; mov r40=0 // serves as r35 at first (p27)
722d17cb 322 mov ar.ec=13 };;
4cb73bf8 323
722d17cb
AP
324// This loop spins in 2*(n+12) ticks. It's scheduled for data in Itanium
325// L2 cache (i.e. 9 ticks away) as floating point load/store instructions
4cb73bf8 326// bypass L1 cache and L2 latency is actually best-case scenario for
722d17cb
AP
327// ldf8. The loop is not scalable and shall run in 2*(n+12) even on
328// "wider" IA-64 implementations. It's a trade-off here. n+24 loop
4cb73bf8
AP
329// would give us ~5% in *overall* performance improvement on "wider"
330// IA-64, but would hurt Itanium for about same because of longer
331// epilogue. As it's a matter of few percents in either case I've
332// chosen to trade the scalability for development time (you can see
333// this very instruction sequence in bn_mul_add_words loop which in
334// turn is scalable).
622d3d35 335.L_bn_mul_words_ctop:
722d17cb
AP
336{ .mfi; (p25) getf.sig r36=f52 // low
337 (p21) xmpy.lu f48=f37,f8
338 (p28) cmp.ltu p54,p50=r41,r39 }
622d3d35 339{ .mfi; (p16) ldf8 f32=[r15],8
722d17cb 340 (p21) xmpy.hu f40=f37,f8
4cb73bf8 341 (p0) nop.i 0x0 };;
722d17cb
AP
342{ .mii; (p25) getf.sig r32=f44 // high
343 .pred.rel "mutex",p50,p54
344 (p50) add r40=r38,r35 // (p27)
345 (p54) add r40=r38,r35,1 } // (p27)
346{ .mfb; (p28) st8 [r14]=r41,8
4cb73bf8
AP
347 (p0) nop.f 0x0
348 br.ctop.sptk .L_bn_mul_words_ctop };;
349.L_bn_mul_words_cend:
350
622d3d35 351{ .mii; nop.m 0x0
722d17cb
AP
352.pred.rel "mutex",p51,p55
353(p51) add r8=r36,r0
354(p55) add r8=r36,r0,1 }
622d3d35 355{ .mfb; nop.m 0x0
4cb73bf8
AP
356 nop.f 0x0
357 nop.b 0x0 }
358
359#else // XMA_TEMPTATION
360
361 setf.sig f37=r0 // serves as carry at (p18) tick
362 mov ar.lc=r10
622d3d35 363 mov ar.ec=5;;
4cb73bf8
AP
364
365// Most of you examining this code very likely wonder why in the name
366// of Intel the following loop is commented out? Indeed, it looks so
367// neat that you find it hard to believe that it's something wrong
368// with it, right? The catch is that every iteration depends on the
369// result from previous one and the latter isn't available instantly.
370// The loop therefore spins at the latency of xma minus 1, or in other
371// words at 6*(n+4) ticks:-( Compare to the "production" loop above
372// that runs in 2*(n+11) where the low latency problem is worked around
60250017 373// by moving the dependency to one-tick latent integer ALU. Note that
4cb73bf8
AP
374// "distance" between ldf8 and xma is not latency of ldf8, but the
375// *difference* between xma and ldf8 latencies.
622d3d35
AP
376.L_bn_mul_words_ctop:
377{ .mfi; (p16) ldf8 f32=[r33],8
4cb73bf8 378 (p18) xma.hu f38=f34,f8,f39 }
622d3d35 379{ .mfb; (p20) stf8 [r32]=f37,8
4cb73bf8
AP
380 (p18) xma.lu f35=f34,f8,f39
381 br.ctop.sptk .L_bn_mul_words_ctop };;
382.L_bn_mul_words_cend:
383
384 getf.sig r8=f41 // the return value
385
386#endif // XMA_TEMPTATION
387
622d3d35 388{ .mii; nop.m 0x0
46a0d4fb 389 mov pr=r9,0x1ffff
4cb73bf8 390 mov ar.lc=r3 }
622d3d35 391{ .mfb; rum 1<<5 // clear um.mfh
4cb73bf8
AP
392 nop.f 0x0
393 br.ret.sptk.many b0 };;
394.endp bn_mul_words#
395#endif
396
397#if 1
398//
399// BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
400//
401.global bn_mul_add_words#
402.proc bn_mul_add_words#
403.align 64
e2f2a9af 404.skip 48 // makes the loop body aligned at 64-byte boundary
4cb73bf8
AP
405bn_mul_add_words:
406 .prologue
4cb73bf8 407 .save ar.pfs,r2
e2f2a9af
AP
408{ .mmi; alloc r2=ar.pfs,4,4,0,8
409 cmp4.le p6,p0=r34,r0
ef428d56 410 .save ar.lc,r3
e2f2a9af
AP
411 mov r3=ar.lc };;
412{ .mib; mov r8=r0 // return value
413 sub r10=r34,r0,1
414(p6) br.ret.spnt.many b0 };;
4cb73bf8 415
e2f2a9af 416{ .mib; setf.sig f8=r35 // w
ef428d56 417 .save pr,r9
e2f2a9af 418 mov r9=pr
4cb73bf8
AP
419 brp.loop.imp .L_bn_mul_add_words_ctop,.L_bn_mul_add_words_cend-16
420 }
7cfe2a5e 421 .body
e2f2a9af
AP
422{ .mmi; ADDP r14=0,r32 // rp
423 ADDP r15=0,r33 // ap
4cb73bf8 424 mov ar.lc=r10 }
e2f2a9af
AP
425{ .mii; ADDP r16=0,r32 // rp copy
426 mov pr.rot=0x2001<<16
427 // ------^----- serves as (p40) at first (p27)
428 mov ar.ec=11 };;
429
430// This loop spins in 3*(n+10) ticks on Itanium and in 2*(n+10) on
431// Itanium 2. Yes, unlike previous versions it scales:-) Previous
d900a015 432// version was performing *all* additions in IALU and was starving
e2f2a9af
AP
433// for those even on Itanium 2. In this version one addition is
434// moved to FPU and is folded with multiplication. This is at cost
60250017 435// of propagating the result from previous call to this subroutine
e2f2a9af
AP
436// to L2 cache... In other words negligible even for shorter keys.
437// *Overall* performance improvement [over previous version] varies
438// from 11 to 22 percent depending on key length.
622d3d35 439.L_bn_mul_add_words_ctop:
e2f2a9af
AP
440.pred.rel "mutex",p40,p42
441{ .mfi; (p23) getf.sig r36=f45 // low
442 (p20) xma.lu f42=f36,f8,f50 // low
443 (p40) add r39=r39,r35 } // (p27)
444{ .mfi; (p16) ldf8 f32=[r15],8 // *(ap++)
445 (p20) xma.hu f36=f36,f8,f50 // high
446 (p42) add r39=r39,r35,1 };; // (p27)
447{ .mmi; (p24) getf.sig r32=f40 // high
448 (p16) ldf8 f46=[r16],8 // *(rp1++)
449 (p40) cmp.ltu p41,p39=r39,r35 } // (p27)
450{ .mib; (p26) st8 [r14]=r39,8 // *(rp2++)
451 (p42) cmp.leu p41,p39=r39,r35 // (p27)
4cb73bf8
AP
452 br.ctop.sptk .L_bn_mul_add_words_ctop};;
453.L_bn_mul_add_words_cend:
454
e2f2a9af
AP
455{ .mmi; .pred.rel "mutex",p40,p42
456(p40) add r8=r35,r0
457(p42) add r8=r35,r0,1
458 mov pr=r9,0x1ffff }
459{ .mib; rum 1<<5 // clear um.mfh
460 mov ar.lc=r3
4cb73bf8
AP
461 br.ret.sptk.many b0 };;
462.endp bn_mul_add_words#
463#endif
464
465#if 1
466//
467// void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num)
468//
469.global bn_sqr_words#
470.proc bn_sqr_words#
471.align 64
622d3d35 472.skip 32 // makes the loop body aligned at 64-byte boundary
4cb73bf8
AP
473bn_sqr_words:
474 .prologue
4cb73bf8 475 .save ar.pfs,r2
622d3d35 476{ .mii; alloc r2=ar.pfs,3,0,0,0
4cb73bf8 477 sxt4 r34=r34 };;
622d3d35 478{ .mii; cmp.le p6,p0=r34,r0
4cb73bf8 479 mov r8=r0 } // return value
e2f2a9af
AP
480{ .mfb; ADDP r32=0,r32
481 nop.f 0x0
4cb73bf8
AP
482(p6) br.ret.spnt.many b0 };;
483
622d3d35 484{ .mii; sub r10=r34,r0,1
ef428d56 485 .save ar.lc,r3
4cb73bf8 486 mov r3=ar.lc
ef428d56 487 .save pr,r9
4cb73bf8
AP
488 mov r9=pr };;
489
490 .body
e2f2a9af 491{ .mib; ADDP r33=0,r33
4cb73bf8
AP
492 mov pr.rot=1<<16
493 brp.loop.imp .L_bn_sqr_words_ctop,.L_bn_sqr_words_cend-16
494 }
622d3d35 495{ .mii; add r34=8,r32
4cb73bf8 496 mov ar.lc=r10
622d3d35 497 mov ar.ec=18 };;
4cb73bf8
AP
498
499// 2*(n+17) on Itanium, (n+17) on "wider" IA-64 implementations. It's
500// possible to compress the epilogue (I'm getting tired to write this
501// comment over and over) and get down to 2*n+16 at the cost of
502// scalability. The decision will very likely be reconsidered after the
503// benchmark program is profiled. I.e. if perfomance gain on Itanium
504// will appear larger than loss on "wider" IA-64, then the loop should
0d4fb843 505// be explicitly split and the epilogue compressed.
622d3d35
AP
506.L_bn_sqr_words_ctop:
507{ .mfi; (p16) ldf8 f32=[r33],8
4cb73bf8
AP
508 (p25) xmpy.lu f42=f41,f41
509 (p0) nop.i 0x0 }
622d3d35 510{ .mib; (p33) stf8 [r32]=f50,16
4cb73bf8
AP
511 (p0) nop.i 0x0
512 (p0) nop.b 0x0 }
622d3d35 513{ .mfi; (p0) nop.m 0x0
4cb73bf8
AP
514 (p25) xmpy.hu f52=f41,f41
515 (p0) nop.i 0x0 }
622d3d35 516{ .mib; (p33) stf8 [r34]=f60,16
4cb73bf8
AP
517 (p0) nop.i 0x0
518 br.ctop.sptk .L_bn_sqr_words_ctop };;
519.L_bn_sqr_words_cend:
520
622d3d35 521{ .mii; nop.m 0x0
46a0d4fb 522 mov pr=r9,0x1ffff
4cb73bf8 523 mov ar.lc=r3 }
622d3d35 524{ .mfb; rum 1<<5 // clear um.mfh
4cb73bf8
AP
525 nop.f 0x0
526 br.ret.sptk.many b0 };;
527.endp bn_sqr_words#
528#endif
529
530#if 1
a95541d6 531// Apparently we win nothing by implementing special bn_sqr_comba8.
4cb73bf8
AP
532// Yes, it is possible to reduce the number of multiplications by
533// almost factor of two, but then the amount of additions would
534// increase by factor of two (as we would have to perform those
535// otherwise performed by xma ourselves). Normally we would trade
536// anyway as multiplications are way more expensive, but not this
537// time... Multiplication kernel is fully pipelined and as we drain
538// one 128-bit multiplication result per clock cycle multiplications
539// are effectively as inexpensive as additions. Special implementation
540// might become of interest for "wider" IA-64 implementation as you'll
541// be able to get through the multiplication phase faster (there won't
542// be any stall issues as discussed in the commentary section below and
543// you therefore will be able to employ all 4 FP units)... But these
544// Itanium days it's simply too hard to justify the effort so I just
545// drop down to bn_mul_comba8 code:-)
546//
547// void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a)
548//
549.global bn_sqr_comba8#
550.proc bn_sqr_comba8#
551.align 64
552bn_sqr_comba8:
553 .prologue
4cb73bf8 554 .save ar.pfs,r2
e2f2a9af 555#if defined(_HPUX_SOURCE) && !defined(_LP64)
622d3d35 556{ .mii; alloc r2=ar.pfs,2,1,0,0
46a0d4fb
AP
557 addp4 r33=0,r33
558 addp4 r32=0,r32 };;
559{ .mii;
560#else
561{ .mii; alloc r2=ar.pfs,2,1,0,0
562#endif
4cb73bf8
AP
563 mov r34=r33
564 add r14=8,r33 };;
565 .body
622d3d35 566{ .mii; add r17=8,r34
4cb73bf8
AP
567 add r15=16,r33
568 add r18=16,r34 }
622d3d35 569{ .mfb; add r16=24,r33
4cb73bf8 570 br .L_cheat_entry_point8 };;
622d3d35 571.endp bn_sqr_comba8#
4cb73bf8
AP
572#endif
573
574#if 1
575// I've estimated this routine to run in ~120 ticks, but in reality
576// (i.e. according to ar.itc) it takes ~160 ticks. Are those extra
577// cycles consumed for instructions fetch? Or did I misinterpret some
053fa39a 578// clause in Itanium µ-architecture manual? Comments are welcomed and
4cb73bf8
AP
579// highly appreciated.
580//
e2f2a9af
AP
581// On Itanium 2 it takes ~190 ticks. This is because of stalls on
582// result from getf.sig. I do nothing about it at this point for
583// reasons depicted below.
584//
4cb73bf8
AP
585// However! It should be noted that even 160 ticks is darn good result
586// as it's over 10 (yes, ten, spelled as t-e-n) times faster than the
587// C version (compiled with gcc with inline assembler). I really
588// kicked compiler's butt here, didn't I? Yeah! This brings us to the
589// following statement. It's damn shame that this routine isn't called
590// very often nowadays! According to the profiler most CPU time is
591// consumed by bn_mul_add_words called from BN_from_montgomery. In
592// order to estimate what we're missing, I've compared the performance
593// of this routine against "traditional" implementation, i.e. against
594// following routine:
595//
596// void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
597// { r[ 8]=bn_mul_words( &(r[0]),a,8,b[0]);
598// r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
599// r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
600// r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
601// r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
602// r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
603// r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
604// r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
605// }
606//
607// The one below is over 8 times faster than the one above:-( Even
608// more reasons to "combafy" bn_mul_add_mont...
609//
610// And yes, this routine really made me wish there were an optimizing
611// assembler! It also feels like it deserves a dedication.
612//
613// To my wife for being there and to my kids...
614//
615// void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
616//
617#define carry1 r14
618#define carry2 r15
619#define carry3 r34
620.global bn_mul_comba8#
621.proc bn_mul_comba8#
622.align 64
623bn_mul_comba8:
624 .prologue
4cb73bf8 625 .save ar.pfs,r2
e2f2a9af 626#if defined(_HPUX_SOURCE) && !defined(_LP64)
622d3d35 627{ .mii; alloc r2=ar.pfs,3,0,0,0
46a0d4fb
AP
628 addp4 r33=0,r33
629 addp4 r34=0,r34 };;
630{ .mii; addp4 r32=0,r32
631#else
632{ .mii; alloc r2=ar.pfs,3,0,0,0
633#endif
4cb73bf8
AP
634 add r14=8,r33
635 add r17=8,r34 }
636 .body
622d3d35 637{ .mii; add r15=16,r33
4cb73bf8 638 add r18=16,r34
622d3d35 639 add r16=24,r33 }
4cb73bf8 640.L_cheat_entry_point8:
622d3d35 641{ .mmi; add r19=24,r34
4cb73bf8 642
622d3d35 643 ldf8 f32=[r33],32 };;
4cb73bf8 644
622d3d35
AP
645{ .mmi; ldf8 f120=[r34],32
646 ldf8 f121=[r17],32 }
647{ .mmi; ldf8 f122=[r18],32
648 ldf8 f123=[r19],32 };;
649{ .mmi; ldf8 f124=[r34]
4cb73bf8 650 ldf8 f125=[r17] }
622d3d35 651{ .mmi; ldf8 f126=[r18]
4cb73bf8
AP
652 ldf8 f127=[r19] }
653
622d3d35 654{ .mmi; ldf8 f33=[r14],32
4cb73bf8 655 ldf8 f34=[r15],32 }
622d3d35 656{ .mmi; ldf8 f35=[r16],32;;
4cb73bf8 657 ldf8 f36=[r33] }
622d3d35 658{ .mmi; ldf8 f37=[r14]
4cb73bf8 659 ldf8 f38=[r15] }
622d3d35 660{ .mfi; ldf8 f39=[r16]
4cb73bf8
AP
661// -------\ Entering multiplier's heaven /-------
662// ------------\ /------------
663// -----------------\ /-----------------
664// ----------------------\/----------------------
665 xma.hu f41=f32,f120,f0 }
622d3d35
AP
666{ .mfi; xma.lu f40=f32,f120,f0 };; // (*)
667{ .mfi; xma.hu f51=f32,f121,f0 }
668{ .mfi; xma.lu f50=f32,f121,f0 };;
669{ .mfi; xma.hu f61=f32,f122,f0 }
670{ .mfi; xma.lu f60=f32,f122,f0 };;
671{ .mfi; xma.hu f71=f32,f123,f0 }
672{ .mfi; xma.lu f70=f32,f123,f0 };;
673{ .mfi; xma.hu f81=f32,f124,f0 }
674{ .mfi; xma.lu f80=f32,f124,f0 };;
675{ .mfi; xma.hu f91=f32,f125,f0 }
676{ .mfi; xma.lu f90=f32,f125,f0 };;
677{ .mfi; xma.hu f101=f32,f126,f0 }
678{ .mfi; xma.lu f100=f32,f126,f0 };;
679{ .mfi; xma.hu f111=f32,f127,f0 }
680{ .mfi; xma.lu f110=f32,f127,f0 };;//
4cb73bf8
AP
681// (*) You can argue that splitting at every second bundle would
682// prevent "wider" IA-64 implementations from achieving the peak
683// performance. Well, not really... The catch is that if you
684// intend to keep 4 FP units busy by splitting at every fourth
685// bundle and thus perform these 16 multiplications in 4 ticks,
686// the first bundle *below* would stall because the result from
687// the first xma bundle *above* won't be available for another 3
688// ticks (if not more, being an optimist, I assume that "wider"
689// implementation will have same latency:-). This stall will hold
690// you back and the performance would be as if every second bundle
691// were split *anyway*...
622d3d35 692{ .mfi; getf.sig r16=f40
4cb73bf8
AP
693 xma.hu f42=f33,f120,f41
694 add r33=8,r32 }
622d3d35
AP
695{ .mfi; xma.lu f41=f33,f120,f41 };;
696{ .mfi; getf.sig r24=f50
4cb73bf8 697 xma.hu f52=f33,f121,f51 }
622d3d35
AP
698{ .mfi; xma.lu f51=f33,f121,f51 };;
699{ .mfi; st8 [r32]=r16,16
4cb73bf8 700 xma.hu f62=f33,f122,f61 }
622d3d35
AP
701{ .mfi; xma.lu f61=f33,f122,f61 };;
702{ .mfi; xma.hu f72=f33,f123,f71 }
703{ .mfi; xma.lu f71=f33,f123,f71 };;
704{ .mfi; xma.hu f82=f33,f124,f81 }
705{ .mfi; xma.lu f81=f33,f124,f81 };;
706{ .mfi; xma.hu f92=f33,f125,f91 }
707{ .mfi; xma.lu f91=f33,f125,f91 };;
708{ .mfi; xma.hu f102=f33,f126,f101 }
709{ .mfi; xma.lu f101=f33,f126,f101 };;
710{ .mfi; xma.hu f112=f33,f127,f111 }
711{ .mfi; xma.lu f111=f33,f127,f111 };;//
4cb73bf8 712//-------------------------------------------------//
622d3d35 713{ .mfi; getf.sig r25=f41
4cb73bf8 714 xma.hu f43=f34,f120,f42 }
622d3d35
AP
715{ .mfi; xma.lu f42=f34,f120,f42 };;
716{ .mfi; getf.sig r16=f60
4cb73bf8 717 xma.hu f53=f34,f121,f52 }
622d3d35
AP
718{ .mfi; xma.lu f52=f34,f121,f52 };;
719{ .mfi; getf.sig r17=f51
4cb73bf8
AP
720 xma.hu f63=f34,f122,f62
721 add r25=r25,r24 }
622d3d35 722{ .mfi; xma.lu f62=f34,f122,f62
4cb73bf8 723 mov carry1=0 };;
622d3d35 724{ .mfi; cmp.ltu p6,p0=r25,r24
4cb73bf8 725 xma.hu f73=f34,f123,f72 }
622d3d35
AP
726{ .mfi; xma.lu f72=f34,f123,f72 };;
727{ .mfi; st8 [r33]=r25,16
4cb73bf8
AP
728 xma.hu f83=f34,f124,f82
729(p6) add carry1=1,carry1 }
622d3d35
AP
730{ .mfi; xma.lu f82=f34,f124,f82 };;
731{ .mfi; xma.hu f93=f34,f125,f92 }
732{ .mfi; xma.lu f92=f34,f125,f92 };;
733{ .mfi; xma.hu f103=f34,f126,f102 }
734{ .mfi; xma.lu f102=f34,f126,f102 };;
735{ .mfi; xma.hu f113=f34,f127,f112 }
736{ .mfi; xma.lu f112=f34,f127,f112 };;//
4cb73bf8 737//-------------------------------------------------//
622d3d35 738{ .mfi; getf.sig r18=f42
4cb73bf8
AP
739 xma.hu f44=f35,f120,f43
740 add r17=r17,r16 }
622d3d35
AP
741{ .mfi; xma.lu f43=f35,f120,f43 };;
742{ .mfi; getf.sig r24=f70
4cb73bf8 743 xma.hu f54=f35,f121,f53 }
622d3d35 744{ .mfi; mov carry2=0
4cb73bf8 745 xma.lu f53=f35,f121,f53 };;
622d3d35 746{ .mfi; getf.sig r25=f61
4cb73bf8
AP
747 xma.hu f64=f35,f122,f63
748 cmp.ltu p7,p0=r17,r16 }
622d3d35 749{ .mfi; add r18=r18,r17
4cb73bf8 750 xma.lu f63=f35,f122,f63 };;
622d3d35 751{ .mfi; getf.sig r26=f52
4cb73bf8
AP
752 xma.hu f74=f35,f123,f73
753(p7) add carry2=1,carry2 }
622d3d35 754{ .mfi; cmp.ltu p7,p0=r18,r17
4cb73bf8
AP
755 xma.lu f73=f35,f123,f73
756 add r18=r18,carry1 };;
622d3d35 757{ .mfi;
4cb73bf8
AP
758 xma.hu f84=f35,f124,f83
759(p7) add carry2=1,carry2 }
622d3d35 760{ .mfi; cmp.ltu p7,p0=r18,carry1
4cb73bf8 761 xma.lu f83=f35,f124,f83 };;
622d3d35 762{ .mfi; st8 [r32]=r18,16
4cb73bf8
AP
763 xma.hu f94=f35,f125,f93
764(p7) add carry2=1,carry2 }
622d3d35
AP
765{ .mfi; xma.lu f93=f35,f125,f93 };;
766{ .mfi; xma.hu f104=f35,f126,f103 }
767{ .mfi; xma.lu f103=f35,f126,f103 };;
768{ .mfi; xma.hu f114=f35,f127,f113 }
769{ .mfi; mov carry1=0
4cb73bf8 770 xma.lu f113=f35,f127,f113
622d3d35 771 add r25=r25,r24 };;//
4cb73bf8 772//-------------------------------------------------//
622d3d35 773{ .mfi; getf.sig r27=f43
4cb73bf8
AP
774 xma.hu f45=f36,f120,f44
775 cmp.ltu p6,p0=r25,r24 }
622d3d35 776{ .mfi; xma.lu f44=f36,f120,f44
4cb73bf8 777 add r26=r26,r25 };;
622d3d35 778{ .mfi; getf.sig r16=f80
4cb73bf8
AP
779 xma.hu f55=f36,f121,f54
780(p6) add carry1=1,carry1 }
622d3d35
AP
781{ .mfi; xma.lu f54=f36,f121,f54 };;
782{ .mfi; getf.sig r17=f71
4cb73bf8
AP
783 xma.hu f65=f36,f122,f64
784 cmp.ltu p6,p0=r26,r25 }
622d3d35 785{ .mfi; xma.lu f64=f36,f122,f64
4cb73bf8 786 add r27=r27,r26 };;
622d3d35 787{ .mfi; getf.sig r18=f62
4cb73bf8
AP
788 xma.hu f75=f36,f123,f74
789(p6) add carry1=1,carry1 }
622d3d35 790{ .mfi; cmp.ltu p6,p0=r27,r26
4cb73bf8
AP
791 xma.lu f74=f36,f123,f74
792 add r27=r27,carry2 };;
622d3d35 793{ .mfi; getf.sig r19=f53
4cb73bf8
AP
794 xma.hu f85=f36,f124,f84
795(p6) add carry1=1,carry1 }
622d3d35 796{ .mfi; xma.lu f84=f36,f124,f84
4cb73bf8 797 cmp.ltu p6,p0=r27,carry2 };;
622d3d35 798{ .mfi; st8 [r33]=r27,16
4cb73bf8
AP
799 xma.hu f95=f36,f125,f94
800(p6) add carry1=1,carry1 }
622d3d35
AP
801{ .mfi; xma.lu f94=f36,f125,f94 };;
802{ .mfi; xma.hu f105=f36,f126,f104 }
803{ .mfi; mov carry2=0
4cb73bf8
AP
804 xma.lu f104=f36,f126,f104
805 add r17=r17,r16 };;
622d3d35 806{ .mfi; xma.hu f115=f36,f127,f114
4cb73bf8 807 cmp.ltu p7,p0=r17,r16 }
622d3d35
AP
808{ .mfi; xma.lu f114=f36,f127,f114
809 add r18=r18,r17 };;//
4cb73bf8 810//-------------------------------------------------//
622d3d35 811{ .mfi; getf.sig r20=f44
4cb73bf8
AP
812 xma.hu f46=f37,f120,f45
813(p7) add carry2=1,carry2 }
622d3d35 814{ .mfi; cmp.ltu p7,p0=r18,r17
4cb73bf8
AP
815 xma.lu f45=f37,f120,f45
816 add r19=r19,r18 };;
622d3d35 817{ .mfi; getf.sig r24=f90
4cb73bf8 818 xma.hu f56=f37,f121,f55 }
622d3d35
AP
819{ .mfi; xma.lu f55=f37,f121,f55 };;
820{ .mfi; getf.sig r25=f81
4cb73bf8
AP
821 xma.hu f66=f37,f122,f65
822(p7) add carry2=1,carry2 }
622d3d35 823{ .mfi; cmp.ltu p7,p0=r19,r18
4cb73bf8
AP
824 xma.lu f65=f37,f122,f65
825 add r20=r20,r19 };;
622d3d35 826{ .mfi; getf.sig r26=f72
4cb73bf8
AP
827 xma.hu f76=f37,f123,f75
828(p7) add carry2=1,carry2 }
622d3d35 829{ .mfi; cmp.ltu p7,p0=r20,r19
4cb73bf8
AP
830 xma.lu f75=f37,f123,f75
831 add r20=r20,carry1 };;
622d3d35 832{ .mfi; getf.sig r27=f63
4cb73bf8
AP
833 xma.hu f86=f37,f124,f85
834(p7) add carry2=1,carry2 }
622d3d35 835{ .mfi; xma.lu f85=f37,f124,f85
4cb73bf8 836 cmp.ltu p7,p0=r20,carry1 };;
622d3d35 837{ .mfi; getf.sig r28=f54
4cb73bf8
AP
838 xma.hu f96=f37,f125,f95
839(p7) add carry2=1,carry2 }
622d3d35 840{ .mfi; st8 [r32]=r20,16
4cb73bf8 841 xma.lu f95=f37,f125,f95 };;
622d3d35
AP
842{ .mfi; xma.hu f106=f37,f126,f105 }
843{ .mfi; mov carry1=0
4cb73bf8
AP
844 xma.lu f105=f37,f126,f105
845 add r25=r25,r24 };;
622d3d35 846{ .mfi; xma.hu f116=f37,f127,f115
4cb73bf8 847 cmp.ltu p6,p0=r25,r24 }
622d3d35
AP
848{ .mfi; xma.lu f115=f37,f127,f115
849 add r26=r26,r25 };;//
4cb73bf8 850//-------------------------------------------------//
622d3d35 851{ .mfi; getf.sig r29=f45
4cb73bf8
AP
852 xma.hu f47=f38,f120,f46
853(p6) add carry1=1,carry1 }
622d3d35 854{ .mfi; cmp.ltu p6,p0=r26,r25
4cb73bf8
AP
855 xma.lu f46=f38,f120,f46
856 add r27=r27,r26 };;
622d3d35 857{ .mfi; getf.sig r16=f100
4cb73bf8
AP
858 xma.hu f57=f38,f121,f56
859(p6) add carry1=1,carry1 }
622d3d35 860{ .mfi; cmp.ltu p6,p0=r27,r26
4cb73bf8
AP
861 xma.lu f56=f38,f121,f56
862 add r28=r28,r27 };;
622d3d35 863{ .mfi; getf.sig r17=f91
4cb73bf8
AP
864 xma.hu f67=f38,f122,f66
865(p6) add carry1=1,carry1 }
622d3d35 866{ .mfi; cmp.ltu p6,p0=r28,r27
4cb73bf8
AP
867 xma.lu f66=f38,f122,f66
868 add r29=r29,r28 };;
622d3d35 869{ .mfi; getf.sig r18=f82
4cb73bf8
AP
870 xma.hu f77=f38,f123,f76
871(p6) add carry1=1,carry1 }
622d3d35 872{ .mfi; cmp.ltu p6,p0=r29,r28
4cb73bf8
AP
873 xma.lu f76=f38,f123,f76
874 add r29=r29,carry2 };;
622d3d35 875{ .mfi; getf.sig r19=f73
4cb73bf8
AP
876 xma.hu f87=f38,f124,f86
877(p6) add carry1=1,carry1 }
622d3d35 878{ .mfi; xma.lu f86=f38,f124,f86
4cb73bf8 879 cmp.ltu p6,p0=r29,carry2 };;
622d3d35 880{ .mfi; getf.sig r20=f64
4cb73bf8
AP
881 xma.hu f97=f38,f125,f96
882(p6) add carry1=1,carry1 }
622d3d35 883{ .mfi; st8 [r33]=r29,16
4cb73bf8 884 xma.lu f96=f38,f125,f96 };;
622d3d35 885{ .mfi; getf.sig r21=f55
4cb73bf8 886 xma.hu f107=f38,f126,f106 }
622d3d35 887{ .mfi; mov carry2=0
4cb73bf8
AP
888 xma.lu f106=f38,f126,f106
889 add r17=r17,r16 };;
622d3d35 890{ .mfi; xma.hu f117=f38,f127,f116
4cb73bf8 891 cmp.ltu p7,p0=r17,r16 }
622d3d35
AP
892{ .mfi; xma.lu f116=f38,f127,f116
893 add r18=r18,r17 };;//
4cb73bf8 894//-------------------------------------------------//
622d3d35 895{ .mfi; getf.sig r22=f46
4cb73bf8
AP
896 xma.hu f48=f39,f120,f47
897(p7) add carry2=1,carry2 }
622d3d35 898{ .mfi; cmp.ltu p7,p0=r18,r17
4cb73bf8
AP
899 xma.lu f47=f39,f120,f47
900 add r19=r19,r18 };;
622d3d35 901{ .mfi; getf.sig r24=f110
4cb73bf8
AP
902 xma.hu f58=f39,f121,f57
903(p7) add carry2=1,carry2 }
622d3d35 904{ .mfi; cmp.ltu p7,p0=r19,r18
4cb73bf8
AP
905 xma.lu f57=f39,f121,f57
906 add r20=r20,r19 };;
622d3d35 907{ .mfi; getf.sig r25=f101
4cb73bf8
AP
908 xma.hu f68=f39,f122,f67
909(p7) add carry2=1,carry2 }
622d3d35 910{ .mfi; cmp.ltu p7,p0=r20,r19
4cb73bf8
AP
911 xma.lu f67=f39,f122,f67
912 add r21=r21,r20 };;
622d3d35 913{ .mfi; getf.sig r26=f92
4cb73bf8
AP
914 xma.hu f78=f39,f123,f77
915(p7) add carry2=1,carry2 }
622d3d35 916{ .mfi; cmp.ltu p7,p0=r21,r20
4cb73bf8
AP
917 xma.lu f77=f39,f123,f77
918 add r22=r22,r21 };;
622d3d35 919{ .mfi; getf.sig r27=f83
4cb73bf8
AP
920 xma.hu f88=f39,f124,f87
921(p7) add carry2=1,carry2 }
622d3d35 922{ .mfi; cmp.ltu p7,p0=r22,r21
4cb73bf8
AP
923 xma.lu f87=f39,f124,f87
924 add r22=r22,carry1 };;
622d3d35 925{ .mfi; getf.sig r28=f74
4cb73bf8
AP
926 xma.hu f98=f39,f125,f97
927(p7) add carry2=1,carry2 }
622d3d35 928{ .mfi; xma.lu f97=f39,f125,f97
4cb73bf8 929 cmp.ltu p7,p0=r22,carry1 };;
622d3d35 930{ .mfi; getf.sig r29=f65
4cb73bf8
AP
931 xma.hu f108=f39,f126,f107
932(p7) add carry2=1,carry2 }
622d3d35 933{ .mfi; st8 [r32]=r22,16
4cb73bf8 934 xma.lu f107=f39,f126,f107 };;
622d3d35 935{ .mfi; getf.sig r30=f56
4cb73bf8 936 xma.hu f118=f39,f127,f117 }
622d3d35 937{ .mfi; xma.lu f117=f39,f127,f117 };;//
4cb73bf8
AP
938//-------------------------------------------------//
939// Leaving muliplier's heaven... Quite a ride, huh?
940
622d3d35 941{ .mii; getf.sig r31=f47
4cb73bf8
AP
942 add r25=r25,r24
943 mov carry1=0 };;
622d3d35 944{ .mii; getf.sig r16=f111
4cb73bf8
AP
945 cmp.ltu p6,p0=r25,r24
946 add r26=r26,r25 };;
622d3d35
AP
947{ .mfb; getf.sig r17=f102 }
948{ .mii;
4cb73bf8
AP
949(p6) add carry1=1,carry1
950 cmp.ltu p6,p0=r26,r25
951 add r27=r27,r26 };;
622d3d35
AP
952{ .mfb; nop.m 0x0 }
953{ .mii;
4cb73bf8
AP
954(p6) add carry1=1,carry1
955 cmp.ltu p6,p0=r27,r26
956 add r28=r28,r27 };;
622d3d35 957{ .mii; getf.sig r18=f93
4cb73bf8
AP
958 add r17=r17,r16
959 mov carry3=0 }
622d3d35 960{ .mii;
4cb73bf8
AP
961(p6) add carry1=1,carry1
962 cmp.ltu p6,p0=r28,r27
963 add r29=r29,r28 };;
622d3d35 964{ .mii; getf.sig r19=f84
4cb73bf8 965 cmp.ltu p7,p0=r17,r16 }
622d3d35 966{ .mii;
4cb73bf8
AP
967(p6) add carry1=1,carry1
968 cmp.ltu p6,p0=r29,r28
969 add r30=r30,r29 };;
622d3d35 970{ .mii; getf.sig r20=f75
4cb73bf8 971 add r18=r18,r17 }
622d3d35 972{ .mii;
4cb73bf8
AP
973(p6) add carry1=1,carry1
974 cmp.ltu p6,p0=r30,r29
975 add r31=r31,r30 };;
622d3d35
AP
976{ .mfb; getf.sig r21=f66 }
977{ .mii; (p7) add carry3=1,carry3
4cb73bf8
AP
978 cmp.ltu p7,p0=r18,r17
979 add r19=r19,r18 }
622d3d35
AP
980{ .mfb; nop.m 0x0 }
981{ .mii;
4cb73bf8
AP
982(p6) add carry1=1,carry1
983 cmp.ltu p6,p0=r31,r30
984 add r31=r31,carry2 };;
622d3d35
AP
985{ .mfb; getf.sig r22=f57 }
986{ .mii; (p7) add carry3=1,carry3
4cb73bf8
AP
987 cmp.ltu p7,p0=r19,r18
988 add r20=r20,r19 }
622d3d35
AP
989{ .mfb; nop.m 0x0 }
990{ .mii;
4cb73bf8
AP
991(p6) add carry1=1,carry1
992 cmp.ltu p6,p0=r31,carry2 };;
622d3d35
AP
993{ .mfb; getf.sig r23=f48 }
994{ .mii; (p7) add carry3=1,carry3
4cb73bf8
AP
995 cmp.ltu p7,p0=r20,r19
996 add r21=r21,r20 }
622d3d35 997{ .mii;
4cb73bf8 998(p6) add carry1=1,carry1 }
622d3d35 999{ .mfb; st8 [r33]=r31,16 };;
4cb73bf8 1000
622d3d35
AP
1001{ .mfb; getf.sig r24=f112 }
1002{ .mii; (p7) add carry3=1,carry3
4cb73bf8
AP
1003 cmp.ltu p7,p0=r21,r20
1004 add r22=r22,r21 };;
622d3d35
AP
1005{ .mfb; getf.sig r25=f103 }
1006{ .mii; (p7) add carry3=1,carry3
4cb73bf8
AP
1007 cmp.ltu p7,p0=r22,r21
1008 add r23=r23,r22 };;
622d3d35
AP
1009{ .mfb; getf.sig r26=f94 }
1010{ .mii; (p7) add carry3=1,carry3
4cb73bf8
AP
1011 cmp.ltu p7,p0=r23,r22
1012 add r23=r23,carry1 };;
622d3d35
AP
1013{ .mfb; getf.sig r27=f85 }
1014{ .mii; (p7) add carry3=1,carry3
4cb73bf8 1015 cmp.ltu p7,p8=r23,carry1};;
622d3d35 1016{ .mii; getf.sig r28=f76
4cb73bf8
AP
1017 add r25=r25,r24
1018 mov carry1=0 }
622d3d35 1019{ .mii; st8 [r32]=r23,16
4cb73bf8
AP
1020 (p7) add carry2=1,carry3
1021 (p8) add carry2=0,carry3 };;
1022
622d3d35
AP
1023{ .mfb; nop.m 0x0 }
1024{ .mii; getf.sig r29=f67
4cb73bf8
AP
1025 cmp.ltu p6,p0=r25,r24
1026 add r26=r26,r25 };;
622d3d35
AP
1027{ .mfb; getf.sig r30=f58 }
1028{ .mii;
4cb73bf8
AP
1029(p6) add carry1=1,carry1
1030 cmp.ltu p6,p0=r26,r25
1031 add r27=r27,r26 };;
622d3d35
AP
1032{ .mfb; getf.sig r16=f113 }
1033{ .mii;
4cb73bf8
AP
1034(p6) add carry1=1,carry1
1035 cmp.ltu p6,p0=r27,r26
1036 add r28=r28,r27 };;
622d3d35
AP
1037{ .mfb; getf.sig r17=f104 }
1038{ .mii;
4cb73bf8
AP
1039(p6) add carry1=1,carry1
1040 cmp.ltu p6,p0=r28,r27
1041 add r29=r29,r28 };;
622d3d35
AP
1042{ .mfb; getf.sig r18=f95 }
1043{ .mii;
4cb73bf8
AP
1044(p6) add carry1=1,carry1
1045 cmp.ltu p6,p0=r29,r28
1046 add r30=r30,r29 };;
622d3d35 1047{ .mii; getf.sig r19=f86
4cb73bf8
AP
1048 add r17=r17,r16
1049 mov carry3=0 }
622d3d35 1050{ .mii;
4cb73bf8
AP
1051(p6) add carry1=1,carry1
1052 cmp.ltu p6,p0=r30,r29
1053 add r30=r30,carry2 };;
622d3d35 1054{ .mii; getf.sig r20=f77
4cb73bf8
AP
1055 cmp.ltu p7,p0=r17,r16
1056 add r18=r18,r17 }
622d3d35 1057{ .mii;
4cb73bf8
AP
1058(p6) add carry1=1,carry1
1059 cmp.ltu p6,p0=r30,carry2 };;
622d3d35
AP
1060{ .mfb; getf.sig r21=f68 }
1061{ .mii; st8 [r33]=r30,16
4cb73bf8
AP
1062(p6) add carry1=1,carry1 };;
1063
622d3d35
AP
1064{ .mfb; getf.sig r24=f114 }
1065{ .mii; (p7) add carry3=1,carry3
4cb73bf8
AP
1066 cmp.ltu p7,p0=r18,r17
1067 add r19=r19,r18 };;
622d3d35
AP
1068{ .mfb; getf.sig r25=f105 }
1069{ .mii; (p7) add carry3=1,carry3
4cb73bf8
AP
1070 cmp.ltu p7,p0=r19,r18
1071 add r20=r20,r19 };;
622d3d35
AP
1072{ .mfb; getf.sig r26=f96 }
1073{ .mii; (p7) add carry3=1,carry3
4cb73bf8
AP
1074 cmp.ltu p7,p0=r20,r19
1075 add r21=r21,r20 };;
622d3d35
AP
1076{ .mfb; getf.sig r27=f87 }
1077{ .mii; (p7) add carry3=1,carry3
4cb73bf8
AP
1078 cmp.ltu p7,p0=r21,r20
1079 add r21=r21,carry1 };;
622d3d35 1080{ .mib; getf.sig r28=f78
4cb73bf8 1081 add r25=r25,r24 }
622d3d35 1082{ .mib; (p7) add carry3=1,carry3
4cb73bf8 1083 cmp.ltu p7,p8=r21,carry1};;
622d3d35 1084{ .mii; st8 [r32]=r21,16
4cb73bf8
AP
1085 (p7) add carry2=1,carry3
1086 (p8) add carry2=0,carry3 }
1087
622d3d35 1088{ .mii; mov carry1=0
4cb73bf8
AP
1089 cmp.ltu p6,p0=r25,r24
1090 add r26=r26,r25 };;
622d3d35
AP
1091{ .mfb; getf.sig r16=f115 }
1092{ .mii;
4cb73bf8
AP
1093(p6) add carry1=1,carry1
1094 cmp.ltu p6,p0=r26,r25
1095 add r27=r27,r26 };;
622d3d35
AP
1096{ .mfb; getf.sig r17=f106 }
1097{ .mii;
4cb73bf8
AP
1098(p6) add carry1=1,carry1
1099 cmp.ltu p6,p0=r27,r26
1100 add r28=r28,r27 };;
622d3d35
AP
1101{ .mfb; getf.sig r18=f97 }
1102{ .mii;
4cb73bf8
AP
1103(p6) add carry1=1,carry1
1104 cmp.ltu p6,p0=r28,r27
1105 add r28=r28,carry2 };;
622d3d35 1106{ .mib; getf.sig r19=f88
4cb73bf8 1107 add r17=r17,r16 }
622d3d35 1108{ .mib;
4cb73bf8
AP
1109(p6) add carry1=1,carry1
1110 cmp.ltu p6,p0=r28,carry2 };;
622d3d35 1111{ .mii; st8 [r33]=r28,16
4cb73bf8
AP
1112(p6) add carry1=1,carry1 }
1113
622d3d35 1114{ .mii; mov carry2=0
4cb73bf8
AP
1115 cmp.ltu p7,p0=r17,r16
1116 add r18=r18,r17 };;
622d3d35
AP
1117{ .mfb; getf.sig r24=f116 }
1118{ .mii; (p7) add carry2=1,carry2
4cb73bf8
AP
1119 cmp.ltu p7,p0=r18,r17
1120 add r19=r19,r18 };;
622d3d35
AP
1121{ .mfb; getf.sig r25=f107 }
1122{ .mii; (p7) add carry2=1,carry2
4cb73bf8
AP
1123 cmp.ltu p7,p0=r19,r18
1124 add r19=r19,carry1 };;
622d3d35
AP
1125{ .mfb; getf.sig r26=f98 }
1126{ .mii; (p7) add carry2=1,carry2
4cb73bf8 1127 cmp.ltu p7,p0=r19,carry1};;
622d3d35 1128{ .mii; st8 [r32]=r19,16
4cb73bf8
AP
1129 (p7) add carry2=1,carry2 }
1130
622d3d35 1131{ .mfb; add r25=r25,r24 };;
4cb73bf8 1132
622d3d35
AP
1133{ .mfb; getf.sig r16=f117 }
1134{ .mii; mov carry1=0
4cb73bf8
AP
1135 cmp.ltu p6,p0=r25,r24
1136 add r26=r26,r25 };;
622d3d35
AP
1137{ .mfb; getf.sig r17=f108 }
1138{ .mii;
4cb73bf8
AP
1139(p6) add carry1=1,carry1
1140 cmp.ltu p6,p0=r26,r25
1141 add r26=r26,carry2 };;
622d3d35
AP
1142{ .mfb; nop.m 0x0 }
1143{ .mii;
4cb73bf8
AP
1144(p6) add carry1=1,carry1
1145 cmp.ltu p6,p0=r26,carry2 };;
622d3d35 1146{ .mii; st8 [r33]=r26,16
4cb73bf8
AP
1147(p6) add carry1=1,carry1 }
1148
622d3d35
AP
1149{ .mfb; add r17=r17,r16 };;
1150{ .mfb; getf.sig r24=f118 }
1151{ .mii; mov carry2=0
4cb73bf8
AP
1152 cmp.ltu p7,p0=r17,r16
1153 add r17=r17,carry1 };;
622d3d35 1154{ .mii; (p7) add carry2=1,carry2
4cb73bf8 1155 cmp.ltu p7,p0=r17,carry1};;
622d3d35 1156{ .mii; st8 [r32]=r17
4cb73bf8 1157 (p7) add carry2=1,carry2 };;
622d3d35
AP
1158{ .mfb; add r24=r24,carry2 };;
1159{ .mib; st8 [r33]=r24 }
4cb73bf8 1160
622d3d35 1161{ .mib; rum 1<<5 // clear um.mfh
4cb73bf8
AP
1162 br.ret.sptk.many b0 };;
1163.endp bn_mul_comba8#
4cb73bf8
AP
1164#undef carry3
1165#undef carry2
1166#undef carry1
1167#endif
1168
1169#if 1
1170// It's possible to make it faster (see comment to bn_sqr_comba8), but
1171// I reckon it doesn't worth the effort. Basically because the routine
1172// (actually both of them) practically never called... So I just play
1173// same trick as with bn_sqr_comba8.
1174//
1175// void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a)
1176//
1177.global bn_sqr_comba4#
1178.proc bn_sqr_comba4#
1179.align 64
1180bn_sqr_comba4:
1181 .prologue
4cb73bf8 1182 .save ar.pfs,r2
e2f2a9af 1183#if defined(_HPUX_SOURCE) && !defined(_LP64)
46a0d4fb
AP
1184{ .mii; alloc r2=ar.pfs,2,1,0,0
1185 addp4 r32=0,r32
1186 addp4 r33=0,r33 };;
1187{ .mii;
1188#else
622d3d35 1189{ .mii; alloc r2=ar.pfs,2,1,0,0
46a0d4fb 1190#endif
4cb73bf8
AP
1191 mov r34=r33
1192 add r14=8,r33 };;
1193 .body
622d3d35 1194{ .mii; add r17=8,r34
4cb73bf8
AP
1195 add r15=16,r33
1196 add r18=16,r34 }
622d3d35 1197{ .mfb; add r16=24,r33
4cb73bf8 1198 br .L_cheat_entry_point4 };;
622d3d35 1199.endp bn_sqr_comba4#
4cb73bf8
AP
1200#endif
1201
1202#if 1
1203// Runs in ~115 cycles and ~4.5 times faster than C. Well, whatever...
1204//
1205// void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
1206//
622d3d35 1207#define carry1 r14
4cb73bf8
AP
1208#define carry2 r15
1209.global bn_mul_comba4#
1210.proc bn_mul_comba4#
1211.align 64
1212bn_mul_comba4:
1213 .prologue
4cb73bf8 1214 .save ar.pfs,r2
e2f2a9af 1215#if defined(_HPUX_SOURCE) && !defined(_LP64)
46a0d4fb
AP
1216{ .mii; alloc r2=ar.pfs,3,0,0,0
1217 addp4 r33=0,r33
1218 addp4 r34=0,r34 };;
1219{ .mii; addp4 r32=0,r32
1220#else
622d3d35 1221{ .mii; alloc r2=ar.pfs,3,0,0,0
46a0d4fb 1222#endif
4cb73bf8
AP
1223 add r14=8,r33
1224 add r17=8,r34 }
1225 .body
622d3d35 1226{ .mii; add r15=16,r33
4cb73bf8
AP
1227 add r18=16,r34
1228 add r16=24,r33 };;
1229.L_cheat_entry_point4:
622d3d35 1230{ .mmi; add r19=24,r34
4cb73bf8
AP
1231
1232 ldf8 f32=[r33] }
1233
622d3d35 1234{ .mmi; ldf8 f120=[r34]
4cb73bf8 1235 ldf8 f121=[r17] };;
622d3d35 1236{ .mmi; ldf8 f122=[r18]
4cb73bf8
AP
1237 ldf8 f123=[r19] }
1238
622d3d35 1239{ .mmi; ldf8 f33=[r14]
4cb73bf8 1240 ldf8 f34=[r15] }
622d3d35 1241{ .mfi; ldf8 f35=[r16]
4cb73bf8
AP
1242
1243 xma.hu f41=f32,f120,f0 }
622d3d35
AP
1244{ .mfi; xma.lu f40=f32,f120,f0 };;
1245{ .mfi; xma.hu f51=f32,f121,f0 }
1246{ .mfi; xma.lu f50=f32,f121,f0 };;
1247{ .mfi; xma.hu f61=f32,f122,f0 }
1248{ .mfi; xma.lu f60=f32,f122,f0 };;
1249{ .mfi; xma.hu f71=f32,f123,f0 }
1250{ .mfi; xma.lu f70=f32,f123,f0 };;//
4cb73bf8
AP
1251// Major stall takes place here, and 3 more places below. Result from
1252// first xma is not available for another 3 ticks.
622d3d35 1253{ .mfi; getf.sig r16=f40
4cb73bf8
AP
1254 xma.hu f42=f33,f120,f41
1255 add r33=8,r32 }
622d3d35
AP
1256{ .mfi; xma.lu f41=f33,f120,f41 };;
1257{ .mfi; getf.sig r24=f50
4cb73bf8 1258 xma.hu f52=f33,f121,f51 }
622d3d35
AP
1259{ .mfi; xma.lu f51=f33,f121,f51 };;
1260{ .mfi; st8 [r32]=r16,16
4cb73bf8 1261 xma.hu f62=f33,f122,f61 }
622d3d35
AP
1262{ .mfi; xma.lu f61=f33,f122,f61 };;
1263{ .mfi; xma.hu f72=f33,f123,f71 }
1264{ .mfi; xma.lu f71=f33,f123,f71 };;//
4cb73bf8 1265//-------------------------------------------------//
622d3d35 1266{ .mfi; getf.sig r25=f41
4cb73bf8 1267 xma.hu f43=f34,f120,f42 }
622d3d35
AP
1268{ .mfi; xma.lu f42=f34,f120,f42 };;
1269{ .mfi; getf.sig r16=f60
4cb73bf8 1270 xma.hu f53=f34,f121,f52 }
622d3d35
AP
1271{ .mfi; xma.lu f52=f34,f121,f52 };;
1272{ .mfi; getf.sig r17=f51
4cb73bf8
AP
1273 xma.hu f63=f34,f122,f62
1274 add r25=r25,r24 }
622d3d35 1275{ .mfi; mov carry1=0
4cb73bf8 1276 xma.lu f62=f34,f122,f62 };;
622d3d35 1277{ .mfi; st8 [r33]=r25,16
4cb73bf8
AP
1278 xma.hu f73=f34,f123,f72
1279 cmp.ltu p6,p0=r25,r24 }
622d3d35 1280{ .mfi; xma.lu f72=f34,f123,f72 };;//
4cb73bf8 1281//-------------------------------------------------//
622d3d35 1282{ .mfi; getf.sig r18=f42
4cb73bf8
AP
1283 xma.hu f44=f35,f120,f43
1284(p6) add carry1=1,carry1 }
622d3d35 1285{ .mfi; add r17=r17,r16
4cb73bf8
AP
1286 xma.lu f43=f35,f120,f43
1287 mov carry2=0 };;
622d3d35 1288{ .mfi; getf.sig r24=f70
4cb73bf8
AP
1289 xma.hu f54=f35,f121,f53
1290 cmp.ltu p7,p0=r17,r16 }
622d3d35
AP
1291{ .mfi; xma.lu f53=f35,f121,f53 };;
1292{ .mfi; getf.sig r25=f61
4cb73bf8
AP
1293 xma.hu f64=f35,f122,f63
1294 add r18=r18,r17 }
622d3d35 1295{ .mfi; xma.lu f63=f35,f122,f63
4cb73bf8 1296(p7) add carry2=1,carry2 };;
622d3d35 1297{ .mfi; getf.sig r26=f52
4cb73bf8
AP
1298 xma.hu f74=f35,f123,f73
1299 cmp.ltu p7,p0=r18,r17 }
622d3d35 1300{ .mfi; xma.lu f73=f35,f123,f73
4cb73bf8
AP
1301 add r18=r18,carry1 };;
1302//-------------------------------------------------//
622d3d35 1303{ .mii; st8 [r32]=r18,16
4cb73bf8
AP
1304(p7) add carry2=1,carry2
1305 cmp.ltu p7,p0=r18,carry1 };;
1306
622d3d35 1307{ .mfi; getf.sig r27=f43 // last major stall
4cb73bf8 1308(p7) add carry2=1,carry2 };;
622d3d35 1309{ .mii; getf.sig r16=f71
4cb73bf8
AP
1310 add r25=r25,r24
1311 mov carry1=0 };;
622d3d35 1312{ .mii; getf.sig r17=f62
4cb73bf8
AP
1313 cmp.ltu p6,p0=r25,r24
1314 add r26=r26,r25 };;
622d3d35 1315{ .mii;
4cb73bf8
AP
1316(p6) add carry1=1,carry1
1317 cmp.ltu p6,p0=r26,r25
1318 add r27=r27,r26 };;
622d3d35 1319{ .mii;
4cb73bf8
AP
1320(p6) add carry1=1,carry1
1321 cmp.ltu p6,p0=r27,r26
1322 add r27=r27,carry2 };;
622d3d35 1323{ .mii; getf.sig r18=f53
4cb73bf8
AP
1324(p6) add carry1=1,carry1
1325 cmp.ltu p6,p0=r27,carry2 };;
622d3d35 1326{ .mfi; st8 [r33]=r27,16
4cb73bf8
AP
1327(p6) add carry1=1,carry1 }
1328
622d3d35 1329{ .mii; getf.sig r19=f44
4cb73bf8
AP
1330 add r17=r17,r16
1331 mov carry2=0 };;
622d3d35 1332{ .mii; getf.sig r24=f72
4cb73bf8
AP
1333 cmp.ltu p7,p0=r17,r16
1334 add r18=r18,r17 };;
622d3d35 1335{ .mii; (p7) add carry2=1,carry2
4cb73bf8
AP
1336 cmp.ltu p7,p0=r18,r17
1337 add r19=r19,r18 };;
622d3d35 1338{ .mii; (p7) add carry2=1,carry2
4cb73bf8
AP
1339 cmp.ltu p7,p0=r19,r18
1340 add r19=r19,carry1 };;
622d3d35 1341{ .mii; getf.sig r25=f63
4cb73bf8
AP
1342 (p7) add carry2=1,carry2
1343 cmp.ltu p7,p0=r19,carry1};;
622d3d35 1344{ .mii; st8 [r32]=r19,16
4cb73bf8
AP
1345 (p7) add carry2=1,carry2 }
1346
622d3d35 1347{ .mii; getf.sig r26=f54
4cb73bf8
AP
1348 add r25=r25,r24
1349 mov carry1=0 };;
622d3d35 1350{ .mii; getf.sig r16=f73
4cb73bf8
AP
1351 cmp.ltu p6,p0=r25,r24
1352 add r26=r26,r25 };;
622d3d35 1353{ .mii;
4cb73bf8
AP
1354(p6) add carry1=1,carry1
1355 cmp.ltu p6,p0=r26,r25
1356 add r26=r26,carry2 };;
622d3d35 1357{ .mii; getf.sig r17=f64
4cb73bf8
AP
1358(p6) add carry1=1,carry1
1359 cmp.ltu p6,p0=r26,carry2 };;
622d3d35 1360{ .mii; st8 [r33]=r26,16
4cb73bf8
AP
1361(p6) add carry1=1,carry1 }
1362
622d3d35 1363{ .mii; getf.sig r24=f74
4cb73bf8
AP
1364 add r17=r17,r16
1365 mov carry2=0 };;
622d3d35 1366{ .mii; cmp.ltu p7,p0=r17,r16
4cb73bf8
AP
1367 add r17=r17,carry1 };;
1368
622d3d35 1369{ .mii; (p7) add carry2=1,carry2
4cb73bf8 1370 cmp.ltu p7,p0=r17,carry1};;
622d3d35 1371{ .mii; st8 [r32]=r17,16
4cb73bf8
AP
1372 (p7) add carry2=1,carry2 };;
1373
622d3d35
AP
1374{ .mii; add r24=r24,carry2 };;
1375{ .mii; st8 [r33]=r24 }
4cb73bf8 1376
622d3d35 1377{ .mib; rum 1<<5 // clear um.mfh
4cb73bf8
AP
1378 br.ret.sptk.many b0 };;
1379.endp bn_mul_comba4#
4cb73bf8
AP
1380#undef carry2
1381#undef carry1
1382#endif
1383
1384#if 1
1385//
1386// BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
1387//
1388// In the nutshell it's a port of my MIPS III/IV implementation.
1389//
1390#define AT r14
1391#define H r16
1392#define HH r20
1393#define L r17
1394#define D r18
1395#define DH r22
1396#define I r21
1397
622d3d35 1398#if 0
e2f2a9af
AP
1399// Some preprocessors (most notably HP-UX) appear to be allergic to
1400// macros enclosed to parenthesis [as these three were].
4cb73bf8
AP
1401#define cont p16
1402#define break p0 // p20
1403#define equ p24
622d3d35
AP
1404#else
1405cont=p16
1406break=p0
1407equ=p24
1408#endif
1409
4cb73bf8
AP
1410.global abort#
1411.global bn_div_words#
1412.proc bn_div_words#
1413.align 64
1414bn_div_words:
1415 .prologue
4cb73bf8 1416 .save ar.pfs,r2
622d3d35 1417{ .mii; alloc r2=ar.pfs,3,5,0,8
ef428d56 1418 .save b0,r3
4cb73bf8 1419 mov r3=b0
7cfe2a5e 1420 .save pr,r10
4cb73bf8 1421 mov r10=pr };;
622d3d35 1422{ .mmb; cmp.eq p6,p0=r34,r0
4cb73bf8
AP
1423 mov r8=-1
1424(p6) br.ret.spnt.many b0 };;
1425
1426 .body
622d3d35 1427{ .mii; mov H=r32 // save h
4cb73bf8
AP
1428 mov ar.ec=0 // don't rotate at exit
1429 mov pr.rot=0 }
622d3d35
AP
1430{ .mii; mov L=r33 // save l
1431 mov r36=r0 };;
4cb73bf8 1432
622d3d35
AP
1433.L_divw_shift: // -vv- note signed comparison
1434{ .mfi; (p0) cmp.lt p16,p0=r0,r34 // d
4cb73bf8 1435 (p0) shladd r33=r34,1,r0 }
622d3d35 1436{ .mfb; (p0) add r35=1,r36
4cb73bf8 1437 (p0) nop.f 0x0
622d3d35 1438(p16) br.wtop.dpnt .L_divw_shift };;
4cb73bf8 1439
622d3d35 1440{ .mii; mov D=r34
4cb73bf8
AP
1441 shr.u DH=r34,32
1442 sub r35=64,r36 };;
622d3d35 1443{ .mii; setf.sig f7=DH
4cb73bf8
AP
1444 shr.u AT=H,r35
1445 mov I=r36 };;
622d3d35 1446{ .mib; cmp.ne p6,p0=r0,AT
4cb73bf8
AP
1447 shl H=H,r36
1448(p6) br.call.spnt.clr b0=abort };; // overflow, die...
1449
622d3d35 1450{ .mfi; fcvt.xuf.s1 f7=f7
4cb73bf8 1451 shr.u AT=L,r35 };;
622d3d35 1452{ .mii; shl L=L,r36
4cb73bf8
AP
1453 or H=H,AT };;
1454
622d3d35 1455{ .mii; nop.m 0x0
4cb73bf8
AP
1456 cmp.leu p6,p0=D,H;;
1457(p6) sub H=H,D }
1458
622d3d35 1459{ .mlx; setf.sig f14=D
a95541d6 1460 movl AT=0xffffffff };;
4cb73bf8 1461///////////////////////////////////////////////////////////
622d3d35 1462{ .mii; setf.sig f6=H
4cb73bf8
AP
1463 shr.u HH=H,32;;
1464 cmp.eq p6,p7=HH,DH };;
622d3d35 1465{ .mfb;
4cb73bf8
AP
1466(p6) setf.sig f8=AT
1467(p7) fcvt.xuf.s1 f6=f6
1468(p7) br.call.sptk b6=.L_udiv64_32_b6 };;
1469
622d3d35 1470{ .mfi; getf.sig r33=f8 // q
4cb73bf8 1471 xmpy.lu f9=f8,f14 }
622d3d35 1472{ .mfi; xmpy.hu f10=f8,f14
4cb73bf8
AP
1473 shrp H=H,L,32 };;
1474
622d3d35 1475{ .mmi; getf.sig r35=f9 // tl
4cb73bf8
AP
1476 getf.sig r31=f10 };; // th
1477
622d3d35
AP
1478.L_divw_1st_iter:
1479{ .mii; (p0) add r32=-1,r33
4cb73bf8 1480 (p0) cmp.eq equ,cont=HH,r31 };;
622d3d35 1481{ .mii; (p0) cmp.ltu p8,p0=r35,D
4cb73bf8
AP
1482 (p0) sub r34=r35,D
1483 (equ) cmp.leu break,cont=r35,H };;
622d3d35 1484{ .mib; (cont) cmp.leu cont,break=HH,r31
4cb73bf8 1485 (p8) add r31=-1,r31
622d3d35 1486(cont) br.wtop.spnt .L_divw_1st_iter };;
4cb73bf8 1487///////////////////////////////////////////////////////////
622d3d35 1488{ .mii; sub H=H,r35
4cb73bf8 1489 shl r8=r33,32
a95541d6 1490 shl L=L,32 };;
4cb73bf8 1491///////////////////////////////////////////////////////////
622d3d35 1492{ .mii; setf.sig f6=H
4cb73bf8
AP
1493 shr.u HH=H,32;;
1494 cmp.eq p6,p7=HH,DH };;
622d3d35 1495{ .mfb;
4cb73bf8
AP
1496(p6) setf.sig f8=AT
1497(p7) fcvt.xuf.s1 f6=f6
1498(p7) br.call.sptk b6=.L_udiv64_32_b6 };;
1499
622d3d35 1500{ .mfi; getf.sig r33=f8 // q
4cb73bf8 1501 xmpy.lu f9=f8,f14 }
622d3d35 1502{ .mfi; xmpy.hu f10=f8,f14
4cb73bf8
AP
1503 shrp H=H,L,32 };;
1504
622d3d35 1505{ .mmi; getf.sig r35=f9 // tl
4cb73bf8
AP
1506 getf.sig r31=f10 };; // th
1507
622d3d35
AP
1508.L_divw_2nd_iter:
1509{ .mii; (p0) add r32=-1,r33
4cb73bf8 1510 (p0) cmp.eq equ,cont=HH,r31 };;
622d3d35 1511{ .mii; (p0) cmp.ltu p8,p0=r35,D
4cb73bf8
AP
1512 (p0) sub r34=r35,D
1513 (equ) cmp.leu break,cont=r35,H };;
622d3d35 1514{ .mib; (cont) cmp.leu cont,break=HH,r31
4cb73bf8 1515 (p8) add r31=-1,r31
622d3d35 1516(cont) br.wtop.spnt .L_divw_2nd_iter };;
4cb73bf8 1517///////////////////////////////////////////////////////////
622d3d35 1518{ .mii; sub H=H,r35
4cb73bf8
AP
1519 or r8=r8,r33
1520 mov ar.pfs=r2 };;
622d3d35 1521{ .mii; shr.u r9=H,I // remainder if anybody wants it
46a0d4fb 1522 mov pr=r10,0x1ffff }
622d3d35 1523{ .mfb; br.ret.sptk.many b0 };;
4cb73bf8
AP
1524
1525// Unsigned 64 by 32 (well, by 64 for the moment) bit integer division
1526// procedure.
1527//
a95541d6
AP
1528// inputs: f6 = (double)a, f7 = (double)b
1529// output: f8 = (int)(a/b)
622d3d35
AP
1530// clobbered: f8,f9,f10,f11,pred
1531pred=p15
dcf6e50f
RS
1532// This snippet is based on text found in the "Divide, Square
1533// Root and Remainder" section at
e2f2a9af
AP
1534// http://www.intel.com/software/products/opensource/libraries/num.htm.
1535// Yes, I admit that the referred code was used as template,
1536// but after I realized that there hardly is any other instruction
1537// sequence which would perform this operation. I mean I figure that
1538// any independent attempt to implement high-performance division
1539// will result in code virtually identical to the Intel code. It
1540// should be noted though that below division kernel is 1 cycle
1541// faster than Intel one (note commented splits:-), not to mention
1542// original prologue (rather lack of one) and epilogue.
4cb73bf8 1543.align 32
622d3d35 1544.skip 16
4cb73bf8 1545.L_udiv64_32_b6:
622d3d35
AP
1546 frcpa.s1 f8,pred=f6,f7;; // [0] y0 = 1 / b
1547
1548(pred) fnma.s1 f9=f7,f8,f1 // [5] e0 = 1 - b * y0
1549(pred) fmpy.s1 f10=f6,f8;; // [5] q0 = a * y0
1550(pred) fmpy.s1 f11=f9,f9 // [10] e1 = e0 * e0
1551(pred) fma.s1 f10=f9,f10,f10;; // [10] q1 = q0 + e0 * q0
1552(pred) fma.s1 f8=f9,f8,f8 //;; // [15] y1 = y0 + e0 * y0
1553(pred) fma.s1 f9=f11,f10,f10;; // [15] q2 = q1 + e1 * q1
1554(pred) fma.s1 f8=f11,f8,f8 //;; // [20] y2 = y1 + e1 * y1
1555(pred) fnma.s1 f10=f7,f9,f6;; // [20] r2 = a - b * q2
1556(pred) fma.s1 f8=f10,f8,f9;; // [25] q3 = q2 + r2 * y2
4cb73bf8
AP
1557
1558 fcvt.fxu.trunc.s1 f8=f8 // [30] q = trunc(q3)
1559 br.ret.sptk.many b6;;
1560.endp bn_div_words#
1561#endif