]> git.ipfire.org Git - thirdparty/openssl.git/blame - ssl/s3_cbc.c
Clean up references to FIPS
[thirdparty/openssl.git] / ssl / s3_cbc.c
CommitLineData
846e33c7
RS
1/*
2 * Copyright 2012-2016 The OpenSSL Project Authors. All Rights Reserved.
a693ead6 3 *
846e33c7
RS
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
a693ead6
BL
8 */
9
68570797 10#include "internal/constant_time_locl.h"
a693ead6
BL
11#include "ssl_locl.h"
12
13#include <openssl/md5.h>
14#include <openssl/sha.h>
15
0f113f3e
MC
16/*
17 * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
18 * length field. (SHA-384/512 have 128-bit length.)
19 */
a693ead6
BL
20#define MAX_HASH_BIT_COUNT_BYTES 16
21
0f113f3e
MC
22/*
23 * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
a693ead6 24 * Currently SHA-384/512 has a 128-byte block size and that's the largest
0f113f3e
MC
25 * supported by TLS.)
26 */
a693ead6
BL
27#define MAX_HASH_BLOCK_SIZE 128
28
0f113f3e
MC
29/*
30 * u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
31 * little-endian order. The value of p is advanced by four.
32 */
32620fe9 33#define u32toLE(n, p) \
0f113f3e
MC
34 (*((p)++)=(unsigned char)(n), \
35 *((p)++)=(unsigned char)(n>>8), \
36 *((p)++)=(unsigned char)(n>>16), \
37 *((p)++)=(unsigned char)(n>>24))
38
39/*
40 * These functions serialize the state of a hash and thus perform the
41 * standard "final" operation without adding the padding and length that such
42 * a function typically does.
43 */
44static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
45{
46 MD5_CTX *md5 = ctx;
47 u32toLE(md5->A, md_out);
48 u32toLE(md5->B, md_out);
49 u32toLE(md5->C, md_out);
50 u32toLE(md5->D, md_out);
51}
52
53static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
54{
55 SHA_CTX *sha1 = ctx;
56 l2n(sha1->h0, md_out);
57 l2n(sha1->h1, md_out);
58 l2n(sha1->h2, md_out);
59 l2n(sha1->h3, md_out);
60 l2n(sha1->h4, md_out);
61}
62
0f113f3e
MC
63static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
64{
65 SHA256_CTX *sha256 = ctx;
66 unsigned i;
67
68 for (i = 0; i < 8; i++) {
69 l2n(sha256->h[i], md_out);
70 }
71}
72
0f113f3e
MC
73static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
74{
75 SHA512_CTX *sha512 = ctx;
76 unsigned i;
77
78 for (i = 0; i < 8; i++) {
79 l2n8(sha512->h[i], md_out);
80 }
81}
82
474e469b
RS
83#undef LARGEST_DIGEST_CTX
84#define LARGEST_DIGEST_CTX SHA512_CTX
a693ead6 85
0f113f3e
MC
86/*
87 * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
88 * which ssl3_cbc_digest_record supports.
89 */
a693ead6 90char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
0f113f3e 91{
0f113f3e
MC
92 switch (EVP_MD_CTX_type(ctx)) {
93 case NID_md5:
94 case NID_sha1:
0f113f3e
MC
95 case NID_sha224:
96 case NID_sha256:
0f113f3e
MC
97 case NID_sha384:
98 case NID_sha512:
0f113f3e
MC
99 return 1;
100 default:
101 return 0;
102 }
103}
a693ead6 104
1d97c843
TH
105/*-
106 * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
a693ead6
BL
107 * record.
108 *
109 * ctx: the EVP_MD_CTX from which we take the hash function.
110 * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
111 * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
112 * md_out_size: if non-NULL, the number of output bytes is written here.
113 * header: the 13-byte, TLS record header.
478b50cf 114 * data: the record data itself, less any preceding explicit IV.
a693ead6
BL
115 * data_plus_mac_size: the secret, reported length of the data and MAC
116 * once the padding has been removed.
117 * data_plus_mac_plus_padding_size: the public length of the whole
118 * record, including padding.
119 * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
120 *
121 * On entry: by virtue of having been through one of the remove_padding
122 * functions, above, we know that data_plus_mac_size is large enough to contain
123 * a padding byte and MAC. (If the padding was invalid, it might contain the
0f113f3e 124 * padding too. )
5f3d93e4 125 * Returns 1 on success or 0 on error
1d97c843 126 */
5f3d93e4 127int ssl3_cbc_digest_record(const EVP_MD_CTX *ctx,
a230b26e
EK
128 unsigned char *md_out,
129 size_t *md_out_size,
130 const unsigned char header[13],
131 const unsigned char *data,
132 size_t data_plus_mac_size,
133 size_t data_plus_mac_plus_padding_size,
134 const unsigned char *mac_secret,
d0e7c31d 135 size_t mac_secret_length, char is_sslv3)
0f113f3e
MC
136{
137 union {
138 double align;
139 unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
140 } md_state;
141 void (*md_final_raw) (void *ctx, unsigned char *md_out);
142 void (*md_transform) (void *ctx, const unsigned char *block);
d0e7c31d
MC
143 size_t md_size, md_block_size = 64;
144 size_t sslv3_pad_length = 40, header_length, variance_blocks,
0f113f3e
MC
145 len, max_mac_bytes, num_blocks,
146 num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
d0e7c31d 147 size_t bits; /* at most 18 bits */
0f113f3e
MC
148 unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
149 /* hmac_pad is the masked HMAC key. */
150 unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
151 unsigned char first_block[MAX_HASH_BLOCK_SIZE];
152 unsigned char mac_out[EVP_MAX_MD_SIZE];
d0e7c31d
MC
153 size_t i, j;
154 unsigned md_out_size_u;
6e59a892 155 EVP_MD_CTX *md_ctx = NULL;
0f113f3e
MC
156 /*
157 * mdLengthSize is the number of bytes in the length field that
158 * terminates * the hash.
159 */
d0e7c31d 160 size_t md_length_size = 8;
0f113f3e
MC
161 char length_is_big_endian = 1;
162 int ret;
163
164 /*
165 * This is a, hopefully redundant, check that allows us to forget about
166 * many possible overflows later in this function.
167 */
168 OPENSSL_assert(data_plus_mac_plus_padding_size < 1024 * 1024);
169
170 switch (EVP_MD_CTX_type(ctx)) {
171 case NID_md5:
5f3d93e4
MC
172 if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
173 return 0;
0f113f3e
MC
174 md_final_raw = tls1_md5_final_raw;
175 md_transform =
176 (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
177 md_size = 16;
178 sslv3_pad_length = 48;
179 length_is_big_endian = 0;
180 break;
181 case NID_sha1:
5f3d93e4
MC
182 if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
183 return 0;
0f113f3e
MC
184 md_final_raw = tls1_sha1_final_raw;
185 md_transform =
186 (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
187 md_size = 20;
188 break;
0f113f3e 189 case NID_sha224:
5f3d93e4
MC
190 if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
191 return 0;
0f113f3e
MC
192 md_final_raw = tls1_sha256_final_raw;
193 md_transform =
194 (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
195 md_size = 224 / 8;
196 break;
197 case NID_sha256:
5f3d93e4
MC
198 if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
199 return 0;
0f113f3e
MC
200 md_final_raw = tls1_sha256_final_raw;
201 md_transform =
202 (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
203 md_size = 32;
204 break;
0f113f3e 205 case NID_sha384:
5f3d93e4
MC
206 if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
207 return 0;
0f113f3e
MC
208 md_final_raw = tls1_sha512_final_raw;
209 md_transform =
210 (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
211 md_size = 384 / 8;
212 md_block_size = 128;
213 md_length_size = 16;
214 break;
215 case NID_sha512:
5f3d93e4
MC
216 if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
217 return 0;
0f113f3e
MC
218 md_final_raw = tls1_sha512_final_raw;
219 md_transform =
220 (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
221 md_size = 64;
222 md_block_size = 128;
223 md_length_size = 16;
224 break;
0f113f3e
MC
225 default:
226 /*
227 * ssl3_cbc_record_digest_supported should have been called first to
228 * check that the hash function is supported.
229 */
230 OPENSSL_assert(0);
231 if (md_out_size)
5c649375 232 *md_out_size = 0;
5f3d93e4 233 return 0;
0f113f3e
MC
234 }
235
236 OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
237 OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
238 OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
239
240 header_length = 13;
241 if (is_sslv3) {
242 header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
243 * number */ +
244 1 /* record type */ +
245 2 /* record length */ ;
246 }
247
248 /*
249 * variance_blocks is the number of blocks of the hash that we have to
250 * calculate in constant time because they could be altered by the
251 * padding value. In SSLv3, the padding must be minimal so the end of
252 * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
253 * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
254 * of hash termination (0x80 + 64-bit length) don't fit in the final
255 * block, we say that the final two blocks can vary based on the padding.
256 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
257 * required to be minimal. Therefore we say that the final six blocks can
258 * vary based on the padding. Later in the function, if the message is
259 * short and there obviously cannot be this many blocks then
260 * variance_blocks can be reduced.
261 */
262 variance_blocks = is_sslv3 ? 2 : 6;
263 /*
264 * From now on we're dealing with the MAC, which conceptually has 13
265 * bytes of `header' before the start of the data (TLS) or 71/75 bytes
266 * (SSLv3)
267 */
268 len = data_plus_mac_plus_padding_size + header_length;
269 /*
270 * max_mac_bytes contains the maximum bytes of bytes in the MAC,
271 * including * |header|, assuming that there's no padding.
272 */
273 max_mac_bytes = len - md_size - 1;
274 /* num_blocks is the maximum number of hash blocks. */
275 num_blocks =
276 (max_mac_bytes + 1 + md_length_size + md_block_size -
277 1) / md_block_size;
278 /*
279 * In order to calculate the MAC in constant time we have to handle the
280 * final blocks specially because the padding value could cause the end
281 * to appear somewhere in the final |variance_blocks| blocks and we can't
282 * leak where. However, |num_starting_blocks| worth of data can be hashed
283 * right away because no padding value can affect whether they are
284 * plaintext.
285 */
286 num_starting_blocks = 0;
287 /*
288 * k is the starting byte offset into the conceptual header||data where
289 * we start processing.
290 */
291 k = 0;
292 /*
293 * mac_end_offset is the index just past the end of the data to be MACed.
294 */
295 mac_end_offset = data_plus_mac_size + header_length - md_size;
296 /*
297 * c is the index of the 0x80 byte in the final hash block that contains
298 * application data.
299 */
300 c = mac_end_offset % md_block_size;
301 /*
302 * index_a is the hash block number that contains the 0x80 terminating
303 * value.
304 */
305 index_a = mac_end_offset / md_block_size;
306 /*
307 * index_b is the hash block number that contains the 64-bit hash length,
308 * in bits.
309 */
310 index_b = (mac_end_offset + md_length_size) / md_block_size;
311 /*
312 * bits is the hash-length in bits. It includes the additional hash block
313 * for the masked HMAC key, or whole of |header| in the case of SSLv3.
314 */
315
316 /*
317 * For SSLv3, if we're going to have any starting blocks then we need at
318 * least two because the header is larger than a single block.
319 */
320 if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
321 num_starting_blocks = num_blocks - variance_blocks;
322 k = md_block_size * num_starting_blocks;
323 }
324
325 bits = 8 * mac_end_offset;
326 if (!is_sslv3) {
327 /*
328 * Compute the initial HMAC block. For SSLv3, the padding and secret
329 * bytes are included in |header| because they take more than a
330 * single block.
331 */
332 bits += 8 * md_block_size;
333 memset(hmac_pad, 0, md_block_size);
334 OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
335 memcpy(hmac_pad, mac_secret, mac_secret_length);
336 for (i = 0; i < md_block_size; i++)
337 hmac_pad[i] ^= 0x36;
338
339 md_transform(md_state.c, hmac_pad);
340 }
341
342 if (length_is_big_endian) {
343 memset(length_bytes, 0, md_length_size - 4);
344 length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
345 length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
346 length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
347 length_bytes[md_length_size - 1] = (unsigned char)bits;
348 } else {
349 memset(length_bytes, 0, md_length_size);
350 length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
351 length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
352 length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
353 length_bytes[md_length_size - 8] = (unsigned char)bits;
354 }
355
356 if (k > 0) {
357 if (is_sslv3) {
348240c6 358 size_t overhang;
29b0a15a 359
0f113f3e
MC
360 /*
361 * The SSLv3 header is larger than a single block. overhang is
362 * the number of bytes beyond a single block that the header
29b0a15a
MC
363 * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
364 * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
365 * therefore we can be confident that the header_length will be
366 * greater than |md_block_size|. However we add a sanity check just
367 * in case
0f113f3e 368 */
29b0a15a
MC
369 if (header_length <= md_block_size) {
370 /* Should never happen */
5f3d93e4 371 return 0;
29b0a15a
MC
372 }
373 overhang = header_length - md_block_size;
0f113f3e
MC
374 md_transform(md_state.c, header);
375 memcpy(first_block, header + md_block_size, overhang);
376 memcpy(first_block + overhang, data, md_block_size - overhang);
377 md_transform(md_state.c, first_block);
378 for (i = 1; i < k / md_block_size - 1; i++)
379 md_transform(md_state.c, data + md_block_size * i - overhang);
380 } else {
381 /* k is a multiple of md_block_size. */
382 memcpy(first_block, header, 13);
383 memcpy(first_block + 13, data, md_block_size - 13);
384 md_transform(md_state.c, first_block);
385 for (i = 1; i < k / md_block_size; i++)
386 md_transform(md_state.c, data + md_block_size * i - 13);
387 }
388 }
389
390 memset(mac_out, 0, sizeof(mac_out));
391
392 /*
393 * We now process the final hash blocks. For each block, we construct it
394 * in constant time. If the |i==index_a| then we'll include the 0x80
395 * bytes and zero pad etc. For each block we selectively copy it, in
396 * constant time, to |mac_out|.
397 */
398 for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
399 i++) {
400 unsigned char block[MAX_HASH_BLOCK_SIZE];
2688e7a0
MC
401 unsigned char is_block_a = constant_time_eq_8_s(i, index_a);
402 unsigned char is_block_b = constant_time_eq_8_s(i, index_b);
0f113f3e
MC
403 for (j = 0; j < md_block_size; j++) {
404 unsigned char b = 0, is_past_c, is_past_cp1;
405 if (k < header_length)
406 b = header[k];
407 else if (k < data_plus_mac_plus_padding_size + header_length)
408 b = data[k - header_length];
409 k++;
410
2688e7a0
MC
411 is_past_c = is_block_a & constant_time_ge_8_s(j, c);
412 is_past_cp1 = is_block_a & constant_time_ge_8_s(j, c + 1);
0f113f3e
MC
413 /*
414 * If this is the block containing the end of the application
415 * data, and we are at the offset for the 0x80 value, then
416 * overwrite b with 0x80.
417 */
418 b = constant_time_select_8(is_past_c, 0x80, b);
419 /*
420 * If this the the block containing the end of the application
421 * data and we're past the 0x80 value then just write zero.
422 */
423 b = b & ~is_past_cp1;
424 /*
425 * If this is index_b (the final block), but not index_a (the end
426 * of the data), then the 64-bit length didn't fit into index_a
427 * and we're having to add an extra block of zeros.
428 */
429 b &= ~is_block_b | is_block_a;
430
431 /*
432 * The final bytes of one of the blocks contains the length.
433 */
434 if (j >= md_block_size - md_length_size) {
435 /* If this is index_b, write a length byte. */
436 b = constant_time_select_8(is_block_b,
437 length_bytes[j -
438 (md_block_size -
439 md_length_size)], b);
440 }
441 block[j] = b;
442 }
443
444 md_transform(md_state.c, block);
445 md_final_raw(md_state.c, block);
446 /* If this is index_b, copy the hash value to |mac_out|. */
447 for (j = 0; j < md_size; j++)
448 mac_out[j] |= block[j] & is_block_b;
449 }
450
bfb0641f 451 md_ctx = EVP_MD_CTX_new();
6e59a892
RL
452 if (md_ctx == NULL)
453 goto err;
454 if (EVP_DigestInit_ex(md_ctx, EVP_MD_CTX_md(ctx), NULL /* engine */ ) <= 0)
5f3d93e4 455 goto err;
0f113f3e
MC
456 if (is_sslv3) {
457 /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
458 memset(hmac_pad, 0x5c, sslv3_pad_length);
459
6e59a892 460 if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0
a230b26e
EK
461 || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0
462 || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
5f3d93e4 463 goto err;
0f113f3e
MC
464 } else {
465 /* Complete the HMAC in the standard manner. */
466 for (i = 0; i < md_block_size; i++)
467 hmac_pad[i] ^= 0x6a;
468
6e59a892 469 if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0
a230b26e 470 || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
5f3d93e4 471 goto err;
0f113f3e 472 }
d0e7c31d 473 /* TODO(size_t): Convert me */
6e59a892 474 ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u);
0f113f3e
MC
475 if (ret && md_out_size)
476 *md_out_size = md_out_size_u;
bfb0641f 477 EVP_MD_CTX_free(md_ctx);
5f3d93e4
MC
478
479 return 1;
a230b26e 480 err:
bfb0641f 481 EVP_MD_CTX_free(md_ctx);
5f3d93e4 482 return 0;
0f113f3e 483}