]> git.ipfire.org Git - people/arne_f/kernel.git/blame - Documentation/dmaengine/provider.txt
x86/speculation: Fix incorrect MDS/TAA mitigation status
[people/arne_f/kernel.git] / Documentation / dmaengine / provider.txt
CommitLineData
c4d2ae96
MR
1DMAengine controller documentation
2==================================
3
4Hardware Introduction
5+++++++++++++++++++++
6
7Most of the Slave DMA controllers have the same general principles of
8operations.
9
10They have a given number of channels to use for the DMA transfers, and
11a given number of requests lines.
12
13Requests and channels are pretty much orthogonal. Channels can be used
14to serve several to any requests. To simplify, channels are the
15entities that will be doing the copy, and requests what endpoints are
16involved.
17
18The request lines actually correspond to physical lines going from the
19DMA-eligible devices to the controller itself. Whenever the device
20will want to start a transfer, it will assert a DMA request (DRQ) by
21asserting that request line.
22
23A very simple DMA controller would only take into account a single
24parameter: the transfer size. At each clock cycle, it would transfer a
25byte of data from one buffer to another, until the transfer size has
26been reached.
27
28That wouldn't work well in the real world, since slave devices might
29require a specific number of bits to be transferred in a single
30cycle. For example, we may want to transfer as much data as the
31physical bus allows to maximize performances when doing a simple
32memory copy operation, but our audio device could have a narrower FIFO
33that requires data to be written exactly 16 or 24 bits at a time. This
34is why most if not all of the DMA controllers can adjust this, using a
35parameter called the transfer width.
36
37Moreover, some DMA controllers, whenever the RAM is used as a source
38or destination, can group the reads or writes in memory into a buffer,
39so instead of having a lot of small memory accesses, which is not
40really efficient, you'll get several bigger transfers. This is done
41using a parameter called the burst size, that defines how many single
42reads/writes it's allowed to do without the controller splitting the
43transfer into smaller sub-transfers.
44
45Our theoretical DMA controller would then only be able to do transfers
46that involve a single contiguous block of data. However, some of the
47transfers we usually have are not, and want to copy data from
48non-contiguous buffers to a contiguous buffer, which is called
49scatter-gather.
50
51DMAEngine, at least for mem2dev transfers, require support for
52scatter-gather. So we're left with two cases here: either we have a
53quite simple DMA controller that doesn't support it, and we'll have to
54implement it in software, or we have a more advanced DMA controller,
55that implements in hardware scatter-gather.
56
57The latter are usually programmed using a collection of chunks to
58transfer, and whenever the transfer is started, the controller will go
59over that collection, doing whatever we programmed there.
60
61This collection is usually either a table or a linked list. You will
62then push either the address of the table and its number of elements,
63or the first item of the list to one channel of the DMA controller,
64and whenever a DRQ will be asserted, it will go through the collection
65to know where to fetch the data from.
66
67Either way, the format of this collection is completely dependent on
68your hardware. Each DMA controller will require a different structure,
69but all of them will require, for every chunk, at least the source and
70destination addresses, whether it should increment these addresses or
71not and the three parameters we saw earlier: the burst size, the
72transfer width and the transfer size.
73
74The one last thing is that usually, slave devices won't issue DRQ by
75default, and you have to enable this in your slave device driver first
76whenever you're willing to use DMA.
77
78These were just the general memory-to-memory (also called mem2mem) or
79memory-to-device (mem2dev) kind of transfers. Most devices often
80support other kind of transfers or memory operations that dmaengine
81support and will be detailed later in this document.
82
83DMA Support in Linux
84++++++++++++++++++++
85
86Historically, DMA controller drivers have been implemented using the
87async TX API, to offload operations such as memory copy, XOR,
88cryptography, etc., basically any memory to memory operation.
89
90Over time, the need for memory to device transfers arose, and
91dmaengine was extended. Nowadays, the async TX API is written as a
92layer on top of dmaengine, and acts as a client. Still, dmaengine
93accommodates that API in some cases, and made some design choices to
94ensure that it stayed compatible.
95
96For more information on the Async TX API, please look the relevant
97documentation file in Documentation/crypto/async-tx-api.txt.
98
99DMAEngine Registration
100++++++++++++++++++++++
101
102struct dma_device Initialization
103--------------------------------
104
105Just like any other kernel framework, the whole DMAEngine registration
106relies on the driver filling a structure and registering against the
107framework. In our case, that structure is dma_device.
108
109The first thing you need to do in your driver is to allocate this
110structure. Any of the usual memory allocators will do, but you'll also
111need to initialize a few fields in there:
112
113 * channels: should be initialized as a list using the
114 INIT_LIST_HEAD macro for example
115
1faab1f2
MR
116 * src_addr_widths:
117 - should contain a bitmask of the supported source transfer width
118
119 * dst_addr_widths:
120 - should contain a bitmask of the supported destination transfer
121 width
122
123 * directions:
124 - should contain a bitmask of the supported slave directions
125 (i.e. excluding mem2mem transfers)
126
127 * residue_granularity:
128 - Granularity of the transfer residue reported to dma_set_residue.
129 - This can be either:
130 + Descriptor
131 -> Your device doesn't support any kind of residue
132 reporting. The framework will only know that a particular
133 transaction descriptor is done.
134 + Segment
135 -> Your device is able to report which chunks have been
136 transferred
137 + Burst
138 -> Your device is able to report which burst have been
139 transferred
140
c4d2ae96
MR
141 * dev: should hold the pointer to the struct device associated
142 to your current driver instance.
143
144Supported transaction types
145---------------------------
146
147The next thing you need is to set which transaction types your device
148(and driver) supports.
149
150Our dma_device structure has a field called cap_mask that holds the
151various types of transaction supported, and you need to modify this
152mask using the dma_cap_set function, with various flags depending on
153transaction types you support as an argument.
154
155All those capabilities are defined in the dma_transaction_type enum,
156in include/linux/dmaengine.h
157
158Currently, the types available are:
159 * DMA_MEMCPY
160 - The device is able to do memory to memory copies
161
162 * DMA_XOR
163 - The device is able to perform XOR operations on memory areas
164 - Used to accelerate XOR intensive tasks, such as RAID5
165
166 * DMA_XOR_VAL
167 - The device is able to perform parity check using the XOR
168 algorithm against a memory buffer.
169
170 * DMA_PQ
171 - The device is able to perform RAID6 P+Q computations, P being a
172 simple XOR, and Q being a Reed-Solomon algorithm.
173
174 * DMA_PQ_VAL
175 - The device is able to perform parity check using RAID6 P+Q
176 algorithm against a memory buffer.
177
178 * DMA_INTERRUPT
179 - The device is able to trigger a dummy transfer that will
180 generate periodic interrupts
181 - Used by the client drivers to register a callback that will be
182 called on a regular basis through the DMA controller interrupt
183
c4d2ae96
MR
184 * DMA_PRIVATE
185 - The devices only supports slave transfers, and as such isn't
186 available for async transfers.
187
188 * DMA_ASYNC_TX
189 - Must not be set by the device, and will be set by the framework
190 if needed
191 - /* TODO: What is it about? */
192
193 * DMA_SLAVE
194 - The device can handle device to memory transfers, including
195 scatter-gather transfers.
196 - While in the mem2mem case we were having two distinct types to
197 deal with a single chunk to copy or a collection of them, here,
198 we just have a single transaction type that is supposed to
199 handle both.
200 - If you want to transfer a single contiguous memory buffer,
201 simply build a scatter list with only one item.
202
203 * DMA_CYCLIC
204 - The device can handle cyclic transfers.
205 - A cyclic transfer is a transfer where the chunk collection will
206 loop over itself, with the last item pointing to the first.
207 - It's usually used for audio transfers, where you want to operate
208 on a single ring buffer that you will fill with your audio data.
209
210 * DMA_INTERLEAVE
211 - The device supports interleaved transfer.
212 - These transfers can transfer data from a non-contiguous buffer
213 to a non-contiguous buffer, opposed to DMA_SLAVE that can
214 transfer data from a non-contiguous data set to a continuous
215 destination buffer.
216 - It's usually used for 2d content transfers, in which case you
217 want to transfer a portion of uncompressed data directly to the
218 display to print it
219
220These various types will also affect how the source and destination
221addresses change over time.
222
223Addresses pointing to RAM are typically incremented (or decremented)
224after each transfer. In case of a ring buffer, they may loop
225(DMA_CYCLIC). Addresses pointing to a device's register (e.g. a FIFO)
226are typically fixed.
227
228Device operations
229-----------------
230
231Our dma_device structure also requires a few function pointers in
232order to implement the actual logic, now that we described what
233operations we were able to perform.
234
235The functions that we have to fill in there, and hence have to
236implement, obviously depend on the transaction types you reported as
237supported.
238
239 * device_alloc_chan_resources
240 * device_free_chan_resources
241 - These functions will be called whenever a driver will call
242 dma_request_channel or dma_release_channel for the first/last
243 time on the channel associated to that driver.
244 - They are in charge of allocating/freeing all the needed
245 resources in order for that channel to be useful for your
246 driver.
247 - These functions can sleep.
248
249 * device_prep_dma_*
250 - These functions are matching the capabilities you registered
251 previously.
252 - These functions all take the buffer or the scatterlist relevant
253 for the transfer being prepared, and should create a hardware
254 descriptor or a list of hardware descriptors from it
255 - These functions can be called from an interrupt context
256 - Any allocation you might do should be using the GFP_NOWAIT
257 flag, in order not to potentially sleep, but without depleting
258 the emergency pool either.
259 - Drivers should try to pre-allocate any memory they might need
260 during the transfer setup at probe time to avoid putting to
261 much pressure on the nowait allocator.
262
263 - It should return a unique instance of the
264 dma_async_tx_descriptor structure, that further represents this
265 particular transfer.
266
267 - This structure can be initialized using the function
268 dma_async_tx_descriptor_init.
269 - You'll also need to set two fields in this structure:
270 + flags:
271 TODO: Can it be modified by the driver itself, or
272 should it be always the flags passed in the arguments
273
274 + tx_submit: A pointer to a function you have to implement,
275 that is supposed to push the current
276 transaction descriptor to a pending queue, waiting
277 for issue_pending to be called.
96862189
DJ
278 - In this structure the function pointer callback_result can be
279 initialized in order for the submitter to be notified that a
280 transaction has completed. In the earlier code the function pointer
281 callback has been used. However it does not provide any status to the
282 transaction and will be deprecated. The result structure defined as
283 dmaengine_result that is passed in to callback_result has two fields:
284 + result: This provides the transfer result defined by
285 dmaengine_tx_result. Either success or some error
286 condition.
287 + residue: Provides the residue bytes of the transfer for those that
288 support residue.
c4d2ae96
MR
289
290 * device_issue_pending
291 - Takes the first transaction descriptor in the pending queue,
292 and starts the transfer. Whenever that transfer is done, it
293 should move to the next transaction in the list.
294 - This function can be called in an interrupt context
295
296 * device_tx_status
297 - Should report the bytes left to go over on the given channel
298 - Should only care about the transaction descriptor passed as
299 argument, not the currently active one on a given channel
300 - The tx_state argument might be NULL
301 - Should use dma_set_residue to report it
302 - In the case of a cyclic transfer, it should only take into
303 account the current period.
304 - This function can be called in an interrupt context.
305
1faab1f2
MR
306 * device_config
307 - Reconfigures the channel with the configuration given as
308 argument
309 - This command should NOT perform synchronously, or on any
310 currently queued transfers, but only on subsequent ones
311 - In this case, the function will receive a dma_slave_config
312 structure pointer as an argument, that will detail which
313 configuration to use.
314 - Even though that structure contains a direction field, this
315 field is deprecated in favor of the direction argument given to
316 the prep_* functions
6269591b
VK
317 - This call is mandatory for slave operations only. This should NOT be
318 set or expected to be set for memcpy operations.
319 If a driver support both, it should use this call for slave
320 operations only and not for memcpy ones.
1faab1f2
MR
321
322 * device_pause
323 - Pauses a transfer on the channel
324 - This command should operate synchronously on the channel,
325 pausing right away the work of the given channel
326
327 * device_resume
328 - Resumes a transfer on the channel
329 - This command should operate synchronously on the channel,
f3e6a55c 330 resuming right away the work of the given channel
1faab1f2
MR
331
332 * device_terminate_all
333 - Aborts all the pending and ongoing transfers on the channel
b36f09c3
LPC
334 - For aborted transfers the complete callback should not be called
335 - Can be called from atomic context or from within a complete
336 callback of a descriptor. Must not sleep. Drivers must be able
337 to handle this correctly.
338 - Termination may be asynchronous. The driver does not have to
339 wait until the currently active transfer has completely stopped.
340 See device_synchronize.
341
342 * device_synchronize
343 - Must synchronize the termination of a channel to the current
344 context.
345 - Must make sure that memory for previously submitted
346 descriptors is no longer accessed by the DMA controller.
347 - Must make sure that all complete callbacks for previously
348 submitted descriptors have finished running and none are
349 scheduled to run.
350 - May sleep.
351
c4d2ae96
MR
352
353Misc notes (stuff that should be documented, but don't really know
354where to put them)
355------------------------------------------------------------------
356 * dma_run_dependencies
357 - Should be called at the end of an async TX transfer, and can be
358 ignored in the slave transfers case.
359 - Makes sure that dependent operations are run before marking it
360 as complete.
361
362 * dma_cookie_t
363 - it's a DMA transaction ID that will increment over time.
364 - Not really relevant any more since the introduction of virt-dma
365 that abstracts it away.
366
367 * DMA_CTRL_ACK
06f10e2f
VK
368 - If clear, the descriptor cannot be reused by provider until the
369 client acknowledges receipt, i.e. has has a chance to establish any
370 dependency chains
371 - This can be acked by invoking async_tx_ack()
372 - If set, does not mean descriptor can be reused
373
60884dde
VK
374 * DMA_CTRL_REUSE
375 - If set, the descriptor can be reused after being completed. It should
376 not be freed by provider if this flag is set.
377 - The descriptor should be prepared for reuse by invoking
378 dmaengine_desc_set_reuse() which will set DMA_CTRL_REUSE.
379 - dmaengine_desc_set_reuse() will succeed only when channel support
19a61be8 380 reusable descriptor as exhibited by capabilities
60884dde
VK
381 - As a consequence, if a device driver wants to skip the dma_map_sg() and
382 dma_unmap_sg() in between 2 transfers, because the DMA'd data wasn't used,
383 it can resubmit the transfer right after its completion.
384 - Descriptor can be freed in few ways
385 - Clearing DMA_CTRL_REUSE by invoking dmaengine_desc_clear_reuse()
386 and submitting for last txn
387 - Explicitly invoking dmaengine_desc_free(), this can succeed only
388 when DMA_CTRL_REUSE is already set
389 - Terminating the channel
390
3e00ab4a
AS
391 * DMA_PREP_CMD
392 - If set, the client driver tells DMA controller that passed data in DMA
393 API is command data.
394 - Interpretation of command data is DMA controller specific. It can be
395 used for issuing commands to other peripherals/register reads/register
396 writes for which the descriptor should be in different format from
397 normal data descriptors.
c4d2ae96
MR
398
399General Design Notes
400--------------------
401
402Most of the DMAEngine drivers you'll see are based on a similar design
403that handles the end of transfer interrupts in the handler, but defer
404most work to a tasklet, including the start of a new transfer whenever
405the previous transfer ended.
406
407This is a rather inefficient design though, because the inter-transfer
408latency will be not only the interrupt latency, but also the
409scheduling latency of the tasklet, which will leave the channel idle
410in between, which will slow down the global transfer rate.
411
412You should avoid this kind of practice, and instead of electing a new
413transfer in your tasklet, move that part to the interrupt handler in
414order to have a shorter idle window (that we can't really avoid
415anyway).
416
417Glossary
418--------
419
420Burst: A number of consecutive read or write operations
421 that can be queued to buffers before being flushed to
422 memory.
423Chunk: A contiguous collection of bursts
424Transfer: A collection of chunks (be it contiguous or not)