]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - Documentation/virtual/kvm/api.txt
KVM: PPC: add pvinfo for hcall opcodes on e500mc/e5500
[thirdparty/kernel/stable.git] / Documentation / virtual / kvm / api.txt
CommitLineData
9c1b96e3
AK
1The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
414fa985 5----------------------
9c1b96e3
AK
6
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
414fa985 27
2044892d 282. File descriptors
414fa985 29-------------------
9c1b96e3
AK
30
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
2044892d 34handle will create a VM file descriptor which can be used to issue VM
9c1b96e3
AK
35ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
414fa985 47
9c1b96e3 483. Extensions
414fa985 49-------------
9c1b96e3
AK
50
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
56The extension mechanism is not based on on the Linux version number.
57Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
414fa985 61
9c1b96e3 624. API description
414fa985 63------------------
9c1b96e3
AK
64
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
71 API version 12 (see section 4.1), or a KVM_CAP_xyz constant, which
72 means availability needs to be checked with KVM_CHECK_EXTENSION
73 (see section 4.4).
74
75 Architectures: which instruction set architectures provide this ioctl.
76 x86 includes both i386 and x86_64.
77
78 Type: system, vm, or vcpu.
79
80 Parameters: what parameters are accepted by the ioctl.
81
82 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
83 are not detailed, but errors with specific meanings are.
84
414fa985 85
9c1b96e3
AK
864.1 KVM_GET_API_VERSION
87
88Capability: basic
89Architectures: all
90Type: system ioctl
91Parameters: none
92Returns: the constant KVM_API_VERSION (=12)
93
94This identifies the API version as the stable kvm API. It is not
95expected that this number will change. However, Linux 2.6.20 and
962.6.21 report earlier versions; these are not documented and not
97supported. Applications should refuse to run if KVM_GET_API_VERSION
98returns a value other than 12. If this check passes, all ioctls
99described as 'basic' will be available.
100
414fa985 101
9c1b96e3
AK
1024.2 KVM_CREATE_VM
103
104Capability: basic
105Architectures: all
106Type: system ioctl
e08b9637 107Parameters: machine type identifier (KVM_VM_*)
9c1b96e3
AK
108Returns: a VM fd that can be used to control the new virtual machine.
109
110The new VM has no virtual cpus and no memory. An mmap() of a VM fd
111will access the virtual machine's physical address space; offset zero
112corresponds to guest physical address zero. Use of mmap() on a VM fd
113is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
114available.
e08b9637
CO
115You most certainly want to use 0 as machine type.
116
117In order to create user controlled virtual machines on S390, check
118KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
119privileged user (CAP_SYS_ADMIN).
9c1b96e3 120
414fa985 121
9c1b96e3
AK
1224.3 KVM_GET_MSR_INDEX_LIST
123
124Capability: basic
125Architectures: x86
126Type: system
127Parameters: struct kvm_msr_list (in/out)
128Returns: 0 on success; -1 on error
129Errors:
130 E2BIG: the msr index list is to be to fit in the array specified by
131 the user.
132
133struct kvm_msr_list {
134 __u32 nmsrs; /* number of msrs in entries */
135 __u32 indices[0];
136};
137
138This ioctl returns the guest msrs that are supported. The list varies
139by kvm version and host processor, but does not change otherwise. The
140user fills in the size of the indices array in nmsrs, and in return
141kvm adjusts nmsrs to reflect the actual number of msrs and fills in
142the indices array with their numbers.
143
2e2602ca
AK
144Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
145not returned in the MSR list, as different vcpus can have a different number
146of banks, as set via the KVM_X86_SETUP_MCE ioctl.
147
414fa985 148
9c1b96e3
AK
1494.4 KVM_CHECK_EXTENSION
150
151Capability: basic
152Architectures: all
153Type: system ioctl
154Parameters: extension identifier (KVM_CAP_*)
155Returns: 0 if unsupported; 1 (or some other positive integer) if supported
156
157The API allows the application to query about extensions to the core
158kvm API. Userspace passes an extension identifier (an integer) and
159receives an integer that describes the extension availability.
160Generally 0 means no and 1 means yes, but some extensions may report
161additional information in the integer return value.
162
414fa985 163
9c1b96e3
AK
1644.5 KVM_GET_VCPU_MMAP_SIZE
165
166Capability: basic
167Architectures: all
168Type: system ioctl
169Parameters: none
170Returns: size of vcpu mmap area, in bytes
171
172The KVM_RUN ioctl (cf.) communicates with userspace via a shared
173memory region. This ioctl returns the size of that region. See the
174KVM_RUN documentation for details.
175
414fa985 176
9c1b96e3
AK
1774.6 KVM_SET_MEMORY_REGION
178
179Capability: basic
180Architectures: all
181Type: vm ioctl
182Parameters: struct kvm_memory_region (in)
183Returns: 0 on success, -1 on error
184
b74a07be 185This ioctl is obsolete and has been removed.
9c1b96e3 186
414fa985 187
68ba6974 1884.7 KVM_CREATE_VCPU
9c1b96e3
AK
189
190Capability: basic
191Architectures: all
192Type: vm ioctl
193Parameters: vcpu id (apic id on x86)
194Returns: vcpu fd on success, -1 on error
195
196This API adds a vcpu to a virtual machine. The vcpu id is a small integer
8c3ba334
SL
197in the range [0, max_vcpus).
198
199The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
200the KVM_CHECK_EXTENSION ioctl() at run-time.
201The maximum possible value for max_vcpus can be retrieved using the
202KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
203
76d25402
PE
204If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
205cpus max.
8c3ba334
SL
206If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
207same as the value returned from KVM_CAP_NR_VCPUS.
9c1b96e3 208
371fefd6
PM
209On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
210threads in one or more virtual CPU cores. (This is because the
211hardware requires all the hardware threads in a CPU core to be in the
212same partition.) The KVM_CAP_PPC_SMT capability indicates the number
36442687
AK
213of vcpus per virtual core (vcore). The vcore id is obtained by
214dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
215given vcore will always be in the same physical core as each other
216(though that might be a different physical core from time to time).
217Userspace can control the threading (SMT) mode of the guest by its
218allocation of vcpu ids. For example, if userspace wants
219single-threaded guest vcpus, it should make all vcpu ids be a multiple
220of the number of vcpus per vcore.
221
222On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
223threads in one or more virtual CPU cores. (This is because the
224hardware requires all the hardware threads in a CPU core to be in the
225same partition.) The KVM_CAP_PPC_SMT capability indicates the number
371fefd6
PM
226of vcpus per virtual core (vcore). The vcore id is obtained by
227dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
228given vcore will always be in the same physical core as each other
229(though that might be a different physical core from time to time).
230Userspace can control the threading (SMT) mode of the guest by its
231allocation of vcpu ids. For example, if userspace wants
232single-threaded guest vcpus, it should make all vcpu ids be a multiple
233of the number of vcpus per vcore.
234
5b1c1493
CO
235For virtual cpus that have been created with S390 user controlled virtual
236machines, the resulting vcpu fd can be memory mapped at page offset
237KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
238cpu's hardware control block.
239
414fa985 240
68ba6974 2414.8 KVM_GET_DIRTY_LOG (vm ioctl)
9c1b96e3
AK
242
243Capability: basic
244Architectures: x86
245Type: vm ioctl
246Parameters: struct kvm_dirty_log (in/out)
247Returns: 0 on success, -1 on error
248
249/* for KVM_GET_DIRTY_LOG */
250struct kvm_dirty_log {
251 __u32 slot;
252 __u32 padding;
253 union {
254 void __user *dirty_bitmap; /* one bit per page */
255 __u64 padding;
256 };
257};
258
259Given a memory slot, return a bitmap containing any pages dirtied
260since the last call to this ioctl. Bit 0 is the first page in the
261memory slot. Ensure the entire structure is cleared to avoid padding
262issues.
263
414fa985 264
68ba6974 2654.9 KVM_SET_MEMORY_ALIAS
9c1b96e3
AK
266
267Capability: basic
268Architectures: x86
269Type: vm ioctl
270Parameters: struct kvm_memory_alias (in)
271Returns: 0 (success), -1 (error)
272
a1f4d395 273This ioctl is obsolete and has been removed.
9c1b96e3 274
414fa985 275
68ba6974 2764.10 KVM_RUN
9c1b96e3
AK
277
278Capability: basic
279Architectures: all
280Type: vcpu ioctl
281Parameters: none
282Returns: 0 on success, -1 on error
283Errors:
284 EINTR: an unmasked signal is pending
285
286This ioctl is used to run a guest virtual cpu. While there are no
287explicit parameters, there is an implicit parameter block that can be
288obtained by mmap()ing the vcpu fd at offset 0, with the size given by
289KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
290kvm_run' (see below).
291
414fa985 292
68ba6974 2934.11 KVM_GET_REGS
9c1b96e3
AK
294
295Capability: basic
296Architectures: all
297Type: vcpu ioctl
298Parameters: struct kvm_regs (out)
299Returns: 0 on success, -1 on error
300
301Reads the general purpose registers from the vcpu.
302
303/* x86 */
304struct kvm_regs {
305 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
306 __u64 rax, rbx, rcx, rdx;
307 __u64 rsi, rdi, rsp, rbp;
308 __u64 r8, r9, r10, r11;
309 __u64 r12, r13, r14, r15;
310 __u64 rip, rflags;
311};
312
414fa985 313
68ba6974 3144.12 KVM_SET_REGS
9c1b96e3
AK
315
316Capability: basic
317Architectures: all
318Type: vcpu ioctl
319Parameters: struct kvm_regs (in)
320Returns: 0 on success, -1 on error
321
322Writes the general purpose registers into the vcpu.
323
324See KVM_GET_REGS for the data structure.
325
414fa985 326
68ba6974 3274.13 KVM_GET_SREGS
9c1b96e3
AK
328
329Capability: basic
5ce941ee 330Architectures: x86, ppc
9c1b96e3
AK
331Type: vcpu ioctl
332Parameters: struct kvm_sregs (out)
333Returns: 0 on success, -1 on error
334
335Reads special registers from the vcpu.
336
337/* x86 */
338struct kvm_sregs {
339 struct kvm_segment cs, ds, es, fs, gs, ss;
340 struct kvm_segment tr, ldt;
341 struct kvm_dtable gdt, idt;
342 __u64 cr0, cr2, cr3, cr4, cr8;
343 __u64 efer;
344 __u64 apic_base;
345 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
346};
347
5ce941ee
SW
348/* ppc -- see arch/powerpc/include/asm/kvm.h */
349
9c1b96e3
AK
350interrupt_bitmap is a bitmap of pending external interrupts. At most
351one bit may be set. This interrupt has been acknowledged by the APIC
352but not yet injected into the cpu core.
353
414fa985 354
68ba6974 3554.14 KVM_SET_SREGS
9c1b96e3
AK
356
357Capability: basic
5ce941ee 358Architectures: x86, ppc
9c1b96e3
AK
359Type: vcpu ioctl
360Parameters: struct kvm_sregs (in)
361Returns: 0 on success, -1 on error
362
363Writes special registers into the vcpu. See KVM_GET_SREGS for the
364data structures.
365
414fa985 366
68ba6974 3674.15 KVM_TRANSLATE
9c1b96e3
AK
368
369Capability: basic
370Architectures: x86
371Type: vcpu ioctl
372Parameters: struct kvm_translation (in/out)
373Returns: 0 on success, -1 on error
374
375Translates a virtual address according to the vcpu's current address
376translation mode.
377
378struct kvm_translation {
379 /* in */
380 __u64 linear_address;
381
382 /* out */
383 __u64 physical_address;
384 __u8 valid;
385 __u8 writeable;
386 __u8 usermode;
387 __u8 pad[5];
388};
389
414fa985 390
68ba6974 3914.16 KVM_INTERRUPT
9c1b96e3
AK
392
393Capability: basic
6f7a2bd4 394Architectures: x86, ppc
9c1b96e3
AK
395Type: vcpu ioctl
396Parameters: struct kvm_interrupt (in)
397Returns: 0 on success, -1 on error
398
399Queues a hardware interrupt vector to be injected. This is only
6f7a2bd4 400useful if in-kernel local APIC or equivalent is not used.
9c1b96e3
AK
401
402/* for KVM_INTERRUPT */
403struct kvm_interrupt {
404 /* in */
405 __u32 irq;
406};
407
6f7a2bd4
AG
408X86:
409
9c1b96e3
AK
410Note 'irq' is an interrupt vector, not an interrupt pin or line.
411
6f7a2bd4
AG
412PPC:
413
414Queues an external interrupt to be injected. This ioctl is overleaded
415with 3 different irq values:
416
417a) KVM_INTERRUPT_SET
418
419 This injects an edge type external interrupt into the guest once it's ready
420 to receive interrupts. When injected, the interrupt is done.
421
422b) KVM_INTERRUPT_UNSET
423
424 This unsets any pending interrupt.
425
426 Only available with KVM_CAP_PPC_UNSET_IRQ.
427
428c) KVM_INTERRUPT_SET_LEVEL
429
430 This injects a level type external interrupt into the guest context. The
431 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
432 is triggered.
433
434 Only available with KVM_CAP_PPC_IRQ_LEVEL.
435
436Note that any value for 'irq' other than the ones stated above is invalid
437and incurs unexpected behavior.
438
414fa985 439
68ba6974 4404.17 KVM_DEBUG_GUEST
9c1b96e3
AK
441
442Capability: basic
443Architectures: none
444Type: vcpu ioctl
445Parameters: none)
446Returns: -1 on error
447
448Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
449
414fa985 450
68ba6974 4514.18 KVM_GET_MSRS
9c1b96e3
AK
452
453Capability: basic
454Architectures: x86
455Type: vcpu ioctl
456Parameters: struct kvm_msrs (in/out)
457Returns: 0 on success, -1 on error
458
459Reads model-specific registers from the vcpu. Supported msr indices can
460be obtained using KVM_GET_MSR_INDEX_LIST.
461
462struct kvm_msrs {
463 __u32 nmsrs; /* number of msrs in entries */
464 __u32 pad;
465
466 struct kvm_msr_entry entries[0];
467};
468
469struct kvm_msr_entry {
470 __u32 index;
471 __u32 reserved;
472 __u64 data;
473};
474
475Application code should set the 'nmsrs' member (which indicates the
476size of the entries array) and the 'index' member of each array entry.
477kvm will fill in the 'data' member.
478
414fa985 479
68ba6974 4804.19 KVM_SET_MSRS
9c1b96e3
AK
481
482Capability: basic
483Architectures: x86
484Type: vcpu ioctl
485Parameters: struct kvm_msrs (in)
486Returns: 0 on success, -1 on error
487
488Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
489data structures.
490
491Application code should set the 'nmsrs' member (which indicates the
492size of the entries array), and the 'index' and 'data' members of each
493array entry.
494
414fa985 495
68ba6974 4964.20 KVM_SET_CPUID
9c1b96e3
AK
497
498Capability: basic
499Architectures: x86
500Type: vcpu ioctl
501Parameters: struct kvm_cpuid (in)
502Returns: 0 on success, -1 on error
503
504Defines the vcpu responses to the cpuid instruction. Applications
505should use the KVM_SET_CPUID2 ioctl if available.
506
507
508struct kvm_cpuid_entry {
509 __u32 function;
510 __u32 eax;
511 __u32 ebx;
512 __u32 ecx;
513 __u32 edx;
514 __u32 padding;
515};
516
517/* for KVM_SET_CPUID */
518struct kvm_cpuid {
519 __u32 nent;
520 __u32 padding;
521 struct kvm_cpuid_entry entries[0];
522};
523
414fa985 524
68ba6974 5254.21 KVM_SET_SIGNAL_MASK
9c1b96e3
AK
526
527Capability: basic
528Architectures: x86
529Type: vcpu ioctl
530Parameters: struct kvm_signal_mask (in)
531Returns: 0 on success, -1 on error
532
533Defines which signals are blocked during execution of KVM_RUN. This
534signal mask temporarily overrides the threads signal mask. Any
535unblocked signal received (except SIGKILL and SIGSTOP, which retain
536their traditional behaviour) will cause KVM_RUN to return with -EINTR.
537
538Note the signal will only be delivered if not blocked by the original
539signal mask.
540
541/* for KVM_SET_SIGNAL_MASK */
542struct kvm_signal_mask {
543 __u32 len;
544 __u8 sigset[0];
545};
546
414fa985 547
68ba6974 5484.22 KVM_GET_FPU
9c1b96e3
AK
549
550Capability: basic
551Architectures: x86
552Type: vcpu ioctl
553Parameters: struct kvm_fpu (out)
554Returns: 0 on success, -1 on error
555
556Reads the floating point state from the vcpu.
557
558/* for KVM_GET_FPU and KVM_SET_FPU */
559struct kvm_fpu {
560 __u8 fpr[8][16];
561 __u16 fcw;
562 __u16 fsw;
563 __u8 ftwx; /* in fxsave format */
564 __u8 pad1;
565 __u16 last_opcode;
566 __u64 last_ip;
567 __u64 last_dp;
568 __u8 xmm[16][16];
569 __u32 mxcsr;
570 __u32 pad2;
571};
572
414fa985 573
68ba6974 5744.23 KVM_SET_FPU
9c1b96e3
AK
575
576Capability: basic
577Architectures: x86
578Type: vcpu ioctl
579Parameters: struct kvm_fpu (in)
580Returns: 0 on success, -1 on error
581
582Writes the floating point state to the vcpu.
583
584/* for KVM_GET_FPU and KVM_SET_FPU */
585struct kvm_fpu {
586 __u8 fpr[8][16];
587 __u16 fcw;
588 __u16 fsw;
589 __u8 ftwx; /* in fxsave format */
590 __u8 pad1;
591 __u16 last_opcode;
592 __u64 last_ip;
593 __u64 last_dp;
594 __u8 xmm[16][16];
595 __u32 mxcsr;
596 __u32 pad2;
597};
598
414fa985 599
68ba6974 6004.24 KVM_CREATE_IRQCHIP
5dadbfd6
AK
601
602Capability: KVM_CAP_IRQCHIP
603Architectures: x86, ia64
604Type: vm ioctl
605Parameters: none
606Returns: 0 on success, -1 on error
607
608Creates an interrupt controller model in the kernel. On x86, creates a virtual
609ioapic, a virtual PIC (two PICs, nested), and sets up future vcpus to have a
610local APIC. IRQ routing for GSIs 0-15 is set to both PIC and IOAPIC; GSI 16-23
611only go to the IOAPIC. On ia64, a IOSAPIC is created.
612
414fa985 613
68ba6974 6144.25 KVM_IRQ_LINE
5dadbfd6
AK
615
616Capability: KVM_CAP_IRQCHIP
617Architectures: x86, ia64
618Type: vm ioctl
619Parameters: struct kvm_irq_level
620Returns: 0 on success, -1 on error
621
622Sets the level of a GSI input to the interrupt controller model in the kernel.
623Requires that an interrupt controller model has been previously created with
624KVM_CREATE_IRQCHIP. Note that edge-triggered interrupts require the level
625to be set to 1 and then back to 0.
626
627struct kvm_irq_level {
628 union {
629 __u32 irq; /* GSI */
630 __s32 status; /* not used for KVM_IRQ_LEVEL */
631 };
632 __u32 level; /* 0 or 1 */
633};
634
414fa985 635
68ba6974 6364.26 KVM_GET_IRQCHIP
5dadbfd6
AK
637
638Capability: KVM_CAP_IRQCHIP
639Architectures: x86, ia64
640Type: vm ioctl
641Parameters: struct kvm_irqchip (in/out)
642Returns: 0 on success, -1 on error
643
644Reads the state of a kernel interrupt controller created with
645KVM_CREATE_IRQCHIP into a buffer provided by the caller.
646
647struct kvm_irqchip {
648 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
649 __u32 pad;
650 union {
651 char dummy[512]; /* reserving space */
652 struct kvm_pic_state pic;
653 struct kvm_ioapic_state ioapic;
654 } chip;
655};
656
414fa985 657
68ba6974 6584.27 KVM_SET_IRQCHIP
5dadbfd6
AK
659
660Capability: KVM_CAP_IRQCHIP
661Architectures: x86, ia64
662Type: vm ioctl
663Parameters: struct kvm_irqchip (in)
664Returns: 0 on success, -1 on error
665
666Sets the state of a kernel interrupt controller created with
667KVM_CREATE_IRQCHIP from a buffer provided by the caller.
668
669struct kvm_irqchip {
670 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
671 __u32 pad;
672 union {
673 char dummy[512]; /* reserving space */
674 struct kvm_pic_state pic;
675 struct kvm_ioapic_state ioapic;
676 } chip;
677};
678
414fa985 679
68ba6974 6804.28 KVM_XEN_HVM_CONFIG
ffde22ac
ES
681
682Capability: KVM_CAP_XEN_HVM
683Architectures: x86
684Type: vm ioctl
685Parameters: struct kvm_xen_hvm_config (in)
686Returns: 0 on success, -1 on error
687
688Sets the MSR that the Xen HVM guest uses to initialize its hypercall
689page, and provides the starting address and size of the hypercall
690blobs in userspace. When the guest writes the MSR, kvm copies one
691page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
692memory.
693
694struct kvm_xen_hvm_config {
695 __u32 flags;
696 __u32 msr;
697 __u64 blob_addr_32;
698 __u64 blob_addr_64;
699 __u8 blob_size_32;
700 __u8 blob_size_64;
701 __u8 pad2[30];
702};
703
414fa985 704
68ba6974 7054.29 KVM_GET_CLOCK
afbcf7ab
GC
706
707Capability: KVM_CAP_ADJUST_CLOCK
708Architectures: x86
709Type: vm ioctl
710Parameters: struct kvm_clock_data (out)
711Returns: 0 on success, -1 on error
712
713Gets the current timestamp of kvmclock as seen by the current guest. In
714conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
715such as migration.
716
717struct kvm_clock_data {
718 __u64 clock; /* kvmclock current value */
719 __u32 flags;
720 __u32 pad[9];
721};
722
414fa985 723
68ba6974 7244.30 KVM_SET_CLOCK
afbcf7ab
GC
725
726Capability: KVM_CAP_ADJUST_CLOCK
727Architectures: x86
728Type: vm ioctl
729Parameters: struct kvm_clock_data (in)
730Returns: 0 on success, -1 on error
731
2044892d 732Sets the current timestamp of kvmclock to the value specified in its parameter.
afbcf7ab
GC
733In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
734such as migration.
735
736struct kvm_clock_data {
737 __u64 clock; /* kvmclock current value */
738 __u32 flags;
739 __u32 pad[9];
740};
741
414fa985 742
68ba6974 7434.31 KVM_GET_VCPU_EVENTS
3cfc3092
JK
744
745Capability: KVM_CAP_VCPU_EVENTS
48005f64 746Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
747Architectures: x86
748Type: vm ioctl
749Parameters: struct kvm_vcpu_event (out)
750Returns: 0 on success, -1 on error
751
752Gets currently pending exceptions, interrupts, and NMIs as well as related
753states of the vcpu.
754
755struct kvm_vcpu_events {
756 struct {
757 __u8 injected;
758 __u8 nr;
759 __u8 has_error_code;
760 __u8 pad;
761 __u32 error_code;
762 } exception;
763 struct {
764 __u8 injected;
765 __u8 nr;
766 __u8 soft;
48005f64 767 __u8 shadow;
3cfc3092
JK
768 } interrupt;
769 struct {
770 __u8 injected;
771 __u8 pending;
772 __u8 masked;
773 __u8 pad;
774 } nmi;
775 __u32 sipi_vector;
dab4b911 776 __u32 flags;
3cfc3092
JK
777};
778
48005f64
JK
779KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
780interrupt.shadow contains a valid state. Otherwise, this field is undefined.
781
414fa985 782
68ba6974 7834.32 KVM_SET_VCPU_EVENTS
3cfc3092
JK
784
785Capability: KVM_CAP_VCPU_EVENTS
48005f64 786Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
787Architectures: x86
788Type: vm ioctl
789Parameters: struct kvm_vcpu_event (in)
790Returns: 0 on success, -1 on error
791
792Set pending exceptions, interrupts, and NMIs as well as related states of the
793vcpu.
794
795See KVM_GET_VCPU_EVENTS for the data structure.
796
dab4b911
JK
797Fields that may be modified asynchronously by running VCPUs can be excluded
798from the update. These fields are nmi.pending and sipi_vector. Keep the
799corresponding bits in the flags field cleared to suppress overwriting the
800current in-kernel state. The bits are:
801
802KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
803KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
804
48005f64
JK
805If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
806the flags field to signal that interrupt.shadow contains a valid state and
807shall be written into the VCPU.
808
414fa985 809
68ba6974 8104.33 KVM_GET_DEBUGREGS
a1efbe77
JK
811
812Capability: KVM_CAP_DEBUGREGS
813Architectures: x86
814Type: vm ioctl
815Parameters: struct kvm_debugregs (out)
816Returns: 0 on success, -1 on error
817
818Reads debug registers from the vcpu.
819
820struct kvm_debugregs {
821 __u64 db[4];
822 __u64 dr6;
823 __u64 dr7;
824 __u64 flags;
825 __u64 reserved[9];
826};
827
414fa985 828
68ba6974 8294.34 KVM_SET_DEBUGREGS
a1efbe77
JK
830
831Capability: KVM_CAP_DEBUGREGS
832Architectures: x86
833Type: vm ioctl
834Parameters: struct kvm_debugregs (in)
835Returns: 0 on success, -1 on error
836
837Writes debug registers into the vcpu.
838
839See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
840yet and must be cleared on entry.
841
414fa985 842
68ba6974 8434.35 KVM_SET_USER_MEMORY_REGION
0f2d8f4d
AK
844
845Capability: KVM_CAP_USER_MEM
846Architectures: all
847Type: vm ioctl
848Parameters: struct kvm_userspace_memory_region (in)
849Returns: 0 on success, -1 on error
850
851struct kvm_userspace_memory_region {
852 __u32 slot;
853 __u32 flags;
854 __u64 guest_phys_addr;
855 __u64 memory_size; /* bytes */
856 __u64 userspace_addr; /* start of the userspace allocated memory */
857};
858
859/* for kvm_memory_region::flags */
4d8b81ab
XG
860#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
861#define KVM_MEM_READONLY (1UL << 1)
0f2d8f4d
AK
862
863This ioctl allows the user to create or modify a guest physical memory
864slot. When changing an existing slot, it may be moved in the guest
865physical memory space, or its flags may be modified. It may not be
866resized. Slots may not overlap in guest physical address space.
867
868Memory for the region is taken starting at the address denoted by the
869field userspace_addr, which must point at user addressable memory for
870the entire memory slot size. Any object may back this memory, including
871anonymous memory, ordinary files, and hugetlbfs.
872
873It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
874be identical. This allows large pages in the guest to be backed by large
875pages in the host.
876
7efd8fa1
JK
877The flags field supports two flag, KVM_MEM_LOG_DIRTY_PAGES, which instructs
878kvm to keep track of writes to memory within the slot. See KVM_GET_DIRTY_LOG
879ioctl. The KVM_CAP_READONLY_MEM capability indicates the availability of the
880KVM_MEM_READONLY flag. When this flag is set for a memory region, KVM only
881allows read accesses. Writes will be posted to userspace as KVM_EXIT_MMIO
882exits.
883
884When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
885the memory region are automatically reflected into the guest. For example, an
886mmap() that affects the region will be made visible immediately. Another
887example is madvise(MADV_DROP).
0f2d8f4d
AK
888
889It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
890The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
891allocation and is deprecated.
3cfc3092 892
414fa985 893
68ba6974 8944.36 KVM_SET_TSS_ADDR
8a5416db
AK
895
896Capability: KVM_CAP_SET_TSS_ADDR
897Architectures: x86
898Type: vm ioctl
899Parameters: unsigned long tss_address (in)
900Returns: 0 on success, -1 on error
901
902This ioctl defines the physical address of a three-page region in the guest
903physical address space. The region must be within the first 4GB of the
904guest physical address space and must not conflict with any memory slot
905or any mmio address. The guest may malfunction if it accesses this memory
906region.
907
908This ioctl is required on Intel-based hosts. This is needed on Intel hardware
909because of a quirk in the virtualization implementation (see the internals
910documentation when it pops into existence).
911
414fa985 912
68ba6974 9134.37 KVM_ENABLE_CAP
71fbfd5f
AG
914
915Capability: KVM_CAP_ENABLE_CAP
916Architectures: ppc
917Type: vcpu ioctl
918Parameters: struct kvm_enable_cap (in)
919Returns: 0 on success; -1 on error
920
921+Not all extensions are enabled by default. Using this ioctl the application
922can enable an extension, making it available to the guest.
923
924On systems that do not support this ioctl, it always fails. On systems that
925do support it, it only works for extensions that are supported for enablement.
926
927To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
928be used.
929
930struct kvm_enable_cap {
931 /* in */
932 __u32 cap;
933
934The capability that is supposed to get enabled.
935
936 __u32 flags;
937
938A bitfield indicating future enhancements. Has to be 0 for now.
939
940 __u64 args[4];
941
942Arguments for enabling a feature. If a feature needs initial values to
943function properly, this is the place to put them.
944
945 __u8 pad[64];
946};
947
414fa985 948
68ba6974 9494.38 KVM_GET_MP_STATE
b843f065
AK
950
951Capability: KVM_CAP_MP_STATE
952Architectures: x86, ia64
953Type: vcpu ioctl
954Parameters: struct kvm_mp_state (out)
955Returns: 0 on success; -1 on error
956
957struct kvm_mp_state {
958 __u32 mp_state;
959};
960
961Returns the vcpu's current "multiprocessing state" (though also valid on
962uniprocessor guests).
963
964Possible values are:
965
966 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running
967 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
968 which has not yet received an INIT signal
969 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
970 now ready for a SIPI
971 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
972 is waiting for an interrupt
973 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
b595076a 974 accessible via KVM_GET_VCPU_EVENTS)
b843f065
AK
975
976This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
977irqchip, the multiprocessing state must be maintained by userspace.
978
414fa985 979
68ba6974 9804.39 KVM_SET_MP_STATE
b843f065
AK
981
982Capability: KVM_CAP_MP_STATE
983Architectures: x86, ia64
984Type: vcpu ioctl
985Parameters: struct kvm_mp_state (in)
986Returns: 0 on success; -1 on error
987
988Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
989arguments.
990
991This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
992irqchip, the multiprocessing state must be maintained by userspace.
993
414fa985 994
68ba6974 9954.40 KVM_SET_IDENTITY_MAP_ADDR
47dbb84f
AK
996
997Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
998Architectures: x86
999Type: vm ioctl
1000Parameters: unsigned long identity (in)
1001Returns: 0 on success, -1 on error
1002
1003This ioctl defines the physical address of a one-page region in the guest
1004physical address space. The region must be within the first 4GB of the
1005guest physical address space and must not conflict with any memory slot
1006or any mmio address. The guest may malfunction if it accesses this memory
1007region.
1008
1009This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1010because of a quirk in the virtualization implementation (see the internals
1011documentation when it pops into existence).
1012
414fa985 1013
68ba6974 10144.41 KVM_SET_BOOT_CPU_ID
57bc24cf
AK
1015
1016Capability: KVM_CAP_SET_BOOT_CPU_ID
1017Architectures: x86, ia64
1018Type: vm ioctl
1019Parameters: unsigned long vcpu_id
1020Returns: 0 on success, -1 on error
1021
1022Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1023as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1024is vcpu 0.
1025
414fa985 1026
68ba6974 10274.42 KVM_GET_XSAVE
2d5b5a66
SY
1028
1029Capability: KVM_CAP_XSAVE
1030Architectures: x86
1031Type: vcpu ioctl
1032Parameters: struct kvm_xsave (out)
1033Returns: 0 on success, -1 on error
1034
1035struct kvm_xsave {
1036 __u32 region[1024];
1037};
1038
1039This ioctl would copy current vcpu's xsave struct to the userspace.
1040
414fa985 1041
68ba6974 10424.43 KVM_SET_XSAVE
2d5b5a66
SY
1043
1044Capability: KVM_CAP_XSAVE
1045Architectures: x86
1046Type: vcpu ioctl
1047Parameters: struct kvm_xsave (in)
1048Returns: 0 on success, -1 on error
1049
1050struct kvm_xsave {
1051 __u32 region[1024];
1052};
1053
1054This ioctl would copy userspace's xsave struct to the kernel.
1055
414fa985 1056
68ba6974 10574.44 KVM_GET_XCRS
2d5b5a66
SY
1058
1059Capability: KVM_CAP_XCRS
1060Architectures: x86
1061Type: vcpu ioctl
1062Parameters: struct kvm_xcrs (out)
1063Returns: 0 on success, -1 on error
1064
1065struct kvm_xcr {
1066 __u32 xcr;
1067 __u32 reserved;
1068 __u64 value;
1069};
1070
1071struct kvm_xcrs {
1072 __u32 nr_xcrs;
1073 __u32 flags;
1074 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1075 __u64 padding[16];
1076};
1077
1078This ioctl would copy current vcpu's xcrs to the userspace.
1079
414fa985 1080
68ba6974 10814.45 KVM_SET_XCRS
2d5b5a66
SY
1082
1083Capability: KVM_CAP_XCRS
1084Architectures: x86
1085Type: vcpu ioctl
1086Parameters: struct kvm_xcrs (in)
1087Returns: 0 on success, -1 on error
1088
1089struct kvm_xcr {
1090 __u32 xcr;
1091 __u32 reserved;
1092 __u64 value;
1093};
1094
1095struct kvm_xcrs {
1096 __u32 nr_xcrs;
1097 __u32 flags;
1098 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1099 __u64 padding[16];
1100};
1101
1102This ioctl would set vcpu's xcr to the value userspace specified.
1103
414fa985 1104
68ba6974 11054.46 KVM_GET_SUPPORTED_CPUID
d153513d
AK
1106
1107Capability: KVM_CAP_EXT_CPUID
1108Architectures: x86
1109Type: system ioctl
1110Parameters: struct kvm_cpuid2 (in/out)
1111Returns: 0 on success, -1 on error
1112
1113struct kvm_cpuid2 {
1114 __u32 nent;
1115 __u32 padding;
1116 struct kvm_cpuid_entry2 entries[0];
1117};
1118
1119#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX 1
1120#define KVM_CPUID_FLAG_STATEFUL_FUNC 2
1121#define KVM_CPUID_FLAG_STATE_READ_NEXT 4
1122
1123struct kvm_cpuid_entry2 {
1124 __u32 function;
1125 __u32 index;
1126 __u32 flags;
1127 __u32 eax;
1128 __u32 ebx;
1129 __u32 ecx;
1130 __u32 edx;
1131 __u32 padding[3];
1132};
1133
1134This ioctl returns x86 cpuid features which are supported by both the hardware
1135and kvm. Userspace can use the information returned by this ioctl to
1136construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1137hardware, kernel, and userspace capabilities, and with user requirements (for
1138example, the user may wish to constrain cpuid to emulate older hardware,
1139or for feature consistency across a cluster).
1140
1141Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1142with the 'nent' field indicating the number of entries in the variable-size
1143array 'entries'. If the number of entries is too low to describe the cpu
1144capabilities, an error (E2BIG) is returned. If the number is too high,
1145the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1146number is just right, the 'nent' field is adjusted to the number of valid
1147entries in the 'entries' array, which is then filled.
1148
1149The entries returned are the host cpuid as returned by the cpuid instruction,
c39cbd2a
AK
1150with unknown or unsupported features masked out. Some features (for example,
1151x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1152emulate them efficiently. The fields in each entry are defined as follows:
d153513d
AK
1153
1154 function: the eax value used to obtain the entry
1155 index: the ecx value used to obtain the entry (for entries that are
1156 affected by ecx)
1157 flags: an OR of zero or more of the following:
1158 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1159 if the index field is valid
1160 KVM_CPUID_FLAG_STATEFUL_FUNC:
1161 if cpuid for this function returns different values for successive
1162 invocations; there will be several entries with the same function,
1163 all with this flag set
1164 KVM_CPUID_FLAG_STATE_READ_NEXT:
1165 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1166 the first entry to be read by a cpu
1167 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1168 this function/index combination
1169
4d25a066
JK
1170The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1171as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1172support. Instead it is reported via
1173
1174 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1175
1176if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1177feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1178
414fa985 1179
68ba6974 11804.47 KVM_PPC_GET_PVINFO
15711e9c
AG
1181
1182Capability: KVM_CAP_PPC_GET_PVINFO
1183Architectures: ppc
1184Type: vm ioctl
1185Parameters: struct kvm_ppc_pvinfo (out)
1186Returns: 0 on success, !0 on error
1187
1188struct kvm_ppc_pvinfo {
1189 __u32 flags;
1190 __u32 hcall[4];
1191 __u8 pad[108];
1192};
1193
1194This ioctl fetches PV specific information that need to be passed to the guest
1195using the device tree or other means from vm context.
1196
1197For now the only implemented piece of information distributed here is an array
1198of 4 instructions that make up a hypercall.
1199
1200If any additional field gets added to this structure later on, a bit for that
1201additional piece of information will be set in the flags bitmap.
1202
414fa985 1203
68ba6974 12044.48 KVM_ASSIGN_PCI_DEVICE
49f48172
JK
1205
1206Capability: KVM_CAP_DEVICE_ASSIGNMENT
1207Architectures: x86 ia64
1208Type: vm ioctl
1209Parameters: struct kvm_assigned_pci_dev (in)
1210Returns: 0 on success, -1 on error
1211
1212Assigns a host PCI device to the VM.
1213
1214struct kvm_assigned_pci_dev {
1215 __u32 assigned_dev_id;
1216 __u32 busnr;
1217 __u32 devfn;
1218 __u32 flags;
1219 __u32 segnr;
1220 union {
1221 __u32 reserved[11];
1222 };
1223};
1224
1225The PCI device is specified by the triple segnr, busnr, and devfn.
1226Identification in succeeding service requests is done via assigned_dev_id. The
1227following flags are specified:
1228
1229/* Depends on KVM_CAP_IOMMU */
1230#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
07700a94
JK
1231/* The following two depend on KVM_CAP_PCI_2_3 */
1232#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
1233#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
1234
1235If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
1236via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
1237assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
1238guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
49f48172 1239
42387373
AW
1240The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
1241isolation of the device. Usages not specifying this flag are deprecated.
1242
3d27e23b
AW
1243Only PCI header type 0 devices with PCI BAR resources are supported by
1244device assignment. The user requesting this ioctl must have read/write
1245access to the PCI sysfs resource files associated with the device.
1246
414fa985 1247
68ba6974 12484.49 KVM_DEASSIGN_PCI_DEVICE
49f48172
JK
1249
1250Capability: KVM_CAP_DEVICE_DEASSIGNMENT
1251Architectures: x86 ia64
1252Type: vm ioctl
1253Parameters: struct kvm_assigned_pci_dev (in)
1254Returns: 0 on success, -1 on error
1255
1256Ends PCI device assignment, releasing all associated resources.
1257
1258See KVM_CAP_DEVICE_ASSIGNMENT for the data structure. Only assigned_dev_id is
1259used in kvm_assigned_pci_dev to identify the device.
1260
414fa985 1261
68ba6974 12624.50 KVM_ASSIGN_DEV_IRQ
49f48172
JK
1263
1264Capability: KVM_CAP_ASSIGN_DEV_IRQ
1265Architectures: x86 ia64
1266Type: vm ioctl
1267Parameters: struct kvm_assigned_irq (in)
1268Returns: 0 on success, -1 on error
1269
1270Assigns an IRQ to a passed-through device.
1271
1272struct kvm_assigned_irq {
1273 __u32 assigned_dev_id;
91e3d71d 1274 __u32 host_irq; /* ignored (legacy field) */
49f48172
JK
1275 __u32 guest_irq;
1276 __u32 flags;
1277 union {
49f48172
JK
1278 __u32 reserved[12];
1279 };
1280};
1281
1282The following flags are defined:
1283
1284#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
1285#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
1286#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
1287
1288#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
1289#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
1290#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
1291
1292It is not valid to specify multiple types per host or guest IRQ. However, the
1293IRQ type of host and guest can differ or can even be null.
1294
414fa985 1295
68ba6974 12964.51 KVM_DEASSIGN_DEV_IRQ
49f48172
JK
1297
1298Capability: KVM_CAP_ASSIGN_DEV_IRQ
1299Architectures: x86 ia64
1300Type: vm ioctl
1301Parameters: struct kvm_assigned_irq (in)
1302Returns: 0 on success, -1 on error
1303
1304Ends an IRQ assignment to a passed-through device.
1305
1306See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1307by assigned_dev_id, flags must correspond to the IRQ type specified on
1308KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
1309
414fa985 1310
68ba6974 13114.52 KVM_SET_GSI_ROUTING
49f48172
JK
1312
1313Capability: KVM_CAP_IRQ_ROUTING
1314Architectures: x86 ia64
1315Type: vm ioctl
1316Parameters: struct kvm_irq_routing (in)
1317Returns: 0 on success, -1 on error
1318
1319Sets the GSI routing table entries, overwriting any previously set entries.
1320
1321struct kvm_irq_routing {
1322 __u32 nr;
1323 __u32 flags;
1324 struct kvm_irq_routing_entry entries[0];
1325};
1326
1327No flags are specified so far, the corresponding field must be set to zero.
1328
1329struct kvm_irq_routing_entry {
1330 __u32 gsi;
1331 __u32 type;
1332 __u32 flags;
1333 __u32 pad;
1334 union {
1335 struct kvm_irq_routing_irqchip irqchip;
1336 struct kvm_irq_routing_msi msi;
1337 __u32 pad[8];
1338 } u;
1339};
1340
1341/* gsi routing entry types */
1342#define KVM_IRQ_ROUTING_IRQCHIP 1
1343#define KVM_IRQ_ROUTING_MSI 2
1344
1345No flags are specified so far, the corresponding field must be set to zero.
1346
1347struct kvm_irq_routing_irqchip {
1348 __u32 irqchip;
1349 __u32 pin;
1350};
1351
1352struct kvm_irq_routing_msi {
1353 __u32 address_lo;
1354 __u32 address_hi;
1355 __u32 data;
1356 __u32 pad;
1357};
1358
414fa985 1359
68ba6974 13604.53 KVM_ASSIGN_SET_MSIX_NR
49f48172
JK
1361
1362Capability: KVM_CAP_DEVICE_MSIX
1363Architectures: x86 ia64
1364Type: vm ioctl
1365Parameters: struct kvm_assigned_msix_nr (in)
1366Returns: 0 on success, -1 on error
1367
58f0964e
JK
1368Set the number of MSI-X interrupts for an assigned device. The number is
1369reset again by terminating the MSI-X assignment of the device via
1370KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
1371point will fail.
49f48172
JK
1372
1373struct kvm_assigned_msix_nr {
1374 __u32 assigned_dev_id;
1375 __u16 entry_nr;
1376 __u16 padding;
1377};
1378
1379#define KVM_MAX_MSIX_PER_DEV 256
1380
414fa985 1381
68ba6974 13824.54 KVM_ASSIGN_SET_MSIX_ENTRY
49f48172
JK
1383
1384Capability: KVM_CAP_DEVICE_MSIX
1385Architectures: x86 ia64
1386Type: vm ioctl
1387Parameters: struct kvm_assigned_msix_entry (in)
1388Returns: 0 on success, -1 on error
1389
1390Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
1391the GSI vector to zero means disabling the interrupt.
1392
1393struct kvm_assigned_msix_entry {
1394 __u32 assigned_dev_id;
1395 __u32 gsi;
1396 __u16 entry; /* The index of entry in the MSI-X table */
1397 __u16 padding[3];
1398};
1399
414fa985
JK
1400
14014.55 KVM_SET_TSC_KHZ
92a1f12d
JR
1402
1403Capability: KVM_CAP_TSC_CONTROL
1404Architectures: x86
1405Type: vcpu ioctl
1406Parameters: virtual tsc_khz
1407Returns: 0 on success, -1 on error
1408
1409Specifies the tsc frequency for the virtual machine. The unit of the
1410frequency is KHz.
1411
414fa985
JK
1412
14134.56 KVM_GET_TSC_KHZ
92a1f12d
JR
1414
1415Capability: KVM_CAP_GET_TSC_KHZ
1416Architectures: x86
1417Type: vcpu ioctl
1418Parameters: none
1419Returns: virtual tsc-khz on success, negative value on error
1420
1421Returns the tsc frequency of the guest. The unit of the return value is
1422KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1423error.
1424
414fa985
JK
1425
14264.57 KVM_GET_LAPIC
e7677933
AK
1427
1428Capability: KVM_CAP_IRQCHIP
1429Architectures: x86
1430Type: vcpu ioctl
1431Parameters: struct kvm_lapic_state (out)
1432Returns: 0 on success, -1 on error
1433
1434#define KVM_APIC_REG_SIZE 0x400
1435struct kvm_lapic_state {
1436 char regs[KVM_APIC_REG_SIZE];
1437};
1438
1439Reads the Local APIC registers and copies them into the input argument. The
1440data format and layout are the same as documented in the architecture manual.
1441
414fa985
JK
1442
14434.58 KVM_SET_LAPIC
e7677933
AK
1444
1445Capability: KVM_CAP_IRQCHIP
1446Architectures: x86
1447Type: vcpu ioctl
1448Parameters: struct kvm_lapic_state (in)
1449Returns: 0 on success, -1 on error
1450
1451#define KVM_APIC_REG_SIZE 0x400
1452struct kvm_lapic_state {
1453 char regs[KVM_APIC_REG_SIZE];
1454};
1455
1456Copies the input argument into the the Local APIC registers. The data format
1457and layout are the same as documented in the architecture manual.
1458
414fa985
JK
1459
14604.59 KVM_IOEVENTFD
55399a02
SL
1461
1462Capability: KVM_CAP_IOEVENTFD
1463Architectures: all
1464Type: vm ioctl
1465Parameters: struct kvm_ioeventfd (in)
1466Returns: 0 on success, !0 on error
1467
1468This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1469within the guest. A guest write in the registered address will signal the
1470provided event instead of triggering an exit.
1471
1472struct kvm_ioeventfd {
1473 __u64 datamatch;
1474 __u64 addr; /* legal pio/mmio address */
1475 __u32 len; /* 1, 2, 4, or 8 bytes */
1476 __s32 fd;
1477 __u32 flags;
1478 __u8 pad[36];
1479};
1480
1481The following flags are defined:
1482
1483#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1484#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1485#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
1486
1487If datamatch flag is set, the event will be signaled only if the written value
1488to the registered address is equal to datamatch in struct kvm_ioeventfd.
1489
414fa985
JK
1490
14914.60 KVM_DIRTY_TLB
dc83b8bc
SW
1492
1493Capability: KVM_CAP_SW_TLB
1494Architectures: ppc
1495Type: vcpu ioctl
1496Parameters: struct kvm_dirty_tlb (in)
1497Returns: 0 on success, -1 on error
1498
1499struct kvm_dirty_tlb {
1500 __u64 bitmap;
1501 __u32 num_dirty;
1502};
1503
1504This must be called whenever userspace has changed an entry in the shared
1505TLB, prior to calling KVM_RUN on the associated vcpu.
1506
1507The "bitmap" field is the userspace address of an array. This array
1508consists of a number of bits, equal to the total number of TLB entries as
1509determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1510nearest multiple of 64.
1511
1512Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1513array.
1514
1515The array is little-endian: the bit 0 is the least significant bit of the
1516first byte, bit 8 is the least significant bit of the second byte, etc.
1517This avoids any complications with differing word sizes.
1518
1519The "num_dirty" field is a performance hint for KVM to determine whether it
1520should skip processing the bitmap and just invalidate everything. It must
1521be set to the number of set bits in the bitmap.
1522
414fa985
JK
1523
15244.61 KVM_ASSIGN_SET_INTX_MASK
07700a94
JK
1525
1526Capability: KVM_CAP_PCI_2_3
1527Architectures: x86
1528Type: vm ioctl
1529Parameters: struct kvm_assigned_pci_dev (in)
1530Returns: 0 on success, -1 on error
1531
1532Allows userspace to mask PCI INTx interrupts from the assigned device. The
1533kernel will not deliver INTx interrupts to the guest between setting and
1534clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
1535and emulation of PCI 2.3 INTx disable command register behavior.
1536
1537This may be used for both PCI 2.3 devices supporting INTx disable natively and
1538older devices lacking this support. Userspace is responsible for emulating the
1539read value of the INTx disable bit in the guest visible PCI command register.
1540When modifying the INTx disable state, userspace should precede updating the
1541physical device command register by calling this ioctl to inform the kernel of
1542the new intended INTx mask state.
1543
1544Note that the kernel uses the device INTx disable bit to internally manage the
1545device interrupt state for PCI 2.3 devices. Reads of this register may
1546therefore not match the expected value. Writes should always use the guest
1547intended INTx disable value rather than attempting to read-copy-update the
1548current physical device state. Races between user and kernel updates to the
1549INTx disable bit are handled lazily in the kernel. It's possible the device
1550may generate unintended interrupts, but they will not be injected into the
1551guest.
1552
1553See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1554by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
1555evaluated.
1556
414fa985 1557
54738c09
DG
15584.62 KVM_CREATE_SPAPR_TCE
1559
1560Capability: KVM_CAP_SPAPR_TCE
1561Architectures: powerpc
1562Type: vm ioctl
1563Parameters: struct kvm_create_spapr_tce (in)
1564Returns: file descriptor for manipulating the created TCE table
1565
1566This creates a virtual TCE (translation control entry) table, which
1567is an IOMMU for PAPR-style virtual I/O. It is used to translate
1568logical addresses used in virtual I/O into guest physical addresses,
1569and provides a scatter/gather capability for PAPR virtual I/O.
1570
1571/* for KVM_CAP_SPAPR_TCE */
1572struct kvm_create_spapr_tce {
1573 __u64 liobn;
1574 __u32 window_size;
1575};
1576
1577The liobn field gives the logical IO bus number for which to create a
1578TCE table. The window_size field specifies the size of the DMA window
1579which this TCE table will translate - the table will contain one 64
1580bit TCE entry for every 4kiB of the DMA window.
1581
1582When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1583table has been created using this ioctl(), the kernel will handle it
1584in real mode, updating the TCE table. H_PUT_TCE calls for other
1585liobns will cause a vm exit and must be handled by userspace.
1586
1587The return value is a file descriptor which can be passed to mmap(2)
1588to map the created TCE table into userspace. This lets userspace read
1589the entries written by kernel-handled H_PUT_TCE calls, and also lets
1590userspace update the TCE table directly which is useful in some
1591circumstances.
1592
414fa985 1593
aa04b4cc
PM
15944.63 KVM_ALLOCATE_RMA
1595
1596Capability: KVM_CAP_PPC_RMA
1597Architectures: powerpc
1598Type: vm ioctl
1599Parameters: struct kvm_allocate_rma (out)
1600Returns: file descriptor for mapping the allocated RMA
1601
1602This allocates a Real Mode Area (RMA) from the pool allocated at boot
1603time by the kernel. An RMA is a physically-contiguous, aligned region
1604of memory used on older POWER processors to provide the memory which
1605will be accessed by real-mode (MMU off) accesses in a KVM guest.
1606POWER processors support a set of sizes for the RMA that usually
1607includes 64MB, 128MB, 256MB and some larger powers of two.
1608
1609/* for KVM_ALLOCATE_RMA */
1610struct kvm_allocate_rma {
1611 __u64 rma_size;
1612};
1613
1614The return value is a file descriptor which can be passed to mmap(2)
1615to map the allocated RMA into userspace. The mapped area can then be
1616passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1617RMA for a virtual machine. The size of the RMA in bytes (which is
1618fixed at host kernel boot time) is returned in the rma_size field of
1619the argument structure.
1620
1621The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1622is supported; 2 if the processor requires all virtual machines to have
1623an RMA, or 1 if the processor can use an RMA but doesn't require it,
1624because it supports the Virtual RMA (VRMA) facility.
1625
414fa985 1626
3f745f1e
AK
16274.64 KVM_NMI
1628
1629Capability: KVM_CAP_USER_NMI
1630Architectures: x86
1631Type: vcpu ioctl
1632Parameters: none
1633Returns: 0 on success, -1 on error
1634
1635Queues an NMI on the thread's vcpu. Note this is well defined only
1636when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1637between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1638has been called, this interface is completely emulated within the kernel.
1639
1640To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1641following algorithm:
1642
1643 - pause the vpcu
1644 - read the local APIC's state (KVM_GET_LAPIC)
1645 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1646 - if so, issue KVM_NMI
1647 - resume the vcpu
1648
1649Some guests configure the LINT1 NMI input to cause a panic, aiding in
1650debugging.
1651
414fa985 1652
e24ed81f 16534.65 KVM_S390_UCAS_MAP
27e0393f
CO
1654
1655Capability: KVM_CAP_S390_UCONTROL
1656Architectures: s390
1657Type: vcpu ioctl
1658Parameters: struct kvm_s390_ucas_mapping (in)
1659Returns: 0 in case of success
1660
1661The parameter is defined like this:
1662 struct kvm_s390_ucas_mapping {
1663 __u64 user_addr;
1664 __u64 vcpu_addr;
1665 __u64 length;
1666 };
1667
1668This ioctl maps the memory at "user_addr" with the length "length" to
1669the vcpu's address space starting at "vcpu_addr". All parameters need to
1670be alligned by 1 megabyte.
1671
414fa985 1672
e24ed81f 16734.66 KVM_S390_UCAS_UNMAP
27e0393f
CO
1674
1675Capability: KVM_CAP_S390_UCONTROL
1676Architectures: s390
1677Type: vcpu ioctl
1678Parameters: struct kvm_s390_ucas_mapping (in)
1679Returns: 0 in case of success
1680
1681The parameter is defined like this:
1682 struct kvm_s390_ucas_mapping {
1683 __u64 user_addr;
1684 __u64 vcpu_addr;
1685 __u64 length;
1686 };
1687
1688This ioctl unmaps the memory in the vcpu's address space starting at
1689"vcpu_addr" with the length "length". The field "user_addr" is ignored.
1690All parameters need to be alligned by 1 megabyte.
1691
414fa985 1692
e24ed81f 16934.67 KVM_S390_VCPU_FAULT
ccc7910f
CO
1694
1695Capability: KVM_CAP_S390_UCONTROL
1696Architectures: s390
1697Type: vcpu ioctl
1698Parameters: vcpu absolute address (in)
1699Returns: 0 in case of success
1700
1701This call creates a page table entry on the virtual cpu's address space
1702(for user controlled virtual machines) or the virtual machine's address
1703space (for regular virtual machines). This only works for minor faults,
1704thus it's recommended to access subject memory page via the user page
1705table upfront. This is useful to handle validity intercepts for user
1706controlled virtual machines to fault in the virtual cpu's lowcore pages
1707prior to calling the KVM_RUN ioctl.
1708
414fa985 1709
e24ed81f
AG
17104.68 KVM_SET_ONE_REG
1711
1712Capability: KVM_CAP_ONE_REG
1713Architectures: all
1714Type: vcpu ioctl
1715Parameters: struct kvm_one_reg (in)
1716Returns: 0 on success, negative value on failure
1717
1718struct kvm_one_reg {
1719 __u64 id;
1720 __u64 addr;
1721};
1722
1723Using this ioctl, a single vcpu register can be set to a specific value
1724defined by user space with the passed in struct kvm_one_reg, where id
1725refers to the register identifier as described below and addr is a pointer
1726to a variable with the respective size. There can be architecture agnostic
1727and architecture specific registers. Each have their own range of operation
1728and their own constants and width. To keep track of the implemented
1729registers, find a list below:
1730
1731 Arch | Register | Width (bits)
1732 | |
1022fc3d 1733 PPC | KVM_REG_PPC_HIOR | 64
e24ed81f 1734
414fa985 1735
e24ed81f
AG
17364.69 KVM_GET_ONE_REG
1737
1738Capability: KVM_CAP_ONE_REG
1739Architectures: all
1740Type: vcpu ioctl
1741Parameters: struct kvm_one_reg (in and out)
1742Returns: 0 on success, negative value on failure
1743
1744This ioctl allows to receive the value of a single register implemented
1745in a vcpu. The register to read is indicated by the "id" field of the
1746kvm_one_reg struct passed in. On success, the register value can be found
1747at the memory location pointed to by "addr".
1748
1749The list of registers accessible using this interface is identical to the
1750list in 4.64.
1751
414fa985 1752
1c0b28c2
EM
17534.70 KVM_KVMCLOCK_CTRL
1754
1755Capability: KVM_CAP_KVMCLOCK_CTRL
1756Architectures: Any that implement pvclocks (currently x86 only)
1757Type: vcpu ioctl
1758Parameters: None
1759Returns: 0 on success, -1 on error
1760
1761This signals to the host kernel that the specified guest is being paused by
1762userspace. The host will set a flag in the pvclock structure that is checked
1763from the soft lockup watchdog. The flag is part of the pvclock structure that
1764is shared between guest and host, specifically the second bit of the flags
1765field of the pvclock_vcpu_time_info structure. It will be set exclusively by
1766the host and read/cleared exclusively by the guest. The guest operation of
1767checking and clearing the flag must an atomic operation so
1768load-link/store-conditional, or equivalent must be used. There are two cases
1769where the guest will clear the flag: when the soft lockup watchdog timer resets
1770itself or when a soft lockup is detected. This ioctl can be called any time
1771after pausing the vcpu, but before it is resumed.
1772
414fa985 1773
07975ad3
JK
17744.71 KVM_SIGNAL_MSI
1775
1776Capability: KVM_CAP_SIGNAL_MSI
1777Architectures: x86
1778Type: vm ioctl
1779Parameters: struct kvm_msi (in)
1780Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
1781
1782Directly inject a MSI message. Only valid with in-kernel irqchip that handles
1783MSI messages.
1784
1785struct kvm_msi {
1786 __u32 address_lo;
1787 __u32 address_hi;
1788 __u32 data;
1789 __u32 flags;
1790 __u8 pad[16];
1791};
1792
1793No flags are defined so far. The corresponding field must be 0.
1794
414fa985 1795
0589ff6c
JK
17964.71 KVM_CREATE_PIT2
1797
1798Capability: KVM_CAP_PIT2
1799Architectures: x86
1800Type: vm ioctl
1801Parameters: struct kvm_pit_config (in)
1802Returns: 0 on success, -1 on error
1803
1804Creates an in-kernel device model for the i8254 PIT. This call is only valid
1805after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
1806parameters have to be passed:
1807
1808struct kvm_pit_config {
1809 __u32 flags;
1810 __u32 pad[15];
1811};
1812
1813Valid flags are:
1814
1815#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
1816
b6ddf05f
JK
1817PIT timer interrupts may use a per-VM kernel thread for injection. If it
1818exists, this thread will have a name of the following pattern:
1819
1820kvm-pit/<owner-process-pid>
1821
1822When running a guest with elevated priorities, the scheduling parameters of
1823this thread may have to be adjusted accordingly.
1824
0589ff6c
JK
1825This IOCTL replaces the obsolete KVM_CREATE_PIT.
1826
1827
18284.72 KVM_GET_PIT2
1829
1830Capability: KVM_CAP_PIT_STATE2
1831Architectures: x86
1832Type: vm ioctl
1833Parameters: struct kvm_pit_state2 (out)
1834Returns: 0 on success, -1 on error
1835
1836Retrieves the state of the in-kernel PIT model. Only valid after
1837KVM_CREATE_PIT2. The state is returned in the following structure:
1838
1839struct kvm_pit_state2 {
1840 struct kvm_pit_channel_state channels[3];
1841 __u32 flags;
1842 __u32 reserved[9];
1843};
1844
1845Valid flags are:
1846
1847/* disable PIT in HPET legacy mode */
1848#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
1849
1850This IOCTL replaces the obsolete KVM_GET_PIT.
1851
1852
18534.73 KVM_SET_PIT2
1854
1855Capability: KVM_CAP_PIT_STATE2
1856Architectures: x86
1857Type: vm ioctl
1858Parameters: struct kvm_pit_state2 (in)
1859Returns: 0 on success, -1 on error
1860
1861Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
1862See KVM_GET_PIT2 for details on struct kvm_pit_state2.
1863
1864This IOCTL replaces the obsolete KVM_SET_PIT.
1865
1866
5b74716e
BH
18674.74 KVM_PPC_GET_SMMU_INFO
1868
1869Capability: KVM_CAP_PPC_GET_SMMU_INFO
1870Architectures: powerpc
1871Type: vm ioctl
1872Parameters: None
1873Returns: 0 on success, -1 on error
1874
1875This populates and returns a structure describing the features of
1876the "Server" class MMU emulation supported by KVM.
1877This can in turn be used by userspace to generate the appropariate
1878device-tree properties for the guest operating system.
1879
1880The structure contains some global informations, followed by an
1881array of supported segment page sizes:
1882
1883 struct kvm_ppc_smmu_info {
1884 __u64 flags;
1885 __u32 slb_size;
1886 __u32 pad;
1887 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
1888 };
1889
1890The supported flags are:
1891
1892 - KVM_PPC_PAGE_SIZES_REAL:
1893 When that flag is set, guest page sizes must "fit" the backing
1894 store page sizes. When not set, any page size in the list can
1895 be used regardless of how they are backed by userspace.
1896
1897 - KVM_PPC_1T_SEGMENTS
1898 The emulated MMU supports 1T segments in addition to the
1899 standard 256M ones.
1900
1901The "slb_size" field indicates how many SLB entries are supported
1902
1903The "sps" array contains 8 entries indicating the supported base
1904page sizes for a segment in increasing order. Each entry is defined
1905as follow:
1906
1907 struct kvm_ppc_one_seg_page_size {
1908 __u32 page_shift; /* Base page shift of segment (or 0) */
1909 __u32 slb_enc; /* SLB encoding for BookS */
1910 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
1911 };
1912
1913An entry with a "page_shift" of 0 is unused. Because the array is
1914organized in increasing order, a lookup can stop when encoutering
1915such an entry.
1916
1917The "slb_enc" field provides the encoding to use in the SLB for the
1918page size. The bits are in positions such as the value can directly
1919be OR'ed into the "vsid" argument of the slbmte instruction.
1920
1921The "enc" array is a list which for each of those segment base page
1922size provides the list of supported actual page sizes (which can be
1923only larger or equal to the base page size), along with the
1924corresponding encoding in the hash PTE. Similarily, the array is
19258 entries sorted by increasing sizes and an entry with a "0" shift
1926is an empty entry and a terminator:
1927
1928 struct kvm_ppc_one_page_size {
1929 __u32 page_shift; /* Page shift (or 0) */
1930 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
1931 };
1932
1933The "pte_enc" field provides a value that can OR'ed into the hash
1934PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
1935into the hash PTE second double word).
1936
f36992e3
AW
19374.75 KVM_IRQFD
1938
1939Capability: KVM_CAP_IRQFD
1940Architectures: x86
1941Type: vm ioctl
1942Parameters: struct kvm_irqfd (in)
1943Returns: 0 on success, -1 on error
1944
1945Allows setting an eventfd to directly trigger a guest interrupt.
1946kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
1947kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
1948an event is tiggered on the eventfd, an interrupt is injected into
1949the guest using the specified gsi pin. The irqfd is removed using
1950the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
1951and kvm_irqfd.gsi.
1952
7a84428a
AW
1953With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
1954mechanism allowing emulation of level-triggered, irqfd-based
1955interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
1956additional eventfd in the kvm_irqfd.resamplefd field. When operating
1957in resample mode, posting of an interrupt through kvm_irq.fd asserts
1958the specified gsi in the irqchip. When the irqchip is resampled, such
1959as from an EOI, the gsi is de-asserted and the user is notifed via
1960kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
1961the interrupt if the device making use of it still requires service.
1962Note that closing the resamplefd is not sufficient to disable the
1963irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
1964and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
1965
5fecc9d8 19664.76 KVM_PPC_ALLOCATE_HTAB
32fad281
PM
1967
1968Capability: KVM_CAP_PPC_ALLOC_HTAB
1969Architectures: powerpc
1970Type: vm ioctl
1971Parameters: Pointer to u32 containing hash table order (in/out)
1972Returns: 0 on success, -1 on error
1973
1974This requests the host kernel to allocate an MMU hash table for a
1975guest using the PAPR paravirtualization interface. This only does
1976anything if the kernel is configured to use the Book 3S HV style of
1977virtualization. Otherwise the capability doesn't exist and the ioctl
1978returns an ENOTTY error. The rest of this description assumes Book 3S
1979HV.
1980
1981There must be no vcpus running when this ioctl is called; if there
1982are, it will do nothing and return an EBUSY error.
1983
1984The parameter is a pointer to a 32-bit unsigned integer variable
1985containing the order (log base 2) of the desired size of the hash
1986table, which must be between 18 and 46. On successful return from the
1987ioctl, it will have been updated with the order of the hash table that
1988was allocated.
1989
1990If no hash table has been allocated when any vcpu is asked to run
1991(with the KVM_RUN ioctl), the host kernel will allocate a
1992default-sized hash table (16 MB).
1993
1994If this ioctl is called when a hash table has already been allocated,
1995the kernel will clear out the existing hash table (zero all HPTEs) and
1996return the hash table order in the parameter. (If the guest is using
1997the virtualized real-mode area (VRMA) facility, the kernel will
1998re-create the VMRA HPTEs on the next KVM_RUN of any vcpu.)
1999
f36992e3 2000
9c1b96e3 20015. The kvm_run structure
414fa985 2002------------------------
9c1b96e3
AK
2003
2004Application code obtains a pointer to the kvm_run structure by
2005mmap()ing a vcpu fd. From that point, application code can control
2006execution by changing fields in kvm_run prior to calling the KVM_RUN
2007ioctl, and obtain information about the reason KVM_RUN returned by
2008looking up structure members.
2009
2010struct kvm_run {
2011 /* in */
2012 __u8 request_interrupt_window;
2013
2014Request that KVM_RUN return when it becomes possible to inject external
2015interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
2016
2017 __u8 padding1[7];
2018
2019 /* out */
2020 __u32 exit_reason;
2021
2022When KVM_RUN has returned successfully (return value 0), this informs
2023application code why KVM_RUN has returned. Allowable values for this
2024field are detailed below.
2025
2026 __u8 ready_for_interrupt_injection;
2027
2028If request_interrupt_window has been specified, this field indicates
2029an interrupt can be injected now with KVM_INTERRUPT.
2030
2031 __u8 if_flag;
2032
2033The value of the current interrupt flag. Only valid if in-kernel
2034local APIC is not used.
2035
2036 __u8 padding2[2];
2037
2038 /* in (pre_kvm_run), out (post_kvm_run) */
2039 __u64 cr8;
2040
2041The value of the cr8 register. Only valid if in-kernel local APIC is
2042not used. Both input and output.
2043
2044 __u64 apic_base;
2045
2046The value of the APIC BASE msr. Only valid if in-kernel local
2047APIC is not used. Both input and output.
2048
2049 union {
2050 /* KVM_EXIT_UNKNOWN */
2051 struct {
2052 __u64 hardware_exit_reason;
2053 } hw;
2054
2055If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
2056reasons. Further architecture-specific information is available in
2057hardware_exit_reason.
2058
2059 /* KVM_EXIT_FAIL_ENTRY */
2060 struct {
2061 __u64 hardware_entry_failure_reason;
2062 } fail_entry;
2063
2064If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
2065to unknown reasons. Further architecture-specific information is
2066available in hardware_entry_failure_reason.
2067
2068 /* KVM_EXIT_EXCEPTION */
2069 struct {
2070 __u32 exception;
2071 __u32 error_code;
2072 } ex;
2073
2074Unused.
2075
2076 /* KVM_EXIT_IO */
2077 struct {
2078#define KVM_EXIT_IO_IN 0
2079#define KVM_EXIT_IO_OUT 1
2080 __u8 direction;
2081 __u8 size; /* bytes */
2082 __u16 port;
2083 __u32 count;
2084 __u64 data_offset; /* relative to kvm_run start */
2085 } io;
2086
2044892d 2087If exit_reason is KVM_EXIT_IO, then the vcpu has
9c1b96e3
AK
2088executed a port I/O instruction which could not be satisfied by kvm.
2089data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
2090where kvm expects application code to place the data for the next
2044892d 2091KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
9c1b96e3
AK
2092
2093 struct {
2094 struct kvm_debug_exit_arch arch;
2095 } debug;
2096
2097Unused.
2098
2099 /* KVM_EXIT_MMIO */
2100 struct {
2101 __u64 phys_addr;
2102 __u8 data[8];
2103 __u32 len;
2104 __u8 is_write;
2105 } mmio;
2106
2044892d 2107If exit_reason is KVM_EXIT_MMIO, then the vcpu has
9c1b96e3
AK
2108executed a memory-mapped I/O instruction which could not be satisfied
2109by kvm. The 'data' member contains the written data if 'is_write' is
2110true, and should be filled by application code otherwise.
2111
ad0a048b
AG
2112NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO and KVM_EXIT_OSI, the corresponding
2113operations are complete (and guest state is consistent) only after userspace
2114has re-entered the kernel with KVM_RUN. The kernel side will first finish
67961344
MT
2115incomplete operations and then check for pending signals. Userspace
2116can re-enter the guest with an unmasked signal pending to complete
2117pending operations.
2118
9c1b96e3
AK
2119 /* KVM_EXIT_HYPERCALL */
2120 struct {
2121 __u64 nr;
2122 __u64 args[6];
2123 __u64 ret;
2124 __u32 longmode;
2125 __u32 pad;
2126 } hypercall;
2127
647dc49e
AK
2128Unused. This was once used for 'hypercall to userspace'. To implement
2129such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
2130Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
9c1b96e3
AK
2131
2132 /* KVM_EXIT_TPR_ACCESS */
2133 struct {
2134 __u64 rip;
2135 __u32 is_write;
2136 __u32 pad;
2137 } tpr_access;
2138
2139To be documented (KVM_TPR_ACCESS_REPORTING).
2140
2141 /* KVM_EXIT_S390_SIEIC */
2142 struct {
2143 __u8 icptcode;
2144 __u64 mask; /* psw upper half */
2145 __u64 addr; /* psw lower half */
2146 __u16 ipa;
2147 __u32 ipb;
2148 } s390_sieic;
2149
2150s390 specific.
2151
2152 /* KVM_EXIT_S390_RESET */
2153#define KVM_S390_RESET_POR 1
2154#define KVM_S390_RESET_CLEAR 2
2155#define KVM_S390_RESET_SUBSYSTEM 4
2156#define KVM_S390_RESET_CPU_INIT 8
2157#define KVM_S390_RESET_IPL 16
2158 __u64 s390_reset_flags;
2159
2160s390 specific.
2161
e168bf8d
CO
2162 /* KVM_EXIT_S390_UCONTROL */
2163 struct {
2164 __u64 trans_exc_code;
2165 __u32 pgm_code;
2166 } s390_ucontrol;
2167
2168s390 specific. A page fault has occurred for a user controlled virtual
2169machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
2170resolved by the kernel.
2171The program code and the translation exception code that were placed
2172in the cpu's lowcore are presented here as defined by the z Architecture
2173Principles of Operation Book in the Chapter for Dynamic Address Translation
2174(DAT)
2175
9c1b96e3
AK
2176 /* KVM_EXIT_DCR */
2177 struct {
2178 __u32 dcrn;
2179 __u32 data;
2180 __u8 is_write;
2181 } dcr;
2182
2183powerpc specific.
2184
ad0a048b
AG
2185 /* KVM_EXIT_OSI */
2186 struct {
2187 __u64 gprs[32];
2188 } osi;
2189
2190MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
2191hypercalls and exit with this exit struct that contains all the guest gprs.
2192
2193If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
2194Userspace can now handle the hypercall and when it's done modify the gprs as
2195necessary. Upon guest entry all guest GPRs will then be replaced by the values
2196in this struct.
2197
de56a948
PM
2198 /* KVM_EXIT_PAPR_HCALL */
2199 struct {
2200 __u64 nr;
2201 __u64 ret;
2202 __u64 args[9];
2203 } papr_hcall;
2204
2205This is used on 64-bit PowerPC when emulating a pSeries partition,
2206e.g. with the 'pseries' machine type in qemu. It occurs when the
2207guest does a hypercall using the 'sc 1' instruction. The 'nr' field
2208contains the hypercall number (from the guest R3), and 'args' contains
2209the arguments (from the guest R4 - R12). Userspace should put the
2210return code in 'ret' and any extra returned values in args[].
2211The possible hypercalls are defined in the Power Architecture Platform
2212Requirements (PAPR) document available from www.power.org (free
2213developer registration required to access it).
2214
9c1b96e3
AK
2215 /* Fix the size of the union. */
2216 char padding[256];
2217 };
b9e5dc8d
CB
2218
2219 /*
2220 * shared registers between kvm and userspace.
2221 * kvm_valid_regs specifies the register classes set by the host
2222 * kvm_dirty_regs specified the register classes dirtied by userspace
2223 * struct kvm_sync_regs is architecture specific, as well as the
2224 * bits for kvm_valid_regs and kvm_dirty_regs
2225 */
2226 __u64 kvm_valid_regs;
2227 __u64 kvm_dirty_regs;
2228 union {
2229 struct kvm_sync_regs regs;
2230 char padding[1024];
2231 } s;
2232
2233If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
2234certain guest registers without having to call SET/GET_*REGS. Thus we can
2235avoid some system call overhead if userspace has to handle the exit.
2236Userspace can query the validity of the structure by checking
2237kvm_valid_regs for specific bits. These bits are architecture specific
2238and usually define the validity of a groups of registers. (e.g. one bit
2239 for general purpose registers)
2240
9c1b96e3 2241};
821246a5 2242
414fa985 2243
821246a5 22446. Capabilities that can be enabled
414fa985 2245-----------------------------------
821246a5
AG
2246
2247There are certain capabilities that change the behavior of the virtual CPU when
2248enabled. To enable them, please see section 4.37. Below you can find a list of
2249capabilities and what their effect on the vCPU is when enabling them.
2250
2251The following information is provided along with the description:
2252
2253 Architectures: which instruction set architectures provide this ioctl.
2254 x86 includes both i386 and x86_64.
2255
2256 Parameters: what parameters are accepted by the capability.
2257
2258 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
2259 are not detailed, but errors with specific meanings are.
2260
414fa985 2261
821246a5
AG
22626.1 KVM_CAP_PPC_OSI
2263
2264Architectures: ppc
2265Parameters: none
2266Returns: 0 on success; -1 on error
2267
2268This capability enables interception of OSI hypercalls that otherwise would
2269be treated as normal system calls to be injected into the guest. OSI hypercalls
2270were invented by Mac-on-Linux to have a standardized communication mechanism
2271between the guest and the host.
2272
2273When this capability is enabled, KVM_EXIT_OSI can occur.
2274
414fa985 2275
821246a5
AG
22766.2 KVM_CAP_PPC_PAPR
2277
2278Architectures: ppc
2279Parameters: none
2280Returns: 0 on success; -1 on error
2281
2282This capability enables interception of PAPR hypercalls. PAPR hypercalls are
2283done using the hypercall instruction "sc 1".
2284
2285It also sets the guest privilege level to "supervisor" mode. Usually the guest
2286runs in "hypervisor" privilege mode with a few missing features.
2287
2288In addition to the above, it changes the semantics of SDR1. In this mode, the
2289HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
2290HTAB invisible to the guest.
2291
2292When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
dc83b8bc 2293
414fa985 2294
dc83b8bc
SW
22956.3 KVM_CAP_SW_TLB
2296
2297Architectures: ppc
2298Parameters: args[0] is the address of a struct kvm_config_tlb
2299Returns: 0 on success; -1 on error
2300
2301struct kvm_config_tlb {
2302 __u64 params;
2303 __u64 array;
2304 __u32 mmu_type;
2305 __u32 array_len;
2306};
2307
2308Configures the virtual CPU's TLB array, establishing a shared memory area
2309between userspace and KVM. The "params" and "array" fields are userspace
2310addresses of mmu-type-specific data structures. The "array_len" field is an
2311safety mechanism, and should be set to the size in bytes of the memory that
2312userspace has reserved for the array. It must be at least the size dictated
2313by "mmu_type" and "params".
2314
2315While KVM_RUN is active, the shared region is under control of KVM. Its
2316contents are undefined, and any modification by userspace results in
2317boundedly undefined behavior.
2318
2319On return from KVM_RUN, the shared region will reflect the current state of
2320the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
2321to tell KVM which entries have been changed, prior to calling KVM_RUN again
2322on this vcpu.
2323
2324For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
2325 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
2326 - The "array" field points to an array of type "struct
2327 kvm_book3e_206_tlb_entry".
2328 - The array consists of all entries in the first TLB, followed by all
2329 entries in the second TLB.
2330 - Within a TLB, entries are ordered first by increasing set number. Within a
2331 set, entries are ordered by way (increasing ESEL).
2332 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
2333 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
2334 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
2335 hardware ignores this value for TLB0.