]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - Documentation/virtual/kvm/api.txt
KVM: x86: Fix lapic.c debug prints
[thirdparty/kernel/stable.git] / Documentation / virtual / kvm / api.txt
CommitLineData
9c1b96e3
AK
1The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
414fa985 5----------------------
9c1b96e3
AK
6
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
414fa985 27
2044892d 282. File descriptors
414fa985 29-------------------
9c1b96e3
AK
30
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
2044892d 34handle will create a VM file descriptor which can be used to issue VM
9c1b96e3
AK
35ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
414fa985 47
9c1b96e3 483. Extensions
414fa985 49-------------
9c1b96e3
AK
50
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
c9f3f2d8 56The extension mechanism is not based on the Linux version number.
9c1b96e3
AK
57Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
414fa985 61
9c1b96e3 624. API description
414fa985 63------------------
9c1b96e3
AK
64
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
71 API version 12 (see section 4.1), or a KVM_CAP_xyz constant, which
72 means availability needs to be checked with KVM_CHECK_EXTENSION
73 (see section 4.4).
74
75 Architectures: which instruction set architectures provide this ioctl.
76 x86 includes both i386 and x86_64.
77
78 Type: system, vm, or vcpu.
79
80 Parameters: what parameters are accepted by the ioctl.
81
82 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
83 are not detailed, but errors with specific meanings are.
84
414fa985 85
9c1b96e3
AK
864.1 KVM_GET_API_VERSION
87
88Capability: basic
89Architectures: all
90Type: system ioctl
91Parameters: none
92Returns: the constant KVM_API_VERSION (=12)
93
94This identifies the API version as the stable kvm API. It is not
95expected that this number will change. However, Linux 2.6.20 and
962.6.21 report earlier versions; these are not documented and not
97supported. Applications should refuse to run if KVM_GET_API_VERSION
98returns a value other than 12. If this check passes, all ioctls
99described as 'basic' will be available.
100
414fa985 101
9c1b96e3
AK
1024.2 KVM_CREATE_VM
103
104Capability: basic
105Architectures: all
106Type: system ioctl
e08b9637 107Parameters: machine type identifier (KVM_VM_*)
9c1b96e3
AK
108Returns: a VM fd that can be used to control the new virtual machine.
109
110The new VM has no virtual cpus and no memory. An mmap() of a VM fd
111will access the virtual machine's physical address space; offset zero
112corresponds to guest physical address zero. Use of mmap() on a VM fd
113is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
114available.
e08b9637
CO
115You most certainly want to use 0 as machine type.
116
117In order to create user controlled virtual machines on S390, check
118KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
119privileged user (CAP_SYS_ADMIN).
9c1b96e3 120
414fa985 121
9c1b96e3
AK
1224.3 KVM_GET_MSR_INDEX_LIST
123
124Capability: basic
125Architectures: x86
126Type: system
127Parameters: struct kvm_msr_list (in/out)
128Returns: 0 on success; -1 on error
129Errors:
130 E2BIG: the msr index list is to be to fit in the array specified by
131 the user.
132
133struct kvm_msr_list {
134 __u32 nmsrs; /* number of msrs in entries */
135 __u32 indices[0];
136};
137
138This ioctl returns the guest msrs that are supported. The list varies
139by kvm version and host processor, but does not change otherwise. The
140user fills in the size of the indices array in nmsrs, and in return
141kvm adjusts nmsrs to reflect the actual number of msrs and fills in
142the indices array with their numbers.
143
2e2602ca
AK
144Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
145not returned in the MSR list, as different vcpus can have a different number
146of banks, as set via the KVM_X86_SETUP_MCE ioctl.
147
414fa985 148
9c1b96e3
AK
1494.4 KVM_CHECK_EXTENSION
150
151Capability: basic
152Architectures: all
153Type: system ioctl
154Parameters: extension identifier (KVM_CAP_*)
155Returns: 0 if unsupported; 1 (or some other positive integer) if supported
156
157The API allows the application to query about extensions to the core
158kvm API. Userspace passes an extension identifier (an integer) and
159receives an integer that describes the extension availability.
160Generally 0 means no and 1 means yes, but some extensions may report
161additional information in the integer return value.
162
414fa985 163
9c1b96e3
AK
1644.5 KVM_GET_VCPU_MMAP_SIZE
165
166Capability: basic
167Architectures: all
168Type: system ioctl
169Parameters: none
170Returns: size of vcpu mmap area, in bytes
171
172The KVM_RUN ioctl (cf.) communicates with userspace via a shared
173memory region. This ioctl returns the size of that region. See the
174KVM_RUN documentation for details.
175
414fa985 176
9c1b96e3
AK
1774.6 KVM_SET_MEMORY_REGION
178
179Capability: basic
180Architectures: all
181Type: vm ioctl
182Parameters: struct kvm_memory_region (in)
183Returns: 0 on success, -1 on error
184
b74a07be 185This ioctl is obsolete and has been removed.
9c1b96e3 186
414fa985 187
68ba6974 1884.7 KVM_CREATE_VCPU
9c1b96e3
AK
189
190Capability: basic
191Architectures: all
192Type: vm ioctl
193Parameters: vcpu id (apic id on x86)
194Returns: vcpu fd on success, -1 on error
195
196This API adds a vcpu to a virtual machine. The vcpu id is a small integer
8c3ba334
SL
197in the range [0, max_vcpus).
198
199The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
200the KVM_CHECK_EXTENSION ioctl() at run-time.
201The maximum possible value for max_vcpus can be retrieved using the
202KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
203
76d25402
PE
204If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
205cpus max.
8c3ba334
SL
206If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
207same as the value returned from KVM_CAP_NR_VCPUS.
9c1b96e3 208
371fefd6
PM
209On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
210threads in one or more virtual CPU cores. (This is because the
211hardware requires all the hardware threads in a CPU core to be in the
212same partition.) The KVM_CAP_PPC_SMT capability indicates the number
36442687
AK
213of vcpus per virtual core (vcore). The vcore id is obtained by
214dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
215given vcore will always be in the same physical core as each other
216(though that might be a different physical core from time to time).
217Userspace can control the threading (SMT) mode of the guest by its
218allocation of vcpu ids. For example, if userspace wants
219single-threaded guest vcpus, it should make all vcpu ids be a multiple
220of the number of vcpus per vcore.
221
5b1c1493
CO
222For virtual cpus that have been created with S390 user controlled virtual
223machines, the resulting vcpu fd can be memory mapped at page offset
224KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
225cpu's hardware control block.
226
414fa985 227
68ba6974 2284.8 KVM_GET_DIRTY_LOG (vm ioctl)
9c1b96e3
AK
229
230Capability: basic
231Architectures: x86
232Type: vm ioctl
233Parameters: struct kvm_dirty_log (in/out)
234Returns: 0 on success, -1 on error
235
236/* for KVM_GET_DIRTY_LOG */
237struct kvm_dirty_log {
238 __u32 slot;
239 __u32 padding;
240 union {
241 void __user *dirty_bitmap; /* one bit per page */
242 __u64 padding;
243 };
244};
245
246Given a memory slot, return a bitmap containing any pages dirtied
247since the last call to this ioctl. Bit 0 is the first page in the
248memory slot. Ensure the entire structure is cleared to avoid padding
249issues.
250
414fa985 251
68ba6974 2524.9 KVM_SET_MEMORY_ALIAS
9c1b96e3
AK
253
254Capability: basic
255Architectures: x86
256Type: vm ioctl
257Parameters: struct kvm_memory_alias (in)
258Returns: 0 (success), -1 (error)
259
a1f4d395 260This ioctl is obsolete and has been removed.
9c1b96e3 261
414fa985 262
68ba6974 2634.10 KVM_RUN
9c1b96e3
AK
264
265Capability: basic
266Architectures: all
267Type: vcpu ioctl
268Parameters: none
269Returns: 0 on success, -1 on error
270Errors:
271 EINTR: an unmasked signal is pending
272
273This ioctl is used to run a guest virtual cpu. While there are no
274explicit parameters, there is an implicit parameter block that can be
275obtained by mmap()ing the vcpu fd at offset 0, with the size given by
276KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
277kvm_run' (see below).
278
414fa985 279
68ba6974 2804.11 KVM_GET_REGS
9c1b96e3
AK
281
282Capability: basic
379e04c7 283Architectures: all except ARM, arm64
9c1b96e3
AK
284Type: vcpu ioctl
285Parameters: struct kvm_regs (out)
286Returns: 0 on success, -1 on error
287
288Reads the general purpose registers from the vcpu.
289
290/* x86 */
291struct kvm_regs {
292 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
293 __u64 rax, rbx, rcx, rdx;
294 __u64 rsi, rdi, rsp, rbp;
295 __u64 r8, r9, r10, r11;
296 __u64 r12, r13, r14, r15;
297 __u64 rip, rflags;
298};
299
414fa985 300
68ba6974 3014.12 KVM_SET_REGS
9c1b96e3
AK
302
303Capability: basic
379e04c7 304Architectures: all except ARM, arm64
9c1b96e3
AK
305Type: vcpu ioctl
306Parameters: struct kvm_regs (in)
307Returns: 0 on success, -1 on error
308
309Writes the general purpose registers into the vcpu.
310
311See KVM_GET_REGS for the data structure.
312
414fa985 313
68ba6974 3144.13 KVM_GET_SREGS
9c1b96e3
AK
315
316Capability: basic
5ce941ee 317Architectures: x86, ppc
9c1b96e3
AK
318Type: vcpu ioctl
319Parameters: struct kvm_sregs (out)
320Returns: 0 on success, -1 on error
321
322Reads special registers from the vcpu.
323
324/* x86 */
325struct kvm_sregs {
326 struct kvm_segment cs, ds, es, fs, gs, ss;
327 struct kvm_segment tr, ldt;
328 struct kvm_dtable gdt, idt;
329 __u64 cr0, cr2, cr3, cr4, cr8;
330 __u64 efer;
331 __u64 apic_base;
332 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
333};
334
68e2ffed 335/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
5ce941ee 336
9c1b96e3
AK
337interrupt_bitmap is a bitmap of pending external interrupts. At most
338one bit may be set. This interrupt has been acknowledged by the APIC
339but not yet injected into the cpu core.
340
414fa985 341
68ba6974 3424.14 KVM_SET_SREGS
9c1b96e3
AK
343
344Capability: basic
5ce941ee 345Architectures: x86, ppc
9c1b96e3
AK
346Type: vcpu ioctl
347Parameters: struct kvm_sregs (in)
348Returns: 0 on success, -1 on error
349
350Writes special registers into the vcpu. See KVM_GET_SREGS for the
351data structures.
352
414fa985 353
68ba6974 3544.15 KVM_TRANSLATE
9c1b96e3
AK
355
356Capability: basic
357Architectures: x86
358Type: vcpu ioctl
359Parameters: struct kvm_translation (in/out)
360Returns: 0 on success, -1 on error
361
362Translates a virtual address according to the vcpu's current address
363translation mode.
364
365struct kvm_translation {
366 /* in */
367 __u64 linear_address;
368
369 /* out */
370 __u64 physical_address;
371 __u8 valid;
372 __u8 writeable;
373 __u8 usermode;
374 __u8 pad[5];
375};
376
414fa985 377
68ba6974 3784.16 KVM_INTERRUPT
9c1b96e3
AK
379
380Capability: basic
6f7a2bd4 381Architectures: x86, ppc
9c1b96e3
AK
382Type: vcpu ioctl
383Parameters: struct kvm_interrupt (in)
384Returns: 0 on success, -1 on error
385
386Queues a hardware interrupt vector to be injected. This is only
6f7a2bd4 387useful if in-kernel local APIC or equivalent is not used.
9c1b96e3
AK
388
389/* for KVM_INTERRUPT */
390struct kvm_interrupt {
391 /* in */
392 __u32 irq;
393};
394
6f7a2bd4
AG
395X86:
396
9c1b96e3
AK
397Note 'irq' is an interrupt vector, not an interrupt pin or line.
398
6f7a2bd4
AG
399PPC:
400
401Queues an external interrupt to be injected. This ioctl is overleaded
402with 3 different irq values:
403
404a) KVM_INTERRUPT_SET
405
406 This injects an edge type external interrupt into the guest once it's ready
407 to receive interrupts. When injected, the interrupt is done.
408
409b) KVM_INTERRUPT_UNSET
410
411 This unsets any pending interrupt.
412
413 Only available with KVM_CAP_PPC_UNSET_IRQ.
414
415c) KVM_INTERRUPT_SET_LEVEL
416
417 This injects a level type external interrupt into the guest context. The
418 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
419 is triggered.
420
421 Only available with KVM_CAP_PPC_IRQ_LEVEL.
422
423Note that any value for 'irq' other than the ones stated above is invalid
424and incurs unexpected behavior.
425
414fa985 426
68ba6974 4274.17 KVM_DEBUG_GUEST
9c1b96e3
AK
428
429Capability: basic
430Architectures: none
431Type: vcpu ioctl
432Parameters: none)
433Returns: -1 on error
434
435Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
436
414fa985 437
68ba6974 4384.18 KVM_GET_MSRS
9c1b96e3
AK
439
440Capability: basic
441Architectures: x86
442Type: vcpu ioctl
443Parameters: struct kvm_msrs (in/out)
444Returns: 0 on success, -1 on error
445
446Reads model-specific registers from the vcpu. Supported msr indices can
447be obtained using KVM_GET_MSR_INDEX_LIST.
448
449struct kvm_msrs {
450 __u32 nmsrs; /* number of msrs in entries */
451 __u32 pad;
452
453 struct kvm_msr_entry entries[0];
454};
455
456struct kvm_msr_entry {
457 __u32 index;
458 __u32 reserved;
459 __u64 data;
460};
461
462Application code should set the 'nmsrs' member (which indicates the
463size of the entries array) and the 'index' member of each array entry.
464kvm will fill in the 'data' member.
465
414fa985 466
68ba6974 4674.19 KVM_SET_MSRS
9c1b96e3
AK
468
469Capability: basic
470Architectures: x86
471Type: vcpu ioctl
472Parameters: struct kvm_msrs (in)
473Returns: 0 on success, -1 on error
474
475Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
476data structures.
477
478Application code should set the 'nmsrs' member (which indicates the
479size of the entries array), and the 'index' and 'data' members of each
480array entry.
481
414fa985 482
68ba6974 4834.20 KVM_SET_CPUID
9c1b96e3
AK
484
485Capability: basic
486Architectures: x86
487Type: vcpu ioctl
488Parameters: struct kvm_cpuid (in)
489Returns: 0 on success, -1 on error
490
491Defines the vcpu responses to the cpuid instruction. Applications
492should use the KVM_SET_CPUID2 ioctl if available.
493
494
495struct kvm_cpuid_entry {
496 __u32 function;
497 __u32 eax;
498 __u32 ebx;
499 __u32 ecx;
500 __u32 edx;
501 __u32 padding;
502};
503
504/* for KVM_SET_CPUID */
505struct kvm_cpuid {
506 __u32 nent;
507 __u32 padding;
508 struct kvm_cpuid_entry entries[0];
509};
510
414fa985 511
68ba6974 5124.21 KVM_SET_SIGNAL_MASK
9c1b96e3
AK
513
514Capability: basic
515Architectures: x86
516Type: vcpu ioctl
517Parameters: struct kvm_signal_mask (in)
518Returns: 0 on success, -1 on error
519
520Defines which signals are blocked during execution of KVM_RUN. This
521signal mask temporarily overrides the threads signal mask. Any
522unblocked signal received (except SIGKILL and SIGSTOP, which retain
523their traditional behaviour) will cause KVM_RUN to return with -EINTR.
524
525Note the signal will only be delivered if not blocked by the original
526signal mask.
527
528/* for KVM_SET_SIGNAL_MASK */
529struct kvm_signal_mask {
530 __u32 len;
531 __u8 sigset[0];
532};
533
414fa985 534
68ba6974 5354.22 KVM_GET_FPU
9c1b96e3
AK
536
537Capability: basic
538Architectures: x86
539Type: vcpu ioctl
540Parameters: struct kvm_fpu (out)
541Returns: 0 on success, -1 on error
542
543Reads the floating point state from the vcpu.
544
545/* for KVM_GET_FPU and KVM_SET_FPU */
546struct kvm_fpu {
547 __u8 fpr[8][16];
548 __u16 fcw;
549 __u16 fsw;
550 __u8 ftwx; /* in fxsave format */
551 __u8 pad1;
552 __u16 last_opcode;
553 __u64 last_ip;
554 __u64 last_dp;
555 __u8 xmm[16][16];
556 __u32 mxcsr;
557 __u32 pad2;
558};
559
414fa985 560
68ba6974 5614.23 KVM_SET_FPU
9c1b96e3
AK
562
563Capability: basic
564Architectures: x86
565Type: vcpu ioctl
566Parameters: struct kvm_fpu (in)
567Returns: 0 on success, -1 on error
568
569Writes the floating point state to the vcpu.
570
571/* for KVM_GET_FPU and KVM_SET_FPU */
572struct kvm_fpu {
573 __u8 fpr[8][16];
574 __u16 fcw;
575 __u16 fsw;
576 __u8 ftwx; /* in fxsave format */
577 __u8 pad1;
578 __u16 last_opcode;
579 __u64 last_ip;
580 __u64 last_dp;
581 __u8 xmm[16][16];
582 __u32 mxcsr;
583 __u32 pad2;
584};
585
414fa985 586
68ba6974 5874.24 KVM_CREATE_IRQCHIP
5dadbfd6 588
84223598
CH
589Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390)
590Architectures: x86, ia64, ARM, arm64, s390
5dadbfd6
AK
591Type: vm ioctl
592Parameters: none
593Returns: 0 on success, -1 on error
594
595Creates an interrupt controller model in the kernel. On x86, creates a virtual
596ioapic, a virtual PIC (two PICs, nested), and sets up future vcpus to have a
597local APIC. IRQ routing for GSIs 0-15 is set to both PIC and IOAPIC; GSI 16-23
379e04c7 598only go to the IOAPIC. On ia64, a IOSAPIC is created. On ARM/arm64, a GIC is
84223598
CH
599created. On s390, a dummy irq routing table is created.
600
601Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
602before KVM_CREATE_IRQCHIP can be used.
5dadbfd6 603
414fa985 604
68ba6974 6054.25 KVM_IRQ_LINE
5dadbfd6
AK
606
607Capability: KVM_CAP_IRQCHIP
379e04c7 608Architectures: x86, ia64, arm, arm64
5dadbfd6
AK
609Type: vm ioctl
610Parameters: struct kvm_irq_level
611Returns: 0 on success, -1 on error
612
613Sets the level of a GSI input to the interrupt controller model in the kernel.
86ce8535
CD
614On some architectures it is required that an interrupt controller model has
615been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
616interrupts require the level to be set to 1 and then back to 0.
617
100943c5
GS
618On real hardware, interrupt pins can be active-low or active-high. This
619does not matter for the level field of struct kvm_irq_level: 1 always
620means active (asserted), 0 means inactive (deasserted).
621
622x86 allows the operating system to program the interrupt polarity
623(active-low/active-high) for level-triggered interrupts, and KVM used
624to consider the polarity. However, due to bitrot in the handling of
625active-low interrupts, the above convention is now valid on x86 too.
626This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace
627should not present interrupts to the guest as active-low unless this
628capability is present (or unless it is not using the in-kernel irqchip,
629of course).
630
631
379e04c7
MZ
632ARM/arm64 can signal an interrupt either at the CPU level, or at the
633in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
634use PPIs designated for specific cpus. The irq field is interpreted
635like this:
86ce8535
CD
636
637  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
638 field: | irq_type | vcpu_index | irq_id |
639
640The irq_type field has the following values:
641- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
642- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
643 (the vcpu_index field is ignored)
644- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
645
646(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
647
100943c5 648In both cases, level is used to assert/deassert the line.
5dadbfd6
AK
649
650struct kvm_irq_level {
651 union {
652 __u32 irq; /* GSI */
653 __s32 status; /* not used for KVM_IRQ_LEVEL */
654 };
655 __u32 level; /* 0 or 1 */
656};
657
414fa985 658
68ba6974 6594.26 KVM_GET_IRQCHIP
5dadbfd6
AK
660
661Capability: KVM_CAP_IRQCHIP
662Architectures: x86, ia64
663Type: vm ioctl
664Parameters: struct kvm_irqchip (in/out)
665Returns: 0 on success, -1 on error
666
667Reads the state of a kernel interrupt controller created with
668KVM_CREATE_IRQCHIP into a buffer provided by the caller.
669
670struct kvm_irqchip {
671 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
672 __u32 pad;
673 union {
674 char dummy[512]; /* reserving space */
675 struct kvm_pic_state pic;
676 struct kvm_ioapic_state ioapic;
677 } chip;
678};
679
414fa985 680
68ba6974 6814.27 KVM_SET_IRQCHIP
5dadbfd6
AK
682
683Capability: KVM_CAP_IRQCHIP
684Architectures: x86, ia64
685Type: vm ioctl
686Parameters: struct kvm_irqchip (in)
687Returns: 0 on success, -1 on error
688
689Sets the state of a kernel interrupt controller created with
690KVM_CREATE_IRQCHIP from a buffer provided by the caller.
691
692struct kvm_irqchip {
693 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
694 __u32 pad;
695 union {
696 char dummy[512]; /* reserving space */
697 struct kvm_pic_state pic;
698 struct kvm_ioapic_state ioapic;
699 } chip;
700};
701
414fa985 702
68ba6974 7034.28 KVM_XEN_HVM_CONFIG
ffde22ac
ES
704
705Capability: KVM_CAP_XEN_HVM
706Architectures: x86
707Type: vm ioctl
708Parameters: struct kvm_xen_hvm_config (in)
709Returns: 0 on success, -1 on error
710
711Sets the MSR that the Xen HVM guest uses to initialize its hypercall
712page, and provides the starting address and size of the hypercall
713blobs in userspace. When the guest writes the MSR, kvm copies one
714page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
715memory.
716
717struct kvm_xen_hvm_config {
718 __u32 flags;
719 __u32 msr;
720 __u64 blob_addr_32;
721 __u64 blob_addr_64;
722 __u8 blob_size_32;
723 __u8 blob_size_64;
724 __u8 pad2[30];
725};
726
414fa985 727
68ba6974 7284.29 KVM_GET_CLOCK
afbcf7ab
GC
729
730Capability: KVM_CAP_ADJUST_CLOCK
731Architectures: x86
732Type: vm ioctl
733Parameters: struct kvm_clock_data (out)
734Returns: 0 on success, -1 on error
735
736Gets the current timestamp of kvmclock as seen by the current guest. In
737conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
738such as migration.
739
740struct kvm_clock_data {
741 __u64 clock; /* kvmclock current value */
742 __u32 flags;
743 __u32 pad[9];
744};
745
414fa985 746
68ba6974 7474.30 KVM_SET_CLOCK
afbcf7ab
GC
748
749Capability: KVM_CAP_ADJUST_CLOCK
750Architectures: x86
751Type: vm ioctl
752Parameters: struct kvm_clock_data (in)
753Returns: 0 on success, -1 on error
754
2044892d 755Sets the current timestamp of kvmclock to the value specified in its parameter.
afbcf7ab
GC
756In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
757such as migration.
758
759struct kvm_clock_data {
760 __u64 clock; /* kvmclock current value */
761 __u32 flags;
762 __u32 pad[9];
763};
764
414fa985 765
68ba6974 7664.31 KVM_GET_VCPU_EVENTS
3cfc3092
JK
767
768Capability: KVM_CAP_VCPU_EVENTS
48005f64 769Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
770Architectures: x86
771Type: vm ioctl
772Parameters: struct kvm_vcpu_event (out)
773Returns: 0 on success, -1 on error
774
775Gets currently pending exceptions, interrupts, and NMIs as well as related
776states of the vcpu.
777
778struct kvm_vcpu_events {
779 struct {
780 __u8 injected;
781 __u8 nr;
782 __u8 has_error_code;
783 __u8 pad;
784 __u32 error_code;
785 } exception;
786 struct {
787 __u8 injected;
788 __u8 nr;
789 __u8 soft;
48005f64 790 __u8 shadow;
3cfc3092
JK
791 } interrupt;
792 struct {
793 __u8 injected;
794 __u8 pending;
795 __u8 masked;
796 __u8 pad;
797 } nmi;
798 __u32 sipi_vector;
dab4b911 799 __u32 flags;
3cfc3092
JK
800};
801
48005f64
JK
802KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
803interrupt.shadow contains a valid state. Otherwise, this field is undefined.
804
414fa985 805
68ba6974 8064.32 KVM_SET_VCPU_EVENTS
3cfc3092
JK
807
808Capability: KVM_CAP_VCPU_EVENTS
48005f64 809Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
810Architectures: x86
811Type: vm ioctl
812Parameters: struct kvm_vcpu_event (in)
813Returns: 0 on success, -1 on error
814
815Set pending exceptions, interrupts, and NMIs as well as related states of the
816vcpu.
817
818See KVM_GET_VCPU_EVENTS for the data structure.
819
dab4b911
JK
820Fields that may be modified asynchronously by running VCPUs can be excluded
821from the update. These fields are nmi.pending and sipi_vector. Keep the
822corresponding bits in the flags field cleared to suppress overwriting the
823current in-kernel state. The bits are:
824
825KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
826KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
827
48005f64
JK
828If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
829the flags field to signal that interrupt.shadow contains a valid state and
830shall be written into the VCPU.
831
414fa985 832
68ba6974 8334.33 KVM_GET_DEBUGREGS
a1efbe77
JK
834
835Capability: KVM_CAP_DEBUGREGS
836Architectures: x86
837Type: vm ioctl
838Parameters: struct kvm_debugregs (out)
839Returns: 0 on success, -1 on error
840
841Reads debug registers from the vcpu.
842
843struct kvm_debugregs {
844 __u64 db[4];
845 __u64 dr6;
846 __u64 dr7;
847 __u64 flags;
848 __u64 reserved[9];
849};
850
414fa985 851
68ba6974 8524.34 KVM_SET_DEBUGREGS
a1efbe77
JK
853
854Capability: KVM_CAP_DEBUGREGS
855Architectures: x86
856Type: vm ioctl
857Parameters: struct kvm_debugregs (in)
858Returns: 0 on success, -1 on error
859
860Writes debug registers into the vcpu.
861
862See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
863yet and must be cleared on entry.
864
414fa985 865
68ba6974 8664.35 KVM_SET_USER_MEMORY_REGION
0f2d8f4d
AK
867
868Capability: KVM_CAP_USER_MEM
869Architectures: all
870Type: vm ioctl
871Parameters: struct kvm_userspace_memory_region (in)
872Returns: 0 on success, -1 on error
873
874struct kvm_userspace_memory_region {
875 __u32 slot;
876 __u32 flags;
877 __u64 guest_phys_addr;
878 __u64 memory_size; /* bytes */
879 __u64 userspace_addr; /* start of the userspace allocated memory */
880};
881
882/* for kvm_memory_region::flags */
4d8b81ab
XG
883#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
884#define KVM_MEM_READONLY (1UL << 1)
0f2d8f4d
AK
885
886This ioctl allows the user to create or modify a guest physical memory
887slot. When changing an existing slot, it may be moved in the guest
888physical memory space, or its flags may be modified. It may not be
889resized. Slots may not overlap in guest physical address space.
890
891Memory for the region is taken starting at the address denoted by the
892field userspace_addr, which must point at user addressable memory for
893the entire memory slot size. Any object may back this memory, including
894anonymous memory, ordinary files, and hugetlbfs.
895
896It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
897be identical. This allows large pages in the guest to be backed by large
898pages in the host.
899
75d61fbc
TY
900The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
901KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
902writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
903use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
904to make a new slot read-only. In this case, writes to this memory will be
905posted to userspace as KVM_EXIT_MMIO exits.
7efd8fa1
JK
906
907When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
908the memory region are automatically reflected into the guest. For example, an
909mmap() that affects the region will be made visible immediately. Another
910example is madvise(MADV_DROP).
0f2d8f4d
AK
911
912It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
913The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
914allocation and is deprecated.
3cfc3092 915
414fa985 916
68ba6974 9174.36 KVM_SET_TSS_ADDR
8a5416db
AK
918
919Capability: KVM_CAP_SET_TSS_ADDR
920Architectures: x86
921Type: vm ioctl
922Parameters: unsigned long tss_address (in)
923Returns: 0 on success, -1 on error
924
925This ioctl defines the physical address of a three-page region in the guest
926physical address space. The region must be within the first 4GB of the
927guest physical address space and must not conflict with any memory slot
928or any mmio address. The guest may malfunction if it accesses this memory
929region.
930
931This ioctl is required on Intel-based hosts. This is needed on Intel hardware
932because of a quirk in the virtualization implementation (see the internals
933documentation when it pops into existence).
934
414fa985 935
68ba6974 9364.37 KVM_ENABLE_CAP
71fbfd5f 937
d938dc55 938Capability: KVM_CAP_ENABLE_CAP, KVM_CAP_ENABLE_CAP_VM
d6712df9 939Architectures: ppc, s390
d938dc55 940Type: vcpu ioctl, vm ioctl (with KVM_CAP_ENABLE_CAP_VM)
71fbfd5f
AG
941Parameters: struct kvm_enable_cap (in)
942Returns: 0 on success; -1 on error
943
944+Not all extensions are enabled by default. Using this ioctl the application
945can enable an extension, making it available to the guest.
946
947On systems that do not support this ioctl, it always fails. On systems that
948do support it, it only works for extensions that are supported for enablement.
949
950To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
951be used.
952
953struct kvm_enable_cap {
954 /* in */
955 __u32 cap;
956
957The capability that is supposed to get enabled.
958
959 __u32 flags;
960
961A bitfield indicating future enhancements. Has to be 0 for now.
962
963 __u64 args[4];
964
965Arguments for enabling a feature. If a feature needs initial values to
966function properly, this is the place to put them.
967
968 __u8 pad[64];
969};
970
d938dc55
CH
971The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl
972for vm-wide capabilities.
414fa985 973
68ba6974 9744.38 KVM_GET_MP_STATE
b843f065
AK
975
976Capability: KVM_CAP_MP_STATE
977Architectures: x86, ia64
978Type: vcpu ioctl
979Parameters: struct kvm_mp_state (out)
980Returns: 0 on success; -1 on error
981
982struct kvm_mp_state {
983 __u32 mp_state;
984};
985
986Returns the vcpu's current "multiprocessing state" (though also valid on
987uniprocessor guests).
988
989Possible values are:
990
991 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running
992 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
993 which has not yet received an INIT signal
994 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
995 now ready for a SIPI
996 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
997 is waiting for an interrupt
998 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
b595076a 999 accessible via KVM_GET_VCPU_EVENTS)
b843f065
AK
1000
1001This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
1002irqchip, the multiprocessing state must be maintained by userspace.
1003
414fa985 1004
68ba6974 10054.39 KVM_SET_MP_STATE
b843f065
AK
1006
1007Capability: KVM_CAP_MP_STATE
1008Architectures: x86, ia64
1009Type: vcpu ioctl
1010Parameters: struct kvm_mp_state (in)
1011Returns: 0 on success; -1 on error
1012
1013Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1014arguments.
1015
1016This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
1017irqchip, the multiprocessing state must be maintained by userspace.
1018
414fa985 1019
68ba6974 10204.40 KVM_SET_IDENTITY_MAP_ADDR
47dbb84f
AK
1021
1022Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1023Architectures: x86
1024Type: vm ioctl
1025Parameters: unsigned long identity (in)
1026Returns: 0 on success, -1 on error
1027
1028This ioctl defines the physical address of a one-page region in the guest
1029physical address space. The region must be within the first 4GB of the
1030guest physical address space and must not conflict with any memory slot
1031or any mmio address. The guest may malfunction if it accesses this memory
1032region.
1033
1034This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1035because of a quirk in the virtualization implementation (see the internals
1036documentation when it pops into existence).
1037
414fa985 1038
68ba6974 10394.41 KVM_SET_BOOT_CPU_ID
57bc24cf
AK
1040
1041Capability: KVM_CAP_SET_BOOT_CPU_ID
1042Architectures: x86, ia64
1043Type: vm ioctl
1044Parameters: unsigned long vcpu_id
1045Returns: 0 on success, -1 on error
1046
1047Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1048as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1049is vcpu 0.
1050
414fa985 1051
68ba6974 10524.42 KVM_GET_XSAVE
2d5b5a66
SY
1053
1054Capability: KVM_CAP_XSAVE
1055Architectures: x86
1056Type: vcpu ioctl
1057Parameters: struct kvm_xsave (out)
1058Returns: 0 on success, -1 on error
1059
1060struct kvm_xsave {
1061 __u32 region[1024];
1062};
1063
1064This ioctl would copy current vcpu's xsave struct to the userspace.
1065
414fa985 1066
68ba6974 10674.43 KVM_SET_XSAVE
2d5b5a66
SY
1068
1069Capability: KVM_CAP_XSAVE
1070Architectures: x86
1071Type: vcpu ioctl
1072Parameters: struct kvm_xsave (in)
1073Returns: 0 on success, -1 on error
1074
1075struct kvm_xsave {
1076 __u32 region[1024];
1077};
1078
1079This ioctl would copy userspace's xsave struct to the kernel.
1080
414fa985 1081
68ba6974 10824.44 KVM_GET_XCRS
2d5b5a66
SY
1083
1084Capability: KVM_CAP_XCRS
1085Architectures: x86
1086Type: vcpu ioctl
1087Parameters: struct kvm_xcrs (out)
1088Returns: 0 on success, -1 on error
1089
1090struct kvm_xcr {
1091 __u32 xcr;
1092 __u32 reserved;
1093 __u64 value;
1094};
1095
1096struct kvm_xcrs {
1097 __u32 nr_xcrs;
1098 __u32 flags;
1099 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1100 __u64 padding[16];
1101};
1102
1103This ioctl would copy current vcpu's xcrs to the userspace.
1104
414fa985 1105
68ba6974 11064.45 KVM_SET_XCRS
2d5b5a66
SY
1107
1108Capability: KVM_CAP_XCRS
1109Architectures: x86
1110Type: vcpu ioctl
1111Parameters: struct kvm_xcrs (in)
1112Returns: 0 on success, -1 on error
1113
1114struct kvm_xcr {
1115 __u32 xcr;
1116 __u32 reserved;
1117 __u64 value;
1118};
1119
1120struct kvm_xcrs {
1121 __u32 nr_xcrs;
1122 __u32 flags;
1123 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1124 __u64 padding[16];
1125};
1126
1127This ioctl would set vcpu's xcr to the value userspace specified.
1128
414fa985 1129
68ba6974 11304.46 KVM_GET_SUPPORTED_CPUID
d153513d
AK
1131
1132Capability: KVM_CAP_EXT_CPUID
1133Architectures: x86
1134Type: system ioctl
1135Parameters: struct kvm_cpuid2 (in/out)
1136Returns: 0 on success, -1 on error
1137
1138struct kvm_cpuid2 {
1139 __u32 nent;
1140 __u32 padding;
1141 struct kvm_cpuid_entry2 entries[0];
1142};
1143
9c15bb1d
BP
1144#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
1145#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
1146#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
d153513d
AK
1147
1148struct kvm_cpuid_entry2 {
1149 __u32 function;
1150 __u32 index;
1151 __u32 flags;
1152 __u32 eax;
1153 __u32 ebx;
1154 __u32 ecx;
1155 __u32 edx;
1156 __u32 padding[3];
1157};
1158
1159This ioctl returns x86 cpuid features which are supported by both the hardware
1160and kvm. Userspace can use the information returned by this ioctl to
1161construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1162hardware, kernel, and userspace capabilities, and with user requirements (for
1163example, the user may wish to constrain cpuid to emulate older hardware,
1164or for feature consistency across a cluster).
1165
1166Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1167with the 'nent' field indicating the number of entries in the variable-size
1168array 'entries'. If the number of entries is too low to describe the cpu
1169capabilities, an error (E2BIG) is returned. If the number is too high,
1170the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1171number is just right, the 'nent' field is adjusted to the number of valid
1172entries in the 'entries' array, which is then filled.
1173
1174The entries returned are the host cpuid as returned by the cpuid instruction,
c39cbd2a
AK
1175with unknown or unsupported features masked out. Some features (for example,
1176x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1177emulate them efficiently. The fields in each entry are defined as follows:
d153513d
AK
1178
1179 function: the eax value used to obtain the entry
1180 index: the ecx value used to obtain the entry (for entries that are
1181 affected by ecx)
1182 flags: an OR of zero or more of the following:
1183 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1184 if the index field is valid
1185 KVM_CPUID_FLAG_STATEFUL_FUNC:
1186 if cpuid for this function returns different values for successive
1187 invocations; there will be several entries with the same function,
1188 all with this flag set
1189 KVM_CPUID_FLAG_STATE_READ_NEXT:
1190 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1191 the first entry to be read by a cpu
1192 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1193 this function/index combination
1194
4d25a066
JK
1195The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1196as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1197support. Instead it is reported via
1198
1199 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1200
1201if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1202feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1203
414fa985 1204
68ba6974 12054.47 KVM_PPC_GET_PVINFO
15711e9c
AG
1206
1207Capability: KVM_CAP_PPC_GET_PVINFO
1208Architectures: ppc
1209Type: vm ioctl
1210Parameters: struct kvm_ppc_pvinfo (out)
1211Returns: 0 on success, !0 on error
1212
1213struct kvm_ppc_pvinfo {
1214 __u32 flags;
1215 __u32 hcall[4];
1216 __u8 pad[108];
1217};
1218
1219This ioctl fetches PV specific information that need to be passed to the guest
1220using the device tree or other means from vm context.
1221
9202e076 1222The hcall array defines 4 instructions that make up a hypercall.
15711e9c
AG
1223
1224If any additional field gets added to this structure later on, a bit for that
1225additional piece of information will be set in the flags bitmap.
1226
9202e076
LYB
1227The flags bitmap is defined as:
1228
1229 /* the host supports the ePAPR idle hcall
1230 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
414fa985 1231
68ba6974 12324.48 KVM_ASSIGN_PCI_DEVICE
49f48172
JK
1233
1234Capability: KVM_CAP_DEVICE_ASSIGNMENT
1235Architectures: x86 ia64
1236Type: vm ioctl
1237Parameters: struct kvm_assigned_pci_dev (in)
1238Returns: 0 on success, -1 on error
1239
1240Assigns a host PCI device to the VM.
1241
1242struct kvm_assigned_pci_dev {
1243 __u32 assigned_dev_id;
1244 __u32 busnr;
1245 __u32 devfn;
1246 __u32 flags;
1247 __u32 segnr;
1248 union {
1249 __u32 reserved[11];
1250 };
1251};
1252
1253The PCI device is specified by the triple segnr, busnr, and devfn.
1254Identification in succeeding service requests is done via assigned_dev_id. The
1255following flags are specified:
1256
1257/* Depends on KVM_CAP_IOMMU */
1258#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
07700a94
JK
1259/* The following two depend on KVM_CAP_PCI_2_3 */
1260#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
1261#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
1262
1263If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
1264via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
1265assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
1266guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
49f48172 1267
42387373
AW
1268The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
1269isolation of the device. Usages not specifying this flag are deprecated.
1270
3d27e23b
AW
1271Only PCI header type 0 devices with PCI BAR resources are supported by
1272device assignment. The user requesting this ioctl must have read/write
1273access to the PCI sysfs resource files associated with the device.
1274
414fa985 1275
68ba6974 12764.49 KVM_DEASSIGN_PCI_DEVICE
49f48172
JK
1277
1278Capability: KVM_CAP_DEVICE_DEASSIGNMENT
1279Architectures: x86 ia64
1280Type: vm ioctl
1281Parameters: struct kvm_assigned_pci_dev (in)
1282Returns: 0 on success, -1 on error
1283
1284Ends PCI device assignment, releasing all associated resources.
1285
1286See KVM_CAP_DEVICE_ASSIGNMENT for the data structure. Only assigned_dev_id is
1287used in kvm_assigned_pci_dev to identify the device.
1288
414fa985 1289
68ba6974 12904.50 KVM_ASSIGN_DEV_IRQ
49f48172
JK
1291
1292Capability: KVM_CAP_ASSIGN_DEV_IRQ
1293Architectures: x86 ia64
1294Type: vm ioctl
1295Parameters: struct kvm_assigned_irq (in)
1296Returns: 0 on success, -1 on error
1297
1298Assigns an IRQ to a passed-through device.
1299
1300struct kvm_assigned_irq {
1301 __u32 assigned_dev_id;
91e3d71d 1302 __u32 host_irq; /* ignored (legacy field) */
49f48172
JK
1303 __u32 guest_irq;
1304 __u32 flags;
1305 union {
49f48172
JK
1306 __u32 reserved[12];
1307 };
1308};
1309
1310The following flags are defined:
1311
1312#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
1313#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
1314#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
1315
1316#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
1317#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
1318#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
1319
1320It is not valid to specify multiple types per host or guest IRQ. However, the
1321IRQ type of host and guest can differ or can even be null.
1322
414fa985 1323
68ba6974 13244.51 KVM_DEASSIGN_DEV_IRQ
49f48172
JK
1325
1326Capability: KVM_CAP_ASSIGN_DEV_IRQ
1327Architectures: x86 ia64
1328Type: vm ioctl
1329Parameters: struct kvm_assigned_irq (in)
1330Returns: 0 on success, -1 on error
1331
1332Ends an IRQ assignment to a passed-through device.
1333
1334See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1335by assigned_dev_id, flags must correspond to the IRQ type specified on
1336KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
1337
414fa985 1338
68ba6974 13394.52 KVM_SET_GSI_ROUTING
49f48172
JK
1340
1341Capability: KVM_CAP_IRQ_ROUTING
84223598 1342Architectures: x86 ia64 s390
49f48172
JK
1343Type: vm ioctl
1344Parameters: struct kvm_irq_routing (in)
1345Returns: 0 on success, -1 on error
1346
1347Sets the GSI routing table entries, overwriting any previously set entries.
1348
1349struct kvm_irq_routing {
1350 __u32 nr;
1351 __u32 flags;
1352 struct kvm_irq_routing_entry entries[0];
1353};
1354
1355No flags are specified so far, the corresponding field must be set to zero.
1356
1357struct kvm_irq_routing_entry {
1358 __u32 gsi;
1359 __u32 type;
1360 __u32 flags;
1361 __u32 pad;
1362 union {
1363 struct kvm_irq_routing_irqchip irqchip;
1364 struct kvm_irq_routing_msi msi;
84223598 1365 struct kvm_irq_routing_s390_adapter adapter;
49f48172
JK
1366 __u32 pad[8];
1367 } u;
1368};
1369
1370/* gsi routing entry types */
1371#define KVM_IRQ_ROUTING_IRQCHIP 1
1372#define KVM_IRQ_ROUTING_MSI 2
84223598 1373#define KVM_IRQ_ROUTING_S390_ADAPTER 3
49f48172
JK
1374
1375No flags are specified so far, the corresponding field must be set to zero.
1376
1377struct kvm_irq_routing_irqchip {
1378 __u32 irqchip;
1379 __u32 pin;
1380};
1381
1382struct kvm_irq_routing_msi {
1383 __u32 address_lo;
1384 __u32 address_hi;
1385 __u32 data;
1386 __u32 pad;
1387};
1388
84223598
CH
1389struct kvm_irq_routing_s390_adapter {
1390 __u64 ind_addr;
1391 __u64 summary_addr;
1392 __u64 ind_offset;
1393 __u32 summary_offset;
1394 __u32 adapter_id;
1395};
1396
414fa985 1397
68ba6974 13984.53 KVM_ASSIGN_SET_MSIX_NR
49f48172
JK
1399
1400Capability: KVM_CAP_DEVICE_MSIX
1401Architectures: x86 ia64
1402Type: vm ioctl
1403Parameters: struct kvm_assigned_msix_nr (in)
1404Returns: 0 on success, -1 on error
1405
58f0964e
JK
1406Set the number of MSI-X interrupts for an assigned device. The number is
1407reset again by terminating the MSI-X assignment of the device via
1408KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
1409point will fail.
49f48172
JK
1410
1411struct kvm_assigned_msix_nr {
1412 __u32 assigned_dev_id;
1413 __u16 entry_nr;
1414 __u16 padding;
1415};
1416
1417#define KVM_MAX_MSIX_PER_DEV 256
1418
414fa985 1419
68ba6974 14204.54 KVM_ASSIGN_SET_MSIX_ENTRY
49f48172
JK
1421
1422Capability: KVM_CAP_DEVICE_MSIX
1423Architectures: x86 ia64
1424Type: vm ioctl
1425Parameters: struct kvm_assigned_msix_entry (in)
1426Returns: 0 on success, -1 on error
1427
1428Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
1429the GSI vector to zero means disabling the interrupt.
1430
1431struct kvm_assigned_msix_entry {
1432 __u32 assigned_dev_id;
1433 __u32 gsi;
1434 __u16 entry; /* The index of entry in the MSI-X table */
1435 __u16 padding[3];
1436};
1437
414fa985
JK
1438
14394.55 KVM_SET_TSC_KHZ
92a1f12d
JR
1440
1441Capability: KVM_CAP_TSC_CONTROL
1442Architectures: x86
1443Type: vcpu ioctl
1444Parameters: virtual tsc_khz
1445Returns: 0 on success, -1 on error
1446
1447Specifies the tsc frequency for the virtual machine. The unit of the
1448frequency is KHz.
1449
414fa985
JK
1450
14514.56 KVM_GET_TSC_KHZ
92a1f12d
JR
1452
1453Capability: KVM_CAP_GET_TSC_KHZ
1454Architectures: x86
1455Type: vcpu ioctl
1456Parameters: none
1457Returns: virtual tsc-khz on success, negative value on error
1458
1459Returns the tsc frequency of the guest. The unit of the return value is
1460KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1461error.
1462
414fa985
JK
1463
14644.57 KVM_GET_LAPIC
e7677933
AK
1465
1466Capability: KVM_CAP_IRQCHIP
1467Architectures: x86
1468Type: vcpu ioctl
1469Parameters: struct kvm_lapic_state (out)
1470Returns: 0 on success, -1 on error
1471
1472#define KVM_APIC_REG_SIZE 0x400
1473struct kvm_lapic_state {
1474 char regs[KVM_APIC_REG_SIZE];
1475};
1476
1477Reads the Local APIC registers and copies them into the input argument. The
1478data format and layout are the same as documented in the architecture manual.
1479
414fa985
JK
1480
14814.58 KVM_SET_LAPIC
e7677933
AK
1482
1483Capability: KVM_CAP_IRQCHIP
1484Architectures: x86
1485Type: vcpu ioctl
1486Parameters: struct kvm_lapic_state (in)
1487Returns: 0 on success, -1 on error
1488
1489#define KVM_APIC_REG_SIZE 0x400
1490struct kvm_lapic_state {
1491 char regs[KVM_APIC_REG_SIZE];
1492};
1493
df5cbb27 1494Copies the input argument into the Local APIC registers. The data format
e7677933
AK
1495and layout are the same as documented in the architecture manual.
1496
414fa985
JK
1497
14984.59 KVM_IOEVENTFD
55399a02
SL
1499
1500Capability: KVM_CAP_IOEVENTFD
1501Architectures: all
1502Type: vm ioctl
1503Parameters: struct kvm_ioeventfd (in)
1504Returns: 0 on success, !0 on error
1505
1506This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1507within the guest. A guest write in the registered address will signal the
1508provided event instead of triggering an exit.
1509
1510struct kvm_ioeventfd {
1511 __u64 datamatch;
1512 __u64 addr; /* legal pio/mmio address */
1513 __u32 len; /* 1, 2, 4, or 8 bytes */
1514 __s32 fd;
1515 __u32 flags;
1516 __u8 pad[36];
1517};
1518
2b83451b
CH
1519For the special case of virtio-ccw devices on s390, the ioevent is matched
1520to a subchannel/virtqueue tuple instead.
1521
55399a02
SL
1522The following flags are defined:
1523
1524#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1525#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1526#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
2b83451b
CH
1527#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
1528 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
55399a02
SL
1529
1530If datamatch flag is set, the event will be signaled only if the written value
1531to the registered address is equal to datamatch in struct kvm_ioeventfd.
1532
2b83451b
CH
1533For virtio-ccw devices, addr contains the subchannel id and datamatch the
1534virtqueue index.
1535
414fa985
JK
1536
15374.60 KVM_DIRTY_TLB
dc83b8bc
SW
1538
1539Capability: KVM_CAP_SW_TLB
1540Architectures: ppc
1541Type: vcpu ioctl
1542Parameters: struct kvm_dirty_tlb (in)
1543Returns: 0 on success, -1 on error
1544
1545struct kvm_dirty_tlb {
1546 __u64 bitmap;
1547 __u32 num_dirty;
1548};
1549
1550This must be called whenever userspace has changed an entry in the shared
1551TLB, prior to calling KVM_RUN on the associated vcpu.
1552
1553The "bitmap" field is the userspace address of an array. This array
1554consists of a number of bits, equal to the total number of TLB entries as
1555determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1556nearest multiple of 64.
1557
1558Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1559array.
1560
1561The array is little-endian: the bit 0 is the least significant bit of the
1562first byte, bit 8 is the least significant bit of the second byte, etc.
1563This avoids any complications with differing word sizes.
1564
1565The "num_dirty" field is a performance hint for KVM to determine whether it
1566should skip processing the bitmap and just invalidate everything. It must
1567be set to the number of set bits in the bitmap.
1568
414fa985
JK
1569
15704.61 KVM_ASSIGN_SET_INTX_MASK
07700a94
JK
1571
1572Capability: KVM_CAP_PCI_2_3
1573Architectures: x86
1574Type: vm ioctl
1575Parameters: struct kvm_assigned_pci_dev (in)
1576Returns: 0 on success, -1 on error
1577
1578Allows userspace to mask PCI INTx interrupts from the assigned device. The
1579kernel will not deliver INTx interrupts to the guest between setting and
1580clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
1581and emulation of PCI 2.3 INTx disable command register behavior.
1582
1583This may be used for both PCI 2.3 devices supporting INTx disable natively and
1584older devices lacking this support. Userspace is responsible for emulating the
1585read value of the INTx disable bit in the guest visible PCI command register.
1586When modifying the INTx disable state, userspace should precede updating the
1587physical device command register by calling this ioctl to inform the kernel of
1588the new intended INTx mask state.
1589
1590Note that the kernel uses the device INTx disable bit to internally manage the
1591device interrupt state for PCI 2.3 devices. Reads of this register may
1592therefore not match the expected value. Writes should always use the guest
1593intended INTx disable value rather than attempting to read-copy-update the
1594current physical device state. Races between user and kernel updates to the
1595INTx disable bit are handled lazily in the kernel. It's possible the device
1596may generate unintended interrupts, but they will not be injected into the
1597guest.
1598
1599See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1600by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
1601evaluated.
1602
414fa985 1603
54738c09
DG
16044.62 KVM_CREATE_SPAPR_TCE
1605
1606Capability: KVM_CAP_SPAPR_TCE
1607Architectures: powerpc
1608Type: vm ioctl
1609Parameters: struct kvm_create_spapr_tce (in)
1610Returns: file descriptor for manipulating the created TCE table
1611
1612This creates a virtual TCE (translation control entry) table, which
1613is an IOMMU for PAPR-style virtual I/O. It is used to translate
1614logical addresses used in virtual I/O into guest physical addresses,
1615and provides a scatter/gather capability for PAPR virtual I/O.
1616
1617/* for KVM_CAP_SPAPR_TCE */
1618struct kvm_create_spapr_tce {
1619 __u64 liobn;
1620 __u32 window_size;
1621};
1622
1623The liobn field gives the logical IO bus number for which to create a
1624TCE table. The window_size field specifies the size of the DMA window
1625which this TCE table will translate - the table will contain one 64
1626bit TCE entry for every 4kiB of the DMA window.
1627
1628When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1629table has been created using this ioctl(), the kernel will handle it
1630in real mode, updating the TCE table. H_PUT_TCE calls for other
1631liobns will cause a vm exit and must be handled by userspace.
1632
1633The return value is a file descriptor which can be passed to mmap(2)
1634to map the created TCE table into userspace. This lets userspace read
1635the entries written by kernel-handled H_PUT_TCE calls, and also lets
1636userspace update the TCE table directly which is useful in some
1637circumstances.
1638
414fa985 1639
aa04b4cc
PM
16404.63 KVM_ALLOCATE_RMA
1641
1642Capability: KVM_CAP_PPC_RMA
1643Architectures: powerpc
1644Type: vm ioctl
1645Parameters: struct kvm_allocate_rma (out)
1646Returns: file descriptor for mapping the allocated RMA
1647
1648This allocates a Real Mode Area (RMA) from the pool allocated at boot
1649time by the kernel. An RMA is a physically-contiguous, aligned region
1650of memory used on older POWER processors to provide the memory which
1651will be accessed by real-mode (MMU off) accesses in a KVM guest.
1652POWER processors support a set of sizes for the RMA that usually
1653includes 64MB, 128MB, 256MB and some larger powers of two.
1654
1655/* for KVM_ALLOCATE_RMA */
1656struct kvm_allocate_rma {
1657 __u64 rma_size;
1658};
1659
1660The return value is a file descriptor which can be passed to mmap(2)
1661to map the allocated RMA into userspace. The mapped area can then be
1662passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1663RMA for a virtual machine. The size of the RMA in bytes (which is
1664fixed at host kernel boot time) is returned in the rma_size field of
1665the argument structure.
1666
1667The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1668is supported; 2 if the processor requires all virtual machines to have
1669an RMA, or 1 if the processor can use an RMA but doesn't require it,
1670because it supports the Virtual RMA (VRMA) facility.
1671
414fa985 1672
3f745f1e
AK
16734.64 KVM_NMI
1674
1675Capability: KVM_CAP_USER_NMI
1676Architectures: x86
1677Type: vcpu ioctl
1678Parameters: none
1679Returns: 0 on success, -1 on error
1680
1681Queues an NMI on the thread's vcpu. Note this is well defined only
1682when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1683between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1684has been called, this interface is completely emulated within the kernel.
1685
1686To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1687following algorithm:
1688
1689 - pause the vpcu
1690 - read the local APIC's state (KVM_GET_LAPIC)
1691 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1692 - if so, issue KVM_NMI
1693 - resume the vcpu
1694
1695Some guests configure the LINT1 NMI input to cause a panic, aiding in
1696debugging.
1697
414fa985 1698
e24ed81f 16994.65 KVM_S390_UCAS_MAP
27e0393f
CO
1700
1701Capability: KVM_CAP_S390_UCONTROL
1702Architectures: s390
1703Type: vcpu ioctl
1704Parameters: struct kvm_s390_ucas_mapping (in)
1705Returns: 0 in case of success
1706
1707The parameter is defined like this:
1708 struct kvm_s390_ucas_mapping {
1709 __u64 user_addr;
1710 __u64 vcpu_addr;
1711 __u64 length;
1712 };
1713
1714This ioctl maps the memory at "user_addr" with the length "length" to
1715the vcpu's address space starting at "vcpu_addr". All parameters need to
f884ab15 1716be aligned by 1 megabyte.
27e0393f 1717
414fa985 1718
e24ed81f 17194.66 KVM_S390_UCAS_UNMAP
27e0393f
CO
1720
1721Capability: KVM_CAP_S390_UCONTROL
1722Architectures: s390
1723Type: vcpu ioctl
1724Parameters: struct kvm_s390_ucas_mapping (in)
1725Returns: 0 in case of success
1726
1727The parameter is defined like this:
1728 struct kvm_s390_ucas_mapping {
1729 __u64 user_addr;
1730 __u64 vcpu_addr;
1731 __u64 length;
1732 };
1733
1734This ioctl unmaps the memory in the vcpu's address space starting at
1735"vcpu_addr" with the length "length". The field "user_addr" is ignored.
f884ab15 1736All parameters need to be aligned by 1 megabyte.
27e0393f 1737
414fa985 1738
e24ed81f 17394.67 KVM_S390_VCPU_FAULT
ccc7910f
CO
1740
1741Capability: KVM_CAP_S390_UCONTROL
1742Architectures: s390
1743Type: vcpu ioctl
1744Parameters: vcpu absolute address (in)
1745Returns: 0 in case of success
1746
1747This call creates a page table entry on the virtual cpu's address space
1748(for user controlled virtual machines) or the virtual machine's address
1749space (for regular virtual machines). This only works for minor faults,
1750thus it's recommended to access subject memory page via the user page
1751table upfront. This is useful to handle validity intercepts for user
1752controlled virtual machines to fault in the virtual cpu's lowcore pages
1753prior to calling the KVM_RUN ioctl.
1754
414fa985 1755
e24ed81f
AG
17564.68 KVM_SET_ONE_REG
1757
1758Capability: KVM_CAP_ONE_REG
1759Architectures: all
1760Type: vcpu ioctl
1761Parameters: struct kvm_one_reg (in)
1762Returns: 0 on success, negative value on failure
1763
1764struct kvm_one_reg {
1765 __u64 id;
1766 __u64 addr;
1767};
1768
1769Using this ioctl, a single vcpu register can be set to a specific value
1770defined by user space with the passed in struct kvm_one_reg, where id
1771refers to the register identifier as described below and addr is a pointer
1772to a variable with the respective size. There can be architecture agnostic
1773and architecture specific registers. Each have their own range of operation
1774and their own constants and width. To keep track of the implemented
1775registers, find a list below:
1776
1777 Arch | Register | Width (bits)
1778 | |
1022fc3d 1779 PPC | KVM_REG_PPC_HIOR | 64
2e232702
BB
1780 PPC | KVM_REG_PPC_IAC1 | 64
1781 PPC | KVM_REG_PPC_IAC2 | 64
1782 PPC | KVM_REG_PPC_IAC3 | 64
1783 PPC | KVM_REG_PPC_IAC4 | 64
1784 PPC | KVM_REG_PPC_DAC1 | 64
1785 PPC | KVM_REG_PPC_DAC2 | 64
a136a8bd
PM
1786 PPC | KVM_REG_PPC_DABR | 64
1787 PPC | KVM_REG_PPC_DSCR | 64
1788 PPC | KVM_REG_PPC_PURR | 64
1789 PPC | KVM_REG_PPC_SPURR | 64
1790 PPC | KVM_REG_PPC_DAR | 64
1791 PPC | KVM_REG_PPC_DSISR | 32
1792 PPC | KVM_REG_PPC_AMR | 64
1793 PPC | KVM_REG_PPC_UAMOR | 64
1794 PPC | KVM_REG_PPC_MMCR0 | 64
1795 PPC | KVM_REG_PPC_MMCR1 | 64
1796 PPC | KVM_REG_PPC_MMCRA | 64
2f9c6943
PM
1797 PPC | KVM_REG_PPC_MMCR2 | 64
1798 PPC | KVM_REG_PPC_MMCRS | 64
1799 PPC | KVM_REG_PPC_SIAR | 64
1800 PPC | KVM_REG_PPC_SDAR | 64
1801 PPC | KVM_REG_PPC_SIER | 64
a136a8bd
PM
1802 PPC | KVM_REG_PPC_PMC1 | 32
1803 PPC | KVM_REG_PPC_PMC2 | 32
1804 PPC | KVM_REG_PPC_PMC3 | 32
1805 PPC | KVM_REG_PPC_PMC4 | 32
1806 PPC | KVM_REG_PPC_PMC5 | 32
1807 PPC | KVM_REG_PPC_PMC6 | 32
1808 PPC | KVM_REG_PPC_PMC7 | 32
1809 PPC | KVM_REG_PPC_PMC8 | 32
a8bd19ef
PM
1810 PPC | KVM_REG_PPC_FPR0 | 64
1811 ...
1812 PPC | KVM_REG_PPC_FPR31 | 64
1813 PPC | KVM_REG_PPC_VR0 | 128
1814 ...
1815 PPC | KVM_REG_PPC_VR31 | 128
1816 PPC | KVM_REG_PPC_VSR0 | 128
1817 ...
1818 PPC | KVM_REG_PPC_VSR31 | 128
1819 PPC | KVM_REG_PPC_FPSCR | 64
1820 PPC | KVM_REG_PPC_VSCR | 32
55b665b0
PM
1821 PPC | KVM_REG_PPC_VPA_ADDR | 64
1822 PPC | KVM_REG_PPC_VPA_SLB | 128
1823 PPC | KVM_REG_PPC_VPA_DTL | 128
352df1de 1824 PPC | KVM_REG_PPC_EPCR | 32
324b3e63 1825 PPC | KVM_REG_PPC_EPR | 32
78accda4
BB
1826 PPC | KVM_REG_PPC_TCR | 32
1827 PPC | KVM_REG_PPC_TSR | 32
1828 PPC | KVM_REG_PPC_OR_TSR | 32
1829 PPC | KVM_REG_PPC_CLEAR_TSR | 32
a85d2aa2
MC
1830 PPC | KVM_REG_PPC_MAS0 | 32
1831 PPC | KVM_REG_PPC_MAS1 | 32
1832 PPC | KVM_REG_PPC_MAS2 | 64
1833 PPC | KVM_REG_PPC_MAS7_3 | 64
1834 PPC | KVM_REG_PPC_MAS4 | 32
1835 PPC | KVM_REG_PPC_MAS6 | 32
1836 PPC | KVM_REG_PPC_MMUCFG | 32
1837 PPC | KVM_REG_PPC_TLB0CFG | 32
1838 PPC | KVM_REG_PPC_TLB1CFG | 32
1839 PPC | KVM_REG_PPC_TLB2CFG | 32
1840 PPC | KVM_REG_PPC_TLB3CFG | 32
307d9008
MC
1841 PPC | KVM_REG_PPC_TLB0PS | 32
1842 PPC | KVM_REG_PPC_TLB1PS | 32
1843 PPC | KVM_REG_PPC_TLB2PS | 32
1844 PPC | KVM_REG_PPC_TLB3PS | 32
9a6061d7 1845 PPC | KVM_REG_PPC_EPTCFG | 32
8b78645c 1846 PPC | KVM_REG_PPC_ICP_STATE | 64
93b0f4dc 1847 PPC | KVM_REG_PPC_TB_OFFSET | 64
3b783474
MN
1848 PPC | KVM_REG_PPC_SPMC1 | 32
1849 PPC | KVM_REG_PPC_SPMC2 | 32
1850 PPC | KVM_REG_PPC_IAMR | 64
1851 PPC | KVM_REG_PPC_TFHAR | 64
1852 PPC | KVM_REG_PPC_TFIAR | 64
1853 PPC | KVM_REG_PPC_TEXASR | 64
1854 PPC | KVM_REG_PPC_FSCR | 64
1855 PPC | KVM_REG_PPC_PSPB | 32
1856 PPC | KVM_REG_PPC_EBBHR | 64
1857 PPC | KVM_REG_PPC_EBBRR | 64
1858 PPC | KVM_REG_PPC_BESCR | 64
1859 PPC | KVM_REG_PPC_TAR | 64
1860 PPC | KVM_REG_PPC_DPDES | 64
1861 PPC | KVM_REG_PPC_DAWR | 64
1862 PPC | KVM_REG_PPC_DAWRX | 64
1863 PPC | KVM_REG_PPC_CIABR | 64
1864 PPC | KVM_REG_PPC_IC | 64
1865 PPC | KVM_REG_PPC_VTB | 64
1866 PPC | KVM_REG_PPC_CSIGR | 64
1867 PPC | KVM_REG_PPC_TACR | 64
1868 PPC | KVM_REG_PPC_TCSCR | 64
1869 PPC | KVM_REG_PPC_PID | 64
1870 PPC | KVM_REG_PPC_ACOP | 64
c0867fd5 1871 PPC | KVM_REG_PPC_VRSAVE | 32
a0144e2a 1872 PPC | KVM_REG_PPC_LPCR | 64
4b8473c9 1873 PPC | KVM_REG_PPC_PPR | 64
388cc6e1 1874 PPC | KVM_REG_PPC_ARCH_COMPAT 32
8563bf52 1875 PPC | KVM_REG_PPC_DABRX | 32
e1d8a96d 1876 PPC | KVM_REG_PPC_WORT | 64
3b783474
MN
1877 PPC | KVM_REG_PPC_TM_GPR0 | 64
1878 ...
1879 PPC | KVM_REG_PPC_TM_GPR31 | 64
1880 PPC | KVM_REG_PPC_TM_VSR0 | 128
1881 ...
1882 PPC | KVM_REG_PPC_TM_VSR63 | 128
1883 PPC | KVM_REG_PPC_TM_CR | 64
1884 PPC | KVM_REG_PPC_TM_LR | 64
1885 PPC | KVM_REG_PPC_TM_CTR | 64
1886 PPC | KVM_REG_PPC_TM_FPSCR | 64
1887 PPC | KVM_REG_PPC_TM_AMR | 64
1888 PPC | KVM_REG_PPC_TM_PPR | 64
1889 PPC | KVM_REG_PPC_TM_VRSAVE | 64
1890 PPC | KVM_REG_PPC_TM_VSCR | 32
1891 PPC | KVM_REG_PPC_TM_DSCR | 64
1892 PPC | KVM_REG_PPC_TM_TAR | 64
414fa985 1893
749cf76c
CD
1894ARM registers are mapped using the lower 32 bits. The upper 16 of that
1895is the register group type, or coprocessor number:
1896
1897ARM core registers have the following id bit patterns:
aa404ddf 1898 0x4020 0000 0010 <index into the kvm_regs struct:16>
749cf76c 1899
1138245c 1900ARM 32-bit CP15 registers have the following id bit patterns:
aa404ddf 1901 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
1138245c
CD
1902
1903ARM 64-bit CP15 registers have the following id bit patterns:
aa404ddf 1904 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
749cf76c 1905
c27581ed 1906ARM CCSIDR registers are demultiplexed by CSSELR value:
aa404ddf 1907 0x4020 0000 0011 00 <csselr:8>
749cf76c 1908
4fe21e4c 1909ARM 32-bit VFP control registers have the following id bit patterns:
aa404ddf 1910 0x4020 0000 0012 1 <regno:12>
4fe21e4c
RR
1911
1912ARM 64-bit FP registers have the following id bit patterns:
aa404ddf 1913 0x4030 0000 0012 0 <regno:12>
4fe21e4c 1914
379e04c7
MZ
1915
1916arm64 registers are mapped using the lower 32 bits. The upper 16 of
1917that is the register group type, or coprocessor number:
1918
1919arm64 core/FP-SIMD registers have the following id bit patterns. Note
1920that the size of the access is variable, as the kvm_regs structure
1921contains elements ranging from 32 to 128 bits. The index is a 32bit
1922value in the kvm_regs structure seen as a 32bit array.
1923 0x60x0 0000 0010 <index into the kvm_regs struct:16>
1924
1925arm64 CCSIDR registers are demultiplexed by CSSELR value:
1926 0x6020 0000 0011 00 <csselr:8>
1927
1928arm64 system registers have the following id bit patterns:
1929 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
1930
e24ed81f
AG
19314.69 KVM_GET_ONE_REG
1932
1933Capability: KVM_CAP_ONE_REG
1934Architectures: all
1935Type: vcpu ioctl
1936Parameters: struct kvm_one_reg (in and out)
1937Returns: 0 on success, negative value on failure
1938
1939This ioctl allows to receive the value of a single register implemented
1940in a vcpu. The register to read is indicated by the "id" field of the
1941kvm_one_reg struct passed in. On success, the register value can be found
1942at the memory location pointed to by "addr".
1943
1944The list of registers accessible using this interface is identical to the
2e232702 1945list in 4.68.
e24ed81f 1946
414fa985 1947
1c0b28c2
EM
19484.70 KVM_KVMCLOCK_CTRL
1949
1950Capability: KVM_CAP_KVMCLOCK_CTRL
1951Architectures: Any that implement pvclocks (currently x86 only)
1952Type: vcpu ioctl
1953Parameters: None
1954Returns: 0 on success, -1 on error
1955
1956This signals to the host kernel that the specified guest is being paused by
1957userspace. The host will set a flag in the pvclock structure that is checked
1958from the soft lockup watchdog. The flag is part of the pvclock structure that
1959is shared between guest and host, specifically the second bit of the flags
1960field of the pvclock_vcpu_time_info structure. It will be set exclusively by
1961the host and read/cleared exclusively by the guest. The guest operation of
1962checking and clearing the flag must an atomic operation so
1963load-link/store-conditional, or equivalent must be used. There are two cases
1964where the guest will clear the flag: when the soft lockup watchdog timer resets
1965itself or when a soft lockup is detected. This ioctl can be called any time
1966after pausing the vcpu, but before it is resumed.
1967
414fa985 1968
07975ad3
JK
19694.71 KVM_SIGNAL_MSI
1970
1971Capability: KVM_CAP_SIGNAL_MSI
1972Architectures: x86
1973Type: vm ioctl
1974Parameters: struct kvm_msi (in)
1975Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
1976
1977Directly inject a MSI message. Only valid with in-kernel irqchip that handles
1978MSI messages.
1979
1980struct kvm_msi {
1981 __u32 address_lo;
1982 __u32 address_hi;
1983 __u32 data;
1984 __u32 flags;
1985 __u8 pad[16];
1986};
1987
1988No flags are defined so far. The corresponding field must be 0.
1989
414fa985 1990
0589ff6c
JK
19914.71 KVM_CREATE_PIT2
1992
1993Capability: KVM_CAP_PIT2
1994Architectures: x86
1995Type: vm ioctl
1996Parameters: struct kvm_pit_config (in)
1997Returns: 0 on success, -1 on error
1998
1999Creates an in-kernel device model for the i8254 PIT. This call is only valid
2000after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
2001parameters have to be passed:
2002
2003struct kvm_pit_config {
2004 __u32 flags;
2005 __u32 pad[15];
2006};
2007
2008Valid flags are:
2009
2010#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
2011
b6ddf05f
JK
2012PIT timer interrupts may use a per-VM kernel thread for injection. If it
2013exists, this thread will have a name of the following pattern:
2014
2015kvm-pit/<owner-process-pid>
2016
2017When running a guest with elevated priorities, the scheduling parameters of
2018this thread may have to be adjusted accordingly.
2019
0589ff6c
JK
2020This IOCTL replaces the obsolete KVM_CREATE_PIT.
2021
2022
20234.72 KVM_GET_PIT2
2024
2025Capability: KVM_CAP_PIT_STATE2
2026Architectures: x86
2027Type: vm ioctl
2028Parameters: struct kvm_pit_state2 (out)
2029Returns: 0 on success, -1 on error
2030
2031Retrieves the state of the in-kernel PIT model. Only valid after
2032KVM_CREATE_PIT2. The state is returned in the following structure:
2033
2034struct kvm_pit_state2 {
2035 struct kvm_pit_channel_state channels[3];
2036 __u32 flags;
2037 __u32 reserved[9];
2038};
2039
2040Valid flags are:
2041
2042/* disable PIT in HPET legacy mode */
2043#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
2044
2045This IOCTL replaces the obsolete KVM_GET_PIT.
2046
2047
20484.73 KVM_SET_PIT2
2049
2050Capability: KVM_CAP_PIT_STATE2
2051Architectures: x86
2052Type: vm ioctl
2053Parameters: struct kvm_pit_state2 (in)
2054Returns: 0 on success, -1 on error
2055
2056Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2057See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2058
2059This IOCTL replaces the obsolete KVM_SET_PIT.
2060
2061
5b74716e
BH
20624.74 KVM_PPC_GET_SMMU_INFO
2063
2064Capability: KVM_CAP_PPC_GET_SMMU_INFO
2065Architectures: powerpc
2066Type: vm ioctl
2067Parameters: None
2068Returns: 0 on success, -1 on error
2069
2070This populates and returns a structure describing the features of
2071the "Server" class MMU emulation supported by KVM.
cc22c354 2072This can in turn be used by userspace to generate the appropriate
5b74716e
BH
2073device-tree properties for the guest operating system.
2074
c98be0c9 2075The structure contains some global information, followed by an
5b74716e
BH
2076array of supported segment page sizes:
2077
2078 struct kvm_ppc_smmu_info {
2079 __u64 flags;
2080 __u32 slb_size;
2081 __u32 pad;
2082 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2083 };
2084
2085The supported flags are:
2086
2087 - KVM_PPC_PAGE_SIZES_REAL:
2088 When that flag is set, guest page sizes must "fit" the backing
2089 store page sizes. When not set, any page size in the list can
2090 be used regardless of how they are backed by userspace.
2091
2092 - KVM_PPC_1T_SEGMENTS
2093 The emulated MMU supports 1T segments in addition to the
2094 standard 256M ones.
2095
2096The "slb_size" field indicates how many SLB entries are supported
2097
2098The "sps" array contains 8 entries indicating the supported base
2099page sizes for a segment in increasing order. Each entry is defined
2100as follow:
2101
2102 struct kvm_ppc_one_seg_page_size {
2103 __u32 page_shift; /* Base page shift of segment (or 0) */
2104 __u32 slb_enc; /* SLB encoding for BookS */
2105 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2106 };
2107
2108An entry with a "page_shift" of 0 is unused. Because the array is
2109organized in increasing order, a lookup can stop when encoutering
2110such an entry.
2111
2112The "slb_enc" field provides the encoding to use in the SLB for the
2113page size. The bits are in positions such as the value can directly
2114be OR'ed into the "vsid" argument of the slbmte instruction.
2115
2116The "enc" array is a list which for each of those segment base page
2117size provides the list of supported actual page sizes (which can be
2118only larger or equal to the base page size), along with the
f884ab15 2119corresponding encoding in the hash PTE. Similarly, the array is
5b74716e
BH
21208 entries sorted by increasing sizes and an entry with a "0" shift
2121is an empty entry and a terminator:
2122
2123 struct kvm_ppc_one_page_size {
2124 __u32 page_shift; /* Page shift (or 0) */
2125 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2126 };
2127
2128The "pte_enc" field provides a value that can OR'ed into the hash
2129PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2130into the hash PTE second double word).
2131
f36992e3
AW
21324.75 KVM_IRQFD
2133
2134Capability: KVM_CAP_IRQFD
ebc32262 2135Architectures: x86 s390
f36992e3
AW
2136Type: vm ioctl
2137Parameters: struct kvm_irqfd (in)
2138Returns: 0 on success, -1 on error
2139
2140Allows setting an eventfd to directly trigger a guest interrupt.
2141kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2142kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
17180032 2143an event is triggered on the eventfd, an interrupt is injected into
f36992e3
AW
2144the guest using the specified gsi pin. The irqfd is removed using
2145the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2146and kvm_irqfd.gsi.
2147
7a84428a
AW
2148With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2149mechanism allowing emulation of level-triggered, irqfd-based
2150interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2151additional eventfd in the kvm_irqfd.resamplefd field. When operating
2152in resample mode, posting of an interrupt through kvm_irq.fd asserts
2153the specified gsi in the irqchip. When the irqchip is resampled, such
17180032 2154as from an EOI, the gsi is de-asserted and the user is notified via
7a84428a
AW
2155kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2156the interrupt if the device making use of it still requires service.
2157Note that closing the resamplefd is not sufficient to disable the
2158irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2159and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2160
5fecc9d8 21614.76 KVM_PPC_ALLOCATE_HTAB
32fad281
PM
2162
2163Capability: KVM_CAP_PPC_ALLOC_HTAB
2164Architectures: powerpc
2165Type: vm ioctl
2166Parameters: Pointer to u32 containing hash table order (in/out)
2167Returns: 0 on success, -1 on error
2168
2169This requests the host kernel to allocate an MMU hash table for a
2170guest using the PAPR paravirtualization interface. This only does
2171anything if the kernel is configured to use the Book 3S HV style of
2172virtualization. Otherwise the capability doesn't exist and the ioctl
2173returns an ENOTTY error. The rest of this description assumes Book 3S
2174HV.
2175
2176There must be no vcpus running when this ioctl is called; if there
2177are, it will do nothing and return an EBUSY error.
2178
2179The parameter is a pointer to a 32-bit unsigned integer variable
2180containing the order (log base 2) of the desired size of the hash
2181table, which must be between 18 and 46. On successful return from the
2182ioctl, it will have been updated with the order of the hash table that
2183was allocated.
2184
2185If no hash table has been allocated when any vcpu is asked to run
2186(with the KVM_RUN ioctl), the host kernel will allocate a
2187default-sized hash table (16 MB).
2188
2189If this ioctl is called when a hash table has already been allocated,
2190the kernel will clear out the existing hash table (zero all HPTEs) and
2191return the hash table order in the parameter. (If the guest is using
2192the virtualized real-mode area (VRMA) facility, the kernel will
2193re-create the VMRA HPTEs on the next KVM_RUN of any vcpu.)
2194
416ad65f
CH
21954.77 KVM_S390_INTERRUPT
2196
2197Capability: basic
2198Architectures: s390
2199Type: vm ioctl, vcpu ioctl
2200Parameters: struct kvm_s390_interrupt (in)
2201Returns: 0 on success, -1 on error
2202
2203Allows to inject an interrupt to the guest. Interrupts can be floating
2204(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2205
2206Interrupt parameters are passed via kvm_s390_interrupt:
2207
2208struct kvm_s390_interrupt {
2209 __u32 type;
2210 __u32 parm;
2211 __u64 parm64;
2212};
2213
2214type can be one of the following:
2215
2216KVM_S390_SIGP_STOP (vcpu) - sigp restart
2217KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2218KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2219KVM_S390_RESTART (vcpu) - restart
e029ae5b
TH
2220KVM_S390_INT_CLOCK_COMP (vcpu) - clock comparator interrupt
2221KVM_S390_INT_CPU_TIMER (vcpu) - CPU timer interrupt
416ad65f
CH
2222KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2223 parameters in parm and parm64
2224KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2225KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2226KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
d8346b7d
CH
2227KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2228 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2229 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2230 interruption subclass)
48a3e950
CH
2231KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2232 machine check interrupt code in parm64 (note that
2233 machine checks needing further payload are not
2234 supported by this ioctl)
416ad65f
CH
2235
2236Note that the vcpu ioctl is asynchronous to vcpu execution.
2237
a2932923
PM
22384.78 KVM_PPC_GET_HTAB_FD
2239
2240Capability: KVM_CAP_PPC_HTAB_FD
2241Architectures: powerpc
2242Type: vm ioctl
2243Parameters: Pointer to struct kvm_get_htab_fd (in)
2244Returns: file descriptor number (>= 0) on success, -1 on error
2245
2246This returns a file descriptor that can be used either to read out the
2247entries in the guest's hashed page table (HPT), or to write entries to
2248initialize the HPT. The returned fd can only be written to if the
2249KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2250can only be read if that bit is clear. The argument struct looks like
2251this:
2252
2253/* For KVM_PPC_GET_HTAB_FD */
2254struct kvm_get_htab_fd {
2255 __u64 flags;
2256 __u64 start_index;
2257 __u64 reserved[2];
2258};
2259
2260/* Values for kvm_get_htab_fd.flags */
2261#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2262#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2263
2264The `start_index' field gives the index in the HPT of the entry at
2265which to start reading. It is ignored when writing.
2266
2267Reads on the fd will initially supply information about all
2268"interesting" HPT entries. Interesting entries are those with the
2269bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2270all entries. When the end of the HPT is reached, the read() will
2271return. If read() is called again on the fd, it will start again from
2272the beginning of the HPT, but will only return HPT entries that have
2273changed since they were last read.
2274
2275Data read or written is structured as a header (8 bytes) followed by a
2276series of valid HPT entries (16 bytes) each. The header indicates how
2277many valid HPT entries there are and how many invalid entries follow
2278the valid entries. The invalid entries are not represented explicitly
2279in the stream. The header format is:
2280
2281struct kvm_get_htab_header {
2282 __u32 index;
2283 __u16 n_valid;
2284 __u16 n_invalid;
2285};
2286
2287Writes to the fd create HPT entries starting at the index given in the
2288header; first `n_valid' valid entries with contents from the data
2289written, then `n_invalid' invalid entries, invalidating any previously
2290valid entries found.
2291
852b6d57
SW
22924.79 KVM_CREATE_DEVICE
2293
2294Capability: KVM_CAP_DEVICE_CTRL
2295Type: vm ioctl
2296Parameters: struct kvm_create_device (in/out)
2297Returns: 0 on success, -1 on error
2298Errors:
2299 ENODEV: The device type is unknown or unsupported
2300 EEXIST: Device already created, and this type of device may not
2301 be instantiated multiple times
2302
2303 Other error conditions may be defined by individual device types or
2304 have their standard meanings.
2305
2306Creates an emulated device in the kernel. The file descriptor returned
2307in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2308
2309If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2310device type is supported (not necessarily whether it can be created
2311in the current vm).
2312
2313Individual devices should not define flags. Attributes should be used
2314for specifying any behavior that is not implied by the device type
2315number.
2316
2317struct kvm_create_device {
2318 __u32 type; /* in: KVM_DEV_TYPE_xxx */
2319 __u32 fd; /* out: device handle */
2320 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
2321};
2322
23234.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
2324
f2061656
DD
2325Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device
2326Type: device ioctl, vm ioctl
852b6d57
SW
2327Parameters: struct kvm_device_attr
2328Returns: 0 on success, -1 on error
2329Errors:
2330 ENXIO: The group or attribute is unknown/unsupported for this device
2331 EPERM: The attribute cannot (currently) be accessed this way
2332 (e.g. read-only attribute, or attribute that only makes
2333 sense when the device is in a different state)
2334
2335 Other error conditions may be defined by individual device types.
2336
2337Gets/sets a specified piece of device configuration and/or state. The
2338semantics are device-specific. See individual device documentation in
2339the "devices" directory. As with ONE_REG, the size of the data
2340transferred is defined by the particular attribute.
2341
2342struct kvm_device_attr {
2343 __u32 flags; /* no flags currently defined */
2344 __u32 group; /* device-defined */
2345 __u64 attr; /* group-defined */
2346 __u64 addr; /* userspace address of attr data */
2347};
2348
23494.81 KVM_HAS_DEVICE_ATTR
2350
f2061656
DD
2351Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device
2352Type: device ioctl, vm ioctl
852b6d57
SW
2353Parameters: struct kvm_device_attr
2354Returns: 0 on success, -1 on error
2355Errors:
2356 ENXIO: The group or attribute is unknown/unsupported for this device
2357
2358Tests whether a device supports a particular attribute. A successful
2359return indicates the attribute is implemented. It does not necessarily
2360indicate that the attribute can be read or written in the device's
2361current state. "addr" is ignored.
f36992e3 2362
d8968f1f 23634.82 KVM_ARM_VCPU_INIT
749cf76c
CD
2364
2365Capability: basic
379e04c7 2366Architectures: arm, arm64
749cf76c 2367Type: vcpu ioctl
beb11fc7 2368Parameters: struct kvm_vcpu_init (in)
749cf76c
CD
2369Returns: 0 on success; -1 on error
2370Errors:
2371  EINVAL:    the target is unknown, or the combination of features is invalid.
2372  ENOENT:    a features bit specified is unknown.
2373
2374This tells KVM what type of CPU to present to the guest, and what
2375optional features it should have.  This will cause a reset of the cpu
2376registers to their initial values.  If this is not called, KVM_RUN will
2377return ENOEXEC for that vcpu.
2378
2379Note that because some registers reflect machine topology, all vcpus
2380should be created before this ioctl is invoked.
2381
aa024c2f
MZ
2382Possible features:
2383 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
2384 Depends on KVM_CAP_ARM_PSCI.
379e04c7
MZ
2385 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
2386 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
50bb0c94
AP
2387 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 for the CPU.
2388 Depends on KVM_CAP_ARM_PSCI_0_2.
aa024c2f 2389
749cf76c 2390
740edfc0
AP
23914.83 KVM_ARM_PREFERRED_TARGET
2392
2393Capability: basic
2394Architectures: arm, arm64
2395Type: vm ioctl
2396Parameters: struct struct kvm_vcpu_init (out)
2397Returns: 0 on success; -1 on error
2398Errors:
a7265fb1 2399 ENODEV: no preferred target available for the host
740edfc0
AP
2400
2401This queries KVM for preferred CPU target type which can be emulated
2402by KVM on underlying host.
2403
2404The ioctl returns struct kvm_vcpu_init instance containing information
2405about preferred CPU target type and recommended features for it. The
2406kvm_vcpu_init->features bitmap returned will have feature bits set if
2407the preferred target recommends setting these features, but this is
2408not mandatory.
2409
2410The information returned by this ioctl can be used to prepare an instance
2411of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
2412in VCPU matching underlying host.
2413
2414
24154.84 KVM_GET_REG_LIST
749cf76c
CD
2416
2417Capability: basic
379e04c7 2418Architectures: arm, arm64
749cf76c
CD
2419Type: vcpu ioctl
2420Parameters: struct kvm_reg_list (in/out)
2421Returns: 0 on success; -1 on error
2422Errors:
2423  E2BIG:     the reg index list is too big to fit in the array specified by
2424             the user (the number required will be written into n).
2425
2426struct kvm_reg_list {
2427 __u64 n; /* number of registers in reg[] */
2428 __u64 reg[0];
2429};
2430
2431This ioctl returns the guest registers that are supported for the
2432KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2433
ce01e4e8
CD
2434
24354.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
3401d546
CD
2436
2437Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
379e04c7 2438Architectures: arm, arm64
3401d546
CD
2439Type: vm ioctl
2440Parameters: struct kvm_arm_device_address (in)
2441Returns: 0 on success, -1 on error
2442Errors:
2443 ENODEV: The device id is unknown
2444 ENXIO: Device not supported on current system
2445 EEXIST: Address already set
2446 E2BIG: Address outside guest physical address space
330690cd 2447 EBUSY: Address overlaps with other device range
3401d546
CD
2448
2449struct kvm_arm_device_addr {
2450 __u64 id;
2451 __u64 addr;
2452};
2453
2454Specify a device address in the guest's physical address space where guests
2455can access emulated or directly exposed devices, which the host kernel needs
2456to know about. The id field is an architecture specific identifier for a
2457specific device.
2458
379e04c7
MZ
2459ARM/arm64 divides the id field into two parts, a device id and an
2460address type id specific to the individual device.
3401d546
CD
2461
2462  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2463 field: | 0x00000000 | device id | addr type id |
2464
379e04c7
MZ
2465ARM/arm64 currently only require this when using the in-kernel GIC
2466support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
2467as the device id. When setting the base address for the guest's
2468mapping of the VGIC virtual CPU and distributor interface, the ioctl
2469must be called after calling KVM_CREATE_IRQCHIP, but before calling
2470KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
2471base addresses will return -EEXIST.
3401d546 2472
ce01e4e8
CD
2473Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
2474should be used instead.
2475
2476
740edfc0 24774.86 KVM_PPC_RTAS_DEFINE_TOKEN
8e591cb7
ME
2478
2479Capability: KVM_CAP_PPC_RTAS
2480Architectures: ppc
2481Type: vm ioctl
2482Parameters: struct kvm_rtas_token_args
2483Returns: 0 on success, -1 on error
2484
2485Defines a token value for a RTAS (Run Time Abstraction Services)
2486service in order to allow it to be handled in the kernel. The
2487argument struct gives the name of the service, which must be the name
2488of a service that has a kernel-side implementation. If the token
2489value is non-zero, it will be associated with that service, and
2490subsequent RTAS calls by the guest specifying that token will be
2491handled by the kernel. If the token value is 0, then any token
2492associated with the service will be forgotten, and subsequent RTAS
2493calls by the guest for that service will be passed to userspace to be
2494handled.
2495
3401d546 2496
9c1b96e3 24975. The kvm_run structure
414fa985 2498------------------------
9c1b96e3
AK
2499
2500Application code obtains a pointer to the kvm_run structure by
2501mmap()ing a vcpu fd. From that point, application code can control
2502execution by changing fields in kvm_run prior to calling the KVM_RUN
2503ioctl, and obtain information about the reason KVM_RUN returned by
2504looking up structure members.
2505
2506struct kvm_run {
2507 /* in */
2508 __u8 request_interrupt_window;
2509
2510Request that KVM_RUN return when it becomes possible to inject external
2511interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
2512
2513 __u8 padding1[7];
2514
2515 /* out */
2516 __u32 exit_reason;
2517
2518When KVM_RUN has returned successfully (return value 0), this informs
2519application code why KVM_RUN has returned. Allowable values for this
2520field are detailed below.
2521
2522 __u8 ready_for_interrupt_injection;
2523
2524If request_interrupt_window has been specified, this field indicates
2525an interrupt can be injected now with KVM_INTERRUPT.
2526
2527 __u8 if_flag;
2528
2529The value of the current interrupt flag. Only valid if in-kernel
2530local APIC is not used.
2531
2532 __u8 padding2[2];
2533
2534 /* in (pre_kvm_run), out (post_kvm_run) */
2535 __u64 cr8;
2536
2537The value of the cr8 register. Only valid if in-kernel local APIC is
2538not used. Both input and output.
2539
2540 __u64 apic_base;
2541
2542The value of the APIC BASE msr. Only valid if in-kernel local
2543APIC is not used. Both input and output.
2544
2545 union {
2546 /* KVM_EXIT_UNKNOWN */
2547 struct {
2548 __u64 hardware_exit_reason;
2549 } hw;
2550
2551If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
2552reasons. Further architecture-specific information is available in
2553hardware_exit_reason.
2554
2555 /* KVM_EXIT_FAIL_ENTRY */
2556 struct {
2557 __u64 hardware_entry_failure_reason;
2558 } fail_entry;
2559
2560If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
2561to unknown reasons. Further architecture-specific information is
2562available in hardware_entry_failure_reason.
2563
2564 /* KVM_EXIT_EXCEPTION */
2565 struct {
2566 __u32 exception;
2567 __u32 error_code;
2568 } ex;
2569
2570Unused.
2571
2572 /* KVM_EXIT_IO */
2573 struct {
2574#define KVM_EXIT_IO_IN 0
2575#define KVM_EXIT_IO_OUT 1
2576 __u8 direction;
2577 __u8 size; /* bytes */
2578 __u16 port;
2579 __u32 count;
2580 __u64 data_offset; /* relative to kvm_run start */
2581 } io;
2582
2044892d 2583If exit_reason is KVM_EXIT_IO, then the vcpu has
9c1b96e3
AK
2584executed a port I/O instruction which could not be satisfied by kvm.
2585data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
2586where kvm expects application code to place the data for the next
2044892d 2587KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
9c1b96e3
AK
2588
2589 struct {
2590 struct kvm_debug_exit_arch arch;
2591 } debug;
2592
2593Unused.
2594
2595 /* KVM_EXIT_MMIO */
2596 struct {
2597 __u64 phys_addr;
2598 __u8 data[8];
2599 __u32 len;
2600 __u8 is_write;
2601 } mmio;
2602
2044892d 2603If exit_reason is KVM_EXIT_MMIO, then the vcpu has
9c1b96e3
AK
2604executed a memory-mapped I/O instruction which could not be satisfied
2605by kvm. The 'data' member contains the written data if 'is_write' is
2606true, and should be filled by application code otherwise.
2607
6acdb160
CD
2608The 'data' member contains, in its first 'len' bytes, the value as it would
2609appear if the VCPU performed a load or store of the appropriate width directly
2610to the byte array.
2611
1c810636
AG
2612NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_DCR,
2613 KVM_EXIT_PAPR and KVM_EXIT_EPR the corresponding
ad0a048b
AG
2614operations are complete (and guest state is consistent) only after userspace
2615has re-entered the kernel with KVM_RUN. The kernel side will first finish
67961344
MT
2616incomplete operations and then check for pending signals. Userspace
2617can re-enter the guest with an unmasked signal pending to complete
2618pending operations.
2619
9c1b96e3
AK
2620 /* KVM_EXIT_HYPERCALL */
2621 struct {
2622 __u64 nr;
2623 __u64 args[6];
2624 __u64 ret;
2625 __u32 longmode;
2626 __u32 pad;
2627 } hypercall;
2628
647dc49e
AK
2629Unused. This was once used for 'hypercall to userspace'. To implement
2630such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
2631Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
9c1b96e3
AK
2632
2633 /* KVM_EXIT_TPR_ACCESS */
2634 struct {
2635 __u64 rip;
2636 __u32 is_write;
2637 __u32 pad;
2638 } tpr_access;
2639
2640To be documented (KVM_TPR_ACCESS_REPORTING).
2641
2642 /* KVM_EXIT_S390_SIEIC */
2643 struct {
2644 __u8 icptcode;
2645 __u64 mask; /* psw upper half */
2646 __u64 addr; /* psw lower half */
2647 __u16 ipa;
2648 __u32 ipb;
2649 } s390_sieic;
2650
2651s390 specific.
2652
2653 /* KVM_EXIT_S390_RESET */
2654#define KVM_S390_RESET_POR 1
2655#define KVM_S390_RESET_CLEAR 2
2656#define KVM_S390_RESET_SUBSYSTEM 4
2657#define KVM_S390_RESET_CPU_INIT 8
2658#define KVM_S390_RESET_IPL 16
2659 __u64 s390_reset_flags;
2660
2661s390 specific.
2662
e168bf8d
CO
2663 /* KVM_EXIT_S390_UCONTROL */
2664 struct {
2665 __u64 trans_exc_code;
2666 __u32 pgm_code;
2667 } s390_ucontrol;
2668
2669s390 specific. A page fault has occurred for a user controlled virtual
2670machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
2671resolved by the kernel.
2672The program code and the translation exception code that were placed
2673in the cpu's lowcore are presented here as defined by the z Architecture
2674Principles of Operation Book in the Chapter for Dynamic Address Translation
2675(DAT)
2676
9c1b96e3
AK
2677 /* KVM_EXIT_DCR */
2678 struct {
2679 __u32 dcrn;
2680 __u32 data;
2681 __u8 is_write;
2682 } dcr;
2683
2684powerpc specific.
2685
ad0a048b
AG
2686 /* KVM_EXIT_OSI */
2687 struct {
2688 __u64 gprs[32];
2689 } osi;
2690
2691MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
2692hypercalls and exit with this exit struct that contains all the guest gprs.
2693
2694If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
2695Userspace can now handle the hypercall and when it's done modify the gprs as
2696necessary. Upon guest entry all guest GPRs will then be replaced by the values
2697in this struct.
2698
de56a948
PM
2699 /* KVM_EXIT_PAPR_HCALL */
2700 struct {
2701 __u64 nr;
2702 __u64 ret;
2703 __u64 args[9];
2704 } papr_hcall;
2705
2706This is used on 64-bit PowerPC when emulating a pSeries partition,
2707e.g. with the 'pseries' machine type in qemu. It occurs when the
2708guest does a hypercall using the 'sc 1' instruction. The 'nr' field
2709contains the hypercall number (from the guest R3), and 'args' contains
2710the arguments (from the guest R4 - R12). Userspace should put the
2711return code in 'ret' and any extra returned values in args[].
2712The possible hypercalls are defined in the Power Architecture Platform
2713Requirements (PAPR) document available from www.power.org (free
2714developer registration required to access it).
2715
fa6b7fe9
CH
2716 /* KVM_EXIT_S390_TSCH */
2717 struct {
2718 __u16 subchannel_id;
2719 __u16 subchannel_nr;
2720 __u32 io_int_parm;
2721 __u32 io_int_word;
2722 __u32 ipb;
2723 __u8 dequeued;
2724 } s390_tsch;
2725
2726s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
2727and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
2728interrupt for the target subchannel has been dequeued and subchannel_id,
2729subchannel_nr, io_int_parm and io_int_word contain the parameters for that
2730interrupt. ipb is needed for instruction parameter decoding.
2731
1c810636
AG
2732 /* KVM_EXIT_EPR */
2733 struct {
2734 __u32 epr;
2735 } epr;
2736
2737On FSL BookE PowerPC chips, the interrupt controller has a fast patch
2738interrupt acknowledge path to the core. When the core successfully
2739delivers an interrupt, it automatically populates the EPR register with
2740the interrupt vector number and acknowledges the interrupt inside
2741the interrupt controller.
2742
2743In case the interrupt controller lives in user space, we need to do
2744the interrupt acknowledge cycle through it to fetch the next to be
2745delivered interrupt vector using this exit.
2746
2747It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
2748external interrupt has just been delivered into the guest. User space
2749should put the acknowledged interrupt vector into the 'epr' field.
2750
8ad6b634
AP
2751 /* KVM_EXIT_SYSTEM_EVENT */
2752 struct {
2753#define KVM_SYSTEM_EVENT_SHUTDOWN 1
2754#define KVM_SYSTEM_EVENT_RESET 2
2755 __u32 type;
2756 __u64 flags;
2757 } system_event;
2758
2759If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
2760a system-level event using some architecture specific mechanism (hypercall
2761or some special instruction). In case of ARM/ARM64, this is triggered using
2762HVC instruction based PSCI call from the vcpu. The 'type' field describes
2763the system-level event type. The 'flags' field describes architecture
2764specific flags for the system-level event.
2765
9c1b96e3
AK
2766 /* Fix the size of the union. */
2767 char padding[256];
2768 };
b9e5dc8d
CB
2769
2770 /*
2771 * shared registers between kvm and userspace.
2772 * kvm_valid_regs specifies the register classes set by the host
2773 * kvm_dirty_regs specified the register classes dirtied by userspace
2774 * struct kvm_sync_regs is architecture specific, as well as the
2775 * bits for kvm_valid_regs and kvm_dirty_regs
2776 */
2777 __u64 kvm_valid_regs;
2778 __u64 kvm_dirty_regs;
2779 union {
2780 struct kvm_sync_regs regs;
2781 char padding[1024];
2782 } s;
2783
2784If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
2785certain guest registers without having to call SET/GET_*REGS. Thus we can
2786avoid some system call overhead if userspace has to handle the exit.
2787Userspace can query the validity of the structure by checking
2788kvm_valid_regs for specific bits. These bits are architecture specific
2789and usually define the validity of a groups of registers. (e.g. one bit
2790 for general purpose registers)
2791
9c1b96e3 2792};
821246a5 2793
414fa985 2794
9c15bb1d
BP
27954.81 KVM_GET_EMULATED_CPUID
2796
2797Capability: KVM_CAP_EXT_EMUL_CPUID
2798Architectures: x86
2799Type: system ioctl
2800Parameters: struct kvm_cpuid2 (in/out)
2801Returns: 0 on success, -1 on error
2802
2803struct kvm_cpuid2 {
2804 __u32 nent;
2805 __u32 flags;
2806 struct kvm_cpuid_entry2 entries[0];
2807};
2808
2809The member 'flags' is used for passing flags from userspace.
2810
2811#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
2812#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
2813#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
2814
2815struct kvm_cpuid_entry2 {
2816 __u32 function;
2817 __u32 index;
2818 __u32 flags;
2819 __u32 eax;
2820 __u32 ebx;
2821 __u32 ecx;
2822 __u32 edx;
2823 __u32 padding[3];
2824};
2825
2826This ioctl returns x86 cpuid features which are emulated by
2827kvm.Userspace can use the information returned by this ioctl to query
2828which features are emulated by kvm instead of being present natively.
2829
2830Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
2831structure with the 'nent' field indicating the number of entries in
2832the variable-size array 'entries'. If the number of entries is too low
2833to describe the cpu capabilities, an error (E2BIG) is returned. If the
2834number is too high, the 'nent' field is adjusted and an error (ENOMEM)
2835is returned. If the number is just right, the 'nent' field is adjusted
2836to the number of valid entries in the 'entries' array, which is then
2837filled.
2838
2839The entries returned are the set CPUID bits of the respective features
2840which kvm emulates, as returned by the CPUID instruction, with unknown
2841or unsupported feature bits cleared.
2842
2843Features like x2apic, for example, may not be present in the host cpu
2844but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
2845emulated efficiently and thus not included here.
2846
2847The fields in each entry are defined as follows:
2848
2849 function: the eax value used to obtain the entry
2850 index: the ecx value used to obtain the entry (for entries that are
2851 affected by ecx)
2852 flags: an OR of zero or more of the following:
2853 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
2854 if the index field is valid
2855 KVM_CPUID_FLAG_STATEFUL_FUNC:
2856 if cpuid for this function returns different values for successive
2857 invocations; there will be several entries with the same function,
2858 all with this flag set
2859 KVM_CPUID_FLAG_STATE_READ_NEXT:
2860 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
2861 the first entry to be read by a cpu
2862 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
2863 this function/index combination
2864
2865
821246a5 28666. Capabilities that can be enabled
414fa985 2867-----------------------------------
821246a5
AG
2868
2869There are certain capabilities that change the behavior of the virtual CPU when
2870enabled. To enable them, please see section 4.37. Below you can find a list of
2871capabilities and what their effect on the vCPU is when enabling them.
2872
2873The following information is provided along with the description:
2874
2875 Architectures: which instruction set architectures provide this ioctl.
2876 x86 includes both i386 and x86_64.
2877
2878 Parameters: what parameters are accepted by the capability.
2879
2880 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
2881 are not detailed, but errors with specific meanings are.
2882
414fa985 2883
821246a5
AG
28846.1 KVM_CAP_PPC_OSI
2885
2886Architectures: ppc
2887Parameters: none
2888Returns: 0 on success; -1 on error
2889
2890This capability enables interception of OSI hypercalls that otherwise would
2891be treated as normal system calls to be injected into the guest. OSI hypercalls
2892were invented by Mac-on-Linux to have a standardized communication mechanism
2893between the guest and the host.
2894
2895When this capability is enabled, KVM_EXIT_OSI can occur.
2896
414fa985 2897
821246a5
AG
28986.2 KVM_CAP_PPC_PAPR
2899
2900Architectures: ppc
2901Parameters: none
2902Returns: 0 on success; -1 on error
2903
2904This capability enables interception of PAPR hypercalls. PAPR hypercalls are
2905done using the hypercall instruction "sc 1".
2906
2907It also sets the guest privilege level to "supervisor" mode. Usually the guest
2908runs in "hypervisor" privilege mode with a few missing features.
2909
2910In addition to the above, it changes the semantics of SDR1. In this mode, the
2911HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
2912HTAB invisible to the guest.
2913
2914When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
dc83b8bc 2915
414fa985 2916
dc83b8bc
SW
29176.3 KVM_CAP_SW_TLB
2918
2919Architectures: ppc
2920Parameters: args[0] is the address of a struct kvm_config_tlb
2921Returns: 0 on success; -1 on error
2922
2923struct kvm_config_tlb {
2924 __u64 params;
2925 __u64 array;
2926 __u32 mmu_type;
2927 __u32 array_len;
2928};
2929
2930Configures the virtual CPU's TLB array, establishing a shared memory area
2931between userspace and KVM. The "params" and "array" fields are userspace
2932addresses of mmu-type-specific data structures. The "array_len" field is an
2933safety mechanism, and should be set to the size in bytes of the memory that
2934userspace has reserved for the array. It must be at least the size dictated
2935by "mmu_type" and "params".
2936
2937While KVM_RUN is active, the shared region is under control of KVM. Its
2938contents are undefined, and any modification by userspace results in
2939boundedly undefined behavior.
2940
2941On return from KVM_RUN, the shared region will reflect the current state of
2942the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
2943to tell KVM which entries have been changed, prior to calling KVM_RUN again
2944on this vcpu.
2945
2946For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
2947 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
2948 - The "array" field points to an array of type "struct
2949 kvm_book3e_206_tlb_entry".
2950 - The array consists of all entries in the first TLB, followed by all
2951 entries in the second TLB.
2952 - Within a TLB, entries are ordered first by increasing set number. Within a
2953 set, entries are ordered by way (increasing ESEL).
2954 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
2955 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
2956 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
2957 hardware ignores this value for TLB0.
fa6b7fe9
CH
2958
29596.4 KVM_CAP_S390_CSS_SUPPORT
2960
2961Architectures: s390
2962Parameters: none
2963Returns: 0 on success; -1 on error
2964
2965This capability enables support for handling of channel I/O instructions.
2966
2967TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
2968handled in-kernel, while the other I/O instructions are passed to userspace.
2969
2970When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
2971SUBCHANNEL intercepts.
1c810636
AG
2972
29736.5 KVM_CAP_PPC_EPR
2974
2975Architectures: ppc
2976Parameters: args[0] defines whether the proxy facility is active
2977Returns: 0 on success; -1 on error
2978
2979This capability enables or disables the delivery of interrupts through the
2980external proxy facility.
2981
2982When enabled (args[0] != 0), every time the guest gets an external interrupt
2983delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
2984to receive the topmost interrupt vector.
2985
2986When disabled (args[0] == 0), behavior is as if this facility is unsupported.
2987
2988When this capability is enabled, KVM_EXIT_EPR can occur.
eb1e4f43
SW
2989
29906.6 KVM_CAP_IRQ_MPIC
2991
2992Architectures: ppc
2993Parameters: args[0] is the MPIC device fd
2994 args[1] is the MPIC CPU number for this vcpu
2995
2996This capability connects the vcpu to an in-kernel MPIC device.
5975a2e0
PM
2997
29986.7 KVM_CAP_IRQ_XICS
2999
3000Architectures: ppc
3001Parameters: args[0] is the XICS device fd
3002 args[1] is the XICS CPU number (server ID) for this vcpu
3003
3004This capability connects the vcpu to an in-kernel XICS device.