]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - Documentation/virtual/kvm/api.txt
KVM: s390: cpu timer irq priority
[thirdparty/kernel/stable.git] / Documentation / virtual / kvm / api.txt
CommitLineData
9c1b96e3
AK
1The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
414fa985 5----------------------
9c1b96e3
AK
6
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
414fa985 27
2044892d 282. File descriptors
414fa985 29-------------------
9c1b96e3
AK
30
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
2044892d 34handle will create a VM file descriptor which can be used to issue VM
9c1b96e3
AK
35ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
414fa985 47
9c1b96e3 483. Extensions
414fa985 49-------------
9c1b96e3
AK
50
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
c9f3f2d8 56The extension mechanism is not based on the Linux version number.
9c1b96e3
AK
57Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
414fa985 61
9c1b96e3 624. API description
414fa985 63------------------
9c1b96e3
AK
64
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
7f05db6a 71 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which
9c1b96e3 72 means availability needs to be checked with KVM_CHECK_EXTENSION
7f05db6a
MT
73 (see section 4.4), or 'none' which means that while not all kernels
74 support this ioctl, there's no capability bit to check its
75 availability: for kernels that don't support the ioctl,
76 the ioctl returns -ENOTTY.
9c1b96e3
AK
77
78 Architectures: which instruction set architectures provide this ioctl.
79 x86 includes both i386 and x86_64.
80
81 Type: system, vm, or vcpu.
82
83 Parameters: what parameters are accepted by the ioctl.
84
85 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
86 are not detailed, but errors with specific meanings are.
87
414fa985 88
9c1b96e3
AK
894.1 KVM_GET_API_VERSION
90
91Capability: basic
92Architectures: all
93Type: system ioctl
94Parameters: none
95Returns: the constant KVM_API_VERSION (=12)
96
97This identifies the API version as the stable kvm API. It is not
98expected that this number will change. However, Linux 2.6.20 and
992.6.21 report earlier versions; these are not documented and not
100supported. Applications should refuse to run if KVM_GET_API_VERSION
101returns a value other than 12. If this check passes, all ioctls
102described as 'basic' will be available.
103
414fa985 104
9c1b96e3
AK
1054.2 KVM_CREATE_VM
106
107Capability: basic
108Architectures: all
109Type: system ioctl
e08b9637 110Parameters: machine type identifier (KVM_VM_*)
9c1b96e3
AK
111Returns: a VM fd that can be used to control the new virtual machine.
112
113The new VM has no virtual cpus and no memory. An mmap() of a VM fd
114will access the virtual machine's physical address space; offset zero
115corresponds to guest physical address zero. Use of mmap() on a VM fd
116is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
117available.
e08b9637
CO
118You most certainly want to use 0 as machine type.
119
120In order to create user controlled virtual machines on S390, check
121KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
122privileged user (CAP_SYS_ADMIN).
9c1b96e3 123
414fa985 124
9c1b96e3
AK
1254.3 KVM_GET_MSR_INDEX_LIST
126
127Capability: basic
128Architectures: x86
129Type: system
130Parameters: struct kvm_msr_list (in/out)
131Returns: 0 on success; -1 on error
132Errors:
133 E2BIG: the msr index list is to be to fit in the array specified by
134 the user.
135
136struct kvm_msr_list {
137 __u32 nmsrs; /* number of msrs in entries */
138 __u32 indices[0];
139};
140
141This ioctl returns the guest msrs that are supported. The list varies
142by kvm version and host processor, but does not change otherwise. The
143user fills in the size of the indices array in nmsrs, and in return
144kvm adjusts nmsrs to reflect the actual number of msrs and fills in
145the indices array with their numbers.
146
2e2602ca
AK
147Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
148not returned in the MSR list, as different vcpus can have a different number
149of banks, as set via the KVM_X86_SETUP_MCE ioctl.
150
414fa985 151
9c1b96e3
AK
1524.4 KVM_CHECK_EXTENSION
153
92b591a4 154Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl
9c1b96e3 155Architectures: all
92b591a4 156Type: system ioctl, vm ioctl
9c1b96e3
AK
157Parameters: extension identifier (KVM_CAP_*)
158Returns: 0 if unsupported; 1 (or some other positive integer) if supported
159
160The API allows the application to query about extensions to the core
161kvm API. Userspace passes an extension identifier (an integer) and
162receives an integer that describes the extension availability.
163Generally 0 means no and 1 means yes, but some extensions may report
164additional information in the integer return value.
165
92b591a4
AG
166Based on their initialization different VMs may have different capabilities.
167It is thus encouraged to use the vm ioctl to query for capabilities (available
168with KVM_CAP_CHECK_EXTENSION_VM on the vm fd)
414fa985 169
9c1b96e3
AK
1704.5 KVM_GET_VCPU_MMAP_SIZE
171
172Capability: basic
173Architectures: all
174Type: system ioctl
175Parameters: none
176Returns: size of vcpu mmap area, in bytes
177
178The KVM_RUN ioctl (cf.) communicates with userspace via a shared
179memory region. This ioctl returns the size of that region. See the
180KVM_RUN documentation for details.
181
414fa985 182
9c1b96e3
AK
1834.6 KVM_SET_MEMORY_REGION
184
185Capability: basic
186Architectures: all
187Type: vm ioctl
188Parameters: struct kvm_memory_region (in)
189Returns: 0 on success, -1 on error
190
b74a07be 191This ioctl is obsolete and has been removed.
9c1b96e3 192
414fa985 193
68ba6974 1944.7 KVM_CREATE_VCPU
9c1b96e3
AK
195
196Capability: basic
197Architectures: all
198Type: vm ioctl
199Parameters: vcpu id (apic id on x86)
200Returns: vcpu fd on success, -1 on error
201
202This API adds a vcpu to a virtual machine. The vcpu id is a small integer
8c3ba334
SL
203in the range [0, max_vcpus).
204
205The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
206the KVM_CHECK_EXTENSION ioctl() at run-time.
207The maximum possible value for max_vcpus can be retrieved using the
208KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
209
76d25402
PE
210If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
211cpus max.
8c3ba334
SL
212If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
213same as the value returned from KVM_CAP_NR_VCPUS.
9c1b96e3 214
371fefd6
PM
215On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
216threads in one or more virtual CPU cores. (This is because the
217hardware requires all the hardware threads in a CPU core to be in the
218same partition.) The KVM_CAP_PPC_SMT capability indicates the number
36442687
AK
219of vcpus per virtual core (vcore). The vcore id is obtained by
220dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
221given vcore will always be in the same physical core as each other
222(though that might be a different physical core from time to time).
223Userspace can control the threading (SMT) mode of the guest by its
224allocation of vcpu ids. For example, if userspace wants
225single-threaded guest vcpus, it should make all vcpu ids be a multiple
226of the number of vcpus per vcore.
227
5b1c1493
CO
228For virtual cpus that have been created with S390 user controlled virtual
229machines, the resulting vcpu fd can be memory mapped at page offset
230KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
231cpu's hardware control block.
232
414fa985 233
68ba6974 2344.8 KVM_GET_DIRTY_LOG (vm ioctl)
9c1b96e3
AK
235
236Capability: basic
237Architectures: x86
238Type: vm ioctl
239Parameters: struct kvm_dirty_log (in/out)
240Returns: 0 on success, -1 on error
241
242/* for KVM_GET_DIRTY_LOG */
243struct kvm_dirty_log {
244 __u32 slot;
245 __u32 padding;
246 union {
247 void __user *dirty_bitmap; /* one bit per page */
248 __u64 padding;
249 };
250};
251
252Given a memory slot, return a bitmap containing any pages dirtied
253since the last call to this ioctl. Bit 0 is the first page in the
254memory slot. Ensure the entire structure is cleared to avoid padding
255issues.
256
414fa985 257
68ba6974 2584.9 KVM_SET_MEMORY_ALIAS
9c1b96e3
AK
259
260Capability: basic
261Architectures: x86
262Type: vm ioctl
263Parameters: struct kvm_memory_alias (in)
264Returns: 0 (success), -1 (error)
265
a1f4d395 266This ioctl is obsolete and has been removed.
9c1b96e3 267
414fa985 268
68ba6974 2694.10 KVM_RUN
9c1b96e3
AK
270
271Capability: basic
272Architectures: all
273Type: vcpu ioctl
274Parameters: none
275Returns: 0 on success, -1 on error
276Errors:
277 EINTR: an unmasked signal is pending
278
279This ioctl is used to run a guest virtual cpu. While there are no
280explicit parameters, there is an implicit parameter block that can be
281obtained by mmap()ing the vcpu fd at offset 0, with the size given by
282KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
283kvm_run' (see below).
284
414fa985 285
68ba6974 2864.11 KVM_GET_REGS
9c1b96e3
AK
287
288Capability: basic
379e04c7 289Architectures: all except ARM, arm64
9c1b96e3
AK
290Type: vcpu ioctl
291Parameters: struct kvm_regs (out)
292Returns: 0 on success, -1 on error
293
294Reads the general purpose registers from the vcpu.
295
296/* x86 */
297struct kvm_regs {
298 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
299 __u64 rax, rbx, rcx, rdx;
300 __u64 rsi, rdi, rsp, rbp;
301 __u64 r8, r9, r10, r11;
302 __u64 r12, r13, r14, r15;
303 __u64 rip, rflags;
304};
305
c2d2c21b
JH
306/* mips */
307struct kvm_regs {
308 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
309 __u64 gpr[32];
310 __u64 hi;
311 __u64 lo;
312 __u64 pc;
313};
314
414fa985 315
68ba6974 3164.12 KVM_SET_REGS
9c1b96e3
AK
317
318Capability: basic
379e04c7 319Architectures: all except ARM, arm64
9c1b96e3
AK
320Type: vcpu ioctl
321Parameters: struct kvm_regs (in)
322Returns: 0 on success, -1 on error
323
324Writes the general purpose registers into the vcpu.
325
326See KVM_GET_REGS for the data structure.
327
414fa985 328
68ba6974 3294.13 KVM_GET_SREGS
9c1b96e3
AK
330
331Capability: basic
5ce941ee 332Architectures: x86, ppc
9c1b96e3
AK
333Type: vcpu ioctl
334Parameters: struct kvm_sregs (out)
335Returns: 0 on success, -1 on error
336
337Reads special registers from the vcpu.
338
339/* x86 */
340struct kvm_sregs {
341 struct kvm_segment cs, ds, es, fs, gs, ss;
342 struct kvm_segment tr, ldt;
343 struct kvm_dtable gdt, idt;
344 __u64 cr0, cr2, cr3, cr4, cr8;
345 __u64 efer;
346 __u64 apic_base;
347 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
348};
349
68e2ffed 350/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
5ce941ee 351
9c1b96e3
AK
352interrupt_bitmap is a bitmap of pending external interrupts. At most
353one bit may be set. This interrupt has been acknowledged by the APIC
354but not yet injected into the cpu core.
355
414fa985 356
68ba6974 3574.14 KVM_SET_SREGS
9c1b96e3
AK
358
359Capability: basic
5ce941ee 360Architectures: x86, ppc
9c1b96e3
AK
361Type: vcpu ioctl
362Parameters: struct kvm_sregs (in)
363Returns: 0 on success, -1 on error
364
365Writes special registers into the vcpu. See KVM_GET_SREGS for the
366data structures.
367
414fa985 368
68ba6974 3694.15 KVM_TRANSLATE
9c1b96e3
AK
370
371Capability: basic
372Architectures: x86
373Type: vcpu ioctl
374Parameters: struct kvm_translation (in/out)
375Returns: 0 on success, -1 on error
376
377Translates a virtual address according to the vcpu's current address
378translation mode.
379
380struct kvm_translation {
381 /* in */
382 __u64 linear_address;
383
384 /* out */
385 __u64 physical_address;
386 __u8 valid;
387 __u8 writeable;
388 __u8 usermode;
389 __u8 pad[5];
390};
391
414fa985 392
68ba6974 3934.16 KVM_INTERRUPT
9c1b96e3
AK
394
395Capability: basic
c2d2c21b 396Architectures: x86, ppc, mips
9c1b96e3
AK
397Type: vcpu ioctl
398Parameters: struct kvm_interrupt (in)
399Returns: 0 on success, -1 on error
400
401Queues a hardware interrupt vector to be injected. This is only
6f7a2bd4 402useful if in-kernel local APIC or equivalent is not used.
9c1b96e3
AK
403
404/* for KVM_INTERRUPT */
405struct kvm_interrupt {
406 /* in */
407 __u32 irq;
408};
409
6f7a2bd4
AG
410X86:
411
9c1b96e3
AK
412Note 'irq' is an interrupt vector, not an interrupt pin or line.
413
6f7a2bd4
AG
414PPC:
415
416Queues an external interrupt to be injected. This ioctl is overleaded
417with 3 different irq values:
418
419a) KVM_INTERRUPT_SET
420
421 This injects an edge type external interrupt into the guest once it's ready
422 to receive interrupts. When injected, the interrupt is done.
423
424b) KVM_INTERRUPT_UNSET
425
426 This unsets any pending interrupt.
427
428 Only available with KVM_CAP_PPC_UNSET_IRQ.
429
430c) KVM_INTERRUPT_SET_LEVEL
431
432 This injects a level type external interrupt into the guest context. The
433 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
434 is triggered.
435
436 Only available with KVM_CAP_PPC_IRQ_LEVEL.
437
438Note that any value for 'irq' other than the ones stated above is invalid
439and incurs unexpected behavior.
440
c2d2c21b
JH
441MIPS:
442
443Queues an external interrupt to be injected into the virtual CPU. A negative
444interrupt number dequeues the interrupt.
445
414fa985 446
68ba6974 4474.17 KVM_DEBUG_GUEST
9c1b96e3
AK
448
449Capability: basic
450Architectures: none
451Type: vcpu ioctl
452Parameters: none)
453Returns: -1 on error
454
455Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
456
414fa985 457
68ba6974 4584.18 KVM_GET_MSRS
9c1b96e3
AK
459
460Capability: basic
461Architectures: x86
462Type: vcpu ioctl
463Parameters: struct kvm_msrs (in/out)
464Returns: 0 on success, -1 on error
465
466Reads model-specific registers from the vcpu. Supported msr indices can
467be obtained using KVM_GET_MSR_INDEX_LIST.
468
469struct kvm_msrs {
470 __u32 nmsrs; /* number of msrs in entries */
471 __u32 pad;
472
473 struct kvm_msr_entry entries[0];
474};
475
476struct kvm_msr_entry {
477 __u32 index;
478 __u32 reserved;
479 __u64 data;
480};
481
482Application code should set the 'nmsrs' member (which indicates the
483size of the entries array) and the 'index' member of each array entry.
484kvm will fill in the 'data' member.
485
414fa985 486
68ba6974 4874.19 KVM_SET_MSRS
9c1b96e3
AK
488
489Capability: basic
490Architectures: x86
491Type: vcpu ioctl
492Parameters: struct kvm_msrs (in)
493Returns: 0 on success, -1 on error
494
495Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
496data structures.
497
498Application code should set the 'nmsrs' member (which indicates the
499size of the entries array), and the 'index' and 'data' members of each
500array entry.
501
414fa985 502
68ba6974 5034.20 KVM_SET_CPUID
9c1b96e3
AK
504
505Capability: basic
506Architectures: x86
507Type: vcpu ioctl
508Parameters: struct kvm_cpuid (in)
509Returns: 0 on success, -1 on error
510
511Defines the vcpu responses to the cpuid instruction. Applications
512should use the KVM_SET_CPUID2 ioctl if available.
513
514
515struct kvm_cpuid_entry {
516 __u32 function;
517 __u32 eax;
518 __u32 ebx;
519 __u32 ecx;
520 __u32 edx;
521 __u32 padding;
522};
523
524/* for KVM_SET_CPUID */
525struct kvm_cpuid {
526 __u32 nent;
527 __u32 padding;
528 struct kvm_cpuid_entry entries[0];
529};
530
414fa985 531
68ba6974 5324.21 KVM_SET_SIGNAL_MASK
9c1b96e3
AK
533
534Capability: basic
572e0929 535Architectures: all
9c1b96e3
AK
536Type: vcpu ioctl
537Parameters: struct kvm_signal_mask (in)
538Returns: 0 on success, -1 on error
539
540Defines which signals are blocked during execution of KVM_RUN. This
541signal mask temporarily overrides the threads signal mask. Any
542unblocked signal received (except SIGKILL and SIGSTOP, which retain
543their traditional behaviour) will cause KVM_RUN to return with -EINTR.
544
545Note the signal will only be delivered if not blocked by the original
546signal mask.
547
548/* for KVM_SET_SIGNAL_MASK */
549struct kvm_signal_mask {
550 __u32 len;
551 __u8 sigset[0];
552};
553
414fa985 554
68ba6974 5554.22 KVM_GET_FPU
9c1b96e3
AK
556
557Capability: basic
558Architectures: x86
559Type: vcpu ioctl
560Parameters: struct kvm_fpu (out)
561Returns: 0 on success, -1 on error
562
563Reads the floating point state from the vcpu.
564
565/* for KVM_GET_FPU and KVM_SET_FPU */
566struct kvm_fpu {
567 __u8 fpr[8][16];
568 __u16 fcw;
569 __u16 fsw;
570 __u8 ftwx; /* in fxsave format */
571 __u8 pad1;
572 __u16 last_opcode;
573 __u64 last_ip;
574 __u64 last_dp;
575 __u8 xmm[16][16];
576 __u32 mxcsr;
577 __u32 pad2;
578};
579
414fa985 580
68ba6974 5814.23 KVM_SET_FPU
9c1b96e3
AK
582
583Capability: basic
584Architectures: x86
585Type: vcpu ioctl
586Parameters: struct kvm_fpu (in)
587Returns: 0 on success, -1 on error
588
589Writes the floating point state to the vcpu.
590
591/* for KVM_GET_FPU and KVM_SET_FPU */
592struct kvm_fpu {
593 __u8 fpr[8][16];
594 __u16 fcw;
595 __u16 fsw;
596 __u8 ftwx; /* in fxsave format */
597 __u8 pad1;
598 __u16 last_opcode;
599 __u64 last_ip;
600 __u64 last_dp;
601 __u8 xmm[16][16];
602 __u32 mxcsr;
603 __u32 pad2;
604};
605
414fa985 606
68ba6974 6074.24 KVM_CREATE_IRQCHIP
5dadbfd6 608
84223598 609Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390)
c32a4272 610Architectures: x86, ARM, arm64, s390
5dadbfd6
AK
611Type: vm ioctl
612Parameters: none
613Returns: 0 on success, -1 on error
614
ac3d3735
AP
615Creates an interrupt controller model in the kernel.
616On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up
617future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both
618PIC and IOAPIC; GSI 16-23 only go to the IOAPIC.
619On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of
620KVM_CREATE_DEVICE, which also supports creating a GICv2. Using
621KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2.
622On s390, a dummy irq routing table is created.
84223598
CH
623
624Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
625before KVM_CREATE_IRQCHIP can be used.
5dadbfd6 626
414fa985 627
68ba6974 6284.25 KVM_IRQ_LINE
5dadbfd6
AK
629
630Capability: KVM_CAP_IRQCHIP
c32a4272 631Architectures: x86, arm, arm64
5dadbfd6
AK
632Type: vm ioctl
633Parameters: struct kvm_irq_level
634Returns: 0 on success, -1 on error
635
636Sets the level of a GSI input to the interrupt controller model in the kernel.
86ce8535
CD
637On some architectures it is required that an interrupt controller model has
638been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
639interrupts require the level to be set to 1 and then back to 0.
640
100943c5
GS
641On real hardware, interrupt pins can be active-low or active-high. This
642does not matter for the level field of struct kvm_irq_level: 1 always
643means active (asserted), 0 means inactive (deasserted).
644
645x86 allows the operating system to program the interrupt polarity
646(active-low/active-high) for level-triggered interrupts, and KVM used
647to consider the polarity. However, due to bitrot in the handling of
648active-low interrupts, the above convention is now valid on x86 too.
649This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace
650should not present interrupts to the guest as active-low unless this
651capability is present (or unless it is not using the in-kernel irqchip,
652of course).
653
654
379e04c7
MZ
655ARM/arm64 can signal an interrupt either at the CPU level, or at the
656in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
657use PPIs designated for specific cpus. The irq field is interpreted
658like this:
86ce8535
CD
659
660  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
661 field: | irq_type | vcpu_index | irq_id |
662
663The irq_type field has the following values:
664- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
665- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
666 (the vcpu_index field is ignored)
667- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
668
669(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
670
100943c5 671In both cases, level is used to assert/deassert the line.
5dadbfd6
AK
672
673struct kvm_irq_level {
674 union {
675 __u32 irq; /* GSI */
676 __s32 status; /* not used for KVM_IRQ_LEVEL */
677 };
678 __u32 level; /* 0 or 1 */
679};
680
414fa985 681
68ba6974 6824.26 KVM_GET_IRQCHIP
5dadbfd6
AK
683
684Capability: KVM_CAP_IRQCHIP
c32a4272 685Architectures: x86
5dadbfd6
AK
686Type: vm ioctl
687Parameters: struct kvm_irqchip (in/out)
688Returns: 0 on success, -1 on error
689
690Reads the state of a kernel interrupt controller created with
691KVM_CREATE_IRQCHIP into a buffer provided by the caller.
692
693struct kvm_irqchip {
694 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
695 __u32 pad;
696 union {
697 char dummy[512]; /* reserving space */
698 struct kvm_pic_state pic;
699 struct kvm_ioapic_state ioapic;
700 } chip;
701};
702
414fa985 703
68ba6974 7044.27 KVM_SET_IRQCHIP
5dadbfd6
AK
705
706Capability: KVM_CAP_IRQCHIP
c32a4272 707Architectures: x86
5dadbfd6
AK
708Type: vm ioctl
709Parameters: struct kvm_irqchip (in)
710Returns: 0 on success, -1 on error
711
712Sets the state of a kernel interrupt controller created with
713KVM_CREATE_IRQCHIP from a buffer provided by the caller.
714
715struct kvm_irqchip {
716 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
717 __u32 pad;
718 union {
719 char dummy[512]; /* reserving space */
720 struct kvm_pic_state pic;
721 struct kvm_ioapic_state ioapic;
722 } chip;
723};
724
414fa985 725
68ba6974 7264.28 KVM_XEN_HVM_CONFIG
ffde22ac
ES
727
728Capability: KVM_CAP_XEN_HVM
729Architectures: x86
730Type: vm ioctl
731Parameters: struct kvm_xen_hvm_config (in)
732Returns: 0 on success, -1 on error
733
734Sets the MSR that the Xen HVM guest uses to initialize its hypercall
735page, and provides the starting address and size of the hypercall
736blobs in userspace. When the guest writes the MSR, kvm copies one
737page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
738memory.
739
740struct kvm_xen_hvm_config {
741 __u32 flags;
742 __u32 msr;
743 __u64 blob_addr_32;
744 __u64 blob_addr_64;
745 __u8 blob_size_32;
746 __u8 blob_size_64;
747 __u8 pad2[30];
748};
749
414fa985 750
68ba6974 7514.29 KVM_GET_CLOCK
afbcf7ab
GC
752
753Capability: KVM_CAP_ADJUST_CLOCK
754Architectures: x86
755Type: vm ioctl
756Parameters: struct kvm_clock_data (out)
757Returns: 0 on success, -1 on error
758
759Gets the current timestamp of kvmclock as seen by the current guest. In
760conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
761such as migration.
762
763struct kvm_clock_data {
764 __u64 clock; /* kvmclock current value */
765 __u32 flags;
766 __u32 pad[9];
767};
768
414fa985 769
68ba6974 7704.30 KVM_SET_CLOCK
afbcf7ab
GC
771
772Capability: KVM_CAP_ADJUST_CLOCK
773Architectures: x86
774Type: vm ioctl
775Parameters: struct kvm_clock_data (in)
776Returns: 0 on success, -1 on error
777
2044892d 778Sets the current timestamp of kvmclock to the value specified in its parameter.
afbcf7ab
GC
779In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
780such as migration.
781
782struct kvm_clock_data {
783 __u64 clock; /* kvmclock current value */
784 __u32 flags;
785 __u32 pad[9];
786};
787
414fa985 788
68ba6974 7894.31 KVM_GET_VCPU_EVENTS
3cfc3092
JK
790
791Capability: KVM_CAP_VCPU_EVENTS
48005f64 792Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
793Architectures: x86
794Type: vm ioctl
795Parameters: struct kvm_vcpu_event (out)
796Returns: 0 on success, -1 on error
797
798Gets currently pending exceptions, interrupts, and NMIs as well as related
799states of the vcpu.
800
801struct kvm_vcpu_events {
802 struct {
803 __u8 injected;
804 __u8 nr;
805 __u8 has_error_code;
806 __u8 pad;
807 __u32 error_code;
808 } exception;
809 struct {
810 __u8 injected;
811 __u8 nr;
812 __u8 soft;
48005f64 813 __u8 shadow;
3cfc3092
JK
814 } interrupt;
815 struct {
816 __u8 injected;
817 __u8 pending;
818 __u8 masked;
819 __u8 pad;
820 } nmi;
821 __u32 sipi_vector;
dab4b911 822 __u32 flags;
3cfc3092
JK
823};
824
48005f64
JK
825KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
826interrupt.shadow contains a valid state. Otherwise, this field is undefined.
827
414fa985 828
68ba6974 8294.32 KVM_SET_VCPU_EVENTS
3cfc3092
JK
830
831Capability: KVM_CAP_VCPU_EVENTS
48005f64 832Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
833Architectures: x86
834Type: vm ioctl
835Parameters: struct kvm_vcpu_event (in)
836Returns: 0 on success, -1 on error
837
838Set pending exceptions, interrupts, and NMIs as well as related states of the
839vcpu.
840
841See KVM_GET_VCPU_EVENTS for the data structure.
842
dab4b911
JK
843Fields that may be modified asynchronously by running VCPUs can be excluded
844from the update. These fields are nmi.pending and sipi_vector. Keep the
845corresponding bits in the flags field cleared to suppress overwriting the
846current in-kernel state. The bits are:
847
848KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
849KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
850
48005f64
JK
851If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
852the flags field to signal that interrupt.shadow contains a valid state and
853shall be written into the VCPU.
854
414fa985 855
68ba6974 8564.33 KVM_GET_DEBUGREGS
a1efbe77
JK
857
858Capability: KVM_CAP_DEBUGREGS
859Architectures: x86
860Type: vm ioctl
861Parameters: struct kvm_debugregs (out)
862Returns: 0 on success, -1 on error
863
864Reads debug registers from the vcpu.
865
866struct kvm_debugregs {
867 __u64 db[4];
868 __u64 dr6;
869 __u64 dr7;
870 __u64 flags;
871 __u64 reserved[9];
872};
873
414fa985 874
68ba6974 8754.34 KVM_SET_DEBUGREGS
a1efbe77
JK
876
877Capability: KVM_CAP_DEBUGREGS
878Architectures: x86
879Type: vm ioctl
880Parameters: struct kvm_debugregs (in)
881Returns: 0 on success, -1 on error
882
883Writes debug registers into the vcpu.
884
885See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
886yet and must be cleared on entry.
887
414fa985 888
68ba6974 8894.35 KVM_SET_USER_MEMORY_REGION
0f2d8f4d
AK
890
891Capability: KVM_CAP_USER_MEM
892Architectures: all
893Type: vm ioctl
894Parameters: struct kvm_userspace_memory_region (in)
895Returns: 0 on success, -1 on error
896
897struct kvm_userspace_memory_region {
898 __u32 slot;
899 __u32 flags;
900 __u64 guest_phys_addr;
901 __u64 memory_size; /* bytes */
902 __u64 userspace_addr; /* start of the userspace allocated memory */
903};
904
905/* for kvm_memory_region::flags */
4d8b81ab
XG
906#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
907#define KVM_MEM_READONLY (1UL << 1)
0f2d8f4d
AK
908
909This ioctl allows the user to create or modify a guest physical memory
910slot. When changing an existing slot, it may be moved in the guest
911physical memory space, or its flags may be modified. It may not be
912resized. Slots may not overlap in guest physical address space.
913
914Memory for the region is taken starting at the address denoted by the
915field userspace_addr, which must point at user addressable memory for
916the entire memory slot size. Any object may back this memory, including
917anonymous memory, ordinary files, and hugetlbfs.
918
919It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
920be identical. This allows large pages in the guest to be backed by large
921pages in the host.
922
75d61fbc
TY
923The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
924KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
925writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
926use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
927to make a new slot read-only. In this case, writes to this memory will be
928posted to userspace as KVM_EXIT_MMIO exits.
7efd8fa1
JK
929
930When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
931the memory region are automatically reflected into the guest. For example, an
932mmap() that affects the region will be made visible immediately. Another
933example is madvise(MADV_DROP).
0f2d8f4d
AK
934
935It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
936The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
937allocation and is deprecated.
3cfc3092 938
414fa985 939
68ba6974 9404.36 KVM_SET_TSS_ADDR
8a5416db
AK
941
942Capability: KVM_CAP_SET_TSS_ADDR
943Architectures: x86
944Type: vm ioctl
945Parameters: unsigned long tss_address (in)
946Returns: 0 on success, -1 on error
947
948This ioctl defines the physical address of a three-page region in the guest
949physical address space. The region must be within the first 4GB of the
950guest physical address space and must not conflict with any memory slot
951or any mmio address. The guest may malfunction if it accesses this memory
952region.
953
954This ioctl is required on Intel-based hosts. This is needed on Intel hardware
955because of a quirk in the virtualization implementation (see the internals
956documentation when it pops into existence).
957
414fa985 958
68ba6974 9594.37 KVM_ENABLE_CAP
71fbfd5f 960
d938dc55 961Capability: KVM_CAP_ENABLE_CAP, KVM_CAP_ENABLE_CAP_VM
d6712df9 962Architectures: ppc, s390
d938dc55 963Type: vcpu ioctl, vm ioctl (with KVM_CAP_ENABLE_CAP_VM)
71fbfd5f
AG
964Parameters: struct kvm_enable_cap (in)
965Returns: 0 on success; -1 on error
966
967+Not all extensions are enabled by default. Using this ioctl the application
968can enable an extension, making it available to the guest.
969
970On systems that do not support this ioctl, it always fails. On systems that
971do support it, it only works for extensions that are supported for enablement.
972
973To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
974be used.
975
976struct kvm_enable_cap {
977 /* in */
978 __u32 cap;
979
980The capability that is supposed to get enabled.
981
982 __u32 flags;
983
984A bitfield indicating future enhancements. Has to be 0 for now.
985
986 __u64 args[4];
987
988Arguments for enabling a feature. If a feature needs initial values to
989function properly, this is the place to put them.
990
991 __u8 pad[64];
992};
993
d938dc55
CH
994The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl
995for vm-wide capabilities.
414fa985 996
68ba6974 9974.38 KVM_GET_MP_STATE
b843f065
AK
998
999Capability: KVM_CAP_MP_STATE
c32a4272 1000Architectures: x86, s390
b843f065
AK
1001Type: vcpu ioctl
1002Parameters: struct kvm_mp_state (out)
1003Returns: 0 on success; -1 on error
1004
1005struct kvm_mp_state {
1006 __u32 mp_state;
1007};
1008
1009Returns the vcpu's current "multiprocessing state" (though also valid on
1010uniprocessor guests).
1011
1012Possible values are:
1013
c32a4272 1014 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running [x86]
b843f065 1015 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
c32a4272 1016 which has not yet received an INIT signal [x86]
b843f065 1017 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
c32a4272 1018 now ready for a SIPI [x86]
b843f065 1019 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
c32a4272 1020 is waiting for an interrupt [x86]
b843f065 1021 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
c32a4272 1022 accessible via KVM_GET_VCPU_EVENTS) [x86]
6352e4d2
DH
1023 - KVM_MP_STATE_STOPPED: the vcpu is stopped [s390]
1024 - KVM_MP_STATE_CHECK_STOP: the vcpu is in a special error state [s390]
1025 - KVM_MP_STATE_OPERATING: the vcpu is operating (running or halted)
1026 [s390]
1027 - KVM_MP_STATE_LOAD: the vcpu is in a special load/startup state
1028 [s390]
b843f065 1029
c32a4272 1030On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
0b4820d6
DH
1031in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1032these architectures.
b843f065 1033
414fa985 1034
68ba6974 10354.39 KVM_SET_MP_STATE
b843f065
AK
1036
1037Capability: KVM_CAP_MP_STATE
c32a4272 1038Architectures: x86, s390
b843f065
AK
1039Type: vcpu ioctl
1040Parameters: struct kvm_mp_state (in)
1041Returns: 0 on success; -1 on error
1042
1043Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1044arguments.
1045
c32a4272 1046On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
0b4820d6
DH
1047in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1048these architectures.
b843f065 1049
414fa985 1050
68ba6974 10514.40 KVM_SET_IDENTITY_MAP_ADDR
47dbb84f
AK
1052
1053Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1054Architectures: x86
1055Type: vm ioctl
1056Parameters: unsigned long identity (in)
1057Returns: 0 on success, -1 on error
1058
1059This ioctl defines the physical address of a one-page region in the guest
1060physical address space. The region must be within the first 4GB of the
1061guest physical address space and must not conflict with any memory slot
1062or any mmio address. The guest may malfunction if it accesses this memory
1063region.
1064
1065This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1066because of a quirk in the virtualization implementation (see the internals
1067documentation when it pops into existence).
1068
414fa985 1069
68ba6974 10704.41 KVM_SET_BOOT_CPU_ID
57bc24cf
AK
1071
1072Capability: KVM_CAP_SET_BOOT_CPU_ID
c32a4272 1073Architectures: x86
57bc24cf
AK
1074Type: vm ioctl
1075Parameters: unsigned long vcpu_id
1076Returns: 0 on success, -1 on error
1077
1078Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1079as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1080is vcpu 0.
1081
414fa985 1082
68ba6974 10834.42 KVM_GET_XSAVE
2d5b5a66
SY
1084
1085Capability: KVM_CAP_XSAVE
1086Architectures: x86
1087Type: vcpu ioctl
1088Parameters: struct kvm_xsave (out)
1089Returns: 0 on success, -1 on error
1090
1091struct kvm_xsave {
1092 __u32 region[1024];
1093};
1094
1095This ioctl would copy current vcpu's xsave struct to the userspace.
1096
414fa985 1097
68ba6974 10984.43 KVM_SET_XSAVE
2d5b5a66
SY
1099
1100Capability: KVM_CAP_XSAVE
1101Architectures: x86
1102Type: vcpu ioctl
1103Parameters: struct kvm_xsave (in)
1104Returns: 0 on success, -1 on error
1105
1106struct kvm_xsave {
1107 __u32 region[1024];
1108};
1109
1110This ioctl would copy userspace's xsave struct to the kernel.
1111
414fa985 1112
68ba6974 11134.44 KVM_GET_XCRS
2d5b5a66
SY
1114
1115Capability: KVM_CAP_XCRS
1116Architectures: x86
1117Type: vcpu ioctl
1118Parameters: struct kvm_xcrs (out)
1119Returns: 0 on success, -1 on error
1120
1121struct kvm_xcr {
1122 __u32 xcr;
1123 __u32 reserved;
1124 __u64 value;
1125};
1126
1127struct kvm_xcrs {
1128 __u32 nr_xcrs;
1129 __u32 flags;
1130 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1131 __u64 padding[16];
1132};
1133
1134This ioctl would copy current vcpu's xcrs to the userspace.
1135
414fa985 1136
68ba6974 11374.45 KVM_SET_XCRS
2d5b5a66
SY
1138
1139Capability: KVM_CAP_XCRS
1140Architectures: x86
1141Type: vcpu ioctl
1142Parameters: struct kvm_xcrs (in)
1143Returns: 0 on success, -1 on error
1144
1145struct kvm_xcr {
1146 __u32 xcr;
1147 __u32 reserved;
1148 __u64 value;
1149};
1150
1151struct kvm_xcrs {
1152 __u32 nr_xcrs;
1153 __u32 flags;
1154 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1155 __u64 padding[16];
1156};
1157
1158This ioctl would set vcpu's xcr to the value userspace specified.
1159
414fa985 1160
68ba6974 11614.46 KVM_GET_SUPPORTED_CPUID
d153513d
AK
1162
1163Capability: KVM_CAP_EXT_CPUID
1164Architectures: x86
1165Type: system ioctl
1166Parameters: struct kvm_cpuid2 (in/out)
1167Returns: 0 on success, -1 on error
1168
1169struct kvm_cpuid2 {
1170 __u32 nent;
1171 __u32 padding;
1172 struct kvm_cpuid_entry2 entries[0];
1173};
1174
9c15bb1d
BP
1175#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
1176#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
1177#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
d153513d
AK
1178
1179struct kvm_cpuid_entry2 {
1180 __u32 function;
1181 __u32 index;
1182 __u32 flags;
1183 __u32 eax;
1184 __u32 ebx;
1185 __u32 ecx;
1186 __u32 edx;
1187 __u32 padding[3];
1188};
1189
1190This ioctl returns x86 cpuid features which are supported by both the hardware
1191and kvm. Userspace can use the information returned by this ioctl to
1192construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1193hardware, kernel, and userspace capabilities, and with user requirements (for
1194example, the user may wish to constrain cpuid to emulate older hardware,
1195or for feature consistency across a cluster).
1196
1197Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1198with the 'nent' field indicating the number of entries in the variable-size
1199array 'entries'. If the number of entries is too low to describe the cpu
1200capabilities, an error (E2BIG) is returned. If the number is too high,
1201the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1202number is just right, the 'nent' field is adjusted to the number of valid
1203entries in the 'entries' array, which is then filled.
1204
1205The entries returned are the host cpuid as returned by the cpuid instruction,
c39cbd2a
AK
1206with unknown or unsupported features masked out. Some features (for example,
1207x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1208emulate them efficiently. The fields in each entry are defined as follows:
d153513d
AK
1209
1210 function: the eax value used to obtain the entry
1211 index: the ecx value used to obtain the entry (for entries that are
1212 affected by ecx)
1213 flags: an OR of zero or more of the following:
1214 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1215 if the index field is valid
1216 KVM_CPUID_FLAG_STATEFUL_FUNC:
1217 if cpuid for this function returns different values for successive
1218 invocations; there will be several entries with the same function,
1219 all with this flag set
1220 KVM_CPUID_FLAG_STATE_READ_NEXT:
1221 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1222 the first entry to be read by a cpu
1223 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1224 this function/index combination
1225
4d25a066
JK
1226The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1227as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1228support. Instead it is reported via
1229
1230 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1231
1232if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1233feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1234
414fa985 1235
68ba6974 12364.47 KVM_PPC_GET_PVINFO
15711e9c
AG
1237
1238Capability: KVM_CAP_PPC_GET_PVINFO
1239Architectures: ppc
1240Type: vm ioctl
1241Parameters: struct kvm_ppc_pvinfo (out)
1242Returns: 0 on success, !0 on error
1243
1244struct kvm_ppc_pvinfo {
1245 __u32 flags;
1246 __u32 hcall[4];
1247 __u8 pad[108];
1248};
1249
1250This ioctl fetches PV specific information that need to be passed to the guest
1251using the device tree or other means from vm context.
1252
9202e076 1253The hcall array defines 4 instructions that make up a hypercall.
15711e9c
AG
1254
1255If any additional field gets added to this structure later on, a bit for that
1256additional piece of information will be set in the flags bitmap.
1257
9202e076
LYB
1258The flags bitmap is defined as:
1259
1260 /* the host supports the ePAPR idle hcall
1261 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
414fa985 1262
68ba6974 12634.48 KVM_ASSIGN_PCI_DEVICE
49f48172 1264
7f05db6a 1265Capability: none
c32a4272 1266Architectures: x86
49f48172
JK
1267Type: vm ioctl
1268Parameters: struct kvm_assigned_pci_dev (in)
1269Returns: 0 on success, -1 on error
1270
1271Assigns a host PCI device to the VM.
1272
1273struct kvm_assigned_pci_dev {
1274 __u32 assigned_dev_id;
1275 __u32 busnr;
1276 __u32 devfn;
1277 __u32 flags;
1278 __u32 segnr;
1279 union {
1280 __u32 reserved[11];
1281 };
1282};
1283
1284The PCI device is specified by the triple segnr, busnr, and devfn.
1285Identification in succeeding service requests is done via assigned_dev_id. The
1286following flags are specified:
1287
1288/* Depends on KVM_CAP_IOMMU */
1289#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
07700a94
JK
1290/* The following two depend on KVM_CAP_PCI_2_3 */
1291#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
1292#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
1293
1294If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
1295via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
1296assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
1297guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
49f48172 1298
42387373
AW
1299The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
1300isolation of the device. Usages not specifying this flag are deprecated.
1301
3d27e23b
AW
1302Only PCI header type 0 devices with PCI BAR resources are supported by
1303device assignment. The user requesting this ioctl must have read/write
1304access to the PCI sysfs resource files associated with the device.
1305
7f05db6a
MT
1306Errors:
1307 ENOTTY: kernel does not support this ioctl
1308
1309 Other error conditions may be defined by individual device types or
1310 have their standard meanings.
1311
414fa985 1312
68ba6974 13134.49 KVM_DEASSIGN_PCI_DEVICE
49f48172 1314
7f05db6a 1315Capability: none
c32a4272 1316Architectures: x86
49f48172
JK
1317Type: vm ioctl
1318Parameters: struct kvm_assigned_pci_dev (in)
1319Returns: 0 on success, -1 on error
1320
1321Ends PCI device assignment, releasing all associated resources.
1322
7f05db6a 1323See KVM_ASSIGN_PCI_DEVICE for the data structure. Only assigned_dev_id is
49f48172
JK
1324used in kvm_assigned_pci_dev to identify the device.
1325
7f05db6a
MT
1326Errors:
1327 ENOTTY: kernel does not support this ioctl
1328
1329 Other error conditions may be defined by individual device types or
1330 have their standard meanings.
414fa985 1331
68ba6974 13324.50 KVM_ASSIGN_DEV_IRQ
49f48172
JK
1333
1334Capability: KVM_CAP_ASSIGN_DEV_IRQ
c32a4272 1335Architectures: x86
49f48172
JK
1336Type: vm ioctl
1337Parameters: struct kvm_assigned_irq (in)
1338Returns: 0 on success, -1 on error
1339
1340Assigns an IRQ to a passed-through device.
1341
1342struct kvm_assigned_irq {
1343 __u32 assigned_dev_id;
91e3d71d 1344 __u32 host_irq; /* ignored (legacy field) */
49f48172
JK
1345 __u32 guest_irq;
1346 __u32 flags;
1347 union {
49f48172
JK
1348 __u32 reserved[12];
1349 };
1350};
1351
1352The following flags are defined:
1353
1354#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
1355#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
1356#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
1357
1358#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
1359#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
1360#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
1361
1362It is not valid to specify multiple types per host or guest IRQ. However, the
1363IRQ type of host and guest can differ or can even be null.
1364
7f05db6a
MT
1365Errors:
1366 ENOTTY: kernel does not support this ioctl
1367
1368 Other error conditions may be defined by individual device types or
1369 have their standard meanings.
1370
414fa985 1371
68ba6974 13724.51 KVM_DEASSIGN_DEV_IRQ
49f48172
JK
1373
1374Capability: KVM_CAP_ASSIGN_DEV_IRQ
c32a4272 1375Architectures: x86
49f48172
JK
1376Type: vm ioctl
1377Parameters: struct kvm_assigned_irq (in)
1378Returns: 0 on success, -1 on error
1379
1380Ends an IRQ assignment to a passed-through device.
1381
1382See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1383by assigned_dev_id, flags must correspond to the IRQ type specified on
1384KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
1385
414fa985 1386
68ba6974 13874.52 KVM_SET_GSI_ROUTING
49f48172
JK
1388
1389Capability: KVM_CAP_IRQ_ROUTING
c32a4272 1390Architectures: x86 s390
49f48172
JK
1391Type: vm ioctl
1392Parameters: struct kvm_irq_routing (in)
1393Returns: 0 on success, -1 on error
1394
1395Sets the GSI routing table entries, overwriting any previously set entries.
1396
1397struct kvm_irq_routing {
1398 __u32 nr;
1399 __u32 flags;
1400 struct kvm_irq_routing_entry entries[0];
1401};
1402
1403No flags are specified so far, the corresponding field must be set to zero.
1404
1405struct kvm_irq_routing_entry {
1406 __u32 gsi;
1407 __u32 type;
1408 __u32 flags;
1409 __u32 pad;
1410 union {
1411 struct kvm_irq_routing_irqchip irqchip;
1412 struct kvm_irq_routing_msi msi;
84223598 1413 struct kvm_irq_routing_s390_adapter adapter;
49f48172
JK
1414 __u32 pad[8];
1415 } u;
1416};
1417
1418/* gsi routing entry types */
1419#define KVM_IRQ_ROUTING_IRQCHIP 1
1420#define KVM_IRQ_ROUTING_MSI 2
84223598 1421#define KVM_IRQ_ROUTING_S390_ADAPTER 3
49f48172
JK
1422
1423No flags are specified so far, the corresponding field must be set to zero.
1424
1425struct kvm_irq_routing_irqchip {
1426 __u32 irqchip;
1427 __u32 pin;
1428};
1429
1430struct kvm_irq_routing_msi {
1431 __u32 address_lo;
1432 __u32 address_hi;
1433 __u32 data;
1434 __u32 pad;
1435};
1436
84223598
CH
1437struct kvm_irq_routing_s390_adapter {
1438 __u64 ind_addr;
1439 __u64 summary_addr;
1440 __u64 ind_offset;
1441 __u32 summary_offset;
1442 __u32 adapter_id;
1443};
1444
414fa985 1445
68ba6974 14464.53 KVM_ASSIGN_SET_MSIX_NR
49f48172 1447
7f05db6a 1448Capability: none
c32a4272 1449Architectures: x86
49f48172
JK
1450Type: vm ioctl
1451Parameters: struct kvm_assigned_msix_nr (in)
1452Returns: 0 on success, -1 on error
1453
58f0964e
JK
1454Set the number of MSI-X interrupts for an assigned device. The number is
1455reset again by terminating the MSI-X assignment of the device via
1456KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
1457point will fail.
49f48172
JK
1458
1459struct kvm_assigned_msix_nr {
1460 __u32 assigned_dev_id;
1461 __u16 entry_nr;
1462 __u16 padding;
1463};
1464
1465#define KVM_MAX_MSIX_PER_DEV 256
1466
414fa985 1467
68ba6974 14684.54 KVM_ASSIGN_SET_MSIX_ENTRY
49f48172 1469
7f05db6a 1470Capability: none
c32a4272 1471Architectures: x86
49f48172
JK
1472Type: vm ioctl
1473Parameters: struct kvm_assigned_msix_entry (in)
1474Returns: 0 on success, -1 on error
1475
1476Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
1477the GSI vector to zero means disabling the interrupt.
1478
1479struct kvm_assigned_msix_entry {
1480 __u32 assigned_dev_id;
1481 __u32 gsi;
1482 __u16 entry; /* The index of entry in the MSI-X table */
1483 __u16 padding[3];
1484};
1485
7f05db6a
MT
1486Errors:
1487 ENOTTY: kernel does not support this ioctl
1488
1489 Other error conditions may be defined by individual device types or
1490 have their standard meanings.
1491
414fa985
JK
1492
14934.55 KVM_SET_TSC_KHZ
92a1f12d
JR
1494
1495Capability: KVM_CAP_TSC_CONTROL
1496Architectures: x86
1497Type: vcpu ioctl
1498Parameters: virtual tsc_khz
1499Returns: 0 on success, -1 on error
1500
1501Specifies the tsc frequency for the virtual machine. The unit of the
1502frequency is KHz.
1503
414fa985
JK
1504
15054.56 KVM_GET_TSC_KHZ
92a1f12d
JR
1506
1507Capability: KVM_CAP_GET_TSC_KHZ
1508Architectures: x86
1509Type: vcpu ioctl
1510Parameters: none
1511Returns: virtual tsc-khz on success, negative value on error
1512
1513Returns the tsc frequency of the guest. The unit of the return value is
1514KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1515error.
1516
414fa985
JK
1517
15184.57 KVM_GET_LAPIC
e7677933
AK
1519
1520Capability: KVM_CAP_IRQCHIP
1521Architectures: x86
1522Type: vcpu ioctl
1523Parameters: struct kvm_lapic_state (out)
1524Returns: 0 on success, -1 on error
1525
1526#define KVM_APIC_REG_SIZE 0x400
1527struct kvm_lapic_state {
1528 char regs[KVM_APIC_REG_SIZE];
1529};
1530
1531Reads the Local APIC registers and copies them into the input argument. The
1532data format and layout are the same as documented in the architecture manual.
1533
414fa985
JK
1534
15354.58 KVM_SET_LAPIC
e7677933
AK
1536
1537Capability: KVM_CAP_IRQCHIP
1538Architectures: x86
1539Type: vcpu ioctl
1540Parameters: struct kvm_lapic_state (in)
1541Returns: 0 on success, -1 on error
1542
1543#define KVM_APIC_REG_SIZE 0x400
1544struct kvm_lapic_state {
1545 char regs[KVM_APIC_REG_SIZE];
1546};
1547
df5cbb27 1548Copies the input argument into the Local APIC registers. The data format
e7677933
AK
1549and layout are the same as documented in the architecture manual.
1550
414fa985
JK
1551
15524.59 KVM_IOEVENTFD
55399a02
SL
1553
1554Capability: KVM_CAP_IOEVENTFD
1555Architectures: all
1556Type: vm ioctl
1557Parameters: struct kvm_ioeventfd (in)
1558Returns: 0 on success, !0 on error
1559
1560This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1561within the guest. A guest write in the registered address will signal the
1562provided event instead of triggering an exit.
1563
1564struct kvm_ioeventfd {
1565 __u64 datamatch;
1566 __u64 addr; /* legal pio/mmio address */
1567 __u32 len; /* 1, 2, 4, or 8 bytes */
1568 __s32 fd;
1569 __u32 flags;
1570 __u8 pad[36];
1571};
1572
2b83451b
CH
1573For the special case of virtio-ccw devices on s390, the ioevent is matched
1574to a subchannel/virtqueue tuple instead.
1575
55399a02
SL
1576The following flags are defined:
1577
1578#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1579#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1580#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
2b83451b
CH
1581#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
1582 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
55399a02
SL
1583
1584If datamatch flag is set, the event will be signaled only if the written value
1585to the registered address is equal to datamatch in struct kvm_ioeventfd.
1586
2b83451b
CH
1587For virtio-ccw devices, addr contains the subchannel id and datamatch the
1588virtqueue index.
1589
414fa985
JK
1590
15914.60 KVM_DIRTY_TLB
dc83b8bc
SW
1592
1593Capability: KVM_CAP_SW_TLB
1594Architectures: ppc
1595Type: vcpu ioctl
1596Parameters: struct kvm_dirty_tlb (in)
1597Returns: 0 on success, -1 on error
1598
1599struct kvm_dirty_tlb {
1600 __u64 bitmap;
1601 __u32 num_dirty;
1602};
1603
1604This must be called whenever userspace has changed an entry in the shared
1605TLB, prior to calling KVM_RUN on the associated vcpu.
1606
1607The "bitmap" field is the userspace address of an array. This array
1608consists of a number of bits, equal to the total number of TLB entries as
1609determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1610nearest multiple of 64.
1611
1612Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1613array.
1614
1615The array is little-endian: the bit 0 is the least significant bit of the
1616first byte, bit 8 is the least significant bit of the second byte, etc.
1617This avoids any complications with differing word sizes.
1618
1619The "num_dirty" field is a performance hint for KVM to determine whether it
1620should skip processing the bitmap and just invalidate everything. It must
1621be set to the number of set bits in the bitmap.
1622
414fa985
JK
1623
16244.61 KVM_ASSIGN_SET_INTX_MASK
07700a94
JK
1625
1626Capability: KVM_CAP_PCI_2_3
1627Architectures: x86
1628Type: vm ioctl
1629Parameters: struct kvm_assigned_pci_dev (in)
1630Returns: 0 on success, -1 on error
1631
1632Allows userspace to mask PCI INTx interrupts from the assigned device. The
1633kernel will not deliver INTx interrupts to the guest between setting and
1634clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
1635and emulation of PCI 2.3 INTx disable command register behavior.
1636
1637This may be used for both PCI 2.3 devices supporting INTx disable natively and
1638older devices lacking this support. Userspace is responsible for emulating the
1639read value of the INTx disable bit in the guest visible PCI command register.
1640When modifying the INTx disable state, userspace should precede updating the
1641physical device command register by calling this ioctl to inform the kernel of
1642the new intended INTx mask state.
1643
1644Note that the kernel uses the device INTx disable bit to internally manage the
1645device interrupt state for PCI 2.3 devices. Reads of this register may
1646therefore not match the expected value. Writes should always use the guest
1647intended INTx disable value rather than attempting to read-copy-update the
1648current physical device state. Races between user and kernel updates to the
1649INTx disable bit are handled lazily in the kernel. It's possible the device
1650may generate unintended interrupts, but they will not be injected into the
1651guest.
1652
1653See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1654by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
1655evaluated.
1656
414fa985 1657
54738c09
DG
16584.62 KVM_CREATE_SPAPR_TCE
1659
1660Capability: KVM_CAP_SPAPR_TCE
1661Architectures: powerpc
1662Type: vm ioctl
1663Parameters: struct kvm_create_spapr_tce (in)
1664Returns: file descriptor for manipulating the created TCE table
1665
1666This creates a virtual TCE (translation control entry) table, which
1667is an IOMMU for PAPR-style virtual I/O. It is used to translate
1668logical addresses used in virtual I/O into guest physical addresses,
1669and provides a scatter/gather capability for PAPR virtual I/O.
1670
1671/* for KVM_CAP_SPAPR_TCE */
1672struct kvm_create_spapr_tce {
1673 __u64 liobn;
1674 __u32 window_size;
1675};
1676
1677The liobn field gives the logical IO bus number for which to create a
1678TCE table. The window_size field specifies the size of the DMA window
1679which this TCE table will translate - the table will contain one 64
1680bit TCE entry for every 4kiB of the DMA window.
1681
1682When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1683table has been created using this ioctl(), the kernel will handle it
1684in real mode, updating the TCE table. H_PUT_TCE calls for other
1685liobns will cause a vm exit and must be handled by userspace.
1686
1687The return value is a file descriptor which can be passed to mmap(2)
1688to map the created TCE table into userspace. This lets userspace read
1689the entries written by kernel-handled H_PUT_TCE calls, and also lets
1690userspace update the TCE table directly which is useful in some
1691circumstances.
1692
414fa985 1693
aa04b4cc
PM
16944.63 KVM_ALLOCATE_RMA
1695
1696Capability: KVM_CAP_PPC_RMA
1697Architectures: powerpc
1698Type: vm ioctl
1699Parameters: struct kvm_allocate_rma (out)
1700Returns: file descriptor for mapping the allocated RMA
1701
1702This allocates a Real Mode Area (RMA) from the pool allocated at boot
1703time by the kernel. An RMA is a physically-contiguous, aligned region
1704of memory used on older POWER processors to provide the memory which
1705will be accessed by real-mode (MMU off) accesses in a KVM guest.
1706POWER processors support a set of sizes for the RMA that usually
1707includes 64MB, 128MB, 256MB and some larger powers of two.
1708
1709/* for KVM_ALLOCATE_RMA */
1710struct kvm_allocate_rma {
1711 __u64 rma_size;
1712};
1713
1714The return value is a file descriptor which can be passed to mmap(2)
1715to map the allocated RMA into userspace. The mapped area can then be
1716passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1717RMA for a virtual machine. The size of the RMA in bytes (which is
1718fixed at host kernel boot time) is returned in the rma_size field of
1719the argument structure.
1720
1721The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1722is supported; 2 if the processor requires all virtual machines to have
1723an RMA, or 1 if the processor can use an RMA but doesn't require it,
1724because it supports the Virtual RMA (VRMA) facility.
1725
414fa985 1726
3f745f1e
AK
17274.64 KVM_NMI
1728
1729Capability: KVM_CAP_USER_NMI
1730Architectures: x86
1731Type: vcpu ioctl
1732Parameters: none
1733Returns: 0 on success, -1 on error
1734
1735Queues an NMI on the thread's vcpu. Note this is well defined only
1736when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1737between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1738has been called, this interface is completely emulated within the kernel.
1739
1740To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1741following algorithm:
1742
1743 - pause the vpcu
1744 - read the local APIC's state (KVM_GET_LAPIC)
1745 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1746 - if so, issue KVM_NMI
1747 - resume the vcpu
1748
1749Some guests configure the LINT1 NMI input to cause a panic, aiding in
1750debugging.
1751
414fa985 1752
e24ed81f 17534.65 KVM_S390_UCAS_MAP
27e0393f
CO
1754
1755Capability: KVM_CAP_S390_UCONTROL
1756Architectures: s390
1757Type: vcpu ioctl
1758Parameters: struct kvm_s390_ucas_mapping (in)
1759Returns: 0 in case of success
1760
1761The parameter is defined like this:
1762 struct kvm_s390_ucas_mapping {
1763 __u64 user_addr;
1764 __u64 vcpu_addr;
1765 __u64 length;
1766 };
1767
1768This ioctl maps the memory at "user_addr" with the length "length" to
1769the vcpu's address space starting at "vcpu_addr". All parameters need to
f884ab15 1770be aligned by 1 megabyte.
27e0393f 1771
414fa985 1772
e24ed81f 17734.66 KVM_S390_UCAS_UNMAP
27e0393f
CO
1774
1775Capability: KVM_CAP_S390_UCONTROL
1776Architectures: s390
1777Type: vcpu ioctl
1778Parameters: struct kvm_s390_ucas_mapping (in)
1779Returns: 0 in case of success
1780
1781The parameter is defined like this:
1782 struct kvm_s390_ucas_mapping {
1783 __u64 user_addr;
1784 __u64 vcpu_addr;
1785 __u64 length;
1786 };
1787
1788This ioctl unmaps the memory in the vcpu's address space starting at
1789"vcpu_addr" with the length "length". The field "user_addr" is ignored.
f884ab15 1790All parameters need to be aligned by 1 megabyte.
27e0393f 1791
414fa985 1792
e24ed81f 17934.67 KVM_S390_VCPU_FAULT
ccc7910f
CO
1794
1795Capability: KVM_CAP_S390_UCONTROL
1796Architectures: s390
1797Type: vcpu ioctl
1798Parameters: vcpu absolute address (in)
1799Returns: 0 in case of success
1800
1801This call creates a page table entry on the virtual cpu's address space
1802(for user controlled virtual machines) or the virtual machine's address
1803space (for regular virtual machines). This only works for minor faults,
1804thus it's recommended to access subject memory page via the user page
1805table upfront. This is useful to handle validity intercepts for user
1806controlled virtual machines to fault in the virtual cpu's lowcore pages
1807prior to calling the KVM_RUN ioctl.
1808
414fa985 1809
e24ed81f
AG
18104.68 KVM_SET_ONE_REG
1811
1812Capability: KVM_CAP_ONE_REG
1813Architectures: all
1814Type: vcpu ioctl
1815Parameters: struct kvm_one_reg (in)
1816Returns: 0 on success, negative value on failure
1817
1818struct kvm_one_reg {
1819 __u64 id;
1820 __u64 addr;
1821};
1822
1823Using this ioctl, a single vcpu register can be set to a specific value
1824defined by user space with the passed in struct kvm_one_reg, where id
1825refers to the register identifier as described below and addr is a pointer
1826to a variable with the respective size. There can be architecture agnostic
1827and architecture specific registers. Each have their own range of operation
1828and their own constants and width. To keep track of the implemented
1829registers, find a list below:
1830
bf5590f3
JH
1831 Arch | Register | Width (bits)
1832 | |
1833 PPC | KVM_REG_PPC_HIOR | 64
1834 PPC | KVM_REG_PPC_IAC1 | 64
1835 PPC | KVM_REG_PPC_IAC2 | 64
1836 PPC | KVM_REG_PPC_IAC3 | 64
1837 PPC | KVM_REG_PPC_IAC4 | 64
1838 PPC | KVM_REG_PPC_DAC1 | 64
1839 PPC | KVM_REG_PPC_DAC2 | 64
1840 PPC | KVM_REG_PPC_DABR | 64
1841 PPC | KVM_REG_PPC_DSCR | 64
1842 PPC | KVM_REG_PPC_PURR | 64
1843 PPC | KVM_REG_PPC_SPURR | 64
1844 PPC | KVM_REG_PPC_DAR | 64
1845 PPC | KVM_REG_PPC_DSISR | 32
1846 PPC | KVM_REG_PPC_AMR | 64
1847 PPC | KVM_REG_PPC_UAMOR | 64
1848 PPC | KVM_REG_PPC_MMCR0 | 64
1849 PPC | KVM_REG_PPC_MMCR1 | 64
1850 PPC | KVM_REG_PPC_MMCRA | 64
1851 PPC | KVM_REG_PPC_MMCR2 | 64
1852 PPC | KVM_REG_PPC_MMCRS | 64
1853 PPC | KVM_REG_PPC_SIAR | 64
1854 PPC | KVM_REG_PPC_SDAR | 64
1855 PPC | KVM_REG_PPC_SIER | 64
1856 PPC | KVM_REG_PPC_PMC1 | 32
1857 PPC | KVM_REG_PPC_PMC2 | 32
1858 PPC | KVM_REG_PPC_PMC3 | 32
1859 PPC | KVM_REG_PPC_PMC4 | 32
1860 PPC | KVM_REG_PPC_PMC5 | 32
1861 PPC | KVM_REG_PPC_PMC6 | 32
1862 PPC | KVM_REG_PPC_PMC7 | 32
1863 PPC | KVM_REG_PPC_PMC8 | 32
1864 PPC | KVM_REG_PPC_FPR0 | 64
a8bd19ef 1865 ...
bf5590f3
JH
1866 PPC | KVM_REG_PPC_FPR31 | 64
1867 PPC | KVM_REG_PPC_VR0 | 128
a8bd19ef 1868 ...
bf5590f3
JH
1869 PPC | KVM_REG_PPC_VR31 | 128
1870 PPC | KVM_REG_PPC_VSR0 | 128
a8bd19ef 1871 ...
bf5590f3
JH
1872 PPC | KVM_REG_PPC_VSR31 | 128
1873 PPC | KVM_REG_PPC_FPSCR | 64
1874 PPC | KVM_REG_PPC_VSCR | 32
1875 PPC | KVM_REG_PPC_VPA_ADDR | 64
1876 PPC | KVM_REG_PPC_VPA_SLB | 128
1877 PPC | KVM_REG_PPC_VPA_DTL | 128
1878 PPC | KVM_REG_PPC_EPCR | 32
1879 PPC | KVM_REG_PPC_EPR | 32
1880 PPC | KVM_REG_PPC_TCR | 32
1881 PPC | KVM_REG_PPC_TSR | 32
1882 PPC | KVM_REG_PPC_OR_TSR | 32
1883 PPC | KVM_REG_PPC_CLEAR_TSR | 32
1884 PPC | KVM_REG_PPC_MAS0 | 32
1885 PPC | KVM_REG_PPC_MAS1 | 32
1886 PPC | KVM_REG_PPC_MAS2 | 64
1887 PPC | KVM_REG_PPC_MAS7_3 | 64
1888 PPC | KVM_REG_PPC_MAS4 | 32
1889 PPC | KVM_REG_PPC_MAS6 | 32
1890 PPC | KVM_REG_PPC_MMUCFG | 32
1891 PPC | KVM_REG_PPC_TLB0CFG | 32
1892 PPC | KVM_REG_PPC_TLB1CFG | 32
1893 PPC | KVM_REG_PPC_TLB2CFG | 32
1894 PPC | KVM_REG_PPC_TLB3CFG | 32
1895 PPC | KVM_REG_PPC_TLB0PS | 32
1896 PPC | KVM_REG_PPC_TLB1PS | 32
1897 PPC | KVM_REG_PPC_TLB2PS | 32
1898 PPC | KVM_REG_PPC_TLB3PS | 32
1899 PPC | KVM_REG_PPC_EPTCFG | 32
1900 PPC | KVM_REG_PPC_ICP_STATE | 64
1901 PPC | KVM_REG_PPC_TB_OFFSET | 64
1902 PPC | KVM_REG_PPC_SPMC1 | 32
1903 PPC | KVM_REG_PPC_SPMC2 | 32
1904 PPC | KVM_REG_PPC_IAMR | 64
1905 PPC | KVM_REG_PPC_TFHAR | 64
1906 PPC | KVM_REG_PPC_TFIAR | 64
1907 PPC | KVM_REG_PPC_TEXASR | 64
1908 PPC | KVM_REG_PPC_FSCR | 64
1909 PPC | KVM_REG_PPC_PSPB | 32
1910 PPC | KVM_REG_PPC_EBBHR | 64
1911 PPC | KVM_REG_PPC_EBBRR | 64
1912 PPC | KVM_REG_PPC_BESCR | 64
1913 PPC | KVM_REG_PPC_TAR | 64
1914 PPC | KVM_REG_PPC_DPDES | 64
1915 PPC | KVM_REG_PPC_DAWR | 64
1916 PPC | KVM_REG_PPC_DAWRX | 64
1917 PPC | KVM_REG_PPC_CIABR | 64
1918 PPC | KVM_REG_PPC_IC | 64
1919 PPC | KVM_REG_PPC_VTB | 64
1920 PPC | KVM_REG_PPC_CSIGR | 64
1921 PPC | KVM_REG_PPC_TACR | 64
1922 PPC | KVM_REG_PPC_TCSCR | 64
1923 PPC | KVM_REG_PPC_PID | 64
1924 PPC | KVM_REG_PPC_ACOP | 64
1925 PPC | KVM_REG_PPC_VRSAVE | 32
cc568ead
PB
1926 PPC | KVM_REG_PPC_LPCR | 32
1927 PPC | KVM_REG_PPC_LPCR_64 | 64
bf5590f3
JH
1928 PPC | KVM_REG_PPC_PPR | 64
1929 PPC | KVM_REG_PPC_ARCH_COMPAT | 32
1930 PPC | KVM_REG_PPC_DABRX | 32
1931 PPC | KVM_REG_PPC_WORT | 64
bc8a4e5c
BB
1932 PPC | KVM_REG_PPC_SPRG9 | 64
1933 PPC | KVM_REG_PPC_DBSR | 32
bf5590f3 1934 PPC | KVM_REG_PPC_TM_GPR0 | 64
3b783474 1935 ...
bf5590f3
JH
1936 PPC | KVM_REG_PPC_TM_GPR31 | 64
1937 PPC | KVM_REG_PPC_TM_VSR0 | 128
3b783474 1938 ...
bf5590f3
JH
1939 PPC | KVM_REG_PPC_TM_VSR63 | 128
1940 PPC | KVM_REG_PPC_TM_CR | 64
1941 PPC | KVM_REG_PPC_TM_LR | 64
1942 PPC | KVM_REG_PPC_TM_CTR | 64
1943 PPC | KVM_REG_PPC_TM_FPSCR | 64
1944 PPC | KVM_REG_PPC_TM_AMR | 64
1945 PPC | KVM_REG_PPC_TM_PPR | 64
1946 PPC | KVM_REG_PPC_TM_VRSAVE | 64
1947 PPC | KVM_REG_PPC_TM_VSCR | 32
1948 PPC | KVM_REG_PPC_TM_DSCR | 64
1949 PPC | KVM_REG_PPC_TM_TAR | 64
c2d2c21b
JH
1950 | |
1951 MIPS | KVM_REG_MIPS_R0 | 64
1952 ...
1953 MIPS | KVM_REG_MIPS_R31 | 64
1954 MIPS | KVM_REG_MIPS_HI | 64
1955 MIPS | KVM_REG_MIPS_LO | 64
1956 MIPS | KVM_REG_MIPS_PC | 64
1957 MIPS | KVM_REG_MIPS_CP0_INDEX | 32
1958 MIPS | KVM_REG_MIPS_CP0_CONTEXT | 64
1959 MIPS | KVM_REG_MIPS_CP0_USERLOCAL | 64
1960 MIPS | KVM_REG_MIPS_CP0_PAGEMASK | 32
1961 MIPS | KVM_REG_MIPS_CP0_WIRED | 32
1962 MIPS | KVM_REG_MIPS_CP0_HWRENA | 32
1963 MIPS | KVM_REG_MIPS_CP0_BADVADDR | 64
1964 MIPS | KVM_REG_MIPS_CP0_COUNT | 32
1965 MIPS | KVM_REG_MIPS_CP0_ENTRYHI | 64
1966 MIPS | KVM_REG_MIPS_CP0_COMPARE | 32
1967 MIPS | KVM_REG_MIPS_CP0_STATUS | 32
1968 MIPS | KVM_REG_MIPS_CP0_CAUSE | 32
1969 MIPS | KVM_REG_MIPS_CP0_EPC | 64
1970 MIPS | KVM_REG_MIPS_CP0_CONFIG | 32
1971 MIPS | KVM_REG_MIPS_CP0_CONFIG1 | 32
1972 MIPS | KVM_REG_MIPS_CP0_CONFIG2 | 32
1973 MIPS | KVM_REG_MIPS_CP0_CONFIG3 | 32
1974 MIPS | KVM_REG_MIPS_CP0_CONFIG7 | 32
1975 MIPS | KVM_REG_MIPS_CP0_ERROREPC | 64
1976 MIPS | KVM_REG_MIPS_COUNT_CTL | 64
1977 MIPS | KVM_REG_MIPS_COUNT_RESUME | 64
1978 MIPS | KVM_REG_MIPS_COUNT_HZ | 64
414fa985 1979
749cf76c
CD
1980ARM registers are mapped using the lower 32 bits. The upper 16 of that
1981is the register group type, or coprocessor number:
1982
1983ARM core registers have the following id bit patterns:
aa404ddf 1984 0x4020 0000 0010 <index into the kvm_regs struct:16>
749cf76c 1985
1138245c 1986ARM 32-bit CP15 registers have the following id bit patterns:
aa404ddf 1987 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
1138245c
CD
1988
1989ARM 64-bit CP15 registers have the following id bit patterns:
aa404ddf 1990 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
749cf76c 1991
c27581ed 1992ARM CCSIDR registers are demultiplexed by CSSELR value:
aa404ddf 1993 0x4020 0000 0011 00 <csselr:8>
749cf76c 1994
4fe21e4c 1995ARM 32-bit VFP control registers have the following id bit patterns:
aa404ddf 1996 0x4020 0000 0012 1 <regno:12>
4fe21e4c
RR
1997
1998ARM 64-bit FP registers have the following id bit patterns:
aa404ddf 1999 0x4030 0000 0012 0 <regno:12>
4fe21e4c 2000
379e04c7
MZ
2001
2002arm64 registers are mapped using the lower 32 bits. The upper 16 of
2003that is the register group type, or coprocessor number:
2004
2005arm64 core/FP-SIMD registers have the following id bit patterns. Note
2006that the size of the access is variable, as the kvm_regs structure
2007contains elements ranging from 32 to 128 bits. The index is a 32bit
2008value in the kvm_regs structure seen as a 32bit array.
2009 0x60x0 0000 0010 <index into the kvm_regs struct:16>
2010
2011arm64 CCSIDR registers are demultiplexed by CSSELR value:
2012 0x6020 0000 0011 00 <csselr:8>
2013
2014arm64 system registers have the following id bit patterns:
2015 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
2016
c2d2c21b
JH
2017
2018MIPS registers are mapped using the lower 32 bits. The upper 16 of that is
2019the register group type:
2020
2021MIPS core registers (see above) have the following id bit patterns:
2022 0x7030 0000 0000 <reg:16>
2023
2024MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit
2025patterns depending on whether they're 32-bit or 64-bit registers:
2026 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit)
2027 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit)
2028
2029MIPS KVM control registers (see above) have the following id bit patterns:
2030 0x7030 0000 0002 <reg:16>
2031
2032
e24ed81f
AG
20334.69 KVM_GET_ONE_REG
2034
2035Capability: KVM_CAP_ONE_REG
2036Architectures: all
2037Type: vcpu ioctl
2038Parameters: struct kvm_one_reg (in and out)
2039Returns: 0 on success, negative value on failure
2040
2041This ioctl allows to receive the value of a single register implemented
2042in a vcpu. The register to read is indicated by the "id" field of the
2043kvm_one_reg struct passed in. On success, the register value can be found
2044at the memory location pointed to by "addr".
2045
2046The list of registers accessible using this interface is identical to the
2e232702 2047list in 4.68.
e24ed81f 2048
414fa985 2049
1c0b28c2
EM
20504.70 KVM_KVMCLOCK_CTRL
2051
2052Capability: KVM_CAP_KVMCLOCK_CTRL
2053Architectures: Any that implement pvclocks (currently x86 only)
2054Type: vcpu ioctl
2055Parameters: None
2056Returns: 0 on success, -1 on error
2057
2058This signals to the host kernel that the specified guest is being paused by
2059userspace. The host will set a flag in the pvclock structure that is checked
2060from the soft lockup watchdog. The flag is part of the pvclock structure that
2061is shared between guest and host, specifically the second bit of the flags
2062field of the pvclock_vcpu_time_info structure. It will be set exclusively by
2063the host and read/cleared exclusively by the guest. The guest operation of
2064checking and clearing the flag must an atomic operation so
2065load-link/store-conditional, or equivalent must be used. There are two cases
2066where the guest will clear the flag: when the soft lockup watchdog timer resets
2067itself or when a soft lockup is detected. This ioctl can be called any time
2068after pausing the vcpu, but before it is resumed.
2069
414fa985 2070
07975ad3
JK
20714.71 KVM_SIGNAL_MSI
2072
2073Capability: KVM_CAP_SIGNAL_MSI
2074Architectures: x86
2075Type: vm ioctl
2076Parameters: struct kvm_msi (in)
2077Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
2078
2079Directly inject a MSI message. Only valid with in-kernel irqchip that handles
2080MSI messages.
2081
2082struct kvm_msi {
2083 __u32 address_lo;
2084 __u32 address_hi;
2085 __u32 data;
2086 __u32 flags;
2087 __u8 pad[16];
2088};
2089
2090No flags are defined so far. The corresponding field must be 0.
2091
414fa985 2092
0589ff6c
JK
20934.71 KVM_CREATE_PIT2
2094
2095Capability: KVM_CAP_PIT2
2096Architectures: x86
2097Type: vm ioctl
2098Parameters: struct kvm_pit_config (in)
2099Returns: 0 on success, -1 on error
2100
2101Creates an in-kernel device model for the i8254 PIT. This call is only valid
2102after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
2103parameters have to be passed:
2104
2105struct kvm_pit_config {
2106 __u32 flags;
2107 __u32 pad[15];
2108};
2109
2110Valid flags are:
2111
2112#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
2113
b6ddf05f
JK
2114PIT timer interrupts may use a per-VM kernel thread for injection. If it
2115exists, this thread will have a name of the following pattern:
2116
2117kvm-pit/<owner-process-pid>
2118
2119When running a guest with elevated priorities, the scheduling parameters of
2120this thread may have to be adjusted accordingly.
2121
0589ff6c
JK
2122This IOCTL replaces the obsolete KVM_CREATE_PIT.
2123
2124
21254.72 KVM_GET_PIT2
2126
2127Capability: KVM_CAP_PIT_STATE2
2128Architectures: x86
2129Type: vm ioctl
2130Parameters: struct kvm_pit_state2 (out)
2131Returns: 0 on success, -1 on error
2132
2133Retrieves the state of the in-kernel PIT model. Only valid after
2134KVM_CREATE_PIT2. The state is returned in the following structure:
2135
2136struct kvm_pit_state2 {
2137 struct kvm_pit_channel_state channels[3];
2138 __u32 flags;
2139 __u32 reserved[9];
2140};
2141
2142Valid flags are:
2143
2144/* disable PIT in HPET legacy mode */
2145#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
2146
2147This IOCTL replaces the obsolete KVM_GET_PIT.
2148
2149
21504.73 KVM_SET_PIT2
2151
2152Capability: KVM_CAP_PIT_STATE2
2153Architectures: x86
2154Type: vm ioctl
2155Parameters: struct kvm_pit_state2 (in)
2156Returns: 0 on success, -1 on error
2157
2158Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2159See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2160
2161This IOCTL replaces the obsolete KVM_SET_PIT.
2162
2163
5b74716e
BH
21644.74 KVM_PPC_GET_SMMU_INFO
2165
2166Capability: KVM_CAP_PPC_GET_SMMU_INFO
2167Architectures: powerpc
2168Type: vm ioctl
2169Parameters: None
2170Returns: 0 on success, -1 on error
2171
2172This populates and returns a structure describing the features of
2173the "Server" class MMU emulation supported by KVM.
cc22c354 2174This can in turn be used by userspace to generate the appropriate
5b74716e
BH
2175device-tree properties for the guest operating system.
2176
c98be0c9 2177The structure contains some global information, followed by an
5b74716e
BH
2178array of supported segment page sizes:
2179
2180 struct kvm_ppc_smmu_info {
2181 __u64 flags;
2182 __u32 slb_size;
2183 __u32 pad;
2184 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2185 };
2186
2187The supported flags are:
2188
2189 - KVM_PPC_PAGE_SIZES_REAL:
2190 When that flag is set, guest page sizes must "fit" the backing
2191 store page sizes. When not set, any page size in the list can
2192 be used regardless of how they are backed by userspace.
2193
2194 - KVM_PPC_1T_SEGMENTS
2195 The emulated MMU supports 1T segments in addition to the
2196 standard 256M ones.
2197
2198The "slb_size" field indicates how many SLB entries are supported
2199
2200The "sps" array contains 8 entries indicating the supported base
2201page sizes for a segment in increasing order. Each entry is defined
2202as follow:
2203
2204 struct kvm_ppc_one_seg_page_size {
2205 __u32 page_shift; /* Base page shift of segment (or 0) */
2206 __u32 slb_enc; /* SLB encoding for BookS */
2207 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2208 };
2209
2210An entry with a "page_shift" of 0 is unused. Because the array is
2211organized in increasing order, a lookup can stop when encoutering
2212such an entry.
2213
2214The "slb_enc" field provides the encoding to use in the SLB for the
2215page size. The bits are in positions such as the value can directly
2216be OR'ed into the "vsid" argument of the slbmte instruction.
2217
2218The "enc" array is a list which for each of those segment base page
2219size provides the list of supported actual page sizes (which can be
2220only larger or equal to the base page size), along with the
f884ab15 2221corresponding encoding in the hash PTE. Similarly, the array is
5b74716e
BH
22228 entries sorted by increasing sizes and an entry with a "0" shift
2223is an empty entry and a terminator:
2224
2225 struct kvm_ppc_one_page_size {
2226 __u32 page_shift; /* Page shift (or 0) */
2227 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2228 };
2229
2230The "pte_enc" field provides a value that can OR'ed into the hash
2231PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2232into the hash PTE second double word).
2233
f36992e3
AW
22344.75 KVM_IRQFD
2235
2236Capability: KVM_CAP_IRQFD
ebc32262 2237Architectures: x86 s390
f36992e3
AW
2238Type: vm ioctl
2239Parameters: struct kvm_irqfd (in)
2240Returns: 0 on success, -1 on error
2241
2242Allows setting an eventfd to directly trigger a guest interrupt.
2243kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2244kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
17180032 2245an event is triggered on the eventfd, an interrupt is injected into
f36992e3
AW
2246the guest using the specified gsi pin. The irqfd is removed using
2247the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2248and kvm_irqfd.gsi.
2249
7a84428a
AW
2250With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2251mechanism allowing emulation of level-triggered, irqfd-based
2252interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2253additional eventfd in the kvm_irqfd.resamplefd field. When operating
2254in resample mode, posting of an interrupt through kvm_irq.fd asserts
2255the specified gsi in the irqchip. When the irqchip is resampled, such
17180032 2256as from an EOI, the gsi is de-asserted and the user is notified via
7a84428a
AW
2257kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2258the interrupt if the device making use of it still requires service.
2259Note that closing the resamplefd is not sufficient to disable the
2260irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2261and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2262
5fecc9d8 22634.76 KVM_PPC_ALLOCATE_HTAB
32fad281
PM
2264
2265Capability: KVM_CAP_PPC_ALLOC_HTAB
2266Architectures: powerpc
2267Type: vm ioctl
2268Parameters: Pointer to u32 containing hash table order (in/out)
2269Returns: 0 on success, -1 on error
2270
2271This requests the host kernel to allocate an MMU hash table for a
2272guest using the PAPR paravirtualization interface. This only does
2273anything if the kernel is configured to use the Book 3S HV style of
2274virtualization. Otherwise the capability doesn't exist and the ioctl
2275returns an ENOTTY error. The rest of this description assumes Book 3S
2276HV.
2277
2278There must be no vcpus running when this ioctl is called; if there
2279are, it will do nothing and return an EBUSY error.
2280
2281The parameter is a pointer to a 32-bit unsigned integer variable
2282containing the order (log base 2) of the desired size of the hash
2283table, which must be between 18 and 46. On successful return from the
2284ioctl, it will have been updated with the order of the hash table that
2285was allocated.
2286
2287If no hash table has been allocated when any vcpu is asked to run
2288(with the KVM_RUN ioctl), the host kernel will allocate a
2289default-sized hash table (16 MB).
2290
2291If this ioctl is called when a hash table has already been allocated,
2292the kernel will clear out the existing hash table (zero all HPTEs) and
2293return the hash table order in the parameter. (If the guest is using
2294the virtualized real-mode area (VRMA) facility, the kernel will
2295re-create the VMRA HPTEs on the next KVM_RUN of any vcpu.)
2296
416ad65f
CH
22974.77 KVM_S390_INTERRUPT
2298
2299Capability: basic
2300Architectures: s390
2301Type: vm ioctl, vcpu ioctl
2302Parameters: struct kvm_s390_interrupt (in)
2303Returns: 0 on success, -1 on error
2304
2305Allows to inject an interrupt to the guest. Interrupts can be floating
2306(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2307
2308Interrupt parameters are passed via kvm_s390_interrupt:
2309
2310struct kvm_s390_interrupt {
2311 __u32 type;
2312 __u32 parm;
2313 __u64 parm64;
2314};
2315
2316type can be one of the following:
2317
2822545f 2318KVM_S390_SIGP_STOP (vcpu) - sigp stop; optional flags in parm
416ad65f
CH
2319KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2320KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2321KVM_S390_RESTART (vcpu) - restart
e029ae5b
TH
2322KVM_S390_INT_CLOCK_COMP (vcpu) - clock comparator interrupt
2323KVM_S390_INT_CPU_TIMER (vcpu) - CPU timer interrupt
416ad65f
CH
2324KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2325 parameters in parm and parm64
2326KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2327KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2328KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
d8346b7d
CH
2329KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2330 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2331 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2332 interruption subclass)
48a3e950
CH
2333KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2334 machine check interrupt code in parm64 (note that
2335 machine checks needing further payload are not
2336 supported by this ioctl)
416ad65f
CH
2337
2338Note that the vcpu ioctl is asynchronous to vcpu execution.
2339
a2932923
PM
23404.78 KVM_PPC_GET_HTAB_FD
2341
2342Capability: KVM_CAP_PPC_HTAB_FD
2343Architectures: powerpc
2344Type: vm ioctl
2345Parameters: Pointer to struct kvm_get_htab_fd (in)
2346Returns: file descriptor number (>= 0) on success, -1 on error
2347
2348This returns a file descriptor that can be used either to read out the
2349entries in the guest's hashed page table (HPT), or to write entries to
2350initialize the HPT. The returned fd can only be written to if the
2351KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2352can only be read if that bit is clear. The argument struct looks like
2353this:
2354
2355/* For KVM_PPC_GET_HTAB_FD */
2356struct kvm_get_htab_fd {
2357 __u64 flags;
2358 __u64 start_index;
2359 __u64 reserved[2];
2360};
2361
2362/* Values for kvm_get_htab_fd.flags */
2363#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2364#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2365
2366The `start_index' field gives the index in the HPT of the entry at
2367which to start reading. It is ignored when writing.
2368
2369Reads on the fd will initially supply information about all
2370"interesting" HPT entries. Interesting entries are those with the
2371bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2372all entries. When the end of the HPT is reached, the read() will
2373return. If read() is called again on the fd, it will start again from
2374the beginning of the HPT, but will only return HPT entries that have
2375changed since they were last read.
2376
2377Data read or written is structured as a header (8 bytes) followed by a
2378series of valid HPT entries (16 bytes) each. The header indicates how
2379many valid HPT entries there are and how many invalid entries follow
2380the valid entries. The invalid entries are not represented explicitly
2381in the stream. The header format is:
2382
2383struct kvm_get_htab_header {
2384 __u32 index;
2385 __u16 n_valid;
2386 __u16 n_invalid;
2387};
2388
2389Writes to the fd create HPT entries starting at the index given in the
2390header; first `n_valid' valid entries with contents from the data
2391written, then `n_invalid' invalid entries, invalidating any previously
2392valid entries found.
2393
852b6d57
SW
23944.79 KVM_CREATE_DEVICE
2395
2396Capability: KVM_CAP_DEVICE_CTRL
2397Type: vm ioctl
2398Parameters: struct kvm_create_device (in/out)
2399Returns: 0 on success, -1 on error
2400Errors:
2401 ENODEV: The device type is unknown or unsupported
2402 EEXIST: Device already created, and this type of device may not
2403 be instantiated multiple times
2404
2405 Other error conditions may be defined by individual device types or
2406 have their standard meanings.
2407
2408Creates an emulated device in the kernel. The file descriptor returned
2409in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2410
2411If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2412device type is supported (not necessarily whether it can be created
2413in the current vm).
2414
2415Individual devices should not define flags. Attributes should be used
2416for specifying any behavior that is not implied by the device type
2417number.
2418
2419struct kvm_create_device {
2420 __u32 type; /* in: KVM_DEV_TYPE_xxx */
2421 __u32 fd; /* out: device handle */
2422 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
2423};
2424
24254.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
2426
f2061656
DD
2427Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device
2428Type: device ioctl, vm ioctl
852b6d57
SW
2429Parameters: struct kvm_device_attr
2430Returns: 0 on success, -1 on error
2431Errors:
2432 ENXIO: The group or attribute is unknown/unsupported for this device
2433 EPERM: The attribute cannot (currently) be accessed this way
2434 (e.g. read-only attribute, or attribute that only makes
2435 sense when the device is in a different state)
2436
2437 Other error conditions may be defined by individual device types.
2438
2439Gets/sets a specified piece of device configuration and/or state. The
2440semantics are device-specific. See individual device documentation in
2441the "devices" directory. As with ONE_REG, the size of the data
2442transferred is defined by the particular attribute.
2443
2444struct kvm_device_attr {
2445 __u32 flags; /* no flags currently defined */
2446 __u32 group; /* device-defined */
2447 __u64 attr; /* group-defined */
2448 __u64 addr; /* userspace address of attr data */
2449};
2450
24514.81 KVM_HAS_DEVICE_ATTR
2452
f2061656
DD
2453Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device
2454Type: device ioctl, vm ioctl
852b6d57
SW
2455Parameters: struct kvm_device_attr
2456Returns: 0 on success, -1 on error
2457Errors:
2458 ENXIO: The group or attribute is unknown/unsupported for this device
2459
2460Tests whether a device supports a particular attribute. A successful
2461return indicates the attribute is implemented. It does not necessarily
2462indicate that the attribute can be read or written in the device's
2463current state. "addr" is ignored.
f36992e3 2464
d8968f1f 24654.82 KVM_ARM_VCPU_INIT
749cf76c
CD
2466
2467Capability: basic
379e04c7 2468Architectures: arm, arm64
749cf76c 2469Type: vcpu ioctl
beb11fc7 2470Parameters: struct kvm_vcpu_init (in)
749cf76c
CD
2471Returns: 0 on success; -1 on error
2472Errors:
2473  EINVAL:    the target is unknown, or the combination of features is invalid.
2474  ENOENT:    a features bit specified is unknown.
2475
2476This tells KVM what type of CPU to present to the guest, and what
2477optional features it should have.  This will cause a reset of the cpu
2478registers to their initial values.  If this is not called, KVM_RUN will
2479return ENOEXEC for that vcpu.
2480
2481Note that because some registers reflect machine topology, all vcpus
2482should be created before this ioctl is invoked.
2483
f7fa034d
CD
2484Userspace can call this function multiple times for a given vcpu, including
2485after the vcpu has been run. This will reset the vcpu to its initial
2486state. All calls to this function after the initial call must use the same
2487target and same set of feature flags, otherwise EINVAL will be returned.
2488
aa024c2f
MZ
2489Possible features:
2490 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
3ad8b3de
CD
2491 Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on
2492 and execute guest code when KVM_RUN is called.
379e04c7
MZ
2493 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
2494 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
50bb0c94
AP
2495 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 for the CPU.
2496 Depends on KVM_CAP_ARM_PSCI_0_2.
aa024c2f 2497
749cf76c 2498
740edfc0
AP
24994.83 KVM_ARM_PREFERRED_TARGET
2500
2501Capability: basic
2502Architectures: arm, arm64
2503Type: vm ioctl
2504Parameters: struct struct kvm_vcpu_init (out)
2505Returns: 0 on success; -1 on error
2506Errors:
a7265fb1 2507 ENODEV: no preferred target available for the host
740edfc0
AP
2508
2509This queries KVM for preferred CPU target type which can be emulated
2510by KVM on underlying host.
2511
2512The ioctl returns struct kvm_vcpu_init instance containing information
2513about preferred CPU target type and recommended features for it. The
2514kvm_vcpu_init->features bitmap returned will have feature bits set if
2515the preferred target recommends setting these features, but this is
2516not mandatory.
2517
2518The information returned by this ioctl can be used to prepare an instance
2519of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
2520in VCPU matching underlying host.
2521
2522
25234.84 KVM_GET_REG_LIST
749cf76c
CD
2524
2525Capability: basic
c2d2c21b 2526Architectures: arm, arm64, mips
749cf76c
CD
2527Type: vcpu ioctl
2528Parameters: struct kvm_reg_list (in/out)
2529Returns: 0 on success; -1 on error
2530Errors:
2531  E2BIG:     the reg index list is too big to fit in the array specified by
2532             the user (the number required will be written into n).
2533
2534struct kvm_reg_list {
2535 __u64 n; /* number of registers in reg[] */
2536 __u64 reg[0];
2537};
2538
2539This ioctl returns the guest registers that are supported for the
2540KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2541
ce01e4e8
CD
2542
25434.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
3401d546
CD
2544
2545Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
379e04c7 2546Architectures: arm, arm64
3401d546
CD
2547Type: vm ioctl
2548Parameters: struct kvm_arm_device_address (in)
2549Returns: 0 on success, -1 on error
2550Errors:
2551 ENODEV: The device id is unknown
2552 ENXIO: Device not supported on current system
2553 EEXIST: Address already set
2554 E2BIG: Address outside guest physical address space
330690cd 2555 EBUSY: Address overlaps with other device range
3401d546
CD
2556
2557struct kvm_arm_device_addr {
2558 __u64 id;
2559 __u64 addr;
2560};
2561
2562Specify a device address in the guest's physical address space where guests
2563can access emulated or directly exposed devices, which the host kernel needs
2564to know about. The id field is an architecture specific identifier for a
2565specific device.
2566
379e04c7
MZ
2567ARM/arm64 divides the id field into two parts, a device id and an
2568address type id specific to the individual device.
3401d546
CD
2569
2570  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2571 field: | 0x00000000 | device id | addr type id |
2572
379e04c7
MZ
2573ARM/arm64 currently only require this when using the in-kernel GIC
2574support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
2575as the device id. When setting the base address for the guest's
2576mapping of the VGIC virtual CPU and distributor interface, the ioctl
2577must be called after calling KVM_CREATE_IRQCHIP, but before calling
2578KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
2579base addresses will return -EEXIST.
3401d546 2580
ce01e4e8
CD
2581Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
2582should be used instead.
2583
2584
740edfc0 25854.86 KVM_PPC_RTAS_DEFINE_TOKEN
8e591cb7
ME
2586
2587Capability: KVM_CAP_PPC_RTAS
2588Architectures: ppc
2589Type: vm ioctl
2590Parameters: struct kvm_rtas_token_args
2591Returns: 0 on success, -1 on error
2592
2593Defines a token value for a RTAS (Run Time Abstraction Services)
2594service in order to allow it to be handled in the kernel. The
2595argument struct gives the name of the service, which must be the name
2596of a service that has a kernel-side implementation. If the token
2597value is non-zero, it will be associated with that service, and
2598subsequent RTAS calls by the guest specifying that token will be
2599handled by the kernel. If the token value is 0, then any token
2600associated with the service will be forgotten, and subsequent RTAS
2601calls by the guest for that service will be passed to userspace to be
2602handled.
2603
4bd9d344
AB
26044.87 KVM_SET_GUEST_DEBUG
2605
2606Capability: KVM_CAP_SET_GUEST_DEBUG
2607Architectures: x86, s390, ppc
2608Type: vcpu ioctl
2609Parameters: struct kvm_guest_debug (in)
2610Returns: 0 on success; -1 on error
2611
2612struct kvm_guest_debug {
2613 __u32 control;
2614 __u32 pad;
2615 struct kvm_guest_debug_arch arch;
2616};
2617
2618Set up the processor specific debug registers and configure vcpu for
2619handling guest debug events. There are two parts to the structure, the
2620first a control bitfield indicates the type of debug events to handle
2621when running. Common control bits are:
2622
2623 - KVM_GUESTDBG_ENABLE: guest debugging is enabled
2624 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step
2625
2626The top 16 bits of the control field are architecture specific control
2627flags which can include the following:
2628
2629 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86]
2630 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390]
2631 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86]
2632 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86]
2633 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390]
2634
2635For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints
2636are enabled in memory so we need to ensure breakpoint exceptions are
2637correctly trapped and the KVM run loop exits at the breakpoint and not
2638running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP
2639we need to ensure the guest vCPUs architecture specific registers are
2640updated to the correct (supplied) values.
2641
2642The second part of the structure is architecture specific and
2643typically contains a set of debug registers.
2644
2645When debug events exit the main run loop with the reason
2646KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run
2647structure containing architecture specific debug information.
3401d546 2648
209cf19f
AB
26494.88 KVM_GET_EMULATED_CPUID
2650
2651Capability: KVM_CAP_EXT_EMUL_CPUID
2652Architectures: x86
2653Type: system ioctl
2654Parameters: struct kvm_cpuid2 (in/out)
2655Returns: 0 on success, -1 on error
2656
2657struct kvm_cpuid2 {
2658 __u32 nent;
2659 __u32 flags;
2660 struct kvm_cpuid_entry2 entries[0];
2661};
2662
2663The member 'flags' is used for passing flags from userspace.
2664
2665#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
2666#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
2667#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
2668
2669struct kvm_cpuid_entry2 {
2670 __u32 function;
2671 __u32 index;
2672 __u32 flags;
2673 __u32 eax;
2674 __u32 ebx;
2675 __u32 ecx;
2676 __u32 edx;
2677 __u32 padding[3];
2678};
2679
2680This ioctl returns x86 cpuid features which are emulated by
2681kvm.Userspace can use the information returned by this ioctl to query
2682which features are emulated by kvm instead of being present natively.
2683
2684Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
2685structure with the 'nent' field indicating the number of entries in
2686the variable-size array 'entries'. If the number of entries is too low
2687to describe the cpu capabilities, an error (E2BIG) is returned. If the
2688number is too high, the 'nent' field is adjusted and an error (ENOMEM)
2689is returned. If the number is just right, the 'nent' field is adjusted
2690to the number of valid entries in the 'entries' array, which is then
2691filled.
2692
2693The entries returned are the set CPUID bits of the respective features
2694which kvm emulates, as returned by the CPUID instruction, with unknown
2695or unsupported feature bits cleared.
2696
2697Features like x2apic, for example, may not be present in the host cpu
2698but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
2699emulated efficiently and thus not included here.
2700
2701The fields in each entry are defined as follows:
2702
2703 function: the eax value used to obtain the entry
2704 index: the ecx value used to obtain the entry (for entries that are
2705 affected by ecx)
2706 flags: an OR of zero or more of the following:
2707 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
2708 if the index field is valid
2709 KVM_CPUID_FLAG_STATEFUL_FUNC:
2710 if cpuid for this function returns different values for successive
2711 invocations; there will be several entries with the same function,
2712 all with this flag set
2713 KVM_CPUID_FLAG_STATE_READ_NEXT:
2714 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
2715 the first entry to be read by a cpu
2716 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
2717 this function/index combination
2718
41408c28
TH
27194.89 KVM_S390_MEM_OP
2720
2721Capability: KVM_CAP_S390_MEM_OP
2722Architectures: s390
2723Type: vcpu ioctl
2724Parameters: struct kvm_s390_mem_op (in)
2725Returns: = 0 on success,
2726 < 0 on generic error (e.g. -EFAULT or -ENOMEM),
2727 > 0 if an exception occurred while walking the page tables
2728
2729Read or write data from/to the logical (virtual) memory of a VPCU.
2730
2731Parameters are specified via the following structure:
2732
2733struct kvm_s390_mem_op {
2734 __u64 gaddr; /* the guest address */
2735 __u64 flags; /* flags */
2736 __u32 size; /* amount of bytes */
2737 __u32 op; /* type of operation */
2738 __u64 buf; /* buffer in userspace */
2739 __u8 ar; /* the access register number */
2740 __u8 reserved[31]; /* should be set to 0 */
2741};
2742
2743The type of operation is specified in the "op" field. It is either
2744KVM_S390_MEMOP_LOGICAL_READ for reading from logical memory space or
2745KVM_S390_MEMOP_LOGICAL_WRITE for writing to logical memory space. The
2746KVM_S390_MEMOP_F_CHECK_ONLY flag can be set in the "flags" field to check
2747whether the corresponding memory access would create an access exception
2748(without touching the data in the memory at the destination). In case an
2749access exception occurred while walking the MMU tables of the guest, the
2750ioctl returns a positive error number to indicate the type of exception.
2751This exception is also raised directly at the corresponding VCPU if the
2752flag KVM_S390_MEMOP_F_INJECT_EXCEPTION is set in the "flags" field.
2753
2754The start address of the memory region has to be specified in the "gaddr"
2755field, and the length of the region in the "size" field. "buf" is the buffer
2756supplied by the userspace application where the read data should be written
2757to for KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written
2758is stored for a KVM_S390_MEMOP_LOGICAL_WRITE. "buf" is unused and can be NULL
2759when KVM_S390_MEMOP_F_CHECK_ONLY is specified. "ar" designates the access
2760register number to be used.
2761
2762The "reserved" field is meant for future extensions. It is not used by
2763KVM with the currently defined set of flags.
2764
30ee2a98
JH
27654.90 KVM_S390_GET_SKEYS
2766
2767Capability: KVM_CAP_S390_SKEYS
2768Architectures: s390
2769Type: vm ioctl
2770Parameters: struct kvm_s390_skeys
2771Returns: 0 on success, KVM_S390_GET_KEYS_NONE if guest is not using storage
2772 keys, negative value on error
2773
2774This ioctl is used to get guest storage key values on the s390
2775architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2776
2777struct kvm_s390_skeys {
2778 __u64 start_gfn;
2779 __u64 count;
2780 __u64 skeydata_addr;
2781 __u32 flags;
2782 __u32 reserved[9];
2783};
2784
2785The start_gfn field is the number of the first guest frame whose storage keys
2786you want to get.
2787
2788The count field is the number of consecutive frames (starting from start_gfn)
2789whose storage keys to get. The count field must be at least 1 and the maximum
2790allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2791will cause the ioctl to return -EINVAL.
2792
2793The skeydata_addr field is the address to a buffer large enough to hold count
2794bytes. This buffer will be filled with storage key data by the ioctl.
2795
27964.91 KVM_S390_SET_SKEYS
2797
2798Capability: KVM_CAP_S390_SKEYS
2799Architectures: s390
2800Type: vm ioctl
2801Parameters: struct kvm_s390_skeys
2802Returns: 0 on success, negative value on error
2803
2804This ioctl is used to set guest storage key values on the s390
2805architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2806See section on KVM_S390_GET_SKEYS for struct definition.
2807
2808The start_gfn field is the number of the first guest frame whose storage keys
2809you want to set.
2810
2811The count field is the number of consecutive frames (starting from start_gfn)
2812whose storage keys to get. The count field must be at least 1 and the maximum
2813allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2814will cause the ioctl to return -EINVAL.
2815
2816The skeydata_addr field is the address to a buffer containing count bytes of
2817storage keys. Each byte in the buffer will be set as the storage key for a
2818single frame starting at start_gfn for count frames.
2819
2820Note: If any architecturally invalid key value is found in the given data then
2821the ioctl will return -EINVAL.
2822
9c1b96e3 28235. The kvm_run structure
414fa985 2824------------------------
9c1b96e3
AK
2825
2826Application code obtains a pointer to the kvm_run structure by
2827mmap()ing a vcpu fd. From that point, application code can control
2828execution by changing fields in kvm_run prior to calling the KVM_RUN
2829ioctl, and obtain information about the reason KVM_RUN returned by
2830looking up structure members.
2831
2832struct kvm_run {
2833 /* in */
2834 __u8 request_interrupt_window;
2835
2836Request that KVM_RUN return when it becomes possible to inject external
2837interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
2838
2839 __u8 padding1[7];
2840
2841 /* out */
2842 __u32 exit_reason;
2843
2844When KVM_RUN has returned successfully (return value 0), this informs
2845application code why KVM_RUN has returned. Allowable values for this
2846field are detailed below.
2847
2848 __u8 ready_for_interrupt_injection;
2849
2850If request_interrupt_window has been specified, this field indicates
2851an interrupt can be injected now with KVM_INTERRUPT.
2852
2853 __u8 if_flag;
2854
2855The value of the current interrupt flag. Only valid if in-kernel
2856local APIC is not used.
2857
2858 __u8 padding2[2];
2859
2860 /* in (pre_kvm_run), out (post_kvm_run) */
2861 __u64 cr8;
2862
2863The value of the cr8 register. Only valid if in-kernel local APIC is
2864not used. Both input and output.
2865
2866 __u64 apic_base;
2867
2868The value of the APIC BASE msr. Only valid if in-kernel local
2869APIC is not used. Both input and output.
2870
2871 union {
2872 /* KVM_EXIT_UNKNOWN */
2873 struct {
2874 __u64 hardware_exit_reason;
2875 } hw;
2876
2877If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
2878reasons. Further architecture-specific information is available in
2879hardware_exit_reason.
2880
2881 /* KVM_EXIT_FAIL_ENTRY */
2882 struct {
2883 __u64 hardware_entry_failure_reason;
2884 } fail_entry;
2885
2886If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
2887to unknown reasons. Further architecture-specific information is
2888available in hardware_entry_failure_reason.
2889
2890 /* KVM_EXIT_EXCEPTION */
2891 struct {
2892 __u32 exception;
2893 __u32 error_code;
2894 } ex;
2895
2896Unused.
2897
2898 /* KVM_EXIT_IO */
2899 struct {
2900#define KVM_EXIT_IO_IN 0
2901#define KVM_EXIT_IO_OUT 1
2902 __u8 direction;
2903 __u8 size; /* bytes */
2904 __u16 port;
2905 __u32 count;
2906 __u64 data_offset; /* relative to kvm_run start */
2907 } io;
2908
2044892d 2909If exit_reason is KVM_EXIT_IO, then the vcpu has
9c1b96e3
AK
2910executed a port I/O instruction which could not be satisfied by kvm.
2911data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
2912where kvm expects application code to place the data for the next
2044892d 2913KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
9c1b96e3
AK
2914
2915 struct {
2916 struct kvm_debug_exit_arch arch;
2917 } debug;
2918
2919Unused.
2920
2921 /* KVM_EXIT_MMIO */
2922 struct {
2923 __u64 phys_addr;
2924 __u8 data[8];
2925 __u32 len;
2926 __u8 is_write;
2927 } mmio;
2928
2044892d 2929If exit_reason is KVM_EXIT_MMIO, then the vcpu has
9c1b96e3
AK
2930executed a memory-mapped I/O instruction which could not be satisfied
2931by kvm. The 'data' member contains the written data if 'is_write' is
2932true, and should be filled by application code otherwise.
2933
6acdb160
CD
2934The 'data' member contains, in its first 'len' bytes, the value as it would
2935appear if the VCPU performed a load or store of the appropriate width directly
2936to the byte array.
2937
cc568ead 2938NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR and
ce91ddc4 2939 KVM_EXIT_EPR the corresponding
ad0a048b
AG
2940operations are complete (and guest state is consistent) only after userspace
2941has re-entered the kernel with KVM_RUN. The kernel side will first finish
67961344
MT
2942incomplete operations and then check for pending signals. Userspace
2943can re-enter the guest with an unmasked signal pending to complete
2944pending operations.
2945
9c1b96e3
AK
2946 /* KVM_EXIT_HYPERCALL */
2947 struct {
2948 __u64 nr;
2949 __u64 args[6];
2950 __u64 ret;
2951 __u32 longmode;
2952 __u32 pad;
2953 } hypercall;
2954
647dc49e
AK
2955Unused. This was once used for 'hypercall to userspace'. To implement
2956such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
2957Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
9c1b96e3
AK
2958
2959 /* KVM_EXIT_TPR_ACCESS */
2960 struct {
2961 __u64 rip;
2962 __u32 is_write;
2963 __u32 pad;
2964 } tpr_access;
2965
2966To be documented (KVM_TPR_ACCESS_REPORTING).
2967
2968 /* KVM_EXIT_S390_SIEIC */
2969 struct {
2970 __u8 icptcode;
2971 __u64 mask; /* psw upper half */
2972 __u64 addr; /* psw lower half */
2973 __u16 ipa;
2974 __u32 ipb;
2975 } s390_sieic;
2976
2977s390 specific.
2978
2979 /* KVM_EXIT_S390_RESET */
2980#define KVM_S390_RESET_POR 1
2981#define KVM_S390_RESET_CLEAR 2
2982#define KVM_S390_RESET_SUBSYSTEM 4
2983#define KVM_S390_RESET_CPU_INIT 8
2984#define KVM_S390_RESET_IPL 16
2985 __u64 s390_reset_flags;
2986
2987s390 specific.
2988
e168bf8d
CO
2989 /* KVM_EXIT_S390_UCONTROL */
2990 struct {
2991 __u64 trans_exc_code;
2992 __u32 pgm_code;
2993 } s390_ucontrol;
2994
2995s390 specific. A page fault has occurred for a user controlled virtual
2996machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
2997resolved by the kernel.
2998The program code and the translation exception code that were placed
2999in the cpu's lowcore are presented here as defined by the z Architecture
3000Principles of Operation Book in the Chapter for Dynamic Address Translation
3001(DAT)
3002
9c1b96e3
AK
3003 /* KVM_EXIT_DCR */
3004 struct {
3005 __u32 dcrn;
3006 __u32 data;
3007 __u8 is_write;
3008 } dcr;
3009
ce91ddc4 3010Deprecated - was used for 440 KVM.
9c1b96e3 3011
ad0a048b
AG
3012 /* KVM_EXIT_OSI */
3013 struct {
3014 __u64 gprs[32];
3015 } osi;
3016
3017MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
3018hypercalls and exit with this exit struct that contains all the guest gprs.
3019
3020If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
3021Userspace can now handle the hypercall and when it's done modify the gprs as
3022necessary. Upon guest entry all guest GPRs will then be replaced by the values
3023in this struct.
3024
de56a948
PM
3025 /* KVM_EXIT_PAPR_HCALL */
3026 struct {
3027 __u64 nr;
3028 __u64 ret;
3029 __u64 args[9];
3030 } papr_hcall;
3031
3032This is used on 64-bit PowerPC when emulating a pSeries partition,
3033e.g. with the 'pseries' machine type in qemu. It occurs when the
3034guest does a hypercall using the 'sc 1' instruction. The 'nr' field
3035contains the hypercall number (from the guest R3), and 'args' contains
3036the arguments (from the guest R4 - R12). Userspace should put the
3037return code in 'ret' and any extra returned values in args[].
3038The possible hypercalls are defined in the Power Architecture Platform
3039Requirements (PAPR) document available from www.power.org (free
3040developer registration required to access it).
3041
fa6b7fe9
CH
3042 /* KVM_EXIT_S390_TSCH */
3043 struct {
3044 __u16 subchannel_id;
3045 __u16 subchannel_nr;
3046 __u32 io_int_parm;
3047 __u32 io_int_word;
3048 __u32 ipb;
3049 __u8 dequeued;
3050 } s390_tsch;
3051
3052s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
3053and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
3054interrupt for the target subchannel has been dequeued and subchannel_id,
3055subchannel_nr, io_int_parm and io_int_word contain the parameters for that
3056interrupt. ipb is needed for instruction parameter decoding.
3057
1c810636
AG
3058 /* KVM_EXIT_EPR */
3059 struct {
3060 __u32 epr;
3061 } epr;
3062
3063On FSL BookE PowerPC chips, the interrupt controller has a fast patch
3064interrupt acknowledge path to the core. When the core successfully
3065delivers an interrupt, it automatically populates the EPR register with
3066the interrupt vector number and acknowledges the interrupt inside
3067the interrupt controller.
3068
3069In case the interrupt controller lives in user space, we need to do
3070the interrupt acknowledge cycle through it to fetch the next to be
3071delivered interrupt vector using this exit.
3072
3073It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
3074external interrupt has just been delivered into the guest. User space
3075should put the acknowledged interrupt vector into the 'epr' field.
3076
8ad6b634
AP
3077 /* KVM_EXIT_SYSTEM_EVENT */
3078 struct {
3079#define KVM_SYSTEM_EVENT_SHUTDOWN 1
3080#define KVM_SYSTEM_EVENT_RESET 2
3081 __u32 type;
3082 __u64 flags;
3083 } system_event;
3084
3085If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
3086a system-level event using some architecture specific mechanism (hypercall
3087or some special instruction). In case of ARM/ARM64, this is triggered using
3088HVC instruction based PSCI call from the vcpu. The 'type' field describes
3089the system-level event type. The 'flags' field describes architecture
3090specific flags for the system-level event.
3091
cf5d3188
CD
3092Valid values for 'type' are:
3093 KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the
3094 VM. Userspace is not obliged to honour this, and if it does honour
3095 this does not need to destroy the VM synchronously (ie it may call
3096 KVM_RUN again before shutdown finally occurs).
3097 KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM.
3098 As with SHUTDOWN, userspace can choose to ignore the request, or
3099 to schedule the reset to occur in the future and may call KVM_RUN again.
3100
9c1b96e3
AK
3101 /* Fix the size of the union. */
3102 char padding[256];
3103 };
b9e5dc8d
CB
3104
3105 /*
3106 * shared registers between kvm and userspace.
3107 * kvm_valid_regs specifies the register classes set by the host
3108 * kvm_dirty_regs specified the register classes dirtied by userspace
3109 * struct kvm_sync_regs is architecture specific, as well as the
3110 * bits for kvm_valid_regs and kvm_dirty_regs
3111 */
3112 __u64 kvm_valid_regs;
3113 __u64 kvm_dirty_regs;
3114 union {
3115 struct kvm_sync_regs regs;
3116 char padding[1024];
3117 } s;
3118
3119If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
3120certain guest registers without having to call SET/GET_*REGS. Thus we can
3121avoid some system call overhead if userspace has to handle the exit.
3122Userspace can query the validity of the structure by checking
3123kvm_valid_regs for specific bits. These bits are architecture specific
3124and usually define the validity of a groups of registers. (e.g. one bit
3125 for general purpose registers)
3126
d8482c0d
DH
3127Please note that the kernel is allowed to use the kvm_run structure as the
3128primary storage for certain register types. Therefore, the kernel may use the
3129values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set.
3130
9c1b96e3 3131};
821246a5 3132
414fa985 3133
9c15bb1d 3134
699a0ea0
PM
31356. Capabilities that can be enabled on vCPUs
3136--------------------------------------------
821246a5 3137
0907c855
CH
3138There are certain capabilities that change the behavior of the virtual CPU or
3139the virtual machine when enabled. To enable them, please see section 4.37.
3140Below you can find a list of capabilities and what their effect on the vCPU or
3141the virtual machine is when enabling them.
821246a5
AG
3142
3143The following information is provided along with the description:
3144
3145 Architectures: which instruction set architectures provide this ioctl.
3146 x86 includes both i386 and x86_64.
3147
0907c855
CH
3148 Target: whether this is a per-vcpu or per-vm capability.
3149
821246a5
AG
3150 Parameters: what parameters are accepted by the capability.
3151
3152 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3153 are not detailed, but errors with specific meanings are.
3154
414fa985 3155
821246a5
AG
31566.1 KVM_CAP_PPC_OSI
3157
3158Architectures: ppc
0907c855 3159Target: vcpu
821246a5
AG
3160Parameters: none
3161Returns: 0 on success; -1 on error
3162
3163This capability enables interception of OSI hypercalls that otherwise would
3164be treated as normal system calls to be injected into the guest. OSI hypercalls
3165were invented by Mac-on-Linux to have a standardized communication mechanism
3166between the guest and the host.
3167
3168When this capability is enabled, KVM_EXIT_OSI can occur.
3169
414fa985 3170
821246a5
AG
31716.2 KVM_CAP_PPC_PAPR
3172
3173Architectures: ppc
0907c855 3174Target: vcpu
821246a5
AG
3175Parameters: none
3176Returns: 0 on success; -1 on error
3177
3178This capability enables interception of PAPR hypercalls. PAPR hypercalls are
3179done using the hypercall instruction "sc 1".
3180
3181It also sets the guest privilege level to "supervisor" mode. Usually the guest
3182runs in "hypervisor" privilege mode with a few missing features.
3183
3184In addition to the above, it changes the semantics of SDR1. In this mode, the
3185HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
3186HTAB invisible to the guest.
3187
3188When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
dc83b8bc 3189
414fa985 3190
dc83b8bc
SW
31916.3 KVM_CAP_SW_TLB
3192
3193Architectures: ppc
0907c855 3194Target: vcpu
dc83b8bc
SW
3195Parameters: args[0] is the address of a struct kvm_config_tlb
3196Returns: 0 on success; -1 on error
3197
3198struct kvm_config_tlb {
3199 __u64 params;
3200 __u64 array;
3201 __u32 mmu_type;
3202 __u32 array_len;
3203};
3204
3205Configures the virtual CPU's TLB array, establishing a shared memory area
3206between userspace and KVM. The "params" and "array" fields are userspace
3207addresses of mmu-type-specific data structures. The "array_len" field is an
3208safety mechanism, and should be set to the size in bytes of the memory that
3209userspace has reserved for the array. It must be at least the size dictated
3210by "mmu_type" and "params".
3211
3212While KVM_RUN is active, the shared region is under control of KVM. Its
3213contents are undefined, and any modification by userspace results in
3214boundedly undefined behavior.
3215
3216On return from KVM_RUN, the shared region will reflect the current state of
3217the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
3218to tell KVM which entries have been changed, prior to calling KVM_RUN again
3219on this vcpu.
3220
3221For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
3222 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
3223 - The "array" field points to an array of type "struct
3224 kvm_book3e_206_tlb_entry".
3225 - The array consists of all entries in the first TLB, followed by all
3226 entries in the second TLB.
3227 - Within a TLB, entries are ordered first by increasing set number. Within a
3228 set, entries are ordered by way (increasing ESEL).
3229 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
3230 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
3231 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
3232 hardware ignores this value for TLB0.
fa6b7fe9
CH
3233
32346.4 KVM_CAP_S390_CSS_SUPPORT
3235
3236Architectures: s390
0907c855 3237Target: vcpu
fa6b7fe9
CH
3238Parameters: none
3239Returns: 0 on success; -1 on error
3240
3241This capability enables support for handling of channel I/O instructions.
3242
3243TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
3244handled in-kernel, while the other I/O instructions are passed to userspace.
3245
3246When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
3247SUBCHANNEL intercepts.
1c810636 3248
0907c855
CH
3249Note that even though this capability is enabled per-vcpu, the complete
3250virtual machine is affected.
3251
1c810636
AG
32526.5 KVM_CAP_PPC_EPR
3253
3254Architectures: ppc
0907c855 3255Target: vcpu
1c810636
AG
3256Parameters: args[0] defines whether the proxy facility is active
3257Returns: 0 on success; -1 on error
3258
3259This capability enables or disables the delivery of interrupts through the
3260external proxy facility.
3261
3262When enabled (args[0] != 0), every time the guest gets an external interrupt
3263delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
3264to receive the topmost interrupt vector.
3265
3266When disabled (args[0] == 0), behavior is as if this facility is unsupported.
3267
3268When this capability is enabled, KVM_EXIT_EPR can occur.
eb1e4f43
SW
3269
32706.6 KVM_CAP_IRQ_MPIC
3271
3272Architectures: ppc
3273Parameters: args[0] is the MPIC device fd
3274 args[1] is the MPIC CPU number for this vcpu
3275
3276This capability connects the vcpu to an in-kernel MPIC device.
5975a2e0
PM
3277
32786.7 KVM_CAP_IRQ_XICS
3279
3280Architectures: ppc
0907c855 3281Target: vcpu
5975a2e0
PM
3282Parameters: args[0] is the XICS device fd
3283 args[1] is the XICS CPU number (server ID) for this vcpu
3284
3285This capability connects the vcpu to an in-kernel XICS device.
8a366a4b
CH
3286
32876.8 KVM_CAP_S390_IRQCHIP
3288
3289Architectures: s390
3290Target: vm
3291Parameters: none
3292
3293This capability enables the in-kernel irqchip for s390. Please refer to
3294"4.24 KVM_CREATE_IRQCHIP" for details.
699a0ea0
PM
3295
32967. Capabilities that can be enabled on VMs
3297------------------------------------------
3298
3299There are certain capabilities that change the behavior of the virtual
3300machine when enabled. To enable them, please see section 4.37. Below
3301you can find a list of capabilities and what their effect on the VM
3302is when enabling them.
3303
3304The following information is provided along with the description:
3305
3306 Architectures: which instruction set architectures provide this ioctl.
3307 x86 includes both i386 and x86_64.
3308
3309 Parameters: what parameters are accepted by the capability.
3310
3311 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3312 are not detailed, but errors with specific meanings are.
3313
3314
33157.1 KVM_CAP_PPC_ENABLE_HCALL
3316
3317Architectures: ppc
3318Parameters: args[0] is the sPAPR hcall number
3319 args[1] is 0 to disable, 1 to enable in-kernel handling
3320
3321This capability controls whether individual sPAPR hypercalls (hcalls)
3322get handled by the kernel or not. Enabling or disabling in-kernel
3323handling of an hcall is effective across the VM. On creation, an
3324initial set of hcalls are enabled for in-kernel handling, which
3325consists of those hcalls for which in-kernel handlers were implemented
3326before this capability was implemented. If disabled, the kernel will
3327not to attempt to handle the hcall, but will always exit to userspace
3328to handle it. Note that it may not make sense to enable some and
3329disable others of a group of related hcalls, but KVM does not prevent
3330userspace from doing that.
ae2113a4
PM
3331
3332If the hcall number specified is not one that has an in-kernel
3333implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL
3334error.
2444b352
DH
3335
33367.2 KVM_CAP_S390_USER_SIGP
3337
3338Architectures: s390
3339Parameters: none
3340
3341This capability controls which SIGP orders will be handled completely in user
3342space. With this capability enabled, all fast orders will be handled completely
3343in the kernel:
3344- SENSE
3345- SENSE RUNNING
3346- EXTERNAL CALL
3347- EMERGENCY SIGNAL
3348- CONDITIONAL EMERGENCY SIGNAL
3349
3350All other orders will be handled completely in user space.
3351
3352Only privileged operation exceptions will be checked for in the kernel (or even
3353in the hardware prior to interception). If this capability is not enabled, the
3354old way of handling SIGP orders is used (partially in kernel and user space).
68c55750
EF
3355
33567.3 KVM_CAP_S390_VECTOR_REGISTERS
3357
3358Architectures: s390
3359Parameters: none
3360Returns: 0 on success, negative value on error
3361
3362Allows use of the vector registers introduced with z13 processor, and
3363provides for the synchronization between host and user space. Will
3364return -EINVAL if the machine does not support vectors.
e44fc8c9
ET
3365
33667.4 KVM_CAP_S390_USER_STSI
3367
3368Architectures: s390
3369Parameters: none
3370
3371This capability allows post-handlers for the STSI instruction. After
3372initial handling in the kernel, KVM exits to user space with
3373KVM_EXIT_S390_STSI to allow user space to insert further data.
3374
3375Before exiting to userspace, kvm handlers should fill in s390_stsi field of
3376vcpu->run:
3377struct {
3378 __u64 addr;
3379 __u8 ar;
3380 __u8 reserved;
3381 __u8 fc;
3382 __u8 sel1;
3383 __u16 sel2;
3384} s390_stsi;
3385
3386@addr - guest address of STSI SYSIB
3387@fc - function code
3388@sel1 - selector 1
3389@sel2 - selector 2
3390@ar - access register number
3391
3392KVM handlers should exit to userspace with rc = -EREMOTE.