]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - Documentation/virtual/kvm/api.txt
KVM: pass struct kvm to kvm_set_routing_entry
[thirdparty/kernel/stable.git] / Documentation / virtual / kvm / api.txt
CommitLineData
9c1b96e3
AK
1The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
414fa985 5----------------------
9c1b96e3
AK
6
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
414fa985 27
2044892d 282. File descriptors
414fa985 29-------------------
9c1b96e3
AK
30
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
2044892d 34handle will create a VM file descriptor which can be used to issue VM
9c1b96e3
AK
35ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
414fa985 47
9c1b96e3 483. Extensions
414fa985 49-------------
9c1b96e3
AK
50
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
c9f3f2d8 56The extension mechanism is not based on the Linux version number.
9c1b96e3
AK
57Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
414fa985 61
9c1b96e3 624. API description
414fa985 63------------------
9c1b96e3
AK
64
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
7f05db6a 71 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which
9c1b96e3 72 means availability needs to be checked with KVM_CHECK_EXTENSION
7f05db6a
MT
73 (see section 4.4), or 'none' which means that while not all kernels
74 support this ioctl, there's no capability bit to check its
75 availability: for kernels that don't support the ioctl,
76 the ioctl returns -ENOTTY.
9c1b96e3
AK
77
78 Architectures: which instruction set architectures provide this ioctl.
79 x86 includes both i386 and x86_64.
80
81 Type: system, vm, or vcpu.
82
83 Parameters: what parameters are accepted by the ioctl.
84
85 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
86 are not detailed, but errors with specific meanings are.
87
414fa985 88
9c1b96e3
AK
894.1 KVM_GET_API_VERSION
90
91Capability: basic
92Architectures: all
93Type: system ioctl
94Parameters: none
95Returns: the constant KVM_API_VERSION (=12)
96
97This identifies the API version as the stable kvm API. It is not
98expected that this number will change. However, Linux 2.6.20 and
992.6.21 report earlier versions; these are not documented and not
100supported. Applications should refuse to run if KVM_GET_API_VERSION
101returns a value other than 12. If this check passes, all ioctls
102described as 'basic' will be available.
103
414fa985 104
9c1b96e3
AK
1054.2 KVM_CREATE_VM
106
107Capability: basic
108Architectures: all
109Type: system ioctl
e08b9637 110Parameters: machine type identifier (KVM_VM_*)
9c1b96e3
AK
111Returns: a VM fd that can be used to control the new virtual machine.
112
113The new VM has no virtual cpus and no memory. An mmap() of a VM fd
114will access the virtual machine's physical address space; offset zero
115corresponds to guest physical address zero. Use of mmap() on a VM fd
116is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
117available.
e08b9637
CO
118You most certainly want to use 0 as machine type.
119
120In order to create user controlled virtual machines on S390, check
121KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
122privileged user (CAP_SYS_ADMIN).
9c1b96e3 123
414fa985 124
9c1b96e3
AK
1254.3 KVM_GET_MSR_INDEX_LIST
126
127Capability: basic
128Architectures: x86
129Type: system
130Parameters: struct kvm_msr_list (in/out)
131Returns: 0 on success; -1 on error
132Errors:
133 E2BIG: the msr index list is to be to fit in the array specified by
134 the user.
135
136struct kvm_msr_list {
137 __u32 nmsrs; /* number of msrs in entries */
138 __u32 indices[0];
139};
140
141This ioctl returns the guest msrs that are supported. The list varies
142by kvm version and host processor, but does not change otherwise. The
143user fills in the size of the indices array in nmsrs, and in return
144kvm adjusts nmsrs to reflect the actual number of msrs and fills in
145the indices array with their numbers.
146
2e2602ca
AK
147Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
148not returned in the MSR list, as different vcpus can have a different number
149of banks, as set via the KVM_X86_SETUP_MCE ioctl.
150
414fa985 151
9c1b96e3
AK
1524.4 KVM_CHECK_EXTENSION
153
92b591a4 154Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl
9c1b96e3 155Architectures: all
92b591a4 156Type: system ioctl, vm ioctl
9c1b96e3
AK
157Parameters: extension identifier (KVM_CAP_*)
158Returns: 0 if unsupported; 1 (or some other positive integer) if supported
159
160The API allows the application to query about extensions to the core
161kvm API. Userspace passes an extension identifier (an integer) and
162receives an integer that describes the extension availability.
163Generally 0 means no and 1 means yes, but some extensions may report
164additional information in the integer return value.
165
92b591a4
AG
166Based on their initialization different VMs may have different capabilities.
167It is thus encouraged to use the vm ioctl to query for capabilities (available
168with KVM_CAP_CHECK_EXTENSION_VM on the vm fd)
414fa985 169
9c1b96e3
AK
1704.5 KVM_GET_VCPU_MMAP_SIZE
171
172Capability: basic
173Architectures: all
174Type: system ioctl
175Parameters: none
176Returns: size of vcpu mmap area, in bytes
177
178The KVM_RUN ioctl (cf.) communicates with userspace via a shared
179memory region. This ioctl returns the size of that region. See the
180KVM_RUN documentation for details.
181
414fa985 182
9c1b96e3
AK
1834.6 KVM_SET_MEMORY_REGION
184
185Capability: basic
186Architectures: all
187Type: vm ioctl
188Parameters: struct kvm_memory_region (in)
189Returns: 0 on success, -1 on error
190
b74a07be 191This ioctl is obsolete and has been removed.
9c1b96e3 192
414fa985 193
68ba6974 1944.7 KVM_CREATE_VCPU
9c1b96e3
AK
195
196Capability: basic
197Architectures: all
198Type: vm ioctl
199Parameters: vcpu id (apic id on x86)
200Returns: vcpu fd on success, -1 on error
201
0b1b1dfd
GK
202This API adds a vcpu to a virtual machine. No more than max_vcpus may be added.
203The vcpu id is an integer in the range [0, max_vcpu_id).
8c3ba334
SL
204
205The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
206the KVM_CHECK_EXTENSION ioctl() at run-time.
207The maximum possible value for max_vcpus can be retrieved using the
208KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
209
76d25402
PE
210If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
211cpus max.
8c3ba334
SL
212If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
213same as the value returned from KVM_CAP_NR_VCPUS.
9c1b96e3 214
0b1b1dfd
GK
215The maximum possible value for max_vcpu_id can be retrieved using the
216KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION ioctl() at run-time.
217
218If the KVM_CAP_MAX_VCPU_ID does not exist, you should assume that max_vcpu_id
219is the same as the value returned from KVM_CAP_MAX_VCPUS.
220
371fefd6
PM
221On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
222threads in one or more virtual CPU cores. (This is because the
223hardware requires all the hardware threads in a CPU core to be in the
224same partition.) The KVM_CAP_PPC_SMT capability indicates the number
36442687
AK
225of vcpus per virtual core (vcore). The vcore id is obtained by
226dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
227given vcore will always be in the same physical core as each other
228(though that might be a different physical core from time to time).
229Userspace can control the threading (SMT) mode of the guest by its
230allocation of vcpu ids. For example, if userspace wants
231single-threaded guest vcpus, it should make all vcpu ids be a multiple
232of the number of vcpus per vcore.
233
5b1c1493
CO
234For virtual cpus that have been created with S390 user controlled virtual
235machines, the resulting vcpu fd can be memory mapped at page offset
236KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
237cpu's hardware control block.
238
414fa985 239
68ba6974 2404.8 KVM_GET_DIRTY_LOG (vm ioctl)
9c1b96e3
AK
241
242Capability: basic
243Architectures: x86
244Type: vm ioctl
245Parameters: struct kvm_dirty_log (in/out)
246Returns: 0 on success, -1 on error
247
248/* for KVM_GET_DIRTY_LOG */
249struct kvm_dirty_log {
250 __u32 slot;
251 __u32 padding;
252 union {
253 void __user *dirty_bitmap; /* one bit per page */
254 __u64 padding;
255 };
256};
257
258Given a memory slot, return a bitmap containing any pages dirtied
259since the last call to this ioctl. Bit 0 is the first page in the
260memory slot. Ensure the entire structure is cleared to avoid padding
261issues.
262
f481b069
PB
263If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies
264the address space for which you want to return the dirty bitmap.
265They must be less than the value that KVM_CHECK_EXTENSION returns for
266the KVM_CAP_MULTI_ADDRESS_SPACE capability.
267
414fa985 268
68ba6974 2694.9 KVM_SET_MEMORY_ALIAS
9c1b96e3
AK
270
271Capability: basic
272Architectures: x86
273Type: vm ioctl
274Parameters: struct kvm_memory_alias (in)
275Returns: 0 (success), -1 (error)
276
a1f4d395 277This ioctl is obsolete and has been removed.
9c1b96e3 278
414fa985 279
68ba6974 2804.10 KVM_RUN
9c1b96e3
AK
281
282Capability: basic
283Architectures: all
284Type: vcpu ioctl
285Parameters: none
286Returns: 0 on success, -1 on error
287Errors:
288 EINTR: an unmasked signal is pending
289
290This ioctl is used to run a guest virtual cpu. While there are no
291explicit parameters, there is an implicit parameter block that can be
292obtained by mmap()ing the vcpu fd at offset 0, with the size given by
293KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
294kvm_run' (see below).
295
414fa985 296
68ba6974 2974.11 KVM_GET_REGS
9c1b96e3
AK
298
299Capability: basic
379e04c7 300Architectures: all except ARM, arm64
9c1b96e3
AK
301Type: vcpu ioctl
302Parameters: struct kvm_regs (out)
303Returns: 0 on success, -1 on error
304
305Reads the general purpose registers from the vcpu.
306
307/* x86 */
308struct kvm_regs {
309 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
310 __u64 rax, rbx, rcx, rdx;
311 __u64 rsi, rdi, rsp, rbp;
312 __u64 r8, r9, r10, r11;
313 __u64 r12, r13, r14, r15;
314 __u64 rip, rflags;
315};
316
c2d2c21b
JH
317/* mips */
318struct kvm_regs {
319 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
320 __u64 gpr[32];
321 __u64 hi;
322 __u64 lo;
323 __u64 pc;
324};
325
414fa985 326
68ba6974 3274.12 KVM_SET_REGS
9c1b96e3
AK
328
329Capability: basic
379e04c7 330Architectures: all except ARM, arm64
9c1b96e3
AK
331Type: vcpu ioctl
332Parameters: struct kvm_regs (in)
333Returns: 0 on success, -1 on error
334
335Writes the general purpose registers into the vcpu.
336
337See KVM_GET_REGS for the data structure.
338
414fa985 339
68ba6974 3404.13 KVM_GET_SREGS
9c1b96e3
AK
341
342Capability: basic
5ce941ee 343Architectures: x86, ppc
9c1b96e3
AK
344Type: vcpu ioctl
345Parameters: struct kvm_sregs (out)
346Returns: 0 on success, -1 on error
347
348Reads special registers from the vcpu.
349
350/* x86 */
351struct kvm_sregs {
352 struct kvm_segment cs, ds, es, fs, gs, ss;
353 struct kvm_segment tr, ldt;
354 struct kvm_dtable gdt, idt;
355 __u64 cr0, cr2, cr3, cr4, cr8;
356 __u64 efer;
357 __u64 apic_base;
358 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
359};
360
68e2ffed 361/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
5ce941ee 362
9c1b96e3
AK
363interrupt_bitmap is a bitmap of pending external interrupts. At most
364one bit may be set. This interrupt has been acknowledged by the APIC
365but not yet injected into the cpu core.
366
414fa985 367
68ba6974 3684.14 KVM_SET_SREGS
9c1b96e3
AK
369
370Capability: basic
5ce941ee 371Architectures: x86, ppc
9c1b96e3
AK
372Type: vcpu ioctl
373Parameters: struct kvm_sregs (in)
374Returns: 0 on success, -1 on error
375
376Writes special registers into the vcpu. See KVM_GET_SREGS for the
377data structures.
378
414fa985 379
68ba6974 3804.15 KVM_TRANSLATE
9c1b96e3
AK
381
382Capability: basic
383Architectures: x86
384Type: vcpu ioctl
385Parameters: struct kvm_translation (in/out)
386Returns: 0 on success, -1 on error
387
388Translates a virtual address according to the vcpu's current address
389translation mode.
390
391struct kvm_translation {
392 /* in */
393 __u64 linear_address;
394
395 /* out */
396 __u64 physical_address;
397 __u8 valid;
398 __u8 writeable;
399 __u8 usermode;
400 __u8 pad[5];
401};
402
414fa985 403
68ba6974 4044.16 KVM_INTERRUPT
9c1b96e3
AK
405
406Capability: basic
c2d2c21b 407Architectures: x86, ppc, mips
9c1b96e3
AK
408Type: vcpu ioctl
409Parameters: struct kvm_interrupt (in)
1c1a9ce9 410Returns: 0 on success, negative on failure.
9c1b96e3 411
1c1a9ce9 412Queues a hardware interrupt vector to be injected.
9c1b96e3
AK
413
414/* for KVM_INTERRUPT */
415struct kvm_interrupt {
416 /* in */
417 __u32 irq;
418};
419
6f7a2bd4
AG
420X86:
421
1c1a9ce9
SR
422Returns: 0 on success,
423 -EEXIST if an interrupt is already enqueued
424 -EINVAL the the irq number is invalid
425 -ENXIO if the PIC is in the kernel
426 -EFAULT if the pointer is invalid
427
428Note 'irq' is an interrupt vector, not an interrupt pin or line. This
429ioctl is useful if the in-kernel PIC is not used.
9c1b96e3 430
6f7a2bd4
AG
431PPC:
432
433Queues an external interrupt to be injected. This ioctl is overleaded
434with 3 different irq values:
435
436a) KVM_INTERRUPT_SET
437
438 This injects an edge type external interrupt into the guest once it's ready
439 to receive interrupts. When injected, the interrupt is done.
440
441b) KVM_INTERRUPT_UNSET
442
443 This unsets any pending interrupt.
444
445 Only available with KVM_CAP_PPC_UNSET_IRQ.
446
447c) KVM_INTERRUPT_SET_LEVEL
448
449 This injects a level type external interrupt into the guest context. The
450 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
451 is triggered.
452
453 Only available with KVM_CAP_PPC_IRQ_LEVEL.
454
455Note that any value for 'irq' other than the ones stated above is invalid
456and incurs unexpected behavior.
457
c2d2c21b
JH
458MIPS:
459
460Queues an external interrupt to be injected into the virtual CPU. A negative
461interrupt number dequeues the interrupt.
462
414fa985 463
68ba6974 4644.17 KVM_DEBUG_GUEST
9c1b96e3
AK
465
466Capability: basic
467Architectures: none
468Type: vcpu ioctl
469Parameters: none)
470Returns: -1 on error
471
472Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
473
414fa985 474
68ba6974 4754.18 KVM_GET_MSRS
9c1b96e3
AK
476
477Capability: basic
478Architectures: x86
479Type: vcpu ioctl
480Parameters: struct kvm_msrs (in/out)
481Returns: 0 on success, -1 on error
482
483Reads model-specific registers from the vcpu. Supported msr indices can
484be obtained using KVM_GET_MSR_INDEX_LIST.
485
486struct kvm_msrs {
487 __u32 nmsrs; /* number of msrs in entries */
488 __u32 pad;
489
490 struct kvm_msr_entry entries[0];
491};
492
493struct kvm_msr_entry {
494 __u32 index;
495 __u32 reserved;
496 __u64 data;
497};
498
499Application code should set the 'nmsrs' member (which indicates the
500size of the entries array) and the 'index' member of each array entry.
501kvm will fill in the 'data' member.
502
414fa985 503
68ba6974 5044.19 KVM_SET_MSRS
9c1b96e3
AK
505
506Capability: basic
507Architectures: x86
508Type: vcpu ioctl
509Parameters: struct kvm_msrs (in)
510Returns: 0 on success, -1 on error
511
512Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
513data structures.
514
515Application code should set the 'nmsrs' member (which indicates the
516size of the entries array), and the 'index' and 'data' members of each
517array entry.
518
414fa985 519
68ba6974 5204.20 KVM_SET_CPUID
9c1b96e3
AK
521
522Capability: basic
523Architectures: x86
524Type: vcpu ioctl
525Parameters: struct kvm_cpuid (in)
526Returns: 0 on success, -1 on error
527
528Defines the vcpu responses to the cpuid instruction. Applications
529should use the KVM_SET_CPUID2 ioctl if available.
530
531
532struct kvm_cpuid_entry {
533 __u32 function;
534 __u32 eax;
535 __u32 ebx;
536 __u32 ecx;
537 __u32 edx;
538 __u32 padding;
539};
540
541/* for KVM_SET_CPUID */
542struct kvm_cpuid {
543 __u32 nent;
544 __u32 padding;
545 struct kvm_cpuid_entry entries[0];
546};
547
414fa985 548
68ba6974 5494.21 KVM_SET_SIGNAL_MASK
9c1b96e3
AK
550
551Capability: basic
572e0929 552Architectures: all
9c1b96e3
AK
553Type: vcpu ioctl
554Parameters: struct kvm_signal_mask (in)
555Returns: 0 on success, -1 on error
556
557Defines which signals are blocked during execution of KVM_RUN. This
558signal mask temporarily overrides the threads signal mask. Any
559unblocked signal received (except SIGKILL and SIGSTOP, which retain
560their traditional behaviour) will cause KVM_RUN to return with -EINTR.
561
562Note the signal will only be delivered if not blocked by the original
563signal mask.
564
565/* for KVM_SET_SIGNAL_MASK */
566struct kvm_signal_mask {
567 __u32 len;
568 __u8 sigset[0];
569};
570
414fa985 571
68ba6974 5724.22 KVM_GET_FPU
9c1b96e3
AK
573
574Capability: basic
575Architectures: x86
576Type: vcpu ioctl
577Parameters: struct kvm_fpu (out)
578Returns: 0 on success, -1 on error
579
580Reads the floating point state from the vcpu.
581
582/* for KVM_GET_FPU and KVM_SET_FPU */
583struct kvm_fpu {
584 __u8 fpr[8][16];
585 __u16 fcw;
586 __u16 fsw;
587 __u8 ftwx; /* in fxsave format */
588 __u8 pad1;
589 __u16 last_opcode;
590 __u64 last_ip;
591 __u64 last_dp;
592 __u8 xmm[16][16];
593 __u32 mxcsr;
594 __u32 pad2;
595};
596
414fa985 597
68ba6974 5984.23 KVM_SET_FPU
9c1b96e3
AK
599
600Capability: basic
601Architectures: x86
602Type: vcpu ioctl
603Parameters: struct kvm_fpu (in)
604Returns: 0 on success, -1 on error
605
606Writes the floating point state to the vcpu.
607
608/* for KVM_GET_FPU and KVM_SET_FPU */
609struct kvm_fpu {
610 __u8 fpr[8][16];
611 __u16 fcw;
612 __u16 fsw;
613 __u8 ftwx; /* in fxsave format */
614 __u8 pad1;
615 __u16 last_opcode;
616 __u64 last_ip;
617 __u64 last_dp;
618 __u8 xmm[16][16];
619 __u32 mxcsr;
620 __u32 pad2;
621};
622
414fa985 623
68ba6974 6244.24 KVM_CREATE_IRQCHIP
5dadbfd6 625
84223598 626Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390)
c32a4272 627Architectures: x86, ARM, arm64, s390
5dadbfd6
AK
628Type: vm ioctl
629Parameters: none
630Returns: 0 on success, -1 on error
631
ac3d3735
AP
632Creates an interrupt controller model in the kernel.
633On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up
634future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both
635PIC and IOAPIC; GSI 16-23 only go to the IOAPIC.
636On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of
637KVM_CREATE_DEVICE, which also supports creating a GICv2. Using
638KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2.
639On s390, a dummy irq routing table is created.
84223598
CH
640
641Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
642before KVM_CREATE_IRQCHIP can be used.
5dadbfd6 643
414fa985 644
68ba6974 6454.25 KVM_IRQ_LINE
5dadbfd6
AK
646
647Capability: KVM_CAP_IRQCHIP
c32a4272 648Architectures: x86, arm, arm64
5dadbfd6
AK
649Type: vm ioctl
650Parameters: struct kvm_irq_level
651Returns: 0 on success, -1 on error
652
653Sets the level of a GSI input to the interrupt controller model in the kernel.
86ce8535
CD
654On some architectures it is required that an interrupt controller model has
655been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
656interrupts require the level to be set to 1 and then back to 0.
657
100943c5
GS
658On real hardware, interrupt pins can be active-low or active-high. This
659does not matter for the level field of struct kvm_irq_level: 1 always
660means active (asserted), 0 means inactive (deasserted).
661
662x86 allows the operating system to program the interrupt polarity
663(active-low/active-high) for level-triggered interrupts, and KVM used
664to consider the polarity. However, due to bitrot in the handling of
665active-low interrupts, the above convention is now valid on x86 too.
666This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace
667should not present interrupts to the guest as active-low unless this
668capability is present (or unless it is not using the in-kernel irqchip,
669of course).
670
671
379e04c7
MZ
672ARM/arm64 can signal an interrupt either at the CPU level, or at the
673in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
674use PPIs designated for specific cpus. The irq field is interpreted
675like this:
86ce8535
CD
676
677  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
678 field: | irq_type | vcpu_index | irq_id |
679
680The irq_type field has the following values:
681- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
682- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
683 (the vcpu_index field is ignored)
684- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
685
686(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
687
100943c5 688In both cases, level is used to assert/deassert the line.
5dadbfd6
AK
689
690struct kvm_irq_level {
691 union {
692 __u32 irq; /* GSI */
693 __s32 status; /* not used for KVM_IRQ_LEVEL */
694 };
695 __u32 level; /* 0 or 1 */
696};
697
414fa985 698
68ba6974 6994.26 KVM_GET_IRQCHIP
5dadbfd6
AK
700
701Capability: KVM_CAP_IRQCHIP
c32a4272 702Architectures: x86
5dadbfd6
AK
703Type: vm ioctl
704Parameters: struct kvm_irqchip (in/out)
705Returns: 0 on success, -1 on error
706
707Reads the state of a kernel interrupt controller created with
708KVM_CREATE_IRQCHIP into a buffer provided by the caller.
709
710struct kvm_irqchip {
711 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
712 __u32 pad;
713 union {
714 char dummy[512]; /* reserving space */
715 struct kvm_pic_state pic;
716 struct kvm_ioapic_state ioapic;
717 } chip;
718};
719
414fa985 720
68ba6974 7214.27 KVM_SET_IRQCHIP
5dadbfd6
AK
722
723Capability: KVM_CAP_IRQCHIP
c32a4272 724Architectures: x86
5dadbfd6
AK
725Type: vm ioctl
726Parameters: struct kvm_irqchip (in)
727Returns: 0 on success, -1 on error
728
729Sets the state of a kernel interrupt controller created with
730KVM_CREATE_IRQCHIP from a buffer provided by the caller.
731
732struct kvm_irqchip {
733 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
734 __u32 pad;
735 union {
736 char dummy[512]; /* reserving space */
737 struct kvm_pic_state pic;
738 struct kvm_ioapic_state ioapic;
739 } chip;
740};
741
414fa985 742
68ba6974 7434.28 KVM_XEN_HVM_CONFIG
ffde22ac
ES
744
745Capability: KVM_CAP_XEN_HVM
746Architectures: x86
747Type: vm ioctl
748Parameters: struct kvm_xen_hvm_config (in)
749Returns: 0 on success, -1 on error
750
751Sets the MSR that the Xen HVM guest uses to initialize its hypercall
752page, and provides the starting address and size of the hypercall
753blobs in userspace. When the guest writes the MSR, kvm copies one
754page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
755memory.
756
757struct kvm_xen_hvm_config {
758 __u32 flags;
759 __u32 msr;
760 __u64 blob_addr_32;
761 __u64 blob_addr_64;
762 __u8 blob_size_32;
763 __u8 blob_size_64;
764 __u8 pad2[30];
765};
766
414fa985 767
68ba6974 7684.29 KVM_GET_CLOCK
afbcf7ab
GC
769
770Capability: KVM_CAP_ADJUST_CLOCK
771Architectures: x86
772Type: vm ioctl
773Parameters: struct kvm_clock_data (out)
774Returns: 0 on success, -1 on error
775
776Gets the current timestamp of kvmclock as seen by the current guest. In
777conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
778such as migration.
779
780struct kvm_clock_data {
781 __u64 clock; /* kvmclock current value */
782 __u32 flags;
783 __u32 pad[9];
784};
785
414fa985 786
68ba6974 7874.30 KVM_SET_CLOCK
afbcf7ab
GC
788
789Capability: KVM_CAP_ADJUST_CLOCK
790Architectures: x86
791Type: vm ioctl
792Parameters: struct kvm_clock_data (in)
793Returns: 0 on success, -1 on error
794
2044892d 795Sets the current timestamp of kvmclock to the value specified in its parameter.
afbcf7ab
GC
796In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
797such as migration.
798
799struct kvm_clock_data {
800 __u64 clock; /* kvmclock current value */
801 __u32 flags;
802 __u32 pad[9];
803};
804
414fa985 805
68ba6974 8064.31 KVM_GET_VCPU_EVENTS
3cfc3092
JK
807
808Capability: KVM_CAP_VCPU_EVENTS
48005f64 809Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
810Architectures: x86
811Type: vm ioctl
812Parameters: struct kvm_vcpu_event (out)
813Returns: 0 on success, -1 on error
814
815Gets currently pending exceptions, interrupts, and NMIs as well as related
816states of the vcpu.
817
818struct kvm_vcpu_events {
819 struct {
820 __u8 injected;
821 __u8 nr;
822 __u8 has_error_code;
823 __u8 pad;
824 __u32 error_code;
825 } exception;
826 struct {
827 __u8 injected;
828 __u8 nr;
829 __u8 soft;
48005f64 830 __u8 shadow;
3cfc3092
JK
831 } interrupt;
832 struct {
833 __u8 injected;
834 __u8 pending;
835 __u8 masked;
836 __u8 pad;
837 } nmi;
838 __u32 sipi_vector;
dab4b911 839 __u32 flags;
f077825a
PB
840 struct {
841 __u8 smm;
842 __u8 pending;
843 __u8 smm_inside_nmi;
844 __u8 latched_init;
845 } smi;
3cfc3092
JK
846};
847
f077825a
PB
848Only two fields are defined in the flags field:
849
850- KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
851 interrupt.shadow contains a valid state.
48005f64 852
f077825a
PB
853- KVM_VCPUEVENT_VALID_SMM may be set in the flags field to signal that
854 smi contains a valid state.
414fa985 855
68ba6974 8564.32 KVM_SET_VCPU_EVENTS
3cfc3092
JK
857
858Capability: KVM_CAP_VCPU_EVENTS
48005f64 859Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
860Architectures: x86
861Type: vm ioctl
862Parameters: struct kvm_vcpu_event (in)
863Returns: 0 on success, -1 on error
864
865Set pending exceptions, interrupts, and NMIs as well as related states of the
866vcpu.
867
868See KVM_GET_VCPU_EVENTS for the data structure.
869
dab4b911 870Fields that may be modified asynchronously by running VCPUs can be excluded
f077825a
PB
871from the update. These fields are nmi.pending, sipi_vector, smi.smm,
872smi.pending. Keep the corresponding bits in the flags field cleared to
873suppress overwriting the current in-kernel state. The bits are:
dab4b911
JK
874
875KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
876KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
f077825a 877KVM_VCPUEVENT_VALID_SMM - transfer the smi sub-struct.
dab4b911 878
48005f64
JK
879If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
880the flags field to signal that interrupt.shadow contains a valid state and
881shall be written into the VCPU.
882
f077825a
PB
883KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available.
884
414fa985 885
68ba6974 8864.33 KVM_GET_DEBUGREGS
a1efbe77
JK
887
888Capability: KVM_CAP_DEBUGREGS
889Architectures: x86
890Type: vm ioctl
891Parameters: struct kvm_debugregs (out)
892Returns: 0 on success, -1 on error
893
894Reads debug registers from the vcpu.
895
896struct kvm_debugregs {
897 __u64 db[4];
898 __u64 dr6;
899 __u64 dr7;
900 __u64 flags;
901 __u64 reserved[9];
902};
903
414fa985 904
68ba6974 9054.34 KVM_SET_DEBUGREGS
a1efbe77
JK
906
907Capability: KVM_CAP_DEBUGREGS
908Architectures: x86
909Type: vm ioctl
910Parameters: struct kvm_debugregs (in)
911Returns: 0 on success, -1 on error
912
913Writes debug registers into the vcpu.
914
915See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
916yet and must be cleared on entry.
917
414fa985 918
68ba6974 9194.35 KVM_SET_USER_MEMORY_REGION
0f2d8f4d
AK
920
921Capability: KVM_CAP_USER_MEM
922Architectures: all
923Type: vm ioctl
924Parameters: struct kvm_userspace_memory_region (in)
925Returns: 0 on success, -1 on error
926
927struct kvm_userspace_memory_region {
928 __u32 slot;
929 __u32 flags;
930 __u64 guest_phys_addr;
931 __u64 memory_size; /* bytes */
932 __u64 userspace_addr; /* start of the userspace allocated memory */
933};
934
935/* for kvm_memory_region::flags */
4d8b81ab
XG
936#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
937#define KVM_MEM_READONLY (1UL << 1)
0f2d8f4d
AK
938
939This ioctl allows the user to create or modify a guest physical memory
940slot. When changing an existing slot, it may be moved in the guest
941physical memory space, or its flags may be modified. It may not be
942resized. Slots may not overlap in guest physical address space.
943
f481b069
PB
944If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot"
945specifies the address space which is being modified. They must be
946less than the value that KVM_CHECK_EXTENSION returns for the
947KVM_CAP_MULTI_ADDRESS_SPACE capability. Slots in separate address spaces
948are unrelated; the restriction on overlapping slots only applies within
949each address space.
950
0f2d8f4d
AK
951Memory for the region is taken starting at the address denoted by the
952field userspace_addr, which must point at user addressable memory for
953the entire memory slot size. Any object may back this memory, including
954anonymous memory, ordinary files, and hugetlbfs.
955
956It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
957be identical. This allows large pages in the guest to be backed by large
958pages in the host.
959
75d61fbc
TY
960The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
961KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
962writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
963use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
964to make a new slot read-only. In this case, writes to this memory will be
965posted to userspace as KVM_EXIT_MMIO exits.
7efd8fa1
JK
966
967When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
968the memory region are automatically reflected into the guest. For example, an
969mmap() that affects the region will be made visible immediately. Another
970example is madvise(MADV_DROP).
0f2d8f4d
AK
971
972It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
973The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
974allocation and is deprecated.
3cfc3092 975
414fa985 976
68ba6974 9774.36 KVM_SET_TSS_ADDR
8a5416db
AK
978
979Capability: KVM_CAP_SET_TSS_ADDR
980Architectures: x86
981Type: vm ioctl
982Parameters: unsigned long tss_address (in)
983Returns: 0 on success, -1 on error
984
985This ioctl defines the physical address of a three-page region in the guest
986physical address space. The region must be within the first 4GB of the
987guest physical address space and must not conflict with any memory slot
988or any mmio address. The guest may malfunction if it accesses this memory
989region.
990
991This ioctl is required on Intel-based hosts. This is needed on Intel hardware
992because of a quirk in the virtualization implementation (see the internals
993documentation when it pops into existence).
994
414fa985 995
68ba6974 9964.37 KVM_ENABLE_CAP
71fbfd5f 997
d938dc55 998Capability: KVM_CAP_ENABLE_CAP, KVM_CAP_ENABLE_CAP_VM
90de4a18
NA
999Architectures: x86 (only KVM_CAP_ENABLE_CAP_VM),
1000 mips (only KVM_CAP_ENABLE_CAP), ppc, s390
d938dc55 1001Type: vcpu ioctl, vm ioctl (with KVM_CAP_ENABLE_CAP_VM)
71fbfd5f
AG
1002Parameters: struct kvm_enable_cap (in)
1003Returns: 0 on success; -1 on error
1004
1005+Not all extensions are enabled by default. Using this ioctl the application
1006can enable an extension, making it available to the guest.
1007
1008On systems that do not support this ioctl, it always fails. On systems that
1009do support it, it only works for extensions that are supported for enablement.
1010
1011To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
1012be used.
1013
1014struct kvm_enable_cap {
1015 /* in */
1016 __u32 cap;
1017
1018The capability that is supposed to get enabled.
1019
1020 __u32 flags;
1021
1022A bitfield indicating future enhancements. Has to be 0 for now.
1023
1024 __u64 args[4];
1025
1026Arguments for enabling a feature. If a feature needs initial values to
1027function properly, this is the place to put them.
1028
1029 __u8 pad[64];
1030};
1031
d938dc55
CH
1032The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl
1033for vm-wide capabilities.
414fa985 1034
68ba6974 10354.38 KVM_GET_MP_STATE
b843f065
AK
1036
1037Capability: KVM_CAP_MP_STATE
ecccf0cc 1038Architectures: x86, s390, arm, arm64
b843f065
AK
1039Type: vcpu ioctl
1040Parameters: struct kvm_mp_state (out)
1041Returns: 0 on success; -1 on error
1042
1043struct kvm_mp_state {
1044 __u32 mp_state;
1045};
1046
1047Returns the vcpu's current "multiprocessing state" (though also valid on
1048uniprocessor guests).
1049
1050Possible values are:
1051
ecccf0cc 1052 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running [x86,arm/arm64]
b843f065 1053 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
c32a4272 1054 which has not yet received an INIT signal [x86]
b843f065 1055 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
c32a4272 1056 now ready for a SIPI [x86]
b843f065 1057 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
c32a4272 1058 is waiting for an interrupt [x86]
b843f065 1059 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
c32a4272 1060 accessible via KVM_GET_VCPU_EVENTS) [x86]
ecccf0cc 1061 - KVM_MP_STATE_STOPPED: the vcpu is stopped [s390,arm/arm64]
6352e4d2
DH
1062 - KVM_MP_STATE_CHECK_STOP: the vcpu is in a special error state [s390]
1063 - KVM_MP_STATE_OPERATING: the vcpu is operating (running or halted)
1064 [s390]
1065 - KVM_MP_STATE_LOAD: the vcpu is in a special load/startup state
1066 [s390]
b843f065 1067
c32a4272 1068On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
0b4820d6
DH
1069in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1070these architectures.
b843f065 1071
ecccf0cc
AB
1072For arm/arm64:
1073
1074The only states that are valid are KVM_MP_STATE_STOPPED and
1075KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not.
414fa985 1076
68ba6974 10774.39 KVM_SET_MP_STATE
b843f065
AK
1078
1079Capability: KVM_CAP_MP_STATE
ecccf0cc 1080Architectures: x86, s390, arm, arm64
b843f065
AK
1081Type: vcpu ioctl
1082Parameters: struct kvm_mp_state (in)
1083Returns: 0 on success; -1 on error
1084
1085Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1086arguments.
1087
c32a4272 1088On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
0b4820d6
DH
1089in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1090these architectures.
b843f065 1091
ecccf0cc
AB
1092For arm/arm64:
1093
1094The only states that are valid are KVM_MP_STATE_STOPPED and
1095KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not.
414fa985 1096
68ba6974 10974.40 KVM_SET_IDENTITY_MAP_ADDR
47dbb84f
AK
1098
1099Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1100Architectures: x86
1101Type: vm ioctl
1102Parameters: unsigned long identity (in)
1103Returns: 0 on success, -1 on error
1104
1105This ioctl defines the physical address of a one-page region in the guest
1106physical address space. The region must be within the first 4GB of the
1107guest physical address space and must not conflict with any memory slot
1108or any mmio address. The guest may malfunction if it accesses this memory
1109region.
1110
1111This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1112because of a quirk in the virtualization implementation (see the internals
1113documentation when it pops into existence).
1114
414fa985 1115
68ba6974 11164.41 KVM_SET_BOOT_CPU_ID
57bc24cf
AK
1117
1118Capability: KVM_CAP_SET_BOOT_CPU_ID
c32a4272 1119Architectures: x86
57bc24cf
AK
1120Type: vm ioctl
1121Parameters: unsigned long vcpu_id
1122Returns: 0 on success, -1 on error
1123
1124Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1125as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1126is vcpu 0.
1127
414fa985 1128
68ba6974 11294.42 KVM_GET_XSAVE
2d5b5a66
SY
1130
1131Capability: KVM_CAP_XSAVE
1132Architectures: x86
1133Type: vcpu ioctl
1134Parameters: struct kvm_xsave (out)
1135Returns: 0 on success, -1 on error
1136
1137struct kvm_xsave {
1138 __u32 region[1024];
1139};
1140
1141This ioctl would copy current vcpu's xsave struct to the userspace.
1142
414fa985 1143
68ba6974 11444.43 KVM_SET_XSAVE
2d5b5a66
SY
1145
1146Capability: KVM_CAP_XSAVE
1147Architectures: x86
1148Type: vcpu ioctl
1149Parameters: struct kvm_xsave (in)
1150Returns: 0 on success, -1 on error
1151
1152struct kvm_xsave {
1153 __u32 region[1024];
1154};
1155
1156This ioctl would copy userspace's xsave struct to the kernel.
1157
414fa985 1158
68ba6974 11594.44 KVM_GET_XCRS
2d5b5a66
SY
1160
1161Capability: KVM_CAP_XCRS
1162Architectures: x86
1163Type: vcpu ioctl
1164Parameters: struct kvm_xcrs (out)
1165Returns: 0 on success, -1 on error
1166
1167struct kvm_xcr {
1168 __u32 xcr;
1169 __u32 reserved;
1170 __u64 value;
1171};
1172
1173struct kvm_xcrs {
1174 __u32 nr_xcrs;
1175 __u32 flags;
1176 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1177 __u64 padding[16];
1178};
1179
1180This ioctl would copy current vcpu's xcrs to the userspace.
1181
414fa985 1182
68ba6974 11834.45 KVM_SET_XCRS
2d5b5a66
SY
1184
1185Capability: KVM_CAP_XCRS
1186Architectures: x86
1187Type: vcpu ioctl
1188Parameters: struct kvm_xcrs (in)
1189Returns: 0 on success, -1 on error
1190
1191struct kvm_xcr {
1192 __u32 xcr;
1193 __u32 reserved;
1194 __u64 value;
1195};
1196
1197struct kvm_xcrs {
1198 __u32 nr_xcrs;
1199 __u32 flags;
1200 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1201 __u64 padding[16];
1202};
1203
1204This ioctl would set vcpu's xcr to the value userspace specified.
1205
414fa985 1206
68ba6974 12074.46 KVM_GET_SUPPORTED_CPUID
d153513d
AK
1208
1209Capability: KVM_CAP_EXT_CPUID
1210Architectures: x86
1211Type: system ioctl
1212Parameters: struct kvm_cpuid2 (in/out)
1213Returns: 0 on success, -1 on error
1214
1215struct kvm_cpuid2 {
1216 __u32 nent;
1217 __u32 padding;
1218 struct kvm_cpuid_entry2 entries[0];
1219};
1220
9c15bb1d
BP
1221#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
1222#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
1223#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
d153513d
AK
1224
1225struct kvm_cpuid_entry2 {
1226 __u32 function;
1227 __u32 index;
1228 __u32 flags;
1229 __u32 eax;
1230 __u32 ebx;
1231 __u32 ecx;
1232 __u32 edx;
1233 __u32 padding[3];
1234};
1235
1236This ioctl returns x86 cpuid features which are supported by both the hardware
1237and kvm. Userspace can use the information returned by this ioctl to
1238construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1239hardware, kernel, and userspace capabilities, and with user requirements (for
1240example, the user may wish to constrain cpuid to emulate older hardware,
1241or for feature consistency across a cluster).
1242
1243Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1244with the 'nent' field indicating the number of entries in the variable-size
1245array 'entries'. If the number of entries is too low to describe the cpu
1246capabilities, an error (E2BIG) is returned. If the number is too high,
1247the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1248number is just right, the 'nent' field is adjusted to the number of valid
1249entries in the 'entries' array, which is then filled.
1250
1251The entries returned are the host cpuid as returned by the cpuid instruction,
c39cbd2a
AK
1252with unknown or unsupported features masked out. Some features (for example,
1253x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1254emulate them efficiently. The fields in each entry are defined as follows:
d153513d
AK
1255
1256 function: the eax value used to obtain the entry
1257 index: the ecx value used to obtain the entry (for entries that are
1258 affected by ecx)
1259 flags: an OR of zero or more of the following:
1260 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1261 if the index field is valid
1262 KVM_CPUID_FLAG_STATEFUL_FUNC:
1263 if cpuid for this function returns different values for successive
1264 invocations; there will be several entries with the same function,
1265 all with this flag set
1266 KVM_CPUID_FLAG_STATE_READ_NEXT:
1267 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1268 the first entry to be read by a cpu
1269 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1270 this function/index combination
1271
4d25a066
JK
1272The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1273as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1274support. Instead it is reported via
1275
1276 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1277
1278if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1279feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1280
414fa985 1281
68ba6974 12824.47 KVM_PPC_GET_PVINFO
15711e9c
AG
1283
1284Capability: KVM_CAP_PPC_GET_PVINFO
1285Architectures: ppc
1286Type: vm ioctl
1287Parameters: struct kvm_ppc_pvinfo (out)
1288Returns: 0 on success, !0 on error
1289
1290struct kvm_ppc_pvinfo {
1291 __u32 flags;
1292 __u32 hcall[4];
1293 __u8 pad[108];
1294};
1295
1296This ioctl fetches PV specific information that need to be passed to the guest
1297using the device tree or other means from vm context.
1298
9202e076 1299The hcall array defines 4 instructions that make up a hypercall.
15711e9c
AG
1300
1301If any additional field gets added to this structure later on, a bit for that
1302additional piece of information will be set in the flags bitmap.
1303
9202e076
LYB
1304The flags bitmap is defined as:
1305
1306 /* the host supports the ePAPR idle hcall
1307 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
414fa985 1308
e80a4a94 13094.48 KVM_ASSIGN_PCI_DEVICE (deprecated)
49f48172 1310
7f05db6a 1311Capability: none
c32a4272 1312Architectures: x86
49f48172
JK
1313Type: vm ioctl
1314Parameters: struct kvm_assigned_pci_dev (in)
1315Returns: 0 on success, -1 on error
1316
1317Assigns a host PCI device to the VM.
1318
1319struct kvm_assigned_pci_dev {
1320 __u32 assigned_dev_id;
1321 __u32 busnr;
1322 __u32 devfn;
1323 __u32 flags;
1324 __u32 segnr;
1325 union {
1326 __u32 reserved[11];
1327 };
1328};
1329
1330The PCI device is specified by the triple segnr, busnr, and devfn.
1331Identification in succeeding service requests is done via assigned_dev_id. The
1332following flags are specified:
1333
1334/* Depends on KVM_CAP_IOMMU */
1335#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
07700a94
JK
1336/* The following two depend on KVM_CAP_PCI_2_3 */
1337#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
1338#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
1339
1340If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
1341via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
1342assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
1343guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
49f48172 1344
42387373
AW
1345The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
1346isolation of the device. Usages not specifying this flag are deprecated.
1347
3d27e23b
AW
1348Only PCI header type 0 devices with PCI BAR resources are supported by
1349device assignment. The user requesting this ioctl must have read/write
1350access to the PCI sysfs resource files associated with the device.
1351
7f05db6a
MT
1352Errors:
1353 ENOTTY: kernel does not support this ioctl
1354
1355 Other error conditions may be defined by individual device types or
1356 have their standard meanings.
1357
414fa985 1358
e80a4a94 13594.49 KVM_DEASSIGN_PCI_DEVICE (deprecated)
49f48172 1360
7f05db6a 1361Capability: none
c32a4272 1362Architectures: x86
49f48172
JK
1363Type: vm ioctl
1364Parameters: struct kvm_assigned_pci_dev (in)
1365Returns: 0 on success, -1 on error
1366
1367Ends PCI device assignment, releasing all associated resources.
1368
7f05db6a 1369See KVM_ASSIGN_PCI_DEVICE for the data structure. Only assigned_dev_id is
49f48172
JK
1370used in kvm_assigned_pci_dev to identify the device.
1371
7f05db6a
MT
1372Errors:
1373 ENOTTY: kernel does not support this ioctl
1374
1375 Other error conditions may be defined by individual device types or
1376 have their standard meanings.
414fa985 1377
e80a4a94 13784.50 KVM_ASSIGN_DEV_IRQ (deprecated)
49f48172
JK
1379
1380Capability: KVM_CAP_ASSIGN_DEV_IRQ
c32a4272 1381Architectures: x86
49f48172
JK
1382Type: vm ioctl
1383Parameters: struct kvm_assigned_irq (in)
1384Returns: 0 on success, -1 on error
1385
1386Assigns an IRQ to a passed-through device.
1387
1388struct kvm_assigned_irq {
1389 __u32 assigned_dev_id;
91e3d71d 1390 __u32 host_irq; /* ignored (legacy field) */
49f48172
JK
1391 __u32 guest_irq;
1392 __u32 flags;
1393 union {
49f48172
JK
1394 __u32 reserved[12];
1395 };
1396};
1397
1398The following flags are defined:
1399
1400#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
1401#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
1402#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
1403
1404#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
1405#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
1406#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
1407
1408It is not valid to specify multiple types per host or guest IRQ. However, the
1409IRQ type of host and guest can differ or can even be null.
1410
7f05db6a
MT
1411Errors:
1412 ENOTTY: kernel does not support this ioctl
1413
1414 Other error conditions may be defined by individual device types or
1415 have their standard meanings.
1416
414fa985 1417
e80a4a94 14184.51 KVM_DEASSIGN_DEV_IRQ (deprecated)
49f48172
JK
1419
1420Capability: KVM_CAP_ASSIGN_DEV_IRQ
c32a4272 1421Architectures: x86
49f48172
JK
1422Type: vm ioctl
1423Parameters: struct kvm_assigned_irq (in)
1424Returns: 0 on success, -1 on error
1425
1426Ends an IRQ assignment to a passed-through device.
1427
1428See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1429by assigned_dev_id, flags must correspond to the IRQ type specified on
1430KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
1431
414fa985 1432
68ba6974 14334.52 KVM_SET_GSI_ROUTING
49f48172
JK
1434
1435Capability: KVM_CAP_IRQ_ROUTING
c32a4272 1436Architectures: x86 s390
49f48172
JK
1437Type: vm ioctl
1438Parameters: struct kvm_irq_routing (in)
1439Returns: 0 on success, -1 on error
1440
1441Sets the GSI routing table entries, overwriting any previously set entries.
1442
1443struct kvm_irq_routing {
1444 __u32 nr;
1445 __u32 flags;
1446 struct kvm_irq_routing_entry entries[0];
1447};
1448
1449No flags are specified so far, the corresponding field must be set to zero.
1450
1451struct kvm_irq_routing_entry {
1452 __u32 gsi;
1453 __u32 type;
1454 __u32 flags;
1455 __u32 pad;
1456 union {
1457 struct kvm_irq_routing_irqchip irqchip;
1458 struct kvm_irq_routing_msi msi;
84223598 1459 struct kvm_irq_routing_s390_adapter adapter;
5c919412 1460 struct kvm_irq_routing_hv_sint hv_sint;
49f48172
JK
1461 __u32 pad[8];
1462 } u;
1463};
1464
1465/* gsi routing entry types */
1466#define KVM_IRQ_ROUTING_IRQCHIP 1
1467#define KVM_IRQ_ROUTING_MSI 2
84223598 1468#define KVM_IRQ_ROUTING_S390_ADAPTER 3
5c919412 1469#define KVM_IRQ_ROUTING_HV_SINT 4
49f48172
JK
1470
1471No flags are specified so far, the corresponding field must be set to zero.
1472
1473struct kvm_irq_routing_irqchip {
1474 __u32 irqchip;
1475 __u32 pin;
1476};
1477
1478struct kvm_irq_routing_msi {
1479 __u32 address_lo;
1480 __u32 address_hi;
1481 __u32 data;
1482 __u32 pad;
1483};
1484
84223598
CH
1485struct kvm_irq_routing_s390_adapter {
1486 __u64 ind_addr;
1487 __u64 summary_addr;
1488 __u64 ind_offset;
1489 __u32 summary_offset;
1490 __u32 adapter_id;
1491};
1492
5c919412
AS
1493struct kvm_irq_routing_hv_sint {
1494 __u32 vcpu;
1495 __u32 sint;
1496};
414fa985 1497
e80a4a94 14984.53 KVM_ASSIGN_SET_MSIX_NR (deprecated)
49f48172 1499
7f05db6a 1500Capability: none
c32a4272 1501Architectures: x86
49f48172
JK
1502Type: vm ioctl
1503Parameters: struct kvm_assigned_msix_nr (in)
1504Returns: 0 on success, -1 on error
1505
58f0964e
JK
1506Set the number of MSI-X interrupts for an assigned device. The number is
1507reset again by terminating the MSI-X assignment of the device via
1508KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
1509point will fail.
49f48172
JK
1510
1511struct kvm_assigned_msix_nr {
1512 __u32 assigned_dev_id;
1513 __u16 entry_nr;
1514 __u16 padding;
1515};
1516
1517#define KVM_MAX_MSIX_PER_DEV 256
1518
414fa985 1519
e80a4a94 15204.54 KVM_ASSIGN_SET_MSIX_ENTRY (deprecated)
49f48172 1521
7f05db6a 1522Capability: none
c32a4272 1523Architectures: x86
49f48172
JK
1524Type: vm ioctl
1525Parameters: struct kvm_assigned_msix_entry (in)
1526Returns: 0 on success, -1 on error
1527
1528Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
1529the GSI vector to zero means disabling the interrupt.
1530
1531struct kvm_assigned_msix_entry {
1532 __u32 assigned_dev_id;
1533 __u32 gsi;
1534 __u16 entry; /* The index of entry in the MSI-X table */
1535 __u16 padding[3];
1536};
1537
7f05db6a
MT
1538Errors:
1539 ENOTTY: kernel does not support this ioctl
1540
1541 Other error conditions may be defined by individual device types or
1542 have their standard meanings.
1543
414fa985
JK
1544
15454.55 KVM_SET_TSC_KHZ
92a1f12d
JR
1546
1547Capability: KVM_CAP_TSC_CONTROL
1548Architectures: x86
1549Type: vcpu ioctl
1550Parameters: virtual tsc_khz
1551Returns: 0 on success, -1 on error
1552
1553Specifies the tsc frequency for the virtual machine. The unit of the
1554frequency is KHz.
1555
414fa985
JK
1556
15574.56 KVM_GET_TSC_KHZ
92a1f12d
JR
1558
1559Capability: KVM_CAP_GET_TSC_KHZ
1560Architectures: x86
1561Type: vcpu ioctl
1562Parameters: none
1563Returns: virtual tsc-khz on success, negative value on error
1564
1565Returns the tsc frequency of the guest. The unit of the return value is
1566KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1567error.
1568
414fa985
JK
1569
15704.57 KVM_GET_LAPIC
e7677933
AK
1571
1572Capability: KVM_CAP_IRQCHIP
1573Architectures: x86
1574Type: vcpu ioctl
1575Parameters: struct kvm_lapic_state (out)
1576Returns: 0 on success, -1 on error
1577
1578#define KVM_APIC_REG_SIZE 0x400
1579struct kvm_lapic_state {
1580 char regs[KVM_APIC_REG_SIZE];
1581};
1582
1583Reads the Local APIC registers and copies them into the input argument. The
1584data format and layout are the same as documented in the architecture manual.
1585
414fa985
JK
1586
15874.58 KVM_SET_LAPIC
e7677933
AK
1588
1589Capability: KVM_CAP_IRQCHIP
1590Architectures: x86
1591Type: vcpu ioctl
1592Parameters: struct kvm_lapic_state (in)
1593Returns: 0 on success, -1 on error
1594
1595#define KVM_APIC_REG_SIZE 0x400
1596struct kvm_lapic_state {
1597 char regs[KVM_APIC_REG_SIZE];
1598};
1599
df5cbb27 1600Copies the input argument into the Local APIC registers. The data format
e7677933
AK
1601and layout are the same as documented in the architecture manual.
1602
414fa985
JK
1603
16044.59 KVM_IOEVENTFD
55399a02
SL
1605
1606Capability: KVM_CAP_IOEVENTFD
1607Architectures: all
1608Type: vm ioctl
1609Parameters: struct kvm_ioeventfd (in)
1610Returns: 0 on success, !0 on error
1611
1612This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1613within the guest. A guest write in the registered address will signal the
1614provided event instead of triggering an exit.
1615
1616struct kvm_ioeventfd {
1617 __u64 datamatch;
1618 __u64 addr; /* legal pio/mmio address */
e9ea5069 1619 __u32 len; /* 0, 1, 2, 4, or 8 bytes */
55399a02
SL
1620 __s32 fd;
1621 __u32 flags;
1622 __u8 pad[36];
1623};
1624
2b83451b
CH
1625For the special case of virtio-ccw devices on s390, the ioevent is matched
1626to a subchannel/virtqueue tuple instead.
1627
55399a02
SL
1628The following flags are defined:
1629
1630#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1631#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1632#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
2b83451b
CH
1633#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
1634 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
55399a02
SL
1635
1636If datamatch flag is set, the event will be signaled only if the written value
1637to the registered address is equal to datamatch in struct kvm_ioeventfd.
1638
2b83451b
CH
1639For virtio-ccw devices, addr contains the subchannel id and datamatch the
1640virtqueue index.
1641
e9ea5069
JW
1642With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero length ioeventfd is allowed, and
1643the kernel will ignore the length of guest write and may get a faster vmexit.
1644The speedup may only apply to specific architectures, but the ioeventfd will
1645work anyway.
414fa985
JK
1646
16474.60 KVM_DIRTY_TLB
dc83b8bc
SW
1648
1649Capability: KVM_CAP_SW_TLB
1650Architectures: ppc
1651Type: vcpu ioctl
1652Parameters: struct kvm_dirty_tlb (in)
1653Returns: 0 on success, -1 on error
1654
1655struct kvm_dirty_tlb {
1656 __u64 bitmap;
1657 __u32 num_dirty;
1658};
1659
1660This must be called whenever userspace has changed an entry in the shared
1661TLB, prior to calling KVM_RUN on the associated vcpu.
1662
1663The "bitmap" field is the userspace address of an array. This array
1664consists of a number of bits, equal to the total number of TLB entries as
1665determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1666nearest multiple of 64.
1667
1668Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1669array.
1670
1671The array is little-endian: the bit 0 is the least significant bit of the
1672first byte, bit 8 is the least significant bit of the second byte, etc.
1673This avoids any complications with differing word sizes.
1674
1675The "num_dirty" field is a performance hint for KVM to determine whether it
1676should skip processing the bitmap and just invalidate everything. It must
1677be set to the number of set bits in the bitmap.
1678
414fa985 1679
e80a4a94 16804.61 KVM_ASSIGN_SET_INTX_MASK (deprecated)
07700a94
JK
1681
1682Capability: KVM_CAP_PCI_2_3
1683Architectures: x86
1684Type: vm ioctl
1685Parameters: struct kvm_assigned_pci_dev (in)
1686Returns: 0 on success, -1 on error
1687
1688Allows userspace to mask PCI INTx interrupts from the assigned device. The
1689kernel will not deliver INTx interrupts to the guest between setting and
1690clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
1691and emulation of PCI 2.3 INTx disable command register behavior.
1692
1693This may be used for both PCI 2.3 devices supporting INTx disable natively and
1694older devices lacking this support. Userspace is responsible for emulating the
1695read value of the INTx disable bit in the guest visible PCI command register.
1696When modifying the INTx disable state, userspace should precede updating the
1697physical device command register by calling this ioctl to inform the kernel of
1698the new intended INTx mask state.
1699
1700Note that the kernel uses the device INTx disable bit to internally manage the
1701device interrupt state for PCI 2.3 devices. Reads of this register may
1702therefore not match the expected value. Writes should always use the guest
1703intended INTx disable value rather than attempting to read-copy-update the
1704current physical device state. Races between user and kernel updates to the
1705INTx disable bit are handled lazily in the kernel. It's possible the device
1706may generate unintended interrupts, but they will not be injected into the
1707guest.
1708
1709See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1710by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
1711evaluated.
1712
414fa985 1713
54738c09
DG
17144.62 KVM_CREATE_SPAPR_TCE
1715
1716Capability: KVM_CAP_SPAPR_TCE
1717Architectures: powerpc
1718Type: vm ioctl
1719Parameters: struct kvm_create_spapr_tce (in)
1720Returns: file descriptor for manipulating the created TCE table
1721
1722This creates a virtual TCE (translation control entry) table, which
1723is an IOMMU for PAPR-style virtual I/O. It is used to translate
1724logical addresses used in virtual I/O into guest physical addresses,
1725and provides a scatter/gather capability for PAPR virtual I/O.
1726
1727/* for KVM_CAP_SPAPR_TCE */
1728struct kvm_create_spapr_tce {
1729 __u64 liobn;
1730 __u32 window_size;
1731};
1732
1733The liobn field gives the logical IO bus number for which to create a
1734TCE table. The window_size field specifies the size of the DMA window
1735which this TCE table will translate - the table will contain one 64
1736bit TCE entry for every 4kiB of the DMA window.
1737
1738When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1739table has been created using this ioctl(), the kernel will handle it
1740in real mode, updating the TCE table. H_PUT_TCE calls for other
1741liobns will cause a vm exit and must be handled by userspace.
1742
1743The return value is a file descriptor which can be passed to mmap(2)
1744to map the created TCE table into userspace. This lets userspace read
1745the entries written by kernel-handled H_PUT_TCE calls, and also lets
1746userspace update the TCE table directly which is useful in some
1747circumstances.
1748
414fa985 1749
aa04b4cc
PM
17504.63 KVM_ALLOCATE_RMA
1751
1752Capability: KVM_CAP_PPC_RMA
1753Architectures: powerpc
1754Type: vm ioctl
1755Parameters: struct kvm_allocate_rma (out)
1756Returns: file descriptor for mapping the allocated RMA
1757
1758This allocates a Real Mode Area (RMA) from the pool allocated at boot
1759time by the kernel. An RMA is a physically-contiguous, aligned region
1760of memory used on older POWER processors to provide the memory which
1761will be accessed by real-mode (MMU off) accesses in a KVM guest.
1762POWER processors support a set of sizes for the RMA that usually
1763includes 64MB, 128MB, 256MB and some larger powers of two.
1764
1765/* for KVM_ALLOCATE_RMA */
1766struct kvm_allocate_rma {
1767 __u64 rma_size;
1768};
1769
1770The return value is a file descriptor which can be passed to mmap(2)
1771to map the allocated RMA into userspace. The mapped area can then be
1772passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1773RMA for a virtual machine. The size of the RMA in bytes (which is
1774fixed at host kernel boot time) is returned in the rma_size field of
1775the argument structure.
1776
1777The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1778is supported; 2 if the processor requires all virtual machines to have
1779an RMA, or 1 if the processor can use an RMA but doesn't require it,
1780because it supports the Virtual RMA (VRMA) facility.
1781
414fa985 1782
3f745f1e
AK
17834.64 KVM_NMI
1784
1785Capability: KVM_CAP_USER_NMI
1786Architectures: x86
1787Type: vcpu ioctl
1788Parameters: none
1789Returns: 0 on success, -1 on error
1790
1791Queues an NMI on the thread's vcpu. Note this is well defined only
1792when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1793between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1794has been called, this interface is completely emulated within the kernel.
1795
1796To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1797following algorithm:
1798
5d4f6f3d 1799 - pause the vcpu
3f745f1e
AK
1800 - read the local APIC's state (KVM_GET_LAPIC)
1801 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1802 - if so, issue KVM_NMI
1803 - resume the vcpu
1804
1805Some guests configure the LINT1 NMI input to cause a panic, aiding in
1806debugging.
1807
414fa985 1808
e24ed81f 18094.65 KVM_S390_UCAS_MAP
27e0393f
CO
1810
1811Capability: KVM_CAP_S390_UCONTROL
1812Architectures: s390
1813Type: vcpu ioctl
1814Parameters: struct kvm_s390_ucas_mapping (in)
1815Returns: 0 in case of success
1816
1817The parameter is defined like this:
1818 struct kvm_s390_ucas_mapping {
1819 __u64 user_addr;
1820 __u64 vcpu_addr;
1821 __u64 length;
1822 };
1823
1824This ioctl maps the memory at "user_addr" with the length "length" to
1825the vcpu's address space starting at "vcpu_addr". All parameters need to
f884ab15 1826be aligned by 1 megabyte.
27e0393f 1827
414fa985 1828
e24ed81f 18294.66 KVM_S390_UCAS_UNMAP
27e0393f
CO
1830
1831Capability: KVM_CAP_S390_UCONTROL
1832Architectures: s390
1833Type: vcpu ioctl
1834Parameters: struct kvm_s390_ucas_mapping (in)
1835Returns: 0 in case of success
1836
1837The parameter is defined like this:
1838 struct kvm_s390_ucas_mapping {
1839 __u64 user_addr;
1840 __u64 vcpu_addr;
1841 __u64 length;
1842 };
1843
1844This ioctl unmaps the memory in the vcpu's address space starting at
1845"vcpu_addr" with the length "length". The field "user_addr" is ignored.
f884ab15 1846All parameters need to be aligned by 1 megabyte.
27e0393f 1847
414fa985 1848
e24ed81f 18494.67 KVM_S390_VCPU_FAULT
ccc7910f
CO
1850
1851Capability: KVM_CAP_S390_UCONTROL
1852Architectures: s390
1853Type: vcpu ioctl
1854Parameters: vcpu absolute address (in)
1855Returns: 0 in case of success
1856
1857This call creates a page table entry on the virtual cpu's address space
1858(for user controlled virtual machines) or the virtual machine's address
1859space (for regular virtual machines). This only works for minor faults,
1860thus it's recommended to access subject memory page via the user page
1861table upfront. This is useful to handle validity intercepts for user
1862controlled virtual machines to fault in the virtual cpu's lowcore pages
1863prior to calling the KVM_RUN ioctl.
1864
414fa985 1865
e24ed81f
AG
18664.68 KVM_SET_ONE_REG
1867
1868Capability: KVM_CAP_ONE_REG
1869Architectures: all
1870Type: vcpu ioctl
1871Parameters: struct kvm_one_reg (in)
1872Returns: 0 on success, negative value on failure
1873
1874struct kvm_one_reg {
1875 __u64 id;
1876 __u64 addr;
1877};
1878
1879Using this ioctl, a single vcpu register can be set to a specific value
1880defined by user space with the passed in struct kvm_one_reg, where id
1881refers to the register identifier as described below and addr is a pointer
1882to a variable with the respective size. There can be architecture agnostic
1883and architecture specific registers. Each have their own range of operation
1884and their own constants and width. To keep track of the implemented
1885registers, find a list below:
1886
bf5590f3
JH
1887 Arch | Register | Width (bits)
1888 | |
1889 PPC | KVM_REG_PPC_HIOR | 64
1890 PPC | KVM_REG_PPC_IAC1 | 64
1891 PPC | KVM_REG_PPC_IAC2 | 64
1892 PPC | KVM_REG_PPC_IAC3 | 64
1893 PPC | KVM_REG_PPC_IAC4 | 64
1894 PPC | KVM_REG_PPC_DAC1 | 64
1895 PPC | KVM_REG_PPC_DAC2 | 64
1896 PPC | KVM_REG_PPC_DABR | 64
1897 PPC | KVM_REG_PPC_DSCR | 64
1898 PPC | KVM_REG_PPC_PURR | 64
1899 PPC | KVM_REG_PPC_SPURR | 64
1900 PPC | KVM_REG_PPC_DAR | 64
1901 PPC | KVM_REG_PPC_DSISR | 32
1902 PPC | KVM_REG_PPC_AMR | 64
1903 PPC | KVM_REG_PPC_UAMOR | 64
1904 PPC | KVM_REG_PPC_MMCR0 | 64
1905 PPC | KVM_REG_PPC_MMCR1 | 64
1906 PPC | KVM_REG_PPC_MMCRA | 64
1907 PPC | KVM_REG_PPC_MMCR2 | 64
1908 PPC | KVM_REG_PPC_MMCRS | 64
1909 PPC | KVM_REG_PPC_SIAR | 64
1910 PPC | KVM_REG_PPC_SDAR | 64
1911 PPC | KVM_REG_PPC_SIER | 64
1912 PPC | KVM_REG_PPC_PMC1 | 32
1913 PPC | KVM_REG_PPC_PMC2 | 32
1914 PPC | KVM_REG_PPC_PMC3 | 32
1915 PPC | KVM_REG_PPC_PMC4 | 32
1916 PPC | KVM_REG_PPC_PMC5 | 32
1917 PPC | KVM_REG_PPC_PMC6 | 32
1918 PPC | KVM_REG_PPC_PMC7 | 32
1919 PPC | KVM_REG_PPC_PMC8 | 32
1920 PPC | KVM_REG_PPC_FPR0 | 64
a8bd19ef 1921 ...
bf5590f3
JH
1922 PPC | KVM_REG_PPC_FPR31 | 64
1923 PPC | KVM_REG_PPC_VR0 | 128
a8bd19ef 1924 ...
bf5590f3
JH
1925 PPC | KVM_REG_PPC_VR31 | 128
1926 PPC | KVM_REG_PPC_VSR0 | 128
a8bd19ef 1927 ...
bf5590f3
JH
1928 PPC | KVM_REG_PPC_VSR31 | 128
1929 PPC | KVM_REG_PPC_FPSCR | 64
1930 PPC | KVM_REG_PPC_VSCR | 32
1931 PPC | KVM_REG_PPC_VPA_ADDR | 64
1932 PPC | KVM_REG_PPC_VPA_SLB | 128
1933 PPC | KVM_REG_PPC_VPA_DTL | 128
1934 PPC | KVM_REG_PPC_EPCR | 32
1935 PPC | KVM_REG_PPC_EPR | 32
1936 PPC | KVM_REG_PPC_TCR | 32
1937 PPC | KVM_REG_PPC_TSR | 32
1938 PPC | KVM_REG_PPC_OR_TSR | 32
1939 PPC | KVM_REG_PPC_CLEAR_TSR | 32
1940 PPC | KVM_REG_PPC_MAS0 | 32
1941 PPC | KVM_REG_PPC_MAS1 | 32
1942 PPC | KVM_REG_PPC_MAS2 | 64
1943 PPC | KVM_REG_PPC_MAS7_3 | 64
1944 PPC | KVM_REG_PPC_MAS4 | 32
1945 PPC | KVM_REG_PPC_MAS6 | 32
1946 PPC | KVM_REG_PPC_MMUCFG | 32
1947 PPC | KVM_REG_PPC_TLB0CFG | 32
1948 PPC | KVM_REG_PPC_TLB1CFG | 32
1949 PPC | KVM_REG_PPC_TLB2CFG | 32
1950 PPC | KVM_REG_PPC_TLB3CFG | 32
1951 PPC | KVM_REG_PPC_TLB0PS | 32
1952 PPC | KVM_REG_PPC_TLB1PS | 32
1953 PPC | KVM_REG_PPC_TLB2PS | 32
1954 PPC | KVM_REG_PPC_TLB3PS | 32
1955 PPC | KVM_REG_PPC_EPTCFG | 32
1956 PPC | KVM_REG_PPC_ICP_STATE | 64
1957 PPC | KVM_REG_PPC_TB_OFFSET | 64
1958 PPC | KVM_REG_PPC_SPMC1 | 32
1959 PPC | KVM_REG_PPC_SPMC2 | 32
1960 PPC | KVM_REG_PPC_IAMR | 64
1961 PPC | KVM_REG_PPC_TFHAR | 64
1962 PPC | KVM_REG_PPC_TFIAR | 64
1963 PPC | KVM_REG_PPC_TEXASR | 64
1964 PPC | KVM_REG_PPC_FSCR | 64
1965 PPC | KVM_REG_PPC_PSPB | 32
1966 PPC | KVM_REG_PPC_EBBHR | 64
1967 PPC | KVM_REG_PPC_EBBRR | 64
1968 PPC | KVM_REG_PPC_BESCR | 64
1969 PPC | KVM_REG_PPC_TAR | 64
1970 PPC | KVM_REG_PPC_DPDES | 64
1971 PPC | KVM_REG_PPC_DAWR | 64
1972 PPC | KVM_REG_PPC_DAWRX | 64
1973 PPC | KVM_REG_PPC_CIABR | 64
1974 PPC | KVM_REG_PPC_IC | 64
1975 PPC | KVM_REG_PPC_VTB | 64
1976 PPC | KVM_REG_PPC_CSIGR | 64
1977 PPC | KVM_REG_PPC_TACR | 64
1978 PPC | KVM_REG_PPC_TCSCR | 64
1979 PPC | KVM_REG_PPC_PID | 64
1980 PPC | KVM_REG_PPC_ACOP | 64
1981 PPC | KVM_REG_PPC_VRSAVE | 32
cc568ead
PB
1982 PPC | KVM_REG_PPC_LPCR | 32
1983 PPC | KVM_REG_PPC_LPCR_64 | 64
bf5590f3
JH
1984 PPC | KVM_REG_PPC_PPR | 64
1985 PPC | KVM_REG_PPC_ARCH_COMPAT | 32
1986 PPC | KVM_REG_PPC_DABRX | 32
1987 PPC | KVM_REG_PPC_WORT | 64
bc8a4e5c
BB
1988 PPC | KVM_REG_PPC_SPRG9 | 64
1989 PPC | KVM_REG_PPC_DBSR | 32
bf5590f3 1990 PPC | KVM_REG_PPC_TM_GPR0 | 64
3b783474 1991 ...
bf5590f3
JH
1992 PPC | KVM_REG_PPC_TM_GPR31 | 64
1993 PPC | KVM_REG_PPC_TM_VSR0 | 128
3b783474 1994 ...
bf5590f3
JH
1995 PPC | KVM_REG_PPC_TM_VSR63 | 128
1996 PPC | KVM_REG_PPC_TM_CR | 64
1997 PPC | KVM_REG_PPC_TM_LR | 64
1998 PPC | KVM_REG_PPC_TM_CTR | 64
1999 PPC | KVM_REG_PPC_TM_FPSCR | 64
2000 PPC | KVM_REG_PPC_TM_AMR | 64
2001 PPC | KVM_REG_PPC_TM_PPR | 64
2002 PPC | KVM_REG_PPC_TM_VRSAVE | 64
2003 PPC | KVM_REG_PPC_TM_VSCR | 32
2004 PPC | KVM_REG_PPC_TM_DSCR | 64
2005 PPC | KVM_REG_PPC_TM_TAR | 64
c2d2c21b
JH
2006 | |
2007 MIPS | KVM_REG_MIPS_R0 | 64
2008 ...
2009 MIPS | KVM_REG_MIPS_R31 | 64
2010 MIPS | KVM_REG_MIPS_HI | 64
2011 MIPS | KVM_REG_MIPS_LO | 64
2012 MIPS | KVM_REG_MIPS_PC | 64
2013 MIPS | KVM_REG_MIPS_CP0_INDEX | 32
2014 MIPS | KVM_REG_MIPS_CP0_CONTEXT | 64
2015 MIPS | KVM_REG_MIPS_CP0_USERLOCAL | 64
2016 MIPS | KVM_REG_MIPS_CP0_PAGEMASK | 32
2017 MIPS | KVM_REG_MIPS_CP0_WIRED | 32
2018 MIPS | KVM_REG_MIPS_CP0_HWRENA | 32
2019 MIPS | KVM_REG_MIPS_CP0_BADVADDR | 64
2020 MIPS | KVM_REG_MIPS_CP0_COUNT | 32
2021 MIPS | KVM_REG_MIPS_CP0_ENTRYHI | 64
2022 MIPS | KVM_REG_MIPS_CP0_COMPARE | 32
2023 MIPS | KVM_REG_MIPS_CP0_STATUS | 32
2024 MIPS | KVM_REG_MIPS_CP0_CAUSE | 32
2025 MIPS | KVM_REG_MIPS_CP0_EPC | 64
1068eaaf 2026 MIPS | KVM_REG_MIPS_CP0_PRID | 32
c2d2c21b
JH
2027 MIPS | KVM_REG_MIPS_CP0_CONFIG | 32
2028 MIPS | KVM_REG_MIPS_CP0_CONFIG1 | 32
2029 MIPS | KVM_REG_MIPS_CP0_CONFIG2 | 32
2030 MIPS | KVM_REG_MIPS_CP0_CONFIG3 | 32
c771607a
JH
2031 MIPS | KVM_REG_MIPS_CP0_CONFIG4 | 32
2032 MIPS | KVM_REG_MIPS_CP0_CONFIG5 | 32
c2d2c21b
JH
2033 MIPS | KVM_REG_MIPS_CP0_CONFIG7 | 32
2034 MIPS | KVM_REG_MIPS_CP0_ERROREPC | 64
05108709
JH
2035 MIPS | KVM_REG_MIPS_CP0_KSCRATCH1 | 64
2036 MIPS | KVM_REG_MIPS_CP0_KSCRATCH2 | 64
2037 MIPS | KVM_REG_MIPS_CP0_KSCRATCH3 | 64
2038 MIPS | KVM_REG_MIPS_CP0_KSCRATCH4 | 64
2039 MIPS | KVM_REG_MIPS_CP0_KSCRATCH5 | 64
2040 MIPS | KVM_REG_MIPS_CP0_KSCRATCH6 | 64
c2d2c21b
JH
2041 MIPS | KVM_REG_MIPS_COUNT_CTL | 64
2042 MIPS | KVM_REG_MIPS_COUNT_RESUME | 64
2043 MIPS | KVM_REG_MIPS_COUNT_HZ | 64
379245cd
JH
2044 MIPS | KVM_REG_MIPS_FPR_32(0..31) | 32
2045 MIPS | KVM_REG_MIPS_FPR_64(0..31) | 64
ab86bd60 2046 MIPS | KVM_REG_MIPS_VEC_128(0..31) | 128
379245cd
JH
2047 MIPS | KVM_REG_MIPS_FCR_IR | 32
2048 MIPS | KVM_REG_MIPS_FCR_CSR | 32
ab86bd60
JH
2049 MIPS | KVM_REG_MIPS_MSA_IR | 32
2050 MIPS | KVM_REG_MIPS_MSA_CSR | 32
414fa985 2051
749cf76c
CD
2052ARM registers are mapped using the lower 32 bits. The upper 16 of that
2053is the register group type, or coprocessor number:
2054
2055ARM core registers have the following id bit patterns:
aa404ddf 2056 0x4020 0000 0010 <index into the kvm_regs struct:16>
749cf76c 2057
1138245c 2058ARM 32-bit CP15 registers have the following id bit patterns:
aa404ddf 2059 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
1138245c
CD
2060
2061ARM 64-bit CP15 registers have the following id bit patterns:
aa404ddf 2062 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
749cf76c 2063
c27581ed 2064ARM CCSIDR registers are demultiplexed by CSSELR value:
aa404ddf 2065 0x4020 0000 0011 00 <csselr:8>
749cf76c 2066
4fe21e4c 2067ARM 32-bit VFP control registers have the following id bit patterns:
aa404ddf 2068 0x4020 0000 0012 1 <regno:12>
4fe21e4c
RR
2069
2070ARM 64-bit FP registers have the following id bit patterns:
aa404ddf 2071 0x4030 0000 0012 0 <regno:12>
4fe21e4c 2072
379e04c7
MZ
2073
2074arm64 registers are mapped using the lower 32 bits. The upper 16 of
2075that is the register group type, or coprocessor number:
2076
2077arm64 core/FP-SIMD registers have the following id bit patterns. Note
2078that the size of the access is variable, as the kvm_regs structure
2079contains elements ranging from 32 to 128 bits. The index is a 32bit
2080value in the kvm_regs structure seen as a 32bit array.
2081 0x60x0 0000 0010 <index into the kvm_regs struct:16>
2082
2083arm64 CCSIDR registers are demultiplexed by CSSELR value:
2084 0x6020 0000 0011 00 <csselr:8>
2085
2086arm64 system registers have the following id bit patterns:
2087 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
2088
c2d2c21b
JH
2089
2090MIPS registers are mapped using the lower 32 bits. The upper 16 of that is
2091the register group type:
2092
2093MIPS core registers (see above) have the following id bit patterns:
2094 0x7030 0000 0000 <reg:16>
2095
2096MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit
2097patterns depending on whether they're 32-bit or 64-bit registers:
2098 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit)
2099 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit)
2100
2101MIPS KVM control registers (see above) have the following id bit patterns:
2102 0x7030 0000 0002 <reg:16>
2103
379245cd
JH
2104MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following
2105id bit patterns depending on the size of the register being accessed. They are
2106always accessed according to the current guest FPU mode (Status.FR and
2107Config5.FRE), i.e. as the guest would see them, and they become unpredictable
ab86bd60
JH
2108if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector
2109registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they
2110overlap the FPU registers:
379245cd
JH
2111 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers)
2112 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers)
ab86bd60 2113 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers)
379245cd
JH
2114
2115MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the
2116following id bit patterns:
2117 0x7020 0000 0003 01 <0:3> <reg:5>
2118
ab86bd60
JH
2119MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the
2120following id bit patterns:
2121 0x7020 0000 0003 02 <0:3> <reg:5>
2122
c2d2c21b 2123
e24ed81f
AG
21244.69 KVM_GET_ONE_REG
2125
2126Capability: KVM_CAP_ONE_REG
2127Architectures: all
2128Type: vcpu ioctl
2129Parameters: struct kvm_one_reg (in and out)
2130Returns: 0 on success, negative value on failure
2131
2132This ioctl allows to receive the value of a single register implemented
2133in a vcpu. The register to read is indicated by the "id" field of the
2134kvm_one_reg struct passed in. On success, the register value can be found
2135at the memory location pointed to by "addr".
2136
2137The list of registers accessible using this interface is identical to the
2e232702 2138list in 4.68.
e24ed81f 2139
414fa985 2140
1c0b28c2
EM
21414.70 KVM_KVMCLOCK_CTRL
2142
2143Capability: KVM_CAP_KVMCLOCK_CTRL
2144Architectures: Any that implement pvclocks (currently x86 only)
2145Type: vcpu ioctl
2146Parameters: None
2147Returns: 0 on success, -1 on error
2148
2149This signals to the host kernel that the specified guest is being paused by
2150userspace. The host will set a flag in the pvclock structure that is checked
2151from the soft lockup watchdog. The flag is part of the pvclock structure that
2152is shared between guest and host, specifically the second bit of the flags
2153field of the pvclock_vcpu_time_info structure. It will be set exclusively by
2154the host and read/cleared exclusively by the guest. The guest operation of
2155checking and clearing the flag must an atomic operation so
2156load-link/store-conditional, or equivalent must be used. There are two cases
2157where the guest will clear the flag: when the soft lockup watchdog timer resets
2158itself or when a soft lockup is detected. This ioctl can be called any time
2159after pausing the vcpu, but before it is resumed.
2160
414fa985 2161
07975ad3
JK
21624.71 KVM_SIGNAL_MSI
2163
2164Capability: KVM_CAP_SIGNAL_MSI
2165Architectures: x86
2166Type: vm ioctl
2167Parameters: struct kvm_msi (in)
2168Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
2169
2170Directly inject a MSI message. Only valid with in-kernel irqchip that handles
2171MSI messages.
2172
2173struct kvm_msi {
2174 __u32 address_lo;
2175 __u32 address_hi;
2176 __u32 data;
2177 __u32 flags;
2178 __u8 pad[16];
2179};
2180
2181No flags are defined so far. The corresponding field must be 0.
2182
414fa985 2183
0589ff6c
JK
21844.71 KVM_CREATE_PIT2
2185
2186Capability: KVM_CAP_PIT2
2187Architectures: x86
2188Type: vm ioctl
2189Parameters: struct kvm_pit_config (in)
2190Returns: 0 on success, -1 on error
2191
2192Creates an in-kernel device model for the i8254 PIT. This call is only valid
2193after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
2194parameters have to be passed:
2195
2196struct kvm_pit_config {
2197 __u32 flags;
2198 __u32 pad[15];
2199};
2200
2201Valid flags are:
2202
2203#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
2204
b6ddf05f
JK
2205PIT timer interrupts may use a per-VM kernel thread for injection. If it
2206exists, this thread will have a name of the following pattern:
2207
2208kvm-pit/<owner-process-pid>
2209
2210When running a guest with elevated priorities, the scheduling parameters of
2211this thread may have to be adjusted accordingly.
2212
0589ff6c
JK
2213This IOCTL replaces the obsolete KVM_CREATE_PIT.
2214
2215
22164.72 KVM_GET_PIT2
2217
2218Capability: KVM_CAP_PIT_STATE2
2219Architectures: x86
2220Type: vm ioctl
2221Parameters: struct kvm_pit_state2 (out)
2222Returns: 0 on success, -1 on error
2223
2224Retrieves the state of the in-kernel PIT model. Only valid after
2225KVM_CREATE_PIT2. The state is returned in the following structure:
2226
2227struct kvm_pit_state2 {
2228 struct kvm_pit_channel_state channels[3];
2229 __u32 flags;
2230 __u32 reserved[9];
2231};
2232
2233Valid flags are:
2234
2235/* disable PIT in HPET legacy mode */
2236#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
2237
2238This IOCTL replaces the obsolete KVM_GET_PIT.
2239
2240
22414.73 KVM_SET_PIT2
2242
2243Capability: KVM_CAP_PIT_STATE2
2244Architectures: x86
2245Type: vm ioctl
2246Parameters: struct kvm_pit_state2 (in)
2247Returns: 0 on success, -1 on error
2248
2249Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2250See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2251
2252This IOCTL replaces the obsolete KVM_SET_PIT.
2253
2254
5b74716e
BH
22554.74 KVM_PPC_GET_SMMU_INFO
2256
2257Capability: KVM_CAP_PPC_GET_SMMU_INFO
2258Architectures: powerpc
2259Type: vm ioctl
2260Parameters: None
2261Returns: 0 on success, -1 on error
2262
2263This populates and returns a structure describing the features of
2264the "Server" class MMU emulation supported by KVM.
cc22c354 2265This can in turn be used by userspace to generate the appropriate
5b74716e
BH
2266device-tree properties for the guest operating system.
2267
c98be0c9 2268The structure contains some global information, followed by an
5b74716e
BH
2269array of supported segment page sizes:
2270
2271 struct kvm_ppc_smmu_info {
2272 __u64 flags;
2273 __u32 slb_size;
2274 __u32 pad;
2275 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2276 };
2277
2278The supported flags are:
2279
2280 - KVM_PPC_PAGE_SIZES_REAL:
2281 When that flag is set, guest page sizes must "fit" the backing
2282 store page sizes. When not set, any page size in the list can
2283 be used regardless of how they are backed by userspace.
2284
2285 - KVM_PPC_1T_SEGMENTS
2286 The emulated MMU supports 1T segments in addition to the
2287 standard 256M ones.
2288
2289The "slb_size" field indicates how many SLB entries are supported
2290
2291The "sps" array contains 8 entries indicating the supported base
2292page sizes for a segment in increasing order. Each entry is defined
2293as follow:
2294
2295 struct kvm_ppc_one_seg_page_size {
2296 __u32 page_shift; /* Base page shift of segment (or 0) */
2297 __u32 slb_enc; /* SLB encoding for BookS */
2298 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2299 };
2300
2301An entry with a "page_shift" of 0 is unused. Because the array is
2302organized in increasing order, a lookup can stop when encoutering
2303such an entry.
2304
2305The "slb_enc" field provides the encoding to use in the SLB for the
2306page size. The bits are in positions such as the value can directly
2307be OR'ed into the "vsid" argument of the slbmte instruction.
2308
2309The "enc" array is a list which for each of those segment base page
2310size provides the list of supported actual page sizes (which can be
2311only larger or equal to the base page size), along with the
f884ab15 2312corresponding encoding in the hash PTE. Similarly, the array is
5b74716e
BH
23138 entries sorted by increasing sizes and an entry with a "0" shift
2314is an empty entry and a terminator:
2315
2316 struct kvm_ppc_one_page_size {
2317 __u32 page_shift; /* Page shift (or 0) */
2318 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2319 };
2320
2321The "pte_enc" field provides a value that can OR'ed into the hash
2322PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2323into the hash PTE second double word).
2324
f36992e3
AW
23254.75 KVM_IRQFD
2326
2327Capability: KVM_CAP_IRQFD
174178fe 2328Architectures: x86 s390 arm arm64
f36992e3
AW
2329Type: vm ioctl
2330Parameters: struct kvm_irqfd (in)
2331Returns: 0 on success, -1 on error
2332
2333Allows setting an eventfd to directly trigger a guest interrupt.
2334kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2335kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
17180032 2336an event is triggered on the eventfd, an interrupt is injected into
f36992e3
AW
2337the guest using the specified gsi pin. The irqfd is removed using
2338the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2339and kvm_irqfd.gsi.
2340
7a84428a
AW
2341With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2342mechanism allowing emulation of level-triggered, irqfd-based
2343interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2344additional eventfd in the kvm_irqfd.resamplefd field. When operating
2345in resample mode, posting of an interrupt through kvm_irq.fd asserts
2346the specified gsi in the irqchip. When the irqchip is resampled, such
17180032 2347as from an EOI, the gsi is de-asserted and the user is notified via
7a84428a
AW
2348kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2349the interrupt if the device making use of it still requires service.
2350Note that closing the resamplefd is not sufficient to disable the
2351irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2352and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2353
174178fe
EA
2354On ARM/ARM64, the gsi field in the kvm_irqfd struct specifies the Shared
2355Peripheral Interrupt (SPI) index, such that the GIC interrupt ID is
2356given by gsi + 32.
2357
5fecc9d8 23584.76 KVM_PPC_ALLOCATE_HTAB
32fad281
PM
2359
2360Capability: KVM_CAP_PPC_ALLOC_HTAB
2361Architectures: powerpc
2362Type: vm ioctl
2363Parameters: Pointer to u32 containing hash table order (in/out)
2364Returns: 0 on success, -1 on error
2365
2366This requests the host kernel to allocate an MMU hash table for a
2367guest using the PAPR paravirtualization interface. This only does
2368anything if the kernel is configured to use the Book 3S HV style of
2369virtualization. Otherwise the capability doesn't exist and the ioctl
2370returns an ENOTTY error. The rest of this description assumes Book 3S
2371HV.
2372
2373There must be no vcpus running when this ioctl is called; if there
2374are, it will do nothing and return an EBUSY error.
2375
2376The parameter is a pointer to a 32-bit unsigned integer variable
2377containing the order (log base 2) of the desired size of the hash
2378table, which must be between 18 and 46. On successful return from the
2379ioctl, it will have been updated with the order of the hash table that
2380was allocated.
2381
2382If no hash table has been allocated when any vcpu is asked to run
2383(with the KVM_RUN ioctl), the host kernel will allocate a
2384default-sized hash table (16 MB).
2385
2386If this ioctl is called when a hash table has already been allocated,
2387the kernel will clear out the existing hash table (zero all HPTEs) and
2388return the hash table order in the parameter. (If the guest is using
2389the virtualized real-mode area (VRMA) facility, the kernel will
2390re-create the VMRA HPTEs on the next KVM_RUN of any vcpu.)
2391
416ad65f
CH
23924.77 KVM_S390_INTERRUPT
2393
2394Capability: basic
2395Architectures: s390
2396Type: vm ioctl, vcpu ioctl
2397Parameters: struct kvm_s390_interrupt (in)
2398Returns: 0 on success, -1 on error
2399
2400Allows to inject an interrupt to the guest. Interrupts can be floating
2401(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2402
2403Interrupt parameters are passed via kvm_s390_interrupt:
2404
2405struct kvm_s390_interrupt {
2406 __u32 type;
2407 __u32 parm;
2408 __u64 parm64;
2409};
2410
2411type can be one of the following:
2412
2822545f 2413KVM_S390_SIGP_STOP (vcpu) - sigp stop; optional flags in parm
416ad65f
CH
2414KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2415KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2416KVM_S390_RESTART (vcpu) - restart
e029ae5b
TH
2417KVM_S390_INT_CLOCK_COMP (vcpu) - clock comparator interrupt
2418KVM_S390_INT_CPU_TIMER (vcpu) - CPU timer interrupt
416ad65f
CH
2419KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2420 parameters in parm and parm64
2421KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2422KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2423KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
d8346b7d
CH
2424KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2425 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2426 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2427 interruption subclass)
48a3e950
CH
2428KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2429 machine check interrupt code in parm64 (note that
2430 machine checks needing further payload are not
2431 supported by this ioctl)
416ad65f
CH
2432
2433Note that the vcpu ioctl is asynchronous to vcpu execution.
2434
a2932923
PM
24354.78 KVM_PPC_GET_HTAB_FD
2436
2437Capability: KVM_CAP_PPC_HTAB_FD
2438Architectures: powerpc
2439Type: vm ioctl
2440Parameters: Pointer to struct kvm_get_htab_fd (in)
2441Returns: file descriptor number (>= 0) on success, -1 on error
2442
2443This returns a file descriptor that can be used either to read out the
2444entries in the guest's hashed page table (HPT), or to write entries to
2445initialize the HPT. The returned fd can only be written to if the
2446KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2447can only be read if that bit is clear. The argument struct looks like
2448this:
2449
2450/* For KVM_PPC_GET_HTAB_FD */
2451struct kvm_get_htab_fd {
2452 __u64 flags;
2453 __u64 start_index;
2454 __u64 reserved[2];
2455};
2456
2457/* Values for kvm_get_htab_fd.flags */
2458#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2459#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2460
2461The `start_index' field gives the index in the HPT of the entry at
2462which to start reading. It is ignored when writing.
2463
2464Reads on the fd will initially supply information about all
2465"interesting" HPT entries. Interesting entries are those with the
2466bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2467all entries. When the end of the HPT is reached, the read() will
2468return. If read() is called again on the fd, it will start again from
2469the beginning of the HPT, but will only return HPT entries that have
2470changed since they were last read.
2471
2472Data read or written is structured as a header (8 bytes) followed by a
2473series of valid HPT entries (16 bytes) each. The header indicates how
2474many valid HPT entries there are and how many invalid entries follow
2475the valid entries. The invalid entries are not represented explicitly
2476in the stream. The header format is:
2477
2478struct kvm_get_htab_header {
2479 __u32 index;
2480 __u16 n_valid;
2481 __u16 n_invalid;
2482};
2483
2484Writes to the fd create HPT entries starting at the index given in the
2485header; first `n_valid' valid entries with contents from the data
2486written, then `n_invalid' invalid entries, invalidating any previously
2487valid entries found.
2488
852b6d57
SW
24894.79 KVM_CREATE_DEVICE
2490
2491Capability: KVM_CAP_DEVICE_CTRL
2492Type: vm ioctl
2493Parameters: struct kvm_create_device (in/out)
2494Returns: 0 on success, -1 on error
2495Errors:
2496 ENODEV: The device type is unknown or unsupported
2497 EEXIST: Device already created, and this type of device may not
2498 be instantiated multiple times
2499
2500 Other error conditions may be defined by individual device types or
2501 have their standard meanings.
2502
2503Creates an emulated device in the kernel. The file descriptor returned
2504in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2505
2506If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2507device type is supported (not necessarily whether it can be created
2508in the current vm).
2509
2510Individual devices should not define flags. Attributes should be used
2511for specifying any behavior that is not implied by the device type
2512number.
2513
2514struct kvm_create_device {
2515 __u32 type; /* in: KVM_DEV_TYPE_xxx */
2516 __u32 fd; /* out: device handle */
2517 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
2518};
2519
25204.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
2521
f577f6c2
SZ
2522Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2523 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2524Type: device ioctl, vm ioctl, vcpu ioctl
852b6d57
SW
2525Parameters: struct kvm_device_attr
2526Returns: 0 on success, -1 on error
2527Errors:
2528 ENXIO: The group or attribute is unknown/unsupported for this device
f9cbd9b0 2529 or hardware support is missing.
852b6d57
SW
2530 EPERM: The attribute cannot (currently) be accessed this way
2531 (e.g. read-only attribute, or attribute that only makes
2532 sense when the device is in a different state)
2533
2534 Other error conditions may be defined by individual device types.
2535
2536Gets/sets a specified piece of device configuration and/or state. The
2537semantics are device-specific. See individual device documentation in
2538the "devices" directory. As with ONE_REG, the size of the data
2539transferred is defined by the particular attribute.
2540
2541struct kvm_device_attr {
2542 __u32 flags; /* no flags currently defined */
2543 __u32 group; /* device-defined */
2544 __u64 attr; /* group-defined */
2545 __u64 addr; /* userspace address of attr data */
2546};
2547
25484.81 KVM_HAS_DEVICE_ATTR
2549
f577f6c2
SZ
2550Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2551 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2552Type: device ioctl, vm ioctl, vcpu ioctl
852b6d57
SW
2553Parameters: struct kvm_device_attr
2554Returns: 0 on success, -1 on error
2555Errors:
2556 ENXIO: The group or attribute is unknown/unsupported for this device
f9cbd9b0 2557 or hardware support is missing.
852b6d57
SW
2558
2559Tests whether a device supports a particular attribute. A successful
2560return indicates the attribute is implemented. It does not necessarily
2561indicate that the attribute can be read or written in the device's
2562current state. "addr" is ignored.
f36992e3 2563
d8968f1f 25644.82 KVM_ARM_VCPU_INIT
749cf76c
CD
2565
2566Capability: basic
379e04c7 2567Architectures: arm, arm64
749cf76c 2568Type: vcpu ioctl
beb11fc7 2569Parameters: struct kvm_vcpu_init (in)
749cf76c
CD
2570Returns: 0 on success; -1 on error
2571Errors:
2572  EINVAL:    the target is unknown, or the combination of features is invalid.
2573  ENOENT:    a features bit specified is unknown.
2574
2575This tells KVM what type of CPU to present to the guest, and what
2576optional features it should have.  This will cause a reset of the cpu
2577registers to their initial values.  If this is not called, KVM_RUN will
2578return ENOEXEC for that vcpu.
2579
2580Note that because some registers reflect machine topology, all vcpus
2581should be created before this ioctl is invoked.
2582
f7fa034d
CD
2583Userspace can call this function multiple times for a given vcpu, including
2584after the vcpu has been run. This will reset the vcpu to its initial
2585state. All calls to this function after the initial call must use the same
2586target and same set of feature flags, otherwise EINVAL will be returned.
2587
aa024c2f
MZ
2588Possible features:
2589 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
3ad8b3de
CD
2590 Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on
2591 and execute guest code when KVM_RUN is called.
379e04c7
MZ
2592 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
2593 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
50bb0c94
AP
2594 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 for the CPU.
2595 Depends on KVM_CAP_ARM_PSCI_0_2.
808e7381
SZ
2596 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU.
2597 Depends on KVM_CAP_ARM_PMU_V3.
aa024c2f 2598
749cf76c 2599
740edfc0
AP
26004.83 KVM_ARM_PREFERRED_TARGET
2601
2602Capability: basic
2603Architectures: arm, arm64
2604Type: vm ioctl
2605Parameters: struct struct kvm_vcpu_init (out)
2606Returns: 0 on success; -1 on error
2607Errors:
a7265fb1 2608 ENODEV: no preferred target available for the host
740edfc0
AP
2609
2610This queries KVM for preferred CPU target type which can be emulated
2611by KVM on underlying host.
2612
2613The ioctl returns struct kvm_vcpu_init instance containing information
2614about preferred CPU target type and recommended features for it. The
2615kvm_vcpu_init->features bitmap returned will have feature bits set if
2616the preferred target recommends setting these features, but this is
2617not mandatory.
2618
2619The information returned by this ioctl can be used to prepare an instance
2620of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
2621in VCPU matching underlying host.
2622
2623
26244.84 KVM_GET_REG_LIST
749cf76c
CD
2625
2626Capability: basic
c2d2c21b 2627Architectures: arm, arm64, mips
749cf76c
CD
2628Type: vcpu ioctl
2629Parameters: struct kvm_reg_list (in/out)
2630Returns: 0 on success; -1 on error
2631Errors:
2632  E2BIG:     the reg index list is too big to fit in the array specified by
2633             the user (the number required will be written into n).
2634
2635struct kvm_reg_list {
2636 __u64 n; /* number of registers in reg[] */
2637 __u64 reg[0];
2638};
2639
2640This ioctl returns the guest registers that are supported for the
2641KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2642
ce01e4e8
CD
2643
26444.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
3401d546
CD
2645
2646Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
379e04c7 2647Architectures: arm, arm64
3401d546
CD
2648Type: vm ioctl
2649Parameters: struct kvm_arm_device_address (in)
2650Returns: 0 on success, -1 on error
2651Errors:
2652 ENODEV: The device id is unknown
2653 ENXIO: Device not supported on current system
2654 EEXIST: Address already set
2655 E2BIG: Address outside guest physical address space
330690cd 2656 EBUSY: Address overlaps with other device range
3401d546
CD
2657
2658struct kvm_arm_device_addr {
2659 __u64 id;
2660 __u64 addr;
2661};
2662
2663Specify a device address in the guest's physical address space where guests
2664can access emulated or directly exposed devices, which the host kernel needs
2665to know about. The id field is an architecture specific identifier for a
2666specific device.
2667
379e04c7
MZ
2668ARM/arm64 divides the id field into two parts, a device id and an
2669address type id specific to the individual device.
3401d546
CD
2670
2671  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2672 field: | 0x00000000 | device id | addr type id |
2673
379e04c7
MZ
2674ARM/arm64 currently only require this when using the in-kernel GIC
2675support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
2676as the device id. When setting the base address for the guest's
2677mapping of the VGIC virtual CPU and distributor interface, the ioctl
2678must be called after calling KVM_CREATE_IRQCHIP, but before calling
2679KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
2680base addresses will return -EEXIST.
3401d546 2681
ce01e4e8
CD
2682Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
2683should be used instead.
2684
2685
740edfc0 26864.86 KVM_PPC_RTAS_DEFINE_TOKEN
8e591cb7
ME
2687
2688Capability: KVM_CAP_PPC_RTAS
2689Architectures: ppc
2690Type: vm ioctl
2691Parameters: struct kvm_rtas_token_args
2692Returns: 0 on success, -1 on error
2693
2694Defines a token value for a RTAS (Run Time Abstraction Services)
2695service in order to allow it to be handled in the kernel. The
2696argument struct gives the name of the service, which must be the name
2697of a service that has a kernel-side implementation. If the token
2698value is non-zero, it will be associated with that service, and
2699subsequent RTAS calls by the guest specifying that token will be
2700handled by the kernel. If the token value is 0, then any token
2701associated with the service will be forgotten, and subsequent RTAS
2702calls by the guest for that service will be passed to userspace to be
2703handled.
2704
4bd9d344
AB
27054.87 KVM_SET_GUEST_DEBUG
2706
2707Capability: KVM_CAP_SET_GUEST_DEBUG
0e6f07f2 2708Architectures: x86, s390, ppc, arm64
4bd9d344
AB
2709Type: vcpu ioctl
2710Parameters: struct kvm_guest_debug (in)
2711Returns: 0 on success; -1 on error
2712
2713struct kvm_guest_debug {
2714 __u32 control;
2715 __u32 pad;
2716 struct kvm_guest_debug_arch arch;
2717};
2718
2719Set up the processor specific debug registers and configure vcpu for
2720handling guest debug events. There are two parts to the structure, the
2721first a control bitfield indicates the type of debug events to handle
2722when running. Common control bits are:
2723
2724 - KVM_GUESTDBG_ENABLE: guest debugging is enabled
2725 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step
2726
2727The top 16 bits of the control field are architecture specific control
2728flags which can include the following:
2729
4bd611ca 2730 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86, arm64]
834bf887 2731 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390, arm64]
4bd9d344
AB
2732 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86]
2733 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86]
2734 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390]
2735
2736For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints
2737are enabled in memory so we need to ensure breakpoint exceptions are
2738correctly trapped and the KVM run loop exits at the breakpoint and not
2739running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP
2740we need to ensure the guest vCPUs architecture specific registers are
2741updated to the correct (supplied) values.
2742
2743The second part of the structure is architecture specific and
2744typically contains a set of debug registers.
2745
834bf887
AB
2746For arm64 the number of debug registers is implementation defined and
2747can be determined by querying the KVM_CAP_GUEST_DEBUG_HW_BPS and
2748KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which return a positive number
2749indicating the number of supported registers.
2750
4bd9d344
AB
2751When debug events exit the main run loop with the reason
2752KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run
2753structure containing architecture specific debug information.
3401d546 2754
209cf19f
AB
27554.88 KVM_GET_EMULATED_CPUID
2756
2757Capability: KVM_CAP_EXT_EMUL_CPUID
2758Architectures: x86
2759Type: system ioctl
2760Parameters: struct kvm_cpuid2 (in/out)
2761Returns: 0 on success, -1 on error
2762
2763struct kvm_cpuid2 {
2764 __u32 nent;
2765 __u32 flags;
2766 struct kvm_cpuid_entry2 entries[0];
2767};
2768
2769The member 'flags' is used for passing flags from userspace.
2770
2771#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
2772#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
2773#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
2774
2775struct kvm_cpuid_entry2 {
2776 __u32 function;
2777 __u32 index;
2778 __u32 flags;
2779 __u32 eax;
2780 __u32 ebx;
2781 __u32 ecx;
2782 __u32 edx;
2783 __u32 padding[3];
2784};
2785
2786This ioctl returns x86 cpuid features which are emulated by
2787kvm.Userspace can use the information returned by this ioctl to query
2788which features are emulated by kvm instead of being present natively.
2789
2790Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
2791structure with the 'nent' field indicating the number of entries in
2792the variable-size array 'entries'. If the number of entries is too low
2793to describe the cpu capabilities, an error (E2BIG) is returned. If the
2794number is too high, the 'nent' field is adjusted and an error (ENOMEM)
2795is returned. If the number is just right, the 'nent' field is adjusted
2796to the number of valid entries in the 'entries' array, which is then
2797filled.
2798
2799The entries returned are the set CPUID bits of the respective features
2800which kvm emulates, as returned by the CPUID instruction, with unknown
2801or unsupported feature bits cleared.
2802
2803Features like x2apic, for example, may not be present in the host cpu
2804but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
2805emulated efficiently and thus not included here.
2806
2807The fields in each entry are defined as follows:
2808
2809 function: the eax value used to obtain the entry
2810 index: the ecx value used to obtain the entry (for entries that are
2811 affected by ecx)
2812 flags: an OR of zero or more of the following:
2813 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
2814 if the index field is valid
2815 KVM_CPUID_FLAG_STATEFUL_FUNC:
2816 if cpuid for this function returns different values for successive
2817 invocations; there will be several entries with the same function,
2818 all with this flag set
2819 KVM_CPUID_FLAG_STATE_READ_NEXT:
2820 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
2821 the first entry to be read by a cpu
2822 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
2823 this function/index combination
2824
41408c28
TH
28254.89 KVM_S390_MEM_OP
2826
2827Capability: KVM_CAP_S390_MEM_OP
2828Architectures: s390
2829Type: vcpu ioctl
2830Parameters: struct kvm_s390_mem_op (in)
2831Returns: = 0 on success,
2832 < 0 on generic error (e.g. -EFAULT or -ENOMEM),
2833 > 0 if an exception occurred while walking the page tables
2834
5d4f6f3d 2835Read or write data from/to the logical (virtual) memory of a VCPU.
41408c28
TH
2836
2837Parameters are specified via the following structure:
2838
2839struct kvm_s390_mem_op {
2840 __u64 gaddr; /* the guest address */
2841 __u64 flags; /* flags */
2842 __u32 size; /* amount of bytes */
2843 __u32 op; /* type of operation */
2844 __u64 buf; /* buffer in userspace */
2845 __u8 ar; /* the access register number */
2846 __u8 reserved[31]; /* should be set to 0 */
2847};
2848
2849The type of operation is specified in the "op" field. It is either
2850KVM_S390_MEMOP_LOGICAL_READ for reading from logical memory space or
2851KVM_S390_MEMOP_LOGICAL_WRITE for writing to logical memory space. The
2852KVM_S390_MEMOP_F_CHECK_ONLY flag can be set in the "flags" field to check
2853whether the corresponding memory access would create an access exception
2854(without touching the data in the memory at the destination). In case an
2855access exception occurred while walking the MMU tables of the guest, the
2856ioctl returns a positive error number to indicate the type of exception.
2857This exception is also raised directly at the corresponding VCPU if the
2858flag KVM_S390_MEMOP_F_INJECT_EXCEPTION is set in the "flags" field.
2859
2860The start address of the memory region has to be specified in the "gaddr"
2861field, and the length of the region in the "size" field. "buf" is the buffer
2862supplied by the userspace application where the read data should be written
2863to for KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written
2864is stored for a KVM_S390_MEMOP_LOGICAL_WRITE. "buf" is unused and can be NULL
2865when KVM_S390_MEMOP_F_CHECK_ONLY is specified. "ar" designates the access
2866register number to be used.
2867
2868The "reserved" field is meant for future extensions. It is not used by
2869KVM with the currently defined set of flags.
2870
30ee2a98
JH
28714.90 KVM_S390_GET_SKEYS
2872
2873Capability: KVM_CAP_S390_SKEYS
2874Architectures: s390
2875Type: vm ioctl
2876Parameters: struct kvm_s390_skeys
2877Returns: 0 on success, KVM_S390_GET_KEYS_NONE if guest is not using storage
2878 keys, negative value on error
2879
2880This ioctl is used to get guest storage key values on the s390
2881architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2882
2883struct kvm_s390_skeys {
2884 __u64 start_gfn;
2885 __u64 count;
2886 __u64 skeydata_addr;
2887 __u32 flags;
2888 __u32 reserved[9];
2889};
2890
2891The start_gfn field is the number of the first guest frame whose storage keys
2892you want to get.
2893
2894The count field is the number of consecutive frames (starting from start_gfn)
2895whose storage keys to get. The count field must be at least 1 and the maximum
2896allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2897will cause the ioctl to return -EINVAL.
2898
2899The skeydata_addr field is the address to a buffer large enough to hold count
2900bytes. This buffer will be filled with storage key data by the ioctl.
2901
29024.91 KVM_S390_SET_SKEYS
2903
2904Capability: KVM_CAP_S390_SKEYS
2905Architectures: s390
2906Type: vm ioctl
2907Parameters: struct kvm_s390_skeys
2908Returns: 0 on success, negative value on error
2909
2910This ioctl is used to set guest storage key values on the s390
2911architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2912See section on KVM_S390_GET_SKEYS for struct definition.
2913
2914The start_gfn field is the number of the first guest frame whose storage keys
2915you want to set.
2916
2917The count field is the number of consecutive frames (starting from start_gfn)
2918whose storage keys to get. The count field must be at least 1 and the maximum
2919allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2920will cause the ioctl to return -EINVAL.
2921
2922The skeydata_addr field is the address to a buffer containing count bytes of
2923storage keys. Each byte in the buffer will be set as the storage key for a
2924single frame starting at start_gfn for count frames.
2925
2926Note: If any architecturally invalid key value is found in the given data then
2927the ioctl will return -EINVAL.
2928
47b43c52
JF
29294.92 KVM_S390_IRQ
2930
2931Capability: KVM_CAP_S390_INJECT_IRQ
2932Architectures: s390
2933Type: vcpu ioctl
2934Parameters: struct kvm_s390_irq (in)
2935Returns: 0 on success, -1 on error
2936Errors:
2937 EINVAL: interrupt type is invalid
2938 type is KVM_S390_SIGP_STOP and flag parameter is invalid value
2939 type is KVM_S390_INT_EXTERNAL_CALL and code is bigger
2940 than the maximum of VCPUs
2941 EBUSY: type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped
2942 type is KVM_S390_SIGP_STOP and a stop irq is already pending
2943 type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt
2944 is already pending
2945
2946Allows to inject an interrupt to the guest.
2947
2948Using struct kvm_s390_irq as a parameter allows
2949to inject additional payload which is not
2950possible via KVM_S390_INTERRUPT.
2951
2952Interrupt parameters are passed via kvm_s390_irq:
2953
2954struct kvm_s390_irq {
2955 __u64 type;
2956 union {
2957 struct kvm_s390_io_info io;
2958 struct kvm_s390_ext_info ext;
2959 struct kvm_s390_pgm_info pgm;
2960 struct kvm_s390_emerg_info emerg;
2961 struct kvm_s390_extcall_info extcall;
2962 struct kvm_s390_prefix_info prefix;
2963 struct kvm_s390_stop_info stop;
2964 struct kvm_s390_mchk_info mchk;
2965 char reserved[64];
2966 } u;
2967};
2968
2969type can be one of the following:
2970
2971KVM_S390_SIGP_STOP - sigp stop; parameter in .stop
2972KVM_S390_PROGRAM_INT - program check; parameters in .pgm
2973KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix
2974KVM_S390_RESTART - restart; no parameters
2975KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters
2976KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters
2977KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg
2978KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall
2979KVM_S390_MCHK - machine check interrupt; parameters in .mchk
2980
2981
2982Note that the vcpu ioctl is asynchronous to vcpu execution.
2983
816c7667
JF
29844.94 KVM_S390_GET_IRQ_STATE
2985
2986Capability: KVM_CAP_S390_IRQ_STATE
2987Architectures: s390
2988Type: vcpu ioctl
2989Parameters: struct kvm_s390_irq_state (out)
2990Returns: >= number of bytes copied into buffer,
2991 -EINVAL if buffer size is 0,
2992 -ENOBUFS if buffer size is too small to fit all pending interrupts,
2993 -EFAULT if the buffer address was invalid
2994
2995This ioctl allows userspace to retrieve the complete state of all currently
2996pending interrupts in a single buffer. Use cases include migration
2997and introspection. The parameter structure contains the address of a
2998userspace buffer and its length:
2999
3000struct kvm_s390_irq_state {
3001 __u64 buf;
3002 __u32 flags;
3003 __u32 len;
3004 __u32 reserved[4];
3005};
3006
3007Userspace passes in the above struct and for each pending interrupt a
3008struct kvm_s390_irq is copied to the provided buffer.
3009
3010If -ENOBUFS is returned the buffer provided was too small and userspace
3011may retry with a bigger buffer.
3012
30134.95 KVM_S390_SET_IRQ_STATE
3014
3015Capability: KVM_CAP_S390_IRQ_STATE
3016Architectures: s390
3017Type: vcpu ioctl
3018Parameters: struct kvm_s390_irq_state (in)
3019Returns: 0 on success,
3020 -EFAULT if the buffer address was invalid,
3021 -EINVAL for an invalid buffer length (see below),
3022 -EBUSY if there were already interrupts pending,
3023 errors occurring when actually injecting the
3024 interrupt. See KVM_S390_IRQ.
3025
3026This ioctl allows userspace to set the complete state of all cpu-local
3027interrupts currently pending for the vcpu. It is intended for restoring
3028interrupt state after a migration. The input parameter is a userspace buffer
3029containing a struct kvm_s390_irq_state:
3030
3031struct kvm_s390_irq_state {
3032 __u64 buf;
3033 __u32 len;
3034 __u32 pad;
3035};
3036
3037The userspace memory referenced by buf contains a struct kvm_s390_irq
3038for each interrupt to be injected into the guest.
3039If one of the interrupts could not be injected for some reason the
3040ioctl aborts.
3041
3042len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0
3043and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq),
3044which is the maximum number of possibly pending cpu-local interrupts.
47b43c52 3045
ed8e5a24 30464.96 KVM_SMI
f077825a
PB
3047
3048Capability: KVM_CAP_X86_SMM
3049Architectures: x86
3050Type: vcpu ioctl
3051Parameters: none
3052Returns: 0 on success, -1 on error
3053
3054Queues an SMI on the thread's vcpu.
3055
d3695aa4
AK
30564.97 KVM_CAP_PPC_MULTITCE
3057
3058Capability: KVM_CAP_PPC_MULTITCE
3059Architectures: ppc
3060Type: vm
3061
3062This capability means the kernel is capable of handling hypercalls
3063H_PUT_TCE_INDIRECT and H_STUFF_TCE without passing those into the user
3064space. This significantly accelerates DMA operations for PPC KVM guests.
3065User space should expect that its handlers for these hypercalls
3066are not going to be called if user space previously registered LIOBN
3067in KVM (via KVM_CREATE_SPAPR_TCE or similar calls).
3068
3069In order to enable H_PUT_TCE_INDIRECT and H_STUFF_TCE use in the guest,
3070user space might have to advertise it for the guest. For example,
3071IBM pSeries (sPAPR) guest starts using them if "hcall-multi-tce" is
3072present in the "ibm,hypertas-functions" device-tree property.
3073
3074The hypercalls mentioned above may or may not be processed successfully
3075in the kernel based fast path. If they can not be handled by the kernel,
3076they will get passed on to user space. So user space still has to have
3077an implementation for these despite the in kernel acceleration.
3078
3079This capability is always enabled.
3080
58ded420
AK
30814.98 KVM_CREATE_SPAPR_TCE_64
3082
3083Capability: KVM_CAP_SPAPR_TCE_64
3084Architectures: powerpc
3085Type: vm ioctl
3086Parameters: struct kvm_create_spapr_tce_64 (in)
3087Returns: file descriptor for manipulating the created TCE table
3088
3089This is an extension for KVM_CAP_SPAPR_TCE which only supports 32bit
3090windows, described in 4.62 KVM_CREATE_SPAPR_TCE
3091
3092This capability uses extended struct in ioctl interface:
3093
3094/* for KVM_CAP_SPAPR_TCE_64 */
3095struct kvm_create_spapr_tce_64 {
3096 __u64 liobn;
3097 __u32 page_shift;
3098 __u32 flags;
3099 __u64 offset; /* in pages */
3100 __u64 size; /* in pages */
3101};
3102
3103The aim of extension is to support an additional bigger DMA window with
3104a variable page size.
3105KVM_CREATE_SPAPR_TCE_64 receives a 64bit window size, an IOMMU page shift and
3106a bus offset of the corresponding DMA window, @size and @offset are numbers
3107of IOMMU pages.
3108
3109@flags are not used at the moment.
3110
3111The rest of functionality is identical to KVM_CREATE_SPAPR_TCE.
3112
107d44a2
RK
31134.98 KVM_REINJECT_CONTROL
3114
3115Capability: KVM_CAP_REINJECT_CONTROL
3116Architectures: x86
3117Type: vm ioctl
3118Parameters: struct kvm_reinject_control (in)
3119Returns: 0 on success,
3120 -EFAULT if struct kvm_reinject_control cannot be read,
3121 -ENXIO if KVM_CREATE_PIT or KVM_CREATE_PIT2 didn't succeed earlier.
3122
3123i8254 (PIT) has two modes, reinject and !reinject. The default is reinject,
3124where KVM queues elapsed i8254 ticks and monitors completion of interrupt from
3125vector(s) that i8254 injects. Reinject mode dequeues a tick and injects its
3126interrupt whenever there isn't a pending interrupt from i8254.
3127!reinject mode injects an interrupt as soon as a tick arrives.
3128
3129struct kvm_reinject_control {
3130 __u8 pit_reinject;
3131 __u8 reserved[31];
3132};
3133
3134pit_reinject = 0 (!reinject mode) is recommended, unless running an old
3135operating system that uses the PIT for timing (e.g. Linux 2.4.x).
3136
9c1b96e3 31375. The kvm_run structure
414fa985 3138------------------------
9c1b96e3
AK
3139
3140Application code obtains a pointer to the kvm_run structure by
3141mmap()ing a vcpu fd. From that point, application code can control
3142execution by changing fields in kvm_run prior to calling the KVM_RUN
3143ioctl, and obtain information about the reason KVM_RUN returned by
3144looking up structure members.
3145
3146struct kvm_run {
3147 /* in */
3148 __u8 request_interrupt_window;
3149
3150Request that KVM_RUN return when it becomes possible to inject external
3151interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
3152
3153 __u8 padding1[7];
3154
3155 /* out */
3156 __u32 exit_reason;
3157
3158When KVM_RUN has returned successfully (return value 0), this informs
3159application code why KVM_RUN has returned. Allowable values for this
3160field are detailed below.
3161
3162 __u8 ready_for_interrupt_injection;
3163
3164If request_interrupt_window has been specified, this field indicates
3165an interrupt can be injected now with KVM_INTERRUPT.
3166
3167 __u8 if_flag;
3168
3169The value of the current interrupt flag. Only valid if in-kernel
3170local APIC is not used.
3171
f077825a
PB
3172 __u16 flags;
3173
3174More architecture-specific flags detailing state of the VCPU that may
3175affect the device's behavior. The only currently defined flag is
3176KVM_RUN_X86_SMM, which is valid on x86 machines and is set if the
3177VCPU is in system management mode.
9c1b96e3
AK
3178
3179 /* in (pre_kvm_run), out (post_kvm_run) */
3180 __u64 cr8;
3181
3182The value of the cr8 register. Only valid if in-kernel local APIC is
3183not used. Both input and output.
3184
3185 __u64 apic_base;
3186
3187The value of the APIC BASE msr. Only valid if in-kernel local
3188APIC is not used. Both input and output.
3189
3190 union {
3191 /* KVM_EXIT_UNKNOWN */
3192 struct {
3193 __u64 hardware_exit_reason;
3194 } hw;
3195
3196If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
3197reasons. Further architecture-specific information is available in
3198hardware_exit_reason.
3199
3200 /* KVM_EXIT_FAIL_ENTRY */
3201 struct {
3202 __u64 hardware_entry_failure_reason;
3203 } fail_entry;
3204
3205If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
3206to unknown reasons. Further architecture-specific information is
3207available in hardware_entry_failure_reason.
3208
3209 /* KVM_EXIT_EXCEPTION */
3210 struct {
3211 __u32 exception;
3212 __u32 error_code;
3213 } ex;
3214
3215Unused.
3216
3217 /* KVM_EXIT_IO */
3218 struct {
3219#define KVM_EXIT_IO_IN 0
3220#define KVM_EXIT_IO_OUT 1
3221 __u8 direction;
3222 __u8 size; /* bytes */
3223 __u16 port;
3224 __u32 count;
3225 __u64 data_offset; /* relative to kvm_run start */
3226 } io;
3227
2044892d 3228If exit_reason is KVM_EXIT_IO, then the vcpu has
9c1b96e3
AK
3229executed a port I/O instruction which could not be satisfied by kvm.
3230data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
3231where kvm expects application code to place the data for the next
2044892d 3232KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
9c1b96e3 3233
8ab30c15 3234 /* KVM_EXIT_DEBUG */
9c1b96e3
AK
3235 struct {
3236 struct kvm_debug_exit_arch arch;
3237 } debug;
3238
8ab30c15
AB
3239If the exit_reason is KVM_EXIT_DEBUG, then a vcpu is processing a debug event
3240for which architecture specific information is returned.
9c1b96e3
AK
3241
3242 /* KVM_EXIT_MMIO */
3243 struct {
3244 __u64 phys_addr;
3245 __u8 data[8];
3246 __u32 len;
3247 __u8 is_write;
3248 } mmio;
3249
2044892d 3250If exit_reason is KVM_EXIT_MMIO, then the vcpu has
9c1b96e3
AK
3251executed a memory-mapped I/O instruction which could not be satisfied
3252by kvm. The 'data' member contains the written data if 'is_write' is
3253true, and should be filled by application code otherwise.
3254
6acdb160
CD
3255The 'data' member contains, in its first 'len' bytes, the value as it would
3256appear if the VCPU performed a load or store of the appropriate width directly
3257to the byte array.
3258
cc568ead 3259NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR and
ce91ddc4 3260 KVM_EXIT_EPR the corresponding
ad0a048b
AG
3261operations are complete (and guest state is consistent) only after userspace
3262has re-entered the kernel with KVM_RUN. The kernel side will first finish
67961344
MT
3263incomplete operations and then check for pending signals. Userspace
3264can re-enter the guest with an unmasked signal pending to complete
3265pending operations.
3266
9c1b96e3
AK
3267 /* KVM_EXIT_HYPERCALL */
3268 struct {
3269 __u64 nr;
3270 __u64 args[6];
3271 __u64 ret;
3272 __u32 longmode;
3273 __u32 pad;
3274 } hypercall;
3275
647dc49e
AK
3276Unused. This was once used for 'hypercall to userspace'. To implement
3277such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
3278Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
9c1b96e3
AK
3279
3280 /* KVM_EXIT_TPR_ACCESS */
3281 struct {
3282 __u64 rip;
3283 __u32 is_write;
3284 __u32 pad;
3285 } tpr_access;
3286
3287To be documented (KVM_TPR_ACCESS_REPORTING).
3288
3289 /* KVM_EXIT_S390_SIEIC */
3290 struct {
3291 __u8 icptcode;
3292 __u64 mask; /* psw upper half */
3293 __u64 addr; /* psw lower half */
3294 __u16 ipa;
3295 __u32 ipb;
3296 } s390_sieic;
3297
3298s390 specific.
3299
3300 /* KVM_EXIT_S390_RESET */
3301#define KVM_S390_RESET_POR 1
3302#define KVM_S390_RESET_CLEAR 2
3303#define KVM_S390_RESET_SUBSYSTEM 4
3304#define KVM_S390_RESET_CPU_INIT 8
3305#define KVM_S390_RESET_IPL 16
3306 __u64 s390_reset_flags;
3307
3308s390 specific.
3309
e168bf8d
CO
3310 /* KVM_EXIT_S390_UCONTROL */
3311 struct {
3312 __u64 trans_exc_code;
3313 __u32 pgm_code;
3314 } s390_ucontrol;
3315
3316s390 specific. A page fault has occurred for a user controlled virtual
3317machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
3318resolved by the kernel.
3319The program code and the translation exception code that were placed
3320in the cpu's lowcore are presented here as defined by the z Architecture
3321Principles of Operation Book in the Chapter for Dynamic Address Translation
3322(DAT)
3323
9c1b96e3
AK
3324 /* KVM_EXIT_DCR */
3325 struct {
3326 __u32 dcrn;
3327 __u32 data;
3328 __u8 is_write;
3329 } dcr;
3330
ce91ddc4 3331Deprecated - was used for 440 KVM.
9c1b96e3 3332
ad0a048b
AG
3333 /* KVM_EXIT_OSI */
3334 struct {
3335 __u64 gprs[32];
3336 } osi;
3337
3338MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
3339hypercalls and exit with this exit struct that contains all the guest gprs.
3340
3341If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
3342Userspace can now handle the hypercall and when it's done modify the gprs as
3343necessary. Upon guest entry all guest GPRs will then be replaced by the values
3344in this struct.
3345
de56a948
PM
3346 /* KVM_EXIT_PAPR_HCALL */
3347 struct {
3348 __u64 nr;
3349 __u64 ret;
3350 __u64 args[9];
3351 } papr_hcall;
3352
3353This is used on 64-bit PowerPC when emulating a pSeries partition,
3354e.g. with the 'pseries' machine type in qemu. It occurs when the
3355guest does a hypercall using the 'sc 1' instruction. The 'nr' field
3356contains the hypercall number (from the guest R3), and 'args' contains
3357the arguments (from the guest R4 - R12). Userspace should put the
3358return code in 'ret' and any extra returned values in args[].
3359The possible hypercalls are defined in the Power Architecture Platform
3360Requirements (PAPR) document available from www.power.org (free
3361developer registration required to access it).
3362
fa6b7fe9
CH
3363 /* KVM_EXIT_S390_TSCH */
3364 struct {
3365 __u16 subchannel_id;
3366 __u16 subchannel_nr;
3367 __u32 io_int_parm;
3368 __u32 io_int_word;
3369 __u32 ipb;
3370 __u8 dequeued;
3371 } s390_tsch;
3372
3373s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
3374and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
3375interrupt for the target subchannel has been dequeued and subchannel_id,
3376subchannel_nr, io_int_parm and io_int_word contain the parameters for that
3377interrupt. ipb is needed for instruction parameter decoding.
3378
1c810636
AG
3379 /* KVM_EXIT_EPR */
3380 struct {
3381 __u32 epr;
3382 } epr;
3383
3384On FSL BookE PowerPC chips, the interrupt controller has a fast patch
3385interrupt acknowledge path to the core. When the core successfully
3386delivers an interrupt, it automatically populates the EPR register with
3387the interrupt vector number and acknowledges the interrupt inside
3388the interrupt controller.
3389
3390In case the interrupt controller lives in user space, we need to do
3391the interrupt acknowledge cycle through it to fetch the next to be
3392delivered interrupt vector using this exit.
3393
3394It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
3395external interrupt has just been delivered into the guest. User space
3396should put the acknowledged interrupt vector into the 'epr' field.
3397
8ad6b634
AP
3398 /* KVM_EXIT_SYSTEM_EVENT */
3399 struct {
3400#define KVM_SYSTEM_EVENT_SHUTDOWN 1
3401#define KVM_SYSTEM_EVENT_RESET 2
2ce79189 3402#define KVM_SYSTEM_EVENT_CRASH 3
8ad6b634
AP
3403 __u32 type;
3404 __u64 flags;
3405 } system_event;
3406
3407If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
3408a system-level event using some architecture specific mechanism (hypercall
3409or some special instruction). In case of ARM/ARM64, this is triggered using
3410HVC instruction based PSCI call from the vcpu. The 'type' field describes
3411the system-level event type. The 'flags' field describes architecture
3412specific flags for the system-level event.
3413
cf5d3188
CD
3414Valid values for 'type' are:
3415 KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the
3416 VM. Userspace is not obliged to honour this, and if it does honour
3417 this does not need to destroy the VM synchronously (ie it may call
3418 KVM_RUN again before shutdown finally occurs).
3419 KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM.
3420 As with SHUTDOWN, userspace can choose to ignore the request, or
3421 to schedule the reset to occur in the future and may call KVM_RUN again.
2ce79189
AS
3422 KVM_SYSTEM_EVENT_CRASH -- the guest crash occurred and the guest
3423 has requested a crash condition maintenance. Userspace can choose
3424 to ignore the request, or to gather VM memory core dump and/or
3425 reset/shutdown of the VM.
cf5d3188 3426
7543a635
SR
3427 /* KVM_EXIT_IOAPIC_EOI */
3428 struct {
3429 __u8 vector;
3430 } eoi;
3431
3432Indicates that the VCPU's in-kernel local APIC received an EOI for a
3433level-triggered IOAPIC interrupt. This exit only triggers when the
3434IOAPIC is implemented in userspace (i.e. KVM_CAP_SPLIT_IRQCHIP is enabled);
3435the userspace IOAPIC should process the EOI and retrigger the interrupt if
3436it is still asserted. Vector is the LAPIC interrupt vector for which the
3437EOI was received.
3438
db397571
AS
3439 struct kvm_hyperv_exit {
3440#define KVM_EXIT_HYPERV_SYNIC 1
83326e43 3441#define KVM_EXIT_HYPERV_HCALL 2
db397571
AS
3442 __u32 type;
3443 union {
3444 struct {
3445 __u32 msr;
3446 __u64 control;
3447 __u64 evt_page;
3448 __u64 msg_page;
3449 } synic;
83326e43
AS
3450 struct {
3451 __u64 input;
3452 __u64 result;
3453 __u64 params[2];
3454 } hcall;
db397571
AS
3455 } u;
3456 };
3457 /* KVM_EXIT_HYPERV */
3458 struct kvm_hyperv_exit hyperv;
3459Indicates that the VCPU exits into userspace to process some tasks
3460related to Hyper-V emulation.
3461Valid values for 'type' are:
3462 KVM_EXIT_HYPERV_SYNIC -- synchronously notify user-space about
3463Hyper-V SynIC state change. Notification is used to remap SynIC
3464event/message pages and to enable/disable SynIC messages/events processing
3465in userspace.
3466
9c1b96e3
AK
3467 /* Fix the size of the union. */
3468 char padding[256];
3469 };
b9e5dc8d
CB
3470
3471 /*
3472 * shared registers between kvm and userspace.
3473 * kvm_valid_regs specifies the register classes set by the host
3474 * kvm_dirty_regs specified the register classes dirtied by userspace
3475 * struct kvm_sync_regs is architecture specific, as well as the
3476 * bits for kvm_valid_regs and kvm_dirty_regs
3477 */
3478 __u64 kvm_valid_regs;
3479 __u64 kvm_dirty_regs;
3480 union {
3481 struct kvm_sync_regs regs;
3482 char padding[1024];
3483 } s;
3484
3485If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
3486certain guest registers without having to call SET/GET_*REGS. Thus we can
3487avoid some system call overhead if userspace has to handle the exit.
3488Userspace can query the validity of the structure by checking
3489kvm_valid_regs for specific bits. These bits are architecture specific
3490and usually define the validity of a groups of registers. (e.g. one bit
3491 for general purpose registers)
3492
d8482c0d
DH
3493Please note that the kernel is allowed to use the kvm_run structure as the
3494primary storage for certain register types. Therefore, the kernel may use the
3495values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set.
3496
9c1b96e3 3497};
821246a5 3498
414fa985 3499
9c15bb1d 3500
699a0ea0
PM
35016. Capabilities that can be enabled on vCPUs
3502--------------------------------------------
821246a5 3503
0907c855
CH
3504There are certain capabilities that change the behavior of the virtual CPU or
3505the virtual machine when enabled. To enable them, please see section 4.37.
3506Below you can find a list of capabilities and what their effect on the vCPU or
3507the virtual machine is when enabling them.
821246a5
AG
3508
3509The following information is provided along with the description:
3510
3511 Architectures: which instruction set architectures provide this ioctl.
3512 x86 includes both i386 and x86_64.
3513
0907c855
CH
3514 Target: whether this is a per-vcpu or per-vm capability.
3515
821246a5
AG
3516 Parameters: what parameters are accepted by the capability.
3517
3518 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3519 are not detailed, but errors with specific meanings are.
3520
414fa985 3521
821246a5
AG
35226.1 KVM_CAP_PPC_OSI
3523
3524Architectures: ppc
0907c855 3525Target: vcpu
821246a5
AG
3526Parameters: none
3527Returns: 0 on success; -1 on error
3528
3529This capability enables interception of OSI hypercalls that otherwise would
3530be treated as normal system calls to be injected into the guest. OSI hypercalls
3531were invented by Mac-on-Linux to have a standardized communication mechanism
3532between the guest and the host.
3533
3534When this capability is enabled, KVM_EXIT_OSI can occur.
3535
414fa985 3536
821246a5
AG
35376.2 KVM_CAP_PPC_PAPR
3538
3539Architectures: ppc
0907c855 3540Target: vcpu
821246a5
AG
3541Parameters: none
3542Returns: 0 on success; -1 on error
3543
3544This capability enables interception of PAPR hypercalls. PAPR hypercalls are
3545done using the hypercall instruction "sc 1".
3546
3547It also sets the guest privilege level to "supervisor" mode. Usually the guest
3548runs in "hypervisor" privilege mode with a few missing features.
3549
3550In addition to the above, it changes the semantics of SDR1. In this mode, the
3551HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
3552HTAB invisible to the guest.
3553
3554When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
dc83b8bc 3555
414fa985 3556
dc83b8bc
SW
35576.3 KVM_CAP_SW_TLB
3558
3559Architectures: ppc
0907c855 3560Target: vcpu
dc83b8bc
SW
3561Parameters: args[0] is the address of a struct kvm_config_tlb
3562Returns: 0 on success; -1 on error
3563
3564struct kvm_config_tlb {
3565 __u64 params;
3566 __u64 array;
3567 __u32 mmu_type;
3568 __u32 array_len;
3569};
3570
3571Configures the virtual CPU's TLB array, establishing a shared memory area
3572between userspace and KVM. The "params" and "array" fields are userspace
3573addresses of mmu-type-specific data structures. The "array_len" field is an
3574safety mechanism, and should be set to the size in bytes of the memory that
3575userspace has reserved for the array. It must be at least the size dictated
3576by "mmu_type" and "params".
3577
3578While KVM_RUN is active, the shared region is under control of KVM. Its
3579contents are undefined, and any modification by userspace results in
3580boundedly undefined behavior.
3581
3582On return from KVM_RUN, the shared region will reflect the current state of
3583the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
3584to tell KVM which entries have been changed, prior to calling KVM_RUN again
3585on this vcpu.
3586
3587For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
3588 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
3589 - The "array" field points to an array of type "struct
3590 kvm_book3e_206_tlb_entry".
3591 - The array consists of all entries in the first TLB, followed by all
3592 entries in the second TLB.
3593 - Within a TLB, entries are ordered first by increasing set number. Within a
3594 set, entries are ordered by way (increasing ESEL).
3595 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
3596 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
3597 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
3598 hardware ignores this value for TLB0.
fa6b7fe9
CH
3599
36006.4 KVM_CAP_S390_CSS_SUPPORT
3601
3602Architectures: s390
0907c855 3603Target: vcpu
fa6b7fe9
CH
3604Parameters: none
3605Returns: 0 on success; -1 on error
3606
3607This capability enables support for handling of channel I/O instructions.
3608
3609TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
3610handled in-kernel, while the other I/O instructions are passed to userspace.
3611
3612When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
3613SUBCHANNEL intercepts.
1c810636 3614
0907c855
CH
3615Note that even though this capability is enabled per-vcpu, the complete
3616virtual machine is affected.
3617
1c810636
AG
36186.5 KVM_CAP_PPC_EPR
3619
3620Architectures: ppc
0907c855 3621Target: vcpu
1c810636
AG
3622Parameters: args[0] defines whether the proxy facility is active
3623Returns: 0 on success; -1 on error
3624
3625This capability enables or disables the delivery of interrupts through the
3626external proxy facility.
3627
3628When enabled (args[0] != 0), every time the guest gets an external interrupt
3629delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
3630to receive the topmost interrupt vector.
3631
3632When disabled (args[0] == 0), behavior is as if this facility is unsupported.
3633
3634When this capability is enabled, KVM_EXIT_EPR can occur.
eb1e4f43
SW
3635
36366.6 KVM_CAP_IRQ_MPIC
3637
3638Architectures: ppc
3639Parameters: args[0] is the MPIC device fd
3640 args[1] is the MPIC CPU number for this vcpu
3641
3642This capability connects the vcpu to an in-kernel MPIC device.
5975a2e0
PM
3643
36446.7 KVM_CAP_IRQ_XICS
3645
3646Architectures: ppc
0907c855 3647Target: vcpu
5975a2e0
PM
3648Parameters: args[0] is the XICS device fd
3649 args[1] is the XICS CPU number (server ID) for this vcpu
3650
3651This capability connects the vcpu to an in-kernel XICS device.
8a366a4b
CH
3652
36536.8 KVM_CAP_S390_IRQCHIP
3654
3655Architectures: s390
3656Target: vm
3657Parameters: none
3658
3659This capability enables the in-kernel irqchip for s390. Please refer to
3660"4.24 KVM_CREATE_IRQCHIP" for details.
699a0ea0 3661
5fafd874
JH
36626.9 KVM_CAP_MIPS_FPU
3663
3664Architectures: mips
3665Target: vcpu
3666Parameters: args[0] is reserved for future use (should be 0).
3667
3668This capability allows the use of the host Floating Point Unit by the guest. It
3669allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is
3670done the KVM_REG_MIPS_FPR_* and KVM_REG_MIPS_FCR_* registers can be accessed
3671(depending on the current guest FPU register mode), and the Status.FR,
3672Config5.FRE bits are accessible via the KVM API and also from the guest,
3673depending on them being supported by the FPU.
3674
d952bd07
JH
36756.10 KVM_CAP_MIPS_MSA
3676
3677Architectures: mips
3678Target: vcpu
3679Parameters: args[0] is reserved for future use (should be 0).
3680
3681This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest.
3682It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest.
3683Once this is done the KVM_REG_MIPS_VEC_* and KVM_REG_MIPS_MSA_* registers can be
3684accessed, and the Config5.MSAEn bit is accessible via the KVM API and also from
3685the guest.
3686
699a0ea0
PM
36877. Capabilities that can be enabled on VMs
3688------------------------------------------
3689
3690There are certain capabilities that change the behavior of the virtual
3691machine when enabled. To enable them, please see section 4.37. Below
3692you can find a list of capabilities and what their effect on the VM
3693is when enabling them.
3694
3695The following information is provided along with the description:
3696
3697 Architectures: which instruction set architectures provide this ioctl.
3698 x86 includes both i386 and x86_64.
3699
3700 Parameters: what parameters are accepted by the capability.
3701
3702 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3703 are not detailed, but errors with specific meanings are.
3704
3705
37067.1 KVM_CAP_PPC_ENABLE_HCALL
3707
3708Architectures: ppc
3709Parameters: args[0] is the sPAPR hcall number
3710 args[1] is 0 to disable, 1 to enable in-kernel handling
3711
3712This capability controls whether individual sPAPR hypercalls (hcalls)
3713get handled by the kernel or not. Enabling or disabling in-kernel
3714handling of an hcall is effective across the VM. On creation, an
3715initial set of hcalls are enabled for in-kernel handling, which
3716consists of those hcalls for which in-kernel handlers were implemented
3717before this capability was implemented. If disabled, the kernel will
3718not to attempt to handle the hcall, but will always exit to userspace
3719to handle it. Note that it may not make sense to enable some and
3720disable others of a group of related hcalls, but KVM does not prevent
3721userspace from doing that.
ae2113a4
PM
3722
3723If the hcall number specified is not one that has an in-kernel
3724implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL
3725error.
2444b352
DH
3726
37277.2 KVM_CAP_S390_USER_SIGP
3728
3729Architectures: s390
3730Parameters: none
3731
3732This capability controls which SIGP orders will be handled completely in user
3733space. With this capability enabled, all fast orders will be handled completely
3734in the kernel:
3735- SENSE
3736- SENSE RUNNING
3737- EXTERNAL CALL
3738- EMERGENCY SIGNAL
3739- CONDITIONAL EMERGENCY SIGNAL
3740
3741All other orders will be handled completely in user space.
3742
3743Only privileged operation exceptions will be checked for in the kernel (or even
3744in the hardware prior to interception). If this capability is not enabled, the
3745old way of handling SIGP orders is used (partially in kernel and user space).
68c55750
EF
3746
37477.3 KVM_CAP_S390_VECTOR_REGISTERS
3748
3749Architectures: s390
3750Parameters: none
3751Returns: 0 on success, negative value on error
3752
3753Allows use of the vector registers introduced with z13 processor, and
3754provides for the synchronization between host and user space. Will
3755return -EINVAL if the machine does not support vectors.
e44fc8c9
ET
3756
37577.4 KVM_CAP_S390_USER_STSI
3758
3759Architectures: s390
3760Parameters: none
3761
3762This capability allows post-handlers for the STSI instruction. After
3763initial handling in the kernel, KVM exits to user space with
3764KVM_EXIT_S390_STSI to allow user space to insert further data.
3765
3766Before exiting to userspace, kvm handlers should fill in s390_stsi field of
3767vcpu->run:
3768struct {
3769 __u64 addr;
3770 __u8 ar;
3771 __u8 reserved;
3772 __u8 fc;
3773 __u8 sel1;
3774 __u16 sel2;
3775} s390_stsi;
3776
3777@addr - guest address of STSI SYSIB
3778@fc - function code
3779@sel1 - selector 1
3780@sel2 - selector 2
3781@ar - access register number
3782
3783KVM handlers should exit to userspace with rc = -EREMOTE.
e928e9cb 3784
49df6397
SR
37857.5 KVM_CAP_SPLIT_IRQCHIP
3786
3787Architectures: x86
b053b2ae 3788Parameters: args[0] - number of routes reserved for userspace IOAPICs
49df6397
SR
3789Returns: 0 on success, -1 on error
3790
3791Create a local apic for each processor in the kernel. This can be used
3792instead of KVM_CREATE_IRQCHIP if the userspace VMM wishes to emulate the
3793IOAPIC and PIC (and also the PIT, even though this has to be enabled
3794separately).
3795
b053b2ae
SR
3796This capability also enables in kernel routing of interrupt requests;
3797when KVM_CAP_SPLIT_IRQCHIP only routes of KVM_IRQ_ROUTING_MSI type are
3798used in the IRQ routing table. The first args[0] MSI routes are reserved
3799for the IOAPIC pins. Whenever the LAPIC receives an EOI for these routes,
3800a KVM_EXIT_IOAPIC_EOI vmexit will be reported to userspace.
49df6397
SR
3801
3802Fails if VCPU has already been created, or if the irqchip is already in the
3803kernel (i.e. KVM_CREATE_IRQCHIP has already been called).
3804
051c87f7
DH
38057.6 KVM_CAP_S390_RI
3806
3807Architectures: s390
3808Parameters: none
3809
3810Allows use of runtime-instrumentation introduced with zEC12 processor.
3811Will return -EINVAL if the machine does not support runtime-instrumentation.
3812Will return -EBUSY if a VCPU has already been created.
e928e9cb
ME
3813
38148. Other capabilities.
3815----------------------
3816
3817This section lists capabilities that give information about other
3818features of the KVM implementation.
3819
38208.1 KVM_CAP_PPC_HWRNG
3821
3822Architectures: ppc
3823
3824This capability, if KVM_CHECK_EXTENSION indicates that it is
3825available, means that that the kernel has an implementation of the
3826H_RANDOM hypercall backed by a hardware random-number generator.
3827If present, the kernel H_RANDOM handler can be enabled for guest use
3828with the KVM_CAP_PPC_ENABLE_HCALL capability.
5c919412
AS
3829
38308.2 KVM_CAP_HYPERV_SYNIC
3831
3832Architectures: x86
3833This capability, if KVM_CHECK_EXTENSION indicates that it is
3834available, means that that the kernel has an implementation of the
3835Hyper-V Synthetic interrupt controller(SynIC). Hyper-V SynIC is
3836used to support Windows Hyper-V based guest paravirt drivers(VMBus).
3837
3838In order to use SynIC, it has to be activated by setting this
3839capability via KVM_ENABLE_CAP ioctl on the vcpu fd. Note that this
3840will disable the use of APIC hardware virtualization even if supported
3841by the CPU, as it's incompatible with SynIC auto-EOI behavior.