]>
Commit | Line | Data |
---|---|---|
85a5fbbd GR |
1 | /* Math module -- standard C math library functions, pi and e */ |
2 | ||
53876d9c CH |
3 | /* Here are some comments from Tim Peters, extracted from the |
4 | discussion attached to http://bugs.python.org/issue1640. They | |
5 | describe the general aims of the math module with respect to | |
6 | special values, IEEE-754 floating-point exceptions, and Python | |
7 | exceptions. | |
8 | ||
9 | These are the "spirit of 754" rules: | |
10 | ||
11 | 1. If the mathematical result is a real number, but of magnitude too | |
12 | large to approximate by a machine float, overflow is signaled and the | |
13 | result is an infinity (with the appropriate sign). | |
14 | ||
15 | 2. If the mathematical result is a real number, but of magnitude too | |
16 | small to approximate by a machine float, underflow is signaled and the | |
17 | result is a zero (with the appropriate sign). | |
18 | ||
19 | 3. At a singularity (a value x such that the limit of f(y) as y | |
20 | approaches x exists and is an infinity), "divide by zero" is signaled | |
21 | and the result is an infinity (with the appropriate sign). This is | |
22 | complicated a little by that the left-side and right-side limits may | |
23 | not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0 | |
24 | from the positive or negative directions. In that specific case, the | |
25 | sign of the zero determines the result of 1/0. | |
26 | ||
27 | 4. At a point where a function has no defined result in the extended | |
28 | reals (i.e., the reals plus an infinity or two), invalid operation is | |
29 | signaled and a NaN is returned. | |
30 | ||
31 | And these are what Python has historically /tried/ to do (but not | |
32 | always successfully, as platform libm behavior varies a lot): | |
33 | ||
34 | For #1, raise OverflowError. | |
35 | ||
36 | For #2, return a zero (with the appropriate sign if that happens by | |
37 | accident ;-)). | |
38 | ||
39 | For #3 and #4, raise ValueError. It may have made sense to raise | |
40 | Python's ZeroDivisionError in #3, but historically that's only been | |
41 | raised for division by zero and mod by zero. | |
42 | ||
43 | */ | |
44 | ||
45 | /* | |
46 | In general, on an IEEE-754 platform the aim is to follow the C99 | |
47 | standard, including Annex 'F', whenever possible. Where the | |
48 | standard recommends raising the 'divide-by-zero' or 'invalid' | |
49 | floating-point exceptions, Python should raise a ValueError. Where | |
50 | the standard recommends raising 'overflow', Python should raise an | |
51 | OverflowError. In all other circumstances a value should be | |
52 | returned. | |
53 | */ | |
54 | ||
03e9f5dc CH |
55 | #ifndef Py_BUILD_CORE_BUILTIN |
56 | # define Py_BUILD_CORE_MODULE 1 | |
57 | #endif | |
58 | ||
8b43b19e | 59 | #include "Python.h" |
8ba47146 | 60 | #include "pycore_abstract.h" // _PyNumber_Index() |
794e7d1a | 61 | #include "pycore_bitutils.h" // _Py_bit_length() |
d943d191 | 62 | #include "pycore_call.h" // _PyObject_CallNoArgs() |
37834136 | 63 | #include "pycore_long.h" // _PyLong_GetZero() |
23c9febd DN |
64 | #include "pycore_moduleobject.h" // _PyModule_GetState() |
65 | #include "pycore_object.h" // _PyObject_LookupSpecial() | |
9bbdde21 | 66 | #include "pycore_pymath.h" // _PY_SHORT_FLOAT_REPR |
fa26245a CH |
67 | /* For DBL_EPSILON in _math.h */ |
68 | #include <float.h> | |
69 | /* For _Py_log1p with workarounds for buggy handling of zeros. */ | |
664b511c | 70 | #include "_math.h" |
47b9f83a | 71 | #include <stdbool.h> |
85a5fbbd | 72 | |
c9ea9335 SS |
73 | #include "clinic/mathmodule.c.h" |
74 | ||
75 | /*[clinic input] | |
76 | module math | |
77 | [clinic start generated code]*/ | |
78 | /*[clinic end generated code: output=da39a3ee5e6b4b0d input=76bc7002685dd942]*/ | |
79 | ||
80 | ||
23c9febd | 81 | |
0a22aa05 RH |
82 | /* |
83 | Double and triple length extended precision algorithms from: | |
84 | ||
85 | Accurate Sum and Dot Product | |
86 | by Takeshi Ogita, Siegfried M. Rump, and Shin’Ichi Oishi | |
87 | https://doi.org/10.1137/030601818 | |
88 | https://www.tuhh.de/ti3/paper/rump/OgRuOi05.pdf | |
89 | ||
90 | */ | |
91 | ||
92 | typedef struct{ double hi; double lo; } DoubleLength; | |
93 | ||
94 | static DoubleLength | |
95 | dl_fast_sum(double a, double b) | |
96 | { | |
1a0c7b9b | 97 | /* Algorithm 1.1. Compensated summation of two floating-point numbers. */ |
0a22aa05 RH |
98 | assert(fabs(a) >= fabs(b)); |
99 | double x = a + b; | |
100 | double y = (a - x) + b; | |
101 | return (DoubleLength) {x, y}; | |
102 | } | |
103 | ||
104 | static DoubleLength | |
105 | dl_sum(double a, double b) | |
106 | { | |
107 | /* Algorithm 3.1 Error-free transformation of the sum */ | |
108 | double x = a + b; | |
109 | double z = x - a; | |
110 | double y = (a - (x - z)) + (b - z); | |
111 | return (DoubleLength) {x, y}; | |
112 | } | |
113 | ||
114 | #ifndef UNRELIABLE_FMA | |
115 | ||
116 | static DoubleLength | |
117 | dl_mul(double x, double y) | |
118 | { | |
119 | /* Algorithm 3.5. Error-free transformation of a product */ | |
120 | double z = x * y; | |
121 | double zz = fma(x, y, -z); | |
122 | return (DoubleLength) {z, zz}; | |
123 | } | |
124 | ||
125 | #else | |
126 | ||
127 | /* | |
128 | The default implementation of dl_mul() depends on the C math library | |
129 | having an accurate fma() function as required by § 7.12.13.1 of the | |
130 | C99 standard. | |
131 | ||
132 | The UNRELIABLE_FMA option is provided as a slower but accurate | |
133 | alternative for builds where the fma() function is found wanting. | |
134 | The speed penalty may be modest (17% slower on an Apple M1 Max), | |
135 | so don't hesitate to enable this build option. | |
136 | ||
137 | The algorithms are from the T. J. Dekker paper: | |
138 | A Floating-Point Technique for Extending the Available Precision | |
139 | https://csclub.uwaterloo.ca/~pbarfuss/dekker1971.pdf | |
140 | */ | |
141 | ||
142 | static DoubleLength | |
143 | dl_split(double x) { | |
144 | // Dekker (5.5) and (5.6). | |
145 | double t = x * 134217729.0; // Veltkamp constant = 2.0 ** 27 + 1 | |
146 | double hi = t - (t - x); | |
147 | double lo = x - hi; | |
148 | return (DoubleLength) {hi, lo}; | |
149 | } | |
150 | ||
151 | static DoubleLength | |
152 | dl_mul(double x, double y) | |
153 | { | |
154 | // Dekker (5.12) and mul12() | |
155 | DoubleLength xx = dl_split(x); | |
156 | DoubleLength yy = dl_split(y); | |
157 | double p = xx.hi * yy.hi; | |
158 | double q = xx.hi * yy.lo + xx.lo * yy.hi; | |
159 | double z = p + q; | |
160 | double zz = p - z + q + xx.lo * yy.lo; | |
161 | return (DoubleLength) {z, zz}; | |
162 | } | |
163 | ||
164 | #endif | |
165 | ||
166 | typedef struct { double hi; double lo; double tiny; } TripleLength; | |
167 | ||
168 | static const TripleLength tl_zero = {0.0, 0.0, 0.0}; | |
169 | ||
170 | static TripleLength | |
171 | tl_fma(double x, double y, TripleLength total) | |
172 | { | |
173 | /* Algorithm 5.10 with SumKVert for K=3 */ | |
174 | DoubleLength pr = dl_mul(x, y); | |
175 | DoubleLength sm = dl_sum(total.hi, pr.hi); | |
176 | DoubleLength r1 = dl_sum(total.lo, pr.lo); | |
177 | DoubleLength r2 = dl_sum(r1.hi, sm.lo); | |
178 | return (TripleLength) {sm.hi, r2.hi, total.tiny + r1.lo + r2.lo}; | |
179 | } | |
180 | ||
181 | static double | |
182 | tl_to_d(TripleLength total) | |
183 | { | |
184 | DoubleLength last = dl_sum(total.lo, total.hi); | |
185 | return total.tiny + last.lo + last.hi; | |
186 | } | |
187 | ||
188 | ||
12c4bdb0 MD |
189 | /* |
190 | sin(pi*x), giving accurate results for all finite x (especially x | |
191 | integral or close to an integer). This is here for use in the | |
192 | reflection formula for the gamma function. It conforms to IEEE | |
193 | 754-2008 for finite arguments, but not for infinities or nans. | |
194 | */ | |
195 | ||
196 | static const double pi = 3.141592653589793238462643383279502884197; | |
9c91eb84 | 197 | static const double logpi = 1.144729885849400174143427351353058711647; |
cfd735ea RH |
198 | |
199 | /* Version of PyFloat_AsDouble() with in-line fast paths | |
200 | for exact floats and integers. Gives a substantial | |
201 | speed improvement for extracting float arguments. | |
202 | */ | |
203 | ||
204 | #define ASSIGN_DOUBLE(target_var, obj, error_label) \ | |
205 | if (PyFloat_CheckExact(obj)) { \ | |
206 | target_var = PyFloat_AS_DOUBLE(obj); \ | |
207 | } \ | |
208 | else if (PyLong_CheckExact(obj)) { \ | |
209 | target_var = PyLong_AsDouble(obj); \ | |
210 | if (target_var == -1.0 && PyErr_Occurred()) { \ | |
211 | goto error_label; \ | |
212 | } \ | |
213 | } \ | |
214 | else { \ | |
215 | target_var = PyFloat_AsDouble(obj); \ | |
216 | if (target_var == -1.0 && PyErr_Occurred()) { \ | |
217 | goto error_label; \ | |
218 | } \ | |
219 | } | |
220 | ||
12c4bdb0 | 221 | static double |
f57cd828 | 222 | m_sinpi(double x) |
8832b621 | 223 | { |
f95a1b3c AP |
224 | double y, r; |
225 | int n; | |
226 | /* this function should only ever be called for finite arguments */ | |
cd11ff12 | 227 | assert(isfinite(x)); |
f95a1b3c AP |
228 | y = fmod(fabs(x), 2.0); |
229 | n = (int)round(2.0*y); | |
230 | assert(0 <= n && n <= 4); | |
231 | switch (n) { | |
232 | case 0: | |
233 | r = sin(pi*y); | |
234 | break; | |
235 | case 1: | |
236 | r = cos(pi*(y-0.5)); | |
237 | break; | |
238 | case 2: | |
239 | /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give | |
240 | -0.0 instead of 0.0 when y == 1.0. */ | |
241 | r = sin(pi*(1.0-y)); | |
242 | break; | |
243 | case 3: | |
244 | r = -cos(pi*(y-1.5)); | |
245 | break; | |
246 | case 4: | |
247 | r = sin(pi*(y-2.0)); | |
248 | break; | |
249 | default: | |
b2e57948 | 250 | Py_UNREACHABLE(); |
f95a1b3c AP |
251 | } |
252 | return copysign(1.0, x)*r; | |
12c4bdb0 | 253 | } |
a40c793d | 254 | |
58395759 SK |
255 | /* Implementation of the real gamma function. Kept here to work around |
256 | issues (see e.g. gh-70309) with quality of libm's tgamma/lgamma implementations | |
257 | on various platforms (Windows, MacOS). In extensive but non-exhaustive | |
12c4bdb0 MD |
258 | random tests, this function proved accurate to within <= 10 ulps across the |
259 | entire float domain. Note that accuracy may depend on the quality of the | |
260 | system math functions, the pow function in particular. Special cases | |
261 | follow C99 annex F. The parameters and method are tailored to platforms | |
262 | whose double format is the IEEE 754 binary64 format. | |
263 | ||
264 | Method: for x > 0.0 we use the Lanczos approximation with parameters N=13 | |
265 | and g=6.024680040776729583740234375; these parameters are amongst those | |
266 | used by the Boost library. Following Boost (again), we re-express the | |
267 | Lanczos sum as a rational function, and compute it that way. The | |
268 | coefficients below were computed independently using MPFR, and have been | |
269 | double-checked against the coefficients in the Boost source code. | |
270 | ||
271 | For x < 0.0 we use the reflection formula. | |
272 | ||
273 | There's one minor tweak that deserves explanation: Lanczos' formula for | |
274 | Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x | |
275 | values, x+g-0.5 can be represented exactly. However, in cases where it | |
276 | can't be represented exactly the small error in x+g-0.5 can be magnified | |
277 | significantly by the pow and exp calls, especially for large x. A cheap | |
278 | correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error | |
279 | involved in the computation of x+g-0.5 (that is, e = computed value of | |
280 | x+g-0.5 - exact value of x+g-0.5). Here's the proof: | |
281 | ||
282 | Correction factor | |
283 | ----------------- | |
284 | Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754 | |
285 | double, and e is tiny. Then: | |
286 | ||
287 | pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e) | |
288 | = pow(y, x-0.5)/exp(y) * C, | |
289 | ||
290 | where the correction_factor C is given by | |
291 | ||
292 | C = pow(1-e/y, x-0.5) * exp(e) | |
293 | ||
294 | Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so: | |
295 | ||
296 | C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y | |
297 | ||
298 | But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and | |
299 | ||
300 | pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y), | |
301 | ||
302 | Note that for accuracy, when computing r*C it's better to do | |
303 | ||
304 | r + e*g/y*r; | |
305 | ||
306 | than | |
307 | ||
308 | r * (1 + e*g/y); | |
309 | ||
310 | since the addition in the latter throws away most of the bits of | |
311 | information in e*g/y. | |
312 | */ | |
313 | ||
314 | #define LANCZOS_N 13 | |
315 | static const double lanczos_g = 6.024680040776729583740234375; | |
316 | static const double lanczos_g_minus_half = 5.524680040776729583740234375; | |
317 | static const double lanczos_num_coeffs[LANCZOS_N] = { | |
f95a1b3c AP |
318 | 23531376880.410759688572007674451636754734846804940, |
319 | 42919803642.649098768957899047001988850926355848959, | |
320 | 35711959237.355668049440185451547166705960488635843, | |
321 | 17921034426.037209699919755754458931112671403265390, | |
322 | 6039542586.3520280050642916443072979210699388420708, | |
323 | 1439720407.3117216736632230727949123939715485786772, | |
324 | 248874557.86205415651146038641322942321632125127801, | |
325 | 31426415.585400194380614231628318205362874684987640, | |
326 | 2876370.6289353724412254090516208496135991145378768, | |
327 | 186056.26539522349504029498971604569928220784236328, | |
328 | 8071.6720023658162106380029022722506138218516325024, | |
329 | 210.82427775157934587250973392071336271166969580291, | |
330 | 2.5066282746310002701649081771338373386264310793408 | |
12c4bdb0 MD |
331 | }; |
332 | ||
333 | /* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */ | |
334 | static const double lanczos_den_coeffs[LANCZOS_N] = { | |
f95a1b3c AP |
335 | 0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0, |
336 | 13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0}; | |
12c4bdb0 MD |
337 | |
338 | /* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */ | |
339 | #define NGAMMA_INTEGRAL 23 | |
340 | static const double gamma_integral[NGAMMA_INTEGRAL] = { | |
f95a1b3c AP |
341 | 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0, |
342 | 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0, | |
343 | 1307674368000.0, 20922789888000.0, 355687428096000.0, | |
344 | 6402373705728000.0, 121645100408832000.0, 2432902008176640000.0, | |
345 | 51090942171709440000.0, 1124000727777607680000.0, | |
12c4bdb0 MD |
346 | }; |
347 | ||
348 | /* Lanczos' sum L_g(x), for positive x */ | |
349 | ||
350 | static double | |
351 | lanczos_sum(double x) | |
352 | { | |
f95a1b3c AP |
353 | double num = 0.0, den = 0.0; |
354 | int i; | |
355 | assert(x > 0.0); | |
356 | /* evaluate the rational function lanczos_sum(x). For large | |
357 | x, the obvious algorithm risks overflow, so we instead | |
358 | rescale the denominator and numerator of the rational | |
359 | function by x**(1-LANCZOS_N) and treat this as a | |
360 | rational function in 1/x. This also reduces the error for | |
361 | larger x values. The choice of cutoff point (5.0 below) is | |
362 | somewhat arbitrary; in tests, smaller cutoff values than | |
363 | this resulted in lower accuracy. */ | |
364 | if (x < 5.0) { | |
365 | for (i = LANCZOS_N; --i >= 0; ) { | |
366 | num = num * x + lanczos_num_coeffs[i]; | |
367 | den = den * x + lanczos_den_coeffs[i]; | |
368 | } | |
369 | } | |
370 | else { | |
371 | for (i = 0; i < LANCZOS_N; i++) { | |
372 | num = num / x + lanczos_num_coeffs[i]; | |
373 | den = den / x + lanczos_den_coeffs[i]; | |
374 | } | |
375 | } | |
376 | return num/den; | |
12c4bdb0 MD |
377 | } |
378 | ||
a5d0c7c2 | 379 | |
12c4bdb0 MD |
380 | static double |
381 | m_tgamma(double x) | |
382 | { | |
f95a1b3c AP |
383 | double absx, r, y, z, sqrtpow; |
384 | ||
385 | /* special cases */ | |
cd11ff12 SK |
386 | if (!isfinite(x)) { |
387 | if (isnan(x) || x > 0.0) | |
f95a1b3c AP |
388 | return x; /* tgamma(nan) = nan, tgamma(inf) = inf */ |
389 | else { | |
390 | errno = EDOM; | |
391 | return Py_NAN; /* tgamma(-inf) = nan, invalid */ | |
392 | } | |
393 | } | |
394 | if (x == 0.0) { | |
395 | errno = EDOM; | |
50203a69 | 396 | /* tgamma(+-0.0) = +-inf, divide-by-zero */ |
7a3b0350 | 397 | return copysign(Py_INFINITY, x); |
f95a1b3c AP |
398 | } |
399 | ||
400 | /* integer arguments */ | |
401 | if (x == floor(x)) { | |
402 | if (x < 0.0) { | |
403 | errno = EDOM; /* tgamma(n) = nan, invalid for */ | |
404 | return Py_NAN; /* negative integers n */ | |
405 | } | |
406 | if (x <= NGAMMA_INTEGRAL) | |
407 | return gamma_integral[(int)x - 1]; | |
408 | } | |
409 | absx = fabs(x); | |
410 | ||
411 | /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */ | |
412 | if (absx < 1e-20) { | |
413 | r = 1.0/x; | |
cd11ff12 | 414 | if (isinf(r)) |
f95a1b3c AP |
415 | errno = ERANGE; |
416 | return r; | |
417 | } | |
418 | ||
419 | /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for | |
420 | x > 200, and underflows to +-0.0 for x < -200, not a negative | |
421 | integer. */ | |
422 | if (absx > 200.0) { | |
423 | if (x < 0.0) { | |
f57cd828 | 424 | return 0.0/m_sinpi(x); |
f95a1b3c AP |
425 | } |
426 | else { | |
427 | errno = ERANGE; | |
8477951a | 428 | return Py_INFINITY; |
f95a1b3c AP |
429 | } |
430 | } | |
431 | ||
432 | y = absx + lanczos_g_minus_half; | |
433 | /* compute error in sum */ | |
434 | if (absx > lanczos_g_minus_half) { | |
435 | /* note: the correction can be foiled by an optimizing | |
436 | compiler that (incorrectly) thinks that an expression like | |
437 | a + b - a - b can be optimized to 0.0. This shouldn't | |
438 | happen in a standards-conforming compiler. */ | |
439 | double q = y - absx; | |
440 | z = q - lanczos_g_minus_half; | |
441 | } | |
442 | else { | |
443 | double q = y - lanczos_g_minus_half; | |
444 | z = q - absx; | |
445 | } | |
446 | z = z * lanczos_g / y; | |
447 | if (x < 0.0) { | |
f57cd828 | 448 | r = -pi / m_sinpi(absx) / absx * exp(y) / lanczos_sum(absx); |
f95a1b3c AP |
449 | r -= z * r; |
450 | if (absx < 140.0) { | |
451 | r /= pow(y, absx - 0.5); | |
452 | } | |
453 | else { | |
454 | sqrtpow = pow(y, absx / 2.0 - 0.25); | |
455 | r /= sqrtpow; | |
456 | r /= sqrtpow; | |
457 | } | |
458 | } | |
459 | else { | |
460 | r = lanczos_sum(absx) / exp(y); | |
461 | r += z * r; | |
462 | if (absx < 140.0) { | |
463 | r *= pow(y, absx - 0.5); | |
464 | } | |
465 | else { | |
466 | sqrtpow = pow(y, absx / 2.0 - 0.25); | |
467 | r *= sqrtpow; | |
468 | r *= sqrtpow; | |
469 | } | |
470 | } | |
cd11ff12 | 471 | if (isinf(r)) |
f95a1b3c AP |
472 | errno = ERANGE; |
473 | return r; | |
8832b621 GR |
474 | } |
475 | ||
05d2e084 MD |
476 | /* |
477 | lgamma: natural log of the absolute value of the Gamma function. | |
478 | For large arguments, Lanczos' formula works extremely well here. | |
479 | */ | |
480 | ||
481 | static double | |
482 | m_lgamma(double x) | |
483 | { | |
97553fdf | 484 | double r; |
97553fdf | 485 | double absx; |
f95a1b3c AP |
486 | |
487 | /* special cases */ | |
cd11ff12 SK |
488 | if (!isfinite(x)) { |
489 | if (isnan(x)) | |
f95a1b3c AP |
490 | return x; /* lgamma(nan) = nan */ |
491 | else | |
8477951a | 492 | return Py_INFINITY; /* lgamma(+-inf) = +inf */ |
f95a1b3c AP |
493 | } |
494 | ||
495 | /* integer arguments */ | |
496 | if (x == floor(x) && x <= 2.0) { | |
497 | if (x <= 0.0) { | |
498 | errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */ | |
8477951a | 499 | return Py_INFINITY; /* integers n <= 0 */ |
f95a1b3c AP |
500 | } |
501 | else { | |
502 | return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */ | |
503 | } | |
504 | } | |
505 | ||
506 | absx = fabs(x); | |
507 | /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */ | |
508 | if (absx < 1e-20) | |
509 | return -log(absx); | |
510 | ||
9c91eb84 MD |
511 | /* Lanczos' formula. We could save a fraction of a ulp in accuracy by |
512 | having a second set of numerator coefficients for lanczos_sum that | |
513 | absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g | |
514 | subtraction below; it's probably not worth it. */ | |
515 | r = log(lanczos_sum(absx)) - lanczos_g; | |
516 | r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1); | |
517 | if (x < 0.0) | |
518 | /* Use reflection formula to get value for negative x. */ | |
f57cd828 | 519 | r = logpi - log(fabs(m_sinpi(absx))) - log(absx) - r; |
cd11ff12 | 520 | if (isinf(r)) |
f95a1b3c AP |
521 | errno = ERANGE; |
522 | return r; | |
05d2e084 MD |
523 | } |
524 | ||
a0ce375e MD |
525 | /* IEEE 754-style remainder operation: x - n*y where n*y is the nearest |
526 | multiple of y to x, taking n even in the case of a tie. Assuming an IEEE 754 | |
527 | binary floating-point format, the result is always exact. */ | |
528 | ||
529 | static double | |
530 | m_remainder(double x, double y) | |
531 | { | |
532 | /* Deal with most common case first. */ | |
cd11ff12 | 533 | if (isfinite(x) && isfinite(y)) { |
a0ce375e MD |
534 | double absx, absy, c, m, r; |
535 | ||
536 | if (y == 0.0) { | |
537 | return Py_NAN; | |
538 | } | |
539 | ||
540 | absx = fabs(x); | |
541 | absy = fabs(y); | |
542 | m = fmod(absx, absy); | |
543 | ||
544 | /* | |
545 | Warning: some subtlety here. What we *want* to know at this point is | |
546 | whether the remainder m is less than, equal to, or greater than half | |
547 | of absy. However, we can't do that comparison directly because we | |
01484703 | 548 | can't be sure that 0.5*absy is representable (the multiplication |
a0ce375e MD |
549 | might incur precision loss due to underflow). So instead we compare |
550 | m with the complement c = absy - m: m < 0.5*absy if and only if m < | |
551 | c, and so on. The catch is that absy - m might also not be | |
552 | representable, but it turns out that it doesn't matter: | |
553 | ||
554 | - if m > 0.5*absy then absy - m is exactly representable, by | |
555 | Sterbenz's lemma, so m > c | |
556 | - if m == 0.5*absy then again absy - m is exactly representable | |
557 | and m == c | |
558 | - if m < 0.5*absy then either (i) 0.5*absy is exactly representable, | |
559 | in which case 0.5*absy < absy - m, so 0.5*absy <= c and hence m < | |
560 | c, or (ii) absy is tiny, either subnormal or in the lowest normal | |
561 | binade. Then absy - m is exactly representable and again m < c. | |
562 | */ | |
563 | ||
564 | c = absy - m; | |
565 | if (m < c) { | |
566 | r = m; | |
567 | } | |
568 | else if (m > c) { | |
569 | r = -c; | |
570 | } | |
571 | else { | |
572 | /* | |
573 | Here absx is exactly halfway between two multiples of absy, | |
574 | and we need to choose the even multiple. x now has the form | |
575 | ||
576 | absx = n * absy + m | |
577 | ||
578 | for some integer n (recalling that m = 0.5*absy at this point). | |
579 | If n is even we want to return m; if n is odd, we need to | |
580 | return -m. | |
581 | ||
582 | So | |
583 | ||
584 | 0.5 * (absx - m) = (n/2) * absy | |
585 | ||
586 | and now reducing modulo absy gives us: | |
587 | ||
588 | | m, if n is odd | |
589 | fmod(0.5 * (absx - m), absy) = | | |
590 | | 0, if n is even | |
591 | ||
592 | Now m - 2.0 * fmod(...) gives the desired result: m | |
593 | if n is even, -m if m is odd. | |
594 | ||
595 | Note that all steps in fmod(0.5 * (absx - m), absy) | |
596 | will be computed exactly, with no rounding error | |
597 | introduced. | |
598 | */ | |
599 | assert(m == c); | |
600 | r = m - 2.0 * fmod(0.5 * (absx - m), absy); | |
601 | } | |
602 | return copysign(1.0, x) * r; | |
603 | } | |
604 | ||
605 | /* Special values. */ | |
cd11ff12 | 606 | if (isnan(x)) { |
a0ce375e MD |
607 | return x; |
608 | } | |
cd11ff12 | 609 | if (isnan(y)) { |
a0ce375e MD |
610 | return y; |
611 | } | |
cd11ff12 | 612 | if (isinf(x)) { |
a0ce375e MD |
613 | return Py_NAN; |
614 | } | |
cd11ff12 | 615 | assert(isinf(y)); |
a0ce375e MD |
616 | return x; |
617 | } | |
618 | ||
619 | ||
e675f08e MD |
620 | /* |
621 | Various platforms (Solaris, OpenBSD) do nonstandard things for log(0), | |
622 | log(-ve), log(NaN). Here are wrappers for log and log10 that deal with | |
623 | special values directly, passing positive non-special values through to | |
624 | the system log/log10. | |
625 | */ | |
626 | ||
627 | static double | |
628 | m_log(double x) | |
629 | { | |
cd11ff12 | 630 | if (isfinite(x)) { |
f95a1b3c AP |
631 | if (x > 0.0) |
632 | return log(x); | |
633 | errno = EDOM; | |
634 | if (x == 0.0) | |
8477951a | 635 | return -Py_INFINITY; /* log(0) = -inf */ |
f95a1b3c AP |
636 | else |
637 | return Py_NAN; /* log(-ve) = nan */ | |
638 | } | |
cd11ff12 | 639 | else if (isnan(x)) |
f95a1b3c AP |
640 | return x; /* log(nan) = nan */ |
641 | else if (x > 0.0) | |
642 | return x; /* log(inf) = inf */ | |
643 | else { | |
644 | errno = EDOM; | |
645 | return Py_NAN; /* log(-inf) = nan */ | |
646 | } | |
e675f08e MD |
647 | } |
648 | ||
fa0e3d52 VS |
649 | /* |
650 | log2: log to base 2. | |
651 | ||
652 | Uses an algorithm that should: | |
83b8c0be | 653 | |
fa0e3d52 | 654 | (a) produce exact results for powers of 2, and |
83b8c0be MD |
655 | (b) give a monotonic log2 (for positive finite floats), |
656 | assuming that the system log is monotonic. | |
fa0e3d52 VS |
657 | */ |
658 | ||
659 | static double | |
660 | m_log2(double x) | |
661 | { | |
cd11ff12 SK |
662 | if (!isfinite(x)) { |
663 | if (isnan(x)) | |
fa0e3d52 VS |
664 | return x; /* log2(nan) = nan */ |
665 | else if (x > 0.0) | |
666 | return x; /* log2(+inf) = +inf */ | |
667 | else { | |
668 | errno = EDOM; | |
669 | return Py_NAN; /* log2(-inf) = nan, invalid-operation */ | |
670 | } | |
671 | } | |
672 | ||
673 | if (x > 0.0) { | |
8f9f8d61 | 674 | return log2(x); |
fa0e3d52 VS |
675 | } |
676 | else if (x == 0.0) { | |
677 | errno = EDOM; | |
8477951a | 678 | return -Py_INFINITY; /* log2(0) = -inf, divide-by-zero */ |
fa0e3d52 VS |
679 | } |
680 | else { | |
681 | errno = EDOM; | |
23442584 | 682 | return Py_NAN; /* log2(-inf) = nan, invalid-operation */ |
fa0e3d52 VS |
683 | } |
684 | } | |
685 | ||
e675f08e MD |
686 | static double |
687 | m_log10(double x) | |
688 | { | |
cd11ff12 | 689 | if (isfinite(x)) { |
f95a1b3c AP |
690 | if (x > 0.0) |
691 | return log10(x); | |
692 | errno = EDOM; | |
693 | if (x == 0.0) | |
8477951a | 694 | return -Py_INFINITY; /* log10(0) = -inf */ |
f95a1b3c AP |
695 | else |
696 | return Py_NAN; /* log10(-ve) = nan */ | |
697 | } | |
cd11ff12 | 698 | else if (isnan(x)) |
f95a1b3c AP |
699 | return x; /* log10(nan) = nan */ |
700 | else if (x > 0.0) | |
701 | return x; /* log10(inf) = inf */ | |
702 | else { | |
703 | errno = EDOM; | |
704 | return Py_NAN; /* log10(-inf) = nan */ | |
705 | } | |
e675f08e MD |
706 | } |
707 | ||
708 | ||
3275cb19 SK |
709 | /*[clinic input] |
710 | math.gcd | |
711 | ||
1f777396 | 712 | *integers as args: array |
3275cb19 SK |
713 | |
714 | Greatest Common Divisor. | |
715 | [clinic start generated code]*/ | |
716 | ||
559e7f16 | 717 | static PyObject * |
1f777396 SS |
718 | math_gcd_impl(PyObject *module, PyObject * const *args, |
719 | Py_ssize_t args_length) | |
720 | /*[clinic end generated code: output=a26c95907374ffb4 input=ded7f0ea3850c05c]*/ | |
559e7f16 | 721 | { |
93930eaf | 722 | // Fast-path for the common case: gcd(int, int) |
1f777396 | 723 | if (args_length == 2 && PyLong_CheckExact(args[0]) && PyLong_CheckExact(args[1])) |
93930eaf VS |
724 | { |
725 | return _PyLong_GCD(args[0], args[1]); | |
726 | } | |
c9ea9335 | 727 | |
1f777396 | 728 | if (args_length == 0) { |
559e7f16 SS |
729 | return PyLong_FromLong(0); |
730 | } | |
93930eaf VS |
731 | |
732 | PyObject *res = PyNumber_Index(args[0]); | |
559e7f16 SS |
733 | if (res == NULL) { |
734 | return NULL; | |
735 | } | |
1f777396 | 736 | if (args_length == 1) { |
559e7f16 SS |
737 | Py_SETREF(res, PyNumber_Absolute(res)); |
738 | return res; | |
739 | } | |
3e7ee023 VS |
740 | |
741 | PyObject *one = _PyLong_GetOne(); // borrowed ref | |
1f777396 | 742 | for (Py_ssize_t i = 1; i < args_length; i++) { |
93930eaf | 743 | PyObject *x = _PyNumber_Index(args[i]); |
559e7f16 SS |
744 | if (x == NULL) { |
745 | Py_DECREF(res); | |
746 | return NULL; | |
747 | } | |
3e7ee023 | 748 | if (res == one) { |
559e7f16 SS |
749 | /* Fast path: just check arguments. |
750 | It is okay to use identity comparison here. */ | |
751 | Py_DECREF(x); | |
752 | continue; | |
753 | } | |
754 | Py_SETREF(res, _PyLong_GCD(res, x)); | |
755 | Py_DECREF(x); | |
756 | if (res == NULL) { | |
757 | return NULL; | |
758 | } | |
759 | } | |
760 | return res; | |
761 | } | |
762 | ||
c9ea9335 | 763 | |
48e47aaa | 764 | static PyObject * |
559e7f16 | 765 | long_lcm(PyObject *a, PyObject *b) |
48e47aaa | 766 | { |
559e7f16 | 767 | PyObject *g, *m, *f, *ab; |
48e47aaa | 768 | |
7559f5fd | 769 | if (_PyLong_IsZero((PyLongObject *)a) || _PyLong_IsZero((PyLongObject *)b)) { |
559e7f16 SS |
770 | return PyLong_FromLong(0); |
771 | } | |
772 | g = _PyLong_GCD(a, b); | |
773 | if (g == NULL) { | |
48e47aaa | 774 | return NULL; |
559e7f16 SS |
775 | } |
776 | f = PyNumber_FloorDivide(a, g); | |
777 | Py_DECREF(g); | |
778 | if (f == NULL) { | |
48e47aaa SS |
779 | return NULL; |
780 | } | |
559e7f16 SS |
781 | m = PyNumber_Multiply(f, b); |
782 | Py_DECREF(f); | |
783 | if (m == NULL) { | |
784 | return NULL; | |
785 | } | |
786 | ab = PyNumber_Absolute(m); | |
787 | Py_DECREF(m); | |
788 | return ab; | |
48e47aaa SS |
789 | } |
790 | ||
48e47aaa | 791 | |
3275cb19 SK |
792 | /*[clinic input] |
793 | math.lcm | |
794 | ||
1f777396 | 795 | *integers as args: array |
3275cb19 SK |
796 | |
797 | Least Common Multiple. | |
798 | [clinic start generated code]*/ | |
799 | ||
559e7f16 | 800 | static PyObject * |
1f777396 SS |
801 | math_lcm_impl(PyObject *module, PyObject * const *args, |
802 | Py_ssize_t args_length) | |
803 | /*[clinic end generated code: output=c8a59a5c2e55c816 input=3e4f4b7cdf948a98]*/ | |
559e7f16 SS |
804 | { |
805 | PyObject *res, *x; | |
806 | Py_ssize_t i; | |
807 | ||
1f777396 | 808 | if (args_length == 0) { |
559e7f16 SS |
809 | return PyLong_FromLong(1); |
810 | } | |
811 | res = PyNumber_Index(args[0]); | |
812 | if (res == NULL) { | |
813 | return NULL; | |
814 | } | |
1f777396 | 815 | if (args_length == 1) { |
559e7f16 SS |
816 | Py_SETREF(res, PyNumber_Absolute(res)); |
817 | return res; | |
818 | } | |
3e7ee023 VS |
819 | |
820 | PyObject *zero = _PyLong_GetZero(); // borrowed ref | |
1f777396 | 821 | for (i = 1; i < args_length; i++) { |
559e7f16 SS |
822 | x = PyNumber_Index(args[i]); |
823 | if (x == NULL) { | |
824 | Py_DECREF(res); | |
825 | return NULL; | |
826 | } | |
3e7ee023 | 827 | if (res == zero) { |
559e7f16 SS |
828 | /* Fast path: just check arguments. |
829 | It is okay to use identity comparison here. */ | |
830 | Py_DECREF(x); | |
831 | continue; | |
832 | } | |
833 | Py_SETREF(res, long_lcm(res, x)); | |
834 | Py_DECREF(x); | |
835 | if (res == NULL) { | |
836 | return NULL; | |
837 | } | |
838 | } | |
839 | return res; | |
840 | } | |
841 | ||
842 | ||
12c4bdb0 MD |
843 | /* Call is_error when errno != 0, and where x is the result libm |
844 | * returned. is_error will usually set up an exception and return | |
845 | * true (1), but may return false (0) without setting up an exception. | |
846 | */ | |
847 | static int | |
75f59bb6 | 848 | is_error(double x, int raise_edom) |
12c4bdb0 | 849 | { |
f95a1b3c AP |
850 | int result = 1; /* presumption of guilt */ |
851 | assert(errno); /* non-zero errno is a precondition for calling */ | |
75f59bb6 SK |
852 | if (errno == EDOM) { |
853 | if (raise_edom) { | |
854 | PyErr_SetString(PyExc_ValueError, "math domain error"); | |
855 | } | |
856 | } | |
f95a1b3c AP |
857 | |
858 | else if (errno == ERANGE) { | |
859 | /* ANSI C generally requires libm functions to set ERANGE | |
860 | * on overflow, but also generally *allows* them to set | |
861 | * ERANGE on underflow too. There's no consistency about | |
862 | * the latter across platforms. | |
863 | * Alas, C99 never requires that errno be set. | |
864 | * Here we suppress the underflow errors (libm functions | |
865 | * should return a zero on underflow, and +- HUGE_VAL on | |
866 | * overflow, so testing the result for zero suffices to | |
867 | * distinguish the cases). | |
868 | * | |
869 | * On some platforms (Ubuntu/ia64) it seems that errno can be | |
870 | * set to ERANGE for subnormal results that do *not* underflow | |
871 | * to zero. So to be safe, we'll ignore ERANGE whenever the | |
3363e1cb SD |
872 | * function result is less than 1.5 in absolute value. |
873 | * | |
874 | * bpo-46018: Changed to 1.5 to ensure underflows in expm1() | |
875 | * are correctly detected, since the function may underflow | |
876 | * toward -1.0 rather than 0.0. | |
f95a1b3c | 877 | */ |
3363e1cb | 878 | if (fabs(x) < 1.5) |
f95a1b3c AP |
879 | result = 0; |
880 | else | |
881 | PyErr_SetString(PyExc_OverflowError, | |
882 | "math range error"); | |
883 | } | |
884 | else | |
885 | /* Unexpected math error */ | |
886 | PyErr_SetFromErrno(PyExc_ValueError); | |
887 | return result; | |
12c4bdb0 MD |
888 | } |
889 | ||
53876d9c CH |
890 | /* |
891 | math_1 is used to wrap a libm function f that takes a double | |
c9ea9335 | 892 | argument and returns a double. |
53876d9c CH |
893 | |
894 | The error reporting follows these rules, which are designed to do | |
895 | the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 | |
896 | platforms. | |
897 | ||
898 | - a NaN result from non-NaN inputs causes ValueError to be raised | |
899 | - an infinite result from finite inputs causes OverflowError to be | |
900 | raised if can_overflow is 1, or raises ValueError if can_overflow | |
901 | is 0. | |
902 | - if the result is finite and errno == EDOM then ValueError is | |
903 | raised | |
904 | - if the result is finite and nonzero and errno == ERANGE then | |
905 | OverflowError is raised | |
906 | ||
907 | The last rule is used to catch overflow on platforms which follow | |
908 | C89 but for which HUGE_VAL is not an infinity. | |
909 | ||
910 | For the majority of one-argument functions these rules are enough | |
911 | to ensure that Python's functions behave as specified in 'Annex F' | |
912 | of the C99 standard, with the 'invalid' and 'divide-by-zero' | |
913 | floating-point exceptions mapping to Python's ValueError and the | |
914 | 'overflow' floating-point exception mapping to OverflowError. | |
915 | math_1 only works for functions that don't have singularities *and* | |
916 | the possibility of overflow; fortunately, that covers everything we | |
917 | care about right now. | |
918 | */ | |
919 | ||
8b43b19e | 920 | static PyObject * |
75f59bb6 SK |
921 | math_1(PyObject *arg, double (*func) (double), int can_overflow, |
922 | const char *err_msg) | |
85a5fbbd | 923 | { |
f95a1b3c AP |
924 | double x, r; |
925 | x = PyFloat_AsDouble(arg); | |
926 | if (x == -1.0 && PyErr_Occurred()) | |
927 | return NULL; | |
928 | errno = 0; | |
f95a1b3c | 929 | r = (*func)(x); |
75f59bb6 SK |
930 | if (isnan(r) && !isnan(x)) |
931 | goto domain_err; /* domain error */ | |
cd11ff12 | 932 | if (isinf(r) && isfinite(x)) { |
2354a759 BP |
933 | if (can_overflow) |
934 | PyErr_SetString(PyExc_OverflowError, | |
935 | "math range error"); /* overflow */ | |
936 | else | |
75f59bb6 | 937 | goto domain_err; /* singularity */ |
2354a759 | 938 | return NULL; |
f95a1b3c | 939 | } |
75f59bb6 | 940 | if (isfinite(r) && errno && is_error(r, 1)) |
f95a1b3c AP |
941 | /* this branch unnecessary on most platforms */ |
942 | return NULL; | |
943 | ||
45fa12ae | 944 | return PyFloat_FromDouble(r); |
75f59bb6 SK |
945 | |
946 | domain_err: | |
947 | if (err_msg) { | |
948 | char *buf = PyOS_double_to_string(x, 'r', 0, Py_DTSF_ADD_DOT_0, NULL); | |
949 | if (buf) { | |
950 | PyErr_Format(PyExc_ValueError, err_msg, buf); | |
951 | PyMem_Free(buf); | |
952 | } | |
953 | } | |
954 | else { | |
955 | PyErr_SetString(PyExc_ValueError, "math domain error"); | |
956 | } | |
957 | return NULL; | |
c2155835 JY |
958 | } |
959 | ||
12c4bdb0 MD |
960 | /* variant of math_1, to be used when the function being wrapped is known to |
961 | set errno properly (that is, errno = EDOM for invalid or divide-by-zero, | |
962 | errno = ERANGE for overflow). */ | |
963 | ||
964 | static PyObject * | |
75f59bb6 | 965 | math_1a(PyObject *arg, double (*func) (double), const char *err_msg) |
12c4bdb0 | 966 | { |
f95a1b3c AP |
967 | double x, r; |
968 | x = PyFloat_AsDouble(arg); | |
969 | if (x == -1.0 && PyErr_Occurred()) | |
970 | return NULL; | |
971 | errno = 0; | |
f95a1b3c | 972 | r = (*func)(x); |
75f59bb6 SK |
973 | if (errno && is_error(r, err_msg ? 0 : 1)) { |
974 | if (err_msg && errno == EDOM) { | |
975 | assert(!PyErr_Occurred()); /* exception is not set by is_error() */ | |
976 | char *buf = PyOS_double_to_string(x, 'r', 0, Py_DTSF_ADD_DOT_0, NULL); | |
977 | if (buf) { | |
978 | PyErr_Format(PyExc_ValueError, err_msg, buf); | |
979 | PyMem_Free(buf); | |
980 | } | |
981 | } | |
f95a1b3c | 982 | return NULL; |
75f59bb6 | 983 | } |
f95a1b3c | 984 | return PyFloat_FromDouble(r); |
12c4bdb0 MD |
985 | } |
986 | ||
53876d9c CH |
987 | /* |
988 | math_2 is used to wrap a libm function f that takes two double | |
989 | arguments and returns a double. | |
990 | ||
991 | The error reporting follows these rules, which are designed to do | |
992 | the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 | |
993 | platforms. | |
994 | ||
995 | - a NaN result from non-NaN inputs causes ValueError to be raised | |
996 | - an infinite result from finite inputs causes OverflowError to be | |
997 | raised. | |
998 | - if the result is finite and errno == EDOM then ValueError is | |
999 | raised | |
1000 | - if the result is finite and nonzero and errno == ERANGE then | |
1001 | OverflowError is raised | |
1002 | ||
1003 | The last rule is used to catch overflow on platforms which follow | |
1004 | C89 but for which HUGE_VAL is not an infinity. | |
1005 | ||
1006 | For most two-argument functions (copysign, fmod, hypot, atan2) | |
1007 | these rules are enough to ensure that Python's functions behave as | |
1008 | specified in 'Annex F' of the C99 standard, with the 'invalid' and | |
1009 | 'divide-by-zero' floating-point exceptions mapping to Python's | |
1010 | ValueError and the 'overflow' floating-point exception mapping to | |
1011 | OverflowError. | |
1012 | */ | |
1013 | ||
8b43b19e | 1014 | static PyObject * |
d0d3e991 SS |
1015 | math_2(PyObject *const *args, Py_ssize_t nargs, |
1016 | double (*func) (double, double), const char *funcname) | |
85a5fbbd | 1017 | { |
f95a1b3c | 1018 | double x, y, r; |
d0d3e991 | 1019 | if (!_PyArg_CheckPositional(funcname, nargs, 2, 2)) |
f95a1b3c | 1020 | return NULL; |
d0d3e991 | 1021 | x = PyFloat_AsDouble(args[0]); |
5208b4b3 ZS |
1022 | if (x == -1.0 && PyErr_Occurred()) { |
1023 | return NULL; | |
1024 | } | |
d0d3e991 | 1025 | y = PyFloat_AsDouble(args[1]); |
5208b4b3 | 1026 | if (y == -1.0 && PyErr_Occurred()) { |
f95a1b3c | 1027 | return NULL; |
5208b4b3 | 1028 | } |
f95a1b3c | 1029 | errno = 0; |
f95a1b3c | 1030 | r = (*func)(x, y); |
cd11ff12 SK |
1031 | if (isnan(r)) { |
1032 | if (!isnan(x) && !isnan(y)) | |
f95a1b3c AP |
1033 | errno = EDOM; |
1034 | else | |
1035 | errno = 0; | |
1036 | } | |
cd11ff12 SK |
1037 | else if (isinf(r)) { |
1038 | if (isfinite(x) && isfinite(y)) | |
f95a1b3c AP |
1039 | errno = ERANGE; |
1040 | else | |
1041 | errno = 0; | |
1042 | } | |
75f59bb6 | 1043 | if (errno && is_error(r, 1)) |
f95a1b3c AP |
1044 | return NULL; |
1045 | else | |
1046 | return PyFloat_FromDouble(r); | |
85a5fbbd GR |
1047 | } |
1048 | ||
f95a1b3c AP |
1049 | #define FUNC1(funcname, func, can_overflow, docstring) \ |
1050 | static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ | |
75f59bb6 SK |
1051 | return math_1(args, func, can_overflow, NULL); \ |
1052 | }\ | |
1053 | PyDoc_STRVAR(math_##funcname##_doc, docstring); | |
1054 | ||
1055 | #define FUNC1D(funcname, func, can_overflow, docstring, err_msg) \ | |
1056 | static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ | |
1057 | return math_1(args, func, can_overflow, err_msg); \ | |
f95a1b3c AP |
1058 | }\ |
1059 | PyDoc_STRVAR(math_##funcname##_doc, docstring); | |
85a5fbbd | 1060 | |
f95a1b3c AP |
1061 | #define FUNC1A(funcname, func, docstring) \ |
1062 | static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ | |
75f59bb6 SK |
1063 | return math_1a(args, func, NULL); \ |
1064 | }\ | |
1065 | PyDoc_STRVAR(math_##funcname##_doc, docstring); | |
1066 | ||
1067 | #define FUNC1AD(funcname, func, docstring, err_msg) \ | |
1068 | static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ | |
1069 | return math_1a(args, func, err_msg); \ | |
f95a1b3c AP |
1070 | }\ |
1071 | PyDoc_STRVAR(math_##funcname##_doc, docstring); | |
12c4bdb0 | 1072 | |
40c48685 | 1073 | #define FUNC2(funcname, func, docstring) \ |
d0d3e991 SS |
1074 | static PyObject * math_##funcname(PyObject *self, PyObject *const *args, Py_ssize_t nargs) { \ |
1075 | return math_2(args, nargs, func, #funcname); \ | |
f95a1b3c AP |
1076 | }\ |
1077 | PyDoc_STRVAR(math_##funcname##_doc, docstring); | |
c6e22902 | 1078 | |
d0660a9a | 1079 | FUNC1D(acos, acos, 0, |
c9ea9335 | 1080 | "acos($module, x, /)\n--\n\n" |
dc3f99fa | 1081 | "Return the arc cosine (measured in radians) of x.\n\n" |
d0660a9a SK |
1082 | "The result is between 0 and pi.", |
1083 | "expected a number in range from -1 up to 1, got %s") | |
1084 | FUNC1D(acosh, acosh, 0, | |
c9ea9335 | 1085 | "acosh($module, x, /)\n--\n\n" |
d0660a9a SK |
1086 | "Return the inverse hyperbolic cosine of x.", |
1087 | "expected argument value not less than 1, got %s") | |
1088 | FUNC1D(asin, asin, 0, | |
c9ea9335 | 1089 | "asin($module, x, /)\n--\n\n" |
dc3f99fa | 1090 | "Return the arc sine (measured in radians) of x.\n\n" |
d0660a9a SK |
1091 | "The result is between -pi/2 and pi/2.", |
1092 | "expected a number in range from -1 up to 1, got %s") | |
fa26245a | 1093 | FUNC1(asinh, asinh, 0, |
c9ea9335 SS |
1094 | "asinh($module, x, /)\n--\n\n" |
1095 | "Return the inverse hyperbolic sine of x.") | |
53876d9c | 1096 | FUNC1(atan, atan, 0, |
c9ea9335 | 1097 | "atan($module, x, /)\n--\n\n" |
dc3f99fa GC |
1098 | "Return the arc tangent (measured in radians) of x.\n\n" |
1099 | "The result is between -pi/2 and pi/2.") | |
19be0ee9 | 1100 | FUNC2(atan2, atan2, |
c9ea9335 SS |
1101 | "atan2($module, y, x, /)\n--\n\n" |
1102 | "Return the arc tangent (measured in radians) of y/x.\n\n" | |
fe71f813 | 1103 | "Unlike atan(y/x), the signs of both x and y are considered.") |
75f59bb6 | 1104 | FUNC1D(atanh, atanh, 0, |
c9ea9335 | 1105 | "atanh($module, x, /)\n--\n\n" |
75f59bb6 SK |
1106 | "Return the inverse hyperbolic tangent of x.", |
1107 | "expected a number between -1 and 1, got %s") | |
ac867f10 AR |
1108 | FUNC1(cbrt, cbrt, 0, |
1109 | "cbrt($module, x, /)\n--\n\n" | |
1110 | "Return the cube root of x.") | |
c9ea9335 SS |
1111 | |
1112 | /*[clinic input] | |
1113 | math.ceil | |
1114 | ||
1115 | x as number: object | |
1116 | / | |
1117 | ||
1118 | Return the ceiling of x as an Integral. | |
1119 | ||
1120 | This is the smallest integer >= x. | |
1121 | [clinic start generated code]*/ | |
13e05de9 | 1122 | |
c9ea9335 SS |
1123 | static PyObject * |
1124 | math_ceil(PyObject *module, PyObject *number) | |
1125 | /*[clinic end generated code: output=6c3b8a78bc201c67 input=2725352806399cab]*/ | |
1126 | { | |
f013b475 | 1127 | double x; |
f95a1b3c | 1128 | |
f013b475 S |
1129 | if (PyFloat_CheckExact(number)) { |
1130 | x = PyFloat_AS_DOUBLE(number); | |
1131 | } | |
1132 | else { | |
67fbfb42 SG |
1133 | PyObject *result = _PyObject_MaybeCallSpecialNoArgs(number, &_Py_ID(__ceil__)); |
1134 | if (result != NULL) { | |
5fd5cb8d SS |
1135 | return result; |
1136 | } | |
67fbfb42 | 1137 | else if (PyErr_Occurred()) { |
f95a1b3c | 1138 | return NULL; |
67fbfb42 | 1139 | } |
f013b475 | 1140 | x = PyFloat_AsDouble(number); |
67fbfb42 | 1141 | if (x == -1.0 && PyErr_Occurred()) { |
f013b475 | 1142 | return NULL; |
67fbfb42 | 1143 | } |
f751bc9c | 1144 | } |
5fd5cb8d | 1145 | return PyLong_FromDouble(ceil(x)); |
13e05de9 GR |
1146 | } |
1147 | ||
53876d9c | 1148 | FUNC2(copysign, copysign, |
c9ea9335 SS |
1149 | "copysign($module, x, y, /)\n--\n\n" |
1150 | "Return a float with the magnitude (absolute value) of x but the sign of y.\n\n" | |
1151 | "On platforms that support signed zeros, copysign(1.0, -0.0)\n" | |
1152 | "returns -1.0.\n") | |
d0660a9a | 1153 | FUNC1D(cos, cos, 0, |
c9ea9335 | 1154 | "cos($module, x, /)\n--\n\n" |
d0660a9a SK |
1155 | "Return the cosine of x (measured in radians).", |
1156 | "expected a finite input, got %s") | |
53876d9c | 1157 | FUNC1(cosh, cosh, 1, |
c9ea9335 SS |
1158 | "cosh($module, x, /)\n--\n\n" |
1159 | "Return the hyperbolic cosine of x.") | |
58395759 | 1160 | FUNC1A(erf, erf, |
c9ea9335 SS |
1161 | "erf($module, x, /)\n--\n\n" |
1162 | "Error function at x.") | |
58395759 | 1163 | FUNC1A(erfc, erfc, |
c9ea9335 SS |
1164 | "erfc($module, x, /)\n--\n\n" |
1165 | "Complementary error function at x.") | |
53876d9c | 1166 | FUNC1(exp, exp, 1, |
c9ea9335 SS |
1167 | "exp($module, x, /)\n--\n\n" |
1168 | "Return e raised to the power of x.") | |
6266e4af G |
1169 | FUNC1(exp2, exp2, 1, |
1170 | "exp2($module, x, /)\n--\n\n" | |
1171 | "Return 2 raised to the power of x.") | |
fa26245a | 1172 | FUNC1(expm1, expm1, 1, |
c9ea9335 SS |
1173 | "expm1($module, x, /)\n--\n\n" |
1174 | "Return exp(x)-1.\n\n" | |
664b511c MD |
1175 | "This function avoids the loss of precision involved in the direct " |
1176 | "evaluation of exp(x)-1 for small x.") | |
53876d9c | 1177 | FUNC1(fabs, fabs, 0, |
c9ea9335 SS |
1178 | "fabs($module, x, /)\n--\n\n" |
1179 | "Return the absolute value of the float x.") | |
1180 | ||
1181 | /*[clinic input] | |
1182 | math.floor | |
13e05de9 | 1183 | |
c9ea9335 SS |
1184 | x as number: object |
1185 | / | |
1186 | ||
1187 | Return the floor of x as an Integral. | |
1188 | ||
1189 | This is the largest integer <= x. | |
1190 | [clinic start generated code]*/ | |
1191 | ||
1192 | static PyObject * | |
1193 | math_floor(PyObject *module, PyObject *number) | |
1194 | /*[clinic end generated code: output=c6a65c4884884b8a input=63af6b5d7ebcc3d6]*/ | |
1195 | { | |
930f4518 RH |
1196 | double x; |
1197 | ||
930f4518 RH |
1198 | if (PyFloat_CheckExact(number)) { |
1199 | x = PyFloat_AS_DOUBLE(number); | |
1200 | } | |
f013b475 | 1201 | else { |
67fbfb42 SG |
1202 | PyObject *result = _PyObject_MaybeCallSpecialNoArgs(number, &_Py_ID(__floor__)); |
1203 | if (result != NULL) { | |
5fd5cb8d SS |
1204 | return result; |
1205 | } | |
67fbfb42 | 1206 | else if (PyErr_Occurred()) { |
f95a1b3c | 1207 | return NULL; |
67fbfb42 | 1208 | } |
930f4518 | 1209 | x = PyFloat_AsDouble(number); |
67fbfb42 | 1210 | if (x == -1.0 && PyErr_Occurred()) { |
930f4518 | 1211 | return NULL; |
67fbfb42 | 1212 | } |
8bb9cde6 | 1213 | } |
5fd5cb8d | 1214 | return PyLong_FromDouble(floor(x)); |
13e05de9 GR |
1215 | } |
1216 | ||
2301cdb5 BT |
1217 | /*[clinic input] |
1218 | math.fmax -> double | |
1219 | ||
1220 | x: double | |
1221 | y: double | |
1222 | / | |
1223 | ||
1224 | Return the larger of two floating-point arguments. | |
1225 | [clinic start generated code]*/ | |
1226 | ||
1227 | static double | |
1228 | math_fmax_impl(PyObject *module, double x, double y) | |
1229 | /*[clinic end generated code: output=00692358d312fee2 input=021596c027336ffe]*/ | |
1230 | { | |
1231 | return fmax(x, y); | |
1232 | } | |
1233 | ||
1234 | /*[clinic input] | |
1235 | math.fmin -> double | |
1236 | ||
1237 | x: double | |
1238 | y: double | |
1239 | / | |
1240 | ||
1241 | Return the smaller of two floating-point arguments. | |
1242 | [clinic start generated code]*/ | |
1243 | ||
1244 | static double | |
1245 | math_fmin_impl(PyObject *module, double x, double y) | |
1246 | /*[clinic end generated code: output=3d5b7826bd292dd9 input=d12e64ccc33f878a]*/ | |
1247 | { | |
1248 | return fmin(x, y); | |
1249 | } | |
1250 | ||
75f59bb6 | 1251 | FUNC1AD(gamma, m_tgamma, |
c9ea9335 | 1252 | "gamma($module, x, /)\n--\n\n" |
75f59bb6 | 1253 | "Gamma function at x.", |
d0660a9a SK |
1254 | "expected a noninteger or positive integer, got %s") |
1255 | FUNC1AD(lgamma, m_lgamma, | |
c9ea9335 | 1256 | "lgamma($module, x, /)\n--\n\n" |
d0660a9a SK |
1257 | "Natural logarithm of absolute value of Gamma function at x.", |
1258 | "expected a noninteger or positive integer, got %s") | |
1259 | FUNC1D(log1p, m_log1p, 0, | |
c9ea9335 SS |
1260 | "log1p($module, x, /)\n--\n\n" |
1261 | "Return the natural logarithm of 1+x (base e).\n\n" | |
d0660a9a SK |
1262 | "The result is computed in a way which is accurate for x near zero.", |
1263 | "expected argument value > -1, got %s") | |
a0ce375e MD |
1264 | FUNC2(remainder, m_remainder, |
1265 | "remainder($module, x, y, /)\n--\n\n" | |
1266 | "Difference between x and the closest integer multiple of y.\n\n" | |
1267 | "Return x - n*y where n*y is the closest integer multiple of y.\n" | |
1268 | "In the case where x is exactly halfway between two multiples of\n" | |
1269 | "y, the nearest even value of n is used. The result is always exact.") | |
42ccac2d BT |
1270 | |
1271 | /*[clinic input] | |
1272 | math.signbit | |
1273 | ||
1274 | x: double | |
1275 | / | |
1276 | ||
1277 | Return True if the sign of x is negative and False otherwise. | |
1278 | [clinic start generated code]*/ | |
1279 | ||
1280 | static PyObject * | |
1281 | math_signbit_impl(PyObject *module, double x) | |
1282 | /*[clinic end generated code: output=20c5f20156a9b871 input=3d3493fbcb5bdb3e]*/ | |
1283 | { | |
1284 | return PyBool_FromLong(signbit(x)); | |
1285 | } | |
1286 | ||
d0660a9a | 1287 | FUNC1D(sin, sin, 0, |
c9ea9335 | 1288 | "sin($module, x, /)\n--\n\n" |
d0660a9a SK |
1289 | "Return the sine of x (measured in radians).", |
1290 | "expected a finite input, got %s") | |
53876d9c | 1291 | FUNC1(sinh, sinh, 1, |
c9ea9335 SS |
1292 | "sinh($module, x, /)\n--\n\n" |
1293 | "Return the hyperbolic sine of x.") | |
75f59bb6 | 1294 | FUNC1D(sqrt, sqrt, 0, |
c9ea9335 | 1295 | "sqrt($module, x, /)\n--\n\n" |
75f59bb6 SK |
1296 | "Return the square root of x.", |
1297 | "expected a nonnegative input, got %s") | |
d0660a9a | 1298 | FUNC1D(tan, tan, 0, |
c9ea9335 | 1299 | "tan($module, x, /)\n--\n\n" |
d0660a9a SK |
1300 | "Return the tangent of x (measured in radians).", |
1301 | "expected a finite input, got %s") | |
53876d9c | 1302 | FUNC1(tanh, tanh, 0, |
c9ea9335 SS |
1303 | "tanh($module, x, /)\n--\n\n" |
1304 | "Return the hyperbolic tangent of x.") | |
85a5fbbd | 1305 | |
2b7411df | 1306 | /* Precision summation function as msum() by Raymond Hettinger in |
c4f9823b | 1307 | <https://code.activestate.com/recipes/393090-binary-floating-point-summation-accurate-to-full-p/>, |
2b7411df BP |
1308 | enhanced with the exact partials sum and roundoff from Mark |
1309 | Dickinson's post at <http://bugs.python.org/file10357/msum4.py>. | |
1310 | See those links for more details, proofs and other references. | |
1311 | ||
87d3bd0e MD |
1312 | Note 1: IEEE 754 floating-point semantics with a rounding mode of |
1313 | roundTiesToEven are assumed. | |
2b7411df | 1314 | |
87d3bd0e MD |
1315 | Note 2: No provision is made for intermediate overflow handling; |
1316 | therefore, fsum([1e+308, -1e+308, 1e+308]) returns 1e+308 while | |
1317 | fsum([1e+308, 1e+308, -1e+308]) raises an OverflowError due to the | |
2b7411df BP |
1318 | overflow of the first partial sum. |
1319 | ||
87d3bd0e MD |
1320 | Note 3: The algorithm has two potential sources of fragility. First, C |
1321 | permits arithmetic operations on `double`s to be performed in an | |
1322 | intermediate format whose range and precision may be greater than those of | |
1323 | `double` (see for example C99 §5.2.4.2.2, paragraph 8). This can happen for | |
1324 | example on machines using the now largely historical x87 FPUs. In this case, | |
1325 | `fsum` can produce incorrect results. If `FLT_EVAL_METHOD` is `0` or `1`, or | |
1326 | `FLT_EVAL_METHOD` is `2` and `long double` is identical to `double`, then we | |
1327 | should be safe from this source of errors. Second, an aggressively | |
1328 | optimizing compiler can re-associate operations so that (for example) the | |
1329 | statement `yr = hi - x;` is treated as `yr = (x + y) - x` and then | |
1330 | re-associated as `yr = y + (x - x)`, giving `y = yr` and `lo = 0.0`. That | |
1331 | re-association would be in violation of the C standard, and should not occur | |
1332 | except possibly in the presence of unsafe optimizations (e.g., -ffast-math, | |
1333 | -fassociative-math). Such optimizations should be avoided for this module. | |
1334 | ||
1335 | Note 4: The signature of math.fsum() differs from builtins.sum() | |
2b7411df BP |
1336 | because the start argument doesn't make sense in the context of |
1337 | accurate summation. Since the partials table is collapsed before | |
1338 | returning a result, sum(seq2, start=sum(seq1)) may not equal the | |
1339 | accurate result returned by sum(itertools.chain(seq1, seq2)). | |
1340 | */ | |
1341 | ||
1342 | #define NUM_PARTIALS 32 /* initial partials array size, on stack */ | |
1343 | ||
1344 | /* Extend the partials array p[] by doubling its size. */ | |
1345 | static int /* non-zero on error */ | |
aa7633ab | 1346 | _fsum_realloc(double **p_ptr, Py_ssize_t n, |
2b7411df BP |
1347 | double *ps, Py_ssize_t *m_ptr) |
1348 | { | |
f95a1b3c AP |
1349 | void *v = NULL; |
1350 | Py_ssize_t m = *m_ptr; | |
1351 | ||
1352 | m += m; /* double */ | |
049e509a | 1353 | if (n < m && (size_t)m < ((size_t)PY_SSIZE_T_MAX / sizeof(double))) { |
f95a1b3c AP |
1354 | double *p = *p_ptr; |
1355 | if (p == ps) { | |
1356 | v = PyMem_Malloc(sizeof(double) * m); | |
1357 | if (v != NULL) | |
1358 | memcpy(v, ps, sizeof(double) * n); | |
1359 | } | |
1360 | else | |
1361 | v = PyMem_Realloc(p, sizeof(double) * m); | |
1362 | } | |
1363 | if (v == NULL) { /* size overflow or no memory */ | |
1364 | PyErr_SetString(PyExc_MemoryError, "math.fsum partials"); | |
1365 | return 1; | |
1366 | } | |
1367 | *p_ptr = (double*) v; | |
1368 | *m_ptr = m; | |
1369 | return 0; | |
2b7411df BP |
1370 | } |
1371 | ||
1372 | /* Full precision summation of a sequence of floats. | |
1373 | ||
1374 | def msum(iterable): | |
1375 | partials = [] # sorted, non-overlapping partial sums | |
1376 | for x in iterable: | |
fdb0accc MD |
1377 | i = 0 |
1378 | for y in partials: | |
1379 | if abs(x) < abs(y): | |
1380 | x, y = y, x | |
1381 | hi = x + y | |
1382 | lo = y - (hi - x) | |
1383 | if lo: | |
1384 | partials[i] = lo | |
1385 | i += 1 | |
1386 | x = hi | |
1387 | partials[i:] = [x] | |
2b7411df BP |
1388 | return sum_exact(partials) |
1389 | ||
1390 | Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo | |
1391 | are exactly equal to x+y. The inner loop applies hi/lo summation to each | |
1392 | partial so that the list of partial sums remains exact. | |
1393 | ||
1394 | Sum_exact() adds the partial sums exactly and correctly rounds the final | |
1395 | result (using the round-half-to-even rule). The items in partials remain | |
1396 | non-zero, non-special, non-overlapping and strictly increasing in | |
1397 | magnitude, but possibly not all having the same sign. | |
1398 | ||
1399 | Depends on IEEE 754 arithmetic guarantees and half-even rounding. | |
1400 | */ | |
1401 | ||
c9ea9335 SS |
1402 | /*[clinic input] |
1403 | math.fsum | |
1404 | ||
1405 | seq: object | |
1406 | / | |
1407 | ||
1a0c7b9b | 1408 | Return an accurate floating-point sum of values in the iterable seq. |
c9ea9335 | 1409 | |
1a0c7b9b | 1410 | Assumes IEEE-754 floating-point arithmetic. |
c9ea9335 SS |
1411 | [clinic start generated code]*/ |
1412 | ||
1413 | static PyObject * | |
1414 | math_fsum(PyObject *module, PyObject *seq) | |
1a0c7b9b | 1415 | /*[clinic end generated code: output=ba5c672b87fe34fc input=4506244ded6057dc]*/ |
2b7411df | 1416 | { |
f95a1b3c AP |
1417 | PyObject *item, *iter, *sum = NULL; |
1418 | Py_ssize_t i, j, n = 0, m = NUM_PARTIALS; | |
1419 | double x, y, t, ps[NUM_PARTIALS], *p = ps; | |
1420 | double xsave, special_sum = 0.0, inf_sum = 0.0; | |
36f23293 | 1421 | double hi, yr, lo = 0.0; |
f95a1b3c AP |
1422 | |
1423 | iter = PyObject_GetIter(seq); | |
1424 | if (iter == NULL) | |
1425 | return NULL; | |
1426 | ||
f95a1b3c AP |
1427 | for(;;) { /* for x in iterable */ |
1428 | assert(0 <= n && n <= m); | |
1429 | assert((m == NUM_PARTIALS && p == ps) || | |
1430 | (m > NUM_PARTIALS && p != NULL)); | |
1431 | ||
1432 | item = PyIter_Next(iter); | |
1433 | if (item == NULL) { | |
1434 | if (PyErr_Occurred()) | |
1435 | goto _fsum_error; | |
1436 | break; | |
1437 | } | |
cfd735ea | 1438 | ASSIGN_DOUBLE(x, item, error_with_item); |
f95a1b3c | 1439 | Py_DECREF(item); |
f95a1b3c AP |
1440 | |
1441 | xsave = x; | |
1442 | for (i = j = 0; j < n; j++) { /* for y in partials */ | |
1443 | y = p[j]; | |
1444 | if (fabs(x) < fabs(y)) { | |
1445 | t = x; x = y; y = t; | |
1446 | } | |
1447 | hi = x + y; | |
1448 | yr = hi - x; | |
1449 | lo = y - yr; | |
1450 | if (lo != 0.0) | |
1451 | p[i++] = lo; | |
1452 | x = hi; | |
1453 | } | |
1454 | ||
1455 | n = i; /* ps[i:] = [x] */ | |
1456 | if (x != 0.0) { | |
cd11ff12 | 1457 | if (! isfinite(x)) { |
f95a1b3c AP |
1458 | /* a nonfinite x could arise either as |
1459 | a result of intermediate overflow, or | |
1460 | as a result of a nan or inf in the | |
1461 | summands */ | |
cd11ff12 | 1462 | if (isfinite(xsave)) { |
f95a1b3c AP |
1463 | PyErr_SetString(PyExc_OverflowError, |
1464 | "intermediate overflow in fsum"); | |
1465 | goto _fsum_error; | |
1466 | } | |
cd11ff12 | 1467 | if (isinf(xsave)) |
f95a1b3c AP |
1468 | inf_sum += xsave; |
1469 | special_sum += xsave; | |
1470 | /* reset partials */ | |
1471 | n = 0; | |
1472 | } | |
1473 | else if (n >= m && _fsum_realloc(&p, n, ps, &m)) | |
1474 | goto _fsum_error; | |
1475 | else | |
1476 | p[n++] = x; | |
1477 | } | |
1478 | } | |
1479 | ||
1480 | if (special_sum != 0.0) { | |
cd11ff12 | 1481 | if (isnan(inf_sum)) |
f95a1b3c AP |
1482 | PyErr_SetString(PyExc_ValueError, |
1483 | "-inf + inf in fsum"); | |
1484 | else | |
1485 | sum = PyFloat_FromDouble(special_sum); | |
1486 | goto _fsum_error; | |
1487 | } | |
1488 | ||
1489 | hi = 0.0; | |
1490 | if (n > 0) { | |
1491 | hi = p[--n]; | |
1492 | /* sum_exact(ps, hi) from the top, stop when the sum becomes | |
1493 | inexact. */ | |
1494 | while (n > 0) { | |
1495 | x = hi; | |
1496 | y = p[--n]; | |
1497 | assert(fabs(y) < fabs(x)); | |
1498 | hi = x + y; | |
1499 | yr = hi - x; | |
1500 | lo = y - yr; | |
1501 | if (lo != 0.0) | |
1502 | break; | |
1503 | } | |
1504 | /* Make half-even rounding work across multiple partials. | |
1505 | Needed so that sum([1e-16, 1, 1e16]) will round-up the last | |
1506 | digit to two instead of down to zero (the 1e-16 makes the 1 | |
1507 | slightly closer to two). With a potential 1 ULP rounding | |
1508 | error fixed-up, math.fsum() can guarantee commutativity. */ | |
1509 | if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) || | |
1510 | (lo > 0.0 && p[n-1] > 0.0))) { | |
1511 | y = lo * 2.0; | |
1512 | x = hi + y; | |
1513 | yr = x - hi; | |
1514 | if (y == yr) | |
1515 | hi = x; | |
1516 | } | |
1517 | } | |
1518 | sum = PyFloat_FromDouble(hi); | |
2b7411df | 1519 | |
cfd735ea | 1520 | _fsum_error: |
f95a1b3c AP |
1521 | Py_DECREF(iter); |
1522 | if (p != ps) | |
1523 | PyMem_Free(p); | |
1524 | return sum; | |
cfd735ea RH |
1525 | |
1526 | error_with_item: | |
1527 | Py_DECREF(item); | |
1528 | goto _fsum_error; | |
2b7411df BP |
1529 | } |
1530 | ||
1531 | #undef NUM_PARTIALS | |
1532 | ||
2b7411df | 1533 | |
4c8a9a2d MD |
1534 | static unsigned long |
1535 | count_set_bits(unsigned long n) | |
1536 | { | |
1537 | unsigned long count = 0; | |
1538 | while (n != 0) { | |
1539 | ++count; | |
1540 | n &= n - 1; /* clear least significant bit */ | |
1541 | } | |
1542 | return count; | |
1543 | } | |
1544 | ||
73934b9d MD |
1545 | /* Integer square root |
1546 | ||
1547 | Given a nonnegative integer `n`, we want to compute the largest integer | |
1548 | `a` for which `a * a <= n`, or equivalently the integer part of the exact | |
1549 | square root of `n`. | |
1550 | ||
1551 | We use an adaptive-precision pure-integer version of Newton's iteration. Given | |
1552 | a positive integer `n`, the algorithm produces at each iteration an integer | |
1553 | approximation `a` to the square root of `n >> s` for some even integer `s`, | |
1554 | with `s` decreasing as the iterations progress. On the final iteration, `s` is | |
1555 | zero and we have an approximation to the square root of `n` itself. | |
1556 | ||
1557 | At every step, the approximation `a` is strictly within 1.0 of the true square | |
1558 | root, so we have | |
1559 | ||
1560 | (a - 1)**2 < (n >> s) < (a + 1)**2 | |
1561 | ||
1562 | After the final iteration, a check-and-correct step is needed to determine | |
1563 | whether `a` or `a - 1` gives the desired integer square root of `n`. | |
1564 | ||
1565 | The algorithm is remarkable in its simplicity. There's no need for a | |
1566 | per-iteration check-and-correct step, and termination is straightforward: the | |
1567 | number of iterations is known in advance (it's exactly `floor(log2(log2(n)))` | |
1568 | for `n > 1`). The only tricky part of the correctness proof is in establishing | |
1569 | that the bound `(a - 1)**2 < (n >> s) < (a + 1)**2` is maintained from one | |
1570 | iteration to the next. A sketch of the proof of this is given below. | |
1571 | ||
1572 | In addition to the proof sketch, a formal, computer-verified proof | |
1573 | of correctness (using Lean) of an equivalent recursive algorithm can be found | |
1574 | here: | |
1575 | ||
1576 | https://github.com/mdickinson/snippets/blob/master/proofs/isqrt/src/isqrt.lean | |
1577 | ||
1578 | ||
1579 | Here's Python code equivalent to the C implementation below: | |
1580 | ||
1581 | def isqrt(n): | |
1582 | """ | |
1583 | Return the integer part of the square root of the input. | |
1584 | """ | |
1585 | n = operator.index(n) | |
1586 | ||
1587 | if n < 0: | |
1588 | raise ValueError("isqrt() argument must be nonnegative") | |
1589 | if n == 0: | |
1590 | return 0 | |
1591 | ||
1592 | c = (n.bit_length() - 1) // 2 | |
1593 | a = 1 | |
1594 | d = 0 | |
1595 | for s in reversed(range(c.bit_length())): | |
2dfeaa92 | 1596 | # Loop invariant: (a-1)**2 < (n >> 2*(c - d)) < (a+1)**2 |
73934b9d MD |
1597 | e = d |
1598 | d = c >> s | |
1599 | a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a | |
73934b9d MD |
1600 | |
1601 | return a - (a*a > n) | |
1602 | ||
1603 | ||
1604 | Sketch of proof of correctness | |
1605 | ------------------------------ | |
1606 | ||
1607 | The delicate part of the correctness proof is showing that the loop invariant | |
1608 | is preserved from one iteration to the next. That is, just before the line | |
1609 | ||
1610 | a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a | |
1611 | ||
1612 | is executed in the above code, we know that | |
1613 | ||
1614 | (1) (a - 1)**2 < (n >> 2*(c - e)) < (a + 1)**2. | |
1615 | ||
1616 | (since `e` is always the value of `d` from the previous iteration). We must | |
1617 | prove that after that line is executed, we have | |
1618 | ||
1619 | (a - 1)**2 < (n >> 2*(c - d)) < (a + 1)**2 | |
1620 | ||
f7d72e48 | 1621 | To facilitate the proof, we make some changes of notation. Write `m` for |
73934b9d MD |
1622 | `n >> 2*(c-d)`, and write `b` for the new value of `a`, so |
1623 | ||
1624 | b = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a | |
1625 | ||
1626 | or equivalently: | |
1627 | ||
1628 | (2) b = (a << d - e - 1) + (m >> d - e + 1) // a | |
1629 | ||
1630 | Then we can rewrite (1) as: | |
1631 | ||
1632 | (3) (a - 1)**2 < (m >> 2*(d - e)) < (a + 1)**2 | |
1633 | ||
1634 | and we must show that (b - 1)**2 < m < (b + 1)**2. | |
1635 | ||
1636 | From this point on, we switch to mathematical notation, so `/` means exact | |
1637 | division rather than integer division and `^` is used for exponentiation. We | |
1638 | use the `√` symbol for the exact square root. In (3), we can remove the | |
1639 | implicit floor operation to give: | |
1640 | ||
1641 | (4) (a - 1)^2 < m / 4^(d - e) < (a + 1)^2 | |
1642 | ||
1643 | Taking square roots throughout (4), scaling by `2^(d-e)`, and rearranging gives | |
1644 | ||
1645 | (5) 0 <= | 2^(d-e)a - √m | < 2^(d-e) | |
1646 | ||
1647 | Squaring and dividing through by `2^(d-e+1) a` gives | |
1648 | ||
1649 | (6) 0 <= 2^(d-e-1) a + m / (2^(d-e+1) a) - √m < 2^(d-e-1) / a | |
1650 | ||
1651 | We'll show below that `2^(d-e-1) <= a`. Given that, we can replace the | |
1652 | right-hand side of (6) with `1`, and now replacing the central | |
1653 | term `m / (2^(d-e+1) a)` with its floor in (6) gives | |
1654 | ||
1655 | (7) -1 < 2^(d-e-1) a + m // 2^(d-e+1) a - √m < 1 | |
1656 | ||
1657 | Or equivalently, from (2): | |
1658 | ||
1659 | (7) -1 < b - √m < 1 | |
1660 | ||
1661 | and rearranging gives that `(b-1)^2 < m < (b+1)^2`, which is what we needed | |
1662 | to prove. | |
1663 | ||
1664 | We're not quite done: we still have to prove the inequality `2^(d - e - 1) <= | |
1665 | a` that was used to get line (7) above. From the definition of `c`, we have | |
1666 | `4^c <= n`, which implies | |
1667 | ||
1668 | (8) 4^d <= m | |
1669 | ||
1670 | also, since `e == d >> 1`, `d` is at most `2e + 1`, from which it follows | |
1671 | that `2d - 2e - 1 <= d` and hence that | |
1672 | ||
1673 | (9) 4^(2d - 2e - 1) <= m | |
1674 | ||
1675 | Dividing both sides by `4^(d - e)` gives | |
1676 | ||
1677 | (10) 4^(d - e - 1) <= m / 4^(d - e) | |
1678 | ||
1679 | But we know from (4) that `m / 4^(d-e) < (a + 1)^2`, hence | |
1680 | ||
1681 | (11) 4^(d - e - 1) < (a + 1)^2 | |
1682 | ||
1683 | Now taking square roots of both sides and observing that both `2^(d-e-1)` and | |
1684 | `a` are integers gives `2^(d - e - 1) <= a`, which is what we needed. This | |
1685 | completes the proof sketch. | |
1686 | ||
1687 | */ | |
1688 | ||
d02c5e9b MD |
1689 | /* |
1690 | The _approximate_isqrt_tab table provides approximate square roots for | |
1691 | 16-bit integers. For any n in the range 2**14 <= n < 2**16, the value | |
1692 | ||
1693 | a = _approximate_isqrt_tab[(n >> 8) - 64] | |
1694 | ||
1695 | is an approximate square root of n, satisfying (a - 1)**2 < n < (a + 1)**2. | |
1696 | ||
1697 | The table was computed in Python using the expression: | |
1698 | ||
1699 | [min(round(sqrt(256*n + 128)), 255) for n in range(64, 256)] | |
1700 | */ | |
1701 | ||
1702 | static const uint8_t _approximate_isqrt_tab[192] = { | |
1703 | 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, | |
1704 | 140, 141, 142, 143, 144, 144, 145, 146, 147, 148, 149, 150, | |
1705 | 151, 151, 152, 153, 154, 155, 156, 156, 157, 158, 159, 160, | |
1706 | 160, 161, 162, 163, 164, 164, 165, 166, 167, 167, 168, 169, | |
1707 | 170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178, | |
1708 | 179, 179, 180, 181, 181, 182, 183, 183, 184, 185, 186, 186, | |
1709 | 187, 188, 188, 189, 190, 190, 191, 192, 192, 193, 194, 194, | |
1710 | 195, 196, 196, 197, 198, 198, 199, 200, 200, 201, 201, 202, | |
1711 | 203, 203, 204, 205, 205, 206, 206, 207, 208, 208, 209, 210, | |
1712 | 210, 211, 211, 212, 213, 213, 214, 214, 215, 216, 216, 217, | |
1713 | 217, 218, 219, 219, 220, 220, 221, 221, 222, 223, 223, 224, | |
1714 | 224, 225, 225, 226, 227, 227, 228, 228, 229, 229, 230, 230, | |
1715 | 231, 232, 232, 233, 233, 234, 234, 235, 235, 236, 237, 237, | |
1716 | 238, 238, 239, 239, 240, 240, 241, 241, 242, 242, 243, 243, | |
1717 | 244, 244, 245, 246, 246, 247, 247, 248, 248, 249, 249, 250, | |
1718 | 250, 251, 251, 252, 252, 253, 253, 254, 254, 255, 255, 255, | |
1719 | }; | |
5c08ce9b MD |
1720 | |
1721 | /* Approximate square root of a large 64-bit integer. | |
1722 | ||
1723 | Given `n` satisfying `2**62 <= n < 2**64`, return `a` | |
1724 | satisfying `(a - 1)**2 < n < (a + 1)**2`. */ | |
1725 | ||
d02c5e9b | 1726 | static inline uint32_t |
5c08ce9b MD |
1727 | _approximate_isqrt(uint64_t n) |
1728 | { | |
d02c5e9b MD |
1729 | uint32_t u = _approximate_isqrt_tab[(n >> 56) - 64]; |
1730 | u = (u << 7) + (uint32_t)(n >> 41) / u; | |
1731 | return (u << 15) + (uint32_t)((n >> 17) / u); | |
5c08ce9b MD |
1732 | } |
1733 | ||
73934b9d MD |
1734 | /*[clinic input] |
1735 | math.isqrt | |
1736 | ||
1737 | n: object | |
1738 | / | |
1739 | ||
1740 | Return the integer part of the square root of the input. | |
1741 | [clinic start generated code]*/ | |
1742 | ||
1743 | static PyObject * | |
1744 | math_isqrt(PyObject *module, PyObject *n) | |
1745 | /*[clinic end generated code: output=35a6f7f980beab26 input=5b6e7ae4fa6c43d6]*/ | |
1746 | { | |
5c08ce9b | 1747 | int a_too_large, c_bit_length; |
d08c7888 | 1748 | int64_t c, d; |
d02c5e9b MD |
1749 | uint64_t m; |
1750 | uint32_t u; | |
73934b9d MD |
1751 | PyObject *a = NULL, *b; |
1752 | ||
5f4b229d | 1753 | n = _PyNumber_Index(n); |
73934b9d MD |
1754 | if (n == NULL) { |
1755 | return NULL; | |
1756 | } | |
1757 | ||
7559f5fd | 1758 | if (_PyLong_IsNegative((PyLongObject *)n)) { |
73934b9d MD |
1759 | PyErr_SetString( |
1760 | PyExc_ValueError, | |
1761 | "isqrt() argument must be nonnegative"); | |
1762 | goto error; | |
1763 | } | |
7559f5fd | 1764 | if (_PyLong_IsZero((PyLongObject *)n)) { |
73934b9d MD |
1765 | Py_DECREF(n); |
1766 | return PyLong_FromLong(0); | |
1767 | } | |
1768 | ||
5c08ce9b | 1769 | /* c = (n.bit_length() - 1) // 2 */ |
73934b9d | 1770 | c = _PyLong_NumBits(n); |
d08c7888 SS |
1771 | assert(c > 0); |
1772 | assert(!PyErr_Occurred()); | |
1773 | c = (c - 1) / 2; | |
73934b9d | 1774 | |
5c08ce9b | 1775 | /* Fast path: if c <= 31 then n < 2**64 and we can compute directly with a |
d02c5e9b | 1776 | fast, almost branch-free algorithm. */ |
d08c7888 | 1777 | if (c <= 31) { |
d02c5e9b | 1778 | int shift = 31 - (int)c; |
5c08ce9b MD |
1779 | m = (uint64_t)PyLong_AsUnsignedLongLong(n); |
1780 | Py_DECREF(n); | |
1781 | if (m == (uint64_t)(-1) && PyErr_Occurred()) { | |
1782 | return NULL; | |
1783 | } | |
d02c5e9b MD |
1784 | u = _approximate_isqrt(m << 2*shift) >> shift; |
1785 | u -= (uint64_t)u * u > m; | |
1786 | return PyLong_FromUnsignedLong(u); | |
73934b9d MD |
1787 | } |
1788 | ||
5c08ce9b MD |
1789 | /* Slow path: n >= 2**64. We perform the first five iterations in C integer |
1790 | arithmetic, then switch to using Python long integers. */ | |
1791 | ||
1792 | /* From n >= 2**64 it follows that c.bit_length() >= 6. */ | |
1793 | c_bit_length = 6; | |
d08c7888 | 1794 | while ((c >> c_bit_length) > 0) { |
5c08ce9b MD |
1795 | ++c_bit_length; |
1796 | } | |
1797 | ||
1798 | /* Initialise d and a. */ | |
1799 | d = c >> (c_bit_length - 5); | |
d08c7888 | 1800 | b = _PyLong_Rshift(n, 2*c - 62); |
5c08ce9b MD |
1801 | if (b == NULL) { |
1802 | goto error; | |
1803 | } | |
1804 | m = (uint64_t)PyLong_AsUnsignedLongLong(b); | |
1805 | Py_DECREF(b); | |
1806 | if (m == (uint64_t)(-1) && PyErr_Occurred()) { | |
1807 | goto error; | |
1808 | } | |
1809 | u = _approximate_isqrt(m) >> (31U - d); | |
d02c5e9b | 1810 | a = PyLong_FromUnsignedLong(u); |
73934b9d MD |
1811 | if (a == NULL) { |
1812 | goto error; | |
1813 | } | |
5c08ce9b MD |
1814 | |
1815 | for (int s = c_bit_length - 6; s >= 0; --s) { | |
a5119e7d | 1816 | PyObject *q; |
d08c7888 | 1817 | int64_t e = d; |
73934b9d MD |
1818 | |
1819 | d = c >> s; | |
1820 | ||
1821 | /* q = (n >> 2*c - e - d + 1) // a */ | |
d08c7888 | 1822 | q = _PyLong_Rshift(n, 2*c - d - e + 1); |
73934b9d MD |
1823 | if (q == NULL) { |
1824 | goto error; | |
1825 | } | |
1826 | Py_SETREF(q, PyNumber_FloorDivide(q, a)); | |
1827 | if (q == NULL) { | |
1828 | goto error; | |
1829 | } | |
1830 | ||
1831 | /* a = (a << d - 1 - e) + q */ | |
d08c7888 | 1832 | Py_SETREF(a, _PyLong_Lshift(a, d - 1 - e)); |
73934b9d MD |
1833 | if (a == NULL) { |
1834 | Py_DECREF(q); | |
1835 | goto error; | |
1836 | } | |
1837 | Py_SETREF(a, PyNumber_Add(a, q)); | |
1838 | Py_DECREF(q); | |
1839 | if (a == NULL) { | |
1840 | goto error; | |
1841 | } | |
1842 | } | |
1843 | ||
1844 | /* The correct result is either a or a - 1. Figure out which, and | |
1845 | decrement a if necessary. */ | |
1846 | ||
1847 | /* a_too_large = n < a * a */ | |
1848 | b = PyNumber_Multiply(a, a); | |
1849 | if (b == NULL) { | |
1850 | goto error; | |
1851 | } | |
1852 | a_too_large = PyObject_RichCompareBool(n, b, Py_LT); | |
1853 | Py_DECREF(b); | |
1854 | if (a_too_large == -1) { | |
1855 | goto error; | |
1856 | } | |
1857 | ||
1858 | if (a_too_large) { | |
37834136 | 1859 | Py_SETREF(a, PyNumber_Subtract(a, _PyLong_GetOne())); |
73934b9d MD |
1860 | } |
1861 | Py_DECREF(n); | |
1862 | return a; | |
1863 | ||
1864 | error: | |
1865 | Py_XDECREF(a); | |
1866 | Py_DECREF(n); | |
1867 | return NULL; | |
1868 | } | |
1869 | ||
4c8a9a2d MD |
1870 | /* Divide-and-conquer factorial algorithm |
1871 | * | |
15f44ab0 | 1872 | * Based on the formula and pseudo-code provided at: |
4c8a9a2d MD |
1873 | * http://www.luschny.de/math/factorial/binarysplitfact.html |
1874 | * | |
1875 | * Faster algorithms exist, but they're more complicated and depend on | |
9527afd0 | 1876 | * a fast prime factorization algorithm. |
4c8a9a2d MD |
1877 | * |
1878 | * Notes on the algorithm | |
1879 | * ---------------------- | |
1880 | * | |
1881 | * factorial(n) is written in the form 2**k * m, with m odd. k and m are | |
1882 | * computed separately, and then combined using a left shift. | |
1883 | * | |
1884 | * The function factorial_odd_part computes the odd part m (i.e., the greatest | |
1885 | * odd divisor) of factorial(n), using the formula: | |
1886 | * | |
1887 | * factorial_odd_part(n) = | |
1888 | * | |
1889 | * product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j | |
1890 | * | |
1891 | * Example: factorial_odd_part(20) = | |
1892 | * | |
1893 | * (1) * | |
1894 | * (1) * | |
1895 | * (1 * 3 * 5) * | |
09605ad7 | 1896 | * (1 * 3 * 5 * 7 * 9) * |
4c8a9a2d MD |
1897 | * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19) |
1898 | * | |
1899 | * Here i goes from large to small: the first term corresponds to i=4 (any | |
1900 | * larger i gives an empty product), and the last term corresponds to i=0. | |
1901 | * Each term can be computed from the last by multiplying by the extra odd | |
1902 | * numbers required: e.g., to get from the penultimate term to the last one, | |
1903 | * we multiply by (11 * 13 * 15 * 17 * 19). | |
1904 | * | |
1905 | * To see a hint of why this formula works, here are the same numbers as above | |
1906 | * but with the even parts (i.e., the appropriate powers of 2) included. For | |
1907 | * each subterm in the product for i, we multiply that subterm by 2**i: | |
1908 | * | |
1909 | * factorial(20) = | |
1910 | * | |
1911 | * (16) * | |
1912 | * (8) * | |
1913 | * (4 * 12 * 20) * | |
1914 | * (2 * 6 * 10 * 14 * 18) * | |
1915 | * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19) | |
1916 | * | |
1917 | * The factorial_partial_product function computes the product of all odd j in | |
1918 | * range(start, stop) for given start and stop. It's used to compute the | |
1919 | * partial products like (11 * 13 * 15 * 17 * 19) in the example above. It | |
1920 | * operates recursively, repeatedly splitting the range into two roughly equal | |
1921 | * pieces until the subranges are small enough to be computed using only C | |
1922 | * integer arithmetic. | |
1923 | * | |
1924 | * The two-valuation k (i.e., the exponent of the largest power of 2 dividing | |
1925 | * the factorial) is computed independently in the main math_factorial | |
1926 | * function. By standard results, its value is: | |
1927 | * | |
1928 | * two_valuation = n//2 + n//4 + n//8 + .... | |
1929 | * | |
1930 | * It can be shown (e.g., by complete induction on n) that two_valuation is | |
1931 | * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of | |
1932 | * '1'-bits in the binary expansion of n. | |
1933 | */ | |
1934 | ||
1935 | /* factorial_partial_product: Compute product(range(start, stop, 2)) using | |
1936 | * divide and conquer. Assumes start and stop are odd and stop > start. | |
1937 | * max_bits must be >= bit_length(stop - 2). */ | |
1938 | ||
1939 | static PyObject * | |
1940 | factorial_partial_product(unsigned long start, unsigned long stop, | |
1941 | unsigned long max_bits) | |
1942 | { | |
1943 | unsigned long midpoint, num_operands; | |
1944 | PyObject *left = NULL, *right = NULL, *result = NULL; | |
1945 | ||
1946 | /* If the return value will fit an unsigned long, then we can | |
1947 | * multiply in a tight, fast loop where each multiply is O(1). | |
1948 | * Compute an upper bound on the number of bits required to store | |
1949 | * the answer. | |
1950 | * | |
1951 | * Storing some integer z requires floor(lg(z))+1 bits, which is | |
1952 | * conveniently the value returned by bit_length(z). The | |
1953 | * product x*y will require at most | |
1954 | * bit_length(x) + bit_length(y) bits to store, based | |
1955 | * on the idea that lg product = lg x + lg y. | |
1956 | * | |
1957 | * We know that stop - 2 is the largest number to be multiplied. From | |
1958 | * there, we have: bit_length(answer) <= num_operands * | |
1959 | * bit_length(stop - 2) | |
1960 | */ | |
1961 | ||
1962 | num_operands = (stop - start) / 2; | |
1963 | /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the | |
1964 | * unlikely case of an overflow in num_operands * max_bits. */ | |
1965 | if (num_operands <= 8 * SIZEOF_LONG && | |
1966 | num_operands * max_bits <= 8 * SIZEOF_LONG) { | |
1967 | unsigned long j, total; | |
1968 | for (total = start, j = start + 2; j < stop; j += 2) | |
1969 | total *= j; | |
1970 | return PyLong_FromUnsignedLong(total); | |
1971 | } | |
1972 | ||
1973 | /* find midpoint of range(start, stop), rounded up to next odd number. */ | |
1974 | midpoint = (start + num_operands) | 1; | |
1975 | left = factorial_partial_product(start, midpoint, | |
c5b79003 | 1976 | _Py_bit_length(midpoint - 2)); |
4c8a9a2d MD |
1977 | if (left == NULL) |
1978 | goto error; | |
1979 | right = factorial_partial_product(midpoint, stop, max_bits); | |
1980 | if (right == NULL) | |
1981 | goto error; | |
1982 | result = PyNumber_Multiply(left, right); | |
1983 | ||
1984 | error: | |
1985 | Py_XDECREF(left); | |
1986 | Py_XDECREF(right); | |
1987 | return result; | |
1988 | } | |
1989 | ||
1990 | /* factorial_odd_part: compute the odd part of factorial(n). */ | |
1991 | ||
1992 | static PyObject * | |
1993 | factorial_odd_part(unsigned long n) | |
1994 | { | |
1995 | long i; | |
1996 | unsigned long v, lower, upper; | |
1997 | PyObject *partial, *tmp, *inner, *outer; | |
1998 | ||
1999 | inner = PyLong_FromLong(1); | |
2000 | if (inner == NULL) | |
2001 | return NULL; | |
3e2f7135 | 2002 | outer = Py_NewRef(inner); |
4c8a9a2d MD |
2003 | |
2004 | upper = 3; | |
c5b79003 | 2005 | for (i = _Py_bit_length(n) - 2; i >= 0; i--) { |
4c8a9a2d MD |
2006 | v = n >> i; |
2007 | if (v <= 2) | |
2008 | continue; | |
2009 | lower = upper; | |
2010 | /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */ | |
2011 | upper = (v + 1) | 1; | |
2012 | /* Here inner is the product of all odd integers j in the range (0, | |
2013 | n/2**(i+1)]. The factorial_partial_product call below gives the | |
2014 | product of all odd integers j in the range (n/2**(i+1), n/2**i]. */ | |
c5b79003 | 2015 | partial = factorial_partial_product(lower, upper, _Py_bit_length(upper-2)); |
4c8a9a2d MD |
2016 | /* inner *= partial */ |
2017 | if (partial == NULL) | |
2018 | goto error; | |
2019 | tmp = PyNumber_Multiply(inner, partial); | |
2020 | Py_DECREF(partial); | |
2021 | if (tmp == NULL) | |
2022 | goto error; | |
7e3f09ca | 2023 | Py_SETREF(inner, tmp); |
4c8a9a2d MD |
2024 | /* Now inner is the product of all odd integers j in the range (0, |
2025 | n/2**i], giving the inner product in the formula above. */ | |
2026 | ||
2027 | /* outer *= inner; */ | |
2028 | tmp = PyNumber_Multiply(outer, inner); | |
2029 | if (tmp == NULL) | |
2030 | goto error; | |
7e3f09ca | 2031 | Py_SETREF(outer, tmp); |
4c8a9a2d | 2032 | } |
76464494 MD |
2033 | Py_DECREF(inner); |
2034 | return outer; | |
4c8a9a2d MD |
2035 | |
2036 | error: | |
2037 | Py_DECREF(outer); | |
4c8a9a2d | 2038 | Py_DECREF(inner); |
76464494 | 2039 | return NULL; |
4c8a9a2d MD |
2040 | } |
2041 | ||
c9ea9335 | 2042 | |
4c8a9a2d MD |
2043 | /* Lookup table for small factorial values */ |
2044 | ||
2045 | static const unsigned long SmallFactorials[] = { | |
2046 | 1, 1, 2, 6, 24, 120, 720, 5040, 40320, | |
2047 | 362880, 3628800, 39916800, 479001600, | |
2048 | #if SIZEOF_LONG >= 8 | |
2049 | 6227020800, 87178291200, 1307674368000, | |
2050 | 20922789888000, 355687428096000, 6402373705728000, | |
2051 | 121645100408832000, 2432902008176640000 | |
2052 | #endif | |
2053 | }; | |
2054 | ||
c9ea9335 SS |
2055 | /*[clinic input] |
2056 | math.factorial | |
2057 | ||
1ba82d44 | 2058 | n as arg: object |
c9ea9335 SS |
2059 | / |
2060 | ||
1ba82d44 | 2061 | Find n!. |
c9ea9335 SS |
2062 | [clinic start generated code]*/ |
2063 | ||
c28e1fa7 | 2064 | static PyObject * |
c9ea9335 | 2065 | math_factorial(PyObject *module, PyObject *arg) |
27ed6457 | 2066 | /*[clinic end generated code: output=6686f26fae00e9ca input=366cc321df3d4773]*/ |
c28e1fa7 | 2067 | { |
a5119e7d | 2068 | long x, two_valuation; |
5990d286 | 2069 | int overflow; |
578c3955 | 2070 | PyObject *result, *odd_part; |
f95a1b3c | 2071 | |
578c3955 | 2072 | x = PyLong_AsLongAndOverflow(arg, &overflow); |
5990d286 | 2073 | if (x == -1 && PyErr_Occurred()) { |
f95a1b3c | 2074 | return NULL; |
5990d286 MD |
2075 | } |
2076 | else if (overflow == 1) { | |
2077 | PyErr_Format(PyExc_OverflowError, | |
2078 | "factorial() argument should not exceed %ld", | |
2079 | LONG_MAX); | |
2080 | return NULL; | |
2081 | } | |
2082 | else if (overflow == -1 || x < 0) { | |
f95a1b3c | 2083 | PyErr_SetString(PyExc_ValueError, |
4c8a9a2d | 2084 | "factorial() not defined for negative values"); |
f95a1b3c AP |
2085 | return NULL; |
2086 | } | |
2087 | ||
4c8a9a2d | 2088 | /* use lookup table if x is small */ |
63941881 | 2089 | if (x < (long)Py_ARRAY_LENGTH(SmallFactorials)) |
4c8a9a2d MD |
2090 | return PyLong_FromUnsignedLong(SmallFactorials[x]); |
2091 | ||
2092 | /* else express in the form odd_part * 2**two_valuation, and compute as | |
2093 | odd_part << two_valuation. */ | |
2094 | odd_part = factorial_odd_part(x); | |
2095 | if (odd_part == NULL) | |
2096 | return NULL; | |
a5119e7d SS |
2097 | two_valuation = x - count_set_bits(x); |
2098 | result = _PyLong_Lshift(odd_part, two_valuation); | |
4c8a9a2d | 2099 | Py_DECREF(odd_part); |
f95a1b3c | 2100 | return result; |
c28e1fa7 GB |
2101 | } |
2102 | ||
c9ea9335 SS |
2103 | |
2104 | /*[clinic input] | |
2105 | math.trunc | |
2106 | ||
2107 | x: object | |
2108 | / | |
2109 | ||
2110 | Truncates the Real x to the nearest Integral toward 0. | |
2111 | ||
2112 | Uses the __trunc__ magic method. | |
2113 | [clinic start generated code]*/ | |
c28e1fa7 | 2114 | |
400adb03 | 2115 | static PyObject * |
c9ea9335 SS |
2116 | math_trunc(PyObject *module, PyObject *x) |
2117 | /*[clinic end generated code: output=34b9697b707e1031 input=2168b34e0a09134d]*/ | |
400adb03 | 2118 | { |
5fd5cb8d SS |
2119 | if (PyFloat_CheckExact(x)) { |
2120 | return PyFloat_Type.tp_as_number->nb_int(x); | |
2121 | } | |
2122 | ||
67fbfb42 SG |
2123 | PyObject *result = _PyObject_MaybeCallSpecialNoArgs(x, &_Py_ID(__trunc__)); |
2124 | if (result != NULL) { | |
2125 | return result; | |
f95a1b3c | 2126 | } |
67fbfb42 SG |
2127 | else if (!PyErr_Occurred()) { |
2128 | PyErr_Format(PyExc_TypeError, | |
2129 | "type %.100s doesn't define __trunc__ method", | |
2130 | Py_TYPE(x)->tp_name); | |
2131 | } | |
2132 | return NULL; | |
400adb03 CH |
2133 | } |
2134 | ||
c9ea9335 SS |
2135 | |
2136 | /*[clinic input] | |
2137 | math.frexp | |
2138 | ||
2139 | x: double | |
2140 | / | |
2141 | ||
2142 | Return the mantissa and exponent of x, as pair (m, e). | |
2143 | ||
2144 | m is a float and e is an int, such that x = m * 2.**e. | |
2145 | If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0. | |
2146 | [clinic start generated code]*/ | |
400adb03 | 2147 | |
8b43b19e | 2148 | static PyObject * |
c9ea9335 SS |
2149 | math_frexp_impl(PyObject *module, double x) |
2150 | /*[clinic end generated code: output=03e30d252a15ad4a input=96251c9e208bc6e9]*/ | |
d18ad583 | 2151 | { |
f95a1b3c | 2152 | int i; |
f95a1b3c AP |
2153 | /* deal with special cases directly, to sidestep platform |
2154 | differences */ | |
cd11ff12 | 2155 | if (isnan(x) || isinf(x) || !x) { |
f95a1b3c AP |
2156 | i = 0; |
2157 | } | |
2158 | else { | |
f95a1b3c | 2159 | x = frexp(x, &i); |
f95a1b3c AP |
2160 | } |
2161 | return Py_BuildValue("(di)", x, i); | |
d18ad583 GR |
2162 | } |
2163 | ||
c9ea9335 SS |
2164 | |
2165 | /*[clinic input] | |
2166 | math.ldexp | |
2167 | ||
2168 | x: double | |
2169 | i: object | |
2170 | / | |
2171 | ||
2172 | Return x * (2**i). | |
2173 | ||
2174 | This is essentially the inverse of frexp(). | |
2175 | [clinic start generated code]*/ | |
c6e22902 | 2176 | |
8b43b19e | 2177 | static PyObject * |
c9ea9335 SS |
2178 | math_ldexp_impl(PyObject *module, double x, PyObject *i) |
2179 | /*[clinic end generated code: output=b6892f3c2df9cc6a input=17d5970c1a40a8c1]*/ | |
d18ad583 | 2180 | { |
c9ea9335 | 2181 | double r; |
f95a1b3c AP |
2182 | long exp; |
2183 | int overflow; | |
f95a1b3c | 2184 | |
c9ea9335 | 2185 | if (PyLong_Check(i)) { |
f95a1b3c AP |
2186 | /* on overflow, replace exponent with either LONG_MAX |
2187 | or LONG_MIN, depending on the sign. */ | |
c9ea9335 | 2188 | exp = PyLong_AsLongAndOverflow(i, &overflow); |
f95a1b3c AP |
2189 | if (exp == -1 && PyErr_Occurred()) |
2190 | return NULL; | |
2191 | if (overflow) | |
2192 | exp = overflow < 0 ? LONG_MIN : LONG_MAX; | |
2193 | } | |
2194 | else { | |
2195 | PyErr_SetString(PyExc_TypeError, | |
95949427 | 2196 | "Expected an int as second argument to ldexp."); |
f95a1b3c AP |
2197 | return NULL; |
2198 | } | |
2199 | ||
cd11ff12 | 2200 | if (x == 0. || !isfinite(x)) { |
f95a1b3c AP |
2201 | /* NaNs, zeros and infinities are returned unchanged */ |
2202 | r = x; | |
2203 | errno = 0; | |
2204 | } else if (exp > INT_MAX) { | |
2205 | /* overflow */ | |
8477951a | 2206 | r = copysign(Py_INFINITY, x); |
f95a1b3c AP |
2207 | errno = ERANGE; |
2208 | } else if (exp < INT_MIN) { | |
2209 | /* underflow to +-0 */ | |
2210 | r = copysign(0., x); | |
2211 | errno = 0; | |
2212 | } else { | |
2213 | errno = 0; | |
f95a1b3c | 2214 | r = ldexp(x, (int)exp); |
cf8941c6 SK |
2215 | #ifdef _MSC_VER |
2216 | if (DBL_MIN > r && r > -DBL_MIN) { | |
2217 | /* Denormal (or zero) results can be incorrectly rounded here (rather, | |
2218 | truncated). Fixed in newer versions of the C runtime, included | |
2219 | with Windows 11. */ | |
2220 | int original_exp; | |
2221 | frexp(x, &original_exp); | |
2222 | if (original_exp > DBL_MIN_EXP) { | |
2223 | /* Shift down to the smallest normal binade. No bits lost. */ | |
2224 | int shift = DBL_MIN_EXP - original_exp; | |
2225 | x = ldexp(x, shift); | |
2226 | exp -= shift; | |
2227 | } | |
2228 | /* Multiplying by 2**exp finishes the job, and the HW will round as | |
2229 | appropriate. Note: if exp < -DBL_MANT_DIG, all of x is shifted | |
2230 | to be < 0.5ULP of smallest denorm, so should be thrown away. If | |
2231 | exp is so very negative that ldexp underflows to 0, that's fine; | |
2232 | no need to check in advance. */ | |
2233 | r = x*ldexp(1.0, (int)exp); | |
2234 | } | |
2235 | #endif | |
cd11ff12 | 2236 | if (isinf(r)) |
f95a1b3c AP |
2237 | errno = ERANGE; |
2238 | } | |
2239 | ||
75f59bb6 | 2240 | if (errno && is_error(r, 1)) |
f95a1b3c AP |
2241 | return NULL; |
2242 | return PyFloat_FromDouble(r); | |
d18ad583 GR |
2243 | } |
2244 | ||
c9ea9335 SS |
2245 | |
2246 | /*[clinic input] | |
2247 | math.modf | |
2248 | ||
2249 | x: double | |
2250 | / | |
2251 | ||
2252 | Return the fractional and integer parts of x. | |
2253 | ||
2254 | Both results carry the sign of x and are floats. | |
2255 | [clinic start generated code]*/ | |
c6e22902 | 2256 | |
8b43b19e | 2257 | static PyObject * |
c9ea9335 SS |
2258 | math_modf_impl(PyObject *module, double x) |
2259 | /*[clinic end generated code: output=90cee0260014c3c0 input=b4cfb6786afd9035]*/ | |
d18ad583 | 2260 | { |
c9ea9335 | 2261 | double y; |
f95a1b3c AP |
2262 | /* some platforms don't do the right thing for NaNs and |
2263 | infinities, so we take care of special cases directly. */ | |
cd11ff12 | 2264 | if (isinf(x)) |
9c995abd | 2265 | return Py_BuildValue("(dd)", copysign(0., x), x); |
cd11ff12 | 2266 | else if (isnan(x)) |
9c995abd | 2267 | return Py_BuildValue("(dd)", x, x); |
f95a1b3c AP |
2268 | |
2269 | errno = 0; | |
f95a1b3c | 2270 | x = modf(x, &y); |
f95a1b3c | 2271 | return Py_BuildValue("(dd)", x, y); |
d18ad583 | 2272 | } |
85a5fbbd | 2273 | |
c6e22902 | 2274 | |
95949427 | 2275 | /* A decent logarithm is easy to compute even for huge ints, but libm can't |
78526168 | 2276 | do that by itself -- loghelper can. func is log or log10, and name is |
95949427 | 2277 | "log" or "log10". Note that overflow of the result isn't possible: an int |
6ecd9e53 MD |
2278 | can contain no more than INT_MAX * SHIFT bits, so has value certainly less |
2279 | than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is | |
78526168 | 2280 | small enough to fit in an IEEE single. log and log10 are even smaller. |
95949427 SS |
2281 | However, intermediate overflow is possible for an int if the number of bits |
2282 | in that int is larger than PY_SSIZE_T_MAX. */ | |
78526168 TP |
2283 | |
2284 | static PyObject* | |
5a80e858 | 2285 | loghelper(PyObject* arg, double (*func)(double)) |
78526168 | 2286 | { |
95949427 | 2287 | /* If it is int, do it ourselves. */ |
f95a1b3c | 2288 | if (PyLong_Check(arg)) { |
c6037174 | 2289 | double x, result; |
32c7dbb2 | 2290 | int64_t e; |
c6037174 MD |
2291 | |
2292 | /* Negative or zero inputs give a ValueError. */ | |
7559f5fd | 2293 | if (!_PyLong_IsPositive((PyLongObject *)arg)) { |
0c356c86 SK |
2294 | /* The input can be an arbitrary large integer, so we |
2295 | don't include it's value in the error message. */ | |
2296 | PyErr_SetString(PyExc_ValueError, | |
2297 | "expected a positive input"); | |
f95a1b3c AP |
2298 | return NULL; |
2299 | } | |
c6037174 MD |
2300 | |
2301 | x = PyLong_AsDouble(arg); | |
2302 | if (x == -1.0 && PyErr_Occurred()) { | |
2303 | if (!PyErr_ExceptionMatches(PyExc_OverflowError)) | |
2304 | return NULL; | |
2305 | /* Here the conversion to double overflowed, but it's possible | |
2306 | to compute the log anyway. Clear the exception and continue. */ | |
2307 | PyErr_Clear(); | |
2308 | x = _PyLong_Frexp((PyLongObject *)arg, &e); | |
d08c7888 SS |
2309 | assert(e >= 0); |
2310 | assert(!PyErr_Occurred()); | |
c6037174 MD |
2311 | /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */ |
2312 | result = func(x) + func(2.0) * e; | |
2313 | } | |
2314 | else | |
2315 | /* Successfully converted x to a double. */ | |
2316 | result = func(x); | |
2317 | return PyFloat_FromDouble(result); | |
f95a1b3c AP |
2318 | } |
2319 | ||
2320 | /* Else let libm handle it by itself. */ | |
75f59bb6 | 2321 | return math_1(arg, func, 0, "expected a positive input, got %s"); |
78526168 TP |
2322 | } |
2323 | ||
c9ea9335 | 2324 | |
d1a89ce5 SK |
2325 | /* AC: cannot convert yet, see gh-102839 and gh-89381, waiting |
2326 | for support of multiple signatures */ | |
78526168 | 2327 | static PyObject * |
d1a89ce5 | 2328 | math_log(PyObject *module, PyObject * const *args, Py_ssize_t nargs) |
78526168 | 2329 | { |
f95a1b3c AP |
2330 | PyObject *num, *den; |
2331 | PyObject *ans; | |
2332 | ||
d1a89ce5 SK |
2333 | if (!_PyArg_CheckPositional("log", nargs, 1, 2)) |
2334 | return NULL; | |
2335 | ||
2336 | num = loghelper(args[0], m_log); | |
2337 | if (num == NULL || nargs == 1) | |
f95a1b3c AP |
2338 | return num; |
2339 | ||
d1a89ce5 | 2340 | den = loghelper(args[1], m_log); |
f95a1b3c AP |
2341 | if (den == NULL) { |
2342 | Py_DECREF(num); | |
2343 | return NULL; | |
2344 | } | |
2345 | ||
2346 | ans = PyNumber_TrueDivide(num, den); | |
2347 | Py_DECREF(num); | |
2348 | Py_DECREF(den); | |
2349 | return ans; | |
78526168 TP |
2350 | } |
2351 | ||
d1a89ce5 SK |
2352 | PyDoc_STRVAR(math_log_doc, |
2353 | "log(x, [base=math.e])\n\ | |
2354 | Return the logarithm of x to the given base.\n\n\ | |
52cedc5c | 2355 | If the base is not specified, returns the natural logarithm (base e) of x."); |
c9ea9335 SS |
2356 | |
2357 | /*[clinic input] | |
2358 | math.log2 | |
2359 | ||
2360 | x: object | |
2361 | / | |
2362 | ||
2363 | Return the base 2 logarithm of x. | |
2364 | [clinic start generated code]*/ | |
78526168 | 2365 | |
fa0e3d52 | 2366 | static PyObject * |
c9ea9335 SS |
2367 | math_log2(PyObject *module, PyObject *x) |
2368 | /*[clinic end generated code: output=5425899a4d5d6acb input=08321262bae4f39b]*/ | |
fa0e3d52 | 2369 | { |
5a80e858 | 2370 | return loghelper(x, m_log2); |
fa0e3d52 VS |
2371 | } |
2372 | ||
c9ea9335 SS |
2373 | |
2374 | /*[clinic input] | |
2375 | math.log10 | |
2376 | ||
2377 | x: object | |
2378 | / | |
2379 | ||
2380 | Return the base 10 logarithm of x. | |
2381 | [clinic start generated code]*/ | |
fa0e3d52 | 2382 | |
78526168 | 2383 | static PyObject * |
c9ea9335 SS |
2384 | math_log10(PyObject *module, PyObject *x) |
2385 | /*[clinic end generated code: output=be72a64617df9c6f input=b2469d02c6469e53]*/ | |
78526168 | 2386 | { |
5a80e858 | 2387 | return loghelper(x, m_log10); |
78526168 TP |
2388 | } |
2389 | ||
c9ea9335 | 2390 | |
8e3c953b VS |
2391 | /*[clinic input] |
2392 | math.fma | |
2393 | ||
2394 | x: double | |
2395 | y: double | |
2396 | z: double | |
2397 | / | |
2398 | ||
2399 | Fused multiply-add operation. | |
2400 | ||
2401 | Compute (x * y) + z with a single round. | |
2402 | [clinic start generated code]*/ | |
2403 | ||
2404 | static PyObject * | |
2405 | math_fma_impl(PyObject *module, double x, double y, double z) | |
2406 | /*[clinic end generated code: output=4fc8626dbc278d17 input=e3ad1f4a4c89626e]*/ | |
2407 | { | |
2408 | double r = fma(x, y, z); | |
2409 | ||
2410 | /* Fast path: if we got a finite result, we're done. */ | |
cd11ff12 | 2411 | if (isfinite(r)) { |
8e3c953b VS |
2412 | return PyFloat_FromDouble(r); |
2413 | } | |
2414 | ||
2415 | /* Non-finite result. Raise an exception if appropriate, else return r. */ | |
cd11ff12 SK |
2416 | if (isnan(r)) { |
2417 | if (!isnan(x) && !isnan(y) && !isnan(z)) { | |
8e3c953b VS |
2418 | /* NaN result from non-NaN inputs. */ |
2419 | PyErr_SetString(PyExc_ValueError, "invalid operation in fma"); | |
2420 | return NULL; | |
2421 | } | |
2422 | } | |
cd11ff12 | 2423 | else if (isfinite(x) && isfinite(y) && isfinite(z)) { |
8e3c953b VS |
2424 | /* Infinite result from finite inputs. */ |
2425 | PyErr_SetString(PyExc_OverflowError, "overflow in fma"); | |
2426 | return NULL; | |
2427 | } | |
2428 | ||
2429 | return PyFloat_FromDouble(r); | |
2430 | } | |
2431 | ||
2432 | ||
c9ea9335 SS |
2433 | /*[clinic input] |
2434 | math.fmod | |
2435 | ||
2436 | x: double | |
2437 | y: double | |
2438 | / | |
2439 | ||
2440 | Return fmod(x, y), according to platform C. | |
2441 | ||
2442 | x % y may differ. | |
2443 | [clinic start generated code]*/ | |
78526168 | 2444 | |
53876d9c | 2445 | static PyObject * |
c9ea9335 SS |
2446 | math_fmod_impl(PyObject *module, double x, double y) |
2447 | /*[clinic end generated code: output=7559d794343a27b5 input=4f84caa8cfc26a03]*/ | |
53876d9c | 2448 | { |
c9ea9335 | 2449 | double r; |
f95a1b3c | 2450 | /* fmod(x, +/-Inf) returns x for finite x. */ |
cd11ff12 | 2451 | if (isinf(y) && isfinite(x)) |
f95a1b3c AP |
2452 | return PyFloat_FromDouble(x); |
2453 | errno = 0; | |
f95a1b3c | 2454 | r = fmod(x, y); |
f4dd4402 SK |
2455 | #ifdef _MSC_VER |
2456 | /* Windows (e.g. Windows 10 with MSC v.1916) loose sign | |
2457 | for zero result. But C99+ says: "if y is nonzero, the result | |
2458 | has the same sign as x". | |
2459 | */ | |
2460 | if (r == 0.0 && y != 0.0) { | |
2461 | r = copysign(r, x); | |
2462 | } | |
2463 | #endif | |
cd11ff12 SK |
2464 | if (isnan(r)) { |
2465 | if (!isnan(x) && !isnan(y)) | |
f95a1b3c AP |
2466 | errno = EDOM; |
2467 | else | |
2468 | errno = 0; | |
2469 | } | |
75f59bb6 | 2470 | if (errno && is_error(r, 1)) |
f95a1b3c AP |
2471 | return NULL; |
2472 | else | |
2473 | return PyFloat_FromDouble(r); | |
53876d9c CH |
2474 | } |
2475 | ||
13990745 | 2476 | /* |
8e19c8be | 2477 | Given a *vec* of values, compute the vector norm: |
13990745 | 2478 | |
8e19c8be | 2479 | sqrt(sum(x ** 2 for x in vec)) |
fff3c280 | 2480 | |
8e19c8be RH |
2481 | The *max* variable should be equal to the largest fabs(x). |
2482 | The *n* variable is the length of *vec*. | |
2483 | If n==0, then *max* should be 0.0. | |
745c0f39 | 2484 | If an infinity is present in the vec, *max* should be INF. |
c630e104 RH |
2485 | The *found_nan* variable indicates whether some member of |
2486 | the *vec* is a NaN. | |
21786f51 | 2487 | |
8e19c8be RH |
2488 | To avoid overflow/underflow and to achieve high accuracy giving results |
2489 | that are almost always correctly rounded, four techniques are used: | |
2490 | ||
2491 | * lossless scaling using a power-of-two scaling factor | |
67c998de | 2492 | * accurate squaring using Veltkamp-Dekker splitting [1] |
0a22aa05 | 2493 | or an equivalent with an fma() call |
67c998de RH |
2494 | * compensated summation using a variant of the Neumaier algorithm [2] |
2495 | * differential correction of the square root [3] | |
8e19c8be RH |
2496 | |
2497 | The usual presentation of the Neumaier summation algorithm has an | |
2498 | expensive branch depending on which operand has the larger | |
2499 | magnitude. We avoid this cost by arranging the calculation so that | |
2500 | fabs(csum) is always as large as fabs(x). | |
2501 | ||
2502 | To establish the invariant, *csum* is initialized to 1.0 which is | |
457d4e97 | 2503 | always larger than x**2 after scaling or after division by *max*. |
8e19c8be RH |
2504 | After the loop is finished, the initial 1.0 is subtracted out for a |
2505 | net zero effect on the final sum. Since *csum* will be greater than | |
2506 | 1.0, the subtraction of 1.0 will not cause fractional digits to be | |
2507 | dropped from *csum*. | |
2508 | ||
2509 | To get the full benefit from compensated summation, the largest | |
2510 | addend should be in the range: 0.5 <= |x| <= 1.0. Accordingly, | |
2511 | scaling or division by *max* should not be skipped even if not | |
2512 | otherwise needed to prevent overflow or loss of precision. | |
2513 | ||
82e79480 | 2514 | The assertion that hi*hi <= 1.0 is a bit subtle. Each vector element |
8e19c8be RH |
2515 | gets scaled to a magnitude below 1.0. The Veltkamp-Dekker splitting |
2516 | algorithm gives a *hi* value that is correctly rounded to half | |
2517 | precision. When a value at or below 1.0 is correctly rounded, it | |
2518 | never goes above 1.0. And when values at or below 1.0 are squared, | |
2519 | they remain at or below 1.0, thus preserving the summation invariant. | |
2520 | ||
27de2860 RH |
2521 | Another interesting assertion is that csum+lo*lo == csum. In the loop, |
2522 | each scaled vector element has a magnitude less than 1.0. After the | |
2523 | Veltkamp split, *lo* has a maximum value of 2**-27. So the maximum | |
2524 | value of *lo* squared is 2**-54. The value of ulp(1.0)/2.0 is 2**-53. | |
2525 | Given that csum >= 1.0, we have: | |
2526 | lo**2 <= 2**-54 < 2**-53 == 1/2*ulp(1.0) <= ulp(csum)/2 | |
2527 | Since lo**2 is less than 1/2 ulp(csum), we have csum+lo*lo == csum. | |
2528 | ||
92c38164 | 2529 | To minimize loss of information during the accumulation of fractional |
67c998de RH |
2530 | values, each term has a separate accumulator. This also breaks up |
2531 | sequential dependencies in the inner loop so the CPU can maximize | |
1a0c7b9b | 2532 | floating-point throughput. [4] On an Apple M1 Max, hypot(*vec) |
3adb23a1 | 2533 | takes only 3.33 µsec when len(vec) == 1000. |
92c38164 | 2534 | |
8e19c8be RH |
2535 | The square root differential correction is needed because a |
2536 | correctly rounded square root of a correctly rounded sum of | |
2537 | squares can still be off by as much as one ulp. | |
2538 | ||
2539 | The differential correction starts with a value *x* that is | |
2540 | the difference between the square of *h*, the possibly inaccurately | |
2541 | rounded square root, and the accurately computed sum of squares. | |
2542 | The correction is the first order term of the Maclaurin series | |
457d4e97 | 2543 | expansion of sqrt(h**2 + x) == h + x/(2*h) + O(x**2). [5] |
8e19c8be RH |
2544 | |
2545 | Essentially, this differential correction is equivalent to one | |
82e79480 | 2546 | refinement step in Newton's divide-and-average square root |
8e19c8be RH |
2547 | algorithm, effectively doubling the number of accurate bits. |
2548 | This technique is used in Dekker's SQRT2 algorithm and again in | |
2549 | Borges' ALGORITHM 4 and 5. | |
2550 | ||
0a22aa05 RH |
2551 | The hypot() function is faithfully rounded (less than 1 ulp error) |
2552 | and usually correctly rounded (within 1/2 ulp). The squaring | |
2553 | step is exact. The Neumaier summation computes as if in doubled | |
2554 | precision (106 bits) and has the advantage that its input squares | |
2555 | are non-negative so that the condition number of the sum is one. | |
2556 | The square root with a differential correction is likewise computed | |
3adb23a1 | 2557 | as if in doubled precision. |
0a22aa05 RH |
2558 | |
2559 | For n <= 1000, prior to the final addition that rounds the overall | |
2560 | result, the internal accuracy of "h" together with its correction of | |
2561 | "x / (2.0 * h)" is at least 100 bits. [6] Also, hypot() was tested | |
2562 | against a Decimal implementation with prec=300. After 100 million | |
2563 | trials, no incorrectly rounded examples were found. In addition, | |
2564 | perfect commutativity (all permutations are exactly equal) was | |
2565 | verified for 1 billion random inputs with n=5. [7] | |
67c998de | 2566 | |
8e19c8be RH |
2567 | References: |
2568 | ||
2569 | 1. Veltkamp-Dekker splitting: http://csclub.uwaterloo.ca/~pbarfuss/dekker1971.pdf | |
2570 | 2. Compensated summation: http://www.ti3.tu-harburg.de/paper/rump/Ru08b.pdf | |
92c38164 | 2571 | 3. Square root differential correction: https://arxiv.org/pdf/1904.09481.pdf |
457d4e97 RH |
2572 | 4. Data dependency graph: https://bugs.python.org/file49439/hypot.png |
2573 | 5. https://www.wolframalpha.com/input/?i=Maclaurin+series+sqrt%28h**2+%2B+x%29+at+x%3D0 | |
497126f7 | 2574 | 6. Analysis of internal accuracy: https://bugs.python.org/file49484/best_frac.py |
457d4e97 | 2575 | 7. Commutativity test: https://bugs.python.org/file49448/test_hypot_commutativity.py |
fff3c280 | 2576 | |
13990745 RH |
2577 | */ |
2578 | ||
2579 | static inline double | |
c630e104 | 2580 | vector_norm(Py_ssize_t n, double *vec, double max, int found_nan) |
13990745 | 2581 | { |
72186aa6 | 2582 | double x, h, scale, csum = 1.0, frac1 = 0.0, frac2 = 0.0; |
0a22aa05 | 2583 | DoubleLength pr, sm; |
fff3c280 | 2584 | int max_e; |
13990745 RH |
2585 | Py_ssize_t i; |
2586 | ||
cd11ff12 | 2587 | if (isinf(max)) { |
c630e104 RH |
2588 | return max; |
2589 | } | |
2590 | if (found_nan) { | |
2591 | return Py_NAN; | |
2592 | } | |
f3267144 | 2593 | if (max == 0.0 || n <= 1) { |
745c0f39 | 2594 | return max; |
13990745 | 2595 | } |
fff3c280 | 2596 | frexp(max, &max_e); |
72186aa6 | 2597 | if (max_e < -1023) { |
3adb23a1 | 2598 | /* When max_e < -1023, ldexp(1.0, -max_e) would overflow. */ |
fff3c280 | 2599 | for (i=0 ; i < n ; i++) { |
3adb23a1 | 2600 | vec[i] /= DBL_MIN; // convert subnormals to normals |
72186aa6 RH |
2601 | } |
2602 | return DBL_MIN * vector_norm(n, vec, max / DBL_MIN, found_nan); | |
2603 | } | |
2604 | scale = ldexp(1.0, -max_e); | |
2605 | assert(max * scale >= 0.5); | |
2606 | assert(max * scale < 1.0); | |
2607 | for (i=0 ; i < n ; i++) { | |
2608 | x = vec[i]; | |
cd11ff12 | 2609 | assert(isfinite(x) && fabs(x) <= max); |
3adb23a1 | 2610 | x *= scale; // lossless scaling |
72186aa6 | 2611 | assert(fabs(x) < 1.0); |
3adb23a1 | 2612 | pr = dl_mul(x, x); // lossless squaring |
72186aa6 | 2613 | assert(pr.hi <= 1.0); |
3adb23a1 | 2614 | sm = dl_fast_sum(csum, pr.hi); // lossless addition |
0a22aa05 | 2615 | csum = sm.hi; |
3adb23a1 RH |
2616 | frac1 += pr.lo; // lossy addition |
2617 | frac2 += sm.lo; // lossy addition | |
fff3c280 | 2618 | } |
72186aa6 RH |
2619 | h = sqrt(csum - 1.0 + (frac1 + frac2)); |
2620 | pr = dl_mul(-h, h); | |
2621 | sm = dl_fast_sum(csum, pr.hi); | |
2622 | csum = sm.hi; | |
2623 | frac1 += pr.lo; | |
2624 | frac2 += sm.lo; | |
2625 | x = csum - 1.0 + (frac1 + frac2); | |
3adb23a1 RH |
2626 | h += x / (2.0 * h); // differential correction |
2627 | return h / scale; | |
13990745 RH |
2628 | } |
2629 | ||
c630e104 RH |
2630 | #define NUM_STACK_ELEMS 16 |
2631 | ||
9c18b1ae RH |
2632 | /*[clinic input] |
2633 | math.dist | |
2634 | ||
6b5f1b49 RH |
2635 | p: object |
2636 | q: object | |
9c18b1ae RH |
2637 | / |
2638 | ||
2639 | Return the Euclidean distance between two points p and q. | |
2640 | ||
6b5f1b49 RH |
2641 | The points should be specified as sequences (or iterables) of |
2642 | coordinates. Both inputs must have the same dimension. | |
9c18b1ae RH |
2643 | |
2644 | Roughly equivalent to: | |
2645 | sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q))) | |
2646 | [clinic start generated code]*/ | |
2647 | ||
2648 | static PyObject * | |
2649 | math_dist_impl(PyObject *module, PyObject *p, PyObject *q) | |
6b5f1b49 | 2650 | /*[clinic end generated code: output=56bd9538d06bbcfe input=74e85e1b6092e68e]*/ |
9c18b1ae RH |
2651 | { |
2652 | PyObject *item; | |
9c18b1ae | 2653 | double max = 0.0; |
9c18b1ae RH |
2654 | double x, px, qx, result; |
2655 | Py_ssize_t i, m, n; | |
6b5f1b49 | 2656 | int found_nan = 0, p_allocated = 0, q_allocated = 0; |
c630e104 RH |
2657 | double diffs_on_stack[NUM_STACK_ELEMS]; |
2658 | double *diffs = diffs_on_stack; | |
9c18b1ae | 2659 | |
6b5f1b49 RH |
2660 | if (!PyTuple_Check(p)) { |
2661 | p = PySequence_Tuple(p); | |
2662 | if (p == NULL) { | |
2663 | return NULL; | |
2664 | } | |
2665 | p_allocated = 1; | |
2666 | } | |
2667 | if (!PyTuple_Check(q)) { | |
2668 | q = PySequence_Tuple(q); | |
2669 | if (q == NULL) { | |
2670 | if (p_allocated) { | |
2671 | Py_DECREF(p); | |
2672 | } | |
2673 | return NULL; | |
2674 | } | |
2675 | q_allocated = 1; | |
2676 | } | |
2677 | ||
9c18b1ae RH |
2678 | m = PyTuple_GET_SIZE(p); |
2679 | n = PyTuple_GET_SIZE(q); | |
2680 | if (m != n) { | |
2681 | PyErr_SetString(PyExc_ValueError, | |
2682 | "both points must have the same number of dimensions"); | |
ab575050 | 2683 | goto error_exit; |
9c18b1ae | 2684 | } |
c630e104 | 2685 | if (n > NUM_STACK_ELEMS) { |
dcd28b5c | 2686 | diffs = (double *) PyMem_Malloc(n * sizeof(double)); |
c630e104 | 2687 | if (diffs == NULL) { |
ab575050 KA |
2688 | PyErr_NoMemory(); |
2689 | goto error_exit; | |
c630e104 | 2690 | } |
9c18b1ae RH |
2691 | } |
2692 | for (i=0 ; i<n ; i++) { | |
2693 | item = PyTuple_GET_ITEM(p, i); | |
cfd735ea | 2694 | ASSIGN_DOUBLE(px, item, error_exit); |
9c18b1ae | 2695 | item = PyTuple_GET_ITEM(q, i); |
cfd735ea | 2696 | ASSIGN_DOUBLE(qx, item, error_exit); |
9c18b1ae RH |
2697 | x = fabs(px - qx); |
2698 | diffs[i] = x; | |
cd11ff12 | 2699 | found_nan |= isnan(x); |
9c18b1ae RH |
2700 | if (x > max) { |
2701 | max = x; | |
2702 | } | |
2703 | } | |
c630e104 RH |
2704 | result = vector_norm(n, diffs, max, found_nan); |
2705 | if (diffs != diffs_on_stack) { | |
dcd28b5c | 2706 | PyMem_Free(diffs); |
9c18b1ae | 2707 | } |
6b5f1b49 RH |
2708 | if (p_allocated) { |
2709 | Py_DECREF(p); | |
2710 | } | |
2711 | if (q_allocated) { | |
2712 | Py_DECREF(q); | |
2713 | } | |
9c18b1ae | 2714 | return PyFloat_FromDouble(result); |
c630e104 RH |
2715 | |
2716 | error_exit: | |
2717 | if (diffs != diffs_on_stack) { | |
dcd28b5c | 2718 | PyMem_Free(diffs); |
c630e104 | 2719 | } |
6b5f1b49 RH |
2720 | if (p_allocated) { |
2721 | Py_DECREF(p); | |
2722 | } | |
2723 | if (q_allocated) { | |
2724 | Py_DECREF(q); | |
2725 | } | |
c630e104 | 2726 | return NULL; |
9c18b1ae RH |
2727 | } |
2728 | ||
3275cb19 SK |
2729 | /*[clinic input] |
2730 | math.hypot | |
2731 | ||
1f777396 | 2732 | *coordinates as args: array |
3275cb19 SK |
2733 | |
2734 | Multidimensional Euclidean distance from the origin to a point. | |
2735 | ||
2736 | Roughly equivalent to: | |
2737 | sqrt(sum(x**2 for x in coordinates)) | |
2738 | ||
2739 | For a two dimensional point (x, y), gives the hypotenuse | |
2740 | using the Pythagorean theorem: sqrt(x*x + y*y). | |
2741 | ||
2742 | For example, the hypotenuse of a 3/4/5 right triangle is: | |
2743 | ||
2744 | >>> hypot(3.0, 4.0) | |
2745 | 5.0 | |
2746 | [clinic start generated code]*/ | |
2747 | ||
53876d9c | 2748 | static PyObject * |
1f777396 SS |
2749 | math_hypot_impl(PyObject *module, PyObject * const *args, |
2750 | Py_ssize_t args_length) | |
2751 | /*[clinic end generated code: output=c9de404e24370068 input=1bceaf7d4fdcd9c2]*/ | |
53876d9c | 2752 | { |
d0d3e991 | 2753 | Py_ssize_t i; |
c6dabe37 | 2754 | PyObject *item; |
c6dabe37 | 2755 | double max = 0.0; |
c6dabe37 RH |
2756 | double x, result; |
2757 | int found_nan = 0; | |
c630e104 RH |
2758 | double coord_on_stack[NUM_STACK_ELEMS]; |
2759 | double *coordinates = coord_on_stack; | |
c6dabe37 | 2760 | |
1f777396 SS |
2761 | if (args_length > NUM_STACK_ELEMS) { |
2762 | coordinates = (double *) PyMem_Malloc(args_length * sizeof(double)); | |
4c49da0c ZS |
2763 | if (coordinates == NULL) { |
2764 | return PyErr_NoMemory(); | |
2765 | } | |
c630e104 | 2766 | } |
1f777396 | 2767 | for (i = 0; i < args_length; i++) { |
d0d3e991 | 2768 | item = args[i]; |
cfd735ea | 2769 | ASSIGN_DOUBLE(x, item, error_exit); |
c6dabe37 RH |
2770 | x = fabs(x); |
2771 | coordinates[i] = x; | |
cd11ff12 | 2772 | found_nan |= isnan(x); |
c6dabe37 RH |
2773 | if (x > max) { |
2774 | max = x; | |
2775 | } | |
f95a1b3c | 2776 | } |
1f777396 | 2777 | result = vector_norm(args_length, coordinates, max, found_nan); |
c630e104 | 2778 | if (coordinates != coord_on_stack) { |
dcd28b5c | 2779 | PyMem_Free(coordinates); |
f95a1b3c | 2780 | } |
c6dabe37 | 2781 | return PyFloat_FromDouble(result); |
c630e104 RH |
2782 | |
2783 | error_exit: | |
2784 | if (coordinates != coord_on_stack) { | |
dcd28b5c | 2785 | PyMem_Free(coordinates); |
c630e104 RH |
2786 | } |
2787 | return NULL; | |
53876d9c CH |
2788 | } |
2789 | ||
c630e104 RH |
2790 | #undef NUM_STACK_ELEMS |
2791 | ||
47b9f83a RH |
2792 | /** sumprod() ***************************************************************/ |
2793 | ||
2794 | /* Forward declaration */ | |
2795 | static inline int _check_long_mult_overflow(long a, long b); | |
2796 | ||
2797 | static inline bool | |
2798 | long_add_would_overflow(long a, long b) | |
2799 | { | |
2800 | return (a > 0) ? (b > LONG_MAX - a) : (b < LONG_MIN - a); | |
2801 | } | |
2802 | ||
47b9f83a RH |
2803 | /*[clinic input] |
2804 | math.sumprod | |
2805 | ||
2806 | p: object | |
2807 | q: object | |
2808 | / | |
2809 | ||
2810 | Return the sum of products of values from two iterables p and q. | |
2811 | ||
2812 | Roughly equivalent to: | |
2813 | ||
3d4fda21 | 2814 | sum(map(operator.mul, p, q, strict=True)) |
47b9f83a RH |
2815 | |
2816 | For float and mixed int/float inputs, the intermediate products | |
2817 | and sums are computed with extended precision. | |
2818 | [clinic start generated code]*/ | |
2819 | ||
2820 | static PyObject * | |
2821 | math_sumprod_impl(PyObject *module, PyObject *p, PyObject *q) | |
3d4fda21 | 2822 | /*[clinic end generated code: output=6722dbfe60664554 input=a2880317828c61d2]*/ |
47b9f83a RH |
2823 | { |
2824 | PyObject *p_i = NULL, *q_i = NULL, *term_i = NULL, *new_total = NULL; | |
2825 | PyObject *p_it, *q_it, *total; | |
2826 | iternextfunc p_next, q_next; | |
2827 | bool p_stopped = false, q_stopped = false; | |
2828 | bool int_path_enabled = true, int_total_in_use = false; | |
2829 | bool flt_path_enabled = true, flt_total_in_use = false; | |
2830 | long int_total = 0; | |
b139bcd8 | 2831 | TripleLength flt_total = tl_zero; |
47b9f83a RH |
2832 | |
2833 | p_it = PyObject_GetIter(p); | |
2834 | if (p_it == NULL) { | |
2835 | return NULL; | |
2836 | } | |
2837 | q_it = PyObject_GetIter(q); | |
2838 | if (q_it == NULL) { | |
2839 | Py_DECREF(p_it); | |
2840 | return NULL; | |
2841 | } | |
2842 | total = PyLong_FromLong(0); | |
2843 | if (total == NULL) { | |
2844 | Py_DECREF(p_it); | |
2845 | Py_DECREF(q_it); | |
2846 | return NULL; | |
2847 | } | |
2848 | p_next = *Py_TYPE(p_it)->tp_iternext; | |
2849 | q_next = *Py_TYPE(q_it)->tp_iternext; | |
2850 | while (1) { | |
2851 | bool finished; | |
2852 | ||
2853 | assert (p_i == NULL); | |
2854 | assert (q_i == NULL); | |
2855 | assert (term_i == NULL); | |
2856 | assert (new_total == NULL); | |
2857 | ||
2858 | assert (p_it != NULL); | |
2859 | assert (q_it != NULL); | |
2860 | assert (total != NULL); | |
2861 | ||
2862 | p_i = p_next(p_it); | |
2863 | if (p_i == NULL) { | |
2864 | if (PyErr_Occurred()) { | |
2865 | if (!PyErr_ExceptionMatches(PyExc_StopIteration)) { | |
2866 | goto err_exit; | |
2867 | } | |
2868 | PyErr_Clear(); | |
2869 | } | |
2870 | p_stopped = true; | |
2871 | } | |
2872 | q_i = q_next(q_it); | |
2873 | if (q_i == NULL) { | |
2874 | if (PyErr_Occurred()) { | |
2875 | if (!PyErr_ExceptionMatches(PyExc_StopIteration)) { | |
2876 | goto err_exit; | |
2877 | } | |
2878 | PyErr_Clear(); | |
2879 | } | |
2880 | q_stopped = true; | |
2881 | } | |
2882 | if (p_stopped != q_stopped) { | |
2883 | PyErr_Format(PyExc_ValueError, "Inputs are not the same length"); | |
2884 | goto err_exit; | |
2885 | } | |
2886 | finished = p_stopped & q_stopped; | |
2887 | ||
2888 | if (int_path_enabled) { | |
2889 | ||
2890 | if (!finished && PyLong_CheckExact(p_i) & PyLong_CheckExact(q_i)) { | |
2891 | int overflow; | |
2892 | long int_p, int_q, int_prod; | |
2893 | ||
2894 | int_p = PyLong_AsLongAndOverflow(p_i, &overflow); | |
2895 | if (overflow) { | |
2896 | goto finalize_int_path; | |
2897 | } | |
2898 | int_q = PyLong_AsLongAndOverflow(q_i, &overflow); | |
2899 | if (overflow) { | |
2900 | goto finalize_int_path; | |
2901 | } | |
2902 | if (_check_long_mult_overflow(int_p, int_q)) { | |
2903 | goto finalize_int_path; | |
2904 | } | |
2905 | int_prod = int_p * int_q; | |
2906 | if (long_add_would_overflow(int_total, int_prod)) { | |
2907 | goto finalize_int_path; | |
2908 | } | |
2909 | int_total += int_prod; | |
2910 | int_total_in_use = true; | |
2911 | Py_CLEAR(p_i); | |
2912 | Py_CLEAR(q_i); | |
2913 | continue; | |
2914 | } | |
2915 | ||
2916 | finalize_int_path: | |
997073c2 | 2917 | // We're finished, overflowed, or have a non-int |
47b9f83a RH |
2918 | int_path_enabled = false; |
2919 | if (int_total_in_use) { | |
2920 | term_i = PyLong_FromLong(int_total); | |
2921 | if (term_i == NULL) { | |
2922 | goto err_exit; | |
2923 | } | |
2924 | new_total = PyNumber_Add(total, term_i); | |
2925 | if (new_total == NULL) { | |
2926 | goto err_exit; | |
2927 | } | |
2928 | Py_SETREF(total, new_total); | |
2929 | new_total = NULL; | |
2930 | Py_CLEAR(term_i); | |
2931 | int_total = 0; // An ounce of prevention, ... | |
2932 | int_total_in_use = false; | |
2933 | } | |
2934 | } | |
2935 | ||
2936 | if (flt_path_enabled) { | |
2937 | ||
2938 | if (!finished) { | |
2939 | double flt_p, flt_q; | |
2940 | bool p_type_float = PyFloat_CheckExact(p_i); | |
2941 | bool q_type_float = PyFloat_CheckExact(q_i); | |
2942 | if (p_type_float && q_type_float) { | |
2943 | flt_p = PyFloat_AS_DOUBLE(p_i); | |
2944 | flt_q = PyFloat_AS_DOUBLE(q_i); | |
2945 | } else if (p_type_float && (PyLong_CheckExact(q_i) || PyBool_Check(q_i))) { | |
2946 | /* We care about float/int pairs and int/float pairs because | |
2947 | they arise naturally in several use cases such as price | |
2948 | times quantity, measurements with integer weights, or | |
2949 | data selected by a vector of bools. */ | |
2950 | flt_p = PyFloat_AS_DOUBLE(p_i); | |
2951 | flt_q = PyLong_AsDouble(q_i); | |
2952 | if (flt_q == -1.0 && PyErr_Occurred()) { | |
2953 | PyErr_Clear(); | |
2954 | goto finalize_flt_path; | |
2955 | } | |
9dc4fb82 | 2956 | } else if (q_type_float && (PyLong_CheckExact(p_i) || PyBool_Check(p_i))) { |
47b9f83a RH |
2957 | flt_q = PyFloat_AS_DOUBLE(q_i); |
2958 | flt_p = PyLong_AsDouble(p_i); | |
2959 | if (flt_p == -1.0 && PyErr_Occurred()) { | |
2960 | PyErr_Clear(); | |
2961 | goto finalize_flt_path; | |
2962 | } | |
2963 | } else { | |
2964 | goto finalize_flt_path; | |
2965 | } | |
84483aac | 2966 | TripleLength new_flt_total = tl_fma(flt_p, flt_q, flt_total); |
47b9f83a RH |
2967 | if (isfinite(new_flt_total.hi)) { |
2968 | flt_total = new_flt_total; | |
2969 | flt_total_in_use = true; | |
2970 | Py_CLEAR(p_i); | |
2971 | Py_CLEAR(q_i); | |
2972 | continue; | |
2973 | } | |
2974 | } | |
2975 | ||
2976 | finalize_flt_path: | |
2977 | // We're finished, overflowed, have a non-float, or got a non-finite value | |
2978 | flt_path_enabled = false; | |
2979 | if (flt_total_in_use) { | |
b139bcd8 | 2980 | term_i = PyFloat_FromDouble(tl_to_d(flt_total)); |
47b9f83a RH |
2981 | if (term_i == NULL) { |
2982 | goto err_exit; | |
2983 | } | |
2984 | new_total = PyNumber_Add(total, term_i); | |
2985 | if (new_total == NULL) { | |
2986 | goto err_exit; | |
2987 | } | |
2988 | Py_SETREF(total, new_total); | |
2989 | new_total = NULL; | |
2990 | Py_CLEAR(term_i); | |
b139bcd8 | 2991 | flt_total = tl_zero; |
47b9f83a RH |
2992 | flt_total_in_use = false; |
2993 | } | |
2994 | } | |
2995 | ||
2996 | assert(!int_total_in_use); | |
2997 | assert(!flt_total_in_use); | |
2998 | if (finished) { | |
2999 | goto normal_exit; | |
3000 | } | |
3001 | term_i = PyNumber_Multiply(p_i, q_i); | |
3002 | if (term_i == NULL) { | |
3003 | goto err_exit; | |
3004 | } | |
3005 | new_total = PyNumber_Add(total, term_i); | |
3006 | if (new_total == NULL) { | |
3007 | goto err_exit; | |
3008 | } | |
3009 | Py_SETREF(total, new_total); | |
3010 | new_total = NULL; | |
3011 | Py_CLEAR(p_i); | |
3012 | Py_CLEAR(q_i); | |
3013 | Py_CLEAR(term_i); | |
3014 | } | |
3015 | ||
3016 | normal_exit: | |
3017 | Py_DECREF(p_it); | |
3018 | Py_DECREF(q_it); | |
3019 | return total; | |
3020 | ||
3021 | err_exit: | |
3022 | Py_DECREF(p_it); | |
3023 | Py_DECREF(q_it); | |
3024 | Py_DECREF(total); | |
3025 | Py_XDECREF(p_i); | |
3026 | Py_XDECREF(q_i); | |
3027 | Py_XDECREF(term_i); | |
3028 | Py_XDECREF(new_total); | |
3029 | return NULL; | |
3030 | } | |
3031 | ||
3032 | ||
53876d9c CH |
3033 | /* pow can't use math_2, but needs its own wrapper: the problem is |
3034 | that an infinite result can arise either as a result of overflow | |
3035 | (in which case OverflowError should be raised) or as a result of | |
3036 | e.g. 0.**-5. (for which ValueError needs to be raised.) | |
3037 | */ | |
3038 | ||
c9ea9335 SS |
3039 | /*[clinic input] |
3040 | math.pow | |
3041 | ||
3042 | x: double | |
3043 | y: double | |
3044 | / | |
3045 | ||
3046 | Return x**y (x to the power of y). | |
3047 | [clinic start generated code]*/ | |
3048 | ||
53876d9c | 3049 | static PyObject * |
c9ea9335 SS |
3050 | math_pow_impl(PyObject *module, double x, double y) |
3051 | /*[clinic end generated code: output=fff93e65abccd6b0 input=c26f1f6075088bfd]*/ | |
53876d9c | 3052 | { |
c9ea9335 | 3053 | double r; |
f95a1b3c AP |
3054 | int odd_y; |
3055 | ||
f95a1b3c AP |
3056 | /* deal directly with IEEE specials, to cope with problems on various |
3057 | platforms whose semantics don't exactly match C99 */ | |
3058 | r = 0.; /* silence compiler warning */ | |
cd11ff12 | 3059 | if (!isfinite(x) || !isfinite(y)) { |
f95a1b3c | 3060 | errno = 0; |
cd11ff12 | 3061 | if (isnan(x)) |
f95a1b3c | 3062 | r = y == 0. ? 1. : x; /* NaN**0 = 1 */ |
cd11ff12 | 3063 | else if (isnan(y)) |
f95a1b3c | 3064 | r = x == 1. ? 1. : y; /* 1**NaN = 1 */ |
cd11ff12 SK |
3065 | else if (isinf(x)) { |
3066 | odd_y = isfinite(y) && fmod(fabs(y), 2.0) == 1.0; | |
f95a1b3c AP |
3067 | if (y > 0.) |
3068 | r = odd_y ? x : fabs(x); | |
3069 | else if (y == 0.) | |
3070 | r = 1.; | |
3071 | else /* y < 0. */ | |
3072 | r = odd_y ? copysign(0., x) : 0.; | |
3073 | } | |
9c995abd | 3074 | else { |
cd11ff12 | 3075 | assert(isinf(y)); |
f95a1b3c AP |
3076 | if (fabs(x) == 1.0) |
3077 | r = 1.; | |
3078 | else if (y > 0. && fabs(x) > 1.0) | |
3079 | r = y; | |
3080 | else if (y < 0. && fabs(x) < 1.0) { | |
3081 | r = -y; /* result is +inf */ | |
f95a1b3c AP |
3082 | } |
3083 | else | |
3084 | r = 0.; | |
3085 | } | |
3086 | } | |
3087 | else { | |
3088 | /* let libm handle finite**finite */ | |
3089 | errno = 0; | |
f95a1b3c | 3090 | r = pow(x, y); |
f95a1b3c AP |
3091 | /* a NaN result should arise only from (-ve)**(finite |
3092 | non-integer); in this case we want to raise ValueError. */ | |
cd11ff12 SK |
3093 | if (!isfinite(r)) { |
3094 | if (isnan(r)) { | |
f95a1b3c AP |
3095 | errno = EDOM; |
3096 | } | |
3097 | /* | |
3098 | an infinite result here arises either from: | |
3099 | (A) (+/-0.)**negative (-> divide-by-zero) | |
3100 | (B) overflow of x**y with x and y finite | |
3101 | */ | |
cd11ff12 | 3102 | else if (isinf(r)) { |
f95a1b3c AP |
3103 | if (x == 0.) |
3104 | errno = EDOM; | |
3105 | else | |
3106 | errno = ERANGE; | |
3107 | } | |
3108 | } | |
3109 | } | |
3110 | ||
75f59bb6 | 3111 | if (errno && is_error(r, 1)) |
f95a1b3c AP |
3112 | return NULL; |
3113 | else | |
3114 | return PyFloat_FromDouble(r); | |
53876d9c CH |
3115 | } |
3116 | ||
53876d9c | 3117 | |
072c0f1b CH |
3118 | static const double degToRad = Py_MATH_PI / 180.0; |
3119 | static const double radToDeg = 180.0 / Py_MATH_PI; | |
d6f2267a | 3120 | |
c9ea9335 SS |
3121 | /*[clinic input] |
3122 | math.degrees | |
3123 | ||
3124 | x: double | |
3125 | / | |
3126 | ||
3127 | Convert angle x from radians to degrees. | |
3128 | [clinic start generated code]*/ | |
3129 | ||
d6f2267a | 3130 | static PyObject * |
c9ea9335 SS |
3131 | math_degrees_impl(PyObject *module, double x) |
3132 | /*[clinic end generated code: output=7fea78b294acd12f input=81e016555d6e3660]*/ | |
d6f2267a | 3133 | { |
f95a1b3c | 3134 | return PyFloat_FromDouble(x * radToDeg); |
d6f2267a RH |
3135 | } |
3136 | ||
c9ea9335 SS |
3137 | |
3138 | /*[clinic input] | |
3139 | math.radians | |
3140 | ||
3141 | x: double | |
3142 | / | |
3143 | ||
3144 | Convert angle x from degrees to radians. | |
3145 | [clinic start generated code]*/ | |
d6f2267a RH |
3146 | |
3147 | static PyObject * | |
c9ea9335 SS |
3148 | math_radians_impl(PyObject *module, double x) |
3149 | /*[clinic end generated code: output=34daa47caf9b1590 input=91626fc489fe3d63]*/ | |
d6f2267a | 3150 | { |
f95a1b3c | 3151 | return PyFloat_FromDouble(x * degToRad); |
d6f2267a RH |
3152 | } |
3153 | ||
c9ea9335 SS |
3154 | |
3155 | /*[clinic input] | |
3156 | math.isfinite | |
3157 | ||
3158 | x: double | |
3159 | / | |
3160 | ||
3161 | Return True if x is neither an infinity nor a NaN, and False otherwise. | |
3162 | [clinic start generated code]*/ | |
78526168 | 3163 | |
8e0c9968 | 3164 | static PyObject * |
c9ea9335 SS |
3165 | math_isfinite_impl(PyObject *module, double x) |
3166 | /*[clinic end generated code: output=8ba1f396440c9901 input=46967d254812e54a]*/ | |
8e0c9968 | 3167 | { |
cd11ff12 | 3168 | return PyBool_FromLong((long)isfinite(x)); |
8e0c9968 MD |
3169 | } |
3170 | ||
c9ea9335 | 3171 | |
5f61cde8 SK |
3172 | /*[clinic input] |
3173 | math.isnormal | |
3174 | ||
3175 | x: double | |
3176 | / | |
3177 | ||
3178 | Return True if x is normal, and False otherwise. | |
3179 | [clinic start generated code]*/ | |
3180 | ||
3181 | static PyObject * | |
3182 | math_isnormal_impl(PyObject *module, double x) | |
3183 | /*[clinic end generated code: output=c7b302b5b89c3541 input=fdaa00c58aa7bc17]*/ | |
3184 | { | |
3185 | return PyBool_FromLong(isnormal(x)); | |
3186 | } | |
3187 | ||
3188 | ||
3189 | /*[clinic input] | |
3190 | math.issubnormal | |
3191 | ||
3192 | x: double | |
3193 | / | |
3194 | ||
3195 | Return True if x is subnormal, and False otherwise. | |
3196 | [clinic start generated code]*/ | |
3197 | ||
3198 | static PyObject * | |
3199 | math_issubnormal_impl(PyObject *module, double x) | |
3200 | /*[clinic end generated code: output=4e76ac98ddcae761 input=9a20aba7107d0d95]*/ | |
3201 | { | |
a88b49c3 | 3202 | #if !defined(_MSC_VER) && defined(__STDC_VERSION__) && __STDC_VERSION__ >= 202311L |
5f61cde8 SK |
3203 | return PyBool_FromLong(issubnormal(x)); |
3204 | #else | |
3205 | return PyBool_FromLong(isfinite(x) && x && !isnormal(x)); | |
3206 | #endif | |
3207 | } | |
3208 | ||
3209 | ||
c9ea9335 SS |
3210 | /*[clinic input] |
3211 | math.isnan | |
3212 | ||
3213 | x: double | |
3214 | / | |
3215 | ||
3216 | Return True if x is a NaN (not a number), and False otherwise. | |
3217 | [clinic start generated code]*/ | |
8e0c9968 | 3218 | |
072c0f1b | 3219 | static PyObject * |
c9ea9335 SS |
3220 | math_isnan_impl(PyObject *module, double x) |
3221 | /*[clinic end generated code: output=f537b4d6df878c3e input=935891e66083f46a]*/ | |
072c0f1b | 3222 | { |
cd11ff12 | 3223 | return PyBool_FromLong((long)isnan(x)); |
072c0f1b CH |
3224 | } |
3225 | ||
c9ea9335 SS |
3226 | |
3227 | /*[clinic input] | |
3228 | math.isinf | |
3229 | ||
3230 | x: double | |
3231 | / | |
3232 | ||
3233 | Return True if x is a positive or negative infinity, and False otherwise. | |
3234 | [clinic start generated code]*/ | |
072c0f1b CH |
3235 | |
3236 | static PyObject * | |
c9ea9335 SS |
3237 | math_isinf_impl(PyObject *module, double x) |
3238 | /*[clinic end generated code: output=9f00cbec4de7b06b input=32630e4212cf961f]*/ | |
072c0f1b | 3239 | { |
cd11ff12 | 3240 | return PyBool_FromLong((long)isinf(x)); |
072c0f1b CH |
3241 | } |
3242 | ||
072c0f1b | 3243 | |
c9ea9335 SS |
3244 | /*[clinic input] |
3245 | math.isclose -> bool | |
d5519ed7 | 3246 | |
c9ea9335 SS |
3247 | a: double |
3248 | b: double | |
3249 | * | |
3250 | rel_tol: double = 1e-09 | |
3251 | maximum difference for being considered "close", relative to the | |
3252 | magnitude of the input values | |
3253 | abs_tol: double = 0.0 | |
3254 | maximum difference for being considered "close", regardless of the | |
3255 | magnitude of the input values | |
d5519ed7 | 3256 | |
1a0c7b9b | 3257 | Determine whether two floating-point numbers are close in value. |
d5519ed7 | 3258 | |
c9ea9335 SS |
3259 | Return True if a is close in value to b, and False otherwise. |
3260 | ||
3261 | For the values to be considered close, the difference between them | |
3262 | must be smaller than at least one of the tolerances. | |
3263 | ||
3264 | -inf, inf and NaN behave similarly to the IEEE 754 Standard. That | |
3265 | is, NaN is not close to anything, even itself. inf and -inf are | |
3266 | only close to themselves. | |
3267 | [clinic start generated code]*/ | |
3268 | ||
3269 | static int | |
3270 | math_isclose_impl(PyObject *module, double a, double b, double rel_tol, | |
3271 | double abs_tol) | |
1a0c7b9b | 3272 | /*[clinic end generated code: output=b73070207511952d input=12d41764468bfdb8]*/ |
c9ea9335 SS |
3273 | { |
3274 | double diff = 0.0; | |
d5519ed7 TE |
3275 | |
3276 | /* sanity check on the inputs */ | |
3277 | if (rel_tol < 0.0 || abs_tol < 0.0 ) { | |
3278 | PyErr_SetString(PyExc_ValueError, | |
3279 | "tolerances must be non-negative"); | |
c9ea9335 | 3280 | return -1; |
d5519ed7 TE |
3281 | } |
3282 | ||
3283 | if ( a == b ) { | |
3284 | /* short circuit exact equality -- needed to catch two infinities of | |
3285 | the same sign. And perhaps speeds things up a bit sometimes. | |
3286 | */ | |
c9ea9335 | 3287 | return 1; |
d5519ed7 TE |
3288 | } |
3289 | ||
3290 | /* This catches the case of two infinities of opposite sign, or | |
3291 | one infinity and one finite number. Two infinities of opposite | |
3292 | sign would otherwise have an infinite relative tolerance. | |
3293 | Two infinities of the same sign are caught by the equality check | |
3294 | above. | |
3295 | */ | |
3296 | ||
cd11ff12 | 3297 | if (isinf(a) || isinf(b)) { |
c9ea9335 | 3298 | return 0; |
d5519ed7 TE |
3299 | } |
3300 | ||
3301 | /* now do the regular computation | |
3302 | this is essentially the "weak" test from the Boost library | |
3303 | */ | |
3304 | ||
3305 | diff = fabs(b - a); | |
3306 | ||
c9ea9335 SS |
3307 | return (((diff <= fabs(rel_tol * b)) || |
3308 | (diff <= fabs(rel_tol * a))) || | |
3309 | (diff <= abs_tol)); | |
d5519ed7 TE |
3310 | } |
3311 | ||
0411411c PG |
3312 | static inline int |
3313 | _check_long_mult_overflow(long a, long b) { | |
3314 | ||
3315 | /* From Python2's int_mul code: | |
3316 | ||
3317 | Integer overflow checking for * is painful: Python tried a couple ways, but | |
3318 | they didn't work on all platforms, or failed in endcases (a product of | |
3319 | -sys.maxint-1 has been a particular pain). | |
3320 | ||
3321 | Here's another way: | |
3322 | ||
3323 | The native long product x*y is either exactly right or *way* off, being | |
3324 | just the last n bits of the true product, where n is the number of bits | |
3325 | in a long (the delivered product is the true product plus i*2**n for | |
3326 | some integer i). | |
3327 | ||
3328 | The native double product (double)x * (double)y is subject to three | |
3329 | rounding errors: on a sizeof(long)==8 box, each cast to double can lose | |
3330 | info, and even on a sizeof(long)==4 box, the multiplication can lose info. | |
3331 | But, unlike the native long product, it's not in *range* trouble: even | |
3332 | if sizeof(long)==32 (256-bit longs), the product easily fits in the | |
3333 | dynamic range of a double. So the leading 50 (or so) bits of the double | |
3334 | product are correct. | |
3335 | ||
3336 | We check these two ways against each other, and declare victory if they're | |
3337 | approximately the same. Else, because the native long product is the only | |
3338 | one that can lose catastrophic amounts of information, it's the native long | |
3339 | product that must have overflowed. | |
3340 | ||
3341 | */ | |
3342 | ||
3343 | long longprod = (long)((unsigned long)a * b); | |
3344 | double doubleprod = (double)a * (double)b; | |
3345 | double doubled_longprod = (double)longprod; | |
3346 | ||
3347 | if (doubled_longprod == doubleprod) { | |
3348 | return 0; | |
3349 | } | |
3350 | ||
3351 | const double diff = doubled_longprod - doubleprod; | |
3352 | const double absdiff = diff >= 0.0 ? diff : -diff; | |
3353 | const double absprod = doubleprod >= 0.0 ? doubleprod : -doubleprod; | |
3354 | ||
3355 | if (32.0 * absdiff <= absprod) { | |
3356 | return 0; | |
3357 | } | |
3358 | ||
3359 | return 1; | |
3360 | } | |
d5519ed7 | 3361 | |
bc098515 PG |
3362 | /*[clinic input] |
3363 | math.prod | |
3364 | ||
3365 | iterable: object | |
3366 | / | |
3367 | * | |
3368 | start: object(c_default="NULL") = 1 | |
3369 | ||
3370 | Calculate the product of all the elements in the input iterable. | |
3371 | ||
3372 | The default start value for the product is 1. | |
3373 | ||
3374 | When the iterable is empty, return the start value. This function is | |
3375 | intended specifically for use with numeric values and may reject | |
3376 | non-numeric types. | |
3377 | [clinic start generated code]*/ | |
3378 | ||
3379 | static PyObject * | |
3380 | math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start) | |
3381 | /*[clinic end generated code: output=36153bedac74a198 input=4c5ab0682782ed54]*/ | |
3382 | { | |
3383 | PyObject *result = start; | |
3384 | PyObject *temp, *item, *iter; | |
3385 | ||
3386 | iter = PyObject_GetIter(iterable); | |
3387 | if (iter == NULL) { | |
3388 | return NULL; | |
3389 | } | |
3390 | ||
3391 | if (result == NULL) { | |
84975146 | 3392 | result = _PyLong_GetOne(); |
bc098515 | 3393 | } |
84975146 | 3394 | Py_INCREF(result); |
bc098515 PG |
3395 | #ifndef SLOW_PROD |
3396 | /* Fast paths for integers keeping temporary products in C. | |
3397 | * Assumes all inputs are the same type. | |
3398 | * If the assumption fails, default to use PyObjects instead. | |
3399 | */ | |
3400 | if (PyLong_CheckExact(result)) { | |
3401 | int overflow; | |
3402 | long i_result = PyLong_AsLongAndOverflow(result, &overflow); | |
3403 | /* If this already overflowed, don't even enter the loop. */ | |
3404 | if (overflow == 0) { | |
81f7359f | 3405 | Py_SETREF(result, NULL); |
bc098515 PG |
3406 | } |
3407 | /* Loop over all the items in the iterable until we finish, we overflow | |
3408 | * or we found a non integer element */ | |
84975146 | 3409 | while (result == NULL) { |
bc098515 PG |
3410 | item = PyIter_Next(iter); |
3411 | if (item == NULL) { | |
3412 | Py_DECREF(iter); | |
3413 | if (PyErr_Occurred()) { | |
3414 | return NULL; | |
3415 | } | |
3416 | return PyLong_FromLong(i_result); | |
3417 | } | |
3418 | if (PyLong_CheckExact(item)) { | |
3419 | long b = PyLong_AsLongAndOverflow(item, &overflow); | |
0411411c PG |
3420 | if (overflow == 0 && !_check_long_mult_overflow(i_result, b)) { |
3421 | long x = i_result * b; | |
bc098515 PG |
3422 | i_result = x; |
3423 | Py_DECREF(item); | |
3424 | continue; | |
3425 | } | |
3426 | } | |
3427 | /* Either overflowed or is not an int. | |
3428 | * Restore real objects and process normally */ | |
3429 | result = PyLong_FromLong(i_result); | |
3430 | if (result == NULL) { | |
3431 | Py_DECREF(item); | |
3432 | Py_DECREF(iter); | |
3433 | return NULL; | |
3434 | } | |
3435 | temp = PyNumber_Multiply(result, item); | |
3436 | Py_DECREF(result); | |
3437 | Py_DECREF(item); | |
3438 | result = temp; | |
3439 | if (result == NULL) { | |
3440 | Py_DECREF(iter); | |
3441 | return NULL; | |
3442 | } | |
3443 | } | |
3444 | } | |
3445 | ||
3446 | /* Fast paths for floats keeping temporary products in C. | |
3447 | * Assumes all inputs are the same type. | |
3448 | * If the assumption fails, default to use PyObjects instead. | |
3449 | */ | |
3450 | if (PyFloat_CheckExact(result)) { | |
3451 | double f_result = PyFloat_AS_DOUBLE(result); | |
81f7359f | 3452 | Py_SETREF(result, NULL); |
bc098515 PG |
3453 | while(result == NULL) { |
3454 | item = PyIter_Next(iter); | |
3455 | if (item == NULL) { | |
3456 | Py_DECREF(iter); | |
3457 | if (PyErr_Occurred()) { | |
3458 | return NULL; | |
3459 | } | |
3460 | return PyFloat_FromDouble(f_result); | |
3461 | } | |
3462 | if (PyFloat_CheckExact(item)) { | |
3463 | f_result *= PyFloat_AS_DOUBLE(item); | |
3464 | Py_DECREF(item); | |
3465 | continue; | |
3466 | } | |
3467 | if (PyLong_CheckExact(item)) { | |
3468 | long value; | |
3469 | int overflow; | |
3470 | value = PyLong_AsLongAndOverflow(item, &overflow); | |
3471 | if (!overflow) { | |
3472 | f_result *= (double)value; | |
3473 | Py_DECREF(item); | |
3474 | continue; | |
3475 | } | |
3476 | } | |
3477 | result = PyFloat_FromDouble(f_result); | |
3478 | if (result == NULL) { | |
3479 | Py_DECREF(item); | |
3480 | Py_DECREF(iter); | |
3481 | return NULL; | |
3482 | } | |
3483 | temp = PyNumber_Multiply(result, item); | |
3484 | Py_DECREF(result); | |
3485 | Py_DECREF(item); | |
3486 | result = temp; | |
3487 | if (result == NULL) { | |
3488 | Py_DECREF(iter); | |
3489 | return NULL; | |
3490 | } | |
3491 | } | |
3492 | } | |
3493 | #endif | |
3494 | /* Consume rest of the iterable (if any) that could not be handled | |
3495 | * by specialized functions above.*/ | |
3496 | for(;;) { | |
3497 | item = PyIter_Next(iter); | |
3498 | if (item == NULL) { | |
3499 | /* error, or end-of-sequence */ | |
3500 | if (PyErr_Occurred()) { | |
81f7359f | 3501 | Py_SETREF(result, NULL); |
bc098515 PG |
3502 | } |
3503 | break; | |
3504 | } | |
3505 | temp = PyNumber_Multiply(result, item); | |
3506 | Py_DECREF(result); | |
3507 | Py_DECREF(item); | |
3508 | result = temp; | |
3509 | if (result == NULL) | |
3510 | break; | |
3511 | } | |
3512 | Py_DECREF(iter); | |
3513 | return result; | |
3514 | } | |
3515 | ||
3516 | ||
2d787971 SS |
3517 | /* least significant 64 bits of the odd part of factorial(n), for n in range(128). |
3518 | ||
3519 | Python code to generate the values: | |
3520 | ||
3521 | import math | |
3522 | ||
3523 | for n in range(128): | |
3524 | fac = math.factorial(n) | |
3525 | fac_odd_part = fac // (fac & -fac) | |
3526 | reduced_fac_odd_part = fac_odd_part % (2**64) | |
3527 | print(f"{reduced_fac_odd_part:#018x}u") | |
3528 | */ | |
3529 | static const uint64_t reduced_factorial_odd_part[] = { | |
3530 | 0x0000000000000001u, 0x0000000000000001u, 0x0000000000000001u, 0x0000000000000003u, | |
3531 | 0x0000000000000003u, 0x000000000000000fu, 0x000000000000002du, 0x000000000000013bu, | |
3532 | 0x000000000000013bu, 0x0000000000000b13u, 0x000000000000375fu, 0x0000000000026115u, | |
3533 | 0x000000000007233fu, 0x00000000005cca33u, 0x0000000002898765u, 0x00000000260eeeebu, | |
3534 | 0x00000000260eeeebu, 0x0000000286fddd9bu, 0x00000016beecca73u, 0x000001b02b930689u, | |
3535 | 0x00000870d9df20adu, 0x0000b141df4dae31u, 0x00079dd498567c1bu, 0x00af2e19afc5266du, | |
3536 | 0x020d8a4d0f4f7347u, 0x335281867ec241efu, 0x9b3093d46fdd5923u, 0x5e1f9767cc5866b1u, | |
3537 | 0x92dd23d6966aced7u, 0xa30d0f4f0a196e5bu, 0x8dc3e5a1977d7755u, 0x2ab8ce915831734bu, | |
3538 | 0x2ab8ce915831734bu, 0x81d2a0bc5e5fdcabu, 0x9efcac82445da75bu, 0xbc8b95cf58cde171u, | |
3539 | 0xa0e8444a1f3cecf9u, 0x4191deb683ce3ffdu, 0xddd3878bc84ebfc7u, 0xcb39a64b83ff3751u, | |
3540 | 0xf8203f7993fc1495u, 0xbd2a2a78b35f4bddu, 0x84757be6b6d13921u, 0x3fbbcfc0b524988bu, | |
3541 | 0xbd11ed47c8928df9u, 0x3c26b59e41c2f4c5u, 0x677a5137e883fdb3u, 0xff74e943b03b93ddu, | |
3542 | 0xfe5ebbcb10b2bb97u, 0xb021f1de3235e7e7u, 0x33509eb2e743a58fu, 0x390f9da41279fb7du, | |
3543 | 0xe5cb0154f031c559u, 0x93074695ba4ddb6du, 0x81c471caa636247fu, 0xe1347289b5a1d749u, | |
3544 | 0x286f21c3f76ce2ffu, 0x00be84a2173e8ac7u, 0x1595065ca215b88bu, 0xf95877595b018809u, | |
3545 | 0x9c2efe3c5516f887u, 0x373294604679382bu, 0xaf1ff7a888adcd35u, 0x18ddf279a2c5800bu, | |
3546 | 0x18ddf279a2c5800bu, 0x505a90e2542582cbu, 0x5bacad2cd8d5dc2bu, 0xfe3152bcbff89f41u, | |
3547 | 0xe1467e88bf829351u, 0xb8001adb9e31b4d5u, 0x2803ac06a0cbb91fu, 0x1904b5d698805799u, | |
3548 | 0xe12a648b5c831461u, 0x3516abbd6160cfa9u, 0xac46d25f12fe036du, 0x78bfa1da906b00efu, | |
3549 | 0xf6390338b7f111bdu, 0x0f25f80f538255d9u, 0x4ec8ca55b8db140fu, 0x4ff670740b9b30a1u, | |
3550 | 0x8fd032443a07f325u, 0x80dfe7965c83eeb5u, 0xa3dc1714d1213afdu, 0x205b7bbfcdc62007u, | |
3551 | 0xa78126bbe140a093u, 0x9de1dc61ca7550cfu, 0x84f0046d01b492c5u, 0x2d91810b945de0f3u, | |
3552 | 0xf5408b7f6008aa71u, 0x43707f4863034149u, 0xdac65fb9679279d5u, 0xc48406e7d1114eb7u, | |
3553 | 0xa7dc9ed3c88e1271u, 0xfb25b2efdb9cb30du, 0x1bebda0951c4df63u, 0x5c85e975580ee5bdu, | |
3554 | 0x1591bc60082cb137u, 0x2c38606318ef25d7u, 0x76ca72f7c5c63e27u, 0xf04a75d17baa0915u, | |
3555 | 0x77458175139ae30du, 0x0e6c1330bc1b9421u, 0xdf87d2b5797e8293u, 0xefa5c703e1e68925u, | |
3556 | 0x2b6b1b3278b4f6e1u, 0xceee27b382394249u, 0xd74e3829f5dab91du, 0xfdb17989c26b5f1fu, | |
3557 | 0xc1b7d18781530845u, 0x7b4436b2105a8561u, 0x7ba7c0418372a7d7u, 0x9dbc5c67feb6c639u, | |
3558 | 0x502686d7f6ff6b8fu, 0x6101855406be7a1fu, 0x9956afb5806930e7u, 0xe1f0ee88af40f7c5u, | |
3559 | 0x984b057bda5c1151u, 0x9a49819acc13ea05u, 0x8ef0dead0896ef27u, 0x71f7826efe292b21u, | |
3560 | 0xad80a480e46986efu, 0x01cdc0ebf5e0c6f7u, 0x6e06f839968f68dbu, 0xdd5943ab56e76139u, | |
3561 | 0xcdcf31bf8604c5e7u, 0x7e2b4a847054a1cbu, 0x0ca75697a4d3d0f5u, 0x4703f53ac514a98bu, | |
3562 | }; | |
3563 | ||
3564 | /* inverses of reduced_factorial_odd_part values modulo 2**64. | |
3565 | ||
3566 | Python code to generate the values: | |
3567 | ||
3568 | import math | |
3569 | ||
3570 | for n in range(128): | |
3571 | fac = math.factorial(n) | |
3572 | fac_odd_part = fac // (fac & -fac) | |
3573 | inverted_fac_odd_part = pow(fac_odd_part, -1, 2**64) | |
3574 | print(f"{inverted_fac_odd_part:#018x}u") | |
3575 | */ | |
3576 | static const uint64_t inverted_factorial_odd_part[] = { | |
3577 | 0x0000000000000001u, 0x0000000000000001u, 0x0000000000000001u, 0xaaaaaaaaaaaaaaabu, | |
3578 | 0xaaaaaaaaaaaaaaabu, 0xeeeeeeeeeeeeeeefu, 0x4fa4fa4fa4fa4fa5u, 0x2ff2ff2ff2ff2ff3u, | |
3579 | 0x2ff2ff2ff2ff2ff3u, 0x938cc70553e3771bu, 0xb71c27cddd93e49fu, 0xb38e3229fcdee63du, | |
3580 | 0xe684bb63544a4cbfu, 0xc2f684917ca340fbu, 0xf747c9cba417526du, 0xbb26eb51d7bd49c3u, | |
3581 | 0xbb26eb51d7bd49c3u, 0xb0a7efb985294093u, 0xbe4b8c69f259eabbu, 0x6854d17ed6dc4fb9u, | |
3582 | 0xe1aa904c915f4325u, 0x3b8206df131cead1u, 0x79c6009fea76fe13u, 0xd8c5d381633cd365u, | |
3583 | 0x4841f12b21144677u, 0x4a91ff68200b0d0fu, 0x8f9513a58c4f9e8bu, 0x2b3e690621a42251u, | |
3584 | 0x4f520f00e03c04e7u, 0x2edf84ee600211d3u, 0xadcaa2764aaacdfdu, 0x161f4f9033f4fe63u, | |
3585 | 0x161f4f9033f4fe63u, 0xbada2932ea4d3e03u, 0xcec189f3efaa30d3u, 0xf7475bb68330bf91u, | |
3586 | 0x37eb7bf7d5b01549u, 0x46b35660a4e91555u, 0xa567c12d81f151f7u, 0x4c724007bb2071b1u, | |
3587 | 0x0f4a0cce58a016bdu, 0xfa21068e66106475u, 0x244ab72b5a318ae1u, 0x366ce67e080d0f23u, | |
3588 | 0xd666fdae5dd2a449u, 0xd740ddd0acc06a0du, 0xb050bbbb28e6f97bu, 0x70b003fe890a5c75u, | |
3589 | 0xd03aabff83037427u, 0x13ec4ca72c783bd7u, 0x90282c06afdbd96fu, 0x4414ddb9db4a95d5u, | |
3590 | 0xa2c68735ae6832e9u, 0xbf72d71455676665u, 0xa8469fab6b759b7fu, 0xc1e55b56e606caf9u, | |
3591 | 0x40455630fc4a1cffu, 0x0120a7b0046d16f7u, 0xa7c3553b08faef23u, 0x9f0bfd1b08d48639u, | |
3592 | 0xa433ffce9a304d37u, 0xa22ad1d53915c683u, 0xcb6cbc723ba5dd1du, 0x547fb1b8ab9d0ba3u, | |
3593 | 0x547fb1b8ab9d0ba3u, 0x8f15a826498852e3u, 0x32e1a03f38880283u, 0x3de4cce63283f0c1u, | |
3594 | 0x5dfe6667e4da95b1u, 0xfda6eeeef479e47du, 0xf14de991cc7882dfu, 0xe68db79247630ca9u, | |
3595 | 0xa7d6db8207ee8fa1u, 0x255e1f0fcf034499u, 0xc9a8990e43dd7e65u, 0x3279b6f289702e0fu, | |
3596 | 0xe7b5905d9b71b195u, 0x03025ba41ff0da69u, 0xb7df3d6d3be55aefu, 0xf89b212ebff2b361u, | |
3597 | 0xfe856d095996f0adu, 0xd6e533e9fdf20f9du, 0xf8c0e84a63da3255u, 0xa677876cd91b4db7u, | |
3598 | 0x07ed4f97780d7d9bu, 0x90a8705f258db62fu, 0xa41bbb2be31b1c0du, 0x6ec28690b038383bu, | |
3599 | 0xdb860c3bb2edd691u, 0x0838286838a980f9u, 0x558417a74b36f77du, 0x71779afc3646ef07u, | |
3600 | 0x743cda377ccb6e91u, 0x7fdf9f3fe89153c5u, 0xdc97d25df49b9a4bu, 0x76321a778eb37d95u, | |
3601 | 0x7cbb5e27da3bd487u, 0x9cff4ade1a009de7u, 0x70eb166d05c15197u, 0xdcf0460b71d5fe3du, | |
3602 | 0x5ac1ee5260b6a3c5u, 0xc922dedfdd78efe1u, 0xe5d381dc3b8eeb9bu, 0xd57e5347bafc6aadu, | |
3603 | 0x86939040983acd21u, 0x395b9d69740a4ff9u, 0x1467299c8e43d135u, 0x5fe440fcad975cdfu, | |
3604 | 0xcaa9a39794a6ca8du, 0xf61dbd640868dea1u, 0xac09d98d74843be7u, 0x2b103b9e1a6b4809u, | |
3605 | 0x2ab92d16960f536fu, 0x6653323d5e3681dfu, 0xefd48c1c0624e2d7u, 0xa496fefe04816f0du, | |
3606 | 0x1754a7b07bbdd7b1u, 0x23353c829a3852cdu, 0xbf831261abd59097u, 0x57a8e656df0618e1u, | |
3607 | 0x16e9206c3100680fu, 0xadad4c6ee921dac7u, 0x635f2b3860265353u, 0xdd6d0059f44b3d09u, | |
3608 | 0xac4dd6b894447dd7u, 0x42ea183eeaa87be3u, 0x15612d1550ee5b5du, 0x226fa19d656cb623u, | |
3609 | }; | |
3610 | ||
3611 | /* exponent of the largest power of 2 dividing factorial(n), for n in range(68) | |
3612 | ||
3613 | Python code to generate the values: | |
3614 | ||
3615 | import math | |
3616 | ||
3617 | for n in range(128): | |
3618 | fac = math.factorial(n) | |
3619 | fac_trailing_zeros = (fac & -fac).bit_length() - 1 | |
3620 | print(fac_trailing_zeros) | |
3621 | */ | |
3622 | ||
3623 | static const uint8_t factorial_trailing_zeros[] = { | |
3624 | 0, 0, 1, 1, 3, 3, 4, 4, 7, 7, 8, 8, 10, 10, 11, 11, // 0-15 | |
3625 | 15, 15, 16, 16, 18, 18, 19, 19, 22, 22, 23, 23, 25, 25, 26, 26, // 16-31 | |
3626 | 31, 31, 32, 32, 34, 34, 35, 35, 38, 38, 39, 39, 41, 41, 42, 42, // 32-47 | |
3627 | 46, 46, 47, 47, 49, 49, 50, 50, 53, 53, 54, 54, 56, 56, 57, 57, // 48-63 | |
3628 | 63, 63, 64, 64, 66, 66, 67, 67, 70, 70, 71, 71, 73, 73, 74, 74, // 64-79 | |
3629 | 78, 78, 79, 79, 81, 81, 82, 82, 85, 85, 86, 86, 88, 88, 89, 89, // 80-95 | |
3630 | 94, 94, 95, 95, 97, 97, 98, 98, 101, 101, 102, 102, 104, 104, 105, 105, // 96-111 | |
3631 | 109, 109, 110, 110, 112, 112, 113, 113, 116, 116, 117, 117, 119, 119, 120, 120, // 112-127 | |
3632 | }; | |
3633 | ||
60c320c3 SS |
3634 | /* Number of permutations and combinations. |
3635 | * P(n, k) = n! / (n-k)! | |
3636 | * C(n, k) = P(n, k) / k! | |
3637 | */ | |
3638 | ||
3639 | /* Calculate C(n, k) for n in the 63-bit range. */ | |
3640 | static PyObject * | |
3641 | perm_comb_small(unsigned long long n, unsigned long long k, int iscomb) | |
3642 | { | |
9c995abd | 3643 | assert(k != 0); |
60c320c3 SS |
3644 | |
3645 | /* For small enough n and k the result fits in the 64-bit range and can | |
3646 | * be calculated without allocating intermediate PyLong objects. */ | |
2d787971 SS |
3647 | if (iscomb) { |
3648 | /* Maps k to the maximal n so that 2*k-1 <= n <= 127 and C(n, k) | |
3649 | * fits into a uint64_t. Exclude k = 1, because the second fast | |
3650 | * path is faster for this case.*/ | |
3651 | static const unsigned char fast_comb_limits1[] = { | |
3652 | 0, 0, 127, 127, 127, 127, 127, 127, // 0-7 | |
3653 | 127, 127, 127, 127, 127, 127, 127, 127, // 8-15 | |
3654 | 116, 105, 97, 91, 86, 82, 78, 76, // 16-23 | |
3655 | 74, 72, 71, 70, 69, 68, 68, 67, // 24-31 | |
3656 | 67, 67, 67, // 32-34 | |
3657 | }; | |
3658 | if (k < Py_ARRAY_LENGTH(fast_comb_limits1) && n <= fast_comb_limits1[k]) { | |
3659 | /* | |
3660 | comb(n, k) fits into a uint64_t. We compute it as | |
3661 | ||
3662 | comb_odd_part << shift | |
3663 | ||
3664 | where 2**shift is the largest power of two dividing comb(n, k) | |
3665 | and comb_odd_part is comb(n, k) >> shift. comb_odd_part can be | |
3666 | calculated efficiently via arithmetic modulo 2**64, using three | |
3667 | lookups and two uint64_t multiplications. | |
3668 | */ | |
3669 | uint64_t comb_odd_part = reduced_factorial_odd_part[n] | |
3670 | * inverted_factorial_odd_part[k] | |
3671 | * inverted_factorial_odd_part[n - k]; | |
3672 | int shift = factorial_trailing_zeros[n] | |
3673 | - factorial_trailing_zeros[k] | |
3674 | - factorial_trailing_zeros[n - k]; | |
3675 | return PyLong_FromUnsignedLongLong(comb_odd_part << shift); | |
3676 | } | |
3677 | ||
3678 | /* Maps k to the maximal n so that 2*k-1 <= n <= 127 and C(n, k)*k | |
3679 | * fits into a long long (which is at least 64 bit). Only contains | |
3680 | * items larger than in fast_comb_limits1. */ | |
3681 | static const unsigned long long fast_comb_limits2[] = { | |
3682 | 0, ULLONG_MAX, 4294967296ULL, 3329022, 102570, 13467, 3612, 1449, // 0-7 | |
3683 | 746, 453, 308, 227, 178, 147, // 8-13 | |
3684 | }; | |
3685 | if (k < Py_ARRAY_LENGTH(fast_comb_limits2) && n <= fast_comb_limits2[k]) { | |
3686 | /* C(n, k) = C(n, k-1) * (n-k+1) / k */ | |
3687 | unsigned long long result = n; | |
60c320c3 SS |
3688 | for (unsigned long long i = 1; i < k;) { |
3689 | result *= --n; | |
3690 | result /= ++i; | |
3691 | } | |
2d787971 | 3692 | return PyLong_FromUnsignedLongLong(result); |
60c320c3 | 3693 | } |
2d787971 SS |
3694 | } |
3695 | else { | |
3696 | /* Maps k to the maximal n so that k <= n and P(n, k) | |
3697 | * fits into a long long (which is at least 64 bit). */ | |
3698 | static const unsigned long long fast_perm_limits[] = { | |
3699 | 0, ULLONG_MAX, 4294967296ULL, 2642246, 65537, 7133, 1627, 568, // 0-7 | |
3700 | 259, 142, 88, 61, 45, 36, 30, 26, // 8-15 | |
3701 | 24, 22, 21, 20, 20, // 16-20 | |
3702 | }; | |
3703 | if (k < Py_ARRAY_LENGTH(fast_perm_limits) && n <= fast_perm_limits[k]) { | |
3704 | if (n <= 127) { | |
3705 | /* P(n, k) fits into a uint64_t. */ | |
3706 | uint64_t perm_odd_part = reduced_factorial_odd_part[n] | |
3707 | * inverted_factorial_odd_part[n - k]; | |
3708 | int shift = factorial_trailing_zeros[n] | |
3709 | - factorial_trailing_zeros[n - k]; | |
3710 | return PyLong_FromUnsignedLongLong(perm_odd_part << shift); | |
3711 | } | |
3712 | ||
3713 | /* P(n, k) = P(n, k-1) * (n-k+1) */ | |
3714 | unsigned long long result = n; | |
60c320c3 SS |
3715 | for (unsigned long long i = 1; i < k;) { |
3716 | result *= --n; | |
3717 | ++i; | |
3718 | } | |
2d787971 | 3719 | return PyLong_FromUnsignedLongLong(result); |
60c320c3 | 3720 | } |
60c320c3 SS |
3721 | } |
3722 | ||
2d787971 SS |
3723 | /* For larger n use recursive formulas: |
3724 | * | |
3725 | * P(n, k) = P(n, j) * P(n-j, k-j) | |
3726 | * C(n, k) = C(n, j) * C(n-j, k-j) // C(k, j) | |
3727 | */ | |
60c320c3 SS |
3728 | unsigned long long j = k / 2; |
3729 | PyObject *a, *b; | |
3730 | a = perm_comb_small(n, j, iscomb); | |
3731 | if (a == NULL) { | |
3732 | return NULL; | |
3733 | } | |
3734 | b = perm_comb_small(n - j, k - j, iscomb); | |
3735 | if (b == NULL) { | |
3736 | goto error; | |
3737 | } | |
3738 | Py_SETREF(a, PyNumber_Multiply(a, b)); | |
3739 | Py_DECREF(b); | |
3740 | if (iscomb && a != NULL) { | |
3741 | b = perm_comb_small(k, j, 1); | |
3742 | if (b == NULL) { | |
3743 | goto error; | |
3744 | } | |
3745 | Py_SETREF(a, PyNumber_FloorDivide(a, b)); | |
3746 | Py_DECREF(b); | |
3747 | } | |
3748 | return a; | |
3749 | ||
3750 | error: | |
3751 | Py_DECREF(a); | |
3752 | return NULL; | |
3753 | } | |
3754 | ||
3755 | /* Calculate P(n, k) or C(n, k) using recursive formulas. | |
3756 | * It is more efficient than sequential multiplication thanks to | |
3757 | * Karatsuba multiplication. | |
3758 | */ | |
3759 | static PyObject * | |
3760 | perm_comb(PyObject *n, unsigned long long k, int iscomb) | |
3761 | { | |
3762 | if (k == 0) { | |
3763 | return PyLong_FromLong(1); | |
3764 | } | |
3765 | if (k == 1) { | |
3e2f7135 | 3766 | return Py_NewRef(n); |
60c320c3 SS |
3767 | } |
3768 | ||
3769 | /* P(n, k) = P(n, j) * P(n-j, k-j) */ | |
3770 | /* C(n, k) = C(n, j) * C(n-j, k-j) // C(k, j) */ | |
3771 | unsigned long long j = k / 2; | |
3772 | PyObject *a, *b; | |
3773 | a = perm_comb(n, j, iscomb); | |
3774 | if (a == NULL) { | |
3775 | return NULL; | |
3776 | } | |
3777 | PyObject *t = PyLong_FromUnsignedLongLong(j); | |
3778 | if (t == NULL) { | |
3779 | goto error; | |
3780 | } | |
3781 | n = PyNumber_Subtract(n, t); | |
3782 | Py_DECREF(t); | |
3783 | if (n == NULL) { | |
3784 | goto error; | |
3785 | } | |
3786 | b = perm_comb(n, k - j, iscomb); | |
3787 | Py_DECREF(n); | |
3788 | if (b == NULL) { | |
3789 | goto error; | |
3790 | } | |
3791 | Py_SETREF(a, PyNumber_Multiply(a, b)); | |
3792 | Py_DECREF(b); | |
3793 | if (iscomb && a != NULL) { | |
3794 | b = perm_comb_small(k, j, 1); | |
3795 | if (b == NULL) { | |
3796 | goto error; | |
3797 | } | |
3798 | Py_SETREF(a, PyNumber_FloorDivide(a, b)); | |
3799 | Py_DECREF(b); | |
3800 | } | |
3801 | return a; | |
3802 | ||
3803 | error: | |
3804 | Py_DECREF(a); | |
3805 | return NULL; | |
3806 | } | |
3807 | ||
5ae299ac SS |
3808 | /*[clinic input] |
3809 | math.perm | |
3810 | ||
3811 | n: object | |
e119b3d1 | 3812 | k: object = None |
5ae299ac SS |
3813 | / |
3814 | ||
3815 | Number of ways to choose k items from n items without repetition and with order. | |
3816 | ||
963eb0f4 RH |
3817 | Evaluates to n! / (n - k)! when k <= n and evaluates |
3818 | to zero when k > n. | |
5ae299ac | 3819 | |
e119b3d1 RH |
3820 | If k is not specified or is None, then k defaults to n |
3821 | and the function returns n!. | |
3822 | ||
963eb0f4 RH |
3823 | Raises TypeError if either of the arguments are not integers. |
3824 | Raises ValueError if either of the arguments are negative. | |
5ae299ac SS |
3825 | [clinic start generated code]*/ |
3826 | ||
3827 | static PyObject * | |
3828 | math_perm_impl(PyObject *module, PyObject *n, PyObject *k) | |
e119b3d1 | 3829 | /*[clinic end generated code: output=e021a25469653e23 input=5311c5a00f359b53]*/ |
5ae299ac | 3830 | { |
60c320c3 | 3831 | PyObject *result = NULL; |
5ae299ac | 3832 | int overflow, cmp; |
60c320c3 | 3833 | long long ki, ni; |
5ae299ac | 3834 | |
e119b3d1 RH |
3835 | if (k == Py_None) { |
3836 | return math_factorial(module, n); | |
3837 | } | |
5ae299ac SS |
3838 | n = PyNumber_Index(n); |
3839 | if (n == NULL) { | |
3840 | return NULL; | |
3841 | } | |
5ae299ac SS |
3842 | k = PyNumber_Index(k); |
3843 | if (k == NULL) { | |
3844 | Py_DECREF(n); | |
3845 | return NULL; | |
3846 | } | |
60c320c3 | 3847 | assert(PyLong_CheckExact(n) && PyLong_CheckExact(k)); |
5ae299ac | 3848 | |
7559f5fd | 3849 | if (_PyLong_IsNegative((PyLongObject *)n)) { |
5ae299ac SS |
3850 | PyErr_SetString(PyExc_ValueError, |
3851 | "n must be a non-negative integer"); | |
3852 | goto error; | |
3853 | } | |
7559f5fd | 3854 | if (_PyLong_IsNegative((PyLongObject *)k)) { |
45e0411e MD |
3855 | PyErr_SetString(PyExc_ValueError, |
3856 | "k must be a non-negative integer"); | |
3857 | goto error; | |
3858 | } | |
3859 | ||
5ae299ac SS |
3860 | cmp = PyObject_RichCompareBool(n, k, Py_LT); |
3861 | if (cmp != 0) { | |
3862 | if (cmp > 0) { | |
963eb0f4 RH |
3863 | result = PyLong_FromLong(0); |
3864 | goto done; | |
5ae299ac SS |
3865 | } |
3866 | goto error; | |
3867 | } | |
3868 | ||
60c320c3 SS |
3869 | ki = PyLong_AsLongLongAndOverflow(k, &overflow); |
3870 | assert(overflow >= 0 && !PyErr_Occurred()); | |
5ae299ac SS |
3871 | if (overflow > 0) { |
3872 | PyErr_Format(PyExc_OverflowError, | |
3873 | "k must not exceed %lld", | |
3874 | LLONG_MAX); | |
3875 | goto error; | |
3876 | } | |
60c320c3 | 3877 | assert(ki >= 0); |
5ae299ac | 3878 | |
60c320c3 SS |
3879 | ni = PyLong_AsLongLongAndOverflow(n, &overflow); |
3880 | assert(overflow >= 0 && !PyErr_Occurred()); | |
3881 | if (!overflow && ki > 1) { | |
3882 | assert(ni >= 0); | |
3883 | result = perm_comb_small((unsigned long long)ni, | |
3884 | (unsigned long long)ki, 0); | |
5ae299ac | 3885 | } |
60c320c3 SS |
3886 | else { |
3887 | result = perm_comb(n, (unsigned long long)ki, 0); | |
5ae299ac | 3888 | } |
5ae299ac SS |
3889 | |
3890 | done: | |
3891 | Py_DECREF(n); | |
3892 | Py_DECREF(k); | |
3893 | return result; | |
3894 | ||
3895 | error: | |
5ae299ac SS |
3896 | Py_DECREF(n); |
3897 | Py_DECREF(k); | |
3898 | return NULL; | |
3899 | } | |
3900 | ||
4a686504 YA |
3901 | /*[clinic input] |
3902 | math.comb | |
3903 | ||
2b843ac0 SS |
3904 | n: object |
3905 | k: object | |
3906 | / | |
4a686504 | 3907 | |
2b843ac0 | 3908 | Number of ways to choose k items from n items without repetition and without order. |
4a686504 | 3909 | |
963eb0f4 RH |
3910 | Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates |
3911 | to zero when k > n. | |
3912 | ||
3913 | Also called the binomial coefficient because it is equivalent | |
3914 | to the coefficient of k-th term in polynomial expansion of the | |
3915 | expression (1 + x)**n. | |
4a686504 | 3916 | |
963eb0f4 RH |
3917 | Raises TypeError if either of the arguments are not integers. |
3918 | Raises ValueError if either of the arguments are negative. | |
4a686504 YA |
3919 | |
3920 | [clinic start generated code]*/ | |
3921 | ||
3922 | static PyObject * | |
3923 | math_comb_impl(PyObject *module, PyObject *n, PyObject *k) | |
963eb0f4 | 3924 | /*[clinic end generated code: output=bd2cec8d854f3493 input=9a05315af2518709]*/ |
4a686504 | 3925 | { |
60c320c3 | 3926 | PyObject *result = NULL, *temp; |
4a686504 | 3927 | int overflow, cmp; |
60c320c3 | 3928 | long long ki, ni; |
4a686504 | 3929 | |
2b843ac0 SS |
3930 | n = PyNumber_Index(n); |
3931 | if (n == NULL) { | |
3932 | return NULL; | |
4a686504 | 3933 | } |
2b843ac0 SS |
3934 | k = PyNumber_Index(k); |
3935 | if (k == NULL) { | |
3936 | Py_DECREF(n); | |
3937 | return NULL; | |
4a686504 | 3938 | } |
60c320c3 | 3939 | assert(PyLong_CheckExact(n) && PyLong_CheckExact(k)); |
4a686504 | 3940 | |
7559f5fd | 3941 | if (_PyLong_IsNegative((PyLongObject *)n)) { |
2b843ac0 SS |
3942 | PyErr_SetString(PyExc_ValueError, |
3943 | "n must be a non-negative integer"); | |
3944 | goto error; | |
4a686504 | 3945 | } |
7559f5fd | 3946 | if (_PyLong_IsNegative((PyLongObject *)k)) { |
45e0411e MD |
3947 | PyErr_SetString(PyExc_ValueError, |
3948 | "k must be a non-negative integer"); | |
3949 | goto error; | |
3950 | } | |
3951 | ||
60c320c3 SS |
3952 | ni = PyLong_AsLongLongAndOverflow(n, &overflow); |
3953 | assert(overflow >= 0 && !PyErr_Occurred()); | |
3954 | if (!overflow) { | |
3955 | assert(ni >= 0); | |
3956 | ki = PyLong_AsLongLongAndOverflow(k, &overflow); | |
3957 | assert(overflow >= 0 && !PyErr_Occurred()); | |
3958 | if (overflow || ki > ni) { | |
3959 | result = PyLong_FromLong(0); | |
3960 | goto done; | |
3961 | } | |
3962 | assert(ki >= 0); | |
02b5417f | 3963 | |
60c320c3 SS |
3964 | ki = Py_MIN(ki, ni - ki); |
3965 | if (ki > 1) { | |
3966 | result = perm_comb_small((unsigned long long)ni, | |
3967 | (unsigned long long)ki, 1); | |
3968 | goto done; | |
3969 | } | |
3970 | /* For k == 1 just return the original n in perm_comb(). */ | |
4a686504 YA |
3971 | } |
3972 | else { | |
60c320c3 SS |
3973 | /* k = min(k, n - k) */ |
3974 | temp = PyNumber_Subtract(n, k); | |
3975 | if (temp == NULL) { | |
2b843ac0 SS |
3976 | goto error; |
3977 | } | |
7559f5fd MS |
3978 | assert(PyLong_Check(temp)); |
3979 | if (_PyLong_IsNegative((PyLongObject *)temp)) { | |
60c320c3 SS |
3980 | Py_DECREF(temp); |
3981 | result = PyLong_FromLong(0); | |
3982 | goto done; | |
4a686504 | 3983 | } |
60c320c3 SS |
3984 | cmp = PyObject_RichCompareBool(temp, k, Py_LT); |
3985 | if (cmp > 0) { | |
3986 | Py_SETREF(k, temp); | |
4a686504 | 3987 | } |
60c320c3 SS |
3988 | else { |
3989 | Py_DECREF(temp); | |
3990 | if (cmp < 0) { | |
3991 | goto error; | |
3992 | } | |
4a686504 | 3993 | } |
60c320c3 SS |
3994 | |
3995 | ki = PyLong_AsLongLongAndOverflow(k, &overflow); | |
3996 | assert(overflow >= 0 && !PyErr_Occurred()); | |
3997 | if (overflow) { | |
3998 | PyErr_Format(PyExc_OverflowError, | |
3999 | "min(n - k, k) must not exceed %lld", | |
4000 | LLONG_MAX); | |
2b843ac0 | 4001 | goto error; |
4a686504 | 4002 | } |
60c320c3 | 4003 | assert(ki >= 0); |
4a686504 | 4004 | } |
60c320c3 SS |
4005 | |
4006 | result = perm_comb(n, (unsigned long long)ki, 1); | |
4a686504 | 4007 | |
2b843ac0 SS |
4008 | done: |
4009 | Py_DECREF(n); | |
4010 | Py_DECREF(k); | |
4011 | return result; | |
4a686504 | 4012 | |
2b843ac0 | 4013 | error: |
2b843ac0 SS |
4014 | Py_DECREF(n); |
4015 | Py_DECREF(k); | |
4a686504 YA |
4016 | return NULL; |
4017 | } | |
4018 | ||
4019 | ||
100fafcf VS |
4020 | /*[clinic input] |
4021 | math.nextafter | |
4022 | ||
4023 | x: double | |
4024 | y: double | |
4025 | / | |
6e39fa19 MG |
4026 | * |
4027 | steps: object = None | |
4028 | ||
4029 | Return the floating-point value the given number of steps after x towards y. | |
4030 | ||
4031 | If steps is not specified or is None, it defaults to 1. | |
100fafcf | 4032 | |
6e39fa19 MG |
4033 | Raises a TypeError, if x or y is not a double, or if steps is not an integer. |
4034 | Raises ValueError if steps is negative. | |
100fafcf VS |
4035 | [clinic start generated code]*/ |
4036 | ||
4037 | static PyObject * | |
6e39fa19 MG |
4038 | math_nextafter_impl(PyObject *module, double x, double y, PyObject *steps) |
4039 | /*[clinic end generated code: output=cc6511f02afc099e input=7f2a5842112af2b4]*/ | |
100fafcf | 4040 | { |
85ead4fc VS |
4041 | #if defined(_AIX) |
4042 | if (x == y) { | |
4043 | /* On AIX 7.1, libm nextafter(-0.0, +0.0) returns -0.0. | |
4044 | Bug fixed in bos.adt.libm 7.2.2.0 by APAR IV95512. */ | |
4045 | return PyFloat_FromDouble(y); | |
4046 | } | |
cd11ff12 | 4047 | if (isnan(x)) { |
0837f99d | 4048 | return PyFloat_FromDouble(x); |
c1c3493f | 4049 | } |
cd11ff12 | 4050 | if (isnan(y)) { |
0837f99d | 4051 | return PyFloat_FromDouble(y); |
c1c3493f | 4052 | } |
85ead4fc | 4053 | #endif |
6e39fa19 MG |
4054 | if (steps == Py_None) { |
4055 | // fast path: we default to one step. | |
4056 | return PyFloat_FromDouble(nextafter(x, y)); | |
4057 | } | |
4058 | steps = PyNumber_Index(steps); | |
4059 | if (steps == NULL) { | |
4060 | return NULL; | |
4061 | } | |
4062 | assert(PyLong_CheckExact(steps)); | |
4063 | if (_PyLong_IsNegative((PyLongObject *)steps)) { | |
4064 | PyErr_SetString(PyExc_ValueError, | |
4065 | "steps must be a non-negative integer"); | |
4066 | Py_DECREF(steps); | |
4067 | return NULL; | |
4068 | } | |
4069 | ||
4070 | unsigned long long usteps_ull = PyLong_AsUnsignedLongLong(steps); | |
4071 | // Conveniently, uint64_t and double have the same number of bits | |
4072 | // on all the platforms we care about. | |
4073 | // So if an overflow occurs, we can just use UINT64_MAX. | |
4074 | Py_DECREF(steps); | |
4075 | if (usteps_ull >= UINT64_MAX) { | |
4076 | // This branch includes the case where an error occurred, since | |
4077 | // (unsigned long long)(-1) = ULLONG_MAX >= UINT64_MAX. Note that | |
4078 | // usteps_ull can be strictly larger than UINT64_MAX on a machine | |
4079 | // where unsigned long long has width > 64 bits. | |
4080 | if (PyErr_Occurred()) { | |
4081 | if (PyErr_ExceptionMatches(PyExc_OverflowError)) { | |
4082 | PyErr_Clear(); | |
4083 | } | |
4084 | else { | |
4085 | return NULL; | |
4086 | } | |
4087 | } | |
4088 | usteps_ull = UINT64_MAX; | |
4089 | } | |
4090 | assert(usteps_ull <= UINT64_MAX); | |
4091 | uint64_t usteps = (uint64_t)usteps_ull; | |
4092 | ||
4093 | if (usteps == 0) { | |
4094 | return PyFloat_FromDouble(x); | |
4095 | } | |
cd11ff12 | 4096 | if (isnan(x)) { |
6e39fa19 MG |
4097 | return PyFloat_FromDouble(x); |
4098 | } | |
cd11ff12 | 4099 | if (isnan(y)) { |
6e39fa19 MG |
4100 | return PyFloat_FromDouble(y); |
4101 | } | |
4102 | ||
4103 | // We assume that double and uint64_t have the same endianness. | |
4104 | // This is not guaranteed by the C-standard, but it is true for | |
4105 | // all platforms we care about. (The most likely form of violation | |
4106 | // would be a "mixed-endian" double.) | |
4107 | union pun {double f; uint64_t i;}; | |
4108 | union pun ux = {x}, uy = {y}; | |
4109 | if (ux.i == uy.i) { | |
4110 | return PyFloat_FromDouble(x); | |
4111 | } | |
4112 | ||
4113 | const uint64_t sign_bit = 1ULL<<63; | |
4114 | ||
4115 | uint64_t ax = ux.i & ~sign_bit; | |
4116 | uint64_t ay = uy.i & ~sign_bit; | |
4117 | ||
4118 | // opposite signs | |
4119 | if (((ux.i ^ uy.i) & sign_bit)) { | |
4120 | // NOTE: ax + ay can never overflow, because their most significant bit | |
4121 | // ain't set. | |
4122 | if (ax + ay <= usteps) { | |
4123 | return PyFloat_FromDouble(uy.f); | |
4124 | // This comparison has to use <, because <= would get +0.0 vs -0.0 | |
4125 | // wrong. | |
4126 | } else if (ax < usteps) { | |
4127 | union pun result = {.i = (uy.i & sign_bit) | (usteps - ax)}; | |
4128 | return PyFloat_FromDouble(result.f); | |
4129 | } else { | |
4130 | ux.i -= usteps; | |
4131 | return PyFloat_FromDouble(ux.f); | |
4132 | } | |
4133 | // same sign | |
4134 | } else if (ax > ay) { | |
4135 | if (ax - ay >= usteps) { | |
4136 | ux.i -= usteps; | |
4137 | return PyFloat_FromDouble(ux.f); | |
4138 | } else { | |
4139 | return PyFloat_FromDouble(uy.f); | |
4140 | } | |
4141 | } else { | |
4142 | if (ay - ax >= usteps) { | |
4143 | ux.i += usteps; | |
4144 | return PyFloat_FromDouble(ux.f); | |
4145 | } else { | |
4146 | return PyFloat_FromDouble(uy.f); | |
4147 | } | |
4148 | } | |
100fafcf VS |
4149 | } |
4150 | ||
4151 | ||
0b2ab219 VS |
4152 | /*[clinic input] |
4153 | math.ulp -> double | |
4154 | ||
4155 | x: double | |
4156 | / | |
4157 | ||
4158 | Return the value of the least significant bit of the float x. | |
4159 | [clinic start generated code]*/ | |
4160 | ||
4161 | static double | |
4162 | math_ulp_impl(PyObject *module, double x) | |
4163 | /*[clinic end generated code: output=f5207867a9384dd4 input=31f9bfbbe373fcaa]*/ | |
4164 | { | |
cd11ff12 | 4165 | if (isnan(x)) { |
0b2ab219 VS |
4166 | return x; |
4167 | } | |
4168 | x = fabs(x); | |
cd11ff12 | 4169 | if (isinf(x)) { |
0b2ab219 VS |
4170 | return x; |
4171 | } | |
7a3b0350 | 4172 | double inf = Py_INFINITY; |
0b2ab219 | 4173 | double x2 = nextafter(x, inf); |
cd11ff12 | 4174 | if (isinf(x2)) { |
0b2ab219 VS |
4175 | /* special case: x is the largest positive representable float */ |
4176 | x2 = nextafter(x, -inf); | |
4177 | return x - x2; | |
4178 | } | |
4179 | return x2 - x; | |
4180 | } | |
4181 | ||
5be82413 DN |
4182 | static int |
4183 | math_exec(PyObject *module) | |
4184 | { | |
23c9febd | 4185 | |
3e65baee | 4186 | if (PyModule_Add(module, "pi", PyFloat_FromDouble(Py_MATH_PI)) < 0) { |
5be82413 DN |
4187 | return -1; |
4188 | } | |
3e65baee | 4189 | if (PyModule_Add(module, "e", PyFloat_FromDouble(Py_MATH_E)) < 0) { |
5be82413 DN |
4190 | return -1; |
4191 | } | |
4192 | // 2pi | |
3e65baee | 4193 | if (PyModule_Add(module, "tau", PyFloat_FromDouble(Py_MATH_TAU)) < 0) { |
5be82413 DN |
4194 | return -1; |
4195 | } | |
3e65baee | 4196 | if (PyModule_Add(module, "inf", PyFloat_FromDouble(Py_INFINITY)) < 0) { |
5be82413 DN |
4197 | return -1; |
4198 | } | |
3e65baee | 4199 | if (PyModule_Add(module, "nan", PyFloat_FromDouble(fabs(Py_NAN))) < 0) { |
5be82413 DN |
4200 | return -1; |
4201 | } | |
5be82413 DN |
4202 | return 0; |
4203 | } | |
0b2ab219 | 4204 | |
8b43b19e | 4205 | static PyMethodDef math_methods[] = { |
f95a1b3c AP |
4206 | {"acos", math_acos, METH_O, math_acos_doc}, |
4207 | {"acosh", math_acosh, METH_O, math_acosh_doc}, | |
4208 | {"asin", math_asin, METH_O, math_asin_doc}, | |
4209 | {"asinh", math_asinh, METH_O, math_asinh_doc}, | |
4210 | {"atan", math_atan, METH_O, math_atan_doc}, | |
804f2529 | 4211 | {"atan2", _PyCFunction_CAST(math_atan2), METH_FASTCALL, math_atan2_doc}, |
f95a1b3c | 4212 | {"atanh", math_atanh, METH_O, math_atanh_doc}, |
ac867f10 | 4213 | {"cbrt", math_cbrt, METH_O, math_cbrt_doc}, |
c9ea9335 | 4214 | MATH_CEIL_METHODDEF |
804f2529 | 4215 | {"copysign", _PyCFunction_CAST(math_copysign), METH_FASTCALL, math_copysign_doc}, |
f95a1b3c AP |
4216 | {"cos", math_cos, METH_O, math_cos_doc}, |
4217 | {"cosh", math_cosh, METH_O, math_cosh_doc}, | |
c9ea9335 | 4218 | MATH_DEGREES_METHODDEF |
9c18b1ae | 4219 | MATH_DIST_METHODDEF |
f95a1b3c AP |
4220 | {"erf", math_erf, METH_O, math_erf_doc}, |
4221 | {"erfc", math_erfc, METH_O, math_erfc_doc}, | |
4222 | {"exp", math_exp, METH_O, math_exp_doc}, | |
6266e4af | 4223 | {"exp2", math_exp2, METH_O, math_exp2_doc}, |
f95a1b3c AP |
4224 | {"expm1", math_expm1, METH_O, math_expm1_doc}, |
4225 | {"fabs", math_fabs, METH_O, math_fabs_doc}, | |
c9ea9335 SS |
4226 | MATH_FACTORIAL_METHODDEF |
4227 | MATH_FLOOR_METHODDEF | |
8e3c953b | 4228 | MATH_FMA_METHODDEF |
2301cdb5 | 4229 | MATH_FMAX_METHODDEF |
c9ea9335 | 4230 | MATH_FMOD_METHODDEF |
2301cdb5 | 4231 | MATH_FMIN_METHODDEF |
c9ea9335 SS |
4232 | MATH_FREXP_METHODDEF |
4233 | MATH_FSUM_METHODDEF | |
f95a1b3c | 4234 | {"gamma", math_gamma, METH_O, math_gamma_doc}, |
3275cb19 SK |
4235 | MATH_GCD_METHODDEF |
4236 | MATH_HYPOT_METHODDEF | |
c9ea9335 SS |
4237 | MATH_ISCLOSE_METHODDEF |
4238 | MATH_ISFINITE_METHODDEF | |
5f61cde8 SK |
4239 | MATH_ISNORMAL_METHODDEF |
4240 | MATH_ISSUBNORMAL_METHODDEF | |
c9ea9335 SS |
4241 | MATH_ISINF_METHODDEF |
4242 | MATH_ISNAN_METHODDEF | |
73934b9d | 4243 | MATH_ISQRT_METHODDEF |
3275cb19 | 4244 | MATH_LCM_METHODDEF |
c9ea9335 | 4245 | MATH_LDEXP_METHODDEF |
f95a1b3c | 4246 | {"lgamma", math_lgamma, METH_O, math_lgamma_doc}, |
d1a89ce5 | 4247 | {"log", _PyCFunction_CAST(math_log), METH_FASTCALL, math_log_doc}, |
f95a1b3c | 4248 | {"log1p", math_log1p, METH_O, math_log1p_doc}, |
c9ea9335 SS |
4249 | MATH_LOG10_METHODDEF |
4250 | MATH_LOG2_METHODDEF | |
4251 | MATH_MODF_METHODDEF | |
4252 | MATH_POW_METHODDEF | |
4253 | MATH_RADIANS_METHODDEF | |
804f2529 | 4254 | {"remainder", _PyCFunction_CAST(math_remainder), METH_FASTCALL, math_remainder_doc}, |
42ccac2d | 4255 | MATH_SIGNBIT_METHODDEF |
f95a1b3c AP |
4256 | {"sin", math_sin, METH_O, math_sin_doc}, |
4257 | {"sinh", math_sinh, METH_O, math_sinh_doc}, | |
4258 | {"sqrt", math_sqrt, METH_O, math_sqrt_doc}, | |
4259 | {"tan", math_tan, METH_O, math_tan_doc}, | |
4260 | {"tanh", math_tanh, METH_O, math_tanh_doc}, | |
47b9f83a | 4261 | MATH_SUMPROD_METHODDEF |
c9ea9335 | 4262 | MATH_TRUNC_METHODDEF |
bc098515 | 4263 | MATH_PROD_METHODDEF |
5ae299ac | 4264 | MATH_PERM_METHODDEF |
4a686504 | 4265 | MATH_COMB_METHODDEF |
100fafcf | 4266 | MATH_NEXTAFTER_METHODDEF |
0b2ab219 | 4267 | MATH_ULP_METHODDEF |
f95a1b3c | 4268 | {NULL, NULL} /* sentinel */ |
85a5fbbd GR |
4269 | }; |
4270 | ||
5be82413 DN |
4271 | static PyModuleDef_Slot math_slots[] = { |
4272 | {Py_mod_exec, math_exec}, | |
a9c6e061 | 4273 | {Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED}, |
c2627d6e | 4274 | {Py_mod_gil, Py_MOD_GIL_NOT_USED}, |
5be82413 DN |
4275 | {0, NULL} |
4276 | }; | |
c6e22902 | 4277 | |
14f8b4cf | 4278 | PyDoc_STRVAR(module_doc, |
6faad355 NB |
4279 | "This module provides access to the mathematical functions\n" |
4280 | "defined by the C standard."); | |
c6e22902 | 4281 | |
1a21451b | 4282 | static struct PyModuleDef mathmodule = { |
f95a1b3c | 4283 | PyModuleDef_HEAD_INIT, |
5be82413 DN |
4284 | .m_name = "math", |
4285 | .m_doc = module_doc, | |
67fbfb42 | 4286 | .m_size = 0, |
5be82413 DN |
4287 | .m_methods = math_methods, |
4288 | .m_slots = math_slots, | |
1a21451b ML |
4289 | }; |
4290 | ||
fe51c6d6 | 4291 | PyMODINIT_FUNC |
1a21451b | 4292 | PyInit_math(void) |
85a5fbbd | 4293 | { |
5be82413 | 4294 | return PyModuleDef_Init(&mathmodule); |
85a5fbbd | 4295 | } |