]> git.ipfire.org Git - people/ms/u-boot.git/blame - arch/arm/cpu/armv7/omap-common/emif-common.c
ARM: DRA: EMIF: Change DDR3 settings to use hw leveling
[people/ms/u-boot.git] / arch / arm / cpu / armv7 / omap-common / emif-common.c
CommitLineData
2ae610f0
A
1/*
2 * EMIF programming
3 *
4 * (C) Copyright 2010
5 * Texas Instruments, <www.ti.com>
6 *
7 * Aneesh V <aneesh@ti.com>
8 *
1a459660 9 * SPDX-License-Identifier: GPL-2.0+
2ae610f0
A
10 */
11
12#include <common.h>
bb772a59 13#include <asm/emif.h>
af1d002f 14#include <asm/arch/clock.h>
2ae610f0
A
15#include <asm/arch/sys_proto.h>
16#include <asm/omap_common.h>
17#include <asm/utils.h>
25476382 18#include <linux/compiler.h>
2ae610f0 19
86021143
LV
20static int emif1_enabled = -1, emif2_enabled = -1;
21
38f25b12
LV
22void set_lpmode_selfrefresh(u32 base)
23{
24 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
25 u32 reg;
26
27 reg = readl(&emif->emif_pwr_mgmt_ctrl);
28 reg &= ~EMIF_REG_LP_MODE_MASK;
29 reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
30 reg &= ~EMIF_REG_SR_TIM_MASK;
31 writel(reg, &emif->emif_pwr_mgmt_ctrl);
32
33 /* dummy read for the new SR_TIM to be loaded */
34 readl(&emif->emif_pwr_mgmt_ctrl);
35}
36
37void force_emif_self_refresh()
38{
39 set_lpmode_selfrefresh(EMIF1_BASE);
40 set_lpmode_selfrefresh(EMIF2_BASE);
41}
42
bb772a59 43inline u32 emif_num(u32 base)
2ae610f0 44{
bb772a59 45 if (base == EMIF1_BASE)
2ae610f0 46 return 1;
bb772a59 47 else if (base == EMIF2_BASE)
2ae610f0
A
48 return 2;
49 else
50 return 0;
51}
52
9ca8bfea
LV
53/*
54 * Get SDRAM type connected to EMIF.
55 * Assuming similar SDRAM parts are connected to both EMIF's
56 * which is typically the case. So it is sufficient to get
57 * SDRAM type from EMIF1.
58 */
59u32 emif_sdram_type()
60{
61 struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
62
63 return (readl(&emif->emif_sdram_config) &
64 EMIF_REG_SDRAM_TYPE_MASK) >> EMIF_REG_SDRAM_TYPE_SHIFT;
65}
bb772a59 66
2ae610f0
A
67static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
68{
69 u32 mr;
70 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
71
bb772a59 72 mr_addr |= cs << EMIF_REG_CS_SHIFT;
2ae610f0
A
73 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
74 if (omap_revision() == OMAP4430_ES2_0)
75 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
76 else
77 mr = readl(&emif->emif_lpddr2_mode_reg_data);
78 debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
79 cs, mr_addr, mr);
55c12849
SS
80 if (((mr & 0x0000ff00) >> 8) == (mr & 0xff) &&
81 ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
82 ((mr & 0xff000000) >> 24) == (mr & 0xff))
83 return mr & 0xff;
84 else
85 return mr;
2ae610f0
A
86}
87
88static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
89{
90 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
91
bb772a59 92 mr_addr |= cs << EMIF_REG_CS_SHIFT;
2ae610f0
A
93 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
94 writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
95}
96
97void emif_reset_phy(u32 base)
98{
99 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
100 u32 iodft;
101
102 iodft = readl(&emif->emif_iodft_tlgc);
bb772a59 103 iodft |= EMIF_REG_RESET_PHY_MASK;
2ae610f0
A
104 writel(iodft, &emif->emif_iodft_tlgc);
105}
106
107static void do_lpddr2_init(u32 base, u32 cs)
108{
109 u32 mr_addr;
e05a4f1f 110 const struct lpddr2_mr_regs *mr_regs;
2ae610f0 111
e05a4f1f 112 get_lpddr2_mr_regs(&mr_regs);
2ae610f0
A
113 /* Wait till device auto initialization is complete */
114 while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
115 ;
e05a4f1f 116 set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
2ae610f0
A
117 /*
118 * tZQINIT = 1 us
119 * Enough loops assuming a maximum of 2GHz
120 */
f4010734 121
2ae610f0 122 sdelay(2000);
f4010734 123
e05a4f1f
LV
124 set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
125 set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
f4010734 126
2ae610f0
A
127 /*
128 * Enable refresh along with writing MR2
129 * Encoding of RL in MR2 is (RL - 2)
130 */
bb772a59 131 mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
e05a4f1f 132 set_mr(base, cs, mr_addr, mr_regs->mr2);
f4010734 133
e05a4f1f
LV
134 if (mr_regs->mr3 > 0)
135 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
2ae610f0
A
136}
137
138static void lpddr2_init(u32 base, const struct emif_regs *regs)
139{
140 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
141
142 /* Not NVM */
bb772a59 143 clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
2ae610f0
A
144
145 /*
146 * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
147 * when EMIF_SDRAM_CONFIG register is written
148 */
bb772a59 149 setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
2ae610f0
A
150
151 /*
152 * Set the SDRAM_CONFIG and PHY_CTRL for the
153 * un-locked frequency & default RL
154 */
155 writel(regs->sdram_config_init, &emif->emif_sdram_config);
0474fb0e 156 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
f4010734 157
25476382 158 do_ext_phy_settings(base, regs);
2ae610f0
A
159
160 do_lpddr2_init(base, CS0);
bb772a59 161 if (regs->sdram_config & EMIF_REG_EBANK_MASK)
2ae610f0
A
162 do_lpddr2_init(base, CS1);
163
164 writel(regs->sdram_config, &emif->emif_sdram_config);
165 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
166
167 /* Enable refresh now */
bb772a59 168 clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
2ae610f0 169
25476382
S
170 }
171
172__weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
173{
2ae610f0
A
174}
175
bb772a59 176void emif_update_timings(u32 base, const struct emif_regs *regs)
2ae610f0
A
177{
178 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
179
180 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
181 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
182 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
183 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
184 if (omap_revision() == OMAP4430_ES1_0) {
185 /* ES1 bug EMIF should be in force idle during freq_update */
186 writel(0, &emif->emif_pwr_mgmt_ctrl);
187 } else {
188 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
189 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
190 }
191 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
192 writel(regs->zq_config, &emif->emif_zq_config);
193 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
194 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
924eb369 195
92b0482c
S
196 if ((omap_revision() >= OMAP5430_ES1_0) ||
197 (omap_revision() == DRA752_ES1_0)) {
bb772a59
S
198 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
199 &emif->emif_l3_config);
200 } else if (omap_revision() >= OMAP4460_ES1_0) {
924eb369
A
201 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
202 &emif->emif_l3_config);
203 } else {
204 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
205 &emif->emif_l3_config);
2ae610f0
A
206 }
207}
208
6c70935d 209static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
784ab7c5
LV
210{
211 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
212
213 /* keep sdram in self-refresh */
214 writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
215 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
216 __udelay(130);
217
218 /*
219 * Set invert_clkout (if activated)--DDR_PHYCTRL_1
6c70935d
S
220 * Invert clock adds an additional half cycle delay on the
221 * command interface. The additional half cycle, is usually
222 * meant to enable leveling in the situation that DQS is later
223 * than CK on the board.It also helps provide some additional
224 * margin for leveling.
784ab7c5 225 */
6c70935d
S
226 writel(regs->emif_ddr_phy_ctlr_1,
227 &emif->emif_ddr_phy_ctrl_1);
228
229 writel(regs->emif_ddr_phy_ctlr_1,
230 &emif->emif_ddr_phy_ctrl_1_shdw);
784ab7c5
LV
231 __udelay(130);
232
233 writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
6c70935d 234 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
784ab7c5
LV
235
236 /* Launch Full leveling */
237 writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
238
239 /* Wait till full leveling is complete */
240 readl(&emif->emif_rd_wr_lvl_ctl);
6c70935d 241 __udelay(130);
784ab7c5
LV
242
243 /* Read data eye leveling no of samples */
244 config_data_eye_leveling_samples(base);
245
6c70935d
S
246 /*
247 * Launch 8 incremental WR_LVL- to compensate for
248 * PHY limitation.
249 */
250 writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
251 &emif->emif_rd_wr_lvl_ctl);
252
784ab7c5
LV
253 __udelay(130);
254
255 /* Launch Incremental leveling */
256 writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
6c70935d 257 __udelay(130);
784ab7c5
LV
258}
259
6c70935d 260static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
92b0482c
S
261{
262 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
263
6c70935d
S
264 u32 fifo_reg;
265
266 fifo_reg = readl(&emif->emif_ddr_fifo_misaligned_clear_1);
267 writel(fifo_reg | 0x00000100,
268 &emif->emif_ddr_fifo_misaligned_clear_1);
269
270 fifo_reg = readl(&emif->emif_ddr_fifo_misaligned_clear_2);
271 writel(fifo_reg | 0x00000100,
272 &emif->emif_ddr_fifo_misaligned_clear_2);
273
274 /* Launch Full leveling */
275 writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
276
277 /* Wait till full leveling is complete */
278 readl(&emif->emif_rd_wr_lvl_ctl);
279 __udelay(130);
280
281 /* Read data eye leveling no of samples */
92b0482c
S
282 config_data_eye_leveling_samples(base);
283
6c70935d
S
284 /*
285 * Disable leveling. This is because if leveling is kept
286 * enabled, then PHY triggers a false leveling during
287 * EMIF-idle scenario which results in wrong delay
288 * values getting updated. After this the EMIF becomes
289 * unaccessible. So disable it after the first time
290 */
291 writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
292}
293
294static void ddr3_leveling(u32 base, const struct emif_regs *regs)
295{
296 if (is_omap54xx())
297 omap5_ddr3_leveling(base, regs);
298 else
299 dra7_ddr3_leveling(base, regs);
92b0482c
S
300}
301
784ab7c5
LV
302static void ddr3_init(u32 base, const struct emif_regs *regs)
303{
304 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
784ab7c5
LV
305
306 /*
307 * Set SDRAM_CONFIG and PHY control registers to locked frequency
308 * and RL =7. As the default values of the Mode Registers are not
309 * defined, contents of mode Registers must be fully initialized.
310 * H/W takes care of this initialization
311 */
784ab7c5
LV
312 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
313
314 /* Update timing registers */
315 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
316 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
317 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
318
319 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
320 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
321
6c70935d
S
322 /*
323 * The same sequence should work on OMAP5432 as well. But strange that
324 * it is not working
325 */
326 if (omap_revision() == DRA752_ES1_0) {
327 do_ext_phy_settings(base, regs);
328 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
329 writel(regs->sdram_config_init, &emif->emif_sdram_config);
330 } else {
331 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
332 writel(regs->sdram_config_init, &emif->emif_sdram_config);
333 do_ext_phy_settings(base, regs);
334 }
784ab7c5
LV
335
336 /* enable leveling */
337 writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
338
6c70935d 339 ddr3_leveling(base, regs);
784ab7c5
LV
340}
341
095aea29
A
342#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
343#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
344
095aea29
A
345/*
346 * Organization and refresh requirements for LPDDR2 devices of different
347 * types and densities. Derived from JESD209-2 section 2.4
348 */
349const struct lpddr2_addressing addressing_table[] = {
350 /* Banks tREFIx10 rowx32,rowx16 colx32,colx16 density */
351 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
352 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
353 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
354 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
355 {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
356 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
357 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
358 {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
359 {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
360 {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
361};
362
363static const u32 lpddr2_density_2_size_in_mbytes[] = {
364 8, /* 64Mb */
365 16, /* 128Mb */
366 32, /* 256Mb */
367 64, /* 512Mb */
368 128, /* 1Gb */
369 256, /* 2Gb */
370 512, /* 4Gb */
371 1024, /* 8Gb */
372 2048, /* 16Gb */
373 4096 /* 32Gb */
374};
375
376/*
377 * Calculate the period of DDR clock from frequency value and set the
378 * denominator and numerator in global variables for easy access later
379 */
380static void set_ddr_clk_period(u32 freq)
381{
382 /*
383 * period = 1/freq
384 * period_in_ns = 10^9/freq
385 */
386 *T_num = 1000000000;
387 *T_den = freq;
388 cancel_out(T_num, T_den, 200);
389
390}
391
392/*
393 * Convert time in nano seconds to number of cycles of DDR clock
394 */
395static inline u32 ns_2_cycles(u32 ns)
396{
397 return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
398}
399
400/*
401 * ns_2_cycles with the difference that the time passed is 2 times the actual
402 * value(to avoid fractions). The cycles returned is for the original value of
403 * the timing parameter
404 */
405static inline u32 ns_x2_2_cycles(u32 ns)
406{
407 return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
408}
409
410/*
411 * Find addressing table index based on the device's type(S2 or S4) and
412 * density
413 */
414s8 addressing_table_index(u8 type, u8 density, u8 width)
415{
416 u8 index;
417 if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
418 return -1;
419
420 /*
421 * Look at the way ADDR_TABLE_INDEX* values have been defined
422 * in emif.h compared to LPDDR2_DENSITY_* values
423 * The table is layed out in the increasing order of density
424 * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
425 * at the end
426 */
427 if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
428 index = ADDR_TABLE_INDEX1GS2;
429 else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
430 index = ADDR_TABLE_INDEX2GS2;
431 else
432 index = density;
433
434 debug("emif: addressing table index %d\n", index);
435
436 return index;
437}
438
439/*
440 * Find the the right timing table from the array of timing
441 * tables of the device using DDR clock frequency
442 */
443static const struct lpddr2_ac_timings *get_timings_table(const struct
444 lpddr2_ac_timings const *const *device_timings,
445 u32 freq)
446{
447 u32 i, temp, freq_nearest;
448 const struct lpddr2_ac_timings *timings = 0;
449
450 emif_assert(freq <= MAX_LPDDR2_FREQ);
451 emif_assert(device_timings);
452
453 /*
454 * Start with the maximum allowed frequency - that is always safe
455 */
456 freq_nearest = MAX_LPDDR2_FREQ;
457 /*
458 * Find the timings table that has the max frequency value:
459 * i. Above or equal to the DDR frequency - safe
460 * ii. The lowest that satisfies condition (i) - optimal
461 */
462 for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
463 temp = device_timings[i]->max_freq;
464 if ((temp >= freq) && (temp <= freq_nearest)) {
465 freq_nearest = temp;
466 timings = device_timings[i];
467 }
468 }
469 debug("emif: timings table: %d\n", freq_nearest);
470 return timings;
471}
472
473/*
474 * Finds the value of emif_sdram_config_reg
475 * All parameters are programmed based on the device on CS0.
476 * If there is a device on CS1, it will be same as that on CS0 or
477 * it will be NVM. We don't support NVM yet.
478 * If cs1_device pointer is NULL it is assumed that there is no device
479 * on CS1
480 */
481static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
482 const struct lpddr2_device_details *cs1_device,
483 const struct lpddr2_addressing *addressing,
484 u8 RL)
485{
486 u32 config_reg = 0;
487
bb772a59 488 config_reg |= (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
095aea29 489 config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
bb772a59 490 EMIF_REG_IBANK_POS_SHIFT;
095aea29 491
bb772a59 492 config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
095aea29 493
bb772a59 494 config_reg |= RL << EMIF_REG_CL_SHIFT;
095aea29
A
495
496 config_reg |= addressing->row_sz[cs0_device->io_width] <<
bb772a59 497 EMIF_REG_ROWSIZE_SHIFT;
095aea29 498
bb772a59 499 config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
095aea29
A
500
501 config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
bb772a59 502 EMIF_REG_EBANK_SHIFT;
095aea29
A
503
504 config_reg |= addressing->col_sz[cs0_device->io_width] <<
bb772a59 505 EMIF_REG_PAGESIZE_SHIFT;
095aea29
A
506
507 return config_reg;
508}
509
510static u32 get_sdram_ref_ctrl(u32 freq,
511 const struct lpddr2_addressing *addressing)
512{
513 u32 ref_ctrl = 0, val = 0, freq_khz;
514 freq_khz = freq / 1000;
515 /*
516 * refresh rate to be set is 'tREFI * freq in MHz
517 * division by 10000 to account for khz and x10 in t_REFI_us_x10
518 */
519 val = addressing->t_REFI_us_x10 * freq_khz / 10000;
bb772a59 520 ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
095aea29
A
521
522 return ref_ctrl;
523}
524
525static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
526 const struct lpddr2_min_tck *min_tck,
527 const struct lpddr2_addressing *addressing)
528{
529 u32 tim1 = 0, val = 0;
530 val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
bb772a59 531 tim1 |= val << EMIF_REG_T_WTR_SHIFT;
095aea29
A
532
533 if (addressing->num_banks == BANKS8)
534 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
535 (4 * (*T_num)) - 1;
536 else
537 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
538
bb772a59 539 tim1 |= val << EMIF_REG_T_RRD_SHIFT;
095aea29
A
540
541 val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
bb772a59 542 tim1 |= val << EMIF_REG_T_RC_SHIFT;
095aea29
A
543
544 val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
bb772a59 545 tim1 |= val << EMIF_REG_T_RAS_SHIFT;
095aea29
A
546
547 val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
bb772a59 548 tim1 |= val << EMIF_REG_T_WR_SHIFT;
095aea29
A
549
550 val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
bb772a59 551 tim1 |= val << EMIF_REG_T_RCD_SHIFT;
095aea29
A
552
553 val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
bb772a59 554 tim1 |= val << EMIF_REG_T_RP_SHIFT;
095aea29
A
555
556 return tim1;
557}
558
559static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
560 const struct lpddr2_min_tck *min_tck)
561{
562 u32 tim2 = 0, val = 0;
563 val = max(min_tck->tCKE, timings->tCKE) - 1;
bb772a59 564 tim2 |= val << EMIF_REG_T_CKE_SHIFT;
095aea29
A
565
566 val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
bb772a59 567 tim2 |= val << EMIF_REG_T_RTP_SHIFT;
095aea29
A
568
569 /*
570 * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
571 * same value
572 */
573 val = ns_2_cycles(timings->tXSR) - 1;
bb772a59
S
574 tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
575 tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
095aea29
A
576
577 val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
bb772a59 578 tim2 |= val << EMIF_REG_T_XP_SHIFT;
095aea29
A
579
580 return tim2;
581}
582
583static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
584 const struct lpddr2_min_tck *min_tck,
585 const struct lpddr2_addressing *addressing)
586{
587 u32 tim3 = 0, val = 0;
588 val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
bb772a59 589 tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
095aea29
A
590
591 val = ns_2_cycles(timings->tRFCab) - 1;
bb772a59 592 tim3 |= val << EMIF_REG_T_RFC_SHIFT;
095aea29
A
593
594 val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
bb772a59 595 tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
095aea29
A
596
597 val = ns_2_cycles(timings->tZQCS) - 1;
bb772a59 598 tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
095aea29
A
599
600 val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
bb772a59 601 tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
095aea29
A
602
603 return tim3;
604}
605
606static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
607 const struct lpddr2_addressing *addressing,
608 u8 volt_ramp)
609{
610 u32 zq = 0, val = 0;
611 if (volt_ramp)
612 val =
613 EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
614 addressing->t_REFI_us_x10;
615 else
616 val =
617 EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
618 addressing->t_REFI_us_x10;
bb772a59 619 zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
095aea29 620
bb772a59 621 zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
095aea29 622
bb772a59 623 zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
095aea29 624
bb772a59 625 zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
095aea29
A
626
627 /*
628 * Assuming that two chipselects have a single calibration resistor
629 * If there are indeed two calibration resistors, then this flag should
630 * be enabled to take advantage of dual calibration feature.
631 * This data should ideally come from board files. But considering
632 * that none of the boards today have calibration resistors per CS,
633 * it would be an unnecessary overhead.
634 */
bb772a59 635 zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
095aea29 636
bb772a59 637 zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
095aea29 638
bb772a59 639 zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
095aea29
A
640
641 return zq;
642}
643
644static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
645 const struct lpddr2_addressing *addressing,
646 u8 is_derated)
647{
648 u32 alert = 0, interval;
649 interval =
650 TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
651 if (is_derated)
652 interval *= 4;
bb772a59 653 alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
095aea29 654
bb772a59 655 alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
095aea29 656
bb772a59 657 alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
095aea29 658
bb772a59 659 alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
095aea29 660
bb772a59 661 alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
095aea29 662
bb772a59 663 alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
095aea29
A
664
665 return alert;
666}
667
668static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
669{
670 u32 idle = 0, val = 0;
671 if (volt_ramp)
924eb369 672 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
095aea29
A
673 else
674 /*Maximum value in normal conditions - suggested by hw team */
675 val = 0x1FF;
bb772a59 676 idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
095aea29 677
bb772a59 678 idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
095aea29
A
679
680 return idle;
681}
682
683static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
684{
685 u32 phy = 0, val = 0;
686
bb772a59 687 phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
095aea29
A
688
689 if (freq <= 100000000)
690 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
691 else if (freq <= 200000000)
692 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
693 else
694 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
bb772a59 695 phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
095aea29
A
696
697 /* Other fields are constant magic values. Hardcode them together */
698 phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
bb772a59 699 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
095aea29
A
700
701 return phy;
702}
703
d3d82e9f 704static u32 get_emif_mem_size(u32 base)
095aea29
A
705{
706 u32 size_mbytes = 0, temp;
d3d82e9f
LV
707 struct emif_device_details dev_details;
708 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
709 u32 emif_nr = emif_num(base);
095aea29 710
d3d82e9f
LV
711 emif_reset_phy(base);
712 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
713 &cs0_dev_details);
714 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
715 &cs1_dev_details);
716 emif_reset_phy(base);
095aea29 717
d3d82e9f
LV
718 if (dev_details.cs0_device_details) {
719 temp = dev_details.cs0_device_details->density;
095aea29
A
720 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
721 }
722
d3d82e9f
LV
723 if (dev_details.cs1_device_details) {
724 temp = dev_details.cs1_device_details->density;
095aea29
A
725 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
726 }
727 /* convert to bytes */
728 return size_mbytes << 20;
729}
730
731/* Gets the encoding corresponding to a given DMM section size */
732u32 get_dmm_section_size_map(u32 section_size)
733{
734 /*
735 * Section size mapping:
736 * 0x0: 16-MiB section
737 * 0x1: 32-MiB section
738 * 0x2: 64-MiB section
739 * 0x3: 128-MiB section
740 * 0x4: 256-MiB section
741 * 0x5: 512-MiB section
742 * 0x6: 1-GiB section
743 * 0x7: 2-GiB section
744 */
745 section_size >>= 24; /* divide by 16 MB */
746 return log_2_n_round_down(section_size);
747}
748
749static void emif_calculate_regs(
750 const struct emif_device_details *emif_dev_details,
751 u32 freq, struct emif_regs *regs)
752{
753 u32 temp, sys_freq;
754 const struct lpddr2_addressing *addressing;
755 const struct lpddr2_ac_timings *timings;
756 const struct lpddr2_min_tck *min_tck;
757 const struct lpddr2_device_details *cs0_dev_details =
758 emif_dev_details->cs0_device_details;
759 const struct lpddr2_device_details *cs1_dev_details =
760 emif_dev_details->cs1_device_details;
761 const struct lpddr2_device_timings *cs0_dev_timings =
762 emif_dev_details->cs0_device_timings;
763
764 emif_assert(emif_dev_details);
765 emif_assert(regs);
766 /*
767 * You can not have a device on CS1 without one on CS0
768 * So configuring EMIF without a device on CS0 doesn't
769 * make sense
770 */
771 emif_assert(cs0_dev_details);
772 emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
773 /*
774 * If there is a device on CS1 it should be same type as CS0
775 * (or NVM. But NVM is not supported in this driver yet)
776 */
777 emif_assert((cs1_dev_details == NULL) ||
778 (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
779 (cs0_dev_details->type == cs1_dev_details->type));
780 emif_assert(freq <= MAX_LPDDR2_FREQ);
781
782 set_ddr_clk_period(freq);
783
784 /*
785 * The device on CS0 is used for all timing calculations
786 * There is only one set of registers for timings per EMIF. So, if the
787 * second CS(CS1) has a device, it should have the same timings as the
788 * device on CS0
789 */
790 timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
791 emif_assert(timings);
792 min_tck = cs0_dev_timings->min_tck;
793
794 temp = addressing_table_index(cs0_dev_details->type,
795 cs0_dev_details->density,
796 cs0_dev_details->io_width);
797
798 emif_assert((temp >= 0));
799 addressing = &(addressing_table[temp]);
800 emif_assert(addressing);
801
802 sys_freq = get_sys_clk_freq();
803
804 regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
805 cs1_dev_details,
806 addressing, RL_BOOT);
807
808 regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
809 cs1_dev_details,
810 addressing, RL_FINAL);
811
812 regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
813
814 regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
815
816 regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
817
818 regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
819
820 regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
821
822 regs->temp_alert_config =
823 get_temp_alert_config(cs1_dev_details, addressing, 0);
824
825 regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
826 LPDDR2_VOLTAGE_STABLE);
827
828 regs->emif_ddr_phy_ctlr_1_init =
829 get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
830
831 regs->emif_ddr_phy_ctlr_1 =
832 get_ddr_phy_ctrl_1(freq, RL_FINAL);
833
834 regs->freq = freq;
835
836 print_timing_reg(regs->sdram_config_init);
837 print_timing_reg(regs->sdram_config);
838 print_timing_reg(regs->ref_ctrl);
839 print_timing_reg(regs->sdram_tim1);
840 print_timing_reg(regs->sdram_tim2);
841 print_timing_reg(regs->sdram_tim3);
842 print_timing_reg(regs->read_idle_ctrl);
843 print_timing_reg(regs->temp_alert_config);
844 print_timing_reg(regs->zq_config);
845 print_timing_reg(regs->emif_ddr_phy_ctlr_1);
846 print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
847}
848#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
849
1e463866
A
850#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
851const char *get_lpddr2_type(u8 type_id)
852{
853 switch (type_id) {
854 case LPDDR2_TYPE_S4:
855 return "LPDDR2-S4";
856 case LPDDR2_TYPE_S2:
857 return "LPDDR2-S2";
858 default:
859 return NULL;
860 }
861}
862
863const char *get_lpddr2_io_width(u8 width_id)
864{
865 switch (width_id) {
866 case LPDDR2_IO_WIDTH_8:
867 return "x8";
868 case LPDDR2_IO_WIDTH_16:
869 return "x16";
870 case LPDDR2_IO_WIDTH_32:
871 return "x32";
872 default:
873 return NULL;
874 }
875}
876
877const char *get_lpddr2_manufacturer(u32 manufacturer)
878{
879 switch (manufacturer) {
880 case LPDDR2_MANUFACTURER_SAMSUNG:
881 return "Samsung";
882 case LPDDR2_MANUFACTURER_QIMONDA:
883 return "Qimonda";
884 case LPDDR2_MANUFACTURER_ELPIDA:
885 return "Elpida";
886 case LPDDR2_MANUFACTURER_ETRON:
887 return "Etron";
888 case LPDDR2_MANUFACTURER_NANYA:
889 return "Nanya";
890 case LPDDR2_MANUFACTURER_HYNIX:
891 return "Hynix";
892 case LPDDR2_MANUFACTURER_MOSEL:
893 return "Mosel";
894 case LPDDR2_MANUFACTURER_WINBOND:
895 return "Winbond";
896 case LPDDR2_MANUFACTURER_ESMT:
897 return "ESMT";
898 case LPDDR2_MANUFACTURER_SPANSION:
899 return "Spansion";
900 case LPDDR2_MANUFACTURER_SST:
901 return "SST";
902 case LPDDR2_MANUFACTURER_ZMOS:
903 return "ZMOS";
904 case LPDDR2_MANUFACTURER_INTEL:
905 return "Intel";
906 case LPDDR2_MANUFACTURER_NUMONYX:
907 return "Numonyx";
908 case LPDDR2_MANUFACTURER_MICRON:
909 return "Micron";
910 default:
911 return NULL;
912 }
913}
914
915static void display_sdram_details(u32 emif_nr, u32 cs,
916 struct lpddr2_device_details *device)
917{
918 const char *mfg_str;
919 const char *type_str;
920 char density_str[10];
921 u32 density;
922
923 debug("EMIF%d CS%d\t", emif_nr, cs);
924
925 if (!device) {
926 debug("None\n");
927 return;
928 }
929
930 mfg_str = get_lpddr2_manufacturer(device->manufacturer);
931 type_str = get_lpddr2_type(device->type);
932
933 density = lpddr2_density_2_size_in_mbytes[device->density];
934 if ((density / 1024 * 1024) == density) {
935 density /= 1024;
936 sprintf(density_str, "%d GB", density);
937 } else
938 sprintf(density_str, "%d MB", density);
939 if (mfg_str && type_str)
940 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
941}
942
943static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
944 struct lpddr2_device_details *lpddr2_device)
945{
946 u32 mr = 0, temp;
947
948 mr = get_mr(base, cs, LPDDR2_MR0);
949 if (mr > 0xFF) {
950 /* Mode register value bigger than 8 bit */
951 return 0;
952 }
953
954 temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
955 if (temp) {
956 /* Not SDRAM */
957 return 0;
958 }
959 temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
960
961 if (temp) {
962 /* DNV supported - But DNV is only supported for NVM */
963 return 0;
964 }
965
966 mr = get_mr(base, cs, LPDDR2_MR4);
967 if (mr > 0xFF) {
968 /* Mode register value bigger than 8 bit */
969 return 0;
970 }
971
972 mr = get_mr(base, cs, LPDDR2_MR5);
ad0878a7 973 if (mr > 0xFF) {
1e463866
A
974 /* Mode register value bigger than 8 bit */
975 return 0;
976 }
977
978 if (!get_lpddr2_manufacturer(mr)) {
979 /* Manufacturer not identified */
980 return 0;
981 }
982 lpddr2_device->manufacturer = mr;
983
984 mr = get_mr(base, cs, LPDDR2_MR6);
985 if (mr >= 0xFF) {
986 /* Mode register value bigger than 8 bit */
987 return 0;
988 }
989
990 mr = get_mr(base, cs, LPDDR2_MR7);
991 if (mr >= 0xFF) {
992 /* Mode register value bigger than 8 bit */
993 return 0;
994 }
995
996 mr = get_mr(base, cs, LPDDR2_MR8);
997 if (mr >= 0xFF) {
998 /* Mode register value bigger than 8 bit */
999 return 0;
1000 }
1001
1002 temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1003 if (!get_lpddr2_type(temp)) {
1004 /* Not SDRAM */
1005 return 0;
1006 }
1007 lpddr2_device->type = temp;
1008
1009 temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1010 if (temp > LPDDR2_DENSITY_32Gb) {
1011 /* Density not supported */
1012 return 0;
1013 }
1014 lpddr2_device->density = temp;
1015
1016 temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1017 if (!get_lpddr2_io_width(temp)) {
1018 /* IO width unsupported value */
1019 return 0;
1020 }
1021 lpddr2_device->io_width = temp;
1022
1023 /*
1024 * If all the above tests pass we should
1025 * have a device on this chip-select
1026 */
1027 return 1;
1028}
1029
025bc425 1030struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1e463866
A
1031 struct lpddr2_device_details *lpddr2_dev_details)
1032{
1033 u32 phy;
bb772a59
S
1034 u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1035
1e463866
A
1036 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1037
1038 if (!lpddr2_dev_details)
1039 return NULL;
1040
1041 /* Do the minimum init for mode register accesses */
784229cc 1042 if (!(running_from_sdram() || warm_reset())) {
1e463866
A
1043 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1044 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1045 }
1046
1047 if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1048 return NULL;
1049
1050 display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1051
1052 return lpddr2_dev_details;
1053}
1e463866
A
1054#endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1055
2ae610f0
A
1056static void do_sdram_init(u32 base)
1057{
1058 const struct emif_regs *regs;
1059 u32 in_sdram, emif_nr;
1060
1061 debug(">>do_sdram_init() %x\n", base);
1062
1063 in_sdram = running_from_sdram();
bb772a59 1064 emif_nr = (base == EMIF1_BASE) ? 1 : 2;
2ae610f0 1065
095aea29 1066#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
2ae610f0
A
1067 emif_get_reg_dump(emif_nr, &regs);
1068 if (!regs) {
1069 debug("EMIF: reg dump not provided\n");
1070 return;
1071 }
095aea29
A
1072#else
1073 /*
1074 * The user has not provided the register values. We need to
1075 * calculate it based on the timings and the DDR frequency
1076 */
1077 struct emif_device_details dev_details;
1078 struct emif_regs calculated_regs;
1079
1080 /*
1081 * Get device details:
1082 * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1083 * - Obtained from user otherwise
1084 */
1085 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
025bc425 1086 emif_reset_phy(base);
4324c118 1087 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
025bc425 1088 &cs0_dev_details);
4324c118 1089 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
025bc425
A
1090 &cs1_dev_details);
1091 emif_reset_phy(base);
095aea29
A
1092
1093 /* Return if no devices on this EMIF */
1094 if (!dev_details.cs0_device_details &&
1095 !dev_details.cs1_device_details) {
095aea29
A
1096 return;
1097 }
1098
095aea29
A
1099 /*
1100 * Get device timings:
1101 * - Default timings specified by JESD209-2 if
1102 * CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1103 * - Obtained from user otherwise
1104 */
1105 emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1106 &dev_details.cs1_device_timings);
1107
1108 /* Calculate the register values */
2e5ba489 1109 emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
095aea29
A
1110 regs = &calculated_regs;
1111#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
2ae610f0
A
1112
1113 /*
1114 * Initializing the LPDDR2 device can not happen from SDRAM.
1115 * Changing the timing registers in EMIF can happen(going from one
1116 * OPP to another)
1117 */
784229cc 1118 if (!(in_sdram || warm_reset())) {
9ca8bfea 1119 if (emif_sdram_type() == EMIF_SDRAM_TYPE_LPDDR2)
784ab7c5
LV
1120 lpddr2_init(base, regs);
1121 else
1122 ddr3_init(base, regs);
1123 }
166e5cc6
LV
1124 if (warm_reset() && (emif_sdram_type() == EMIF_SDRAM_TYPE_DDR3)) {
1125 set_lpmode_selfrefresh(base);
1126 emif_reset_phy(base);
6c70935d 1127 ddr3_leveling(base, regs);
166e5cc6 1128 }
2ae610f0
A
1129
1130 /* Write to the shadow registers */
1131 emif_update_timings(base, regs);
1132
1133 debug("<<do_sdram_init() %x\n", base);
1134}
1135
bb772a59 1136void emif_post_init_config(u32 base)
2ae610f0
A
1137{
1138 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
bb772a59
S
1139 u32 omap_rev = omap_revision();
1140
2ae610f0 1141 /* reset phy on ES2.0 */
bb772a59 1142 if (omap_rev == OMAP4430_ES2_0)
2ae610f0
A
1143 emif_reset_phy(base);
1144
1145 /* Put EMIF back in smart idle on ES1.0 */
bb772a59 1146 if (omap_rev == OMAP4430_ES1_0)
2ae610f0
A
1147 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1148}
1149
bb772a59 1150void dmm_init(u32 base)
2ae610f0
A
1151{
1152 const struct dmm_lisa_map_regs *lisa_map_regs;
86021143 1153 u32 i, section, valid;
2ae610f0 1154
095aea29 1155#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
2ae610f0 1156 emif_get_dmm_regs(&lisa_map_regs);
095aea29
A
1157#else
1158 u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1159 u32 section_cnt, sys_addr;
1160 struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1161
1162 mapped_size = 0;
1163 section_cnt = 3;
1164 sys_addr = CONFIG_SYS_SDRAM_BASE;
d3d82e9f
LV
1165 emif1_size = get_emif_mem_size(EMIF1_BASE);
1166 emif2_size = get_emif_mem_size(EMIF2_BASE);
095aea29
A
1167 debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1168
1169 if (!emif1_size && !emif2_size)
1170 return;
1171
1172 /* symmetric interleaved section */
1173 if (emif1_size && emif2_size) {
1174 mapped_size = min(emif1_size, emif2_size);
1175 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
bb772a59 1176 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
095aea29
A
1177 /* only MSB */
1178 section_map |= (sys_addr >> 24) <<
bb772a59 1179 EMIF_SYS_ADDR_SHIFT;
095aea29 1180 section_map |= get_dmm_section_size_map(mapped_size * 2)
bb772a59 1181 << EMIF_SYS_SIZE_SHIFT;
095aea29
A
1182 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1183 emif1_size -= mapped_size;
1184 emif2_size -= mapped_size;
1185 sys_addr += (mapped_size * 2);
1186 section_cnt--;
1187 }
1188
1189 /*
1190 * Single EMIF section(we can have a maximum of 1 single EMIF
1191 * section- either EMIF1 or EMIF2 or none, but not both)
1192 */
1193 if (emif1_size) {
1194 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1195 section_map |= get_dmm_section_size_map(emif1_size)
bb772a59 1196 << EMIF_SYS_SIZE_SHIFT;
095aea29
A
1197 /* only MSB */
1198 section_map |= (mapped_size >> 24) <<
bb772a59 1199 EMIF_SDRC_ADDR_SHIFT;
095aea29 1200 /* only MSB */
bb772a59 1201 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
095aea29
A
1202 section_cnt--;
1203 }
1204 if (emif2_size) {
1205 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1206 section_map |= get_dmm_section_size_map(emif2_size) <<
bb772a59 1207 EMIF_SYS_SIZE_SHIFT;
095aea29 1208 /* only MSB */
bb772a59 1209 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
095aea29 1210 /* only MSB */
bb772a59 1211 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
095aea29
A
1212 section_cnt--;
1213 }
1214
1215 if (section_cnt == 2) {
1216 /* Only 1 section - either symmetric or single EMIF */
1217 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1218 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1219 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1220 } else {
1221 /* 2 sections - 1 symmetric, 1 single EMIF */
1222 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1223 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1224 }
1225
1226 /* TRAP for invalid TILER mappings in section 0 */
1227 lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
2ae610f0 1228
e3f53104
LV
1229 if (omap_revision() >= OMAP4460_ES1_0)
1230 lis_map_regs_calculated.is_ma_present = 1;
1231
095aea29
A
1232 lisa_map_regs = &lis_map_regs_calculated;
1233#endif
2ae610f0
A
1234 struct dmm_lisa_map_regs *hw_lisa_map_regs =
1235 (struct dmm_lisa_map_regs *)base;
1236
1237 writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1238 writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1239 writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1240 writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1241
1242 writel(lisa_map_regs->dmm_lisa_map_3,
1243 &hw_lisa_map_regs->dmm_lisa_map_3);
1244 writel(lisa_map_regs->dmm_lisa_map_2,
1245 &hw_lisa_map_regs->dmm_lisa_map_2);
1246 writel(lisa_map_regs->dmm_lisa_map_1,
1247 &hw_lisa_map_regs->dmm_lisa_map_1);
1248 writel(lisa_map_regs->dmm_lisa_map_0,
1249 &hw_lisa_map_regs->dmm_lisa_map_0);
924eb369 1250
7831419d 1251 if (lisa_map_regs->is_ma_present) {
924eb369 1252 hw_lisa_map_regs =
bb772a59 1253 (struct dmm_lisa_map_regs *)MA_BASE;
924eb369
A
1254
1255 writel(lisa_map_regs->dmm_lisa_map_3,
1256 &hw_lisa_map_regs->dmm_lisa_map_3);
1257 writel(lisa_map_regs->dmm_lisa_map_2,
1258 &hw_lisa_map_regs->dmm_lisa_map_2);
1259 writel(lisa_map_regs->dmm_lisa_map_1,
1260 &hw_lisa_map_regs->dmm_lisa_map_1);
1261 writel(lisa_map_regs->dmm_lisa_map_0,
1262 &hw_lisa_map_regs->dmm_lisa_map_0);
1263 }
86021143
LV
1264
1265 /*
1266 * EMIF should be configured only when
1267 * memory is mapped on it. Using emif1_enabled
1268 * and emif2_enabled variables for this.
1269 */
1270 emif1_enabled = 0;
1271 emif2_enabled = 0;
1272 for (i = 0; i < 4; i++) {
1273 section = __raw_readl(DMM_BASE + i*4);
1274 valid = (section & EMIF_SDRC_MAP_MASK) >>
1275 (EMIF_SDRC_MAP_SHIFT);
1276 if (valid == 3) {
1277 emif1_enabled = 1;
1278 emif2_enabled = 1;
1279 break;
1280 } else if (valid == 1) {
1281 emif1_enabled = 1;
1282 } else if (valid == 2) {
1283 emif2_enabled = 1;
1284 }
1285 }
1286
2ae610f0
A
1287}
1288
1289/*
1290 * SDRAM initialization:
1291 * SDRAM initialization has two parts:
1292 * 1. Configuring the SDRAM device
1293 * 2. Update the AC timings related parameters in the EMIF module
1294 * (1) should be done only once and should not be done while we are
1295 * running from SDRAM.
1296 * (2) can and should be done more than once if OPP changes.
1297 * Particularly, this may be needed when we boot without SPL and
1298 * and using Configuration Header(CH). ROM code supports only at 50% OPP
1299 * at boot (low power boot). So u-boot has to switch to OPP100 and update
1300 * the frequency. So,
1301 * Doing (1) and (2) makes sense - first time initialization
1302 * Doing (2) and not (1) makes sense - OPP change (when using CH)
1303 * Doing (1) and not (2) doen't make sense
1304 * See do_sdram_init() for the details
1305 */
1306void sdram_init(void)
1307{
1308 u32 in_sdram, size_prog, size_detect;
9ca8bfea 1309 u32 sdram_type = emif_sdram_type();
2ae610f0
A
1310
1311 debug(">>sdram_init()\n");
1312
508a58fa 1313 if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
2ae610f0
A
1314 return;
1315
1316 in_sdram = running_from_sdram();
1317 debug("in_sdram = %d\n", in_sdram);
1318
166e5cc6
LV
1319 if (!in_sdram) {
1320 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
01b753ff 1321 bypass_dpll((*prcm)->cm_clkmode_dpll_core);
166e5cc6 1322 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
01b753ff 1323 writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
753bae8c 1324 }
2ae610f0 1325
784229cc 1326 if (!in_sdram)
bb772a59 1327 dmm_init(DMM_BASE);
784229cc 1328
86021143
LV
1329 if (emif1_enabled)
1330 do_sdram_init(EMIF1_BASE);
1331
1332 if (emif2_enabled)
1333 do_sdram_init(EMIF2_BASE);
1334
784229cc 1335 if (!(in_sdram || warm_reset())) {
86021143
LV
1336 if (emif1_enabled)
1337 emif_post_init_config(EMIF1_BASE);
1338 if (emif2_enabled)
1339 emif_post_init_config(EMIF2_BASE);
2ae610f0
A
1340 }
1341
1342 /* for the shadow registers to take effect */
9ca8bfea 1343 if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
753bae8c 1344 freq_update_core();
2ae610f0
A
1345
1346 /* Do some testing after the init */
1347 if (!in_sdram) {
508a58fa 1348 size_prog = omap_sdram_size();
41321fd4
S
1349 size_prog = log_2_n_round_down(size_prog);
1350 size_prog = (1 << size_prog);
1351
2ae610f0
A
1352 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1353 size_prog);
1354 /* Compare with the size programmed */
1355 if (size_detect != size_prog) {
1356 printf("SDRAM: identified size not same as expected"
1357 " size identified: %x expected: %x\n",
1358 size_detect,
1359 size_prog);
1360 } else
1361 debug("get_ram_size() successful");
1362 }
1363
1364 debug("<<sdram_init()\n");
1365}