]> git.ipfire.org Git - people/ms/u-boot.git/blame - arch/arm/cpu/armv8/fsl-lsch3/cpu.c
fsl-ch3/lowlevel: TZPC and TZASC programming to configure non-secure accesses
[people/ms/u-boot.git] / arch / arm / cpu / armv8 / fsl-lsch3 / cpu.c
CommitLineData
2f78eae5
YS
1/*
2 * Copyright 2014 Freescale Semiconductor, Inc.
3 *
4 * SPDX-License-Identifier: GPL-2.0+
5 */
6
7#include <common.h>
8#include <asm/io.h>
9#include <asm/system.h>
10#include <asm/armv8/mmu.h>
11#include <asm/io.h>
12#include <asm/arch-fsl-lsch3/immap_lsch3.h>
13#include "cpu.h"
40f8dec5 14#include "mp.h"
2f78eae5 15#include "speed.h"
b940ca64 16#include <fsl_mc.h>
2f78eae5
YS
17
18DECLARE_GLOBAL_DATA_PTR;
19
20#ifndef CONFIG_SYS_DCACHE_OFF
21/*
22 * To start MMU before DDR is available, we create MMU table in SRAM.
23 * The base address of SRAM is CONFIG_SYS_FSL_OCRAM_BASE. We use three
24 * levels of translation tables here to cover 40-bit address space.
25 * We use 4KB granule size, with 40 bits physical address, T0SZ=24
26 * Level 0 IA[39], table address @0
27 * Level 1 IA[31:30], table address @01000, 0x2000
28 * Level 2 IA[29:21], table address @0x3000
29 */
30
31#define SECTION_SHIFT_L0 39UL
32#define SECTION_SHIFT_L1 30UL
33#define SECTION_SHIFT_L2 21UL
34#define BLOCK_SIZE_L0 0x8000000000UL
35#define BLOCK_SIZE_L1 (1 << SECTION_SHIFT_L1)
36#define BLOCK_SIZE_L2 (1 << SECTION_SHIFT_L2)
37#define CONFIG_SYS_IFC_BASE 0x30000000
38#define CONFIG_SYS_IFC_SIZE 0x10000000
39#define CONFIG_SYS_IFC_BASE2 0x500000000
40#define CONFIG_SYS_IFC_SIZE2 0x100000000
41#define TCR_EL2_PS_40BIT (2 << 16)
42#define LSCH3_VA_BITS (40)
43#define LSCH3_TCR (TCR_TG0_4K | \
44 TCR_EL2_PS_40BIT | \
45 TCR_SHARED_NON | \
46 TCR_ORGN_NC | \
47 TCR_IRGN_NC | \
48 TCR_T0SZ(LSCH3_VA_BITS))
49
50/*
51 * Final MMU
52 * Let's start from the same layout as early MMU and modify as needed.
53 * IFC regions will be cache-inhibit.
54 */
55#define FINAL_QBMAN_CACHED_MEM 0x818000000UL
56#define FINAL_QBMAN_CACHED_SIZE 0x4000000
57
58
59static inline void early_mmu_setup(void)
60{
61 int el;
62 u64 i;
63 u64 section_l1t0, section_l1t1, section_l2;
64 u64 *level0_table = (u64 *)CONFIG_SYS_FSL_OCRAM_BASE;
65 u64 *level1_table_0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x1000);
66 u64 *level1_table_1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x2000);
67 u64 *level2_table = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x3000);
68
69
70 level0_table[0] =
71 (u64)level1_table_0 | PMD_TYPE_TABLE;
72 level0_table[1] =
73 (u64)level1_table_1 | PMD_TYPE_TABLE;
74
75 /*
76 * set level 1 table 0 to cache_inhibit, covering 0 to 512GB
77 * set level 1 table 1 to cache enabled, covering 512GB to 1TB
78 * set level 2 table to cache-inhibit, covering 0 to 1GB
79 */
80 section_l1t0 = 0;
81 section_l1t1 = BLOCK_SIZE_L0;
82 section_l2 = 0;
83 for (i = 0; i < 512; i++) {
84 set_pgtable_section(level1_table_0, i, section_l1t0,
85 MT_DEVICE_NGNRNE);
86 set_pgtable_section(level1_table_1, i, section_l1t1,
87 MT_NORMAL);
88 set_pgtable_section(level2_table, i, section_l2,
89 MT_DEVICE_NGNRNE);
90 section_l1t0 += BLOCK_SIZE_L1;
91 section_l1t1 += BLOCK_SIZE_L1;
92 section_l2 += BLOCK_SIZE_L2;
93 }
94
95 level1_table_0[0] =
96 (u64)level2_table | PMD_TYPE_TABLE;
97 level1_table_0[1] =
98 0x40000000 | PMD_SECT_AF | PMD_TYPE_SECT |
99 PMD_ATTRINDX(MT_DEVICE_NGNRNE);
100 level1_table_0[2] =
101 0x80000000 | PMD_SECT_AF | PMD_TYPE_SECT |
102 PMD_ATTRINDX(MT_NORMAL);
103 level1_table_0[3] =
104 0xc0000000 | PMD_SECT_AF | PMD_TYPE_SECT |
105 PMD_ATTRINDX(MT_NORMAL);
106
107 /* Rewrite table to enable cache */
108 set_pgtable_section(level2_table,
109 CONFIG_SYS_FSL_OCRAM_BASE >> SECTION_SHIFT_L2,
110 CONFIG_SYS_FSL_OCRAM_BASE,
111 MT_NORMAL);
112 for (i = CONFIG_SYS_IFC_BASE >> SECTION_SHIFT_L2;
113 i < (CONFIG_SYS_IFC_BASE + CONFIG_SYS_IFC_SIZE)
114 >> SECTION_SHIFT_L2; i++) {
115 section_l2 = i << SECTION_SHIFT_L2;
116 set_pgtable_section(level2_table, i,
117 section_l2, MT_NORMAL);
118 }
119
120 el = current_el();
121 set_ttbr_tcr_mair(el, (u64)level0_table, LSCH3_TCR, MEMORY_ATTRIBUTES);
122 set_sctlr(get_sctlr() | CR_M);
123}
124
125/*
126 * This final tale looks similar to early table, but different in detail.
127 * These tables are in regular memory. Cache on IFC is disabled. One sub table
128 * is added to enable cache for QBMan.
129 */
130static inline void final_mmu_setup(void)
131{
132 int el;
133 u64 i, tbl_base, tbl_limit, section_base;
134 u64 section_l1t0, section_l1t1, section_l2;
135 u64 *level0_table = (u64 *)gd->arch.tlb_addr;
136 u64 *level1_table_0 = (u64 *)(gd->arch.tlb_addr + 0x1000);
137 u64 *level1_table_1 = (u64 *)(gd->arch.tlb_addr + 0x2000);
138 u64 *level2_table_0 = (u64 *)(gd->arch.tlb_addr + 0x3000);
139 u64 *level2_table_1 = (u64 *)(gd->arch.tlb_addr + 0x4000);
140
141
142 level0_table[0] =
143 (u64)level1_table_0 | PMD_TYPE_TABLE;
144 level0_table[1] =
145 (u64)level1_table_1 | PMD_TYPE_TABLE;
146
147 /*
148 * set level 1 table 0 to cache_inhibit, covering 0 to 512GB
149 * set level 1 table 1 to cache enabled, covering 512GB to 1TB
150 * set level 2 table 0 to cache-inhibit, covering 0 to 1GB
151 */
152 section_l1t0 = 0;
153 section_l1t1 = BLOCK_SIZE_L0;
154 section_l2 = 0;
155 for (i = 0; i < 512; i++) {
156 set_pgtable_section(level1_table_0, i, section_l1t0,
157 MT_DEVICE_NGNRNE);
158 set_pgtable_section(level1_table_1, i, section_l1t1,
159 MT_NORMAL);
160 set_pgtable_section(level2_table_0, i, section_l2,
161 MT_DEVICE_NGNRNE);
162 section_l1t0 += BLOCK_SIZE_L1;
163 section_l1t1 += BLOCK_SIZE_L1;
164 section_l2 += BLOCK_SIZE_L2;
165 }
166
167 level1_table_0[0] =
168 (u64)level2_table_0 | PMD_TYPE_TABLE;
169 level1_table_0[2] =
170 0x80000000 | PMD_SECT_AF | PMD_TYPE_SECT |
171 PMD_ATTRINDX(MT_NORMAL);
172 level1_table_0[3] =
173 0xc0000000 | PMD_SECT_AF | PMD_TYPE_SECT |
174 PMD_ATTRINDX(MT_NORMAL);
175
176 /* Rewrite table to enable cache */
177 set_pgtable_section(level2_table_0,
178 CONFIG_SYS_FSL_OCRAM_BASE >> SECTION_SHIFT_L2,
179 CONFIG_SYS_FSL_OCRAM_BASE,
180 MT_NORMAL);
181
182 /*
183 * Fill in other part of tables if cache is needed
184 * If finer granularity than 1GB is needed, sub table
185 * should be created.
186 */
187 section_base = FINAL_QBMAN_CACHED_MEM & ~(BLOCK_SIZE_L1 - 1);
188 i = section_base >> SECTION_SHIFT_L1;
189 level1_table_0[i] = (u64)level2_table_1 | PMD_TYPE_TABLE;
190 section_l2 = section_base;
191 for (i = 0; i < 512; i++) {
192 set_pgtable_section(level2_table_1, i, section_l2,
193 MT_DEVICE_NGNRNE);
194 section_l2 += BLOCK_SIZE_L2;
195 }
196 tbl_base = FINAL_QBMAN_CACHED_MEM & (BLOCK_SIZE_L1 - 1);
197 tbl_limit = (FINAL_QBMAN_CACHED_MEM + FINAL_QBMAN_CACHED_SIZE) &
198 (BLOCK_SIZE_L1 - 1);
199 for (i = tbl_base >> SECTION_SHIFT_L2;
200 i < tbl_limit >> SECTION_SHIFT_L2; i++) {
201 section_l2 = section_base + (i << SECTION_SHIFT_L2);
202 set_pgtable_section(level2_table_1, i,
203 section_l2, MT_NORMAL);
204 }
205
206 /* flush new MMU table */
207 flush_dcache_range(gd->arch.tlb_addr,
208 gd->arch.tlb_addr + gd->arch.tlb_size);
209
210 /* point TTBR to the new table */
211 el = current_el();
212 asm volatile("dsb sy");
213 if (el == 1) {
214 asm volatile("msr ttbr0_el1, %0"
215 : : "r" ((u64)level0_table) : "memory");
216 } else if (el == 2) {
217 asm volatile("msr ttbr0_el2, %0"
218 : : "r" ((u64)level0_table) : "memory");
219 } else if (el == 3) {
220 asm volatile("msr ttbr0_el3, %0"
221 : : "r" ((u64)level0_table) : "memory");
222 } else {
223 hang();
224 }
225 asm volatile("isb");
226
227 /*
228 * MMU is already enabled, just need to invalidate TLB to load the
229 * new table. The new table is compatible with the current table, if
230 * MMU somehow walks through the new table before invalidation TLB,
231 * it still works. So we don't need to turn off MMU here.
232 */
233}
234
235int arch_cpu_init(void)
236{
237 icache_enable();
238 __asm_invalidate_dcache_all();
239 __asm_invalidate_tlb_all();
240 early_mmu_setup();
241 set_sctlr(get_sctlr() | CR_C);
242 return 0;
243}
244
245/*
246 * flush_l3_cache
247 * Dickens L3 cache can be flushed by transitioning from FAM to SFONLY power
248 * state, by writing to HP-F P-state request register.
249 * Fixme: This function should moved to a common file if other SoCs also use
250 * the same Dickens.
251 */
252#define HNF0_PSTATE_REQ 0x04200010
253#define HNF1_PSTATE_REQ 0x04210010
254#define HNF2_PSTATE_REQ 0x04220010
255#define HNF3_PSTATE_REQ 0x04230010
256#define HNF4_PSTATE_REQ 0x04240010
257#define HNF5_PSTATE_REQ 0x04250010
258#define HNF6_PSTATE_REQ 0x04260010
259#define HNF7_PSTATE_REQ 0x04270010
260#define HNFPSTAT_MASK (0xFFFFFFFFFFFFFFFC)
261#define HNFPSTAT_FAM 0x3
262#define HNFPSTAT_SFONLY 0x01
263
264static void hnf_pstate_req(u64 *ptr, u64 state)
265{
266 int timeout = 1000;
267 out_le64(ptr, (in_le64(ptr) & HNFPSTAT_MASK) | (state & 0x3));
268 ptr++;
269 /* checking if the transition is completed */
270 while (timeout > 0) {
271 if (((in_le64(ptr) & 0x0c) >> 2) == (state & 0x3))
272 break;
273 udelay(100);
274 timeout--;
275 }
276}
277
278void flush_l3_cache(void)
279{
280 hnf_pstate_req((u64 *)HNF0_PSTATE_REQ, HNFPSTAT_SFONLY);
281 hnf_pstate_req((u64 *)HNF1_PSTATE_REQ, HNFPSTAT_SFONLY);
282 hnf_pstate_req((u64 *)HNF2_PSTATE_REQ, HNFPSTAT_SFONLY);
283 hnf_pstate_req((u64 *)HNF3_PSTATE_REQ, HNFPSTAT_SFONLY);
284 hnf_pstate_req((u64 *)HNF4_PSTATE_REQ, HNFPSTAT_SFONLY);
285 hnf_pstate_req((u64 *)HNF5_PSTATE_REQ, HNFPSTAT_SFONLY);
286 hnf_pstate_req((u64 *)HNF6_PSTATE_REQ, HNFPSTAT_SFONLY);
287 hnf_pstate_req((u64 *)HNF7_PSTATE_REQ, HNFPSTAT_SFONLY);
288 hnf_pstate_req((u64 *)HNF0_PSTATE_REQ, HNFPSTAT_FAM);
289 hnf_pstate_req((u64 *)HNF1_PSTATE_REQ, HNFPSTAT_FAM);
290 hnf_pstate_req((u64 *)HNF2_PSTATE_REQ, HNFPSTAT_FAM);
291 hnf_pstate_req((u64 *)HNF3_PSTATE_REQ, HNFPSTAT_FAM);
292 hnf_pstate_req((u64 *)HNF4_PSTATE_REQ, HNFPSTAT_FAM);
293 hnf_pstate_req((u64 *)HNF5_PSTATE_REQ, HNFPSTAT_FAM);
294 hnf_pstate_req((u64 *)HNF6_PSTATE_REQ, HNFPSTAT_FAM);
295 hnf_pstate_req((u64 *)HNF7_PSTATE_REQ, HNFPSTAT_FAM);
296}
297
298/*
299 * This function is called from lib/board.c.
300 * It recreates MMU table in main memory. MMU and d-cache are enabled earlier.
301 * There is no need to disable d-cache for this operation.
302 */
303void enable_caches(void)
304{
305 final_mmu_setup();
306 __asm_invalidate_tlb_all();
307}
308#endif
309
310static inline u32 initiator_type(u32 cluster, int init_id)
311{
312 struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
313 u32 idx = (cluster >> (init_id * 8)) & TP_CLUSTER_INIT_MASK;
314 u32 type = in_le32(&gur->tp_ityp[idx]);
315
316 if (type & TP_ITYP_AV)
317 return type;
318
319 return 0;
320}
321
322u32 cpu_mask(void)
323{
324 struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
325 int i = 0, count = 0;
326 u32 cluster, type, mask = 0;
327
328 do {
329 int j;
330 cluster = in_le32(&gur->tp_cluster[i].lower);
331 for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
332 type = initiator_type(cluster, j);
333 if (type) {
334 if (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
335 mask |= 1 << count;
336 count++;
337 }
338 }
339 i++;
340 } while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC);
341
342 return mask;
343}
344
345/*
346 * Return the number of cores on this SOC.
347 */
348int cpu_numcores(void)
349{
350 return hweight32(cpu_mask());
351}
352
353int fsl_qoriq_core_to_cluster(unsigned int core)
354{
355 struct ccsr_gur __iomem *gur =
356 (void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
357 int i = 0, count = 0;
358 u32 cluster;
359
360 do {
361 int j;
362 cluster = in_le32(&gur->tp_cluster[i].lower);
363 for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
364 if (initiator_type(cluster, j)) {
365 if (count == core)
366 return i;
367 count++;
368 }
369 }
370 i++;
371 } while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC);
372
373 return -1; /* cannot identify the cluster */
374}
375
376u32 fsl_qoriq_core_to_type(unsigned int core)
377{
378 struct ccsr_gur __iomem *gur =
379 (void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
380 int i = 0, count = 0;
381 u32 cluster, type;
382
383 do {
384 int j;
385 cluster = in_le32(&gur->tp_cluster[i].lower);
386 for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
387 type = initiator_type(cluster, j);
388 if (type) {
389 if (count == core)
390 return type;
391 count++;
392 }
393 }
394 i++;
395 } while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC);
396
397 return -1; /* cannot identify the cluster */
398}
399
400#ifdef CONFIG_DISPLAY_CPUINFO
401int print_cpuinfo(void)
402{
403 struct sys_info sysinfo;
404 char buf[32];
405 unsigned int i, core;
406 u32 type;
407
408 get_sys_info(&sysinfo);
409 puts("Clock Configuration:");
410 for_each_cpu(i, core, cpu_numcores(), cpu_mask()) {
411 if (!(i % 3))
412 puts("\n ");
413 type = TP_ITYP_VER(fsl_qoriq_core_to_type(core));
414 printf("CPU%d(%s):%-4s MHz ", core,
415 type == TY_ITYP_VER_A7 ? "A7 " :
416 (type == TY_ITYP_VER_A53 ? "A53" :
417 (type == TY_ITYP_VER_A57 ? "A57" : " ")),
418 strmhz(buf, sysinfo.freq_processor[core]));
419 }
420 printf("\n Bus: %-4s MHz ",
421 strmhz(buf, sysinfo.freq_systembus));
422 printf("DDR: %-4s MHz", strmhz(buf, sysinfo.freq_ddrbus));
423 puts("\n");
424
425 return 0;
426}
427#endif
b940ca64
GR
428
429int cpu_eth_init(bd_t *bis)
430{
431 int error = 0;
432
433#ifdef CONFIG_FSL_MC_ENET
434 error = mc_init(bis);
435#endif
436 return error;
437}
40f8dec5
YS
438
439
440int arch_early_init_r(void)
441{
442 int rv;
443 rv = fsl_lsch3_wake_seconday_cores();
444
445 if (rv)
446 printf("Did not wake secondary cores\n");
447
448 return 0;
449}