]> git.ipfire.org Git - thirdparty/u-boot.git/blame - arch/arm/cpu/tegra20-common/warmboot_avp.c
Add GPL-2.0+ SPDX-License-Identifier to source files
[thirdparty/u-boot.git] / arch / arm / cpu / tegra20-common / warmboot_avp.c
CommitLineData
6570438a
YL
1/*
2 * (C) Copyright 2010 - 2011
3 * NVIDIA Corporation <www.nvidia.com>
4 *
1a459660 5 * SPDX-License-Identifier: GPL-2.0+
6570438a
YL
6 */
7
8#include <common.h>
9#include <asm/io.h>
6570438a
YL
10#include <asm/arch/clock.h>
11#include <asm/arch/flow.h>
12#include <asm/arch/pinmux.h>
150c2493
TW
13#include <asm/arch/tegra.h>
14#include <asm/arch-tegra/ap.h>
15#include <asm/arch-tegra/clk_rst.h>
16#include <asm/arch-tegra/pmc.h>
17#include <asm/arch-tegra/warmboot.h>
6570438a
YL
18#include "warmboot_avp.h"
19
20#define DEBUG_RESET_CORESIGHT
21
22void wb_start(void)
23{
24 struct pmux_tri_ctlr *pmt = (struct pmux_tri_ctlr *)NV_PA_APB_MISC_BASE;
29f3e3f2 25 struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
6570438a
YL
26 struct flow_ctlr *flow = (struct flow_ctlr *)NV_PA_FLOW_BASE;
27 struct clk_rst_ctlr *clkrst =
28 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
29 union osc_ctrl_reg osc_ctrl;
30 union pllx_base_reg pllx_base;
31 union pllx_misc_reg pllx_misc;
32 union scratch3_reg scratch3;
33 u32 reg;
34
35 /* enable JTAG & TBE */
36 writel(CONFIG_CTL_TBE | CONFIG_CTL_JTAG, &pmt->pmt_cfg_ctl);
37
38 /* Are we running where we're supposed to be? */
39 asm volatile (
40 "adr %0, wb_start;" /* reg: wb_start address */
41 : "=r"(reg) /* output */
42 /* no input, no clobber list */
43 );
44
150c2493 45 if (reg != NV_WB_RUN_ADDRESS)
6570438a
YL
46 goto do_reset;
47
48 /* Are we running with AVP? */
49 if (readl(NV_PA_PG_UP_BASE + PG_UP_TAG_0) != PG_UP_TAG_AVP)
50 goto do_reset;
51
52#ifdef DEBUG_RESET_CORESIGHT
53 /* Assert CoreSight reset */
54 reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_U]);
55 reg |= SWR_CSITE_RST;
56 writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_U]);
57#endif
58
59 /* TODO: Set the drive strength - maybe make this a board parameter? */
60 osc_ctrl.word = readl(&clkrst->crc_osc_ctrl);
61 osc_ctrl.xofs = 4;
62 osc_ctrl.xoe = 1;
63 writel(osc_ctrl.word, &clkrst->crc_osc_ctrl);
64
65 /* Power up the CPU complex if necessary */
66 if (!(readl(&pmc->pmc_pwrgate_status) & PWRGATE_STATUS_CPU)) {
67 reg = PWRGATE_TOGGLE_PARTID_CPU | PWRGATE_TOGGLE_START;
68 writel(reg, &pmc->pmc_pwrgate_toggle);
69 while (!(readl(&pmc->pmc_pwrgate_status) & PWRGATE_STATUS_CPU))
70 ;
71 }
72
73 /* Remove the I/O clamps from the CPU power partition. */
74 reg = readl(&pmc->pmc_remove_clamping);
75 reg |= CPU_CLMP;
76 writel(reg, &pmc->pmc_remove_clamping);
77
78 reg = EVENT_ZERO_VAL_20 | EVENT_MSEC | EVENT_MODE_STOP;
79 writel(reg, &flow->halt_cop_events);
80
81 /* Assert CPU complex reset */
82 reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_L]);
83 reg |= CPU_RST;
84 writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_L]);
85
86 /* Hold both CPUs in reset */
87 reg = CPU_CMPLX_CPURESET0 | CPU_CMPLX_CPURESET1 | CPU_CMPLX_DERESET0 |
88 CPU_CMPLX_DERESET1 | CPU_CMPLX_DBGRESET0 | CPU_CMPLX_DBGRESET1;
89 writel(reg, &clkrst->crc_cpu_cmplx_set);
90
91 /* Halt CPU1 at the flow controller for uni-processor configurations */
92 writel(EVENT_MODE_STOP, &flow->halt_cpu1_events);
93
94 /*
95 * Set the CPU reset vector. SCRATCH41 contains the physical
96 * address of the CPU-side restoration code.
97 */
98 reg = readl(&pmc->pmc_scratch41);
99 writel(reg, EXCEP_VECTOR_CPU_RESET_VECTOR);
100
101 /* Select CPU complex clock source */
102 writel(CCLK_PLLP_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
103
104 /* Start the CPU0 clock and stop the CPU1 clock */
105 reg = CPU_CMPLX_CPU_BRIDGE_CLKDIV_4 | CPU_CMPLX_CPU0_CLK_STP_RUN |
106 CPU_CMPLX_CPU1_CLK_STP_STOP;
107 writel(reg, &clkrst->crc_clk_cpu_cmplx);
108
109 /* Enable the CPU complex clock */
110 reg = readl(&clkrst->crc_clk_out_enb[TEGRA_DEV_L]);
111 reg |= CLK_ENB_CPU;
112 writel(reg, &clkrst->crc_clk_out_enb[TEGRA_DEV_L]);
113
114 /* Make sure the resets were held for at least 2 microseconds */
115 reg = readl(TIMER_USEC_CNTR);
116 while (readl(TIMER_USEC_CNTR) <= (reg + 2))
117 ;
118
119#ifdef DEBUG_RESET_CORESIGHT
120 /*
121 * De-assert CoreSight reset.
122 * NOTE: We're leaving the CoreSight clock on the oscillator for
123 * now. It will be restored to its original clock source
124 * when the CPU-side restoration code runs.
125 */
126 reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_U]);
127 reg &= ~SWR_CSITE_RST;
128 writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_U]);
129#endif
130
131 /* Unlock the CPU CoreSight interfaces */
132 reg = 0xC5ACCE55;
133 writel(reg, CSITE_CPU_DBG0_LAR);
134 writel(reg, CSITE_CPU_DBG1_LAR);
135
136 /*
137 * Sample the microsecond timestamp again. This is the time we must
138 * use when returning from LP0 for PLL stabilization delays.
139 */
140 reg = readl(TIMER_USEC_CNTR);
141 writel(reg, &pmc->pmc_scratch1);
142
143 pllx_base.word = 0;
144 pllx_misc.word = 0;
145 scratch3.word = readl(&pmc->pmc_scratch3);
146
147 /* Get the OSC. For 19.2 MHz, use 19 to make the calculations easier */
148 reg = (readl(TIMER_USEC_CFG) & USEC_CFG_DIVISOR_MASK) + 1;
149
150 /*
151 * According to the TRM, for 19.2MHz OSC, the USEC_DIVISOR is 0x5f, and
152 * USEC_DIVIDEND is 0x04. So, if USEC_DIVISOR > 26, OSC is 19.2 MHz.
153 *
154 * reg is used to calculate the pllx freq, which is used to determine if
155 * to set dccon or not.
156 */
157 if (reg > 26)
158 reg = 19;
159
160 /* PLLX_BASE.PLLX_DIVM */
161 if (scratch3.pllx_base_divm == reg)
162 reg = 0;
163 else
164 reg = 1;
165
166 /* PLLX_BASE.PLLX_DIVN */
167 pllx_base.divn = scratch3.pllx_base_divn;
168 reg = scratch3.pllx_base_divn << reg;
169
170 /* PLLX_BASE.PLLX_DIVP */
171 pllx_base.divp = scratch3.pllx_base_divp;
172 reg = reg >> scratch3.pllx_base_divp;
173
174 pllx_base.bypass = 1;
175
176 /* PLLX_MISC_DCCON must be set for pllx frequency > 600 MHz. */
177 if (reg > 600)
178 pllx_misc.dccon = 1;
179
180 /* PLLX_MISC_LFCON */
181 pllx_misc.lfcon = scratch3.pllx_misc_lfcon;
182
183 /* PLLX_MISC_CPCON */
184 pllx_misc.cpcon = scratch3.pllx_misc_cpcon;
185
186 writel(pllx_misc.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_misc);
187 writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base);
188
189 pllx_base.enable = 1;
190 writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base);
191 pllx_base.bypass = 0;
192 writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base);
193
194 writel(0, flow->halt_cpu_events);
195
196 reg = CPU_CMPLX_CPURESET0 | CPU_CMPLX_DBGRESET0 | CPU_CMPLX_DERESET0;
197 writel(reg, &clkrst->crc_cpu_cmplx_clr);
198
199 reg = PLLM_OUT1_RSTN_RESET_DISABLE | PLLM_OUT1_CLKEN_ENABLE |
200 PLLM_OUT1_RATIO_VAL_8;
65530a84 201 writel(reg, &clkrst->crc_pll[CLOCK_ID_MEMORY].pll_out[0]);
6570438a
YL
202
203 reg = SCLK_SWAKE_FIQ_SRC_PLLM_OUT1 | SCLK_SWAKE_IRQ_SRC_PLLM_OUT1 |
204 SCLK_SWAKE_RUN_SRC_PLLM_OUT1 | SCLK_SWAKE_IDLE_SRC_PLLM_OUT1 |
205 SCLK_SYS_STATE_IDLE;
206 writel(reg, &clkrst->crc_sclk_brst_pol);
207
208 /* avp_resume: no return after the write */
209 reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_L]);
210 reg &= ~CPU_RST;
211 writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_L]);
212
213 /* avp_halt: */
214avp_halt:
215 reg = EVENT_MODE_STOP | EVENT_JTAG;
216 writel(reg, flow->halt_cop_events);
217 goto avp_halt;
218
219do_reset:
220 /*
221 * Execution comes here if something goes wrong. The chip is reset and
222 * a cold boot is performed.
223 */
224 writel(SWR_TRIG_SYS_RST, &clkrst->crc_rst_dev[TEGRA_DEV_L]);
225 goto do_reset;
226}
227
228/*
229 * wb_end() is a dummy function, and must be directly following wb_start(),
230 * and is used to calculate the size of wb_start().
231 */
232void wb_end(void)
233{
234}