]> git.ipfire.org Git - thirdparty/linux.git/blame - arch/arm64/kernel/smp.c
arm64: alternative: Allow alternative status checking per cpufeature
[thirdparty/linux.git] / arch / arm64 / kernel / smp.c
CommitLineData
08e875c1
CM
1/*
2 * SMP initialisation and IPI support
3 * Based on arch/arm/kernel/smp.c
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
0f078336 20#include <linux/acpi.h>
f5df2696 21#include <linux/arm_sdei.h>
08e875c1
CM
22#include <linux/delay.h>
23#include <linux/init.h>
24#include <linux/spinlock.h>
68e21be2 25#include <linux/sched/mm.h>
ef8bd77f 26#include <linux/sched/hotplug.h>
68db0cf1 27#include <linux/sched/task_stack.h>
08e875c1
CM
28#include <linux/interrupt.h>
29#include <linux/cache.h>
30#include <linux/profile.h>
31#include <linux/errno.h>
32#include <linux/mm.h>
33#include <linux/err.h>
34#include <linux/cpu.h>
35#include <linux/smp.h>
36#include <linux/seq_file.h>
37#include <linux/irq.h>
38#include <linux/percpu.h>
39#include <linux/clockchips.h>
40#include <linux/completion.h>
41#include <linux/of.h>
eb631bb5 42#include <linux/irq_work.h>
78fd584c 43#include <linux/kexec.h>
08e875c1 44
e039ee4e 45#include <asm/alternative.h>
08e875c1
CM
46#include <asm/atomic.h>
47#include <asm/cacheflush.h>
df857416 48#include <asm/cpu.h>
08e875c1 49#include <asm/cputype.h>
cd1aebf5 50#include <asm/cpu_ops.h>
0fbeb318 51#include <asm/daifflags.h>
08e875c1 52#include <asm/mmu_context.h>
1a2db300 53#include <asm/numa.h>
08e875c1
CM
54#include <asm/pgtable.h>
55#include <asm/pgalloc.h>
56#include <asm/processor.h>
4c7aa002 57#include <asm/smp_plat.h>
08e875c1
CM
58#include <asm/sections.h>
59#include <asm/tlbflush.h>
60#include <asm/ptrace.h>
377bcff9 61#include <asm/virt.h>
08e875c1 62
45ed695a
NP
63#define CREATE_TRACE_POINTS
64#include <trace/events/ipi.h>
65
57c82954
MR
66DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
67EXPORT_PER_CPU_SYMBOL(cpu_number);
68
08e875c1
CM
69/*
70 * as from 2.5, kernels no longer have an init_tasks structure
71 * so we need some other way of telling a new secondary core
72 * where to place its SVC stack
73 */
74struct secondary_data secondary_data;
bb905274
SP
75/* Number of CPUs which aren't online, but looping in kernel text. */
76int cpus_stuck_in_kernel;
08e875c1
CM
77
78enum ipi_msg_type {
79 IPI_RESCHEDULE,
80 IPI_CALL_FUNC,
08e875c1 81 IPI_CPU_STOP,
78fd584c 82 IPI_CPU_CRASH_STOP,
1f85008e 83 IPI_TIMER,
eb631bb5 84 IPI_IRQ_WORK,
5e89c55e 85 IPI_WAKEUP
08e875c1
CM
86};
87
bb905274
SP
88#ifdef CONFIG_HOTPLUG_CPU
89static int op_cpu_kill(unsigned int cpu);
90#else
91static inline int op_cpu_kill(unsigned int cpu)
92{
93 return -ENOSYS;
94}
95#endif
96
97
08e875c1
CM
98/*
99 * Boot a secondary CPU, and assign it the specified idle task.
100 * This also gives us the initial stack to use for this CPU.
101 */
b8c6453a 102static int boot_secondary(unsigned int cpu, struct task_struct *idle)
08e875c1 103{
652af899
MR
104 if (cpu_ops[cpu]->cpu_boot)
105 return cpu_ops[cpu]->cpu_boot(cpu);
08e875c1 106
652af899 107 return -EOPNOTSUPP;
08e875c1
CM
108}
109
110static DECLARE_COMPLETION(cpu_running);
111
b8c6453a 112int __cpu_up(unsigned int cpu, struct task_struct *idle)
08e875c1
CM
113{
114 int ret;
bb905274 115 long status;
08e875c1
CM
116
117 /*
118 * We need to tell the secondary core where to find its stack and the
119 * page tables.
120 */
c02433dd 121 secondary_data.task = idle;
34be98f4 122 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
bb905274 123 update_cpu_boot_status(CPU_MMU_OFF);
08e875c1
CM
124 __flush_dcache_area(&secondary_data, sizeof(secondary_data));
125
126 /*
127 * Now bring the CPU into our world.
128 */
129 ret = boot_secondary(cpu, idle);
130 if (ret == 0) {
131 /*
132 * CPU was successfully started, wait for it to come online or
133 * time out.
134 */
135 wait_for_completion_timeout(&cpu_running,
136 msecs_to_jiffies(1000));
137
138 if (!cpu_online(cpu)) {
139 pr_crit("CPU%u: failed to come online\n", cpu);
140 ret = -EIO;
141 }
142 } else {
143 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
f357b3a7 144 return ret;
08e875c1
CM
145 }
146
c02433dd 147 secondary_data.task = NULL;
08e875c1 148 secondary_data.stack = NULL;
bb905274
SP
149 status = READ_ONCE(secondary_data.status);
150 if (ret && status) {
151
152 if (status == CPU_MMU_OFF)
153 status = READ_ONCE(__early_cpu_boot_status);
154
66f16a24 155 switch (status & CPU_BOOT_STATUS_MASK) {
bb905274
SP
156 default:
157 pr_err("CPU%u: failed in unknown state : 0x%lx\n",
158 cpu, status);
159 break;
160 case CPU_KILL_ME:
161 if (!op_cpu_kill(cpu)) {
162 pr_crit("CPU%u: died during early boot\n", cpu);
163 break;
164 }
165 /* Fall through */
166 pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
167 case CPU_STUCK_IN_KERNEL:
168 pr_crit("CPU%u: is stuck in kernel\n", cpu);
66f16a24
WD
169 if (status & CPU_STUCK_REASON_52_BIT_VA)
170 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
171 if (status & CPU_STUCK_REASON_NO_GRAN)
172 pr_crit("CPU%u: does not support %luK granule \n", cpu, PAGE_SIZE / SZ_1K);
bb905274
SP
173 cpus_stuck_in_kernel++;
174 break;
175 case CPU_PANIC_KERNEL:
176 panic("CPU%u detected unsupported configuration\n", cpu);
177 }
178 }
08e875c1
CM
179
180 return ret;
181}
182
183/*
184 * This is the secondary CPU boot entry. We're using this CPUs
185 * idle thread stack, but a set of temporary page tables.
186 */
b154886f 187asmlinkage notrace void secondary_start_kernel(void)
08e875c1 188{
ccaac162 189 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
08e875c1 190 struct mm_struct *mm = &init_mm;
580efaa7
MR
191 unsigned int cpu;
192
193 cpu = task_cpu(current);
194 set_my_cpu_offset(per_cpu_offset(cpu));
08e875c1 195
08e875c1
CM
196 /*
197 * All kernel threads share the same mm context; grab a
198 * reference and switch to it.
199 */
f1f10076 200 mmgrab(mm);
08e875c1 201 current->active_mm = mm;
08e875c1
CM
202
203 /*
204 * TTBR0 is only used for the identity mapping at this stage. Make it
205 * point to zero page to avoid speculatively fetching new entries.
206 */
9e8e865b 207 cpu_uninstall_idmap();
08e875c1
CM
208
209 preempt_disable();
210 trace_hardirqs_off();
211
dbb4e152
SP
212 /*
213 * If the system has established the capabilities, make sure
214 * this CPU ticks all of those. If it doesn't, the CPU will
215 * fail to come online.
216 */
c47a1900 217 check_local_cpu_capabilities();
dbb4e152 218
652af899
MR
219 if (cpu_ops[cpu]->cpu_postboot)
220 cpu_ops[cpu]->cpu_postboot();
08e875c1 221
df857416
MR
222 /*
223 * Log the CPU info before it is marked online and might get read.
224 */
225 cpuinfo_store_cpu();
226
7ade67b5
MZ
227 /*
228 * Enable GIC and timers.
229 */
230 notify_cpu_starting(cpu);
231
c18df0ad 232 store_cpu_topology(cpu);
97fd6016 233 numa_add_cpu(cpu);
f6e763b9 234
08e875c1
CM
235 /*
236 * OK, now it's safe to let the boot CPU continue. Wait for
237 * the CPU migration code to notice that the CPU is online
238 * before we continue.
239 */
ccaac162
MR
240 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
241 cpu, (unsigned long)mpidr,
242 read_cpuid_id());
bb905274 243 update_cpu_boot_status(CPU_BOOT_SUCCESS);
08e875c1 244 set_cpu_online(cpu, true);
b3770b32 245 complete(&cpu_running);
08e875c1 246
41bd5b5d 247 local_daif_restore(DAIF_PROCCTX);
53ae3acd 248
08e875c1
CM
249 /*
250 * OK, it's off to the idle thread for us
251 */
fc6d73d6 252 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
08e875c1
CM
253}
254
9327e2c6
MR
255#ifdef CONFIG_HOTPLUG_CPU
256static int op_cpu_disable(unsigned int cpu)
257{
258 /*
259 * If we don't have a cpu_die method, abort before we reach the point
260 * of no return. CPU0 may not have an cpu_ops, so test for it.
261 */
262 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
263 return -EOPNOTSUPP;
264
265 /*
266 * We may need to abort a hot unplug for some other mechanism-specific
267 * reason.
268 */
269 if (cpu_ops[cpu]->cpu_disable)
270 return cpu_ops[cpu]->cpu_disable(cpu);
271
272 return 0;
273}
274
275/*
276 * __cpu_disable runs on the processor to be shutdown.
277 */
278int __cpu_disable(void)
279{
280 unsigned int cpu = smp_processor_id();
281 int ret;
282
283 ret = op_cpu_disable(cpu);
284 if (ret)
285 return ret;
286
7f9545aa
SH
287 remove_cpu_topology(cpu);
288 numa_remove_cpu(cpu);
289
9327e2c6
MR
290 /*
291 * Take this CPU offline. Once we clear this, we can't return,
292 * and we must not schedule until we're ready to give up the cpu.
293 */
294 set_cpu_online(cpu, false);
295
296 /*
297 * OK - migrate IRQs away from this CPU
298 */
217d453d
YY
299 irq_migrate_all_off_this_cpu();
300
9327e2c6
MR
301 return 0;
302}
303
c814ca02
AC
304static int op_cpu_kill(unsigned int cpu)
305{
306 /*
307 * If we have no means of synchronising with the dying CPU, then assume
308 * that it is really dead. We can only wait for an arbitrary length of
309 * time and hope that it's dead, so let's skip the wait and just hope.
310 */
311 if (!cpu_ops[cpu]->cpu_kill)
6b99c68c 312 return 0;
c814ca02
AC
313
314 return cpu_ops[cpu]->cpu_kill(cpu);
315}
316
9327e2c6
MR
317/*
318 * called on the thread which is asking for a CPU to be shutdown -
319 * waits until shutdown has completed, or it is timed out.
320 */
321void __cpu_die(unsigned int cpu)
322{
6b99c68c
MR
323 int err;
324
05981277 325 if (!cpu_wait_death(cpu, 5)) {
9327e2c6
MR
326 pr_crit("CPU%u: cpu didn't die\n", cpu);
327 return;
328 }
329 pr_notice("CPU%u: shutdown\n", cpu);
c814ca02
AC
330
331 /*
332 * Now that the dying CPU is beyond the point of no return w.r.t.
333 * in-kernel synchronisation, try to get the firwmare to help us to
334 * verify that it has really left the kernel before we consider
335 * clobbering anything it might still be using.
336 */
6b99c68c
MR
337 err = op_cpu_kill(cpu);
338 if (err)
339 pr_warn("CPU%d may not have shut down cleanly: %d\n",
340 cpu, err);
9327e2c6
MR
341}
342
343/*
344 * Called from the idle thread for the CPU which has been shutdown.
345 *
9327e2c6
MR
346 */
347void cpu_die(void)
348{
349 unsigned int cpu = smp_processor_id();
350
351 idle_task_exit();
352
0fbeb318 353 local_daif_mask();
9327e2c6
MR
354
355 /* Tell __cpu_die() that this CPU is now safe to dispose of */
05981277 356 (void)cpu_report_death();
9327e2c6
MR
357
358 /*
359 * Actually shutdown the CPU. This must never fail. The specific hotplug
360 * mechanism must perform all required cache maintenance to ensure that
361 * no dirty lines are lost in the process of shutting down the CPU.
362 */
363 cpu_ops[cpu]->cpu_die(cpu);
364
365 BUG();
366}
367#endif
368
fce6361f
SP
369/*
370 * Kill the calling secondary CPU, early in bringup before it is turned
371 * online.
372 */
373void cpu_die_early(void)
374{
375 int cpu = smp_processor_id();
376
377 pr_crit("CPU%d: will not boot\n", cpu);
378
379 /* Mark this CPU absent */
380 set_cpu_present(cpu, 0);
381
382#ifdef CONFIG_HOTPLUG_CPU
bb905274 383 update_cpu_boot_status(CPU_KILL_ME);
fce6361f
SP
384 /* Check if we can park ourselves */
385 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
386 cpu_ops[cpu]->cpu_die(cpu);
387#endif
bb905274 388 update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
fce6361f
SP
389
390 cpu_park_loop();
391}
392
377bcff9
JR
393static void __init hyp_mode_check(void)
394{
395 if (is_hyp_mode_available())
396 pr_info("CPU: All CPU(s) started at EL2\n");
397 else if (is_hyp_mode_mismatched())
398 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
399 "CPU: CPUs started in inconsistent modes");
400 else
401 pr_info("CPU: All CPU(s) started at EL1\n");
402}
403
08e875c1
CM
404void __init smp_cpus_done(unsigned int max_cpus)
405{
326b16db 406 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
3a75578e 407 setup_cpu_features();
377bcff9
JR
408 hyp_mode_check();
409 apply_alternatives_all();
5ea5306c 410 mark_linear_text_alias_ro();
08e875c1
CM
411}
412
413void __init smp_prepare_boot_cpu(void)
414{
9113c2aa 415 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
efd9e03f
CM
416 /*
417 * Initialise the static keys early as they may be enabled by the
418 * cpufeature code.
419 */
420 jump_label_init();
4b998ff1 421 cpuinfo_store_boot_cpu();
08e875c1
CM
422}
423
0f078336
LP
424static u64 __init of_get_cpu_mpidr(struct device_node *dn)
425{
426 const __be32 *cell;
427 u64 hwid;
428
429 /*
430 * A cpu node with missing "reg" property is
431 * considered invalid to build a cpu_logical_map
432 * entry.
433 */
434 cell = of_get_property(dn, "reg", NULL);
435 if (!cell) {
a270f327 436 pr_err("%pOF: missing reg property\n", dn);
0f078336
LP
437 return INVALID_HWID;
438 }
439
440 hwid = of_read_number(cell, of_n_addr_cells(dn));
441 /*
442 * Non affinity bits must be set to 0 in the DT
443 */
444 if (hwid & ~MPIDR_HWID_BITMASK) {
a270f327 445 pr_err("%pOF: invalid reg property\n", dn);
0f078336
LP
446 return INVALID_HWID;
447 }
448 return hwid;
449}
450
451/*
452 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
453 * entries and check for duplicates. If any is found just ignore the
454 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
455 * matching valid MPIDR values.
456 */
457static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
458{
459 unsigned int i;
460
461 for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
462 if (cpu_logical_map(i) == hwid)
463 return true;
464 return false;
465}
466
819a8826
LP
467/*
468 * Initialize cpu operations for a logical cpu and
469 * set it in the possible mask on success
470 */
471static int __init smp_cpu_setup(int cpu)
472{
473 if (cpu_read_ops(cpu))
474 return -ENODEV;
475
476 if (cpu_ops[cpu]->cpu_init(cpu))
477 return -ENODEV;
478
479 set_cpu_possible(cpu, true);
480
481 return 0;
482}
483
0f078336
LP
484static bool bootcpu_valid __initdata;
485static unsigned int cpu_count = 1;
486
487#ifdef CONFIG_ACPI
e0013aed
MR
488static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
489
490struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
491{
492 return &cpu_madt_gicc[cpu];
493}
494
0f078336
LP
495/*
496 * acpi_map_gic_cpu_interface - parse processor MADT entry
497 *
498 * Carry out sanity checks on MADT processor entry and initialize
499 * cpu_logical_map on success
500 */
501static void __init
502acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
503{
504 u64 hwid = processor->arm_mpidr;
505
f9058929
HG
506 if (!(processor->flags & ACPI_MADT_ENABLED)) {
507 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
0f078336
LP
508 return;
509 }
510
f9058929
HG
511 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
512 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
0f078336
LP
513 return;
514 }
515
516 if (is_mpidr_duplicate(cpu_count, hwid)) {
517 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
518 return;
519 }
520
521 /* Check if GICC structure of boot CPU is available in the MADT */
522 if (cpu_logical_map(0) == hwid) {
523 if (bootcpu_valid) {
524 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
525 hwid);
526 return;
527 }
528 bootcpu_valid = true;
e0013aed 529 cpu_madt_gicc[0] = *processor;
0f078336
LP
530 return;
531 }
532
533 if (cpu_count >= NR_CPUS)
534 return;
535
536 /* map the logical cpu id to cpu MPIDR */
537 cpu_logical_map(cpu_count) = hwid;
538
e0013aed
MR
539 cpu_madt_gicc[cpu_count] = *processor;
540
5e89c55e
LP
541 /*
542 * Set-up the ACPI parking protocol cpu entries
543 * while initializing the cpu_logical_map to
544 * avoid parsing MADT entries multiple times for
545 * nothing (ie a valid cpu_logical_map entry should
546 * contain a valid parking protocol data set to
547 * initialize the cpu if the parking protocol is
548 * the only available enable method).
549 */
550 acpi_set_mailbox_entry(cpu_count, processor);
551
0f078336
LP
552 cpu_count++;
553}
554
555static int __init
556acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
557 const unsigned long end)
558{
559 struct acpi_madt_generic_interrupt *processor;
560
561 processor = (struct acpi_madt_generic_interrupt *)header;
99e3e3ae 562 if (BAD_MADT_GICC_ENTRY(processor, end))
0f078336
LP
563 return -EINVAL;
564
565 acpi_table_print_madt_entry(header);
566
567 acpi_map_gic_cpu_interface(processor);
568
569 return 0;
570}
e1896249
LP
571
572static void __init acpi_parse_and_init_cpus(void)
573{
574 int i;
575
576 /*
577 * do a walk of MADT to determine how many CPUs
578 * we have including disabled CPUs, and get information
579 * we need for SMP init.
580 */
581 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
582 acpi_parse_gic_cpu_interface, 0);
583
584 /*
585 * In ACPI, SMP and CPU NUMA information is provided in separate
586 * static tables, namely the MADT and the SRAT.
587 *
588 * Thus, it is simpler to first create the cpu logical map through
589 * an MADT walk and then map the logical cpus to their node ids
590 * as separate steps.
591 */
592 acpi_map_cpus_to_nodes();
593
594 for (i = 0; i < nr_cpu_ids; i++)
595 early_map_cpu_to_node(i, acpi_numa_get_nid(i));
596}
0f078336 597#else
e1896249 598#define acpi_parse_and_init_cpus(...) do { } while (0)
0f078336
LP
599#endif
600
08e875c1 601/*
4c7aa002
JM
602 * Enumerate the possible CPU set from the device tree and build the
603 * cpu logical map array containing MPIDR values related to logical
604 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
08e875c1 605 */
29b8302b 606static void __init of_parse_and_init_cpus(void)
08e875c1 607{
3d29a9a0 608 struct device_node *dn;
08e875c1 609
de76e70a 610 for_each_of_cpu_node(dn) {
0f078336 611 u64 hwid = of_get_cpu_mpidr(dn);
4c7aa002 612
0f078336 613 if (hwid == INVALID_HWID)
4c7aa002 614 goto next;
4c7aa002 615
0f078336 616 if (is_mpidr_duplicate(cpu_count, hwid)) {
a270f327
RH
617 pr_err("%pOF: duplicate cpu reg properties in the DT\n",
618 dn);
4c7aa002
JM
619 goto next;
620 }
621
4c7aa002
JM
622 /*
623 * The numbering scheme requires that the boot CPU
624 * must be assigned logical id 0. Record it so that
625 * the logical map built from DT is validated and can
626 * be used.
627 */
628 if (hwid == cpu_logical_map(0)) {
629 if (bootcpu_valid) {
a270f327
RH
630 pr_err("%pOF: duplicate boot cpu reg property in DT\n",
631 dn);
4c7aa002
JM
632 goto next;
633 }
634
635 bootcpu_valid = true;
7ba5f605 636 early_map_cpu_to_node(0, of_node_to_nid(dn));
4c7aa002
JM
637
638 /*
639 * cpu_logical_map has already been
640 * initialized and the boot cpu doesn't need
641 * the enable-method so continue without
642 * incrementing cpu.
643 */
644 continue;
645 }
646
0f078336 647 if (cpu_count >= NR_CPUS)
08e875c1
CM
648 goto next;
649
4c7aa002 650 pr_debug("cpu logical map 0x%llx\n", hwid);
0f078336 651 cpu_logical_map(cpu_count) = hwid;
1a2db300
GK
652
653 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
08e875c1 654next:
0f078336 655 cpu_count++;
08e875c1 656 }
0f078336
LP
657}
658
659/*
660 * Enumerate the possible CPU set from the device tree or ACPI and build the
661 * cpu logical map array containing MPIDR values related to logical
662 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
663 */
664void __init smp_init_cpus(void)
665{
666 int i;
667
668 if (acpi_disabled)
669 of_parse_and_init_cpus();
670 else
e1896249 671 acpi_parse_and_init_cpus();
08e875c1 672
50ee91bd 673 if (cpu_count > nr_cpu_ids)
9b130ad5 674 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
50ee91bd 675 cpu_count, nr_cpu_ids);
4c7aa002
JM
676
677 if (!bootcpu_valid) {
0f078336 678 pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
4c7aa002
JM
679 return;
680 }
681
682 /*
819a8826
LP
683 * We need to set the cpu_logical_map entries before enabling
684 * the cpus so that cpu processor description entries (DT cpu nodes
685 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
686 * with entries in cpu_logical_map while initializing the cpus.
687 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
4c7aa002 688 */
50ee91bd 689 for (i = 1; i < nr_cpu_ids; i++) {
819a8826
LP
690 if (cpu_logical_map(i) != INVALID_HWID) {
691 if (smp_cpu_setup(i))
692 cpu_logical_map(i) = INVALID_HWID;
693 }
694 }
08e875c1
CM
695}
696
697void __init smp_prepare_cpus(unsigned int max_cpus)
698{
cd1aebf5 699 int err;
44dbcc93 700 unsigned int cpu;
c18df0ad 701 unsigned int this_cpu;
08e875c1 702
f6e763b9
MB
703 init_cpu_topology();
704
c18df0ad
DD
705 this_cpu = smp_processor_id();
706 store_cpu_topology(this_cpu);
707 numa_store_cpu_info(this_cpu);
97fd6016 708 numa_add_cpu(this_cpu);
f6e763b9 709
e75118a7
SP
710 /*
711 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
712 * secondary CPUs present.
713 */
714 if (max_cpus == 0)
715 return;
716
08e875c1
CM
717 /*
718 * Initialise the present map (which describes the set of CPUs
719 * actually populated at the present time) and release the
720 * secondaries from the bootloader.
721 */
722 for_each_possible_cpu(cpu) {
08e875c1 723
57c82954
MR
724 per_cpu(cpu_number, cpu) = cpu;
725
d329de3f
MZ
726 if (cpu == smp_processor_id())
727 continue;
728
cd1aebf5 729 if (!cpu_ops[cpu])
08e875c1
CM
730 continue;
731
cd1aebf5 732 err = cpu_ops[cpu]->cpu_prepare(cpu);
d329de3f
MZ
733 if (err)
734 continue;
08e875c1
CM
735
736 set_cpu_present(cpu, true);
c18df0ad 737 numa_store_cpu_info(cpu);
08e875c1 738 }
08e875c1
CM
739}
740
36310736 741void (*__smp_cross_call)(const struct cpumask *, unsigned int);
08e875c1
CM
742
743void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
744{
45ed695a 745 __smp_cross_call = fn;
08e875c1
CM
746}
747
45ed695a
NP
748static const char *ipi_types[NR_IPI] __tracepoint_string = {
749#define S(x,s) [x] = s
08e875c1
CM
750 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
751 S(IPI_CALL_FUNC, "Function call interrupts"),
08e875c1 752 S(IPI_CPU_STOP, "CPU stop interrupts"),
78fd584c 753 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
1f85008e 754 S(IPI_TIMER, "Timer broadcast interrupts"),
eb631bb5 755 S(IPI_IRQ_WORK, "IRQ work interrupts"),
5e89c55e 756 S(IPI_WAKEUP, "CPU wake-up interrupts"),
08e875c1
CM
757};
758
45ed695a
NP
759static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
760{
761 trace_ipi_raise(target, ipi_types[ipinr]);
762 __smp_cross_call(target, ipinr);
763}
764
08e875c1
CM
765void show_ipi_list(struct seq_file *p, int prec)
766{
767 unsigned int cpu, i;
768
769 for (i = 0; i < NR_IPI; i++) {
45ed695a 770 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
08e875c1 771 prec >= 4 ? " " : "");
67317c26 772 for_each_online_cpu(cpu)
08e875c1
CM
773 seq_printf(p, "%10u ",
774 __get_irq_stat(cpu, ipi_irqs[i]));
775 seq_printf(p, " %s\n", ipi_types[i]);
776 }
777}
778
779u64 smp_irq_stat_cpu(unsigned int cpu)
780{
781 u64 sum = 0;
782 int i;
783
784 for (i = 0; i < NR_IPI; i++)
785 sum += __get_irq_stat(cpu, ipi_irqs[i]);
786
787 return sum;
788}
789
45ed695a
NP
790void arch_send_call_function_ipi_mask(const struct cpumask *mask)
791{
792 smp_cross_call(mask, IPI_CALL_FUNC);
793}
794
795void arch_send_call_function_single_ipi(int cpu)
796{
0aaf0dae 797 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
45ed695a
NP
798}
799
5e89c55e
LP
800#ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
801void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
802{
803 smp_cross_call(mask, IPI_WAKEUP);
804}
805#endif
806
45ed695a
NP
807#ifdef CONFIG_IRQ_WORK
808void arch_irq_work_raise(void)
809{
810 if (__smp_cross_call)
811 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
812}
813#endif
814
08e875c1
CM
815/*
816 * ipi_cpu_stop - handle IPI from smp_send_stop()
817 */
818static void ipi_cpu_stop(unsigned int cpu)
819{
08e875c1
CM
820 set_cpu_online(cpu, false);
821
0fbeb318 822 local_daif_mask();
f5df2696 823 sdei_mask_local_cpu();
08e875c1
CM
824
825 while (1)
826 cpu_relax();
827}
828
78fd584c
AT
829#ifdef CONFIG_KEXEC_CORE
830static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
831#endif
832
833static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
834{
835#ifdef CONFIG_KEXEC_CORE
836 crash_save_cpu(regs, cpu);
837
838 atomic_dec(&waiting_for_crash_ipi);
839
840 local_irq_disable();
f5df2696 841 sdei_mask_local_cpu();
78fd584c
AT
842
843#ifdef CONFIG_HOTPLUG_CPU
844 if (cpu_ops[cpu]->cpu_die)
845 cpu_ops[cpu]->cpu_die(cpu);
846#endif
847
848 /* just in case */
849 cpu_park_loop();
850#endif
851}
852
08e875c1
CM
853/*
854 * Main handler for inter-processor interrupts
855 */
856void handle_IPI(int ipinr, struct pt_regs *regs)
857{
858 unsigned int cpu = smp_processor_id();
859 struct pt_regs *old_regs = set_irq_regs(regs);
860
45ed695a 861 if ((unsigned)ipinr < NR_IPI) {
be081d9b 862 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
45ed695a
NP
863 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
864 }
08e875c1
CM
865
866 switch (ipinr) {
867 case IPI_RESCHEDULE:
868 scheduler_ipi();
869 break;
870
871 case IPI_CALL_FUNC:
872 irq_enter();
873 generic_smp_call_function_interrupt();
874 irq_exit();
875 break;
876
08e875c1
CM
877 case IPI_CPU_STOP:
878 irq_enter();
879 ipi_cpu_stop(cpu);
880 irq_exit();
881 break;
882
78fd584c
AT
883 case IPI_CPU_CRASH_STOP:
884 if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
885 irq_enter();
886 ipi_cpu_crash_stop(cpu, regs);
887
888 unreachable();
889 }
890 break;
891
1f85008e
LP
892#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
893 case IPI_TIMER:
894 irq_enter();
895 tick_receive_broadcast();
896 irq_exit();
897 break;
898#endif
899
eb631bb5
LB
900#ifdef CONFIG_IRQ_WORK
901 case IPI_IRQ_WORK:
902 irq_enter();
903 irq_work_run();
904 irq_exit();
905 break;
906#endif
907
5e89c55e
LP
908#ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
909 case IPI_WAKEUP:
910 WARN_ONCE(!acpi_parking_protocol_valid(cpu),
911 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
912 cpu);
913 break;
914#endif
915
08e875c1
CM
916 default:
917 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
918 break;
919 }
45ed695a
NP
920
921 if ((unsigned)ipinr < NR_IPI)
be081d9b 922 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
08e875c1
CM
923 set_irq_regs(old_regs);
924}
925
926void smp_send_reschedule(int cpu)
927{
928 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
929}
930
1f85008e
LP
931#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
932void tick_broadcast(const struct cpumask *mask)
933{
934 smp_cross_call(mask, IPI_TIMER);
935}
936#endif
937
08e875c1
CM
938void smp_send_stop(void)
939{
940 unsigned long timeout;
941
942 if (num_online_cpus() > 1) {
943 cpumask_t mask;
944
945 cpumask_copy(&mask, cpu_online_mask);
434ed7f4 946 cpumask_clear_cpu(smp_processor_id(), &mask);
08e875c1 947
ef284f5c 948 if (system_state <= SYSTEM_RUNNING)
82611c14 949 pr_crit("SMP: stopping secondary CPUs\n");
08e875c1
CM
950 smp_cross_call(&mask, IPI_CPU_STOP);
951 }
952
953 /* Wait up to one second for other CPUs to stop */
954 timeout = USEC_PER_SEC;
955 while (num_online_cpus() > 1 && timeout--)
956 udelay(1);
957
958 if (num_online_cpus() > 1)
82611c14
JG
959 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
960 cpumask_pr_args(cpu_online_mask));
f5df2696
JM
961
962 sdei_mask_local_cpu();
08e875c1
CM
963}
964
78fd584c 965#ifdef CONFIG_KEXEC_CORE
a88ce63b 966void crash_smp_send_stop(void)
78fd584c 967{
a88ce63b 968 static int cpus_stopped;
78fd584c
AT
969 cpumask_t mask;
970 unsigned long timeout;
971
a88ce63b
HR
972 /*
973 * This function can be called twice in panic path, but obviously
974 * we execute this only once.
975 */
976 if (cpus_stopped)
977 return;
978
979 cpus_stopped = 1;
980
f5df2696
JM
981 if (num_online_cpus() == 1) {
982 sdei_mask_local_cpu();
78fd584c 983 return;
f5df2696 984 }
78fd584c
AT
985
986 cpumask_copy(&mask, cpu_online_mask);
987 cpumask_clear_cpu(smp_processor_id(), &mask);
988
989 atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
990
991 pr_crit("SMP: stopping secondary CPUs\n");
992 smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
993
994 /* Wait up to one second for other CPUs to stop */
995 timeout = USEC_PER_SEC;
996 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
997 udelay(1);
998
999 if (atomic_read(&waiting_for_crash_ipi) > 0)
1000 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
1001 cpumask_pr_args(&mask));
f5df2696
JM
1002
1003 sdei_mask_local_cpu();
78fd584c
AT
1004}
1005
1006bool smp_crash_stop_failed(void)
1007{
1008 return (atomic_read(&waiting_for_crash_ipi) > 0);
1009}
1010#endif
1011
08e875c1
CM
1012/*
1013 * not supported here
1014 */
1015int setup_profiling_timer(unsigned int multiplier)
1016{
1017 return -EINVAL;
1018}
5c492c3f
JM
1019
1020static bool have_cpu_die(void)
1021{
1022#ifdef CONFIG_HOTPLUG_CPU
1023 int any_cpu = raw_smp_processor_id();
1024
335d2c2d 1025 if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die)
5c492c3f
JM
1026 return true;
1027#endif
1028 return false;
1029}
1030
1031bool cpus_are_stuck_in_kernel(void)
1032{
1033 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1034
1035 return !!cpus_stuck_in_kernel || smp_spin_tables;
1036}