]> git.ipfire.org Git - people/arne_f/kernel.git/blame - arch/cris/arch-v10/mm/init.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[people/arne_f/kernel.git] / arch / cris / arch-v10 / mm / init.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/arch/cris/arch-v10/mm/init.c
4 *
5 */
1da177e4
LT
6#include <linux/mmzone.h>
7#include <linux/init.h>
8#include <linux/bootmem.h>
9#include <linux/mm.h>
10#include <asm/pgtable.h>
11#include <asm/page.h>
12#include <asm/types.h>
13#include <asm/mmu.h>
14#include <asm/io.h>
15#include <asm/mmu_context.h>
556dcee7 16#include <arch/svinto.h>
1da177e4
LT
17
18extern void tlb_init(void);
19
20/*
21 * The kernel is already mapped with a kernel segment at kseg_c so
22 * we don't need to map it with a page table. However head.S also
23 * temporarily mapped it at kseg_4 so we should set up the ksegs again,
24 * clear the TLB and do some other paging setup stuff.
25 */
26
27void __init
28paging_init(void)
29{
30 int i;
31 unsigned long zones_size[MAX_NR_ZONES];
32
33 printk("Setting up paging and the MMU.\n");
34
35 /* clear out the init_mm.pgd that will contain the kernel's mappings */
36
37 for(i = 0; i < PTRS_PER_PGD; i++)
38 swapper_pg_dir[i] = __pgd(0);
39
40 /* make sure the current pgd table points to something sane
41 * (even if it is most probably not used until the next
42 * switch_mm)
43 */
44
8d20a541 45 per_cpu(current_pgd, smp_processor_id()) = init_mm.pgd;
1da177e4
LT
46
47 /* initialise the TLB (tlb.c) */
48
49 tlb_init();
50
51 /* see README.mm for details on the KSEG setup */
52
53#ifdef CONFIG_CRIS_LOW_MAP
54 /* Etrax-100 LX version 1 has a bug so that we cannot map anything
55 * across the 0x80000000 boundary, so we need to shrink the user-virtual
56 * area to 0x50000000 instead of 0xb0000000 and map things slightly
57 * different. The unused areas are marked as paged so that we can catch
58 * freak kernel accesses there.
59 *
60 * The ARTPEC chip is mapped at 0xa so we pass that segment straight
61 * through. We cannot vremap it because the vmalloc area is below 0x8
62 * and Juliette needs an uncached area above 0x8.
63 *
64 * Same thing with 0xc and 0x9, which is memory-mapped I/O on some boards.
65 * We map them straight over in LOW_MAP, but use vremap in LX version 2.
66 */
67
68#define CACHED_BOOTROM (KSEG_F | 0x08000000UL)
69
70 *R_MMU_KSEG = ( IO_STATE(R_MMU_KSEG, seg_f, seg ) | /* bootrom */
71 IO_STATE(R_MMU_KSEG, seg_e, page ) |
e301a08b
JN
72 IO_STATE(R_MMU_KSEG, seg_d, page ) |
73 IO_STATE(R_MMU_KSEG, seg_c, page ) |
1da177e4 74 IO_STATE(R_MMU_KSEG, seg_b, seg ) | /* kernel reg area */
1da177e4 75 IO_STATE(R_MMU_KSEG, seg_a, page ) |
1da177e4
LT
76 IO_STATE(R_MMU_KSEG, seg_9, seg ) | /* LED's on some boards */
77 IO_STATE(R_MMU_KSEG, seg_8, seg ) | /* CSE0/1, flash and I/O */
78 IO_STATE(R_MMU_KSEG, seg_7, page ) | /* kernel vmalloc area */
79 IO_STATE(R_MMU_KSEG, seg_6, seg ) | /* kernel DRAM area */
80 IO_STATE(R_MMU_KSEG, seg_5, seg ) | /* cached flash */
81 IO_STATE(R_MMU_KSEG, seg_4, page ) | /* user area */
82 IO_STATE(R_MMU_KSEG, seg_3, page ) | /* user area */
83 IO_STATE(R_MMU_KSEG, seg_2, page ) | /* user area */
84 IO_STATE(R_MMU_KSEG, seg_1, page ) | /* user area */
85 IO_STATE(R_MMU_KSEG, seg_0, page ) ); /* user area */
86
87 *R_MMU_KBASE_HI = ( IO_FIELD(R_MMU_KBASE_HI, base_f, 0x3 ) |
88 IO_FIELD(R_MMU_KBASE_HI, base_e, 0x0 ) |
89 IO_FIELD(R_MMU_KBASE_HI, base_d, 0x0 ) |
90 IO_FIELD(R_MMU_KBASE_HI, base_c, 0x0 ) |
91 IO_FIELD(R_MMU_KBASE_HI, base_b, 0xb ) |
1da177e4 92 IO_FIELD(R_MMU_KBASE_HI, base_a, 0x0 ) |
1da177e4
LT
93 IO_FIELD(R_MMU_KBASE_HI, base_9, 0x9 ) |
94 IO_FIELD(R_MMU_KBASE_HI, base_8, 0x8 ) );
e301a08b 95
1da177e4
LT
96 *R_MMU_KBASE_LO = ( IO_FIELD(R_MMU_KBASE_LO, base_7, 0x0 ) |
97 IO_FIELD(R_MMU_KBASE_LO, base_6, 0x4 ) |
98 IO_FIELD(R_MMU_KBASE_LO, base_5, 0x0 ) |
99 IO_FIELD(R_MMU_KBASE_LO, base_4, 0x0 ) |
100 IO_FIELD(R_MMU_KBASE_LO, base_3, 0x0 ) |
101 IO_FIELD(R_MMU_KBASE_LO, base_2, 0x0 ) |
102 IO_FIELD(R_MMU_KBASE_LO, base_1, 0x0 ) |
103 IO_FIELD(R_MMU_KBASE_LO, base_0, 0x0 ) );
104#else
105 /* This code is for the corrected Etrax-100 LX version 2... */
106
107#define CACHED_BOOTROM (KSEG_A | 0x08000000UL)
108
109 *R_MMU_KSEG = ( IO_STATE(R_MMU_KSEG, seg_f, seg ) | /* cached flash */
110 IO_STATE(R_MMU_KSEG, seg_e, seg ) | /* uncached flash */
111 IO_STATE(R_MMU_KSEG, seg_d, page ) | /* vmalloc area */
112 IO_STATE(R_MMU_KSEG, seg_c, seg ) | /* kernel area */
113 IO_STATE(R_MMU_KSEG, seg_b, seg ) | /* kernel reg area */
114 IO_STATE(R_MMU_KSEG, seg_a, seg ) | /* bootrom */
115 IO_STATE(R_MMU_KSEG, seg_9, page ) | /* user area */
116 IO_STATE(R_MMU_KSEG, seg_8, page ) |
117 IO_STATE(R_MMU_KSEG, seg_7, page ) |
118 IO_STATE(R_MMU_KSEG, seg_6, page ) |
119 IO_STATE(R_MMU_KSEG, seg_5, page ) |
120 IO_STATE(R_MMU_KSEG, seg_4, page ) |
121 IO_STATE(R_MMU_KSEG, seg_3, page ) |
122 IO_STATE(R_MMU_KSEG, seg_2, page ) |
123 IO_STATE(R_MMU_KSEG, seg_1, page ) |
124 IO_STATE(R_MMU_KSEG, seg_0, page ) );
125
126 *R_MMU_KBASE_HI = ( IO_FIELD(R_MMU_KBASE_HI, base_f, 0x0 ) |
127 IO_FIELD(R_MMU_KBASE_HI, base_e, 0x8 ) |
128 IO_FIELD(R_MMU_KBASE_HI, base_d, 0x0 ) |
129 IO_FIELD(R_MMU_KBASE_HI, base_c, 0x4 ) |
130 IO_FIELD(R_MMU_KBASE_HI, base_b, 0xb ) |
131 IO_FIELD(R_MMU_KBASE_HI, base_a, 0x3 ) |
132 IO_FIELD(R_MMU_KBASE_HI, base_9, 0x0 ) |
133 IO_FIELD(R_MMU_KBASE_HI, base_8, 0x0 ) );
134
135 *R_MMU_KBASE_LO = ( IO_FIELD(R_MMU_KBASE_LO, base_7, 0x0 ) |
136 IO_FIELD(R_MMU_KBASE_LO, base_6, 0x0 ) |
137 IO_FIELD(R_MMU_KBASE_LO, base_5, 0x0 ) |
138 IO_FIELD(R_MMU_KBASE_LO, base_4, 0x0 ) |
139 IO_FIELD(R_MMU_KBASE_LO, base_3, 0x0 ) |
140 IO_FIELD(R_MMU_KBASE_LO, base_2, 0x0 ) |
141 IO_FIELD(R_MMU_KBASE_LO, base_1, 0x0 ) |
142 IO_FIELD(R_MMU_KBASE_LO, base_0, 0x0 ) );
143#endif
144
145 *R_MMU_CONTEXT = ( IO_FIELD(R_MMU_CONTEXT, page_id, 0 ) );
146
147 /* The MMU has been enabled ever since head.S but just to make
148 * it totally obvious we do it here as well.
149 */
150
151 *R_MMU_CTRL = ( IO_STATE(R_MMU_CTRL, inv_excp, enable ) |
152 IO_STATE(R_MMU_CTRL, acc_excp, enable ) |
153 IO_STATE(R_MMU_CTRL, we_excp, enable ) );
154
155 *R_MMU_ENABLE = IO_STATE(R_MMU_ENABLE, mmu_enable, enable);
156
157 /*
158 * initialize the bad page table and bad page to point
159 * to a couple of allocated pages
160 */
161
162 empty_zero_page = (unsigned long)alloc_bootmem_pages(PAGE_SIZE);
163 memset((void *)empty_zero_page, 0, PAGE_SIZE);
164
165 /* All pages are DMA'able in Etrax, so put all in the DMA'able zone */
166
167 zones_size[0] = ((unsigned long)high_memory - PAGE_OFFSET) >> PAGE_SHIFT;
168
169 for (i = 1; i < MAX_NR_ZONES; i++)
170 zones_size[i] = 0;
171
172 /* Use free_area_init_node instead of free_area_init, because the former
173 * is designed for systems where the DRAM starts at an address substantially
174 * higher than 0, like us (we start at PAGE_OFFSET). This saves space in the
175 * mem_map page array.
176 */
177
9109fb7b 178 free_area_init_node(0, zones_size, PAGE_OFFSET >> PAGE_SHIFT, 0);
1da177e4
LT
179}
180
181/* Initialize remaps of some I/O-ports. It is important that this
182 * is called before any driver is initialized.
183 */
184
185static int
186__init init_ioremap(void)
187{
188
189 /* Give the external I/O-port addresses their values */
190
191#ifdef CONFIG_CRIS_LOW_MAP
192 /* Simply a linear map (see the KSEG map above in paging_init) */
193 port_cse1_addr = (volatile unsigned long *)(MEM_CSE1_START |
194 MEM_NON_CACHEABLE);
195 port_csp0_addr = (volatile unsigned long *)(MEM_CSP0_START |
196 MEM_NON_CACHEABLE);
197 port_csp4_addr = (volatile unsigned long *)(MEM_CSP4_START |
198 MEM_NON_CACHEABLE);
199#else
200 /* Note that nothing blows up just because we do this remapping
201 * it's ok even if the ports are not used or connected
202 * to anything (or connected to a non-I/O thing) */
203 port_cse1_addr = (volatile unsigned long *)
204 ioremap((unsigned long)(MEM_CSE1_START | MEM_NON_CACHEABLE), 16);
205 port_csp0_addr = (volatile unsigned long *)
206 ioremap((unsigned long)(MEM_CSP0_START | MEM_NON_CACHEABLE), 16);
207 port_csp4_addr = (volatile unsigned long *)
208 ioremap((unsigned long)(MEM_CSP4_START | MEM_NON_CACHEABLE), 16);
209#endif
210 return 0;
211}
212
213__initcall(init_ioremap);
214
215/* Helper function for the two below */
216
217static inline void
218flush_etrax_cacherange(void *startadr, int length)
219{
220 /* CACHED_BOOTROM is mapped to the boot-rom area (cached) which
221 * we can use to get fast dummy-reads of cachelines
222 */
223
224 volatile short *flushadr = (volatile short *)(((unsigned long)startadr & ~PAGE_MASK) |
225 CACHED_BOOTROM);
226
227 length = length > 8192 ? 8192 : length; /* No need to flush more than cache size */
228
229 while(length > 0) {
230 *flushadr; /* dummy read to flush */
231 flushadr += (32/sizeof(short)); /* a cacheline is 32 bytes */
232 length -= 32;
233 }
234}
235
236/* Due to a bug in Etrax100(LX) all versions, receiving DMA buffers
c23cf8ba 237 * will occasionally corrupt certain CPU writes if the DMA buffers
1da177e4
LT
238 * happen to be hot in the cache.
239 *
240 * As a workaround, we have to flush the relevant parts of the cache
241 * before (re) inserting any receiving descriptor into the DMA HW.
242 */
243
244void
245prepare_rx_descriptor(struct etrax_dma_descr *desc)
246{
247 flush_etrax_cacherange((void *)desc->buf, desc->sw_len ? desc->sw_len : 65536);
248}
249
250/* Do the same thing but flush the entire cache */
251
252void
253flush_etrax_cache(void)
254{
255 flush_etrax_cacherange(0, 8192);
256}