]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - arch/ia64/include/asm/pgtable.h
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[thirdparty/kernel/linux.git] / arch / ia64 / include / asm / pgtable.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _ASM_IA64_PGTABLE_H
3#define _ASM_IA64_PGTABLE_H
4
5/*
6 * This file contains the functions and defines necessary to modify and use
7 * the IA-64 page table tree.
8 *
9 * This hopefully works with any (fixed) IA-64 page-size, as defined
10 * in <asm/page.h>.
11 *
ad597bd5 12 * Copyright (C) 1998-2005 Hewlett-Packard Co
1da177e4
LT
13 * David Mosberger-Tang <davidm@hpl.hp.com>
14 */
15
1da177e4
LT
16
17#include <asm/mman.h>
18#include <asm/page.h>
19#include <asm/processor.h>
1da177e4
LT
20#include <asm/types.h>
21
22#define IA64_MAX_PHYS_BITS 50 /* max. number of physical address bits (architected) */
23
24/*
25 * First, define the various bits in a PTE. Note that the PTE format
26 * matches the VHPT short format, the firt doubleword of the VHPD long
27 * format, and the first doubleword of the TLB insertion format.
28 */
29#define _PAGE_P_BIT 0
30#define _PAGE_A_BIT 5
31#define _PAGE_D_BIT 6
32
33#define _PAGE_P (1 << _PAGE_P_BIT) /* page present bit */
34#define _PAGE_MA_WB (0x0 << 2) /* write back memory attribute */
35#define _PAGE_MA_UC (0x4 << 2) /* uncacheable memory attribute */
36#define _PAGE_MA_UCE (0x5 << 2) /* UC exported attribute */
37#define _PAGE_MA_WC (0x6 << 2) /* write coalescing memory attribute */
38#define _PAGE_MA_NAT (0x7 << 2) /* not-a-thing attribute */
39#define _PAGE_MA_MASK (0x7 << 2)
40#define _PAGE_PL_0 (0 << 7) /* privilege level 0 (kernel) */
41#define _PAGE_PL_1 (1 << 7) /* privilege level 1 (unused) */
42#define _PAGE_PL_2 (2 << 7) /* privilege level 2 (unused) */
43#define _PAGE_PL_3 (3 << 7) /* privilege level 3 (user) */
44#define _PAGE_PL_MASK (3 << 7)
45#define _PAGE_AR_R (0 << 9) /* read only */
46#define _PAGE_AR_RX (1 << 9) /* read & execute */
47#define _PAGE_AR_RW (2 << 9) /* read & write */
48#define _PAGE_AR_RWX (3 << 9) /* read, write & execute */
49#define _PAGE_AR_R_RW (4 << 9) /* read / read & write */
50#define _PAGE_AR_RX_RWX (5 << 9) /* read & exec / read, write & exec */
51#define _PAGE_AR_RWX_RW (6 << 9) /* read, write & exec / read & write */
52#define _PAGE_AR_X_RX (7 << 9) /* exec & promote / read & exec */
53#define _PAGE_AR_MASK (7 << 9)
54#define _PAGE_AR_SHIFT 9
55#define _PAGE_A (1 << _PAGE_A_BIT) /* page accessed bit */
56#define _PAGE_D (1 << _PAGE_D_BIT) /* page dirty bit */
57#define _PAGE_PPN_MASK (((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL)
58#define _PAGE_ED (__IA64_UL(1) << 52) /* exception deferral */
59#define _PAGE_PROTNONE (__IA64_UL(1) << 63)
60
1da177e4
LT
61#define _PFN_MASK _PAGE_PPN_MASK
62/* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */
63#define _PAGE_CHG_MASK (_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED)
64
65#define _PAGE_SIZE_4K 12
66#define _PAGE_SIZE_8K 13
67#define _PAGE_SIZE_16K 14
68#define _PAGE_SIZE_64K 16
69#define _PAGE_SIZE_256K 18
70#define _PAGE_SIZE_1M 20
71#define _PAGE_SIZE_4M 22
72#define _PAGE_SIZE_16M 24
73#define _PAGE_SIZE_64M 26
74#define _PAGE_SIZE_256M 28
75#define _PAGE_SIZE_1G 30
76#define _PAGE_SIZE_4G 32
77
78#define __ACCESS_BITS _PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB
79#define __DIRTY_BITS_NO_ED _PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB
80#define __DIRTY_BITS _PAGE_ED | __DIRTY_BITS_NO_ED
81
82/*
837cd0bd 83 * How many pointers will a page table level hold expressed in shift
1da177e4 84 */
837cd0bd 85#define PTRS_PER_PTD_SHIFT (PAGE_SHIFT-3)
1da177e4
LT
86
87/*
837cd0bd
RH
88 * Definitions for fourth level:
89 */
90#define PTRS_PER_PTE (__IA64_UL(1) << (PTRS_PER_PTD_SHIFT))
91
92/*
93 * Definitions for third level:
1da177e4 94 *
837cd0bd 95 * PMD_SHIFT determines the size of the area a third-level page table
1da177e4
LT
96 * can map.
97 */
837cd0bd 98#define PMD_SHIFT (PAGE_SHIFT + (PTRS_PER_PTD_SHIFT))
1da177e4
LT
99#define PMD_SIZE (1UL << PMD_SHIFT)
100#define PMD_MASK (~(PMD_SIZE-1))
837cd0bd 101#define PTRS_PER_PMD (1UL << (PTRS_PER_PTD_SHIFT))
1da177e4 102
4d66bcc7 103#if CONFIG_PGTABLE_LEVELS == 4
1da177e4 104/*
837cd0bd
RH
105 * Definitions for second level:
106 *
107 * PUD_SHIFT determines the size of the area a second-level page table
108 * can map.
1da177e4 109 */
837cd0bd
RH
110#define PUD_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT))
111#define PUD_SIZE (1UL << PUD_SHIFT)
112#define PUD_MASK (~(PUD_SIZE-1))
113#define PTRS_PER_PUD (1UL << (PTRS_PER_PTD_SHIFT))
114#endif
115
116/*
117 * Definitions for first level:
118 *
119 * PGDIR_SHIFT determines what a first-level page table entry can map.
120 */
4d66bcc7 121#if CONFIG_PGTABLE_LEVELS == 4
837cd0bd
RH
122#define PGDIR_SHIFT (PUD_SHIFT + (PTRS_PER_PTD_SHIFT))
123#else
124#define PGDIR_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT))
125#endif
126#define PGDIR_SIZE (__IA64_UL(1) << PGDIR_SHIFT)
127#define PGDIR_MASK (~(PGDIR_SIZE-1))
128#define PTRS_PER_PGD_SHIFT PTRS_PER_PTD_SHIFT
129#define PTRS_PER_PGD (1UL << PTRS_PER_PGD_SHIFT)
130#define USER_PTRS_PER_PGD (5*PTRS_PER_PGD/8) /* regions 0-4 are user regions */
d016bf7e 131#define FIRST_USER_ADDRESS 0UL
1da177e4
LT
132
133/*
134 * All the normal masks have the "page accessed" bits on, as any time
135 * they are used, the page is accessed. They are cleared only by the
136 * page-out routines.
137 */
138#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_A)
139#define PAGE_SHARED __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW)
140#define PAGE_READONLY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
141#define PAGE_COPY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
142#define PAGE_COPY_EXEC __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
143#define PAGE_GATE __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX)
144#define PAGE_KERNEL __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX)
145#define PAGE_KERNELRX __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX)
0c72ea7f
JS
146#define PAGE_KERNEL_UC __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX | \
147 _PAGE_MA_UC)
1da177e4
LT
148
149# ifndef __ASSEMBLY__
150
589ee628 151#include <linux/sched/mm.h> /* for mm_struct */
1977f032 152#include <linux/bitops.h>
1da177e4
LT
153#include <asm/cacheflush.h>
154#include <asm/mmu_context.h>
1da177e4
LT
155
156/*
157 * Next come the mappings that determine how mmap() protection bits
158 * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented. The
159 * _P version gets used for a private shared memory segment, the _S
160 * version gets used for a shared memory segment with MAP_SHARED on.
161 * In a private shared memory segment, we do a copy-on-write if a task
162 * attempts to write to the page.
163 */
164 /* xwr */
165#define __P000 PAGE_NONE
166#define __P001 PAGE_READONLY
167#define __P010 PAGE_READONLY /* write to priv pg -> copy & make writable */
168#define __P011 PAGE_READONLY /* ditto */
169#define __P100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)
170#define __P101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
171#define __P110 PAGE_COPY_EXEC
172#define __P111 PAGE_COPY_EXEC
173
174#define __S000 PAGE_NONE
175#define __S001 PAGE_READONLY
176#define __S010 PAGE_SHARED /* we don't have (and don't need) write-only */
177#define __S011 PAGE_SHARED
178#define __S100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)
179#define __S101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
180#define __S110 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)
181#define __S111 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)
182
183#define pgd_ERROR(e) printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
4d66bcc7 184#if CONFIG_PGTABLE_LEVELS == 4
837cd0bd
RH
185#define pud_ERROR(e) printk("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
186#endif
1da177e4
LT
187#define pmd_ERROR(e) printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
188#define pte_ERROR(e) printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
189
190
191/*
192 * Some definitions to translate between mem_map, PTEs, and page addresses:
193 */
194
195
196/* Quick test to see if ADDR is a (potentially) valid physical address. */
197static inline long
198ia64_phys_addr_valid (unsigned long addr)
199{
200 return (addr & (local_cpu_data->unimpl_pa_mask)) == 0;
201}
202
203/*
204 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
205 * memory. For the return value to be meaningful, ADDR must be >=
206 * PAGE_OFFSET. This operation can be relatively expensive (e.g.,
207 * require a hash-, or multi-level tree-lookup or something of that
208 * sort) but it guarantees to return TRUE only if accessing the page
209 * at that address does not cause an error. Note that there may be
210 * addresses for which kern_addr_valid() returns FALSE even though an
211 * access would not cause an error (e.g., this is typically true for
212 * memory mapped I/O regions.
213 *
214 * XXX Need to implement this for IA-64.
215 */
216#define kern_addr_valid(addr) (1)
217
218
219/*
220 * Now come the defines and routines to manage and access the three-level
221 * page table.
222 */
223
1da177e4 224
0a41e250 225#define VMALLOC_START (RGN_BASE(RGN_GATE) + 0x200000000UL)
1da177e4 226#ifdef CONFIG_VIRTUAL_MEM_MAP
0a41e250 227# define VMALLOC_END_INIT (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
126b3fcd 228extern unsigned long VMALLOC_END;
1da177e4 229#else
ef229c5a
CL
230#if defined(CONFIG_SPARSEMEM) && defined(CONFIG_SPARSEMEM_VMEMMAP)
231/* SPARSEMEM_VMEMMAP uses half of vmalloc... */
232# define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 10)))
233# define vmemmap ((struct page *)VMALLOC_END)
234#else
0a41e250 235# define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
1da177e4 236#endif
ef229c5a 237#endif
1da177e4
LT
238
239/* fs/proc/kcore.c */
0a41e250
PC
240#define kc_vaddr_to_offset(v) ((v) - RGN_BASE(RGN_GATE))
241#define kc_offset_to_vaddr(o) ((o) + RGN_BASE(RGN_GATE))
1da177e4 242
837cd0bd
RH
243#define RGN_MAP_SHIFT (PGDIR_SHIFT + PTRS_PER_PGD_SHIFT - 3)
244#define RGN_MAP_LIMIT ((1UL << RGN_MAP_SHIFT) - PAGE_SIZE) /* per region addr limit */
245
1da177e4
LT
246/*
247 * Conversion functions: convert page frame number (pfn) and a protection value to a page
248 * table entry (pte).
249 */
250#define pfn_pte(pfn, pgprot) \
251({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; })
252
253/* Extract pfn from pte. */
254#define pte_pfn(_pte) ((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT)
255
256#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
257
258/* This takes a physical page address that is used by the remapping functions */
259#define mk_pte_phys(physpage, pgprot) \
260({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
261
262#define pte_modify(_pte, newprot) \
263 (__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK)))
264
1da177e4
LT
265#define pte_none(pte) (!pte_val(pte))
266#define pte_present(pte) (pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE))
267#define pte_clear(mm,addr,pte) (pte_val(*(pte)) = 0UL)
268/* pte_page() returns the "struct page *" corresponding to the PTE: */
269#define pte_page(pte) virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET))
270
271#define pmd_none(pmd) (!pmd_val(pmd))
272#define pmd_bad(pmd) (!ia64_phys_addr_valid(pmd_val(pmd)))
273#define pmd_present(pmd) (pmd_val(pmd) != 0UL)
274#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL)
46a82b2d 275#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & _PFN_MASK))
1da177e4
LT
276#define pmd_page(pmd) virt_to_page((pmd_val(pmd) + PAGE_OFFSET))
277
278#define pud_none(pud) (!pud_val(pud))
279#define pud_bad(pud) (!ia64_phys_addr_valid(pud_val(pud)))
280#define pud_present(pud) (pud_val(pud) != 0UL)
281#define pud_clear(pudp) (pud_val(*(pudp)) = 0UL)
46a82b2d
DM
282#define pud_page_vaddr(pud) ((unsigned long) __va(pud_val(pud) & _PFN_MASK))
283#define pud_page(pud) virt_to_page((pud_val(pud) + PAGE_OFFSET))
1da177e4 284
4d66bcc7 285#if CONFIG_PGTABLE_LEVELS == 4
837cd0bd
RH
286#define pgd_none(pgd) (!pgd_val(pgd))
287#define pgd_bad(pgd) (!ia64_phys_addr_valid(pgd_val(pgd)))
288#define pgd_present(pgd) (pgd_val(pgd) != 0UL)
289#define pgd_clear(pgdp) (pgd_val(*(pgdp)) = 0UL)
46a82b2d
DM
290#define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_val(pgd) & _PFN_MASK))
291#define pgd_page(pgd) virt_to_page((pgd_val(pgd) + PAGE_OFFSET))
837cd0bd
RH
292#endif
293
1da177e4
LT
294/*
295 * The following have defined behavior only work if pte_present() is true.
296 */
1da177e4
LT
297#define pte_write(pte) ((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4)
298#define pte_exec(pte) ((pte_val(pte) & _PAGE_AR_RX) != 0)
299#define pte_dirty(pte) ((pte_val(pte) & _PAGE_D) != 0)
300#define pte_young(pte) ((pte_val(pte) & _PAGE_A) != 0)
7e675137
NP
301#define pte_special(pte) 0
302
1da177e4
LT
303/*
304 * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the
305 * access rights:
306 */
307#define pte_wrprotect(pte) (__pte(pte_val(pte) & ~_PAGE_AR_RW))
308#define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_AR_RW))
1da177e4
LT
309#define pte_mkold(pte) (__pte(pte_val(pte) & ~_PAGE_A))
310#define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_A))
311#define pte_mkclean(pte) (__pte(pte_val(pte) & ~_PAGE_D))
312#define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_D))
8f860591 313#define pte_mkhuge(pte) (__pte(pte_val(pte)))
7e675137 314#define pte_mkspecial(pte) (pte)
1da177e4 315
954ffcb3
KH
316/*
317 * Because ia64's Icache and Dcache is not coherent (on a cpu), we need to
318 * sync icache and dcache when we insert *new* executable page.
319 * __ia64_sync_icache_dcache() check Pg_arch_1 bit and flush icache
320 * if necessary.
321 *
322 * set_pte() is also called by the kernel, but we can expect that the kernel
323 * flushes icache explicitly if necessary.
324 */
325#define pte_present_exec_user(pte)\
326 ((pte_val(pte) & (_PAGE_P | _PAGE_PL_MASK | _PAGE_AR_RX)) == \
327 (_PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX))
328
329extern void __ia64_sync_icache_dcache(pte_t pteval);
330static inline void set_pte(pte_t *ptep, pte_t pteval)
331{
332 /* page is present && page is user && page is executable
333 * && (page swapin or new page or page migraton
334 * || copy_on_write with page copying.)
335 */
336 if (pte_present_exec_user(pteval) &&
337 (!pte_present(*ptep) ||
338 pte_pfn(*ptep) != pte_pfn(pteval)))
339 /* load_module() calles flush_icache_range() explicitly*/
340 __ia64_sync_icache_dcache(pteval);
341 *ptep = pteval;
342}
343
344#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
345
1da177e4 346/*
32e62c63
BH
347 * Make page protection values cacheable, uncacheable, or write-
348 * combining. Note that "protection" is really a misnomer here as the
349 * protection value contains the memory attribute bits, dirty bits, and
350 * various other bits as well.
1da177e4 351 */
32e62c63 352#define pgprot_cacheable(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WB)
1da177e4 353#define pgprot_noncached(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC)
1da177e4
LT
354#define pgprot_writecombine(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC)
355
32e62c63
BH
356struct file;
357extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
358 unsigned long size, pgprot_t vma_prot);
359#define __HAVE_PHYS_MEM_ACCESS_PROT
360
1da177e4
LT
361static inline unsigned long
362pgd_index (unsigned long address)
363{
364 unsigned long region = address >> 61;
365 unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1);
366
367 return (region << (PAGE_SHIFT - 6)) | l1index;
368}
369
370/* The offset in the 1-level directory is given by the 3 region bits
371 (61..63) and the level-1 bits. */
372static inline pgd_t*
e4b05d40 373pgd_offset (const struct mm_struct *mm, unsigned long address)
1da177e4
LT
374{
375 return mm->pgd + pgd_index(address);
376}
377
378/* In the kernel's mapped region we completely ignore the region number
379 (since we know it's in region number 5). */
380#define pgd_offset_k(addr) \
381 (init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)))
382
383/* Look up a pgd entry in the gate area. On IA-64, the gate-area
384 resides in the kernel-mapped segment, hence we use pgd_offset_k()
385 here. */
386#define pgd_offset_gate(mm, addr) pgd_offset_k(addr)
387
4d66bcc7 388#if CONFIG_PGTABLE_LEVELS == 4
1da177e4 389/* Find an entry in the second-level page table.. */
837cd0bd 390#define pud_offset(dir,addr) \
46a82b2d 391 ((pud_t *) pgd_page_vaddr(*(dir)) + (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1)))
837cd0bd
RH
392#endif
393
394/* Find an entry in the third-level page table.. */
1da177e4 395#define pmd_offset(dir,addr) \
46a82b2d 396 ((pmd_t *) pud_page_vaddr(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
1da177e4
LT
397
398/*
399 * Find an entry in the third-level page table. This looks more complicated than it
400 * should be because some platforms place page tables in high memory.
401 */
402#define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
46a82b2d 403#define pte_offset_kernel(dir,addr) ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
1da177e4 404#define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr)
1da177e4 405#define pte_unmap(pte) do { } while (0)
1da177e4
LT
406
407/* atomic versions of the some PTE manipulations: */
408
409static inline int
410ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
411{
412#ifdef CONFIG_SMP
413 if (!pte_young(*ptep))
414 return 0;
415 return test_and_clear_bit(_PAGE_A_BIT, ptep);
416#else
417 pte_t pte = *ptep;
418 if (!pte_young(pte))
419 return 0;
420 set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte));
421 return 1;
422#endif
423}
424
1da177e4
LT
425static inline pte_t
426ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
427{
428#ifdef CONFIG_SMP
429 return __pte(xchg((long *) ptep, 0));
430#else
431 pte_t pte = *ptep;
432 pte_clear(mm, addr, ptep);
433 return pte;
434#endif
435}
436
437static inline void
438ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
439{
440#ifdef CONFIG_SMP
441 unsigned long new, old;
442
443 do {
444 old = pte_val(*ptep);
445 new = pte_val(pte_wrprotect(__pte (old)));
446 } while (cmpxchg((unsigned long *) ptep, old, new) != old);
447#else
448 pte_t old_pte = *ptep;
449 set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
450#endif
451}
452
453static inline int
454pte_same (pte_t a, pte_t b)
455{
456 return pte_val(a) == pte_val(b);
457}
458
4b3073e1 459#define update_mmu_cache(vma, address, ptep) do { } while (0)
1da177e4
LT
460
461extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
462extern void paging_init (void);
463
464/*
465 * Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of
466 * bits in the swap-type field of the swap pte. It would be nice to
467 * enforce that, but we can't easily include <linux/swap.h> here.
468 * (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...).
469 *
470 * Format of swap pte:
471 * bit 0 : present bit (must be zero)
636a002b
KS
472 * bits 1- 7: swap-type
473 * bits 8-62: swap offset
1da177e4
LT
474 * bit 63 : _PAGE_PROTNONE bit
475 */
636a002b
KS
476#define __swp_type(entry) (((entry).val >> 1) & 0x7f)
477#define __swp_offset(entry) (((entry).val << 1) >> 9)
478#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 1) | ((long) (offset) << 8) })
1da177e4
LT
479#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
480#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
481
1da177e4
LT
482/*
483 * ZERO_PAGE is a global shared page that is always zero: used
484 * for zero-mapped memory areas etc..
485 */
486extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
487extern struct page *zero_page_memmap_ptr;
488#define ZERO_PAGE(vaddr) (zero_page_memmap_ptr)
489
490/* We provide our own get_unmapped_area to cope with VA holes for userland */
491#define HAVE_ARCH_UNMAPPED_AREA
492
493#ifdef CONFIG_HUGETLB_PAGE
494#define HUGETLB_PGDIR_SHIFT (HPAGE_SHIFT + 2*(PAGE_SHIFT-3))
495#define HUGETLB_PGDIR_SIZE (__IA64_UL(1) << HUGETLB_PGDIR_SHIFT)
496#define HUGETLB_PGDIR_MASK (~(HUGETLB_PGDIR_SIZE-1))
1da177e4
LT
497#endif
498
1da177e4
LT
499
500#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
501/*
502 * Update PTEP with ENTRY, which is guaranteed to be a less
503 * restrictive PTE. That is, ENTRY may have the ACCESSED, DIRTY, and
504 * WRITABLE bits turned on, when the value at PTEP did not. The
505 * WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE.
506 *
507 * SAFELY_WRITABLE is TRUE if we can update the value at PTEP without
508 * having to worry about races. On SMP machines, there are only two
509 * cases where this is true:
510 *
511 * (1) *PTEP has the PRESENT bit turned OFF
512 * (2) ENTRY has the DIRTY bit turned ON
513 *
514 * On ia64, we could implement this routine with a cmpxchg()-loop
515 * which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY.
516 * However, like on x86, we can get a more streamlined version by
517 * observing that it is OK to drop ACCESSED bit updates when
518 * SAFELY_WRITABLE is FALSE. Besides being rare, all that would do is
519 * result in an extra Access-bit fault, which would then turn on the
520 * ACCESSED bit in the low-level fault handler (iaccess_bit or
521 * daccess_bit in ivt.S).
522 */
523#ifdef CONFIG_SMP
8dab5241
BH
524# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \
525({ \
526 int __changed = !pte_same(*(__ptep), __entry); \
527 if (__changed && __safely_writable) { \
528 set_pte(__ptep, __entry); \
529 flush_tlb_page(__vma, __addr); \
530 } \
531 __changed; \
532})
1da177e4 533#else
8dab5241
BH
534# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \
535({ \
536 int __changed = !pte_same(*(__ptep), __entry); \
f0e47c22
MS
537 if (__changed) { \
538 set_pte_at((__vma)->vm_mm, (__addr), __ptep, __entry); \
539 flush_tlb_page(__vma, __addr); \
540 } \
8dab5241
BH
541 __changed; \
542})
1da177e4
LT
543#endif
544
545# ifdef CONFIG_VIRTUAL_MEM_MAP
546 /* arch mem_map init routine is needed due to holes in a virtual mem_map */
547# define __HAVE_ARCH_MEMMAP_INIT
548 extern void memmap_init (unsigned long size, int nid, unsigned long zone,
549 unsigned long start_pfn);
550# endif /* CONFIG_VIRTUAL_MEM_MAP */
551# endif /* !__ASSEMBLY__ */
552
553/*
554 * Identity-mapped regions use a large page size. We'll call such large pages
555 * "granules". If you can think of a better name that's unambiguous, let me
556 * know...
557 */
558#if defined(CONFIG_IA64_GRANULE_64MB)
559# define IA64_GRANULE_SHIFT _PAGE_SIZE_64M
560#elif defined(CONFIG_IA64_GRANULE_16MB)
561# define IA64_GRANULE_SHIFT _PAGE_SIZE_16M
562#endif
563#define IA64_GRANULE_SIZE (1 << IA64_GRANULE_SHIFT)
564/*
565 * log2() of the page size we use to map the kernel image (IA64_TR_KERNEL):
566 */
567#define KERNEL_TR_PAGE_SHIFT _PAGE_SIZE_64M
568#define KERNEL_TR_PAGE_SIZE (1 << KERNEL_TR_PAGE_SHIFT)
569
570/*
571 * No page table caches to initialise
572 */
573#define pgtable_cache_init() do { } while (0)
574
575/* These tell get_user_pages() that the first gate page is accessible from user-level. */
576#define FIXADDR_USER_START GATE_ADDR
ad597bd5
DMT
577#ifdef HAVE_BUGGY_SEGREL
578# define FIXADDR_USER_END (GATE_ADDR + 2*PAGE_SIZE)
579#else
580# define FIXADDR_USER_END (GATE_ADDR + 2*PERCPU_PAGE_SIZE)
581#endif
1da177e4
LT
582
583#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1da177e4
LT
584#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
585#define __HAVE_ARCH_PTEP_SET_WRPROTECT
586#define __HAVE_ARCH_PTE_SAME
587#define __HAVE_ARCH_PGD_OFFSET_GATE
954ffcb3 588
1da177e4 589
4d66bcc7 590#if CONFIG_PGTABLE_LEVELS == 3
9849a569 591#define __ARCH_USE_5LEVEL_HACK
1da177e4 592#include <asm-generic/pgtable-nopud.h>
837cd0bd 593#endif
9849a569 594#include <asm-generic/5level-fixup.h>
1da177e4
LT
595#include <asm-generic/pgtable.h>
596
597#endif /* _ASM_IA64_PGTABLE_H */