]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - arch/metag/include/asm/pgtable.h
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[thirdparty/kernel/linux.git] / arch / metag / include / asm / pgtable.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
f5df8e26
JH
2/*
3 * Macros and functions to manipulate Meta page tables.
4 */
5
6#ifndef _METAG_PGTABLE_H
7#define _METAG_PGTABLE_H
8
0164a711 9#include <asm/pgtable-bits.h>
9849a569 10#define __ARCH_USE_5LEVEL_HACK
f5df8e26
JH
11#include <asm-generic/pgtable-nopmd.h>
12
13/* Invalid regions on Meta: 0x00000000-0x001FFFFF and 0xFFFF0000-0xFFFFFFFF */
14#if PAGE_OFFSET >= LINGLOBAL_BASE
15#define CONSISTENT_START 0xF7000000
16#define CONSISTENT_END 0xF73FFFFF
17#define VMALLOC_START 0xF8000000
18#define VMALLOC_END 0xFFFEFFFF
19#else
20#define CONSISTENT_START 0x77000000
21#define CONSISTENT_END 0x773FFFFF
22#define VMALLOC_START 0x78000000
23#define VMALLOC_END 0x7FFFFFFF
24#endif
25
f5df8e26
JH
26/*
27 * The Linux memory management assumes a three-level page table setup. On
28 * Meta, we use that, but "fold" the mid level into the top-level page
29 * table.
30 */
31
32/* PGDIR_SHIFT determines the size of the area a second-level page table can
33 * map. This is always 4MB.
34 */
35
36#define PGDIR_SHIFT 22
37#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
38#define PGDIR_MASK (~(PGDIR_SIZE-1))
39
40/*
41 * Entries per page directory level: we use a two-level, so
42 * we don't really have any PMD directory physically. First level tables
43 * always map 2Gb (local or global) at a granularity of 4MB, second-level
44 * tables map 4MB with a granularity between 4MB and 4kB (between 1 and
45 * 1024 entries).
46 */
47#define PTRS_PER_PTE (PGDIR_SIZE/PAGE_SIZE)
48#define HPTRS_PER_PTE (PGDIR_SIZE/HPAGE_SIZE)
49#define PTRS_PER_PGD 512
50
51#define USER_PTRS_PER_PGD 256
52#define FIRST_USER_ADDRESS META_MEMORY_BASE
53#define FIRST_USER_PGD_NR pgd_index(FIRST_USER_ADDRESS)
54
55#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
56 _PAGE_CACHEABLE)
57
58#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_WRITE | \
59 _PAGE_ACCESSED | _PAGE_CACHEABLE)
60#define PAGE_SHARED_C PAGE_SHARED
61#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
62 _PAGE_CACHEABLE)
63#define PAGE_COPY_C PAGE_COPY
64
65#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
66 _PAGE_CACHEABLE)
67#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | \
68 _PAGE_ACCESSED | _PAGE_WRITE | \
69 _PAGE_CACHEABLE | _PAGE_KERNEL)
70
71#define __P000 PAGE_NONE
72#define __P001 PAGE_READONLY
73#define __P010 PAGE_COPY
74#define __P011 PAGE_COPY
75#define __P100 PAGE_READONLY
76#define __P101 PAGE_READONLY
77#define __P110 PAGE_COPY_C
78#define __P111 PAGE_COPY_C
79
80#define __S000 PAGE_NONE
81#define __S001 PAGE_READONLY
82#define __S010 PAGE_SHARED
83#define __S011 PAGE_SHARED
84#define __S100 PAGE_READONLY
85#define __S101 PAGE_READONLY
86#define __S110 PAGE_SHARED_C
87#define __S111 PAGE_SHARED_C
88
89#ifndef __ASSEMBLY__
90
91#include <asm/page.h>
92
93/* zero page used for uninitialized stuff */
94extern unsigned long empty_zero_page;
95#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
96
97/* Certain architectures need to do special things when pte's
98 * within a page table are directly modified. Thus, the following
99 * hook is made available.
100 */
101#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
102#define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
103
104#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
105
106#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
107
108#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
109
110#define pte_none(x) (!pte_val(x))
111#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
112#define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0)
113
114#define pmd_none(x) (!pmd_val(x))
115#define pmd_bad(x) ((pmd_val(x) & ~(PAGE_MASK | _PAGE_SZ_MASK)) \
116 != (_PAGE_TABLE & ~_PAGE_SZ_MASK))
117#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
118#define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
119
120#define pte_page(x) pfn_to_page(pte_pfn(x))
121
122/*
123 * The following only work if pte_present() is true.
124 * Undefined behaviour if not..
125 */
126
127static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
128static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
129static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
f5df8e26
JH
130static inline int pte_special(pte_t pte) { return 0; }
131
132static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= (~_PAGE_WRITE); return pte; }
133static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
134static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
135static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; }
136static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
137static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
138static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
139static inline pte_t pte_mkhuge(pte_t pte) { return pte; }
140
141/*
142 * Macro and implementation to make a page protection as uncacheable.
143 */
144#define pgprot_writecombine(prot) \
145 __pgprot(pgprot_val(prot) & ~(_PAGE_CACHE_CTRL1 | _PAGE_CACHE_CTRL0))
146
147#define pgprot_noncached(prot) \
148 __pgprot(pgprot_val(prot) & ~_PAGE_CACHEABLE)
149
150
151/*
152 * Conversion functions: convert a page and protection to a page entry,
153 * and a page entry and page directory to the page they refer to.
154 */
155
156#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
157
158static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
159{
160 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
161 return pte;
162}
163
164static inline unsigned long pmd_page_vaddr(pmd_t pmd)
165{
166 unsigned long paddr = pmd_val(pmd) & PAGE_MASK;
167 if (!paddr)
168 return 0;
169 return (unsigned long)__va(paddr);
170}
171
172#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
173#define pmd_page_shift(pmd) (12 + ((pmd_val(pmd) & _PAGE_SZ_MASK) \
174 >> _PAGE_SZ_SHIFT))
175#define pmd_num_ptrs(pmd) (PGDIR_SIZE >> pmd_page_shift(pmd))
176
177/*
178 * Each pgd is only 2k, mapping 2Gb (local or global). If we're in global
179 * space drop the top bit before indexing the pgd.
180 */
181#if PAGE_OFFSET >= LINGLOBAL_BASE
182#define pgd_index(address) ((((address) & ~0x80000000) >> PGDIR_SHIFT) \
183 & (PTRS_PER_PGD-1))
184#else
185#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
186#endif
187
188#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
189
190#define pgd_offset_k(address) pgd_offset(&init_mm, address)
191
192#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
193
194/* Find an entry in the second-level page table.. */
195#if !defined(CONFIG_HUGETLB_PAGE)
196 /* all pages are of size (1 << PAGE_SHIFT), so no need to read 1st level pt */
197# define pte_index(pmd, address) \
198 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
199#else
200 /* some pages are huge, so read 1st level pt to find out */
201# define pte_index(pmd, address) \
202 (((address) >> pmd_page_shift(pmd)) & (pmd_num_ptrs(pmd) - 1))
203#endif
204#define pte_offset_kernel(dir, address) \
205 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(*(dir), address))
206#define pte_offset_map(dir, address) pte_offset_kernel(dir, address)
207#define pte_offset_map_nested(dir, address) pte_offset_kernel(dir, address)
208
209#define pte_unmap(pte) do { } while (0)
210#define pte_unmap_nested(pte) do { } while (0)
211
212#define pte_ERROR(e) \
213 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
214#define pgd_ERROR(e) \
215 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
216
217/*
218 * Meta doesn't have any external MMU info: the kernel page
219 * tables contain all the necessary information.
220 */
221static inline void update_mmu_cache(struct vm_area_struct *vma,
222 unsigned long address, pte_t *pte)
223{
224}
225
226/*
227 * Encode and decode a swap entry (must be !pte_none(e) && !pte_present(e))
228 * Since PAGE_PRESENT is bit 1, we can use the bits above that.
229 */
230#define __swp_type(x) (((x).val >> 1) & 0xff)
231#define __swp_offset(x) ((x).val >> 10)
232#define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 1) | \
233 ((offset) << 10) })
234#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
235#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
236
f5df8e26
JH
237#define kern_addr_valid(addr) (1)
238
f5df8e26
JH
239/*
240 * No page table caches to initialise
241 */
242#define pgtable_cache_init() do { } while (0)
243
244extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
245void paging_init(unsigned long mem_end);
246
247#ifdef CONFIG_METAG_META12
248/* This is a workaround for an issue in Meta 1 cores. These cores cache
249 * invalid entries in the TLB so we always need to flush whenever we add
250 * a new pte. Unfortunately we can only flush the whole TLB not shoot down
251 * single entries so this is sub-optimal. This implementation ensures that
252 * we will get a flush at the second attempt, so we may still get repeated
253 * faults, we just don't overflow the kernel stack handling them.
254 */
255#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
256#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
257({ \
258 int __changed = !pte_same(*(__ptep), __entry); \
259 if (__changed) { \
260 set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \
261 } \
262 flush_tlb_page(__vma, __address); \
263 __changed; \
264})
265#endif
266
267#include <asm-generic/pgtable.h>
268
269#endif /* __ASSEMBLY__ */
270#endif /* _METAG_PGTABLE_H */