]> git.ipfire.org Git - people/ms/u-boot.git/blame - arch/powerpc/cpu/mpc8xxx/ddr/lc_common_dimm_params.c
lib/vsprintf.c: sparse fixes
[people/ms/u-boot.git] / arch / powerpc / cpu / mpc8xxx / ddr / lc_common_dimm_params.c
CommitLineData
58e5e9af 1/*
45064adc 2 * Copyright 2008-2012 Freescale Semiconductor, Inc.
58e5e9af
KG
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * Version 2 as published by the Free Software Foundation.
7 */
8
9#include <common.h>
10#include <asm/fsl_ddr_sdram.h>
11
12#include "ddr.h"
13
c360ceac
DL
14unsigned int
15compute_cas_latency_ddr3(const dimm_params_t *dimm_params,
16 common_timing_params_t *outpdimm,
17 unsigned int number_of_dimms)
18{
19 unsigned int i;
20 unsigned int tAAmin_ps = 0;
21 unsigned int tCKmin_X_ps = 0;
22 unsigned int common_caslat;
23 unsigned int caslat_actual;
24 unsigned int retry = 16;
25 unsigned int tmp;
26 const unsigned int mclk_ps = get_memory_clk_period_ps();
27
28 /* compute the common CAS latency supported between slots */
29 tmp = dimm_params[0].caslat_X;
7e4db27f
YS
30 for (i = 1; i < number_of_dimms; i++) {
31 if (dimm_params[i].n_ranks)
32 tmp &= dimm_params[i].caslat_X;
33 }
c360ceac
DL
34 common_caslat = tmp;
35
36 /* compute the max tAAmin tCKmin between slots */
37 for (i = 0; i < number_of_dimms; i++) {
38 tAAmin_ps = max(tAAmin_ps, dimm_params[i].tAA_ps);
39 tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps);
40 }
41 /* validate if the memory clk is in the range of dimms */
42 if (mclk_ps < tCKmin_X_ps) {
d49f8e04
YS
43 printf("DDR clock (MCLK cycle %u ps) is faster than "
44 "the slowest DIMM(s) (tCKmin %u ps) can support.\n",
45 mclk_ps, tCKmin_X_ps);
c360ceac
DL
46 return 1;
47 }
48 /* determine the acutal cas latency */
49 caslat_actual = (tAAmin_ps + mclk_ps - 1) / mclk_ps;
50 /* check if the dimms support the CAS latency */
51 while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
52 caslat_actual++;
53 retry--;
54 }
55 /* once the caculation of caslat_actual is completed
56 * we must verify that this CAS latency value does not
57 * exceed tAAmax, which is 20 ns for all DDR3 speed grades
58 */
59 if (caslat_actual * mclk_ps > 20000) {
60 printf("The choosen cas latency %d is too large\n",
61 caslat_actual);
62 return 1;
63 }
64 outpdimm->lowest_common_SPD_caslat = caslat_actual;
65
66 return 0;
67}
68
58e5e9af
KG
69/*
70 * compute_lowest_common_dimm_parameters()
71 *
72 * Determine the worst-case DIMM timing parameters from the set of DIMMs
73 * whose parameters have been computed into the array pointed to
74 * by dimm_params.
75 */
76unsigned int
77compute_lowest_common_dimm_parameters(const dimm_params_t *dimm_params,
78 common_timing_params_t *outpdimm,
123922b1 79 const unsigned int number_of_dimms)
58e5e9af 80{
9490ff48 81 unsigned int i, j;
58e5e9af
KG
82
83 unsigned int tCKmin_X_ps = 0;
84 unsigned int tCKmax_ps = 0xFFFFFFFF;
85 unsigned int tCKmax_max_ps = 0;
86 unsigned int tRCD_ps = 0;
87 unsigned int tRP_ps = 0;
88 unsigned int tRAS_ps = 0;
89 unsigned int tWR_ps = 0;
90 unsigned int tWTR_ps = 0;
91 unsigned int tRFC_ps = 0;
92 unsigned int tRRD_ps = 0;
93 unsigned int tRC_ps = 0;
94 unsigned int refresh_rate_ps = 0;
95 unsigned int tIS_ps = 0;
96 unsigned int tIH_ps = 0;
97 unsigned int tDS_ps = 0;
98 unsigned int tDH_ps = 0;
99 unsigned int tRTP_ps = 0;
100 unsigned int tDQSQ_max_ps = 0;
101 unsigned int tQHS_ps = 0;
102
dd127689 103 unsigned int temp1, temp2;
58e5e9af 104 unsigned int additive_latency = 0;
c360ceac 105#if !defined(CONFIG_FSL_DDR3)
58e5e9af 106 const unsigned int mclk_ps = get_memory_clk_period_ps();
c360ceac 107 unsigned int lowest_good_caslat;
58e5e9af
KG
108 unsigned int not_ok;
109
110 debug("using mclk_ps = %u\n", mclk_ps);
c360ceac 111#endif
58e5e9af
KG
112
113 temp1 = 0;
114 for (i = 0; i < number_of_dimms; i++) {
115 /*
116 * If there are no ranks on this DIMM,
117 * it probably doesn't exist, so skip it.
118 */
119 if (dimm_params[i].n_ranks == 0) {
120 temp1++;
121 continue;
122 }
5800e7ab
YS
123 if (dimm_params[i].n_ranks == 4 && i != 0) {
124 printf("Found Quad-rank DIMM in wrong bank, ignored."
125 " Software may not run as expected.\n");
126 temp1++;
127 continue;
128 }
123922b1
YS
129
130 /*
131 * check if quad-rank DIMM is plugged if
132 * CONFIG_CHIP_SELECT_QUAD_CAPABLE is not defined
133 * Only the board with proper design is capable
134 */
135#ifndef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
5800e7ab
YS
136 if (dimm_params[i].n_ranks == 4 && \
137 CONFIG_CHIP_SELECTS_PER_CTRL/CONFIG_DIMM_SLOTS_PER_CTLR < 4) {
138 printf("Found Quad-rank DIMM, not able to support.");
139 temp1++;
140 continue;
141 }
123922b1 142#endif
58e5e9af
KG
143 /*
144 * Find minimum tCKmax_ps to find fastest slow speed,
145 * i.e., this is the slowest the whole system can go.
146 */
147 tCKmax_ps = min(tCKmax_ps, dimm_params[i].tCKmax_ps);
148
149 /* Either find maximum value to determine slowest
150 * speed, delay, time, period, etc */
151 tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps);
152 tCKmax_max_ps = max(tCKmax_max_ps, dimm_params[i].tCKmax_ps);
153 tRCD_ps = max(tRCD_ps, dimm_params[i].tRCD_ps);
154 tRP_ps = max(tRP_ps, dimm_params[i].tRP_ps);
155 tRAS_ps = max(tRAS_ps, dimm_params[i].tRAS_ps);
156 tWR_ps = max(tWR_ps, dimm_params[i].tWR_ps);
157 tWTR_ps = max(tWTR_ps, dimm_params[i].tWTR_ps);
158 tRFC_ps = max(tRFC_ps, dimm_params[i].tRFC_ps);
159 tRRD_ps = max(tRRD_ps, dimm_params[i].tRRD_ps);
160 tRC_ps = max(tRC_ps, dimm_params[i].tRC_ps);
161 tIS_ps = max(tIS_ps, dimm_params[i].tIS_ps);
162 tIH_ps = max(tIH_ps, dimm_params[i].tIH_ps);
163 tDS_ps = max(tDS_ps, dimm_params[i].tDS_ps);
164 tDH_ps = max(tDH_ps, dimm_params[i].tDH_ps);
165 tRTP_ps = max(tRTP_ps, dimm_params[i].tRTP_ps);
166 tQHS_ps = max(tQHS_ps, dimm_params[i].tQHS_ps);
167 refresh_rate_ps = max(refresh_rate_ps,
168 dimm_params[i].refresh_rate_ps);
169
170 /*
171 * Find maximum tDQSQ_max_ps to find slowest.
172 *
173 * FIXME: is finding the slowest value the correct
174 * strategy for this parameter?
175 */
176 tDQSQ_max_ps = max(tDQSQ_max_ps, dimm_params[i].tDQSQ_max_ps);
177 }
178
179 outpdimm->ndimms_present = number_of_dimms - temp1;
180
181 if (temp1 == number_of_dimms) {
182 debug("no dimms this memory controller\n");
183 return 0;
184 }
185
186 outpdimm->tCKmin_X_ps = tCKmin_X_ps;
187 outpdimm->tCKmax_ps = tCKmax_ps;
188 outpdimm->tCKmax_max_ps = tCKmax_max_ps;
189 outpdimm->tRCD_ps = tRCD_ps;
190 outpdimm->tRP_ps = tRP_ps;
191 outpdimm->tRAS_ps = tRAS_ps;
192 outpdimm->tWR_ps = tWR_ps;
193 outpdimm->tWTR_ps = tWTR_ps;
194 outpdimm->tRFC_ps = tRFC_ps;
195 outpdimm->tRRD_ps = tRRD_ps;
196 outpdimm->tRC_ps = tRC_ps;
197 outpdimm->refresh_rate_ps = refresh_rate_ps;
198 outpdimm->tIS_ps = tIS_ps;
199 outpdimm->tIH_ps = tIH_ps;
200 outpdimm->tDS_ps = tDS_ps;
201 outpdimm->tDH_ps = tDH_ps;
202 outpdimm->tRTP_ps = tRTP_ps;
203 outpdimm->tDQSQ_max_ps = tDQSQ_max_ps;
204 outpdimm->tQHS_ps = tQHS_ps;
205
206 /* Determine common burst length for all DIMMs. */
207 temp1 = 0xff;
208 for (i = 0; i < number_of_dimms; i++) {
209 if (dimm_params[i].n_ranks) {
210 temp1 &= dimm_params[i].burst_lengths_bitmask;
211 }
212 }
213 outpdimm->all_DIMMs_burst_lengths_bitmask = temp1;
214
215 /* Determine if all DIMMs registered buffered. */
216 temp1 = temp2 = 0;
217 for (i = 0; i < number_of_dimms; i++) {
218 if (dimm_params[i].n_ranks) {
c399765d 219 if (dimm_params[i].registered_dimm) {
58e5e9af 220 temp1 = 1;
c399765d
YS
221 printf("Detected RDIMM %s\n",
222 dimm_params[i].mpart);
223 } else {
58e5e9af 224 temp2 = 1;
c399765d
YS
225 printf("Detected UDIMM %s\n",
226 dimm_params[i].mpart);
227 }
58e5e9af
KG
228 }
229 }
230
231 outpdimm->all_DIMMs_registered = 0;
dd127689 232 outpdimm->all_DIMMs_unbuffered = 0;
58e5e9af
KG
233 if (temp1 && !temp2) {
234 outpdimm->all_DIMMs_registered = 1;
dd127689 235 } else if (!temp1 && temp2) {
58e5e9af 236 outpdimm->all_DIMMs_unbuffered = 1;
dd127689 237 } else {
58e5e9af
KG
238 printf("ERROR: Mix of registered buffered and unbuffered "
239 "DIMMs detected!\n");
240 }
241
9490ff48
YS
242 temp1 = 0;
243 if (outpdimm->all_DIMMs_registered)
244 for (j = 0; j < 16; j++) {
245 outpdimm->rcw[j] = dimm_params[0].rcw[j];
123922b1
YS
246 for (i = 1; i < number_of_dimms; i++) {
247 if (!dimm_params[i].n_ranks)
248 continue;
9490ff48 249 if (dimm_params[i].rcw[j] != dimm_params[0].rcw[j]) {
dd127689 250 temp1 = 1;
9490ff48
YS
251 break;
252 }
123922b1 253 }
9490ff48
YS
254 }
255
256 if (temp1 != 0)
257 printf("ERROR: Mix different RDIMM detected!\n");
258
c360ceac
DL
259#if defined(CONFIG_FSL_DDR3)
260 if (compute_cas_latency_ddr3(dimm_params, outpdimm, number_of_dimms))
261 return 1;
262#else
58e5e9af
KG
263 /*
264 * Compute a CAS latency suitable for all DIMMs
265 *
266 * Strategy for SPD-defined latencies: compute only
267 * CAS latency defined by all DIMMs.
268 */
269
270 /*
271 * Step 1: find CAS latency common to all DIMMs using bitwise
272 * operation.
273 */
274 temp1 = 0xFF;
275 for (i = 0; i < number_of_dimms; i++) {
276 if (dimm_params[i].n_ranks) {
277 temp2 = 0;
278 temp2 |= 1 << dimm_params[i].caslat_X;
279 temp2 |= 1 << dimm_params[i].caslat_X_minus_1;
280 temp2 |= 1 << dimm_params[i].caslat_X_minus_2;
281 /*
282 * FIXME: If there was no entry for X-2 (X-1) in
283 * the SPD, then caslat_X_minus_2
284 * (caslat_X_minus_1) contains either 255 or
285 * 0xFFFFFFFF because that's what the glorious
286 * __ilog2 function returns for an input of 0.
287 * On 32-bit PowerPC, left shift counts with bit
288 * 26 set (that the value of 255 or 0xFFFFFFFF
289 * will have), cause the destination register to
290 * be 0. That is why this works.
291 */
292 temp1 &= temp2;
293 }
294 }
295
296 /*
297 * Step 2: check each common CAS latency against tCK of each
298 * DIMM's SPD.
299 */
300 lowest_good_caslat = 0;
301 temp2 = 0;
302 while (temp1) {
303 not_ok = 0;
304 temp2 = __ilog2(temp1);
305 debug("checking common caslat = %u\n", temp2);
306
307 /* Check if this CAS latency will work on all DIMMs at tCK. */
308 for (i = 0; i < number_of_dimms; i++) {
309 if (!dimm_params[i].n_ranks) {
310 continue;
311 }
312 if (dimm_params[i].caslat_X == temp2) {
313 if (mclk_ps >= dimm_params[i].tCKmin_X_ps) {
314 debug("CL = %u ok on DIMM %u at tCK=%u"
315 " ps with its tCKmin_X_ps of %u\n",
316 temp2, i, mclk_ps,
317 dimm_params[i].tCKmin_X_ps);
318 continue;
319 } else {
320 not_ok++;
321 }
322 }
323
324 if (dimm_params[i].caslat_X_minus_1 == temp2) {
325 unsigned int tCKmin_X_minus_1_ps
326 = dimm_params[i].tCKmin_X_minus_1_ps;
327 if (mclk_ps >= tCKmin_X_minus_1_ps) {
328 debug("CL = %u ok on DIMM %u at "
329 "tCK=%u ps with its "
330 "tCKmin_X_minus_1_ps of %u\n",
331 temp2, i, mclk_ps,
332 tCKmin_X_minus_1_ps);
333 continue;
334 } else {
335 not_ok++;
336 }
337 }
338
339 if (dimm_params[i].caslat_X_minus_2 == temp2) {
340 unsigned int tCKmin_X_minus_2_ps
341 = dimm_params[i].tCKmin_X_minus_2_ps;
342 if (mclk_ps >= tCKmin_X_minus_2_ps) {
343 debug("CL = %u ok on DIMM %u at "
344 "tCK=%u ps with its "
345 "tCKmin_X_minus_2_ps of %u\n",
346 temp2, i, mclk_ps,
347 tCKmin_X_minus_2_ps);
348 continue;
349 } else {
350 not_ok++;
351 }
352 }
353 }
354
355 if (!not_ok) {
356 lowest_good_caslat = temp2;
357 }
358
359 temp1 &= ~(1 << temp2);
360 }
361
362 debug("lowest common SPD-defined CAS latency = %u\n",
363 lowest_good_caslat);
364 outpdimm->lowest_common_SPD_caslat = lowest_good_caslat;
365
366
367 /*
368 * Compute a common 'de-rated' CAS latency.
369 *
370 * The strategy here is to find the *highest* dereated cas latency
371 * with the assumption that all of the DIMMs will support a dereated
372 * CAS latency higher than or equal to their lowest dereated value.
373 */
374 temp1 = 0;
375 for (i = 0; i < number_of_dimms; i++) {
376 temp1 = max(temp1, dimm_params[i].caslat_lowest_derated);
377 }
378 outpdimm->highest_common_derated_caslat = temp1;
379 debug("highest common dereated CAS latency = %u\n", temp1);
c360ceac 380#endif /* #if defined(CONFIG_FSL_DDR3) */
58e5e9af
KG
381
382 /* Determine if all DIMMs ECC capable. */
383 temp1 = 1;
384 for (i = 0; i < number_of_dimms; i++) {
08b3f759
YS
385 if (dimm_params[i].n_ranks &&
386 !(dimm_params[i].edc_config & EDC_ECC)) {
58e5e9af
KG
387 temp1 = 0;
388 break;
389 }
390 }
391 if (temp1) {
392 debug("all DIMMs ECC capable\n");
393 } else {
394 debug("Warning: not all DIMMs ECC capable, cant enable ECC\n");
395 }
396 outpdimm->all_DIMMs_ECC_capable = temp1;
397
c360ceac 398#ifndef CONFIG_FSL_DDR3
58e5e9af
KG
399 /* FIXME: move to somewhere else to validate. */
400 if (mclk_ps > tCKmax_max_ps) {
401 printf("Warning: some of the installed DIMMs "
402 "can not operate this slowly.\n");
403 return 1;
404 }
c360ceac 405#endif
58e5e9af
KG
406 /*
407 * Compute additive latency.
408 *
409 * For DDR1, additive latency should be 0.
410 *
411 * For DDR2, with ODT enabled, use "a value" less than ACTTORW,
412 * which comes from Trcd, and also note that:
413 * add_lat + caslat must be >= 4
414 *
c360ceac 415 * For DDR3, we use the AL=0
58e5e9af
KG
416 *
417 * When to use additive latency for DDR2:
418 *
419 * I. Because you are using CL=3 and need to do ODT on writes and
420 * want functionality.
421 * 1. Are you going to use ODT? (Does your board not have
422 * additional termination circuitry for DQ, DQS, DQS_,
423 * DM, RDQS, RDQS_ for x4/x8 configs?)
424 * 2. If so, is your lowest supported CL going to be 3?
425 * 3. If so, then you must set AL=1 because
426 *
427 * WL >= 3 for ODT on writes
428 * RL = AL + CL
429 * WL = RL - 1
430 * ->
431 * WL = AL + CL - 1
432 * AL + CL - 1 >= 3
433 * AL + CL >= 4
434 * QED
435 *
436 * RL >= 3 for ODT on reads
437 * RL = AL + CL
438 *
439 * Since CL aren't usually less than 2, AL=0 is a minimum,
440 * so the WL-derived AL should be the -- FIXME?
441 *
442 * II. Because you are using auto-precharge globally and want to
443 * use additive latency (posted CAS) to get more bandwidth.
444 * 1. Are you going to use auto-precharge mode globally?
445 *
446 * Use addtivie latency and compute AL to be 1 cycle less than
447 * tRCD, i.e. the READ or WRITE command is in the cycle
448 * immediately following the ACTIVATE command..
449 *
450 * III. Because you feel like it or want to do some sort of
451 * degraded-performance experiment.
452 * 1. Do you just want to use additive latency because you feel
453 * like it?
454 *
455 * Validation: AL is less than tRCD, and within the other
456 * read-to-precharge constraints.
457 */
458
459 additive_latency = 0;
460
461#if defined(CONFIG_FSL_DDR2)
462 if (lowest_good_caslat < 4) {
4e57382f
YS
463 additive_latency = (picos_to_mclk(tRCD_ps) > lowest_good_caslat)
464 ? picos_to_mclk(tRCD_ps) - lowest_good_caslat : 0;
58e5e9af
KG
465 if (mclk_to_picos(additive_latency) > tRCD_ps) {
466 additive_latency = picos_to_mclk(tRCD_ps);
467 debug("setting additive_latency to %u because it was "
468 " greater than tRCD_ps\n", additive_latency);
469 }
470 }
471
472#elif defined(CONFIG_FSL_DDR3)
c360ceac
DL
473 /*
474 * The system will not use the global auto-precharge mode.
475 * However, it uses the page mode, so we set AL=0
476 */
477 additive_latency = 0;
58e5e9af
KG
478#endif
479
480 /*
481 * Validate additive latency
482 * FIXME: move to somewhere else to validate
483 *
484 * AL <= tRCD(min)
485 */
486 if (mclk_to_picos(additive_latency) > tRCD_ps) {
487 printf("Error: invalid additive latency exceeds tRCD(min).\n");
488 return 1;
489 }
490
491 /*
492 * RL = CL + AL; RL >= 3 for ODT_RD_CFG to be enabled
493 * WL = RL - 1; WL >= 3 for ODT_WL_CFG to be enabled
494 * ADD_LAT (the register) must be set to a value less
495 * than ACTTORW if WL = 1, then AL must be set to 1
496 * RD_TO_PRE (the register) must be set to a minimum
497 * tRTP + AL if AL is nonzero
498 */
499
500 /*
501 * Additive latency will be applied only if the memctl option to
502 * use it.
503 */
504 outpdimm->additive_latency = additive_latency;
505
45064adc
YS
506 debug("tCKmin_ps = %u\n", outpdimm->tCKmin_X_ps);
507 debug("tRCD_ps = %u\n", outpdimm->tRCD_ps);
508 debug("tRP_ps = %u\n", outpdimm->tRP_ps);
509 debug("tRAS_ps = %u\n", outpdimm->tRAS_ps);
510 debug("tWR_ps = %u\n", outpdimm->tWR_ps);
511 debug("tWTR_ps = %u\n", outpdimm->tWTR_ps);
512 debug("tRFC_ps = %u\n", outpdimm->tRFC_ps);
513 debug("tRRD_ps = %u\n", outpdimm->tRRD_ps);
514 debug("tRC_ps = %u\n", outpdimm->tRC_ps);
515
58e5e9af
KG
516 return 0;
517}