]> git.ipfire.org Git - thirdparty/linux.git/blame - arch/powerpc/kvm/book3s_64_mmu_radix.c
Merge tag 'riscv-for-linus-5.7-rc4' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/linux.git] / arch / powerpc / kvm / book3s_64_mmu_radix.c
CommitLineData
d2912cb1 1// SPDX-License-Identifier: GPL-2.0-only
9e04ba69 2/*
9e04ba69
PM
3 *
4 * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5 */
6
7#include <linux/types.h>
8#include <linux/string.h>
9#include <linux/kvm.h>
10#include <linux/kvm_host.h>
9a94d3ee
PM
11#include <linux/anon_inodes.h>
12#include <linux/file.h>
13#include <linux/debugfs.h>
9e04ba69
PM
14
15#include <asm/kvm_ppc.h>
16#include <asm/kvm_book3s.h>
17#include <asm/page.h>
18#include <asm/mmu.h>
19#include <asm/pgtable.h>
20#include <asm/pgalloc.h>
94171b19 21#include <asm/pte-walk.h>
008e359c
BR
22#include <asm/ultravisor.h>
23#include <asm/kvm_book3s_uvmem.h>
9e04ba69
PM
24
25/*
26 * Supported radix tree geometry.
27 * Like p9, we support either 5 or 9 bits at the first (lowest) level,
28 * for a page size of 64k or 4k.
29 */
30static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
31
6ff887b8
SJS
32unsigned long __kvmhv_copy_tofrom_guest_radix(int lpid, int pid,
33 gva_t eaddr, void *to, void *from,
34 unsigned long n)
d7b45615 35{
f4607722 36 int uninitialized_var(old_pid), old_lpid;
d7b45615 37 unsigned long quadrant, ret = n;
d7b45615
SJS
38 bool is_load = !!to;
39
95d386c2
SJS
40 /* Can't access quadrants 1 or 2 in non-HV mode, call the HV to do it */
41 if (kvmhv_on_pseries())
42 return plpar_hcall_norets(H_COPY_TOFROM_GUEST, lpid, pid, eaddr,
43 __pa(to), __pa(from), n);
d7b45615
SJS
44
45 quadrant = 1;
46 if (!pid)
47 quadrant = 2;
48 if (is_load)
49 from = (void *) (eaddr | (quadrant << 62));
50 else
51 to = (void *) (eaddr | (quadrant << 62));
52
53 preempt_disable();
54
55 /* switch the lpid first to avoid running host with unallocated pid */
56 old_lpid = mfspr(SPRN_LPID);
57 if (old_lpid != lpid)
58 mtspr(SPRN_LPID, lpid);
59 if (quadrant == 1) {
60 old_pid = mfspr(SPRN_PID);
61 if (old_pid != pid)
62 mtspr(SPRN_PID, pid);
63 }
64 isync();
65
d7b45615 66 if (is_load)
def0bfdb 67 ret = probe_user_read(to, (const void __user *)from, n);
d7b45615 68 else
def0bfdb 69 ret = probe_user_write((void __user *)to, from, n);
d7b45615
SJS
70
71 /* switch the pid first to avoid running host with unallocated pid */
72 if (quadrant == 1 && pid != old_pid)
73 mtspr(SPRN_PID, old_pid);
74 if (lpid != old_lpid)
75 mtspr(SPRN_LPID, old_lpid);
76 isync();
77
78 preempt_enable();
79
80 return ret;
81}
6ff887b8 82EXPORT_SYMBOL_GPL(__kvmhv_copy_tofrom_guest_radix);
d7b45615
SJS
83
84static long kvmhv_copy_tofrom_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr,
85 void *to, void *from, unsigned long n)
86{
87 int lpid = vcpu->kvm->arch.lpid;
88 int pid = vcpu->arch.pid;
89
90 /* This would cause a data segment intr so don't allow the access */
91 if (eaddr & (0x3FFUL << 52))
92 return -EINVAL;
93
94 /* Should we be using the nested lpid */
95 if (vcpu->arch.nested)
96 lpid = vcpu->arch.nested->shadow_lpid;
97
98 /* If accessing quadrant 3 then pid is expected to be 0 */
99 if (((eaddr >> 62) & 0x3) == 0x3)
100 pid = 0;
101
102 eaddr &= ~(0xFFFUL << 52);
103
104 return __kvmhv_copy_tofrom_guest_radix(lpid, pid, eaddr, to, from, n);
105}
106
107long kvmhv_copy_from_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *to,
108 unsigned long n)
109{
110 long ret;
111
112 ret = kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, to, NULL, n);
113 if (ret > 0)
114 memset(to + (n - ret), 0, ret);
115
116 return ret;
117}
118EXPORT_SYMBOL_GPL(kvmhv_copy_from_guest_radix);
119
120long kvmhv_copy_to_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *from,
121 unsigned long n)
122{
123 return kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, NULL, from, n);
124}
125EXPORT_SYMBOL_GPL(kvmhv_copy_to_guest_radix);
126
fd10be25
SJS
127int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr,
128 struct kvmppc_pte *gpte, u64 root,
129 u64 *pte_ret_p)
9e04ba69
PM
130{
131 struct kvm *kvm = vcpu->kvm;
9e04ba69 132 int ret, level, ps;
fd10be25 133 unsigned long rts, bits, offset, index;
9811c78e
SJS
134 u64 pte, base, gpa;
135 __be64 rpte;
9e04ba69 136
9e04ba69
PM
137 rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
138 ((root & RTS2_MASK) >> RTS2_SHIFT);
139 bits = root & RPDS_MASK;
9811c78e 140 base = root & RPDB_MASK;
9e04ba69 141
9e04ba69 142 offset = rts + 31;
9e04ba69 143
9811c78e 144 /* Current implementations only support 52-bit space */
9e04ba69
PM
145 if (offset != 52)
146 return -EINVAL;
147
9811c78e 148 /* Walk each level of the radix tree */
9e04ba69 149 for (level = 3; level >= 0; --level) {
fd10be25 150 u64 addr;
9811c78e 151 /* Check a valid size */
9e04ba69
PM
152 if (level && bits != p9_supported_radix_bits[level])
153 return -EINVAL;
154 if (level == 0 && !(bits == 5 || bits == 9))
155 return -EINVAL;
156 offset -= bits;
157 index = (eaddr >> offset) & ((1UL << bits) - 1);
9811c78e
SJS
158 /* Check that low bits of page table base are zero */
159 if (base & ((1UL << (bits + 3)) - 1))
9e04ba69 160 return -EINVAL;
9811c78e 161 /* Read the entry from guest memory */
fd10be25
SJS
162 addr = base + (index * sizeof(rpte));
163 ret = kvm_read_guest(kvm, addr, &rpte, sizeof(rpte));
164 if (ret) {
165 if (pte_ret_p)
166 *pte_ret_p = addr;
9e04ba69 167 return ret;
fd10be25 168 }
9e04ba69
PM
169 pte = __be64_to_cpu(rpte);
170 if (!(pte & _PAGE_PRESENT))
171 return -ENOENT;
9811c78e 172 /* Check if a leaf entry */
9e04ba69
PM
173 if (pte & _PAGE_PTE)
174 break;
9811c78e
SJS
175 /* Get ready to walk the next level */
176 base = pte & RPDB_MASK;
177 bits = pte & RPDS_MASK;
9e04ba69 178 }
9811c78e
SJS
179
180 /* Need a leaf at lowest level; 512GB pages not supported */
9e04ba69
PM
181 if (level < 0 || level == 3)
182 return -EINVAL;
183
9811c78e
SJS
184 /* We found a valid leaf PTE */
185 /* Offset is now log base 2 of the page size */
9e04ba69
PM
186 gpa = pte & 0x01fffffffffff000ul;
187 if (gpa & ((1ul << offset) - 1))
188 return -EINVAL;
9811c78e 189 gpa |= eaddr & ((1ul << offset) - 1);
9e04ba69
PM
190 for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
191 if (offset == mmu_psize_defs[ps].shift)
192 break;
193 gpte->page_size = ps;
fd10be25 194 gpte->page_shift = offset;
9e04ba69
PM
195
196 gpte->eaddr = eaddr;
197 gpte->raddr = gpa;
198
199 /* Work out permissions */
200 gpte->may_read = !!(pte & _PAGE_READ);
201 gpte->may_write = !!(pte & _PAGE_WRITE);
202 gpte->may_execute = !!(pte & _PAGE_EXEC);
9811c78e 203
fd10be25
SJS
204 gpte->rc = pte & (_PAGE_ACCESSED | _PAGE_DIRTY);
205
9811c78e
SJS
206 if (pte_ret_p)
207 *pte_ret_p = pte;
208
209 return 0;
210}
211
fd10be25
SJS
212/*
213 * Used to walk a partition or process table radix tree in guest memory
214 * Note: We exploit the fact that a partition table and a process
215 * table have the same layout, a partition-scoped page table and a
216 * process-scoped page table have the same layout, and the 2nd
217 * doubleword of a partition table entry has the same layout as
218 * the PTCR register.
219 */
220int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr,
221 struct kvmppc_pte *gpte, u64 table,
222 int table_index, u64 *pte_ret_p)
223{
224 struct kvm *kvm = vcpu->kvm;
225 int ret;
226 unsigned long size, ptbl, root;
227 struct prtb_entry entry;
228
229 if ((table & PRTS_MASK) > 24)
230 return -EINVAL;
231 size = 1ul << ((table & PRTS_MASK) + 12);
232
233 /* Is the table big enough to contain this entry? */
234 if ((table_index * sizeof(entry)) >= size)
235 return -EINVAL;
236
237 /* Read the table to find the root of the radix tree */
238 ptbl = (table & PRTB_MASK) + (table_index * sizeof(entry));
239 ret = kvm_read_guest(kvm, ptbl, &entry, sizeof(entry));
240 if (ret)
241 return ret;
242
243 /* Root is stored in the first double word */
244 root = be64_to_cpu(entry.prtb0);
245
246 return kvmppc_mmu_walk_radix_tree(vcpu, eaddr, gpte, root, pte_ret_p);
247}
248
9811c78e
SJS
249int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
250 struct kvmppc_pte *gpte, bool data, bool iswrite)
251{
252 u32 pid;
253 u64 pte;
254 int ret;
255
256 /* Work out effective PID */
257 switch (eaddr >> 62) {
258 case 0:
259 pid = vcpu->arch.pid;
260 break;
261 case 3:
262 pid = 0;
263 break;
264 default:
265 return -EINVAL;
266 }
267
268 ret = kvmppc_mmu_radix_translate_table(vcpu, eaddr, gpte,
269 vcpu->kvm->arch.process_table, pid, &pte);
270 if (ret)
271 return ret;
272
273 /* Check privilege (applies only to process scoped translations) */
9e04ba69
PM
274 if (kvmppc_get_msr(vcpu) & MSR_PR) {
275 if (pte & _PAGE_PRIVILEGED) {
276 gpte->may_read = 0;
277 gpte->may_write = 0;
278 gpte->may_execute = 0;
279 }
280 } else {
281 if (!(pte & _PAGE_PRIVILEGED)) {
282 /* Check AMR/IAMR to see if strict mode is in force */
283 if (vcpu->arch.amr & (1ul << 62))
284 gpte->may_read = 0;
285 if (vcpu->arch.amr & (1ul << 63))
286 gpte->may_write = 0;
287 if (vcpu->arch.iamr & (1ul << 62))
288 gpte->may_execute = 0;
289 }
290 }
291
292 return 0;
293}
294
90165d3d
SJS
295void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
296 unsigned int pshift, unsigned int lpid)
5a319350 297{
d91cb39f 298 unsigned long psize = PAGE_SIZE;
690ed4ca
PM
299 int psi;
300 long rc;
301 unsigned long rb;
d91cb39f
NP
302
303 if (pshift)
304 psize = 1UL << pshift;
690ed4ca
PM
305 else
306 pshift = PAGE_SHIFT;
d91cb39f
NP
307
308 addr &= ~(psize - 1);
690ed4ca
PM
309
310 if (!kvmhv_on_pseries()) {
311 radix__flush_tlb_lpid_page(lpid, addr, psize);
312 return;
313 }
314
315 psi = shift_to_mmu_psize(pshift);
316 rb = addr | (mmu_get_ap(psi) << PPC_BITLSHIFT(58));
317 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(0, 0, 1),
318 lpid, rb);
319 if (rc)
320 pr_err("KVM: TLB page invalidation hcall failed, rc=%ld\n", rc);
5a319350
PM
321}
322
fd10be25 323static void kvmppc_radix_flush_pwc(struct kvm *kvm, unsigned int lpid)
c4c8a764 324{
690ed4ca
PM
325 long rc;
326
327 if (!kvmhv_on_pseries()) {
328 radix__flush_pwc_lpid(lpid);
329 return;
330 }
331
332 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(1, 0, 1),
333 lpid, TLBIEL_INVAL_SET_LPID);
334 if (rc)
335 pr_err("KVM: TLB PWC invalidation hcall failed, rc=%ld\n", rc);
c4c8a764
PM
336}
337
878cf2bb 338static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
8f7b79b8
PM
339 unsigned long clr, unsigned long set,
340 unsigned long addr, unsigned int shift)
5a319350 341{
2bf1071a 342 return __radix_pte_update(ptep, clr, set);
5a319350
PM
343}
344
345void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr,
346 pte_t *ptep, pte_t pte)
347{
348 radix__set_pte_at(kvm->mm, addr, ptep, pte, 0);
349}
350
351static struct kmem_cache *kvm_pte_cache;
21828c99 352static struct kmem_cache *kvm_pmd_cache;
5a319350
PM
353
354static pte_t *kvmppc_pte_alloc(void)
355{
356 return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL);
357}
358
359static void kvmppc_pte_free(pte_t *ptep)
360{
361 kmem_cache_free(kvm_pte_cache, ptep);
362}
363
21828c99
AK
364static pmd_t *kvmppc_pmd_alloc(void)
365{
366 return kmem_cache_alloc(kvm_pmd_cache, GFP_KERNEL);
367}
368
369static void kvmppc_pmd_free(pmd_t *pmdp)
370{
371 kmem_cache_free(kvm_pmd_cache, pmdp);
372}
373
8cf531ed
SJS
374/* Called with kvm->mmu_lock held */
375void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa,
c43c3a86
PM
376 unsigned int shift,
377 const struct kvm_memory_slot *memslot,
fd10be25 378 unsigned int lpid)
a5fad1e9
NP
379
380{
a5fad1e9 381 unsigned long old;
8cf531ed
SJS
382 unsigned long gfn = gpa >> PAGE_SHIFT;
383 unsigned long page_size = PAGE_SIZE;
384 unsigned long hpa;
a5fad1e9
NP
385
386 old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift);
fd10be25 387 kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
a5fad1e9 388
8cf531ed
SJS
389 /* The following only applies to L1 entries */
390 if (lpid != kvm->arch.lpid)
391 return;
a5fad1e9 392
8cf531ed 393 if (!memslot) {
a5fad1e9 394 memslot = gfn_to_memslot(kvm, gfn);
f0f825f0 395 if (!memslot)
8cf531ed 396 return;
a5fad1e9 397 }
8f1f7b9b 398 if (shift) { /* 1GB or 2MB page */
8cf531ed 399 page_size = 1ul << shift;
8f1f7b9b
SJS
400 if (shift == PMD_SHIFT)
401 kvm->stat.num_2M_pages--;
402 else if (shift == PUD_SHIFT)
403 kvm->stat.num_1G_pages--;
404 }
8cf531ed
SJS
405
406 gpa &= ~(page_size - 1);
407 hpa = old & PTE_RPN_MASK;
408 kvmhv_remove_nest_rmap_range(kvm, memslot, gpa, hpa, page_size);
409
410 if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap)
411 kvmppc_update_dirty_map(memslot, gfn, page_size);
a5fad1e9
NP
412}
413
a5704e83
NP
414/*
415 * kvmppc_free_p?d are used to free existing page tables, and recursively
416 * descend and clear and free children.
417 * Callers are responsible for flushing the PWC.
418 *
419 * When page tables are being unmapped/freed as part of page fault path
420 * (full == false), ptes are not expected. There is code to unmap them
421 * and emit a warning if encountered, but there may already be data
422 * corruption due to the unexpected mappings.
423 */
fd10be25
SJS
424static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full,
425 unsigned int lpid)
a5704e83
NP
426{
427 if (full) {
afd31356 428 memset(pte, 0, sizeof(long) << RADIX_PTE_INDEX_SIZE);
a5704e83
NP
429 } else {
430 pte_t *p = pte;
431 unsigned long it;
432
433 for (it = 0; it < PTRS_PER_PTE; ++it, ++p) {
434 if (pte_val(*p) == 0)
435 continue;
436 WARN_ON_ONCE(1);
437 kvmppc_unmap_pte(kvm, p,
438 pte_pfn(*p) << PAGE_SHIFT,
fd10be25 439 PAGE_SHIFT, NULL, lpid);
a5704e83
NP
440 }
441 }
442
443 kvmppc_pte_free(pte);
444}
445
fd10be25
SJS
446static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full,
447 unsigned int lpid)
a5704e83
NP
448{
449 unsigned long im;
450 pmd_t *p = pmd;
451
452 for (im = 0; im < PTRS_PER_PMD; ++im, ++p) {
453 if (!pmd_present(*p))
454 continue;
455 if (pmd_is_leaf(*p)) {
456 if (full) {
457 pmd_clear(p);
458 } else {
459 WARN_ON_ONCE(1);
460 kvmppc_unmap_pte(kvm, (pte_t *)p,
461 pte_pfn(*(pte_t *)p) << PAGE_SHIFT,
fd10be25 462 PMD_SHIFT, NULL, lpid);
a5704e83
NP
463 }
464 } else {
465 pte_t *pte;
466
467 pte = pte_offset_map(p, 0);
fd10be25 468 kvmppc_unmap_free_pte(kvm, pte, full, lpid);
a5704e83
NP
469 pmd_clear(p);
470 }
471 }
472 kvmppc_pmd_free(pmd);
473}
474
fd10be25
SJS
475static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud,
476 unsigned int lpid)
a5704e83
NP
477{
478 unsigned long iu;
479 pud_t *p = pud;
480
481 for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++p) {
482 if (!pud_present(*p))
483 continue;
d6eacedd 484 if (pud_is_leaf(*p)) {
a5704e83
NP
485 pud_clear(p);
486 } else {
487 pmd_t *pmd;
488
489 pmd = pmd_offset(p, 0);
fd10be25 490 kvmppc_unmap_free_pmd(kvm, pmd, true, lpid);
a5704e83
NP
491 pud_clear(p);
492 }
493 }
494 pud_free(kvm->mm, pud);
495}
496
fd10be25 497void kvmppc_free_pgtable_radix(struct kvm *kvm, pgd_t *pgd, unsigned int lpid)
a5704e83
NP
498{
499 unsigned long ig;
a5704e83 500
a5704e83
NP
501 for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
502 pud_t *pud;
503
504 if (!pgd_present(*pgd))
505 continue;
506 pud = pud_offset(pgd, 0);
fd10be25 507 kvmppc_unmap_free_pud(kvm, pud, lpid);
a5704e83
NP
508 pgd_clear(pgd);
509 }
fd10be25
SJS
510}
511
512void kvmppc_free_radix(struct kvm *kvm)
513{
514 if (kvm->arch.pgtable) {
515 kvmppc_free_pgtable_radix(kvm, kvm->arch.pgtable,
516 kvm->arch.lpid);
517 pgd_free(kvm->mm, kvm->arch.pgtable);
518 kvm->arch.pgtable = NULL;
519 }
a5704e83
NP
520}
521
522static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd,
fd10be25 523 unsigned long gpa, unsigned int lpid)
a5704e83
NP
524{
525 pte_t *pte = pte_offset_kernel(pmd, 0);
526
527 /*
528 * Clearing the pmd entry then flushing the PWC ensures that the pte
529 * page no longer be cached by the MMU, so can be freed without
530 * flushing the PWC again.
531 */
532 pmd_clear(pmd);
fd10be25 533 kvmppc_radix_flush_pwc(kvm, lpid);
a5704e83 534
fd10be25 535 kvmppc_unmap_free_pte(kvm, pte, false, lpid);
a5704e83
NP
536}
537
538static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud,
fd10be25 539 unsigned long gpa, unsigned int lpid)
a5704e83
NP
540{
541 pmd_t *pmd = pmd_offset(pud, 0);
542
543 /*
544 * Clearing the pud entry then flushing the PWC ensures that the pmd
545 * page and any children pte pages will no longer be cached by the MMU,
546 * so can be freed without flushing the PWC again.
547 */
548 pud_clear(pud);
fd10be25 549 kvmppc_radix_flush_pwc(kvm, lpid);
a5704e83 550
fd10be25 551 kvmppc_unmap_free_pmd(kvm, pmd, false, lpid);
a5704e83
NP
552}
553
878cf2bb
NP
554/*
555 * There are a number of bits which may differ between different faults to
556 * the same partition scope entry. RC bits, in the course of cleaning and
557 * aging. And the write bit can change, either the access could have been
558 * upgraded, or a read fault could happen concurrently with a write fault
559 * that sets those bits first.
560 */
561#define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED))
562
fd10be25
SJS
563int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
564 unsigned long gpa, unsigned int level,
8cf531ed
SJS
565 unsigned long mmu_seq, unsigned int lpid,
566 unsigned long *rmapp, struct rmap_nested **n_rmap)
5a319350
PM
567{
568 pgd_t *pgd;
569 pud_t *pud, *new_pud = NULL;
570 pmd_t *pmd, *new_pmd = NULL;
571 pte_t *ptep, *new_ptep = NULL;
572 int ret;
573
574 /* Traverse the guest's 2nd-level tree, allocate new levels needed */
04bae9d5 575 pgd = pgtable + pgd_index(gpa);
5a319350
PM
576 pud = NULL;
577 if (pgd_present(*pgd))
578 pud = pud_offset(pgd, gpa);
579 else
580 new_pud = pud_alloc_one(kvm->mm, gpa);
581
582 pmd = NULL;
d6eacedd 583 if (pud && pud_present(*pud) && !pud_is_leaf(*pud))
5a319350 584 pmd = pmd_offset(pud, gpa);
58c5c276 585 else if (level <= 1)
21828c99 586 new_pmd = kvmppc_pmd_alloc();
5a319350 587
c3856aeb 588 if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd)))
5a319350
PM
589 new_ptep = kvmppc_pte_alloc();
590
591 /* Check if we might have been invalidated; let the guest retry if so */
592 spin_lock(&kvm->mmu_lock);
593 ret = -EAGAIN;
594 if (mmu_notifier_retry(kvm, mmu_seq))
595 goto out_unlock;
596
597 /* Now traverse again under the lock and change the tree */
598 ret = -ENOMEM;
599 if (pgd_none(*pgd)) {
600 if (!new_pud)
601 goto out_unlock;
602 pgd_populate(kvm->mm, pgd, new_pud);
603 new_pud = NULL;
604 }
605 pud = pud_offset(pgd, gpa);
d6eacedd 606 if (pud_is_leaf(*pud)) {
58c5c276
PM
607 unsigned long hgpa = gpa & PUD_MASK;
608
878cf2bb
NP
609 /* Check if we raced and someone else has set the same thing */
610 if (level == 2) {
611 if (pud_raw(*pud) == pte_raw(pte)) {
612 ret = 0;
613 goto out_unlock;
614 }
615 /* Valid 1GB page here already, add our extra bits */
616 WARN_ON_ONCE((pud_val(*pud) ^ pte_val(pte)) &
617 PTE_BITS_MUST_MATCH);
618 kvmppc_radix_update_pte(kvm, (pte_t *)pud,
619 0, pte_val(pte), hgpa, PUD_SHIFT);
620 ret = 0;
621 goto out_unlock;
622 }
58c5c276
PM
623 /*
624 * If we raced with another CPU which has just put
625 * a 1GB pte in after we saw a pmd page, try again.
626 */
878cf2bb 627 if (!new_pmd) {
58c5c276
PM
628 ret = -EAGAIN;
629 goto out_unlock;
630 }
58c5c276 631 /* Valid 1GB page here already, remove it */
fd10be25
SJS
632 kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT, NULL,
633 lpid);
58c5c276
PM
634 }
635 if (level == 2) {
636 if (!pud_none(*pud)) {
637 /*
638 * There's a page table page here, but we wanted to
639 * install a large page, so remove and free the page
a5704e83 640 * table page.
58c5c276 641 */
fd10be25 642 kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa, lpid);
58c5c276
PM
643 }
644 kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte);
8cf531ed
SJS
645 if (rmapp && n_rmap)
646 kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
58c5c276
PM
647 ret = 0;
648 goto out_unlock;
649 }
5a319350
PM
650 if (pud_none(*pud)) {
651 if (!new_pmd)
652 goto out_unlock;
653 pud_populate(kvm->mm, pud, new_pmd);
654 new_pmd = NULL;
655 }
656 pmd = pmd_offset(pud, gpa);
c3856aeb
PM
657 if (pmd_is_leaf(*pmd)) {
658 unsigned long lgpa = gpa & PMD_MASK;
659
878cf2bb
NP
660 /* Check if we raced and someone else has set the same thing */
661 if (level == 1) {
662 if (pmd_raw(*pmd) == pte_raw(pte)) {
663 ret = 0;
664 goto out_unlock;
665 }
666 /* Valid 2MB page here already, add our extra bits */
667 WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) &
668 PTE_BITS_MUST_MATCH);
669 kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd),
fd10be25 670 0, pte_val(pte), lgpa, PMD_SHIFT);
878cf2bb
NP
671 ret = 0;
672 goto out_unlock;
673 }
674
c3856aeb
PM
675 /*
676 * If we raced with another CPU which has just put
677 * a 2MB pte in after we saw a pte page, try again.
678 */
878cf2bb 679 if (!new_ptep) {
c3856aeb
PM
680 ret = -EAGAIN;
681 goto out_unlock;
682 }
683 /* Valid 2MB page here already, remove it */
fd10be25
SJS
684 kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT, NULL,
685 lpid);
5a319350 686 }
58c5c276
PM
687 if (level == 1) {
688 if (!pmd_none(*pmd)) {
689 /*
690 * There's a page table page here, but we wanted to
691 * install a large page, so remove and free the page
a5704e83 692 * table page.
58c5c276 693 */
fd10be25 694 kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa, lpid);
5a319350 695 }
5a319350 696 kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
8cf531ed
SJS
697 if (rmapp && n_rmap)
698 kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
58c5c276
PM
699 ret = 0;
700 goto out_unlock;
5a319350 701 }
58c5c276
PM
702 if (pmd_none(*pmd)) {
703 if (!new_ptep)
704 goto out_unlock;
705 pmd_populate(kvm->mm, pmd, new_ptep);
706 new_ptep = NULL;
707 }
708 ptep = pte_offset_kernel(pmd, gpa);
709 if (pte_present(*ptep)) {
710 /* Check if someone else set the same thing */
711 if (pte_raw(*ptep) == pte_raw(pte)) {
712 ret = 0;
713 goto out_unlock;
714 }
878cf2bb
NP
715 /* Valid page here already, add our extra bits */
716 WARN_ON_ONCE((pte_val(*ptep) ^ pte_val(pte)) &
717 PTE_BITS_MUST_MATCH);
718 kvmppc_radix_update_pte(kvm, ptep, 0, pte_val(pte), gpa, 0);
719 ret = 0;
720 goto out_unlock;
5a319350 721 }
58c5c276 722 kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
8cf531ed
SJS
723 if (rmapp && n_rmap)
724 kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
5a319350
PM
725 ret = 0;
726
727 out_unlock:
728 spin_unlock(&kvm->mmu_lock);
729 if (new_pud)
730 pud_free(kvm->mm, new_pud);
731 if (new_pmd)
21828c99 732 kvmppc_pmd_free(new_pmd);
5a319350
PM
733 if (new_ptep)
734 kvmppc_pte_free(new_ptep);
735 return ret;
736}
737
fd10be25
SJS
738bool kvmppc_hv_handle_set_rc(struct kvm *kvm, pgd_t *pgtable, bool writing,
739 unsigned long gpa, unsigned int lpid)
04bae9d5
SJS
740{
741 unsigned long pgflags;
742 unsigned int shift;
743 pte_t *ptep;
744
745 /*
746 * Need to set an R or C bit in the 2nd-level tables;
747 * since we are just helping out the hardware here,
748 * it is sufficient to do what the hardware does.
749 */
750 pgflags = _PAGE_ACCESSED;
751 if (writing)
752 pgflags |= _PAGE_DIRTY;
753 /*
754 * We are walking the secondary (partition-scoped) page table here.
755 * We can do this without disabling irq because the Linux MM
756 * subsystem doesn't do THP splits and collapses on this tree.
757 */
758 ptep = __find_linux_pte(pgtable, gpa, NULL, &shift);
759 if (ptep && pte_present(*ptep) && (!writing || pte_write(*ptep))) {
760 kvmppc_radix_update_pte(kvm, ptep, 0, pgflags, gpa, shift);
761 return true;
762 }
763 return false;
764}
765
fd10be25
SJS
766int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu,
767 unsigned long gpa,
768 struct kvm_memory_slot *memslot,
769 bool writing, bool kvm_ro,
770 pte_t *inserted_pte, unsigned int *levelp)
5a319350
PM
771{
772 struct kvm *kvm = vcpu->kvm;
31c8b0d0 773 struct page *page = NULL;
04bae9d5
SJS
774 unsigned long mmu_seq;
775 unsigned long hva, gfn = gpa >> PAGE_SHIFT;
31c8b0d0
PM
776 bool upgrade_write = false;
777 bool *upgrade_p = &upgrade_write;
5a319350 778 pte_t pte, *ptep;
5a319350 779 unsigned int shift, level;
04bae9d5 780 int ret;
f460f679 781 bool large_enable;
5a319350 782
31c8b0d0
PM
783 /* used to check for invalidations in progress */
784 mmu_seq = kvm->mmu_notifier_seq;
785 smp_rmb();
786
787 /*
788 * Do a fast check first, since __gfn_to_pfn_memslot doesn't
789 * do it with !atomic && !async, which is how we call it.
790 * We always ask for write permission since the common case
791 * is that the page is writable.
792 */
793 hva = gfn_to_hva_memslot(memslot, gfn);
04bae9d5 794 if (!kvm_ro && __get_user_pages_fast(hva, 1, 1, &page) == 1) {
31c8b0d0
PM
795 upgrade_write = true;
796 } else {
71d29f43
NP
797 unsigned long pfn;
798
31c8b0d0
PM
799 /* Call KVM generic code to do the slow-path check */
800 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
801 writing, upgrade_p);
802 if (is_error_noslot_pfn(pfn))
803 return -EFAULT;
804 page = NULL;
805 if (pfn_valid(pfn)) {
806 page = pfn_to_page(pfn);
807 if (PageReserved(page))
808 page = NULL;
5a319350 809 }
31c8b0d0
PM
810 }
811
5a319350 812 /*
71d29f43
NP
813 * Read the PTE from the process' radix tree and use that
814 * so we get the shift and attribute bits.
5a319350 815 */
71d29f43
NP
816 local_irq_disable();
817 ptep = __find_linux_pte(vcpu->arch.pgdir, hva, NULL, &shift);
ae49deda
PM
818 pte = __pte(0);
819 if (ptep)
820 pte = *ptep;
821 local_irq_enable();
6579804c
PM
822 /*
823 * If the PTE disappeared temporarily due to a THP
824 * collapse, just return and let the guest try again.
825 */
ae49deda 826 if (!pte_present(pte)) {
6579804c
PM
827 if (page)
828 put_page(page);
829 return RESUME_GUEST;
830 }
71d29f43 831
f460f679
PM
832 /* If we're logging dirty pages, always map single pages */
833 large_enable = !(memslot->flags & KVM_MEM_LOG_DIRTY_PAGES);
834
71d29f43 835 /* Get pte level from shift/size */
f460f679 836 if (large_enable && shift == PUD_SHIFT &&
71d29f43
NP
837 (gpa & (PUD_SIZE - PAGE_SIZE)) ==
838 (hva & (PUD_SIZE - PAGE_SIZE))) {
839 level = 2;
f460f679 840 } else if (large_enable && shift == PMD_SHIFT &&
71d29f43
NP
841 (gpa & (PMD_SIZE - PAGE_SIZE)) ==
842 (hva & (PMD_SIZE - PAGE_SIZE))) {
843 level = 1;
31c8b0d0 844 } else {
71d29f43
NP
845 level = 0;
846 if (shift > PAGE_SHIFT) {
847 /*
848 * If the pte maps more than one page, bring over
849 * bits from the virtual address to get the real
850 * address of the specific single page we want.
851 */
852 unsigned long rpnmask = (1ul << shift) - PAGE_SIZE;
853 pte = __pte(pte_val(pte) | (hva & rpnmask));
bc64dd0e 854 }
5a319350 855 }
5a319350 856
71d29f43
NP
857 pte = __pte(pte_val(pte) | _PAGE_EXEC | _PAGE_ACCESSED);
858 if (writing || upgrade_write) {
859 if (pte_val(pte) & _PAGE_WRITE)
860 pte = __pte(pte_val(pte) | _PAGE_DIRTY);
861 } else {
862 pte = __pte(pte_val(pte) & ~(_PAGE_WRITE | _PAGE_DIRTY));
863 }
864
5a319350 865 /* Allocate space in the tree and write the PTE */
04bae9d5 866 ret = kvmppc_create_pte(kvm, kvm->arch.pgtable, pte, gpa, level,
8cf531ed 867 mmu_seq, kvm->arch.lpid, NULL, NULL);
04bae9d5
SJS
868 if (inserted_pte)
869 *inserted_pte = pte;
870 if (levelp)
871 *levelp = level;
5a319350
PM
872
873 if (page) {
31c8b0d0 874 if (!ret && (pte_val(pte) & _PAGE_WRITE))
c3856aeb
PM
875 set_page_dirty_lock(page);
876 put_page(page);
5a319350 877 }
c3856aeb 878
8f1f7b9b
SJS
879 /* Increment number of large pages if we (successfully) inserted one */
880 if (!ret) {
881 if (level == 1)
882 kvm->stat.num_2M_pages++;
883 else if (level == 2)
884 kvm->stat.num_1G_pages++;
885 }
886
04bae9d5
SJS
887 return ret;
888}
889
890int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
891 unsigned long ea, unsigned long dsisr)
892{
893 struct kvm *kvm = vcpu->kvm;
894 unsigned long gpa, gfn;
895 struct kvm_memory_slot *memslot;
896 long ret;
897 bool writing = !!(dsisr & DSISR_ISSTORE);
898 bool kvm_ro = false;
899
900 /* Check for unusual errors */
901 if (dsisr & DSISR_UNSUPP_MMU) {
902 pr_err("KVM: Got unsupported MMU fault\n");
903 return -EFAULT;
904 }
905 if (dsisr & DSISR_BADACCESS) {
906 /* Reflect to the guest as DSI */
907 pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
908 kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
909 return RESUME_GUEST;
910 }
911
912 /* Translate the logical address */
913 gpa = vcpu->arch.fault_gpa & ~0xfffUL;
914 gpa &= ~0xF000000000000000ul;
915 gfn = gpa >> PAGE_SHIFT;
916 if (!(dsisr & DSISR_PRTABLE_FAULT))
917 gpa |= ea & 0xfff;
918
008e359c
BR
919 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
920 return kvmppc_send_page_to_uv(kvm, gfn);
921
04bae9d5
SJS
922 /* Get the corresponding memslot */
923 memslot = gfn_to_memslot(kvm, gfn);
924
925 /* No memslot means it's an emulated MMIO region */
926 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
927 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS |
928 DSISR_SET_RC)) {
929 /*
930 * Bad address in guest page table tree, or other
931 * unusual error - reflect it to the guest as DSI.
932 */
933 kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
934 return RESUME_GUEST;
935 }
936 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, writing);
937 }
938
939 if (memslot->flags & KVM_MEM_READONLY) {
940 if (writing) {
941 /* give the guest a DSI */
942 kvmppc_core_queue_data_storage(vcpu, ea, DSISR_ISSTORE |
943 DSISR_PROTFAULT);
944 return RESUME_GUEST;
945 }
946 kvm_ro = true;
947 }
948
949 /* Failed to set the reference/change bits */
950 if (dsisr & DSISR_SET_RC) {
951 spin_lock(&kvm->mmu_lock);
952 if (kvmppc_hv_handle_set_rc(kvm, kvm->arch.pgtable,
fd10be25 953 writing, gpa, kvm->arch.lpid))
04bae9d5
SJS
954 dsisr &= ~DSISR_SET_RC;
955 spin_unlock(&kvm->mmu_lock);
956
957 if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
958 DSISR_PROTFAULT | DSISR_SET_RC)))
959 return RESUME_GUEST;
960 }
961
962 /* Try to insert a pte */
963 ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, writing,
964 kvm_ro, NULL, NULL);
965
c3856aeb
PM
966 if (ret == 0 || ret == -EAGAIN)
967 ret = RESUME_GUEST;
5a319350
PM
968 return ret;
969}
970
c43c3a86 971/* Called with kvm->mmu_lock held */
01756099
PM
972int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
973 unsigned long gfn)
974{
975 pte_t *ptep;
976 unsigned long gpa = gfn << PAGE_SHIFT;
977 unsigned int shift;
978
008e359c
BR
979 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) {
980 uv_page_inval(kvm->arch.lpid, gpa, PAGE_SHIFT);
981 return 0;
982 }
983
94171b19 984 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
f0f825f0 985 if (ptep && pte_present(*ptep))
fd10be25
SJS
986 kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot,
987 kvm->arch.lpid);
01756099
PM
988 return 0;
989}
990
c43c3a86 991/* Called with kvm->mmu_lock held */
01756099
PM
992int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
993 unsigned long gfn)
994{
995 pte_t *ptep;
996 unsigned long gpa = gfn << PAGE_SHIFT;
997 unsigned int shift;
998 int ref = 0;
ae59a7e1 999 unsigned long old, *rmapp;
01756099 1000
008e359c
BR
1001 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
1002 return ref;
1003
94171b19 1004 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
01756099 1005 if (ptep && pte_present(*ptep) && pte_young(*ptep)) {
ae59a7e1
SJS
1006 old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0,
1007 gpa, shift);
01756099 1008 /* XXX need to flush tlb here? */
ae59a7e1
SJS
1009 /* Also clear bit in ptes in shadow pgtable for nested guests */
1010 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1011 kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_ACCESSED, 0,
1012 old & PTE_RPN_MASK,
1013 1UL << shift);
01756099
PM
1014 ref = 1;
1015 }
1016 return ref;
1017}
1018
c43c3a86 1019/* Called with kvm->mmu_lock held */
01756099
PM
1020int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
1021 unsigned long gfn)
1022{
1023 pte_t *ptep;
1024 unsigned long gpa = gfn << PAGE_SHIFT;
1025 unsigned int shift;
1026 int ref = 0;
1027
008e359c
BR
1028 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
1029 return ref;
1030
94171b19 1031 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
01756099
PM
1032 if (ptep && pte_present(*ptep) && pte_young(*ptep))
1033 ref = 1;
1034 return ref;
1035}
1036
8f7b79b8
PM
1037/* Returns the number of PAGE_SIZE pages that are dirty */
1038static int kvm_radix_test_clear_dirty(struct kvm *kvm,
1039 struct kvm_memory_slot *memslot, int pagenum)
1040{
1041 unsigned long gfn = memslot->base_gfn + pagenum;
1042 unsigned long gpa = gfn << PAGE_SHIFT;
1043 pte_t *ptep;
1044 unsigned int shift;
1045 int ret = 0;
ae59a7e1 1046 unsigned long old, *rmapp;
8f7b79b8 1047
008e359c
BR
1048 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
1049 return ret;
1050
94171b19 1051 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
8f7b79b8
PM
1052 if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) {
1053 ret = 1;
1054 if (shift)
1055 ret = 1 << (shift - PAGE_SHIFT);
ae59a7e1
SJS
1056 spin_lock(&kvm->mmu_lock);
1057 old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
1058 gpa, shift);
fd10be25 1059 kvmppc_radix_tlbie_page(kvm, gpa, shift, kvm->arch.lpid);
ae59a7e1
SJS
1060 /* Also clear bit in ptes in shadow pgtable for nested guests */
1061 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1062 kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_DIRTY, 0,
1063 old & PTE_RPN_MASK,
1064 1UL << shift);
1065 spin_unlock(&kvm->mmu_lock);
8f7b79b8
PM
1066 }
1067 return ret;
1068}
1069
1070long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm,
1071 struct kvm_memory_slot *memslot, unsigned long *map)
1072{
1073 unsigned long i, j;
8f7b79b8
PM
1074 int npages;
1075
8f7b79b8
PM
1076 for (i = 0; i < memslot->npages; i = j) {
1077 npages = kvm_radix_test_clear_dirty(kvm, memslot, i);
1078
1079 /*
1080 * Note that if npages > 0 then i must be a multiple of npages,
1081 * since huge pages are only used to back the guest at guest
1082 * real addresses that are a multiple of their size.
1083 * Since we have at most one PTE covering any given guest
1084 * real address, if npages > 1 we can skip to i + npages.
1085 */
1086 j = i + 1;
e641a317
PM
1087 if (npages) {
1088 set_dirty_bits(map, i, npages);
117647ff 1089 j = i + npages;
e641a317 1090 }
8f7b79b8
PM
1091 }
1092 return 0;
1093}
1094
5af3e9d0
PM
1095void kvmppc_radix_flush_memslot(struct kvm *kvm,
1096 const struct kvm_memory_slot *memslot)
1097{
1098 unsigned long n;
1099 pte_t *ptep;
1100 unsigned long gpa;
1101 unsigned int shift;
1102
c3262257 1103 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)
ce477a7a 1104 kvmppc_uvmem_drop_pages(memslot, kvm, true);
c3262257 1105
008e359c
BR
1106 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
1107 return;
1108
5af3e9d0
PM
1109 gpa = memslot->base_gfn << PAGE_SHIFT;
1110 spin_lock(&kvm->mmu_lock);
1111 for (n = memslot->npages; n; --n) {
1112 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
1113 if (ptep && pte_present(*ptep))
1114 kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot,
1115 kvm->arch.lpid);
1116 gpa += PAGE_SIZE;
1117 }
1118 spin_unlock(&kvm->mmu_lock);
1119}
1120
8cf4ecc0
PM
1121static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info,
1122 int psize, int *indexp)
1123{
1124 if (!mmu_psize_defs[psize].shift)
1125 return;
1126 info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift |
1127 (mmu_psize_defs[psize].ap << 29);
1128 ++(*indexp);
1129}
1130
1131int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info)
1132{
1133 int i;
1134
1135 if (!radix_enabled())
1136 return -EINVAL;
1137 memset(info, 0, sizeof(*info));
1138
1139 /* 4k page size */
1140 info->geometries[0].page_shift = 12;
1141 info->geometries[0].level_bits[0] = 9;
1142 for (i = 1; i < 4; ++i)
1143 info->geometries[0].level_bits[i] = p9_supported_radix_bits[i];
1144 /* 64k page size */
1145 info->geometries[1].page_shift = 16;
1146 for (i = 0; i < 4; ++i)
1147 info->geometries[1].level_bits[i] = p9_supported_radix_bits[i];
1148
1149 i = 0;
1150 add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i);
1151 add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i);
1152 add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i);
1153 add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i);
1154
1155 return 0;
1156}
1157
1158int kvmppc_init_vm_radix(struct kvm *kvm)
1159{
1160 kvm->arch.pgtable = pgd_alloc(kvm->mm);
1161 if (!kvm->arch.pgtable)
1162 return -ENOMEM;
1163 return 0;
1164}
1165
5a319350
PM
1166static void pte_ctor(void *addr)
1167{
21828c99
AK
1168 memset(addr, 0, RADIX_PTE_TABLE_SIZE);
1169}
1170
1171static void pmd_ctor(void *addr)
1172{
1173 memset(addr, 0, RADIX_PMD_TABLE_SIZE);
5a319350
PM
1174}
1175
9a94d3ee
PM
1176struct debugfs_radix_state {
1177 struct kvm *kvm;
1178 struct mutex mutex;
1179 unsigned long gpa;
83a05510 1180 int lpid;
9a94d3ee
PM
1181 int chars_left;
1182 int buf_index;
1183 char buf[128];
1184 u8 hdr;
1185};
1186
1187static int debugfs_radix_open(struct inode *inode, struct file *file)
1188{
1189 struct kvm *kvm = inode->i_private;
1190 struct debugfs_radix_state *p;
1191
1192 p = kzalloc(sizeof(*p), GFP_KERNEL);
1193 if (!p)
1194 return -ENOMEM;
1195
1196 kvm_get_kvm(kvm);
1197 p->kvm = kvm;
1198 mutex_init(&p->mutex);
1199 file->private_data = p;
1200
1201 return nonseekable_open(inode, file);
1202}
1203
1204static int debugfs_radix_release(struct inode *inode, struct file *file)
1205{
1206 struct debugfs_radix_state *p = file->private_data;
1207
1208 kvm_put_kvm(p->kvm);
1209 kfree(p);
1210 return 0;
1211}
1212
1213static ssize_t debugfs_radix_read(struct file *file, char __user *buf,
1214 size_t len, loff_t *ppos)
1215{
1216 struct debugfs_radix_state *p = file->private_data;
1217 ssize_t ret, r;
1218 unsigned long n;
1219 struct kvm *kvm;
1220 unsigned long gpa;
1221 pgd_t *pgt;
83a05510 1222 struct kvm_nested_guest *nested;
9a94d3ee
PM
1223 pgd_t pgd, *pgdp;
1224 pud_t pud, *pudp;
1225 pmd_t pmd, *pmdp;
1226 pte_t *ptep;
1227 int shift;
1228 unsigned long pte;
1229
1230 kvm = p->kvm;
1231 if (!kvm_is_radix(kvm))
1232 return 0;
1233
1234 ret = mutex_lock_interruptible(&p->mutex);
1235 if (ret)
1236 return ret;
1237
1238 if (p->chars_left) {
1239 n = p->chars_left;
1240 if (n > len)
1241 n = len;
1242 r = copy_to_user(buf, p->buf + p->buf_index, n);
1243 n -= r;
1244 p->chars_left -= n;
1245 p->buf_index += n;
1246 buf += n;
1247 len -= n;
1248 ret = n;
1249 if (r) {
1250 if (!n)
1251 ret = -EFAULT;
1252 goto out;
1253 }
1254 }
1255
1256 gpa = p->gpa;
83a05510
PM
1257 nested = NULL;
1258 pgt = NULL;
1259 while (len != 0 && p->lpid >= 0) {
1260 if (gpa >= RADIX_PGTABLE_RANGE) {
1261 gpa = 0;
1262 pgt = NULL;
1263 if (nested) {
1264 kvmhv_put_nested(nested);
1265 nested = NULL;
1266 }
1267 p->lpid = kvmhv_nested_next_lpid(kvm, p->lpid);
1268 p->hdr = 0;
1269 if (p->lpid < 0)
1270 break;
1271 }
1272 if (!pgt) {
1273 if (p->lpid == 0) {
1274 pgt = kvm->arch.pgtable;
1275 } else {
1276 nested = kvmhv_get_nested(kvm, p->lpid, false);
1277 if (!nested) {
1278 gpa = RADIX_PGTABLE_RANGE;
1279 continue;
1280 }
1281 pgt = nested->shadow_pgtable;
1282 }
1283 }
1284 n = 0;
9a94d3ee 1285 if (!p->hdr) {
83a05510
PM
1286 if (p->lpid > 0)
1287 n = scnprintf(p->buf, sizeof(p->buf),
1288 "\nNested LPID %d: ", p->lpid);
1289 n += scnprintf(p->buf + n, sizeof(p->buf) - n,
9a94d3ee
PM
1290 "pgdir: %lx\n", (unsigned long)pgt);
1291 p->hdr = 1;
1292 goto copy;
1293 }
1294
1295 pgdp = pgt + pgd_index(gpa);
1296 pgd = READ_ONCE(*pgdp);
1297 if (!(pgd_val(pgd) & _PAGE_PRESENT)) {
1298 gpa = (gpa & PGDIR_MASK) + PGDIR_SIZE;
1299 continue;
1300 }
1301
1302 pudp = pud_offset(&pgd, gpa);
1303 pud = READ_ONCE(*pudp);
1304 if (!(pud_val(pud) & _PAGE_PRESENT)) {
1305 gpa = (gpa & PUD_MASK) + PUD_SIZE;
1306 continue;
1307 }
1308 if (pud_val(pud) & _PAGE_PTE) {
1309 pte = pud_val(pud);
1310 shift = PUD_SHIFT;
1311 goto leaf;
1312 }
1313
1314 pmdp = pmd_offset(&pud, gpa);
1315 pmd = READ_ONCE(*pmdp);
1316 if (!(pmd_val(pmd) & _PAGE_PRESENT)) {
1317 gpa = (gpa & PMD_MASK) + PMD_SIZE;
1318 continue;
1319 }
1320 if (pmd_val(pmd) & _PAGE_PTE) {
1321 pte = pmd_val(pmd);
1322 shift = PMD_SHIFT;
1323 goto leaf;
1324 }
1325
1326 ptep = pte_offset_kernel(&pmd, gpa);
1327 pte = pte_val(READ_ONCE(*ptep));
1328 if (!(pte & _PAGE_PRESENT)) {
1329 gpa += PAGE_SIZE;
1330 continue;
1331 }
1332 shift = PAGE_SHIFT;
1333 leaf:
1334 n = scnprintf(p->buf, sizeof(p->buf),
1335 " %lx: %lx %d\n", gpa, pte, shift);
1336 gpa += 1ul << shift;
1337 copy:
1338 p->chars_left = n;
1339 if (n > len)
1340 n = len;
1341 r = copy_to_user(buf, p->buf, n);
1342 n -= r;
1343 p->chars_left -= n;
1344 p->buf_index = n;
1345 buf += n;
1346 len -= n;
1347 ret += n;
1348 if (r) {
1349 if (!ret)
1350 ret = -EFAULT;
1351 break;
1352 }
1353 }
1354 p->gpa = gpa;
83a05510
PM
1355 if (nested)
1356 kvmhv_put_nested(nested);
9a94d3ee
PM
1357
1358 out:
1359 mutex_unlock(&p->mutex);
1360 return ret;
1361}
1362
1363static ssize_t debugfs_radix_write(struct file *file, const char __user *buf,
1364 size_t len, loff_t *ppos)
1365{
1366 return -EACCES;
1367}
1368
1369static const struct file_operations debugfs_radix_fops = {
1370 .owner = THIS_MODULE,
1371 .open = debugfs_radix_open,
1372 .release = debugfs_radix_release,
1373 .read = debugfs_radix_read,
1374 .write = debugfs_radix_write,
1375 .llseek = generic_file_llseek,
1376};
1377
1378void kvmhv_radix_debugfs_init(struct kvm *kvm)
1379{
c4fd527f
GKH
1380 debugfs_create_file("radix", 0400, kvm->arch.debugfs_dir, kvm,
1381 &debugfs_radix_fops);
9a94d3ee
PM
1382}
1383
5a319350
PM
1384int kvmppc_radix_init(void)
1385{
21828c99 1386 unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE;
5a319350
PM
1387
1388 kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor);
1389 if (!kvm_pte_cache)
1390 return -ENOMEM;
21828c99
AK
1391
1392 size = sizeof(void *) << RADIX_PMD_INDEX_SIZE;
1393
1394 kvm_pmd_cache = kmem_cache_create("kvm-pmd", size, size, 0, pmd_ctor);
1395 if (!kvm_pmd_cache) {
1396 kmem_cache_destroy(kvm_pte_cache);
1397 return -ENOMEM;
1398 }
1399
5a319350
PM
1400 return 0;
1401}
1402
1403void kvmppc_radix_exit(void)
1404{
1405 kmem_cache_destroy(kvm_pte_cache);
21828c99 1406 kmem_cache_destroy(kvm_pmd_cache);
5a319350 1407}