]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - arch/powerpc/mm/mem.c
[PATCH] ia64: cpu_idle performance bug fix
[thirdparty/kernel/linux.git] / arch / powerpc / mm / mem.c
CommitLineData
14cf11af
PM
1/*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
9 * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
10 *
11 * Derived from "arch/i386/mm/init.c"
12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
13 *
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
18 *
19 */
20
21#include <linux/config.h>
22#include <linux/module.h>
23#include <linux/sched.h>
24#include <linux/kernel.h>
25#include <linux/errno.h>
26#include <linux/string.h>
27#include <linux/types.h>
28#include <linux/mm.h>
29#include <linux/stddef.h>
30#include <linux/init.h>
31#include <linux/bootmem.h>
32#include <linux/highmem.h>
33#include <linux/initrd.h>
34#include <linux/pagemap.h>
35
36#include <asm/pgalloc.h>
37#include <asm/prom.h>
38#include <asm/io.h>
39#include <asm/mmu_context.h>
40#include <asm/pgtable.h>
41#include <asm/mmu.h>
42#include <asm/smp.h>
43#include <asm/machdep.h>
44#include <asm/btext.h>
45#include <asm/tlb.h>
14cf11af 46#include <asm/prom.h>
7c8c6b97
PM
47#include <asm/lmb.h>
48#include <asm/sections.h>
ab1f9dac 49#include <asm/vdso.h>
14cf11af 50
14cf11af
PM
51#include "mmu_decl.h"
52
53#ifndef CPU_FTR_COHERENT_ICACHE
54#define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */
55#define CPU_FTR_NOEXECUTE 0
56#endif
57
7c8c6b97
PM
58int init_bootmem_done;
59int mem_init_done;
cf00a8d1 60unsigned long memory_limit;
7c8c6b97 61
3c726f8d
BH
62extern void hash_preload(struct mm_struct *mm, unsigned long ea,
63 unsigned long access, unsigned long trap);
64
14cf11af
PM
65/*
66 * This is called by /dev/mem to know if a given address has to
67 * be mapped non-cacheable or not
68 */
69int page_is_ram(unsigned long pfn)
70{
71 unsigned long paddr = (pfn << PAGE_SHIFT);
72
73#ifndef CONFIG_PPC64 /* XXX for now */
74 return paddr < __pa(high_memory);
75#else
76 int i;
77 for (i=0; i < lmb.memory.cnt; i++) {
78 unsigned long base;
79
80 base = lmb.memory.region[i].base;
81
82 if ((paddr >= base) &&
83 (paddr < (base + lmb.memory.region[i].size))) {
84 return 1;
85 }
86 }
87
88 return 0;
89#endif
90}
91EXPORT_SYMBOL(page_is_ram);
92
8b150478 93pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
14cf11af
PM
94 unsigned long size, pgprot_t vma_prot)
95{
96 if (ppc_md.phys_mem_access_prot)
8b150478 97 return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
14cf11af 98
8b150478 99 if (!page_is_ram(pfn))
14cf11af
PM
100 vma_prot = __pgprot(pgprot_val(vma_prot)
101 | _PAGE_GUARDED | _PAGE_NO_CACHE);
102 return vma_prot;
103}
104EXPORT_SYMBOL(phys_mem_access_prot);
105
23fd0775
PM
106#ifdef CONFIG_MEMORY_HOTPLUG
107
108void online_page(struct page *page)
109{
110 ClearPageReserved(page);
dd7ccbd3 111 set_page_count(page, 0);
23fd0775
PM
112 free_cold_page(page);
113 totalram_pages++;
114 num_physpages++;
115}
116
117/*
118 * This works only for the non-NUMA case. Later, we'll need a lookup
119 * to convert from real physical addresses to nid, that doesn't use
120 * pfn_to_nid().
121 */
122int __devinit add_memory(u64 start, u64 size)
123{
124 struct pglist_data *pgdata = NODE_DATA(0);
125 struct zone *zone;
126 unsigned long start_pfn = start >> PAGE_SHIFT;
127 unsigned long nr_pages = size >> PAGE_SHIFT;
128
54b79248
MK
129 start += KERNELBASE;
130 create_section_mapping(start, start + size);
131
23fd0775
PM
132 /* this should work for most non-highmem platforms */
133 zone = pgdata->node_zones;
134
135 return __add_pages(zone, start_pfn, nr_pages);
136
137 return 0;
138}
139
140/*
141 * First pass at this code will check to determine if the remove
142 * request is within the RMO. Do not allow removal within the RMO.
143 */
144int __devinit remove_memory(u64 start, u64 size)
145{
146 struct zone *zone;
147 unsigned long start_pfn, end_pfn, nr_pages;
148
149 start_pfn = start >> PAGE_SHIFT;
150 nr_pages = size >> PAGE_SHIFT;
151 end_pfn = start_pfn + nr_pages;
152
153 printk("%s(): Attempting to remove memoy in range "
154 "%lx to %lx\n", __func__, start, start+size);
155 /*
156 * check for range within RMO
157 */
158 zone = page_zone(pfn_to_page(start_pfn));
159
160 printk("%s(): memory will be removed from "
161 "the %s zone\n", __func__, zone->name);
162
163 /*
164 * not handling removing memory ranges that
165 * overlap multiple zones yet
166 */
167 if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages))
168 goto overlap;
169
170 /* make sure it is NOT in RMO */
171 if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) {
172 printk("%s(): range to be removed must NOT be in RMO!\n",
173 __func__);
174 goto in_rmo;
175 }
176
177 return __remove_pages(zone, start_pfn, nr_pages);
178
179overlap:
180 printk("%s(): memory range to be removed overlaps "
181 "multiple zones!!!\n", __func__);
182in_rmo:
183 return -1;
184}
185#endif /* CONFIG_MEMORY_HOTPLUG */
186
14cf11af
PM
187void show_mem(void)
188{
189 unsigned long total = 0, reserved = 0;
190 unsigned long shared = 0, cached = 0;
191 unsigned long highmem = 0;
192 struct page *page;
193 pg_data_t *pgdat;
194 unsigned long i;
195
196 printk("Mem-info:\n");
197 show_free_areas();
198 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
199 for_each_pgdat(pgdat) {
23fd0775
PM
200 unsigned long flags;
201 pgdat_resize_lock(pgdat, &flags);
14cf11af
PM
202 for (i = 0; i < pgdat->node_spanned_pages; i++) {
203 page = pgdat_page_nr(pgdat, i);
204 total++;
205 if (PageHighMem(page))
206 highmem++;
207 if (PageReserved(page))
208 reserved++;
209 else if (PageSwapCache(page))
210 cached++;
211 else if (page_count(page))
212 shared += page_count(page) - 1;
213 }
23fd0775 214 pgdat_resize_unlock(pgdat, &flags);
14cf11af
PM
215 }
216 printk("%ld pages of RAM\n", total);
217#ifdef CONFIG_HIGHMEM
218 printk("%ld pages of HIGHMEM\n", highmem);
219#endif
220 printk("%ld reserved pages\n", reserved);
221 printk("%ld pages shared\n", shared);
222 printk("%ld pages swap cached\n", cached);
223}
224
7c8c6b97
PM
225/*
226 * Initialize the bootmem system and give it all the memory we
227 * have available. If we are using highmem, we only put the
228 * lowmem into the bootmem system.
229 */
230#ifndef CONFIG_NEED_MULTIPLE_NODES
231void __init do_init_bootmem(void)
232{
233 unsigned long i;
234 unsigned long start, bootmap_pages;
235 unsigned long total_pages;
236 int boot_mapsize;
237
238 max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
239#ifdef CONFIG_HIGHMEM
240 total_pages = total_lowmem >> PAGE_SHIFT;
241#endif
242
243 /*
244 * Find an area to use for the bootmem bitmap. Calculate the size of
245 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
246 * Add 1 additional page in case the address isn't page-aligned.
247 */
248 bootmap_pages = bootmem_bootmap_pages(total_pages);
249
250 start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
251 BUG_ON(!start);
252
253 boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
254
255 /* Add all physical memory to the bootmem map, mark each area
256 * present.
257 */
258 for (i = 0; i < lmb.memory.cnt; i++) {
259 unsigned long base = lmb.memory.region[i].base;
260 unsigned long size = lmb_size_bytes(&lmb.memory, i);
261#ifdef CONFIG_HIGHMEM
262 if (base >= total_lowmem)
263 continue;
264 if (base + size > total_lowmem)
265 size = total_lowmem - base;
266#endif
267 free_bootmem(base, size);
268 }
269
270 /* reserve the sections we're already using */
271 for (i = 0; i < lmb.reserved.cnt; i++)
272 reserve_bootmem(lmb.reserved.region[i].base,
273 lmb_size_bytes(&lmb.reserved, i));
274
275 /* XXX need to clip this if using highmem? */
276 for (i = 0; i < lmb.memory.cnt; i++)
277 memory_present(0, lmb_start_pfn(&lmb.memory, i),
278 lmb_end_pfn(&lmb.memory, i));
279 init_bootmem_done = 1;
280}
281
282/*
283 * paging_init() sets up the page tables - in fact we've already done this.
284 */
285void __init paging_init(void)
286{
287 unsigned long zones_size[MAX_NR_ZONES];
288 unsigned long zholes_size[MAX_NR_ZONES];
289 unsigned long total_ram = lmb_phys_mem_size();
290 unsigned long top_of_ram = lmb_end_of_DRAM();
291
292#ifdef CONFIG_HIGHMEM
293 map_page(PKMAP_BASE, 0, 0); /* XXX gross */
294 pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k
295 (PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
296 map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */
297 kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k
298 (KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);
299 kmap_prot = PAGE_KERNEL;
300#endif /* CONFIG_HIGHMEM */
301
302 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
303 top_of_ram, total_ram);
304 printk(KERN_INFO "Memory hole size: %ldMB\n",
305 (top_of_ram - total_ram) >> 20);
306 /*
307 * All pages are DMA-able so we put them all in the DMA zone.
308 */
309 memset(zones_size, 0, sizeof(zones_size));
310 memset(zholes_size, 0, sizeof(zholes_size));
311
312 zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
313 zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
314
315#ifdef CONFIG_HIGHMEM
316 zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
317 zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT;
318 zholes_size[ZONE_HIGHMEM] = (top_of_ram - total_ram) >> PAGE_SHIFT;
319#else
320 zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
321 zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
322#endif /* CONFIG_HIGHMEM */
323
324 free_area_init_node(0, NODE_DATA(0), zones_size,
325 __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
326}
327#endif /* ! CONFIG_NEED_MULTIPLE_NODES */
328
329void __init mem_init(void)
330{
331#ifdef CONFIG_NEED_MULTIPLE_NODES
332 int nid;
333#endif
334 pg_data_t *pgdat;
335 unsigned long i;
336 struct page *page;
337 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
338
339 num_physpages = max_pfn; /* RAM is assumed contiguous */
340 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
341
342#ifdef CONFIG_NEED_MULTIPLE_NODES
343 for_each_online_node(nid) {
344 if (NODE_DATA(nid)->node_spanned_pages != 0) {
345 printk("freeing bootmem node %x\n", nid);
346 totalram_pages +=
347 free_all_bootmem_node(NODE_DATA(nid));
348 }
349 }
350#else
351 max_mapnr = num_physpages;
352 totalram_pages += free_all_bootmem();
353#endif
354 for_each_pgdat(pgdat) {
355 for (i = 0; i < pgdat->node_spanned_pages; i++) {
356 page = pgdat_page_nr(pgdat, i);
357 if (PageReserved(page))
358 reservedpages++;
359 }
360 }
361
362 codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
bcb35576 363 datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
7c8c6b97
PM
364 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
365 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
366
367#ifdef CONFIG_HIGHMEM
368 {
369 unsigned long pfn, highmem_mapnr;
370
371 highmem_mapnr = total_lowmem >> PAGE_SHIFT;
372 for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
373 struct page *page = pfn_to_page(pfn);
374
375 ClearPageReserved(page);
376 set_page_count(page, 1);
377 __free_page(page);
378 totalhigh_pages++;
379 }
380 totalram_pages += totalhigh_pages;
381 printk(KERN_INFO "High memory: %luk\n",
382 totalhigh_pages << (PAGE_SHIFT-10));
383 }
384#endif /* CONFIG_HIGHMEM */
385
386 printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
387 "%luk reserved, %luk data, %luk bss, %luk init)\n",
388 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
389 num_physpages << (PAGE_SHIFT-10),
390 codesize >> 10,
391 reservedpages << (PAGE_SHIFT-10),
392 datasize >> 10,
393 bsssize >> 10,
394 initsize >> 10);
395
396 mem_init_done = 1;
397
7c8c6b97
PM
398 /* Initialize the vDSO */
399 vdso_init();
7c8c6b97
PM
400}
401
14cf11af
PM
402/*
403 * This is called when a page has been modified by the kernel.
404 * It just marks the page as not i-cache clean. We do the i-cache
405 * flush later when the page is given to a user process, if necessary.
406 */
407void flush_dcache_page(struct page *page)
408{
409 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
410 return;
411 /* avoid an atomic op if possible */
412 if (test_bit(PG_arch_1, &page->flags))
413 clear_bit(PG_arch_1, &page->flags);
414}
415EXPORT_SYMBOL(flush_dcache_page);
416
417void flush_dcache_icache_page(struct page *page)
418{
419#ifdef CONFIG_BOOKE
420 void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
421 __flush_dcache_icache(start);
422 kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
ab1f9dac 423#elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
14cf11af
PM
424 /* On 8xx there is no need to kmap since highmem is not supported */
425 __flush_dcache_icache(page_address(page));
426#else
427 __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
428#endif
429
430}
431void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
432{
433 clear_page(page);
434
435 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
436 return;
437 /*
438 * We shouldnt have to do this, but some versions of glibc
439 * require it (ld.so assumes zero filled pages are icache clean)
440 * - Anton
441 */
442
443 /* avoid an atomic op if possible */
444 if (test_bit(PG_arch_1, &pg->flags))
445 clear_bit(PG_arch_1, &pg->flags);
446}
447EXPORT_SYMBOL(clear_user_page);
448
449void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
450 struct page *pg)
451{
452 copy_page(vto, vfrom);
453
454 /*
455 * We should be able to use the following optimisation, however
456 * there are two problems.
457 * Firstly a bug in some versions of binutils meant PLT sections
458 * were not marked executable.
459 * Secondly the first word in the GOT section is blrl, used
460 * to establish the GOT address. Until recently the GOT was
461 * not marked executable.
462 * - Anton
463 */
464#if 0
465 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
466 return;
467#endif
468
469 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
470 return;
471
472 /* avoid an atomic op if possible */
473 if (test_bit(PG_arch_1, &pg->flags))
474 clear_bit(PG_arch_1, &pg->flags);
475}
476
477void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
478 unsigned long addr, int len)
479{
480 unsigned long maddr;
481
482 maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
483 flush_icache_range(maddr, maddr + len);
484 kunmap(page);
485}
486EXPORT_SYMBOL(flush_icache_user_range);
487
488/*
489 * This is called at the end of handling a user page fault, when the
490 * fault has been handled by updating a PTE in the linux page tables.
491 * We use it to preload an HPTE into the hash table corresponding to
492 * the updated linux PTE.
493 *
494 * This must always be called with the mm->page_table_lock held
495 */
496void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
497 pte_t pte)
498{
3c726f8d
BH
499#ifdef CONFIG_PPC_STD_MMU
500 unsigned long access = 0, trap;
14cf11af 501#endif
3c726f8d 502 unsigned long pfn = pte_pfn(pte);
14cf11af
PM
503
504 /* handle i-cache coherency */
505 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
506 !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
507 pfn_valid(pfn)) {
508 struct page *page = pfn_to_page(pfn);
509 if (!PageReserved(page)
510 && !test_bit(PG_arch_1, &page->flags)) {
511 if (vma->vm_mm == current->active_mm) {
512#ifdef CONFIG_8xx
513 /* On 8xx, cache control instructions (particularly
514 * "dcbst" from flush_dcache_icache) fault as write
515 * operation if there is an unpopulated TLB entry
516 * for the address in question. To workaround that,
517 * we invalidate the TLB here, thus avoiding dcbst
518 * misbehaviour.
519 */
520 _tlbie(address);
521#endif
522 __flush_dcache_icache((void *) address);
523 } else
524 flush_dcache_icache_page(page);
525 set_bit(PG_arch_1, &page->flags);
526 }
527 }
528
529#ifdef CONFIG_PPC_STD_MMU
530 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
531 if (!pte_young(pte) || address >= TASK_SIZE)
532 return;
14cf11af 533
3c726f8d
BH
534 /* We try to figure out if we are coming from an instruction
535 * access fault and pass that down to __hash_page so we avoid
536 * double-faulting on execution of fresh text. We have to test
537 * for regs NULL since init will get here first thing at boot
538 *
539 * We also avoid filling the hash if not coming from a fault
540 */
541 if (current->thread.regs == NULL)
14cf11af 542 return;
3c726f8d
BH
543 trap = TRAP(current->thread.regs);
544 if (trap == 0x400)
545 access |= _PAGE_EXEC;
546 else if (trap != 0x300)
547 return;
548 hash_preload(vma->vm_mm, address, access, trap);
549#endif /* CONFIG_PPC_STD_MMU */
14cf11af 550}