]> git.ipfire.org Git - people/ms/linux.git/blame - arch/sparc/kernel/perf_event.c
atomic: use <linux/atomic.h>
[people/ms/linux.git] / arch / sparc / kernel / perf_event.c
CommitLineData
cdd6c482 1/* Performance event support for sparc64.
59abbd1e 2 *
4f6dbe4a 3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
59abbd1e 4 *
cdd6c482 5 * This code is based almost entirely upon the x86 perf event
59abbd1e
DM
6 * code, which is:
7 *
8 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10 * Copyright (C) 2009 Jaswinder Singh Rajput
11 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13 */
14
cdd6c482 15#include <linux/perf_event.h>
59abbd1e 16#include <linux/kprobes.h>
667f0cee 17#include <linux/ftrace.h>
59abbd1e
DM
18#include <linux/kernel.h>
19#include <linux/kdebug.h>
20#include <linux/mutex.h>
21
4f6dbe4a 22#include <asm/stacktrace.h>
59abbd1e 23#include <asm/cpudata.h>
4f6dbe4a 24#include <asm/uaccess.h>
60063497 25#include <linux/atomic.h>
59abbd1e
DM
26#include <asm/nmi.h>
27#include <asm/pcr.h>
28
cb1b8209 29#include "kernel.h"
4f6dbe4a
DM
30#include "kstack.h"
31
59abbd1e
DM
32/* Sparc64 chips have two performance counters, 32-bits each, with
33 * overflow interrupts generated on transition from 0xffffffff to 0.
34 * The counters are accessed in one go using a 64-bit register.
35 *
36 * Both counters are controlled using a single control register. The
37 * only way to stop all sampling is to clear all of the context (user,
38 * supervisor, hypervisor) sampling enable bits. But these bits apply
39 * to both counters, thus the two counters can't be enabled/disabled
40 * individually.
41 *
42 * The control register has two event fields, one for each of the two
43 * counters. It's thus nearly impossible to have one counter going
44 * while keeping the other one stopped. Therefore it is possible to
45 * get overflow interrupts for counters not currently "in use" and
46 * that condition must be checked in the overflow interrupt handler.
47 *
48 * So we use a hack, in that we program inactive counters with the
49 * "sw_count0" and "sw_count1" events. These count how many times
50 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
51 * unusual way to encode a NOP and therefore will not trigger in
52 * normal code.
53 */
54
cdd6c482 55#define MAX_HWEVENTS 2
59abbd1e
DM
56#define MAX_PERIOD ((1UL << 32) - 1)
57
58#define PIC_UPPER_INDEX 0
59#define PIC_LOWER_INDEX 1
e7bef6b0 60#define PIC_NO_INDEX -1
59abbd1e 61
cdd6c482 62struct cpu_hw_events {
e7bef6b0
DM
63 /* Number of events currently scheduled onto this cpu.
64 * This tells how many entries in the arrays below
65 * are valid.
66 */
67 int n_events;
68
69 /* Number of new events added since the last hw_perf_disable().
70 * This works because the perf event layer always adds new
71 * events inside of a perf_{disable,enable}() sequence.
72 */
73 int n_added;
74
75 /* Array of events current scheduled on this cpu. */
76 struct perf_event *event[MAX_HWEVENTS];
77
78 /* Array of encoded longs, specifying the %pcr register
79 * encoding and the mask of PIC counters this even can
80 * be scheduled on. See perf_event_encode() et al.
81 */
82 unsigned long events[MAX_HWEVENTS];
83
84 /* The current counter index assigned to an event. When the
85 * event hasn't been programmed into the cpu yet, this will
86 * hold PIC_NO_INDEX. The event->hw.idx value tells us where
87 * we ought to schedule the event.
88 */
89 int current_idx[MAX_HWEVENTS];
90
91 /* Software copy of %pcr register on this cpu. */
d1751388 92 u64 pcr;
e7bef6b0
DM
93
94 /* Enabled/disable state. */
d1751388 95 int enabled;
a13c3afd
LM
96
97 unsigned int group_flag;
59abbd1e 98};
cdd6c482 99DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
59abbd1e 100
e7bef6b0
DM
101/* An event map describes the characteristics of a performance
102 * counter event. In particular it gives the encoding as well as
103 * a mask telling which counters the event can be measured on.
104 */
59abbd1e
DM
105struct perf_event_map {
106 u16 encoding;
107 u8 pic_mask;
108#define PIC_NONE 0x00
109#define PIC_UPPER 0x01
110#define PIC_LOWER 0x02
111};
112
e7bef6b0 113/* Encode a perf_event_map entry into a long. */
a72a8a5f
DM
114static unsigned long perf_event_encode(const struct perf_event_map *pmap)
115{
116 return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
117}
118
e7bef6b0
DM
119static u8 perf_event_get_msk(unsigned long val)
120{
121 return val & 0xff;
122}
123
124static u64 perf_event_get_enc(unsigned long val)
a72a8a5f 125{
e7bef6b0 126 return val >> 16;
a72a8a5f
DM
127}
128
2ce4da2e
DM
129#define C(x) PERF_COUNT_HW_CACHE_##x
130
131#define CACHE_OP_UNSUPPORTED 0xfffe
132#define CACHE_OP_NONSENSE 0xffff
133
134typedef struct perf_event_map cache_map_t
135 [PERF_COUNT_HW_CACHE_MAX]
136 [PERF_COUNT_HW_CACHE_OP_MAX]
137 [PERF_COUNT_HW_CACHE_RESULT_MAX];
138
59abbd1e
DM
139struct sparc_pmu {
140 const struct perf_event_map *(*event_map)(int);
2ce4da2e 141 const cache_map_t *cache_map;
59abbd1e
DM
142 int max_events;
143 int upper_shift;
144 int lower_shift;
145 int event_mask;
91b9286d 146 int hv_bit;
496c07e3 147 int irq_bit;
660d1376
DM
148 int upper_nop;
149 int lower_nop;
59abbd1e
DM
150};
151
28e8f9be 152static const struct perf_event_map ultra3_perfmon_event_map[] = {
59abbd1e
DM
153 [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
154 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
155 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
156 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
157};
158
28e8f9be 159static const struct perf_event_map *ultra3_event_map(int event_id)
59abbd1e 160{
28e8f9be 161 return &ultra3_perfmon_event_map[event_id];
59abbd1e
DM
162}
163
28e8f9be 164static const cache_map_t ultra3_cache_map = {
2ce4da2e
DM
165[C(L1D)] = {
166 [C(OP_READ)] = {
167 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
168 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
169 },
170 [C(OP_WRITE)] = {
171 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
172 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
173 },
174 [C(OP_PREFETCH)] = {
175 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
176 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
177 },
178},
179[C(L1I)] = {
180 [C(OP_READ)] = {
181 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
182 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
183 },
184 [ C(OP_WRITE) ] = {
185 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
186 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
187 },
188 [ C(OP_PREFETCH) ] = {
189 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
190 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
191 },
192},
193[C(LL)] = {
194 [C(OP_READ)] = {
195 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
196 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
197 },
198 [C(OP_WRITE)] = {
199 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
200 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
201 },
202 [C(OP_PREFETCH)] = {
203 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
204 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
205 },
206},
207[C(DTLB)] = {
208 [C(OP_READ)] = {
209 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
210 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
211 },
212 [ C(OP_WRITE) ] = {
213 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
214 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
215 },
216 [ C(OP_PREFETCH) ] = {
217 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
218 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
219 },
220},
221[C(ITLB)] = {
222 [C(OP_READ)] = {
223 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
224 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
225 },
226 [ C(OP_WRITE) ] = {
227 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
228 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
229 },
230 [ C(OP_PREFETCH) ] = {
231 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
232 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
233 },
234},
235[C(BPU)] = {
236 [C(OP_READ)] = {
237 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
238 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
239 },
240 [ C(OP_WRITE) ] = {
241 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
242 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
243 },
244 [ C(OP_PREFETCH) ] = {
245 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
246 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
247 },
248},
89d6c0b5
PZ
249[C(NODE)] = {
250 [C(OP_READ)] = {
251 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
252 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
253 },
254 [ C(OP_WRITE) ] = {
255 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
256 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
257 },
258 [ C(OP_PREFETCH) ] = {
259 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
260 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
261 },
262},
2ce4da2e
DM
263};
264
28e8f9be
DM
265static const struct sparc_pmu ultra3_pmu = {
266 .event_map = ultra3_event_map,
267 .cache_map = &ultra3_cache_map,
268 .max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
59abbd1e
DM
269 .upper_shift = 11,
270 .lower_shift = 4,
271 .event_mask = 0x3f,
660d1376
DM
272 .upper_nop = 0x1c,
273 .lower_nop = 0x14,
59abbd1e
DM
274};
275
7eebda60
DM
276/* Niagara1 is very limited. The upper PIC is hard-locked to count
277 * only instructions, so it is free running which creates all kinds of
6e804251 278 * problems. Some hardware designs make one wonder if the creator
7eebda60
DM
279 * even looked at how this stuff gets used by software.
280 */
281static const struct perf_event_map niagara1_perfmon_event_map[] = {
282 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
283 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
284 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
285 [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
286};
287
288static const struct perf_event_map *niagara1_event_map(int event_id)
289{
290 return &niagara1_perfmon_event_map[event_id];
291}
292
293static const cache_map_t niagara1_cache_map = {
294[C(L1D)] = {
295 [C(OP_READ)] = {
296 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
297 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
298 },
299 [C(OP_WRITE)] = {
300 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
301 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
302 },
303 [C(OP_PREFETCH)] = {
304 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
305 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
306 },
307},
308[C(L1I)] = {
309 [C(OP_READ)] = {
310 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
311 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
312 },
313 [ C(OP_WRITE) ] = {
314 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
315 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
316 },
317 [ C(OP_PREFETCH) ] = {
318 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
319 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
320 },
321},
322[C(LL)] = {
323 [C(OP_READ)] = {
324 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
325 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
326 },
327 [C(OP_WRITE)] = {
328 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
329 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
330 },
331 [C(OP_PREFETCH)] = {
332 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
333 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
334 },
335},
336[C(DTLB)] = {
337 [C(OP_READ)] = {
338 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
339 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
340 },
341 [ C(OP_WRITE) ] = {
342 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
343 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
344 },
345 [ C(OP_PREFETCH) ] = {
346 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
347 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
348 },
349},
350[C(ITLB)] = {
351 [C(OP_READ)] = {
352 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
353 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
354 },
355 [ C(OP_WRITE) ] = {
356 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
357 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
358 },
359 [ C(OP_PREFETCH) ] = {
360 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
361 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
362 },
363},
364[C(BPU)] = {
365 [C(OP_READ)] = {
366 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
367 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
368 },
369 [ C(OP_WRITE) ] = {
370 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
371 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
372 },
373 [ C(OP_PREFETCH) ] = {
374 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
375 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
376 },
377},
89d6c0b5
PZ
378[C(NODE)] = {
379 [C(OP_READ)] = {
380 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
381 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
382 },
383 [ C(OP_WRITE) ] = {
384 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
385 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
386 },
387 [ C(OP_PREFETCH) ] = {
388 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
389 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
390 },
391},
7eebda60
DM
392};
393
394static const struct sparc_pmu niagara1_pmu = {
395 .event_map = niagara1_event_map,
396 .cache_map = &niagara1_cache_map,
397 .max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
398 .upper_shift = 0,
399 .lower_shift = 4,
400 .event_mask = 0x7,
401 .upper_nop = 0x0,
402 .lower_nop = 0x0,
403};
404
b73d8847
DM
405static const struct perf_event_map niagara2_perfmon_event_map[] = {
406 [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
407 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
408 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
409 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
410 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
411 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
412};
413
cdd6c482 414static const struct perf_event_map *niagara2_event_map(int event_id)
b73d8847 415{
cdd6c482 416 return &niagara2_perfmon_event_map[event_id];
b73d8847
DM
417}
418
d0b86480
DM
419static const cache_map_t niagara2_cache_map = {
420[C(L1D)] = {
421 [C(OP_READ)] = {
422 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
423 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
424 },
425 [C(OP_WRITE)] = {
426 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
427 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
428 },
429 [C(OP_PREFETCH)] = {
430 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
431 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
432 },
433},
434[C(L1I)] = {
435 [C(OP_READ)] = {
436 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
437 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
438 },
439 [ C(OP_WRITE) ] = {
440 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
441 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
442 },
443 [ C(OP_PREFETCH) ] = {
444 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
445 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
446 },
447},
448[C(LL)] = {
449 [C(OP_READ)] = {
450 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
451 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
452 },
453 [C(OP_WRITE)] = {
454 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
455 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
456 },
457 [C(OP_PREFETCH)] = {
458 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
459 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
460 },
461},
462[C(DTLB)] = {
463 [C(OP_READ)] = {
464 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
465 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
466 },
467 [ C(OP_WRITE) ] = {
468 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
469 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
470 },
471 [ C(OP_PREFETCH) ] = {
472 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
473 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
474 },
475},
476[C(ITLB)] = {
477 [C(OP_READ)] = {
478 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
479 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
480 },
481 [ C(OP_WRITE) ] = {
482 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
483 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
484 },
485 [ C(OP_PREFETCH) ] = {
486 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
487 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
488 },
489},
490[C(BPU)] = {
491 [C(OP_READ)] = {
492 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
493 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
494 },
495 [ C(OP_WRITE) ] = {
496 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
89d6c0b5
PZ
497 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
498 },
499 [ C(OP_PREFETCH) ] = {
500 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
501 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
502 },
503},
504[C(NODE)] = {
505 [C(OP_READ)] = {
506 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
507 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
508 },
509 [ C(OP_WRITE) ] = {
510 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
d0b86480
DM
511 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
512 },
513 [ C(OP_PREFETCH) ] = {
514 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
515 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
516 },
517},
518};
519
b73d8847
DM
520static const struct sparc_pmu niagara2_pmu = {
521 .event_map = niagara2_event_map,
d0b86480 522 .cache_map = &niagara2_cache_map,
b73d8847
DM
523 .max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
524 .upper_shift = 19,
525 .lower_shift = 6,
526 .event_mask = 0xfff,
527 .hv_bit = 0x8,
de23cf3c 528 .irq_bit = 0x30,
b73d8847
DM
529 .upper_nop = 0x220,
530 .lower_nop = 0x220,
531};
532
59abbd1e
DM
533static const struct sparc_pmu *sparc_pmu __read_mostly;
534
cdd6c482 535static u64 event_encoding(u64 event_id, int idx)
59abbd1e
DM
536{
537 if (idx == PIC_UPPER_INDEX)
cdd6c482 538 event_id <<= sparc_pmu->upper_shift;
59abbd1e 539 else
cdd6c482
IM
540 event_id <<= sparc_pmu->lower_shift;
541 return event_id;
59abbd1e
DM
542}
543
544static u64 mask_for_index(int idx)
545{
546 return event_encoding(sparc_pmu->event_mask, idx);
547}
548
549static u64 nop_for_index(int idx)
550{
551 return event_encoding(idx == PIC_UPPER_INDEX ?
660d1376
DM
552 sparc_pmu->upper_nop :
553 sparc_pmu->lower_nop, idx);
59abbd1e
DM
554}
555
d1751388 556static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
59abbd1e
DM
557{
558 u64 val, mask = mask_for_index(idx);
559
d1751388
DM
560 val = cpuc->pcr;
561 val &= ~mask;
562 val |= hwc->config;
563 cpuc->pcr = val;
564
565 pcr_ops->write(cpuc->pcr);
59abbd1e
DM
566}
567
d1751388 568static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
59abbd1e
DM
569{
570 u64 mask = mask_for_index(idx);
571 u64 nop = nop_for_index(idx);
d1751388 572 u64 val;
59abbd1e 573
d1751388
DM
574 val = cpuc->pcr;
575 val &= ~mask;
576 val |= nop;
577 cpuc->pcr = val;
578
579 pcr_ops->write(cpuc->pcr);
59abbd1e
DM
580}
581
59abbd1e
DM
582static u32 read_pmc(int idx)
583{
584 u64 val;
585
586 read_pic(val);
587 if (idx == PIC_UPPER_INDEX)
588 val >>= 32;
589
590 return val & 0xffffffff;
591}
592
593static void write_pmc(int idx, u64 val)
594{
595 u64 shift, mask, pic;
596
597 shift = 0;
598 if (idx == PIC_UPPER_INDEX)
599 shift = 32;
600
601 mask = ((u64) 0xffffffff) << shift;
602 val <<= shift;
603
604 read_pic(pic);
605 pic &= ~mask;
606 pic |= val;
607 write_pic(pic);
608}
609
e7bef6b0
DM
610static u64 sparc_perf_event_update(struct perf_event *event,
611 struct hw_perf_event *hwc, int idx)
612{
613 int shift = 64 - 32;
614 u64 prev_raw_count, new_raw_count;
615 s64 delta;
616
617again:
e7850595 618 prev_raw_count = local64_read(&hwc->prev_count);
e7bef6b0
DM
619 new_raw_count = read_pmc(idx);
620
e7850595 621 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
e7bef6b0
DM
622 new_raw_count) != prev_raw_count)
623 goto again;
624
625 delta = (new_raw_count << shift) - (prev_raw_count << shift);
626 delta >>= shift;
627
e7850595
PZ
628 local64_add(delta, &event->count);
629 local64_sub(delta, &hwc->period_left);
e7bef6b0
DM
630
631 return new_raw_count;
632}
633
cdd6c482 634static int sparc_perf_event_set_period(struct perf_event *event,
d29862f0 635 struct hw_perf_event *hwc, int idx)
59abbd1e 636{
e7850595 637 s64 left = local64_read(&hwc->period_left);
59abbd1e
DM
638 s64 period = hwc->sample_period;
639 int ret = 0;
640
641 if (unlikely(left <= -period)) {
642 left = period;
e7850595 643 local64_set(&hwc->period_left, left);
59abbd1e
DM
644 hwc->last_period = period;
645 ret = 1;
646 }
647
648 if (unlikely(left <= 0)) {
649 left += period;
e7850595 650 local64_set(&hwc->period_left, left);
59abbd1e
DM
651 hwc->last_period = period;
652 ret = 1;
653 }
654 if (left > MAX_PERIOD)
655 left = MAX_PERIOD;
656
e7850595 657 local64_set(&hwc->prev_count, (u64)-left);
59abbd1e
DM
658
659 write_pmc(idx, (u64)(-left) & 0xffffffff);
660
cdd6c482 661 perf_event_update_userpage(event);
59abbd1e
DM
662
663 return ret;
664}
665
e7bef6b0
DM
666/* If performance event entries have been added, move existing
667 * events around (if necessary) and then assign new entries to
668 * counters.
669 */
670static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
59abbd1e 671{
e7bef6b0 672 int i;
59abbd1e 673
e7bef6b0
DM
674 if (!cpuc->n_added)
675 goto out;
59abbd1e 676
e7bef6b0
DM
677 /* Read in the counters which are moving. */
678 for (i = 0; i < cpuc->n_events; i++) {
679 struct perf_event *cp = cpuc->event[i];
59abbd1e 680
e7bef6b0
DM
681 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
682 cpuc->current_idx[i] != cp->hw.idx) {
683 sparc_perf_event_update(cp, &cp->hw,
684 cpuc->current_idx[i]);
685 cpuc->current_idx[i] = PIC_NO_INDEX;
686 }
687 }
59abbd1e 688
e7bef6b0
DM
689 /* Assign to counters all unassigned events. */
690 for (i = 0; i < cpuc->n_events; i++) {
691 struct perf_event *cp = cpuc->event[i];
692 struct hw_perf_event *hwc = &cp->hw;
693 int idx = hwc->idx;
694 u64 enc;
695
696 if (cpuc->current_idx[i] != PIC_NO_INDEX)
697 continue;
698
699 sparc_perf_event_set_period(cp, hwc, idx);
700 cpuc->current_idx[i] = idx;
701
702 enc = perf_event_get_enc(cpuc->events[i]);
b7d45c3f 703 pcr &= ~mask_for_index(idx);
a4eaf7f1
PZ
704 if (hwc->state & PERF_HES_STOPPED)
705 pcr |= nop_for_index(idx);
706 else
707 pcr |= event_encoding(enc, idx);
e7bef6b0
DM
708 }
709out:
710 return pcr;
59abbd1e
DM
711}
712
a4eaf7f1 713static void sparc_pmu_enable(struct pmu *pmu)
59abbd1e 714{
e7bef6b0
DM
715 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
716 u64 pcr;
59abbd1e 717
e7bef6b0
DM
718 if (cpuc->enabled)
719 return;
59abbd1e 720
e7bef6b0
DM
721 cpuc->enabled = 1;
722 barrier();
59abbd1e 723
e7bef6b0
DM
724 pcr = cpuc->pcr;
725 if (!cpuc->n_events) {
726 pcr = 0;
727 } else {
728 pcr = maybe_change_configuration(cpuc, pcr);
59abbd1e 729
e7bef6b0
DM
730 /* We require that all of the events have the same
731 * configuration, so just fetch the settings from the
732 * first entry.
733 */
734 cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
735 }
59abbd1e 736
e7bef6b0
DM
737 pcr_ops->write(cpuc->pcr);
738}
739
a4eaf7f1 740static void sparc_pmu_disable(struct pmu *pmu)
e7bef6b0
DM
741{
742 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
743 u64 val;
744
745 if (!cpuc->enabled)
746 return;
747
748 cpuc->enabled = 0;
749 cpuc->n_added = 0;
750
751 val = cpuc->pcr;
752 val &= ~(PCR_UTRACE | PCR_STRACE |
753 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
754 cpuc->pcr = val;
755
756 pcr_ops->write(cpuc->pcr);
59abbd1e
DM
757}
758
a4eaf7f1
PZ
759static int active_event_index(struct cpu_hw_events *cpuc,
760 struct perf_event *event)
761{
762 int i;
763
764 for (i = 0; i < cpuc->n_events; i++) {
765 if (cpuc->event[i] == event)
766 break;
767 }
768 BUG_ON(i == cpuc->n_events);
769 return cpuc->current_idx[i];
770}
771
772static void sparc_pmu_start(struct perf_event *event, int flags)
773{
774 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
775 int idx = active_event_index(cpuc, event);
776
777 if (flags & PERF_EF_RELOAD) {
778 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
779 sparc_perf_event_set_period(event, &event->hw, idx);
780 }
781
782 event->hw.state = 0;
783
784 sparc_pmu_enable_event(cpuc, &event->hw, idx);
785}
786
787static void sparc_pmu_stop(struct perf_event *event, int flags)
788{
789 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
790 int idx = active_event_index(cpuc, event);
791
792 if (!(event->hw.state & PERF_HES_STOPPED)) {
793 sparc_pmu_disable_event(cpuc, &event->hw, idx);
794 event->hw.state |= PERF_HES_STOPPED;
795 }
796
797 if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
798 sparc_perf_event_update(event, &event->hw, idx);
799 event->hw.state |= PERF_HES_UPTODATE;
800 }
801}
802
803static void sparc_pmu_del(struct perf_event *event, int _flags)
59abbd1e 804{
cdd6c482 805 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
e7bef6b0
DM
806 unsigned long flags;
807 int i;
59abbd1e 808
e7bef6b0 809 local_irq_save(flags);
33696fc0 810 perf_pmu_disable(event->pmu);
e7bef6b0
DM
811
812 for (i = 0; i < cpuc->n_events; i++) {
813 if (event == cpuc->event[i]) {
a4eaf7f1
PZ
814 /* Absorb the final count and turn off the
815 * event.
816 */
817 sparc_pmu_stop(event, PERF_EF_UPDATE);
e7bef6b0
DM
818
819 /* Shift remaining entries down into
820 * the existing slot.
821 */
822 while (++i < cpuc->n_events) {
823 cpuc->event[i - 1] = cpuc->event[i];
824 cpuc->events[i - 1] = cpuc->events[i];
825 cpuc->current_idx[i - 1] =
826 cpuc->current_idx[i];
827 }
828
e7bef6b0 829 perf_event_update_userpage(event);
59abbd1e 830
e7bef6b0
DM
831 cpuc->n_events--;
832 break;
833 }
834 }
59abbd1e 835
33696fc0 836 perf_pmu_enable(event->pmu);
e7bef6b0
DM
837 local_irq_restore(flags);
838}
839
cdd6c482 840static void sparc_pmu_read(struct perf_event *event)
59abbd1e 841{
e7bef6b0
DM
842 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
843 int idx = active_event_index(cpuc, event);
cdd6c482 844 struct hw_perf_event *hwc = &event->hw;
d1751388 845
e7bef6b0 846 sparc_perf_event_update(event, hwc, idx);
59abbd1e
DM
847}
848
cdd6c482 849static atomic_t active_events = ATOMIC_INIT(0);
59abbd1e
DM
850static DEFINE_MUTEX(pmc_grab_mutex);
851
d1751388
DM
852static void perf_stop_nmi_watchdog(void *unused)
853{
854 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
855
856 stop_nmi_watchdog(NULL);
857 cpuc->pcr = pcr_ops->read();
858}
859
cdd6c482 860void perf_event_grab_pmc(void)
59abbd1e 861{
cdd6c482 862 if (atomic_inc_not_zero(&active_events))
59abbd1e
DM
863 return;
864
865 mutex_lock(&pmc_grab_mutex);
cdd6c482 866 if (atomic_read(&active_events) == 0) {
59abbd1e 867 if (atomic_read(&nmi_active) > 0) {
d1751388 868 on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
59abbd1e
DM
869 BUG_ON(atomic_read(&nmi_active) != 0);
870 }
cdd6c482 871 atomic_inc(&active_events);
59abbd1e
DM
872 }
873 mutex_unlock(&pmc_grab_mutex);
874}
875
cdd6c482 876void perf_event_release_pmc(void)
59abbd1e 877{
cdd6c482 878 if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
59abbd1e
DM
879 if (atomic_read(&nmi_active) == 0)
880 on_each_cpu(start_nmi_watchdog, NULL, 1);
881 mutex_unlock(&pmc_grab_mutex);
882 }
883}
884
2ce4da2e
DM
885static const struct perf_event_map *sparc_map_cache_event(u64 config)
886{
887 unsigned int cache_type, cache_op, cache_result;
888 const struct perf_event_map *pmap;
889
890 if (!sparc_pmu->cache_map)
891 return ERR_PTR(-ENOENT);
892
893 cache_type = (config >> 0) & 0xff;
894 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
895 return ERR_PTR(-EINVAL);
896
897 cache_op = (config >> 8) & 0xff;
898 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
899 return ERR_PTR(-EINVAL);
900
901 cache_result = (config >> 16) & 0xff;
902 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
903 return ERR_PTR(-EINVAL);
904
905 pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
906
907 if (pmap->encoding == CACHE_OP_UNSUPPORTED)
908 return ERR_PTR(-ENOENT);
909
910 if (pmap->encoding == CACHE_OP_NONSENSE)
911 return ERR_PTR(-EINVAL);
912
913 return pmap;
914}
915
cdd6c482 916static void hw_perf_event_destroy(struct perf_event *event)
59abbd1e 917{
cdd6c482 918 perf_event_release_pmc();
59abbd1e
DM
919}
920
a72a8a5f
DM
921/* Make sure all events can be scheduled into the hardware at
922 * the same time. This is simplified by the fact that we only
923 * need to support 2 simultaneous HW events.
e7bef6b0
DM
924 *
925 * As a side effect, the evts[]->hw.idx values will be assigned
926 * on success. These are pending indexes. When the events are
927 * actually programmed into the chip, these values will propagate
928 * to the per-cpu cpuc->current_idx[] slots, see the code in
929 * maybe_change_configuration() for details.
a72a8a5f 930 */
e7bef6b0
DM
931static int sparc_check_constraints(struct perf_event **evts,
932 unsigned long *events, int n_ev)
a72a8a5f 933{
e7bef6b0
DM
934 u8 msk0 = 0, msk1 = 0;
935 int idx0 = 0;
936
937 /* This case is possible when we are invoked from
938 * hw_perf_group_sched_in().
939 */
940 if (!n_ev)
941 return 0;
942
15ac9a39 943 if (n_ev > MAX_HWEVENTS)
e7bef6b0
DM
944 return -1;
945
946 msk0 = perf_event_get_msk(events[0]);
947 if (n_ev == 1) {
948 if (msk0 & PIC_LOWER)
949 idx0 = 1;
950 goto success;
951 }
952 BUG_ON(n_ev != 2);
953 msk1 = perf_event_get_msk(events[1]);
954
955 /* If both events can go on any counter, OK. */
956 if (msk0 == (PIC_UPPER | PIC_LOWER) &&
957 msk1 == (PIC_UPPER | PIC_LOWER))
958 goto success;
959
960 /* If one event is limited to a specific counter,
961 * and the other can go on both, OK.
962 */
963 if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
964 msk1 == (PIC_UPPER | PIC_LOWER)) {
965 if (msk0 & PIC_LOWER)
966 idx0 = 1;
967 goto success;
a72a8a5f
DM
968 }
969
e7bef6b0
DM
970 if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
971 msk0 == (PIC_UPPER | PIC_LOWER)) {
972 if (msk1 & PIC_UPPER)
973 idx0 = 1;
974 goto success;
975 }
976
977 /* If the events are fixed to different counters, OK. */
978 if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
979 (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
980 if (msk0 & PIC_LOWER)
981 idx0 = 1;
982 goto success;
983 }
984
985 /* Otherwise, there is a conflict. */
a72a8a5f 986 return -1;
e7bef6b0
DM
987
988success:
989 evts[0]->hw.idx = idx0;
990 if (n_ev == 2)
991 evts[1]->hw.idx = idx0 ^ 1;
992 return 0;
a72a8a5f
DM
993}
994
01552f76
DM
995static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
996{
997 int eu = 0, ek = 0, eh = 0;
998 struct perf_event *event;
999 int i, n, first;
1000
1001 n = n_prev + n_new;
1002 if (n <= 1)
1003 return 0;
1004
1005 first = 1;
1006 for (i = 0; i < n; i++) {
1007 event = evts[i];
1008 if (first) {
1009 eu = event->attr.exclude_user;
1010 ek = event->attr.exclude_kernel;
1011 eh = event->attr.exclude_hv;
1012 first = 0;
1013 } else if (event->attr.exclude_user != eu ||
1014 event->attr.exclude_kernel != ek ||
1015 event->attr.exclude_hv != eh) {
1016 return -EAGAIN;
1017 }
1018 }
1019
1020 return 0;
1021}
1022
1023static int collect_events(struct perf_event *group, int max_count,
e7bef6b0
DM
1024 struct perf_event *evts[], unsigned long *events,
1025 int *current_idx)
01552f76
DM
1026{
1027 struct perf_event *event;
1028 int n = 0;
1029
1030 if (!is_software_event(group)) {
1031 if (n >= max_count)
1032 return -1;
1033 evts[n] = group;
e7bef6b0
DM
1034 events[n] = group->hw.event_base;
1035 current_idx[n++] = PIC_NO_INDEX;
01552f76
DM
1036 }
1037 list_for_each_entry(event, &group->sibling_list, group_entry) {
1038 if (!is_software_event(event) &&
1039 event->state != PERF_EVENT_STATE_OFF) {
1040 if (n >= max_count)
1041 return -1;
1042 evts[n] = event;
e7bef6b0
DM
1043 events[n] = event->hw.event_base;
1044 current_idx[n++] = PIC_NO_INDEX;
01552f76
DM
1045 }
1046 }
1047 return n;
1048}
1049
a4eaf7f1 1050static int sparc_pmu_add(struct perf_event *event, int ef_flags)
e7bef6b0
DM
1051{
1052 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1053 int n0, ret = -EAGAIN;
1054 unsigned long flags;
1055
1056 local_irq_save(flags);
33696fc0 1057 perf_pmu_disable(event->pmu);
e7bef6b0
DM
1058
1059 n0 = cpuc->n_events;
15ac9a39 1060 if (n0 >= MAX_HWEVENTS)
e7bef6b0
DM
1061 goto out;
1062
1063 cpuc->event[n0] = event;
1064 cpuc->events[n0] = event->hw.event_base;
1065 cpuc->current_idx[n0] = PIC_NO_INDEX;
1066
a4eaf7f1
PZ
1067 event->hw.state = PERF_HES_UPTODATE;
1068 if (!(ef_flags & PERF_EF_START))
1069 event->hw.state |= PERF_HES_STOPPED;
1070
a13c3afd
LM
1071 /*
1072 * If group events scheduling transaction was started,
25985edc 1073 * skip the schedulability test here, it will be performed
a13c3afd
LM
1074 * at commit time(->commit_txn) as a whole
1075 */
8d2cacbb 1076 if (cpuc->group_flag & PERF_EVENT_TXN)
a13c3afd
LM
1077 goto nocheck;
1078
e7bef6b0
DM
1079 if (check_excludes(cpuc->event, n0, 1))
1080 goto out;
1081 if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1082 goto out;
1083
a13c3afd 1084nocheck:
e7bef6b0
DM
1085 cpuc->n_events++;
1086 cpuc->n_added++;
1087
1088 ret = 0;
1089out:
33696fc0 1090 perf_pmu_enable(event->pmu);
e7bef6b0
DM
1091 local_irq_restore(flags);
1092 return ret;
1093}
1094
b0a873eb 1095static int sparc_pmu_event_init(struct perf_event *event)
59abbd1e 1096{
cdd6c482 1097 struct perf_event_attr *attr = &event->attr;
01552f76 1098 struct perf_event *evts[MAX_HWEVENTS];
cdd6c482 1099 struct hw_perf_event *hwc = &event->hw;
a72a8a5f 1100 unsigned long events[MAX_HWEVENTS];
e7bef6b0 1101 int current_idx_dmy[MAX_HWEVENTS];
59abbd1e 1102 const struct perf_event_map *pmap;
01552f76 1103 int n;
59abbd1e
DM
1104
1105 if (atomic_read(&nmi_active) < 0)
1106 return -ENODEV;
1107
b0a873eb
PZ
1108 switch (attr->type) {
1109 case PERF_TYPE_HARDWARE:
2ce4da2e
DM
1110 if (attr->config >= sparc_pmu->max_events)
1111 return -EINVAL;
1112 pmap = sparc_pmu->event_map(attr->config);
b0a873eb
PZ
1113 break;
1114
1115 case PERF_TYPE_HW_CACHE:
2ce4da2e
DM
1116 pmap = sparc_map_cache_event(attr->config);
1117 if (IS_ERR(pmap))
1118 return PTR_ERR(pmap);
b0a873eb
PZ
1119 break;
1120
1121 case PERF_TYPE_RAW:
d0303d71
IM
1122 pmap = NULL;
1123 break;
59abbd1e 1124
b0a873eb
PZ
1125 default:
1126 return -ENOENT;
1127
1128 }
1129
b343ae51
DM
1130 if (pmap) {
1131 hwc->event_base = perf_event_encode(pmap);
1132 } else {
d0303d71
IM
1133 /*
1134 * User gives us "(encoding << 16) | pic_mask" for
b343ae51
DM
1135 * PERF_TYPE_RAW events.
1136 */
1137 hwc->event_base = attr->config;
1138 }
1139
e7bef6b0 1140 /* We save the enable bits in the config_base. */
496c07e3 1141 hwc->config_base = sparc_pmu->irq_bit;
59abbd1e
DM
1142 if (!attr->exclude_user)
1143 hwc->config_base |= PCR_UTRACE;
1144 if (!attr->exclude_kernel)
1145 hwc->config_base |= PCR_STRACE;
91b9286d
DM
1146 if (!attr->exclude_hv)
1147 hwc->config_base |= sparc_pmu->hv_bit;
59abbd1e 1148
01552f76
DM
1149 n = 0;
1150 if (event->group_leader != event) {
1151 n = collect_events(event->group_leader,
15ac9a39 1152 MAX_HWEVENTS - 1,
e7bef6b0 1153 evts, events, current_idx_dmy);
01552f76
DM
1154 if (n < 0)
1155 return -EINVAL;
1156 }
a72a8a5f 1157 events[n] = hwc->event_base;
01552f76
DM
1158 evts[n] = event;
1159
1160 if (check_excludes(evts, n, 1))
1161 return -EINVAL;
1162
e7bef6b0 1163 if (sparc_check_constraints(evts, events, n + 1))
a72a8a5f
DM
1164 return -EINVAL;
1165
e7bef6b0
DM
1166 hwc->idx = PIC_NO_INDEX;
1167
01552f76
DM
1168 /* Try to do all error checking before this point, as unwinding
1169 * state after grabbing the PMC is difficult.
1170 */
1171 perf_event_grab_pmc();
1172 event->destroy = hw_perf_event_destroy;
1173
59abbd1e
DM
1174 if (!hwc->sample_period) {
1175 hwc->sample_period = MAX_PERIOD;
1176 hwc->last_period = hwc->sample_period;
e7850595 1177 local64_set(&hwc->period_left, hwc->sample_period);
59abbd1e
DM
1178 }
1179
59abbd1e
DM
1180 return 0;
1181}
1182
a13c3afd
LM
1183/*
1184 * Start group events scheduling transaction
1185 * Set the flag to make pmu::enable() not perform the
1186 * schedulability test, it will be performed at commit time
1187 */
51b0fe39 1188static void sparc_pmu_start_txn(struct pmu *pmu)
a13c3afd
LM
1189{
1190 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1191
33696fc0 1192 perf_pmu_disable(pmu);
8d2cacbb 1193 cpuhw->group_flag |= PERF_EVENT_TXN;
a13c3afd
LM
1194}
1195
1196/*
1197 * Stop group events scheduling transaction
1198 * Clear the flag and pmu::enable() will perform the
1199 * schedulability test.
1200 */
51b0fe39 1201static void sparc_pmu_cancel_txn(struct pmu *pmu)
a13c3afd
LM
1202{
1203 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1204
8d2cacbb 1205 cpuhw->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1206 perf_pmu_enable(pmu);
a13c3afd
LM
1207}
1208
1209/*
1210 * Commit group events scheduling transaction
1211 * Perform the group schedulability test as a whole
1212 * Return 0 if success
1213 */
51b0fe39 1214static int sparc_pmu_commit_txn(struct pmu *pmu)
a13c3afd
LM
1215{
1216 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1217 int n;
1218
1219 if (!sparc_pmu)
1220 return -EINVAL;
1221
1222 cpuc = &__get_cpu_var(cpu_hw_events);
1223 n = cpuc->n_events;
1224 if (check_excludes(cpuc->event, 0, n))
1225 return -EINVAL;
1226 if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1227 return -EAGAIN;
1228
8d2cacbb 1229 cpuc->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1230 perf_pmu_enable(pmu);
a13c3afd
LM
1231 return 0;
1232}
1233
51b0fe39 1234static struct pmu pmu = {
a4eaf7f1
PZ
1235 .pmu_enable = sparc_pmu_enable,
1236 .pmu_disable = sparc_pmu_disable,
b0a873eb 1237 .event_init = sparc_pmu_event_init,
a4eaf7f1
PZ
1238 .add = sparc_pmu_add,
1239 .del = sparc_pmu_del,
1240 .start = sparc_pmu_start,
1241 .stop = sparc_pmu_stop,
59abbd1e 1242 .read = sparc_pmu_read,
a13c3afd
LM
1243 .start_txn = sparc_pmu_start_txn,
1244 .cancel_txn = sparc_pmu_cancel_txn,
1245 .commit_txn = sparc_pmu_commit_txn,
59abbd1e
DM
1246};
1247
cdd6c482 1248void perf_event_print_debug(void)
59abbd1e
DM
1249{
1250 unsigned long flags;
1251 u64 pcr, pic;
1252 int cpu;
1253
1254 if (!sparc_pmu)
1255 return;
1256
1257 local_irq_save(flags);
1258
1259 cpu = smp_processor_id();
1260
1261 pcr = pcr_ops->read();
1262 read_pic(pic);
1263
1264 pr_info("\n");
1265 pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1266 cpu, pcr, pic);
1267
1268 local_irq_restore(flags);
1269}
1270
cdd6c482 1271static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
d29862f0 1272 unsigned long cmd, void *__args)
59abbd1e
DM
1273{
1274 struct die_args *args = __args;
1275 struct perf_sample_data data;
cdd6c482 1276 struct cpu_hw_events *cpuc;
59abbd1e 1277 struct pt_regs *regs;
e7bef6b0 1278 int i;
59abbd1e 1279
cdd6c482 1280 if (!atomic_read(&active_events))
59abbd1e
DM
1281 return NOTIFY_DONE;
1282
1283 switch (cmd) {
1284 case DIE_NMI:
1285 break;
1286
1287 default:
1288 return NOTIFY_DONE;
1289 }
1290
1291 regs = args->regs;
1292
dc1d628a 1293 perf_sample_data_init(&data, 0);
59abbd1e 1294
cdd6c482 1295 cpuc = &__get_cpu_var(cpu_hw_events);
e04ed38d
DM
1296
1297 /* If the PMU has the TOE IRQ enable bits, we need to do a
1298 * dummy write to the %pcr to clear the overflow bits and thus
1299 * the interrupt.
1300 *
1301 * Do this before we peek at the counters to determine
1302 * overflow so we don't lose any events.
1303 */
1304 if (sparc_pmu->irq_bit)
1305 pcr_ops->write(cpuc->pcr);
1306
e7bef6b0
DM
1307 for (i = 0; i < cpuc->n_events; i++) {
1308 struct perf_event *event = cpuc->event[i];
1309 int idx = cpuc->current_idx[i];
cdd6c482 1310 struct hw_perf_event *hwc;
59abbd1e
DM
1311 u64 val;
1312
cdd6c482
IM
1313 hwc = &event->hw;
1314 val = sparc_perf_event_update(event, hwc, idx);
59abbd1e
DM
1315 if (val & (1ULL << 31))
1316 continue;
1317
cdd6c482
IM
1318 data.period = event->hw.last_period;
1319 if (!sparc_perf_event_set_period(event, hwc, idx))
59abbd1e
DM
1320 continue;
1321
a8b0ca17 1322 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1323 sparc_pmu_stop(event, 0);
59abbd1e
DM
1324 }
1325
1326 return NOTIFY_STOP;
1327}
1328
cdd6c482
IM
1329static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1330 .notifier_call = perf_event_nmi_handler,
59abbd1e
DM
1331};
1332
1333static bool __init supported_pmu(void)
1334{
28e8f9be
DM
1335 if (!strcmp(sparc_pmu_type, "ultra3") ||
1336 !strcmp(sparc_pmu_type, "ultra3+") ||
1337 !strcmp(sparc_pmu_type, "ultra3i") ||
1338 !strcmp(sparc_pmu_type, "ultra4+")) {
1339 sparc_pmu = &ultra3_pmu;
59abbd1e
DM
1340 return true;
1341 }
7eebda60
DM
1342 if (!strcmp(sparc_pmu_type, "niagara")) {
1343 sparc_pmu = &niagara1_pmu;
1344 return true;
1345 }
b73d8847
DM
1346 if (!strcmp(sparc_pmu_type, "niagara2")) {
1347 sparc_pmu = &niagara2_pmu;
1348 return true;
1349 }
59abbd1e
DM
1350 return false;
1351}
1352
004417a6 1353int __init init_hw_perf_events(void)
59abbd1e 1354{
cdd6c482 1355 pr_info("Performance events: ");
59abbd1e
DM
1356
1357 if (!supported_pmu()) {
1358 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
004417a6 1359 return 0;
59abbd1e
DM
1360 }
1361
1362 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1363
2e80a82a 1364 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
cdd6c482 1365 register_die_notifier(&perf_event_nmi_notifier);
004417a6
PZ
1366
1367 return 0;
59abbd1e 1368}
efc70d24 1369early_initcall(init_hw_perf_events);
4f6dbe4a 1370
56962b44
FW
1371void perf_callchain_kernel(struct perf_callchain_entry *entry,
1372 struct pt_regs *regs)
4f6dbe4a
DM
1373{
1374 unsigned long ksp, fp;
667f0cee
DM
1375#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1376 int graph = 0;
1377#endif
4f6dbe4a 1378
56962b44
FW
1379 stack_trace_flush();
1380
70791ce9 1381 perf_callchain_store(entry, regs->tpc);
4f6dbe4a
DM
1382
1383 ksp = regs->u_regs[UREG_I6];
1384 fp = ksp + STACK_BIAS;
1385 do {
1386 struct sparc_stackf *sf;
1387 struct pt_regs *regs;
1388 unsigned long pc;
1389
1390 if (!kstack_valid(current_thread_info(), fp))
1391 break;
1392
1393 sf = (struct sparc_stackf *) fp;
1394 regs = (struct pt_regs *) (sf + 1);
1395
1396 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1397 if (user_mode(regs))
1398 break;
1399 pc = regs->tpc;
1400 fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1401 } else {
1402 pc = sf->callers_pc;
1403 fp = (unsigned long)sf->fp + STACK_BIAS;
1404 }
70791ce9 1405 perf_callchain_store(entry, pc);
667f0cee
DM
1406#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1407 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1408 int index = current->curr_ret_stack;
1409 if (current->ret_stack && index >= graph) {
1410 pc = current->ret_stack[index - graph].ret;
70791ce9 1411 perf_callchain_store(entry, pc);
667f0cee
DM
1412 graph++;
1413 }
1414 }
1415#endif
4f6dbe4a
DM
1416 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1417}
1418
56962b44
FW
1419static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1420 struct pt_regs *regs)
4f6dbe4a
DM
1421{
1422 unsigned long ufp;
1423
70791ce9 1424 perf_callchain_store(entry, regs->tpc);
4f6dbe4a
DM
1425
1426 ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1427 do {
1428 struct sparc_stackf *usf, sf;
1429 unsigned long pc;
1430
1431 usf = (struct sparc_stackf *) ufp;
1432 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1433 break;
1434
1435 pc = sf.callers_pc;
1436 ufp = (unsigned long)sf.fp + STACK_BIAS;
70791ce9 1437 perf_callchain_store(entry, pc);
4f6dbe4a
DM
1438 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1439}
1440
56962b44
FW
1441static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1442 struct pt_regs *regs)
4f6dbe4a
DM
1443{
1444 unsigned long ufp;
1445
70791ce9 1446 perf_callchain_store(entry, regs->tpc);
4f6dbe4a 1447
9e8307ec 1448 ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
4f6dbe4a
DM
1449 do {
1450 struct sparc_stackf32 *usf, sf;
1451 unsigned long pc;
1452
1453 usf = (struct sparc_stackf32 *) ufp;
1454 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1455 break;
1456
1457 pc = sf.callers_pc;
1458 ufp = (unsigned long)sf.fp;
70791ce9 1459 perf_callchain_store(entry, pc);
4f6dbe4a
DM
1460 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1461}
1462
56962b44
FW
1463void
1464perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
4f6dbe4a 1465{
56962b44
FW
1466 flushw_user();
1467 if (test_thread_flag(TIF_32BIT))
1468 perf_callchain_user_32(entry, regs);
1469 else
1470 perf_callchain_user_64(entry, regs);
4f6dbe4a 1471}