]> git.ipfire.org Git - thirdparty/linux.git/blame - arch/x86/crypto/aesni-intel_asm.S
Merge tag 'x86-fpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[thirdparty/linux.git] / arch / x86 / crypto / aesni-intel_asm.S
CommitLineData
2874c5fd 1/* SPDX-License-Identifier: GPL-2.0-or-later */
54b6a1bd
HY
2/*
3 * Implement AES algorithm in Intel AES-NI instructions.
4 *
5 * The white paper of AES-NI instructions can be downloaded from:
6 * http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf
7 *
8 * Copyright (C) 2008, Intel Corp.
9 * Author: Huang Ying <ying.huang@intel.com>
10 * Vinodh Gopal <vinodh.gopal@intel.com>
11 * Kahraman Akdemir
12 *
0bd82f5f
TS
13 * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
14 * interface for 64-bit kernels.
15 * Authors: Erdinc Ozturk (erdinc.ozturk@intel.com)
16 * Aidan O'Mahony (aidan.o.mahony@intel.com)
17 * Adrian Hoban <adrian.hoban@intel.com>
18 * James Guilford (james.guilford@intel.com)
19 * Gabriele Paoloni <gabriele.paoloni@intel.com>
20 * Tadeusz Struk (tadeusz.struk@intel.com)
21 * Wajdi Feghali (wajdi.k.feghali@intel.com)
22 * Copyright (c) 2010, Intel Corporation.
23 *
0d258efb
MK
24 * Ported x86_64 version to x86:
25 * Author: Mathias Krause <minipli@googlemail.com>
54b6a1bd
HY
26 */
27
28#include <linux/linkage.h>
b369e521 29#include <asm/inst.h>
8691ccd7 30#include <asm/frame.h>
9697fa39 31#include <asm/nospec-branch.h>
54b6a1bd 32
e31ac32d
TM
33/*
34 * The following macros are used to move an (un)aligned 16 byte value to/from
35 * an XMM register. This can done for either FP or integer values, for FP use
36 * movaps (move aligned packed single) or integer use movdqa (move double quad
37 * aligned). It doesn't make a performance difference which instruction is used
38 * since Nehalem (original Core i7) was released. However, the movaps is a byte
39 * shorter, so that is the one we'll use for now. (same for unaligned).
40 */
41#define MOVADQ movaps
42#define MOVUDQ movups
43
559ad0ff 44#ifdef __x86_64__
e31ac32d 45
e183914a
DV
46# constants in mergeable sections, linker can reorder and merge
47.section .rodata.cst16.gf128mul_x_ble_mask, "aM", @progbits, 16
c456a9cd
JK
48.align 16
49.Lgf128mul_x_ble_mask:
50 .octa 0x00000000000000010000000000000087
e183914a
DV
51.section .rodata.cst16.POLY, "aM", @progbits, 16
52.align 16
0bd82f5f 53POLY: .octa 0xC2000000000000000000000000000001
e183914a
DV
54.section .rodata.cst16.TWOONE, "aM", @progbits, 16
55.align 16
0bd82f5f
TS
56TWOONE: .octa 0x00000001000000000000000000000001
57
e183914a
DV
58.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
59.align 16
0bd82f5f 60SHUF_MASK: .octa 0x000102030405060708090A0B0C0D0E0F
e183914a
DV
61.section .rodata.cst16.MASK1, "aM", @progbits, 16
62.align 16
0bd82f5f 63MASK1: .octa 0x0000000000000000ffffffffffffffff
e183914a
DV
64.section .rodata.cst16.MASK2, "aM", @progbits, 16
65.align 16
0bd82f5f 66MASK2: .octa 0xffffffffffffffff0000000000000000
e183914a
DV
67.section .rodata.cst16.ONE, "aM", @progbits, 16
68.align 16
0bd82f5f 69ONE: .octa 0x00000000000000000000000000000001
e183914a
DV
70.section .rodata.cst16.F_MIN_MASK, "aM", @progbits, 16
71.align 16
0bd82f5f 72F_MIN_MASK: .octa 0xf1f2f3f4f5f6f7f8f9fafbfcfdfeff0
e183914a
DV
73.section .rodata.cst16.dec, "aM", @progbits, 16
74.align 16
0bd82f5f 75dec: .octa 0x1
e183914a
DV
76.section .rodata.cst16.enc, "aM", @progbits, 16
77.align 16
0bd82f5f
TS
78enc: .octa 0x2
79
e183914a
DV
80# order of these constants should not change.
81# more specifically, ALL_F should follow SHIFT_MASK,
82# and zero should follow ALL_F
83.section .rodata, "a", @progbits
84.align 16
85SHIFT_MASK: .octa 0x0f0e0d0c0b0a09080706050403020100
86ALL_F: .octa 0xffffffffffffffffffffffffffffffff
87 .octa 0x00000000000000000000000000000000
88
54b6a1bd
HY
89.text
90
0bd82f5f
TS
91
92#define STACK_OFFSET 8*3
0bd82f5f 93
9ee4a5df
DW
94#define AadHash 16*0
95#define AadLen 16*1
96#define InLen (16*1)+8
97#define PBlockEncKey 16*2
98#define OrigIV 16*3
99#define CurCount 16*4
100#define PBlockLen 16*5
1476db2d
DW
101#define HashKey 16*6 // store HashKey <<1 mod poly here
102#define HashKey_2 16*7 // store HashKey^2 <<1 mod poly here
103#define HashKey_3 16*8 // store HashKey^3 <<1 mod poly here
104#define HashKey_4 16*9 // store HashKey^4 <<1 mod poly here
105#define HashKey_k 16*10 // store XOR of High 64 bits and Low 64
106 // bits of HashKey <<1 mod poly here
107 //(for Karatsuba purposes)
108#define HashKey_2_k 16*11 // store XOR of High 64 bits and Low 64
109 // bits of HashKey^2 <<1 mod poly here
110 // (for Karatsuba purposes)
111#define HashKey_3_k 16*12 // store XOR of High 64 bits and Low 64
112 // bits of HashKey^3 <<1 mod poly here
113 // (for Karatsuba purposes)
114#define HashKey_4_k 16*13 // store XOR of High 64 bits and Low 64
115 // bits of HashKey^4 <<1 mod poly here
116 // (for Karatsuba purposes)
9ee4a5df 117
0bd82f5f
TS
118#define arg1 rdi
119#define arg2 rsi
120#define arg3 rdx
121#define arg4 rcx
122#define arg5 r8
123#define arg6 r9
1476db2d
DW
124#define arg7 STACK_OFFSET+8(%rsp)
125#define arg8 STACK_OFFSET+16(%rsp)
126#define arg9 STACK_OFFSET+24(%rsp)
127#define arg10 STACK_OFFSET+32(%rsp)
128#define arg11 STACK_OFFSET+40(%rsp)
e31ac32d 129#define keysize 2*15*16(%arg1)
559ad0ff 130#endif
0bd82f5f
TS
131
132
54b6a1bd
HY
133#define STATE1 %xmm0
134#define STATE2 %xmm4
135#define STATE3 %xmm5
136#define STATE4 %xmm6
137#define STATE STATE1
138#define IN1 %xmm1
139#define IN2 %xmm7
140#define IN3 %xmm8
141#define IN4 %xmm9
142#define IN IN1
143#define KEY %xmm2
144#define IV %xmm3
0d258efb 145
12387a46
HY
146#define BSWAP_MASK %xmm10
147#define CTR %xmm11
148#define INC %xmm12
54b6a1bd 149
c456a9cd
JK
150#define GF128MUL_MASK %xmm10
151
0d258efb
MK
152#ifdef __x86_64__
153#define AREG %rax
54b6a1bd
HY
154#define KEYP %rdi
155#define OUTP %rsi
0d258efb 156#define UKEYP OUTP
54b6a1bd
HY
157#define INP %rdx
158#define LEN %rcx
159#define IVP %r8
160#define KLEN %r9d
161#define T1 %r10
162#define TKEYP T1
163#define T2 %r11
12387a46 164#define TCTR_LOW T2
0d258efb
MK
165#else
166#define AREG %eax
167#define KEYP %edi
168#define OUTP AREG
169#define UKEYP OUTP
170#define INP %edx
171#define LEN %esi
172#define IVP %ebp
173#define KLEN %ebx
174#define T1 %ecx
175#define TKEYP T1
176#endif
54b6a1bd 177
6c2c86b3
DW
178.macro FUNC_SAVE
179 push %r12
180 push %r13
181 push %r14
6c2c86b3
DW
182#
183# states of %xmm registers %xmm6:%xmm15 not saved
184# all %xmm registers are clobbered
185#
6c2c86b3
DW
186.endm
187
188
189.macro FUNC_RESTORE
6c2c86b3
DW
190 pop %r14
191 pop %r13
192 pop %r12
193.endm
0bd82f5f 194
1476db2d
DW
195# Precompute hashkeys.
196# Input: Hash subkey.
197# Output: HashKeys stored in gcm_context_data. Only needs to be called
198# once per key.
199# clobbers r12, and tmp xmm registers.
fb8986e6
DW
200.macro PRECOMPUTE SUBKEY TMP1 TMP2 TMP3 TMP4 TMP5 TMP6 TMP7
201 mov \SUBKEY, %r12
1476db2d
DW
202 movdqu (%r12), \TMP3
203 movdqa SHUF_MASK(%rip), \TMP2
204 PSHUFB_XMM \TMP2, \TMP3
205
206 # precompute HashKey<<1 mod poly from the HashKey (required for GHASH)
207
208 movdqa \TMP3, \TMP2
209 psllq $1, \TMP3
210 psrlq $63, \TMP2
211 movdqa \TMP2, \TMP1
212 pslldq $8, \TMP2
213 psrldq $8, \TMP1
214 por \TMP2, \TMP3
215
216 # reduce HashKey<<1
217
218 pshufd $0x24, \TMP1, \TMP2
219 pcmpeqd TWOONE(%rip), \TMP2
220 pand POLY(%rip), \TMP2
221 pxor \TMP2, \TMP3
e5b954e8 222 movdqu \TMP3, HashKey(%arg2)
1476db2d
DW
223
224 movdqa \TMP3, \TMP5
225 pshufd $78, \TMP3, \TMP1
226 pxor \TMP3, \TMP1
e5b954e8 227 movdqu \TMP1, HashKey_k(%arg2)
1476db2d
DW
228
229 GHASH_MUL \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
230# TMP5 = HashKey^2<<1 (mod poly)
e5b954e8 231 movdqu \TMP5, HashKey_2(%arg2)
1476db2d
DW
232# HashKey_2 = HashKey^2<<1 (mod poly)
233 pshufd $78, \TMP5, \TMP1
234 pxor \TMP5, \TMP1
e5b954e8 235 movdqu \TMP1, HashKey_2_k(%arg2)
1476db2d
DW
236
237 GHASH_MUL \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
238# TMP5 = HashKey^3<<1 (mod poly)
e5b954e8 239 movdqu \TMP5, HashKey_3(%arg2)
1476db2d
DW
240 pshufd $78, \TMP5, \TMP1
241 pxor \TMP5, \TMP1
e5b954e8 242 movdqu \TMP1, HashKey_3_k(%arg2)
1476db2d
DW
243
244 GHASH_MUL \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
245# TMP5 = HashKey^3<<1 (mod poly)
e5b954e8 246 movdqu \TMP5, HashKey_4(%arg2)
1476db2d
DW
247 pshufd $78, \TMP5, \TMP1
248 pxor \TMP5, \TMP1
e5b954e8 249 movdqu \TMP1, HashKey_4_k(%arg2)
1476db2d 250.endm
7af964c2
DW
251
252# GCM_INIT initializes a gcm_context struct to prepare for encoding/decoding.
253# Clobbers rax, r10-r13 and xmm0-xmm6, %xmm13
fb8986e6
DW
254.macro GCM_INIT Iv SUBKEY AAD AADLEN
255 mov \AADLEN, %r11
9660474b 256 mov %r11, AadLen(%arg2) # ctx_data.aad_length = aad_length
a7bea830 257 xor %r11d, %r11d
9660474b
DW
258 mov %r11, InLen(%arg2) # ctx_data.in_length = 0
259 mov %r11, PBlockLen(%arg2) # ctx_data.partial_block_length = 0
260 mov %r11, PBlockEncKey(%arg2) # ctx_data.partial_block_enc_key = 0
fb8986e6 261 mov \Iv, %rax
9660474b
DW
262 movdqu (%rax), %xmm0
263 movdqu %xmm0, OrigIV(%arg2) # ctx_data.orig_IV = iv
264
265 movdqa SHUF_MASK(%rip), %xmm2
266 PSHUFB_XMM %xmm2, %xmm0
267 movdqu %xmm0, CurCount(%arg2) # ctx_data.current_counter = iv
268
fb8986e6 269 PRECOMPUTE \SUBKEY, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
e5b954e8 270 movdqu HashKey(%arg2), %xmm13
c594c540 271
fb8986e6
DW
272 CALC_AAD_HASH %xmm13, \AAD, \AADLEN, %xmm0, %xmm1, %xmm2, %xmm3, \
273 %xmm4, %xmm5, %xmm6
7af964c2
DW
274.endm
275
ba45833e
DW
276# GCM_ENC_DEC Encodes/Decodes given data. Assumes that the passed gcm_context
277# struct has been initialized by GCM_INIT.
278# Requires the input data be at least 1 byte long because of READ_PARTIAL_BLOCK
279# Clobbers rax, r10-r13, and xmm0-xmm15
280.macro GCM_ENC_DEC operation
9660474b 281 movdqu AadHash(%arg2), %xmm8
1476db2d 282 movdqu HashKey(%arg2), %xmm13
9660474b 283 add %arg5, InLen(%arg2)
ae952c5e 284
a7bea830 285 xor %r11d, %r11d # initialise the data pointer offset as zero
ae952c5e
DW
286 PARTIAL_BLOCK %arg3 %arg4 %arg5 %r11 %xmm8 \operation
287
288 sub %r11, %arg5 # sub partial block data used
9660474b 289 mov %arg5, %r13 # save the number of bytes
ae952c5e 290
9660474b
DW
291 and $-16, %r13 # %r13 = %r13 - (%r13 mod 16)
292 mov %r13, %r12
ba45833e
DW
293 # Encrypt/Decrypt first few blocks
294
295 and $(3<<4), %r12
296 jz _initial_num_blocks_is_0_\@
297 cmp $(2<<4), %r12
298 jb _initial_num_blocks_is_1_\@
299 je _initial_num_blocks_is_2_\@
300_initial_num_blocks_is_3_\@:
301 INITIAL_BLOCKS_ENC_DEC %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
302%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 5, 678, \operation
303 sub $48, %r13
304 jmp _initial_blocks_\@
305_initial_num_blocks_is_2_\@:
306 INITIAL_BLOCKS_ENC_DEC %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
307%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 6, 78, \operation
308 sub $32, %r13
309 jmp _initial_blocks_\@
310_initial_num_blocks_is_1_\@:
311 INITIAL_BLOCKS_ENC_DEC %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
312%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 7, 8, \operation
313 sub $16, %r13
314 jmp _initial_blocks_\@
315_initial_num_blocks_is_0_\@:
316 INITIAL_BLOCKS_ENC_DEC %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
317%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 8, 0, \operation
318_initial_blocks_\@:
319
320 # Main loop - Encrypt/Decrypt remaining blocks
321
322 cmp $0, %r13
323 je _zero_cipher_left_\@
324 sub $64, %r13
325 je _four_cipher_left_\@
326_crypt_by_4_\@:
327 GHASH_4_ENCRYPT_4_PARALLEL_\operation %xmm9, %xmm10, %xmm11, %xmm12, \
328 %xmm13, %xmm14, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, \
329 %xmm7, %xmm8, enc
330 add $64, %r11
331 sub $64, %r13
332 jne _crypt_by_4_\@
333_four_cipher_left_\@:
334 GHASH_LAST_4 %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, \
335%xmm15, %xmm1, %xmm2, %xmm3, %xmm4, %xmm8
336_zero_cipher_left_\@:
9660474b
DW
337 movdqu %xmm8, AadHash(%arg2)
338 movdqu %xmm0, CurCount(%arg2)
339
9ee4a5df
DW
340 mov %arg5, %r13
341 and $15, %r13 # %r13 = arg5 (mod 16)
ba45833e
DW
342 je _multiple_of_16_bytes_\@
343
9660474b
DW
344 mov %r13, PBlockLen(%arg2)
345
ba45833e
DW
346 # Handle the last <16 Byte block separately
347 paddd ONE(%rip), %xmm0 # INCR CNT to get Yn
9660474b 348 movdqu %xmm0, CurCount(%arg2)
9ee4a5df 349 movdqa SHUF_MASK(%rip), %xmm10
ba45833e
DW
350 PSHUFB_XMM %xmm10, %xmm0
351
352 ENCRYPT_SINGLE_BLOCK %xmm0, %xmm1 # Encrypt(K, Yn)
9660474b 353 movdqu %xmm0, PBlockEncKey(%arg2)
ba45833e 354
933d6aef
DW
355 cmp $16, %arg5
356 jge _large_enough_update_\@
357
9ee4a5df 358 lea (%arg4,%r11,1), %r10
ba45833e
DW
359 mov %r13, %r12
360 READ_PARTIAL_BLOCK %r10 %r12 %xmm2 %xmm1
933d6aef
DW
361 jmp _data_read_\@
362
363_large_enough_update_\@:
364 sub $16, %r11
365 add %r13, %r11
366
367 # receive the last <16 Byte block
368 movdqu (%arg4, %r11, 1), %xmm1
ba45833e 369
933d6aef
DW
370 sub %r13, %r11
371 add $16, %r11
372
373 lea SHIFT_MASK+16(%rip), %r12
374 # adjust the shuffle mask pointer to be able to shift 16-r13 bytes
375 # (r13 is the number of bytes in plaintext mod 16)
376 sub %r13, %r12
377 # get the appropriate shuffle mask
378 movdqu (%r12), %xmm2
379 # shift right 16-r13 bytes
380 PSHUFB_XMM %xmm2, %xmm1
381
382_data_read_\@:
ba45833e
DW
383 lea ALL_F+16(%rip), %r12
384 sub %r13, %r12
933d6aef 385
ba45833e
DW
386.ifc \operation, dec
387 movdqa %xmm1, %xmm2
388.endif
389 pxor %xmm1, %xmm0 # XOR Encrypt(K, Yn)
390 movdqu (%r12), %xmm1
391 # get the appropriate mask to mask out top 16-r13 bytes of xmm0
392 pand %xmm1, %xmm0 # mask out top 16-r13 bytes of xmm0
393.ifc \operation, dec
394 pand %xmm1, %xmm2
395 movdqa SHUF_MASK(%rip), %xmm10
396 PSHUFB_XMM %xmm10 ,%xmm2
397
398 pxor %xmm2, %xmm8
399.else
400 movdqa SHUF_MASK(%rip), %xmm10
401 PSHUFB_XMM %xmm10,%xmm0
402
403 pxor %xmm0, %xmm8
404.endif
405
9660474b 406 movdqu %xmm8, AadHash(%arg2)
ba45833e
DW
407.ifc \operation, enc
408 # GHASH computation for the last <16 byte block
409 movdqa SHUF_MASK(%rip), %xmm10
410 # shuffle xmm0 back to output as ciphertext
411 PSHUFB_XMM %xmm10, %xmm0
412.endif
413
414 # Output %r13 bytes
415 MOVQ_R64_XMM %xmm0, %rax
416 cmp $8, %r13
417 jle _less_than_8_bytes_left_\@
9ee4a5df 418 mov %rax, (%arg3 , %r11, 1)
ba45833e
DW
419 add $8, %r11
420 psrldq $8, %xmm0
421 MOVQ_R64_XMM %xmm0, %rax
422 sub $8, %r13
423_less_than_8_bytes_left_\@:
9ee4a5df 424 mov %al, (%arg3, %r11, 1)
ba45833e
DW
425 add $1, %r11
426 shr $8, %rax
427 sub $1, %r13
428 jne _less_than_8_bytes_left_\@
429_multiple_of_16_bytes_\@:
430.endm
431
adcadab3
DW
432# GCM_COMPLETE Finishes update of tag of last partial block
433# Output: Authorization Tag (AUTH_TAG)
434# Clobbers rax, r10-r12, and xmm0, xmm1, xmm5-xmm15
fb8986e6 435.macro GCM_COMPLETE AUTHTAG AUTHTAGLEN
9660474b 436 movdqu AadHash(%arg2), %xmm8
1476db2d 437 movdqu HashKey(%arg2), %xmm13
e2e34b08
DW
438
439 mov PBlockLen(%arg2), %r12
440
441 cmp $0, %r12
442 je _partial_done\@
443
444 GHASH_MUL %xmm8, %xmm13, %xmm9, %xmm10, %xmm11, %xmm5, %xmm6
445
446_partial_done\@:
9660474b 447 mov AadLen(%arg2), %r12 # %r13 = aadLen (number of bytes)
adcadab3
DW
448 shl $3, %r12 # convert into number of bits
449 movd %r12d, %xmm15 # len(A) in %xmm15
9660474b
DW
450 mov InLen(%arg2), %r12
451 shl $3, %r12 # len(C) in bits (*128)
452 MOVQ_R64_XMM %r12, %xmm1
453
adcadab3
DW
454 pslldq $8, %xmm15 # %xmm15 = len(A)||0x0000000000000000
455 pxor %xmm1, %xmm15 # %xmm15 = len(A)||len(C)
456 pxor %xmm15, %xmm8
457 GHASH_MUL %xmm8, %xmm13, %xmm9, %xmm10, %xmm11, %xmm5, %xmm6
458 # final GHASH computation
459 movdqa SHUF_MASK(%rip), %xmm10
460 PSHUFB_XMM %xmm10, %xmm8
461
9660474b 462 movdqu OrigIV(%arg2), %xmm0 # %xmm0 = Y0
adcadab3
DW
463 ENCRYPT_SINGLE_BLOCK %xmm0, %xmm1 # E(K, Y0)
464 pxor %xmm8, %xmm0
465_return_T_\@:
fb8986e6
DW
466 mov \AUTHTAG, %r10 # %r10 = authTag
467 mov \AUTHTAGLEN, %r11 # %r11 = auth_tag_len
adcadab3
DW
468 cmp $16, %r11
469 je _T_16_\@
470 cmp $8, %r11
471 jl _T_4_\@
472_T_8_\@:
473 MOVQ_R64_XMM %xmm0, %rax
474 mov %rax, (%r10)
475 add $8, %r10
476 sub $8, %r11
477 psrldq $8, %xmm0
478 cmp $0, %r11
479 je _return_T_done_\@
480_T_4_\@:
481 movd %xmm0, %eax
482 mov %eax, (%r10)
483 add $4, %r10
484 sub $4, %r11
485 psrldq $4, %xmm0
486 cmp $0, %r11
487 je _return_T_done_\@
488_T_123_\@:
489 movd %xmm0, %eax
490 cmp $2, %r11
491 jl _T_1_\@
492 mov %ax, (%r10)
493 cmp $2, %r11
494 je _return_T_done_\@
495 add $2, %r10
496 sar $16, %eax
497_T_1_\@:
498 mov %al, (%r10)
499 jmp _return_T_done_\@
500_T_16_\@:
501 movdqu %xmm0, (%r10)
502_return_T_done_\@:
503.endm
504
559ad0ff 505#ifdef __x86_64__
0bd82f5f
TS
506/* GHASH_MUL MACRO to implement: Data*HashKey mod (128,127,126,121,0)
507*
508*
509* Input: A and B (128-bits each, bit-reflected)
510* Output: C = A*B*x mod poly, (i.e. >>1 )
511* To compute GH = GH*HashKey mod poly, give HK = HashKey<<1 mod poly as input
512* GH = GH * HK * x mod poly which is equivalent to GH*HashKey mod poly.
513*
514*/
515.macro GHASH_MUL GH HK TMP1 TMP2 TMP3 TMP4 TMP5
516 movdqa \GH, \TMP1
517 pshufd $78, \GH, \TMP2
518 pshufd $78, \HK, \TMP3
519 pxor \GH, \TMP2 # TMP2 = a1+a0
520 pxor \HK, \TMP3 # TMP3 = b1+b0
521 PCLMULQDQ 0x11, \HK, \TMP1 # TMP1 = a1*b1
522 PCLMULQDQ 0x00, \HK, \GH # GH = a0*b0
523 PCLMULQDQ 0x00, \TMP3, \TMP2 # TMP2 = (a0+a1)*(b1+b0)
524 pxor \GH, \TMP2
525 pxor \TMP1, \TMP2 # TMP2 = (a0*b0)+(a1*b0)
526 movdqa \TMP2, \TMP3
527 pslldq $8, \TMP3 # left shift TMP3 2 DWs
528 psrldq $8, \TMP2 # right shift TMP2 2 DWs
529 pxor \TMP3, \GH
530 pxor \TMP2, \TMP1 # TMP2:GH holds the result of GH*HK
531
532 # first phase of the reduction
533
534 movdqa \GH, \TMP2
535 movdqa \GH, \TMP3
536 movdqa \GH, \TMP4 # copy GH into TMP2,TMP3 and TMP4
537 # in in order to perform
538 # independent shifts
539 pslld $31, \TMP2 # packed right shift <<31
540 pslld $30, \TMP3 # packed right shift <<30
541 pslld $25, \TMP4 # packed right shift <<25
542 pxor \TMP3, \TMP2 # xor the shifted versions
543 pxor \TMP4, \TMP2
544 movdqa \TMP2, \TMP5
545 psrldq $4, \TMP5 # right shift TMP5 1 DW
546 pslldq $12, \TMP2 # left shift TMP2 3 DWs
547 pxor \TMP2, \GH
548
549 # second phase of the reduction
550
551 movdqa \GH,\TMP2 # copy GH into TMP2,TMP3 and TMP4
552 # in in order to perform
553 # independent shifts
554 movdqa \GH,\TMP3
555 movdqa \GH,\TMP4
556 psrld $1,\TMP2 # packed left shift >>1
557 psrld $2,\TMP3 # packed left shift >>2
558 psrld $7,\TMP4 # packed left shift >>7
559 pxor \TMP3,\TMP2 # xor the shifted versions
560 pxor \TMP4,\TMP2
561 pxor \TMP5, \TMP2
562 pxor \TMP2, \GH
563 pxor \TMP1, \GH # result is in TMP1
564.endm
565
b20209c9
JS
566# Reads DLEN bytes starting at DPTR and stores in XMMDst
567# where 0 < DLEN < 16
568# Clobbers %rax, DLEN and XMM1
569.macro READ_PARTIAL_BLOCK DPTR DLEN XMM1 XMMDst
570 cmp $8, \DLEN
571 jl _read_lt8_\@
572 mov (\DPTR), %rax
573 MOVQ_R64_XMM %rax, \XMMDst
574 sub $8, \DLEN
575 jz _done_read_partial_block_\@
576 xor %eax, %eax
577_read_next_byte_\@:
578 shl $8, %rax
579 mov 7(\DPTR, \DLEN, 1), %al
580 dec \DLEN
581 jnz _read_next_byte_\@
582 MOVQ_R64_XMM %rax, \XMM1
583 pslldq $8, \XMM1
584 por \XMM1, \XMMDst
585 jmp _done_read_partial_block_\@
586_read_lt8_\@:
587 xor %eax, %eax
588_read_next_byte_lt8_\@:
589 shl $8, %rax
590 mov -1(\DPTR, \DLEN, 1), %al
591 dec \DLEN
592 jnz _read_next_byte_lt8_\@
593 MOVQ_R64_XMM %rax, \XMMDst
594_done_read_partial_block_\@:
595.endm
596
c594c540
DW
597# CALC_AAD_HASH: Calculates the hash of the data which will not be encrypted.
598# clobbers r10-11, xmm14
fb8986e6 599.macro CALC_AAD_HASH HASHKEY AAD AADLEN TMP1 TMP2 TMP3 TMP4 TMP5 \
c594c540
DW
600 TMP6 TMP7
601 MOVADQ SHUF_MASK(%rip), %xmm14
fb8986e6
DW
602 mov \AAD, %r10 # %r10 = AAD
603 mov \AADLEN, %r11 # %r11 = aadLen
c594c540
DW
604 pxor \TMP7, \TMP7
605 pxor \TMP6, \TMP6
0487ccac
SD
606
607 cmp $16, %r11
e1fd316f
DW
608 jl _get_AAD_rest\@
609_get_AAD_blocks\@:
c594c540
DW
610 movdqu (%r10), \TMP7
611 PSHUFB_XMM %xmm14, \TMP7 # byte-reflect the AAD data
612 pxor \TMP7, \TMP6
613 GHASH_MUL \TMP6, \HASHKEY, \TMP1, \TMP2, \TMP3, \TMP4, \TMP5
0487ccac 614 add $16, %r10
0487ccac
SD
615 sub $16, %r11
616 cmp $16, %r11
e1fd316f 617 jge _get_AAD_blocks\@
0487ccac 618
c594c540 619 movdqu \TMP6, \TMP7
1ecdd37e
JS
620
621 /* read the last <16B of AAD */
e1fd316f 622_get_AAD_rest\@:
0487ccac 623 cmp $0, %r11
e1fd316f 624 je _get_AAD_done\@
0487ccac 625
c594c540
DW
626 READ_PARTIAL_BLOCK %r10, %r11, \TMP1, \TMP7
627 PSHUFB_XMM %xmm14, \TMP7 # byte-reflect the AAD data
628 pxor \TMP6, \TMP7
629 GHASH_MUL \TMP7, \HASHKEY, \TMP1, \TMP2, \TMP3, \TMP4, \TMP5
630 movdqu \TMP7, \TMP6
3c097b80 631
e1fd316f 632_get_AAD_done\@:
c594c540
DW
633 movdqu \TMP6, AadHash(%arg2)
634.endm
635
ae952c5e
DW
636# PARTIAL_BLOCK: Handles encryption/decryption and the tag partial blocks
637# between update calls.
638# Requires the input data be at least 1 byte long due to READ_PARTIAL_BLOCK
639# Outputs encrypted bytes, and updates hash and partial info in gcm_data_context
640# Clobbers rax, r10, r12, r13, xmm0-6, xmm9-13
641.macro PARTIAL_BLOCK CYPH_PLAIN_OUT PLAIN_CYPH_IN PLAIN_CYPH_LEN DATA_OFFSET \
642 AAD_HASH operation
643 mov PBlockLen(%arg2), %r13
644 cmp $0, %r13
645 je _partial_block_done_\@ # Leave Macro if no partial blocks
646 # Read in input data without over reading
647 cmp $16, \PLAIN_CYPH_LEN
648 jl _fewer_than_16_bytes_\@
649 movups (\PLAIN_CYPH_IN), %xmm1 # If more than 16 bytes, just fill xmm
650 jmp _data_read_\@
651
652_fewer_than_16_bytes_\@:
653 lea (\PLAIN_CYPH_IN, \DATA_OFFSET, 1), %r10
654 mov \PLAIN_CYPH_LEN, %r12
655 READ_PARTIAL_BLOCK %r10 %r12 %xmm0 %xmm1
656
657 mov PBlockLen(%arg2), %r13
658
659_data_read_\@: # Finished reading in data
660
661 movdqu PBlockEncKey(%arg2), %xmm9
662 movdqu HashKey(%arg2), %xmm13
663
664 lea SHIFT_MASK(%rip), %r12
665
666 # adjust the shuffle mask pointer to be able to shift r13 bytes
667 # r16-r13 is the number of bytes in plaintext mod 16)
668 add %r13, %r12
669 movdqu (%r12), %xmm2 # get the appropriate shuffle mask
670 PSHUFB_XMM %xmm2, %xmm9 # shift right r13 bytes
671
672.ifc \operation, dec
673 movdqa %xmm1, %xmm3
674 pxor %xmm1, %xmm9 # Cyphertext XOR E(K, Yn)
675
676 mov \PLAIN_CYPH_LEN, %r10
677 add %r13, %r10
678 # Set r10 to be the amount of data left in CYPH_PLAIN_IN after filling
679 sub $16, %r10
680 # Determine if if partial block is not being filled and
681 # shift mask accordingly
682 jge _no_extra_mask_1_\@
683 sub %r10, %r12
684_no_extra_mask_1_\@:
685
686 movdqu ALL_F-SHIFT_MASK(%r12), %xmm1
687 # get the appropriate mask to mask out bottom r13 bytes of xmm9
688 pand %xmm1, %xmm9 # mask out bottom r13 bytes of xmm9
689
690 pand %xmm1, %xmm3
691 movdqa SHUF_MASK(%rip), %xmm10
692 PSHUFB_XMM %xmm10, %xmm3
693 PSHUFB_XMM %xmm2, %xmm3
694 pxor %xmm3, \AAD_HASH
695
696 cmp $0, %r10
697 jl _partial_incomplete_1_\@
698
699 # GHASH computation for the last <16 Byte block
700 GHASH_MUL \AAD_HASH, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6
a7bea830 701 xor %eax, %eax
ae952c5e
DW
702
703 mov %rax, PBlockLen(%arg2)
704 jmp _dec_done_\@
705_partial_incomplete_1_\@:
706 add \PLAIN_CYPH_LEN, PBlockLen(%arg2)
707_dec_done_\@:
708 movdqu \AAD_HASH, AadHash(%arg2)
709.else
710 pxor %xmm1, %xmm9 # Plaintext XOR E(K, Yn)
711
712 mov \PLAIN_CYPH_LEN, %r10
713 add %r13, %r10
714 # Set r10 to be the amount of data left in CYPH_PLAIN_IN after filling
715 sub $16, %r10
716 # Determine if if partial block is not being filled and
717 # shift mask accordingly
718 jge _no_extra_mask_2_\@
719 sub %r10, %r12
720_no_extra_mask_2_\@:
721
722 movdqu ALL_F-SHIFT_MASK(%r12), %xmm1
723 # get the appropriate mask to mask out bottom r13 bytes of xmm9
724 pand %xmm1, %xmm9
725
726 movdqa SHUF_MASK(%rip), %xmm1
727 PSHUFB_XMM %xmm1, %xmm9
728 PSHUFB_XMM %xmm2, %xmm9
729 pxor %xmm9, \AAD_HASH
730
731 cmp $0, %r10
732 jl _partial_incomplete_2_\@
733
734 # GHASH computation for the last <16 Byte block
735 GHASH_MUL \AAD_HASH, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6
a7bea830 736 xor %eax, %eax
ae952c5e
DW
737
738 mov %rax, PBlockLen(%arg2)
739 jmp _encode_done_\@
740_partial_incomplete_2_\@:
741 add \PLAIN_CYPH_LEN, PBlockLen(%arg2)
742_encode_done_\@:
743 movdqu \AAD_HASH, AadHash(%arg2)
744
745 movdqa SHUF_MASK(%rip), %xmm10
746 # shuffle xmm9 back to output as ciphertext
747 PSHUFB_XMM %xmm10, %xmm9
748 PSHUFB_XMM %xmm2, %xmm9
749.endif
750 # output encrypted Bytes
751 cmp $0, %r10
752 jl _partial_fill_\@
753 mov %r13, %r12
754 mov $16, %r13
755 # Set r13 to be the number of bytes to write out
756 sub %r12, %r13
757 jmp _count_set_\@
758_partial_fill_\@:
759 mov \PLAIN_CYPH_LEN, %r13
760_count_set_\@:
761 movdqa %xmm9, %xmm0
762 MOVQ_R64_XMM %xmm0, %rax
763 cmp $8, %r13
764 jle _less_than_8_bytes_left_\@
765
766 mov %rax, (\CYPH_PLAIN_OUT, \DATA_OFFSET, 1)
767 add $8, \DATA_OFFSET
768 psrldq $8, %xmm0
769 MOVQ_R64_XMM %xmm0, %rax
770 sub $8, %r13
771_less_than_8_bytes_left_\@:
772 movb %al, (\CYPH_PLAIN_OUT, \DATA_OFFSET, 1)
773 add $1, \DATA_OFFSET
774 shr $8, %rax
775 sub $1, %r13
776 jne _less_than_8_bytes_left_\@
777_partial_block_done_\@:
778.endm # PARTIAL_BLOCK
779
c594c540
DW
780/*
781* if a = number of total plaintext bytes
782* b = floor(a/16)
783* num_initial_blocks = b mod 4
784* encrypt the initial num_initial_blocks blocks and apply ghash on
785* the ciphertext
786* %r10, %r11, %r12, %rax, %xmm5, %xmm6, %xmm7, %xmm8, %xmm9 registers
787* are clobbered
1476db2d 788* arg1, %arg2, %arg3 are used as a pointer only, not modified
c594c540
DW
789*/
790
791
792.macro INITIAL_BLOCKS_ENC_DEC TMP1 TMP2 TMP3 TMP4 TMP5 XMM0 XMM1 \
793 XMM2 XMM3 XMM4 XMMDst TMP6 TMP7 i i_seq operation
9660474b 794 MOVADQ SHUF_MASK(%rip), %xmm14
c594c540
DW
795
796 movdqu AadHash(%arg2), %xmm\i # XMM0 = Y0
797
0487ccac 798 # start AES for num_initial_blocks blocks
3c097b80 799
9660474b 800 movdqu CurCount(%arg2), \XMM0 # XMM0 = Y0
3c097b80
TS
801
802.if (\i == 5) || (\i == 6) || (\i == 7)
3c097b80 803
e31ac32d
TM
804 MOVADQ ONE(%RIP),\TMP1
805 MOVADQ 0(%arg1),\TMP2
3c097b80 806.irpc index, \i_seq
e31ac32d 807 paddd \TMP1, \XMM0 # INCR Y0
e1fd316f
DW
808.ifc \operation, dec
809 movdqa \XMM0, %xmm\index
810.else
e31ac32d 811 MOVADQ \XMM0, %xmm\index
e1fd316f 812.endif
e31ac32d
TM
813 PSHUFB_XMM %xmm14, %xmm\index # perform a 16 byte swap
814 pxor \TMP2, %xmm\index
3c097b80 815.endr
e31ac32d
TM
816 lea 0x10(%arg1),%r10
817 mov keysize,%eax
818 shr $2,%eax # 128->4, 192->6, 256->8
819 add $5,%eax # 128->9, 192->11, 256->13
820
e1fd316f 821aes_loop_initial_\@:
e31ac32d
TM
822 MOVADQ (%r10),\TMP1
823.irpc index, \i_seq
824 AESENC \TMP1, %xmm\index
3c097b80 825.endr
e31ac32d
TM
826 add $16,%r10
827 sub $1,%eax
e1fd316f 828 jnz aes_loop_initial_\@
e31ac32d
TM
829
830 MOVADQ (%r10), \TMP1
3c097b80 831.irpc index, \i_seq
e31ac32d 832 AESENCLAST \TMP1, %xmm\index # Last Round
3c097b80
TS
833.endr
834.irpc index, \i_seq
9ee4a5df 835 movdqu (%arg4 , %r11, 1), \TMP1
3c097b80 836 pxor \TMP1, %xmm\index
9ee4a5df 837 movdqu %xmm\index, (%arg3 , %r11, 1)
3c097b80
TS
838 # write back plaintext/ciphertext for num_initial_blocks
839 add $16, %r11
e1fd316f
DW
840
841.ifc \operation, dec
842 movdqa \TMP1, %xmm\index
843.endif
3c097b80
TS
844 PSHUFB_XMM %xmm14, %xmm\index
845
846 # prepare plaintext/ciphertext for GHASH computation
847.endr
848.endif
0487ccac 849
3c097b80
TS
850 # apply GHASH on num_initial_blocks blocks
851
852.if \i == 5
853 pxor %xmm5, %xmm6
854 GHASH_MUL %xmm6, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
855 pxor %xmm6, %xmm7
856 GHASH_MUL %xmm7, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
857 pxor %xmm7, %xmm8
858 GHASH_MUL %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
859.elseif \i == 6
860 pxor %xmm6, %xmm7
861 GHASH_MUL %xmm7, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
862 pxor %xmm7, %xmm8
863 GHASH_MUL %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
864.elseif \i == 7
865 pxor %xmm7, %xmm8
866 GHASH_MUL %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
867.endif
868 cmp $64, %r13
e1fd316f 869 jl _initial_blocks_done\@
3c097b80
TS
870 # no need for precomputed values
871/*
872*
873* Precomputations for HashKey parallel with encryption of first 4 blocks.
874* Haskey_i_k holds XORed values of the low and high parts of the Haskey_i
875*/
e31ac32d
TM
876 MOVADQ ONE(%RIP),\TMP1
877 paddd \TMP1, \XMM0 # INCR Y0
878 MOVADQ \XMM0, \XMM1
3c097b80
TS
879 PSHUFB_XMM %xmm14, \XMM1 # perform a 16 byte swap
880
e31ac32d
TM
881 paddd \TMP1, \XMM0 # INCR Y0
882 MOVADQ \XMM0, \XMM2
3c097b80
TS
883 PSHUFB_XMM %xmm14, \XMM2 # perform a 16 byte swap
884
e31ac32d
TM
885 paddd \TMP1, \XMM0 # INCR Y0
886 MOVADQ \XMM0, \XMM3
3c097b80
TS
887 PSHUFB_XMM %xmm14, \XMM3 # perform a 16 byte swap
888
e31ac32d
TM
889 paddd \TMP1, \XMM0 # INCR Y0
890 MOVADQ \XMM0, \XMM4
3c097b80
TS
891 PSHUFB_XMM %xmm14, \XMM4 # perform a 16 byte swap
892
e31ac32d
TM
893 MOVADQ 0(%arg1),\TMP1
894 pxor \TMP1, \XMM1
895 pxor \TMP1, \XMM2
896 pxor \TMP1, \XMM3
897 pxor \TMP1, \XMM4
3c097b80
TS
898.irpc index, 1234 # do 4 rounds
899 movaps 0x10*\index(%arg1), \TMP1
900 AESENC \TMP1, \XMM1
901 AESENC \TMP1, \XMM2
902 AESENC \TMP1, \XMM3
903 AESENC \TMP1, \XMM4
904.endr
3c097b80
TS
905.irpc index, 56789 # do next 5 rounds
906 movaps 0x10*\index(%arg1), \TMP1
907 AESENC \TMP1, \XMM1
908 AESENC \TMP1, \XMM2
909 AESENC \TMP1, \XMM3
910 AESENC \TMP1, \XMM4
911.endr
e31ac32d
TM
912 lea 0xa0(%arg1),%r10
913 mov keysize,%eax
914 shr $2,%eax # 128->4, 192->6, 256->8
915 sub $4,%eax # 128->0, 192->2, 256->4
e1fd316f 916 jz aes_loop_pre_done\@
e31ac32d 917
e1fd316f 918aes_loop_pre_\@:
e31ac32d
TM
919 MOVADQ (%r10),\TMP2
920.irpc index, 1234
921 AESENC \TMP2, %xmm\index
922.endr
923 add $16,%r10
924 sub $1,%eax
e1fd316f 925 jnz aes_loop_pre_\@
e31ac32d 926
e1fd316f 927aes_loop_pre_done\@:
e31ac32d 928 MOVADQ (%r10), \TMP2
3c097b80
TS
929 AESENCLAST \TMP2, \XMM1
930 AESENCLAST \TMP2, \XMM2
931 AESENCLAST \TMP2, \XMM3
932 AESENCLAST \TMP2, \XMM4
9ee4a5df 933 movdqu 16*0(%arg4 , %r11 , 1), \TMP1
3c097b80 934 pxor \TMP1, \XMM1
e1fd316f 935.ifc \operation, dec
9ee4a5df 936 movdqu \XMM1, 16*0(%arg3 , %r11 , 1)
e1fd316f
DW
937 movdqa \TMP1, \XMM1
938.endif
9ee4a5df 939 movdqu 16*1(%arg4 , %r11 , 1), \TMP1
3c097b80 940 pxor \TMP1, \XMM2
e1fd316f 941.ifc \operation, dec
9ee4a5df 942 movdqu \XMM2, 16*1(%arg3 , %r11 , 1)
e1fd316f
DW
943 movdqa \TMP1, \XMM2
944.endif
9ee4a5df 945 movdqu 16*2(%arg4 , %r11 , 1), \TMP1
3c097b80 946 pxor \TMP1, \XMM3
e1fd316f 947.ifc \operation, dec
9ee4a5df 948 movdqu \XMM3, 16*2(%arg3 , %r11 , 1)
e1fd316f
DW
949 movdqa \TMP1, \XMM3
950.endif
9ee4a5df 951 movdqu 16*3(%arg4 , %r11 , 1), \TMP1
3c097b80 952 pxor \TMP1, \XMM4
e1fd316f 953.ifc \operation, dec
9ee4a5df 954 movdqu \XMM4, 16*3(%arg3 , %r11 , 1)
e1fd316f
DW
955 movdqa \TMP1, \XMM4
956.else
9ee4a5df
DW
957 movdqu \XMM1, 16*0(%arg3 , %r11 , 1)
958 movdqu \XMM2, 16*1(%arg3 , %r11 , 1)
959 movdqu \XMM3, 16*2(%arg3 , %r11 , 1)
960 movdqu \XMM4, 16*3(%arg3 , %r11 , 1)
e1fd316f 961.endif
3c097b80 962
0bd82f5f 963 add $64, %r11
3c097b80 964 PSHUFB_XMM %xmm14, \XMM1 # perform a 16 byte swap
0bd82f5f
TS
965 pxor \XMMDst, \XMM1
966# combine GHASHed value with the corresponding ciphertext
3c097b80 967 PSHUFB_XMM %xmm14, \XMM2 # perform a 16 byte swap
3c097b80 968 PSHUFB_XMM %xmm14, \XMM3 # perform a 16 byte swap
3c097b80
TS
969 PSHUFB_XMM %xmm14, \XMM4 # perform a 16 byte swap
970
e1fd316f 971_initial_blocks_done\@:
3c097b80 972
0bd82f5f
TS
973.endm
974
975/*
976* encrypt 4 blocks at a time
977* ghash the 4 previously encrypted ciphertext blocks
9ee4a5df 978* arg1, %arg3, %arg4 are used as pointers only, not modified
0bd82f5f
TS
979* %r11 is the data offset value
980*/
3c097b80
TS
981.macro GHASH_4_ENCRYPT_4_PARALLEL_ENC TMP1 TMP2 TMP3 TMP4 TMP5 \
982TMP6 XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 operation
983
984 movdqa \XMM1, \XMM5
985 movdqa \XMM2, \XMM6
986 movdqa \XMM3, \XMM7
987 movdqa \XMM4, \XMM8
988
989 movdqa SHUF_MASK(%rip), %xmm15
990 # multiply TMP5 * HashKey using karatsuba
991
992 movdqa \XMM5, \TMP4
993 pshufd $78, \XMM5, \TMP6
994 pxor \XMM5, \TMP6
995 paddd ONE(%rip), \XMM0 # INCR CNT
e5b954e8 996 movdqu HashKey_4(%arg2), \TMP5
3c097b80
TS
997 PCLMULQDQ 0x11, \TMP5, \TMP4 # TMP4 = a1*b1
998 movdqa \XMM0, \XMM1
999 paddd ONE(%rip), \XMM0 # INCR CNT
1000 movdqa \XMM0, \XMM2
1001 paddd ONE(%rip), \XMM0 # INCR CNT
1002 movdqa \XMM0, \XMM3
1003 paddd ONE(%rip), \XMM0 # INCR CNT
1004 movdqa \XMM0, \XMM4
1005 PSHUFB_XMM %xmm15, \XMM1 # perform a 16 byte swap
1006 PCLMULQDQ 0x00, \TMP5, \XMM5 # XMM5 = a0*b0
1007 PSHUFB_XMM %xmm15, \XMM2 # perform a 16 byte swap
1008 PSHUFB_XMM %xmm15, \XMM3 # perform a 16 byte swap
1009 PSHUFB_XMM %xmm15, \XMM4 # perform a 16 byte swap
1010
1011 pxor (%arg1), \XMM1
1012 pxor (%arg1), \XMM2
1013 pxor (%arg1), \XMM3
1014 pxor (%arg1), \XMM4
e5b954e8 1015 movdqu HashKey_4_k(%arg2), \TMP5
3c097b80
TS
1016 PCLMULQDQ 0x00, \TMP5, \TMP6 # TMP6 = (a1+a0)*(b1+b0)
1017 movaps 0x10(%arg1), \TMP1
1018 AESENC \TMP1, \XMM1 # Round 1
1019 AESENC \TMP1, \XMM2
1020 AESENC \TMP1, \XMM3
1021 AESENC \TMP1, \XMM4
1022 movaps 0x20(%arg1), \TMP1
1023 AESENC \TMP1, \XMM1 # Round 2
1024 AESENC \TMP1, \XMM2
1025 AESENC \TMP1, \XMM3
1026 AESENC \TMP1, \XMM4
1027 movdqa \XMM6, \TMP1
1028 pshufd $78, \XMM6, \TMP2
1029 pxor \XMM6, \TMP2
e5b954e8 1030 movdqu HashKey_3(%arg2), \TMP5
3c097b80
TS
1031 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1 * b1
1032 movaps 0x30(%arg1), \TMP3
1033 AESENC \TMP3, \XMM1 # Round 3
1034 AESENC \TMP3, \XMM2
1035 AESENC \TMP3, \XMM3
1036 AESENC \TMP3, \XMM4
1037 PCLMULQDQ 0x00, \TMP5, \XMM6 # XMM6 = a0*b0
1038 movaps 0x40(%arg1), \TMP3
1039 AESENC \TMP3, \XMM1 # Round 4
1040 AESENC \TMP3, \XMM2
1041 AESENC \TMP3, \XMM3
1042 AESENC \TMP3, \XMM4
e5b954e8 1043 movdqu HashKey_3_k(%arg2), \TMP5
3c097b80
TS
1044 PCLMULQDQ 0x00, \TMP5, \TMP2 # TMP2 = (a1+a0)*(b1+b0)
1045 movaps 0x50(%arg1), \TMP3
1046 AESENC \TMP3, \XMM1 # Round 5
1047 AESENC \TMP3, \XMM2
1048 AESENC \TMP3, \XMM3
1049 AESENC \TMP3, \XMM4
1050 pxor \TMP1, \TMP4
1051# accumulate the results in TMP4:XMM5, TMP6 holds the middle part
1052 pxor \XMM6, \XMM5
1053 pxor \TMP2, \TMP6
1054 movdqa \XMM7, \TMP1
1055 pshufd $78, \XMM7, \TMP2
1056 pxor \XMM7, \TMP2
e5b954e8 1057 movdqu HashKey_2(%arg2), \TMP5
3c097b80
TS
1058
1059 # Multiply TMP5 * HashKey using karatsuba
1060
1061 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1*b1
1062 movaps 0x60(%arg1), \TMP3
1063 AESENC \TMP3, \XMM1 # Round 6
1064 AESENC \TMP3, \XMM2
1065 AESENC \TMP3, \XMM3
1066 AESENC \TMP3, \XMM4
1067 PCLMULQDQ 0x00, \TMP5, \XMM7 # XMM7 = a0*b0
1068 movaps 0x70(%arg1), \TMP3
1069 AESENC \TMP3, \XMM1 # Round 7
1070 AESENC \TMP3, \XMM2
1071 AESENC \TMP3, \XMM3
1072 AESENC \TMP3, \XMM4
e5b954e8 1073 movdqu HashKey_2_k(%arg2), \TMP5
3c097b80
TS
1074 PCLMULQDQ 0x00, \TMP5, \TMP2 # TMP2 = (a1+a0)*(b1+b0)
1075 movaps 0x80(%arg1), \TMP3
1076 AESENC \TMP3, \XMM1 # Round 8
1077 AESENC \TMP3, \XMM2
1078 AESENC \TMP3, \XMM3
1079 AESENC \TMP3, \XMM4
1080 pxor \TMP1, \TMP4
1081# accumulate the results in TMP4:XMM5, TMP6 holds the middle part
1082 pxor \XMM7, \XMM5
1083 pxor \TMP2, \TMP6
1084
1085 # Multiply XMM8 * HashKey
1086 # XMM8 and TMP5 hold the values for the two operands
1087
1088 movdqa \XMM8, \TMP1
1089 pshufd $78, \XMM8, \TMP2
1090 pxor \XMM8, \TMP2
e5b954e8 1091 movdqu HashKey(%arg2), \TMP5
3c097b80
TS
1092 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1*b1
1093 movaps 0x90(%arg1), \TMP3
1094 AESENC \TMP3, \XMM1 # Round 9
1095 AESENC \TMP3, \XMM2
1096 AESENC \TMP3, \XMM3
1097 AESENC \TMP3, \XMM4
1098 PCLMULQDQ 0x00, \TMP5, \XMM8 # XMM8 = a0*b0
e31ac32d
TM
1099 lea 0xa0(%arg1),%r10
1100 mov keysize,%eax
1101 shr $2,%eax # 128->4, 192->6, 256->8
1102 sub $4,%eax # 128->0, 192->2, 256->4
fb8986e6 1103 jz aes_loop_par_enc_done\@
e31ac32d 1104
fb8986e6 1105aes_loop_par_enc\@:
e31ac32d
TM
1106 MOVADQ (%r10),\TMP3
1107.irpc index, 1234
1108 AESENC \TMP3, %xmm\index
1109.endr
1110 add $16,%r10
1111 sub $1,%eax
fb8986e6 1112 jnz aes_loop_par_enc\@
e31ac32d 1113
fb8986e6 1114aes_loop_par_enc_done\@:
e31ac32d 1115 MOVADQ (%r10), \TMP3
3c097b80
TS
1116 AESENCLAST \TMP3, \XMM1 # Round 10
1117 AESENCLAST \TMP3, \XMM2
1118 AESENCLAST \TMP3, \XMM3
1119 AESENCLAST \TMP3, \XMM4
e5b954e8 1120 movdqu HashKey_k(%arg2), \TMP5
3c097b80 1121 PCLMULQDQ 0x00, \TMP5, \TMP2 # TMP2 = (a1+a0)*(b1+b0)
9ee4a5df 1122 movdqu (%arg4,%r11,1), \TMP3
3c097b80 1123 pxor \TMP3, \XMM1 # Ciphertext/Plaintext XOR EK
9ee4a5df 1124 movdqu 16(%arg4,%r11,1), \TMP3
3c097b80 1125 pxor \TMP3, \XMM2 # Ciphertext/Plaintext XOR EK
9ee4a5df 1126 movdqu 32(%arg4,%r11,1), \TMP3
3c097b80 1127 pxor \TMP3, \XMM3 # Ciphertext/Plaintext XOR EK
9ee4a5df 1128 movdqu 48(%arg4,%r11,1), \TMP3
3c097b80 1129 pxor \TMP3, \XMM4 # Ciphertext/Plaintext XOR EK
9ee4a5df
DW
1130 movdqu \XMM1, (%arg3,%r11,1) # Write to the ciphertext buffer
1131 movdqu \XMM2, 16(%arg3,%r11,1) # Write to the ciphertext buffer
1132 movdqu \XMM3, 32(%arg3,%r11,1) # Write to the ciphertext buffer
1133 movdqu \XMM4, 48(%arg3,%r11,1) # Write to the ciphertext buffer
3c097b80
TS
1134 PSHUFB_XMM %xmm15, \XMM1 # perform a 16 byte swap
1135 PSHUFB_XMM %xmm15, \XMM2 # perform a 16 byte swap
1136 PSHUFB_XMM %xmm15, \XMM3 # perform a 16 byte swap
1137 PSHUFB_XMM %xmm15, \XMM4 # perform a 16 byte swap
1138
1139 pxor \TMP4, \TMP1
1140 pxor \XMM8, \XMM5
1141 pxor \TMP6, \TMP2
1142 pxor \TMP1, \TMP2
1143 pxor \XMM5, \TMP2
1144 movdqa \TMP2, \TMP3
1145 pslldq $8, \TMP3 # left shift TMP3 2 DWs
1146 psrldq $8, \TMP2 # right shift TMP2 2 DWs
1147 pxor \TMP3, \XMM5
1148 pxor \TMP2, \TMP1 # accumulate the results in TMP1:XMM5
1149
1150 # first phase of reduction
1151
1152 movdqa \XMM5, \TMP2
1153 movdqa \XMM5, \TMP3
1154 movdqa \XMM5, \TMP4
1155# move XMM5 into TMP2, TMP3, TMP4 in order to perform shifts independently
1156 pslld $31, \TMP2 # packed right shift << 31
1157 pslld $30, \TMP3 # packed right shift << 30
1158 pslld $25, \TMP4 # packed right shift << 25
1159 pxor \TMP3, \TMP2 # xor the shifted versions
1160 pxor \TMP4, \TMP2
1161 movdqa \TMP2, \TMP5
1162 psrldq $4, \TMP5 # right shift T5 1 DW
1163 pslldq $12, \TMP2 # left shift T2 3 DWs
1164 pxor \TMP2, \XMM5
1165
1166 # second phase of reduction
1167
1168 movdqa \XMM5,\TMP2 # make 3 copies of XMM5 into TMP2, TMP3, TMP4
1169 movdqa \XMM5,\TMP3
1170 movdqa \XMM5,\TMP4
1171 psrld $1, \TMP2 # packed left shift >>1
1172 psrld $2, \TMP3 # packed left shift >>2
1173 psrld $7, \TMP4 # packed left shift >>7
1174 pxor \TMP3,\TMP2 # xor the shifted versions
1175 pxor \TMP4,\TMP2
1176 pxor \TMP5, \TMP2
1177 pxor \TMP2, \XMM5
1178 pxor \TMP1, \XMM5 # result is in TMP1
1179
1180 pxor \XMM5, \XMM1
1181.endm
1182
1183/*
1184* decrypt 4 blocks at a time
1185* ghash the 4 previously decrypted ciphertext blocks
9ee4a5df 1186* arg1, %arg3, %arg4 are used as pointers only, not modified
3c097b80
TS
1187* %r11 is the data offset value
1188*/
1189.macro GHASH_4_ENCRYPT_4_PARALLEL_DEC TMP1 TMP2 TMP3 TMP4 TMP5 \
0bd82f5f
TS
1190TMP6 XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 operation
1191
1192 movdqa \XMM1, \XMM5
1193 movdqa \XMM2, \XMM6
1194 movdqa \XMM3, \XMM7
1195 movdqa \XMM4, \XMM8
1196
3c097b80 1197 movdqa SHUF_MASK(%rip), %xmm15
0bd82f5f
TS
1198 # multiply TMP5 * HashKey using karatsuba
1199
1200 movdqa \XMM5, \TMP4
1201 pshufd $78, \XMM5, \TMP6
1202 pxor \XMM5, \TMP6
1203 paddd ONE(%rip), \XMM0 # INCR CNT
e5b954e8 1204 movdqu HashKey_4(%arg2), \TMP5
0bd82f5f
TS
1205 PCLMULQDQ 0x11, \TMP5, \TMP4 # TMP4 = a1*b1
1206 movdqa \XMM0, \XMM1
1207 paddd ONE(%rip), \XMM0 # INCR CNT
1208 movdqa \XMM0, \XMM2
1209 paddd ONE(%rip), \XMM0 # INCR CNT
1210 movdqa \XMM0, \XMM3
1211 paddd ONE(%rip), \XMM0 # INCR CNT
1212 movdqa \XMM0, \XMM4
3c097b80 1213 PSHUFB_XMM %xmm15, \XMM1 # perform a 16 byte swap
0bd82f5f 1214 PCLMULQDQ 0x00, \TMP5, \XMM5 # XMM5 = a0*b0
3c097b80
TS
1215 PSHUFB_XMM %xmm15, \XMM2 # perform a 16 byte swap
1216 PSHUFB_XMM %xmm15, \XMM3 # perform a 16 byte swap
1217 PSHUFB_XMM %xmm15, \XMM4 # perform a 16 byte swap
1218
0bd82f5f
TS
1219 pxor (%arg1), \XMM1
1220 pxor (%arg1), \XMM2
1221 pxor (%arg1), \XMM3
1222 pxor (%arg1), \XMM4
e5b954e8 1223 movdqu HashKey_4_k(%arg2), \TMP5
0bd82f5f
TS
1224 PCLMULQDQ 0x00, \TMP5, \TMP6 # TMP6 = (a1+a0)*(b1+b0)
1225 movaps 0x10(%arg1), \TMP1
1226 AESENC \TMP1, \XMM1 # Round 1
1227 AESENC \TMP1, \XMM2
1228 AESENC \TMP1, \XMM3
1229 AESENC \TMP1, \XMM4
1230 movaps 0x20(%arg1), \TMP1
1231 AESENC \TMP1, \XMM1 # Round 2
1232 AESENC \TMP1, \XMM2
1233 AESENC \TMP1, \XMM3
1234 AESENC \TMP1, \XMM4
1235 movdqa \XMM6, \TMP1
1236 pshufd $78, \XMM6, \TMP2
1237 pxor \XMM6, \TMP2
e5b954e8 1238 movdqu HashKey_3(%arg2), \TMP5
0bd82f5f
TS
1239 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1 * b1
1240 movaps 0x30(%arg1), \TMP3
1241 AESENC \TMP3, \XMM1 # Round 3
1242 AESENC \TMP3, \XMM2
1243 AESENC \TMP3, \XMM3
1244 AESENC \TMP3, \XMM4
1245 PCLMULQDQ 0x00, \TMP5, \XMM6 # XMM6 = a0*b0
1246 movaps 0x40(%arg1), \TMP3
1247 AESENC \TMP3, \XMM1 # Round 4
1248 AESENC \TMP3, \XMM2
1249 AESENC \TMP3, \XMM3
1250 AESENC \TMP3, \XMM4
e5b954e8 1251 movdqu HashKey_3_k(%arg2), \TMP5
0bd82f5f
TS
1252 PCLMULQDQ 0x00, \TMP5, \TMP2 # TMP2 = (a1+a0)*(b1+b0)
1253 movaps 0x50(%arg1), \TMP3
1254 AESENC \TMP3, \XMM1 # Round 5
1255 AESENC \TMP3, \XMM2
1256 AESENC \TMP3, \XMM3
1257 AESENC \TMP3, \XMM4
1258 pxor \TMP1, \TMP4
1259# accumulate the results in TMP4:XMM5, TMP6 holds the middle part
1260 pxor \XMM6, \XMM5
1261 pxor \TMP2, \TMP6
1262 movdqa \XMM7, \TMP1
1263 pshufd $78, \XMM7, \TMP2
1264 pxor \XMM7, \TMP2
e5b954e8 1265 movdqu HashKey_2(%arg2), \TMP5
0bd82f5f
TS
1266
1267 # Multiply TMP5 * HashKey using karatsuba
1268
1269 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1*b1
1270 movaps 0x60(%arg1), \TMP3
1271 AESENC \TMP3, \XMM1 # Round 6
1272 AESENC \TMP3, \XMM2
1273 AESENC \TMP3, \XMM3
1274 AESENC \TMP3, \XMM4
1275 PCLMULQDQ 0x00, \TMP5, \XMM7 # XMM7 = a0*b0
1276 movaps 0x70(%arg1), \TMP3
1277 AESENC \TMP3, \XMM1 # Round 7
1278 AESENC \TMP3, \XMM2
1279 AESENC \TMP3, \XMM3
1280 AESENC \TMP3, \XMM4
e5b954e8 1281 movdqu HashKey_2_k(%arg2), \TMP5
0bd82f5f
TS
1282 PCLMULQDQ 0x00, \TMP5, \TMP2 # TMP2 = (a1+a0)*(b1+b0)
1283 movaps 0x80(%arg1), \TMP3
1284 AESENC \TMP3, \XMM1 # Round 8
1285 AESENC \TMP3, \XMM2
1286 AESENC \TMP3, \XMM3
1287 AESENC \TMP3, \XMM4
1288 pxor \TMP1, \TMP4
1289# accumulate the results in TMP4:XMM5, TMP6 holds the middle part
1290 pxor \XMM7, \XMM5
1291 pxor \TMP2, \TMP6
1292
1293 # Multiply XMM8 * HashKey
1294 # XMM8 and TMP5 hold the values for the two operands
1295
1296 movdqa \XMM8, \TMP1
1297 pshufd $78, \XMM8, \TMP2
1298 pxor \XMM8, \TMP2
e5b954e8 1299 movdqu HashKey(%arg2), \TMP5
0bd82f5f
TS
1300 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1*b1
1301 movaps 0x90(%arg1), \TMP3
1302 AESENC \TMP3, \XMM1 # Round 9
1303 AESENC \TMP3, \XMM2
1304 AESENC \TMP3, \XMM3
1305 AESENC \TMP3, \XMM4
1306 PCLMULQDQ 0x00, \TMP5, \XMM8 # XMM8 = a0*b0
e31ac32d
TM
1307 lea 0xa0(%arg1),%r10
1308 mov keysize,%eax
1309 shr $2,%eax # 128->4, 192->6, 256->8
1310 sub $4,%eax # 128->0, 192->2, 256->4
fb8986e6 1311 jz aes_loop_par_dec_done\@
e31ac32d 1312
fb8986e6 1313aes_loop_par_dec\@:
e31ac32d
TM
1314 MOVADQ (%r10),\TMP3
1315.irpc index, 1234
1316 AESENC \TMP3, %xmm\index
1317.endr
1318 add $16,%r10
1319 sub $1,%eax
fb8986e6 1320 jnz aes_loop_par_dec\@
e31ac32d 1321
fb8986e6 1322aes_loop_par_dec_done\@:
e31ac32d
TM
1323 MOVADQ (%r10), \TMP3
1324 AESENCLAST \TMP3, \XMM1 # last round
0bd82f5f
TS
1325 AESENCLAST \TMP3, \XMM2
1326 AESENCLAST \TMP3, \XMM3
1327 AESENCLAST \TMP3, \XMM4
e5b954e8 1328 movdqu HashKey_k(%arg2), \TMP5
0bd82f5f 1329 PCLMULQDQ 0x00, \TMP5, \TMP2 # TMP2 = (a1+a0)*(b1+b0)
9ee4a5df 1330 movdqu (%arg4,%r11,1), \TMP3
0bd82f5f 1331 pxor \TMP3, \XMM1 # Ciphertext/Plaintext XOR EK
9ee4a5df 1332 movdqu \XMM1, (%arg3,%r11,1) # Write to plaintext buffer
0bd82f5f 1333 movdqa \TMP3, \XMM1
9ee4a5df 1334 movdqu 16(%arg4,%r11,1), \TMP3
0bd82f5f 1335 pxor \TMP3, \XMM2 # Ciphertext/Plaintext XOR EK
9ee4a5df 1336 movdqu \XMM2, 16(%arg3,%r11,1) # Write to plaintext buffer
0bd82f5f 1337 movdqa \TMP3, \XMM2
9ee4a5df 1338 movdqu 32(%arg4,%r11,1), \TMP3
0bd82f5f 1339 pxor \TMP3, \XMM3 # Ciphertext/Plaintext XOR EK
9ee4a5df 1340 movdqu \XMM3, 32(%arg3,%r11,1) # Write to plaintext buffer
0bd82f5f 1341 movdqa \TMP3, \XMM3
9ee4a5df 1342 movdqu 48(%arg4,%r11,1), \TMP3
0bd82f5f 1343 pxor \TMP3, \XMM4 # Ciphertext/Plaintext XOR EK
9ee4a5df 1344 movdqu \XMM4, 48(%arg3,%r11,1) # Write to plaintext buffer
0bd82f5f 1345 movdqa \TMP3, \XMM4
3c097b80
TS
1346 PSHUFB_XMM %xmm15, \XMM1 # perform a 16 byte swap
1347 PSHUFB_XMM %xmm15, \XMM2 # perform a 16 byte swap
1348 PSHUFB_XMM %xmm15, \XMM3 # perform a 16 byte swap
1349 PSHUFB_XMM %xmm15, \XMM4 # perform a 16 byte swap
0bd82f5f
TS
1350
1351 pxor \TMP4, \TMP1
1352 pxor \XMM8, \XMM5
1353 pxor \TMP6, \TMP2
1354 pxor \TMP1, \TMP2
1355 pxor \XMM5, \TMP2
1356 movdqa \TMP2, \TMP3
1357 pslldq $8, \TMP3 # left shift TMP3 2 DWs
1358 psrldq $8, \TMP2 # right shift TMP2 2 DWs
1359 pxor \TMP3, \XMM5
1360 pxor \TMP2, \TMP1 # accumulate the results in TMP1:XMM5
1361
1362 # first phase of reduction
1363
1364 movdqa \XMM5, \TMP2
1365 movdqa \XMM5, \TMP3
1366 movdqa \XMM5, \TMP4
1367# move XMM5 into TMP2, TMP3, TMP4 in order to perform shifts independently
1368 pslld $31, \TMP2 # packed right shift << 31
1369 pslld $30, \TMP3 # packed right shift << 30
1370 pslld $25, \TMP4 # packed right shift << 25
1371 pxor \TMP3, \TMP2 # xor the shifted versions
1372 pxor \TMP4, \TMP2
1373 movdqa \TMP2, \TMP5
1374 psrldq $4, \TMP5 # right shift T5 1 DW
1375 pslldq $12, \TMP2 # left shift T2 3 DWs
1376 pxor \TMP2, \XMM5
1377
1378 # second phase of reduction
1379
1380 movdqa \XMM5,\TMP2 # make 3 copies of XMM5 into TMP2, TMP3, TMP4
1381 movdqa \XMM5,\TMP3
1382 movdqa \XMM5,\TMP4
1383 psrld $1, \TMP2 # packed left shift >>1
1384 psrld $2, \TMP3 # packed left shift >>2
1385 psrld $7, \TMP4 # packed left shift >>7
1386 pxor \TMP3,\TMP2 # xor the shifted versions
1387 pxor \TMP4,\TMP2
1388 pxor \TMP5, \TMP2
1389 pxor \TMP2, \XMM5
1390 pxor \TMP1, \XMM5 # result is in TMP1
1391
1392 pxor \XMM5, \XMM1
1393.endm
1394
1395/* GHASH the last 4 ciphertext blocks. */
1396.macro GHASH_LAST_4 TMP1 TMP2 TMP3 TMP4 TMP5 TMP6 \
1397TMP7 XMM1 XMM2 XMM3 XMM4 XMMDst
1398
1399 # Multiply TMP6 * HashKey (using Karatsuba)
1400
1401 movdqa \XMM1, \TMP6
1402 pshufd $78, \XMM1, \TMP2
1403 pxor \XMM1, \TMP2
e5b954e8 1404 movdqu HashKey_4(%arg2), \TMP5
0bd82f5f
TS
1405 PCLMULQDQ 0x11, \TMP5, \TMP6 # TMP6 = a1*b1
1406 PCLMULQDQ 0x00, \TMP5, \XMM1 # XMM1 = a0*b0
e5b954e8 1407 movdqu HashKey_4_k(%arg2), \TMP4
0bd82f5f
TS
1408 PCLMULQDQ 0x00, \TMP4, \TMP2 # TMP2 = (a1+a0)*(b1+b0)
1409 movdqa \XMM1, \XMMDst
1410 movdqa \TMP2, \XMM1 # result in TMP6, XMMDst, XMM1
1411
1412 # Multiply TMP1 * HashKey (using Karatsuba)
1413
1414 movdqa \XMM2, \TMP1
1415 pshufd $78, \XMM2, \TMP2
1416 pxor \XMM2, \TMP2
e5b954e8 1417 movdqu HashKey_3(%arg2), \TMP5
0bd82f5f
TS
1418 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1*b1
1419 PCLMULQDQ 0x00, \TMP5, \XMM2 # XMM2 = a0*b0
e5b954e8 1420 movdqu HashKey_3_k(%arg2), \TMP4
0bd82f5f
TS
1421 PCLMULQDQ 0x00, \TMP4, \TMP2 # TMP2 = (a1+a0)*(b1+b0)
1422 pxor \TMP1, \TMP6
1423 pxor \XMM2, \XMMDst
1424 pxor \TMP2, \XMM1
1425# results accumulated in TMP6, XMMDst, XMM1
1426
1427 # Multiply TMP1 * HashKey (using Karatsuba)
1428
1429 movdqa \XMM3, \TMP1
1430 pshufd $78, \XMM3, \TMP2
1431 pxor \XMM3, \TMP2
e5b954e8 1432 movdqu HashKey_2(%arg2), \TMP5
0bd82f5f
TS
1433 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1*b1
1434 PCLMULQDQ 0x00, \TMP5, \XMM3 # XMM3 = a0*b0
e5b954e8 1435 movdqu HashKey_2_k(%arg2), \TMP4
0bd82f5f
TS
1436 PCLMULQDQ 0x00, \TMP4, \TMP2 # TMP2 = (a1+a0)*(b1+b0)
1437 pxor \TMP1, \TMP6
1438 pxor \XMM3, \XMMDst
1439 pxor \TMP2, \XMM1 # results accumulated in TMP6, XMMDst, XMM1
1440
1441 # Multiply TMP1 * HashKey (using Karatsuba)
1442 movdqa \XMM4, \TMP1
1443 pshufd $78, \XMM4, \TMP2
1444 pxor \XMM4, \TMP2
e5b954e8 1445 movdqu HashKey(%arg2), \TMP5
0bd82f5f
TS
1446 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1*b1
1447 PCLMULQDQ 0x00, \TMP5, \XMM4 # XMM4 = a0*b0
e5b954e8 1448 movdqu HashKey_k(%arg2), \TMP4
0bd82f5f
TS
1449 PCLMULQDQ 0x00, \TMP4, \TMP2 # TMP2 = (a1+a0)*(b1+b0)
1450 pxor \TMP1, \TMP6
1451 pxor \XMM4, \XMMDst
1452 pxor \XMM1, \TMP2
1453 pxor \TMP6, \TMP2
1454 pxor \XMMDst, \TMP2
1455 # middle section of the temp results combined as in karatsuba algorithm
1456 movdqa \TMP2, \TMP4
1457 pslldq $8, \TMP4 # left shift TMP4 2 DWs
1458 psrldq $8, \TMP2 # right shift TMP2 2 DWs
1459 pxor \TMP4, \XMMDst
1460 pxor \TMP2, \TMP6
1461# TMP6:XMMDst holds the result of the accumulated carry-less multiplications
1462 # first phase of the reduction
1463 movdqa \XMMDst, \TMP2
1464 movdqa \XMMDst, \TMP3
1465 movdqa \XMMDst, \TMP4
1466# move XMMDst into TMP2, TMP3, TMP4 in order to perform 3 shifts independently
1467 pslld $31, \TMP2 # packed right shifting << 31
1468 pslld $30, \TMP3 # packed right shifting << 30
1469 pslld $25, \TMP4 # packed right shifting << 25
1470 pxor \TMP3, \TMP2 # xor the shifted versions
1471 pxor \TMP4, \TMP2
1472 movdqa \TMP2, \TMP7
1473 psrldq $4, \TMP7 # right shift TMP7 1 DW
1474 pslldq $12, \TMP2 # left shift TMP2 3 DWs
1475 pxor \TMP2, \XMMDst
1476
1477 # second phase of the reduction
1478 movdqa \XMMDst, \TMP2
1479 # make 3 copies of XMMDst for doing 3 shift operations
1480 movdqa \XMMDst, \TMP3
1481 movdqa \XMMDst, \TMP4
1482 psrld $1, \TMP2 # packed left shift >> 1
1483 psrld $2, \TMP3 # packed left shift >> 2
1484 psrld $7, \TMP4 # packed left shift >> 7
1485 pxor \TMP3, \TMP2 # xor the shifted versions
1486 pxor \TMP4, \TMP2
1487 pxor \TMP7, \TMP2
1488 pxor \TMP2, \XMMDst
1489 pxor \TMP6, \XMMDst # reduced result is in XMMDst
1490.endm
1491
0bd82f5f 1492
e31ac32d
TM
1493/* Encryption of a single block
1494* uses eax & r10
1495*/
0bd82f5f 1496
e31ac32d 1497.macro ENCRYPT_SINGLE_BLOCK XMM0 TMP1
0bd82f5f 1498
e31ac32d
TM
1499 pxor (%arg1), \XMM0
1500 mov keysize,%eax
1501 shr $2,%eax # 128->4, 192->6, 256->8
1502 add $5,%eax # 128->9, 192->11, 256->13
1503 lea 16(%arg1), %r10 # get first expanded key address
1504
1505_esb_loop_\@:
1506 MOVADQ (%r10),\TMP1
1507 AESENC \TMP1,\XMM0
1508 add $16,%r10
1509 sub $1,%eax
1510 jnz _esb_loop_\@
1511
1512 MOVADQ (%r10),\TMP1
1513 AESENCLAST \TMP1,\XMM0
1514.endm
0bd82f5f
TS
1515/*****************************************************************************
1516* void aesni_gcm_dec(void *aes_ctx, // AES Key schedule. Starts on a 16 byte boundary.
9ee4a5df
DW
1517* struct gcm_context_data *data
1518* // Context data
0bd82f5f
TS
1519* u8 *out, // Plaintext output. Encrypt in-place is allowed.
1520* const u8 *in, // Ciphertext input
1521* u64 plaintext_len, // Length of data in bytes for decryption.
1522* u8 *iv, // Pre-counter block j0: 4 byte salt (from Security Association)
1523* // concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload)
1524* // concatenated with 0x00000001. 16-byte aligned pointer.
1525* u8 *hash_subkey, // H, the Hash sub key input. Data starts on a 16-byte boundary.
1526* const u8 *aad, // Additional Authentication Data (AAD)
1527* u64 aad_len, // Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 bytes
1528* u8 *auth_tag, // Authenticated Tag output. The driver will compare this to the
1529* // given authentication tag and only return the plaintext if they match.
1530* u64 auth_tag_len); // Authenticated Tag Length in bytes. Valid values are 16
1531* // (most likely), 12 or 8.
1532*
1533* Assumptions:
1534*
1535* keys:
1536* keys are pre-expanded and aligned to 16 bytes. we are using the first
1537* set of 11 keys in the data structure void *aes_ctx
1538*
1539* iv:
1540* 0 1 2 3
1541* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1542* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1543* | Salt (From the SA) |
1544* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1545* | Initialization Vector |
1546* | (This is the sequence number from IPSec header) |
1547* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1548* | 0x1 |
1549* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1550*
1551*
1552*
1553* AAD:
1554* AAD padded to 128 bits with 0
1555* for example, assume AAD is a u32 vector
1556*
1557* if AAD is 8 bytes:
1558* AAD[3] = {A0, A1};
1559* padded AAD in xmm register = {A1 A0 0 0}
1560*
1561* 0 1 2 3
1562* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1563* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1564* | SPI (A1) |
1565* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1566* | 32-bit Sequence Number (A0) |
1567* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1568* | 0x0 |
1569* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1570*
1571* AAD Format with 32-bit Sequence Number
1572*
1573* if AAD is 12 bytes:
1574* AAD[3] = {A0, A1, A2};
1575* padded AAD in xmm register = {A2 A1 A0 0}
1576*
1577* 0 1 2 3
1578* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1579* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1580* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1581* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1582* | SPI (A2) |
1583* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1584* | 64-bit Extended Sequence Number {A1,A0} |
1585* | |
1586* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1587* | 0x0 |
1588* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1589*
1590* AAD Format with 64-bit Extended Sequence Number
1591*
0bd82f5f
TS
1592* poly = x^128 + x^127 + x^126 + x^121 + 1
1593*
1594*****************************************************************************/
6dcc5627 1595SYM_FUNC_START(aesni_gcm_dec)
6c2c86b3 1596 FUNC_SAVE
0bd82f5f 1597
fb8986e6 1598 GCM_INIT %arg6, arg7, arg8, arg9
ba45833e 1599 GCM_ENC_DEC dec
fb8986e6 1600 GCM_COMPLETE arg10, arg11
6c2c86b3 1601 FUNC_RESTORE
0bd82f5f 1602 ret
6dcc5627 1603SYM_FUNC_END(aesni_gcm_dec)
0bd82f5f
TS
1604
1605
1606/*****************************************************************************
1607* void aesni_gcm_enc(void *aes_ctx, // AES Key schedule. Starts on a 16 byte boundary.
9ee4a5df
DW
1608* struct gcm_context_data *data
1609* // Context data
0bd82f5f
TS
1610* u8 *out, // Ciphertext output. Encrypt in-place is allowed.
1611* const u8 *in, // Plaintext input
1612* u64 plaintext_len, // Length of data in bytes for encryption.
1613* u8 *iv, // Pre-counter block j0: 4 byte salt (from Security Association)
1614* // concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload)
1615* // concatenated with 0x00000001. 16-byte aligned pointer.
1616* u8 *hash_subkey, // H, the Hash sub key input. Data starts on a 16-byte boundary.
1617* const u8 *aad, // Additional Authentication Data (AAD)
1618* u64 aad_len, // Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 bytes
1619* u8 *auth_tag, // Authenticated Tag output.
1620* u64 auth_tag_len); // Authenticated Tag Length in bytes. Valid values are 16 (most likely),
1621* // 12 or 8.
1622*
1623* Assumptions:
1624*
1625* keys:
1626* keys are pre-expanded and aligned to 16 bytes. we are using the
1627* first set of 11 keys in the data structure void *aes_ctx
1628*
1629*
1630* iv:
1631* 0 1 2 3
1632* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1633* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1634* | Salt (From the SA) |
1635* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1636* | Initialization Vector |
1637* | (This is the sequence number from IPSec header) |
1638* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1639* | 0x1 |
1640* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1641*
1642*
1643*
1644* AAD:
1645* AAD padded to 128 bits with 0
1646* for example, assume AAD is a u32 vector
1647*
1648* if AAD is 8 bytes:
1649* AAD[3] = {A0, A1};
1650* padded AAD in xmm register = {A1 A0 0 0}
1651*
1652* 0 1 2 3
1653* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1654* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1655* | SPI (A1) |
1656* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1657* | 32-bit Sequence Number (A0) |
1658* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1659* | 0x0 |
1660* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1661*
1662* AAD Format with 32-bit Sequence Number
1663*
1664* if AAD is 12 bytes:
1665* AAD[3] = {A0, A1, A2};
1666* padded AAD in xmm register = {A2 A1 A0 0}
1667*
1668* 0 1 2 3
1669* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1670* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1671* | SPI (A2) |
1672* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1673* | 64-bit Extended Sequence Number {A1,A0} |
1674* | |
1675* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1676* | 0x0 |
1677* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1678*
1679* AAD Format with 64-bit Extended Sequence Number
1680*
0bd82f5f
TS
1681* poly = x^128 + x^127 + x^126 + x^121 + 1
1682***************************************************************************/
6dcc5627 1683SYM_FUNC_START(aesni_gcm_enc)
6c2c86b3 1684 FUNC_SAVE
0bd82f5f 1685
fb8986e6 1686 GCM_INIT %arg6, arg7, arg8, arg9
ba45833e 1687 GCM_ENC_DEC enc
fb8986e6
DW
1688
1689 GCM_COMPLETE arg10, arg11
6c2c86b3 1690 FUNC_RESTORE
0bd82f5f 1691 ret
6dcc5627 1692SYM_FUNC_END(aesni_gcm_enc)
3c097b80 1693
fb8986e6
DW
1694/*****************************************************************************
1695* void aesni_gcm_init(void *aes_ctx, // AES Key schedule. Starts on a 16 byte boundary.
1696* struct gcm_context_data *data,
1697* // context data
1698* u8 *iv, // Pre-counter block j0: 4 byte salt (from Security Association)
1699* // concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload)
1700* // concatenated with 0x00000001. 16-byte aligned pointer.
1701* u8 *hash_subkey, // H, the Hash sub key input. Data starts on a 16-byte boundary.
1702* const u8 *aad, // Additional Authentication Data (AAD)
1703* u64 aad_len) // Length of AAD in bytes.
1704*/
6dcc5627 1705SYM_FUNC_START(aesni_gcm_init)
fb8986e6
DW
1706 FUNC_SAVE
1707 GCM_INIT %arg3, %arg4,%arg5, %arg6
1708 FUNC_RESTORE
1709 ret
6dcc5627 1710SYM_FUNC_END(aesni_gcm_init)
fb8986e6
DW
1711
1712/*****************************************************************************
1713* void aesni_gcm_enc_update(void *aes_ctx, // AES Key schedule. Starts on a 16 byte boundary.
1714* struct gcm_context_data *data,
1715* // context data
1716* u8 *out, // Ciphertext output. Encrypt in-place is allowed.
1717* const u8 *in, // Plaintext input
1718* u64 plaintext_len, // Length of data in bytes for encryption.
1719*/
6dcc5627 1720SYM_FUNC_START(aesni_gcm_enc_update)
fb8986e6
DW
1721 FUNC_SAVE
1722 GCM_ENC_DEC enc
1723 FUNC_RESTORE
1724 ret
6dcc5627 1725SYM_FUNC_END(aesni_gcm_enc_update)
fb8986e6
DW
1726
1727/*****************************************************************************
1728* void aesni_gcm_dec_update(void *aes_ctx, // AES Key schedule. Starts on a 16 byte boundary.
1729* struct gcm_context_data *data,
1730* // context data
1731* u8 *out, // Ciphertext output. Encrypt in-place is allowed.
1732* const u8 *in, // Plaintext input
1733* u64 plaintext_len, // Length of data in bytes for encryption.
1734*/
6dcc5627 1735SYM_FUNC_START(aesni_gcm_dec_update)
fb8986e6
DW
1736 FUNC_SAVE
1737 GCM_ENC_DEC dec
1738 FUNC_RESTORE
1739 ret
6dcc5627 1740SYM_FUNC_END(aesni_gcm_dec_update)
fb8986e6
DW
1741
1742/*****************************************************************************
1743* void aesni_gcm_finalize(void *aes_ctx, // AES Key schedule. Starts on a 16 byte boundary.
1744* struct gcm_context_data *data,
1745* // context data
1746* u8 *auth_tag, // Authenticated Tag output.
1747* u64 auth_tag_len); // Authenticated Tag Length in bytes. Valid values are 16 (most likely),
1748* // 12 or 8.
1749*/
6dcc5627 1750SYM_FUNC_START(aesni_gcm_finalize)
fb8986e6
DW
1751 FUNC_SAVE
1752 GCM_COMPLETE %arg3 %arg4
1753 FUNC_RESTORE
1754 ret
6dcc5627 1755SYM_FUNC_END(aesni_gcm_finalize)
fb8986e6 1756
559ad0ff 1757#endif
0bd82f5f
TS
1758
1759
e9b9d020 1760SYM_FUNC_START_LOCAL_ALIAS(_key_expansion_128)
74d8b90a 1761SYM_FUNC_START_LOCAL(_key_expansion_256a)
54b6a1bd
HY
1762 pshufd $0b11111111, %xmm1, %xmm1
1763 shufps $0b00010000, %xmm0, %xmm4
1764 pxor %xmm4, %xmm0
1765 shufps $0b10001100, %xmm0, %xmm4
1766 pxor %xmm4, %xmm0
1767 pxor %xmm1, %xmm0
0d258efb
MK
1768 movaps %xmm0, (TKEYP)
1769 add $0x10, TKEYP
54b6a1bd 1770 ret
74d8b90a 1771SYM_FUNC_END(_key_expansion_256a)
e9b9d020 1772SYM_FUNC_END_ALIAS(_key_expansion_128)
54b6a1bd 1773
74d8b90a 1774SYM_FUNC_START_LOCAL(_key_expansion_192a)
54b6a1bd
HY
1775 pshufd $0b01010101, %xmm1, %xmm1
1776 shufps $0b00010000, %xmm0, %xmm4
1777 pxor %xmm4, %xmm0
1778 shufps $0b10001100, %xmm0, %xmm4
1779 pxor %xmm4, %xmm0
1780 pxor %xmm1, %xmm0
1781
1782 movaps %xmm2, %xmm5
1783 movaps %xmm2, %xmm6
1784 pslldq $4, %xmm5
1785 pshufd $0b11111111, %xmm0, %xmm3
1786 pxor %xmm3, %xmm2
1787 pxor %xmm5, %xmm2
1788
1789 movaps %xmm0, %xmm1
1790 shufps $0b01000100, %xmm0, %xmm6
0d258efb 1791 movaps %xmm6, (TKEYP)
54b6a1bd 1792 shufps $0b01001110, %xmm2, %xmm1
0d258efb
MK
1793 movaps %xmm1, 0x10(TKEYP)
1794 add $0x20, TKEYP
54b6a1bd 1795 ret
74d8b90a 1796SYM_FUNC_END(_key_expansion_192a)
54b6a1bd 1797
74d8b90a 1798SYM_FUNC_START_LOCAL(_key_expansion_192b)
54b6a1bd
HY
1799 pshufd $0b01010101, %xmm1, %xmm1
1800 shufps $0b00010000, %xmm0, %xmm4
1801 pxor %xmm4, %xmm0
1802 shufps $0b10001100, %xmm0, %xmm4
1803 pxor %xmm4, %xmm0
1804 pxor %xmm1, %xmm0
1805
1806 movaps %xmm2, %xmm5
1807 pslldq $4, %xmm5
1808 pshufd $0b11111111, %xmm0, %xmm3
1809 pxor %xmm3, %xmm2
1810 pxor %xmm5, %xmm2
1811
0d258efb
MK
1812 movaps %xmm0, (TKEYP)
1813 add $0x10, TKEYP
54b6a1bd 1814 ret
74d8b90a 1815SYM_FUNC_END(_key_expansion_192b)
54b6a1bd 1816
74d8b90a 1817SYM_FUNC_START_LOCAL(_key_expansion_256b)
54b6a1bd
HY
1818 pshufd $0b10101010, %xmm1, %xmm1
1819 shufps $0b00010000, %xmm2, %xmm4
1820 pxor %xmm4, %xmm2
1821 shufps $0b10001100, %xmm2, %xmm4
1822 pxor %xmm4, %xmm2
1823 pxor %xmm1, %xmm2
0d258efb
MK
1824 movaps %xmm2, (TKEYP)
1825 add $0x10, TKEYP
54b6a1bd 1826 ret
74d8b90a 1827SYM_FUNC_END(_key_expansion_256b)
54b6a1bd
HY
1828
1829/*
1830 * int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
1831 * unsigned int key_len)
1832 */
6dcc5627 1833SYM_FUNC_START(aesni_set_key)
8691ccd7 1834 FRAME_BEGIN
0d258efb
MK
1835#ifndef __x86_64__
1836 pushl KEYP
8691ccd7
JP
1837 movl (FRAME_OFFSET+8)(%esp), KEYP # ctx
1838 movl (FRAME_OFFSET+12)(%esp), UKEYP # in_key
1839 movl (FRAME_OFFSET+16)(%esp), %edx # key_len
0d258efb
MK
1840#endif
1841 movups (UKEYP), %xmm0 # user key (first 16 bytes)
1842 movaps %xmm0, (KEYP)
1843 lea 0x10(KEYP), TKEYP # key addr
1844 movl %edx, 480(KEYP)
54b6a1bd
HY
1845 pxor %xmm4, %xmm4 # xmm4 is assumed 0 in _key_expansion_x
1846 cmp $24, %dl
1847 jb .Lenc_key128
1848 je .Lenc_key192
0d258efb
MK
1849 movups 0x10(UKEYP), %xmm2 # other user key
1850 movaps %xmm2, (TKEYP)
1851 add $0x10, TKEYP
b369e521 1852 AESKEYGENASSIST 0x1 %xmm2 %xmm1 # round 1
54b6a1bd 1853 call _key_expansion_256a
b369e521 1854 AESKEYGENASSIST 0x1 %xmm0 %xmm1
54b6a1bd 1855 call _key_expansion_256b
b369e521 1856 AESKEYGENASSIST 0x2 %xmm2 %xmm1 # round 2
54b6a1bd 1857 call _key_expansion_256a
b369e521 1858 AESKEYGENASSIST 0x2 %xmm0 %xmm1
54b6a1bd 1859 call _key_expansion_256b
b369e521 1860 AESKEYGENASSIST 0x4 %xmm2 %xmm1 # round 3
54b6a1bd 1861 call _key_expansion_256a
b369e521 1862 AESKEYGENASSIST 0x4 %xmm0 %xmm1
54b6a1bd 1863 call _key_expansion_256b
b369e521 1864 AESKEYGENASSIST 0x8 %xmm2 %xmm1 # round 4
54b6a1bd 1865 call _key_expansion_256a
b369e521 1866 AESKEYGENASSIST 0x8 %xmm0 %xmm1
54b6a1bd 1867 call _key_expansion_256b
b369e521 1868 AESKEYGENASSIST 0x10 %xmm2 %xmm1 # round 5
54b6a1bd 1869 call _key_expansion_256a
b369e521 1870 AESKEYGENASSIST 0x10 %xmm0 %xmm1
54b6a1bd 1871 call _key_expansion_256b
b369e521 1872 AESKEYGENASSIST 0x20 %xmm2 %xmm1 # round 6
54b6a1bd 1873 call _key_expansion_256a
b369e521 1874 AESKEYGENASSIST 0x20 %xmm0 %xmm1
54b6a1bd 1875 call _key_expansion_256b
b369e521 1876 AESKEYGENASSIST 0x40 %xmm2 %xmm1 # round 7
54b6a1bd
HY
1877 call _key_expansion_256a
1878 jmp .Ldec_key
1879.Lenc_key192:
0d258efb 1880 movq 0x10(UKEYP), %xmm2 # other user key
b369e521 1881 AESKEYGENASSIST 0x1 %xmm2 %xmm1 # round 1
54b6a1bd 1882 call _key_expansion_192a
b369e521 1883 AESKEYGENASSIST 0x2 %xmm2 %xmm1 # round 2
54b6a1bd 1884 call _key_expansion_192b
b369e521 1885 AESKEYGENASSIST 0x4 %xmm2 %xmm1 # round 3
54b6a1bd 1886 call _key_expansion_192a
b369e521 1887 AESKEYGENASSIST 0x8 %xmm2 %xmm1 # round 4
54b6a1bd 1888 call _key_expansion_192b
b369e521 1889 AESKEYGENASSIST 0x10 %xmm2 %xmm1 # round 5
54b6a1bd 1890 call _key_expansion_192a
b369e521 1891 AESKEYGENASSIST 0x20 %xmm2 %xmm1 # round 6
54b6a1bd 1892 call _key_expansion_192b
b369e521 1893 AESKEYGENASSIST 0x40 %xmm2 %xmm1 # round 7
54b6a1bd 1894 call _key_expansion_192a
b369e521 1895 AESKEYGENASSIST 0x80 %xmm2 %xmm1 # round 8
54b6a1bd
HY
1896 call _key_expansion_192b
1897 jmp .Ldec_key
1898.Lenc_key128:
b369e521 1899 AESKEYGENASSIST 0x1 %xmm0 %xmm1 # round 1
54b6a1bd 1900 call _key_expansion_128
b369e521 1901 AESKEYGENASSIST 0x2 %xmm0 %xmm1 # round 2
54b6a1bd 1902 call _key_expansion_128
b369e521 1903 AESKEYGENASSIST 0x4 %xmm0 %xmm1 # round 3
54b6a1bd 1904 call _key_expansion_128
b369e521 1905 AESKEYGENASSIST 0x8 %xmm0 %xmm1 # round 4
54b6a1bd 1906 call _key_expansion_128
b369e521 1907 AESKEYGENASSIST 0x10 %xmm0 %xmm1 # round 5
54b6a1bd 1908 call _key_expansion_128
b369e521 1909 AESKEYGENASSIST 0x20 %xmm0 %xmm1 # round 6
54b6a1bd 1910 call _key_expansion_128
b369e521 1911 AESKEYGENASSIST 0x40 %xmm0 %xmm1 # round 7
54b6a1bd 1912 call _key_expansion_128
b369e521 1913 AESKEYGENASSIST 0x80 %xmm0 %xmm1 # round 8
54b6a1bd 1914 call _key_expansion_128
b369e521 1915 AESKEYGENASSIST 0x1b %xmm0 %xmm1 # round 9
54b6a1bd 1916 call _key_expansion_128
b369e521 1917 AESKEYGENASSIST 0x36 %xmm0 %xmm1 # round 10
54b6a1bd
HY
1918 call _key_expansion_128
1919.Ldec_key:
0d258efb
MK
1920 sub $0x10, TKEYP
1921 movaps (KEYP), %xmm0
1922 movaps (TKEYP), %xmm1
1923 movaps %xmm0, 240(TKEYP)
1924 movaps %xmm1, 240(KEYP)
1925 add $0x10, KEYP
1926 lea 240-16(TKEYP), UKEYP
54b6a1bd
HY
1927.align 4
1928.Ldec_key_loop:
0d258efb 1929 movaps (KEYP), %xmm0
b369e521 1930 AESIMC %xmm0 %xmm1
0d258efb
MK
1931 movaps %xmm1, (UKEYP)
1932 add $0x10, KEYP
1933 sub $0x10, UKEYP
1934 cmp TKEYP, KEYP
54b6a1bd 1935 jb .Ldec_key_loop
0d258efb
MK
1936 xor AREG, AREG
1937#ifndef __x86_64__
1938 popl KEYP
1939#endif
8691ccd7 1940 FRAME_END
54b6a1bd 1941 ret
6dcc5627 1942SYM_FUNC_END(aesni_set_key)
54b6a1bd
HY
1943
1944/*
9c1e8836 1945 * void aesni_enc(const void *ctx, u8 *dst, const u8 *src)
54b6a1bd 1946 */
6dcc5627 1947SYM_FUNC_START(aesni_enc)
8691ccd7 1948 FRAME_BEGIN
0d258efb
MK
1949#ifndef __x86_64__
1950 pushl KEYP
1951 pushl KLEN
8691ccd7
JP
1952 movl (FRAME_OFFSET+12)(%esp), KEYP # ctx
1953 movl (FRAME_OFFSET+16)(%esp), OUTP # dst
1954 movl (FRAME_OFFSET+20)(%esp), INP # src
0d258efb 1955#endif
54b6a1bd
HY
1956 movl 480(KEYP), KLEN # key length
1957 movups (INP), STATE # input
1958 call _aesni_enc1
1959 movups STATE, (OUTP) # output
0d258efb
MK
1960#ifndef __x86_64__
1961 popl KLEN
1962 popl KEYP
1963#endif
8691ccd7 1964 FRAME_END
54b6a1bd 1965 ret
6dcc5627 1966SYM_FUNC_END(aesni_enc)
54b6a1bd
HY
1967
1968/*
1969 * _aesni_enc1: internal ABI
1970 * input:
1971 * KEYP: key struct pointer
1972 * KLEN: round count
1973 * STATE: initial state (input)
1974 * output:
1975 * STATE: finial state (output)
1976 * changed:
1977 * KEY
1978 * TKEYP (T1)
1979 */
74d8b90a 1980SYM_FUNC_START_LOCAL(_aesni_enc1)
54b6a1bd
HY
1981 movaps (KEYP), KEY # key
1982 mov KEYP, TKEYP
1983 pxor KEY, STATE # round 0
1984 add $0x30, TKEYP
1985 cmp $24, KLEN
1986 jb .Lenc128
1987 lea 0x20(TKEYP), TKEYP
1988 je .Lenc192
1989 add $0x20, TKEYP
1990 movaps -0x60(TKEYP), KEY
b369e521 1991 AESENC KEY STATE
54b6a1bd 1992 movaps -0x50(TKEYP), KEY
b369e521 1993 AESENC KEY STATE
54b6a1bd
HY
1994.align 4
1995.Lenc192:
1996 movaps -0x40(TKEYP), KEY
b369e521 1997 AESENC KEY STATE
54b6a1bd 1998 movaps -0x30(TKEYP), KEY
b369e521 1999 AESENC KEY STATE
54b6a1bd
HY
2000.align 4
2001.Lenc128:
2002 movaps -0x20(TKEYP), KEY
b369e521 2003 AESENC KEY STATE
54b6a1bd 2004 movaps -0x10(TKEYP), KEY
b369e521 2005 AESENC KEY STATE
54b6a1bd 2006 movaps (TKEYP), KEY
b369e521 2007 AESENC KEY STATE
54b6a1bd 2008 movaps 0x10(TKEYP), KEY
b369e521 2009 AESENC KEY STATE
54b6a1bd 2010 movaps 0x20(TKEYP), KEY
b369e521 2011 AESENC KEY STATE
54b6a1bd 2012 movaps 0x30(TKEYP), KEY
b369e521 2013 AESENC KEY STATE
54b6a1bd 2014 movaps 0x40(TKEYP), KEY
b369e521 2015 AESENC KEY STATE
54b6a1bd 2016 movaps 0x50(TKEYP), KEY
b369e521 2017 AESENC KEY STATE
54b6a1bd 2018 movaps 0x60(TKEYP), KEY
b369e521 2019 AESENC KEY STATE
54b6a1bd 2020 movaps 0x70(TKEYP), KEY
b369e521 2021 AESENCLAST KEY STATE
54b6a1bd 2022 ret
74d8b90a 2023SYM_FUNC_END(_aesni_enc1)
54b6a1bd
HY
2024
2025/*
2026 * _aesni_enc4: internal ABI
2027 * input:
2028 * KEYP: key struct pointer
2029 * KLEN: round count
2030 * STATE1: initial state (input)
2031 * STATE2
2032 * STATE3
2033 * STATE4
2034 * output:
2035 * STATE1: finial state (output)
2036 * STATE2
2037 * STATE3
2038 * STATE4
2039 * changed:
2040 * KEY
2041 * TKEYP (T1)
2042 */
74d8b90a 2043SYM_FUNC_START_LOCAL(_aesni_enc4)
54b6a1bd
HY
2044 movaps (KEYP), KEY # key
2045 mov KEYP, TKEYP
2046 pxor KEY, STATE1 # round 0
2047 pxor KEY, STATE2
2048 pxor KEY, STATE3
2049 pxor KEY, STATE4
2050 add $0x30, TKEYP
2051 cmp $24, KLEN
2052 jb .L4enc128
2053 lea 0x20(TKEYP), TKEYP
2054 je .L4enc192
2055 add $0x20, TKEYP
2056 movaps -0x60(TKEYP), KEY
b369e521
HY
2057 AESENC KEY STATE1
2058 AESENC KEY STATE2
2059 AESENC KEY STATE3
2060 AESENC KEY STATE4
54b6a1bd 2061 movaps -0x50(TKEYP), KEY
b369e521
HY
2062 AESENC KEY STATE1
2063 AESENC KEY STATE2
2064 AESENC KEY STATE3
2065 AESENC KEY STATE4
54b6a1bd
HY
2066#.align 4
2067.L4enc192:
2068 movaps -0x40(TKEYP), KEY
b369e521
HY
2069 AESENC KEY STATE1
2070 AESENC KEY STATE2
2071 AESENC KEY STATE3
2072 AESENC KEY STATE4
54b6a1bd 2073 movaps -0x30(TKEYP), KEY
b369e521
HY
2074 AESENC KEY STATE1
2075 AESENC KEY STATE2
2076 AESENC KEY STATE3
2077 AESENC KEY STATE4
54b6a1bd
HY
2078#.align 4
2079.L4enc128:
2080 movaps -0x20(TKEYP), KEY
b369e521
HY
2081 AESENC KEY STATE1
2082 AESENC KEY STATE2
2083 AESENC KEY STATE3
2084 AESENC KEY STATE4
54b6a1bd 2085 movaps -0x10(TKEYP), KEY
b369e521
HY
2086 AESENC KEY STATE1
2087 AESENC KEY STATE2
2088 AESENC KEY STATE3
2089 AESENC KEY STATE4
54b6a1bd 2090 movaps (TKEYP), KEY
b369e521
HY
2091 AESENC KEY STATE1
2092 AESENC KEY STATE2
2093 AESENC KEY STATE3
2094 AESENC KEY STATE4
54b6a1bd 2095 movaps 0x10(TKEYP), KEY
b369e521
HY
2096 AESENC KEY STATE1
2097 AESENC KEY STATE2
2098 AESENC KEY STATE3
2099 AESENC KEY STATE4
54b6a1bd 2100 movaps 0x20(TKEYP), KEY
b369e521
HY
2101 AESENC KEY STATE1
2102 AESENC KEY STATE2
2103 AESENC KEY STATE3
2104 AESENC KEY STATE4
54b6a1bd 2105 movaps 0x30(TKEYP), KEY
b369e521
HY
2106 AESENC KEY STATE1
2107 AESENC KEY STATE2
2108 AESENC KEY STATE3
2109 AESENC KEY STATE4
54b6a1bd 2110 movaps 0x40(TKEYP), KEY
b369e521
HY
2111 AESENC KEY STATE1
2112 AESENC KEY STATE2
2113 AESENC KEY STATE3
2114 AESENC KEY STATE4
54b6a1bd 2115 movaps 0x50(TKEYP), KEY
b369e521
HY
2116 AESENC KEY STATE1
2117 AESENC KEY STATE2
2118 AESENC KEY STATE3
2119 AESENC KEY STATE4
54b6a1bd 2120 movaps 0x60(TKEYP), KEY
b369e521
HY
2121 AESENC KEY STATE1
2122 AESENC KEY STATE2
2123 AESENC KEY STATE3
2124 AESENC KEY STATE4
54b6a1bd 2125 movaps 0x70(TKEYP), KEY
b369e521
HY
2126 AESENCLAST KEY STATE1 # last round
2127 AESENCLAST KEY STATE2
2128 AESENCLAST KEY STATE3
2129 AESENCLAST KEY STATE4
54b6a1bd 2130 ret
74d8b90a 2131SYM_FUNC_END(_aesni_enc4)
54b6a1bd
HY
2132
2133/*
9c1e8836 2134 * void aesni_dec (const void *ctx, u8 *dst, const u8 *src)
54b6a1bd 2135 */
6dcc5627 2136SYM_FUNC_START(aesni_dec)
8691ccd7 2137 FRAME_BEGIN
0d258efb
MK
2138#ifndef __x86_64__
2139 pushl KEYP
2140 pushl KLEN
8691ccd7
JP
2141 movl (FRAME_OFFSET+12)(%esp), KEYP # ctx
2142 movl (FRAME_OFFSET+16)(%esp), OUTP # dst
2143 movl (FRAME_OFFSET+20)(%esp), INP # src
0d258efb 2144#endif
54b6a1bd
HY
2145 mov 480(KEYP), KLEN # key length
2146 add $240, KEYP
2147 movups (INP), STATE # input
2148 call _aesni_dec1
2149 movups STATE, (OUTP) #output
0d258efb
MK
2150#ifndef __x86_64__
2151 popl KLEN
2152 popl KEYP
2153#endif
8691ccd7 2154 FRAME_END
54b6a1bd 2155 ret
6dcc5627 2156SYM_FUNC_END(aesni_dec)
54b6a1bd
HY
2157
2158/*
2159 * _aesni_dec1: internal ABI
2160 * input:
2161 * KEYP: key struct pointer
2162 * KLEN: key length
2163 * STATE: initial state (input)
2164 * output:
2165 * STATE: finial state (output)
2166 * changed:
2167 * KEY
2168 * TKEYP (T1)
2169 */
74d8b90a 2170SYM_FUNC_START_LOCAL(_aesni_dec1)
54b6a1bd
HY
2171 movaps (KEYP), KEY # key
2172 mov KEYP, TKEYP
2173 pxor KEY, STATE # round 0
2174 add $0x30, TKEYP
2175 cmp $24, KLEN
2176 jb .Ldec128
2177 lea 0x20(TKEYP), TKEYP
2178 je .Ldec192
2179 add $0x20, TKEYP
2180 movaps -0x60(TKEYP), KEY
b369e521 2181 AESDEC KEY STATE
54b6a1bd 2182 movaps -0x50(TKEYP), KEY
b369e521 2183 AESDEC KEY STATE
54b6a1bd
HY
2184.align 4
2185.Ldec192:
2186 movaps -0x40(TKEYP), KEY
b369e521 2187 AESDEC KEY STATE
54b6a1bd 2188 movaps -0x30(TKEYP), KEY
b369e521 2189 AESDEC KEY STATE
54b6a1bd
HY
2190.align 4
2191.Ldec128:
2192 movaps -0x20(TKEYP), KEY
b369e521 2193 AESDEC KEY STATE
54b6a1bd 2194 movaps -0x10(TKEYP), KEY
b369e521 2195 AESDEC KEY STATE
54b6a1bd 2196 movaps (TKEYP), KEY
b369e521 2197 AESDEC KEY STATE
54b6a1bd 2198 movaps 0x10(TKEYP), KEY
b369e521 2199 AESDEC KEY STATE
54b6a1bd 2200 movaps 0x20(TKEYP), KEY
b369e521 2201 AESDEC KEY STATE
54b6a1bd 2202 movaps 0x30(TKEYP), KEY
b369e521 2203 AESDEC KEY STATE
54b6a1bd 2204 movaps 0x40(TKEYP), KEY
b369e521 2205 AESDEC KEY STATE
54b6a1bd 2206 movaps 0x50(TKEYP), KEY
b369e521 2207 AESDEC KEY STATE
54b6a1bd 2208 movaps 0x60(TKEYP), KEY
b369e521 2209 AESDEC KEY STATE
54b6a1bd 2210 movaps 0x70(TKEYP), KEY
b369e521 2211 AESDECLAST KEY STATE
54b6a1bd 2212 ret
74d8b90a 2213SYM_FUNC_END(_aesni_dec1)
54b6a1bd
HY
2214
2215/*
2216 * _aesni_dec4: internal ABI
2217 * input:
2218 * KEYP: key struct pointer
2219 * KLEN: key length
2220 * STATE1: initial state (input)
2221 * STATE2
2222 * STATE3
2223 * STATE4
2224 * output:
2225 * STATE1: finial state (output)
2226 * STATE2
2227 * STATE3
2228 * STATE4
2229 * changed:
2230 * KEY
2231 * TKEYP (T1)
2232 */
74d8b90a 2233SYM_FUNC_START_LOCAL(_aesni_dec4)
54b6a1bd
HY
2234 movaps (KEYP), KEY # key
2235 mov KEYP, TKEYP
2236 pxor KEY, STATE1 # round 0
2237 pxor KEY, STATE2
2238 pxor KEY, STATE3
2239 pxor KEY, STATE4
2240 add $0x30, TKEYP
2241 cmp $24, KLEN
2242 jb .L4dec128
2243 lea 0x20(TKEYP), TKEYP
2244 je .L4dec192
2245 add $0x20, TKEYP
2246 movaps -0x60(TKEYP), KEY
b369e521
HY
2247 AESDEC KEY STATE1
2248 AESDEC KEY STATE2
2249 AESDEC KEY STATE3
2250 AESDEC KEY STATE4
54b6a1bd 2251 movaps -0x50(TKEYP), KEY
b369e521
HY
2252 AESDEC KEY STATE1
2253 AESDEC KEY STATE2
2254 AESDEC KEY STATE3
2255 AESDEC KEY STATE4
54b6a1bd
HY
2256.align 4
2257.L4dec192:
2258 movaps -0x40(TKEYP), KEY
b369e521
HY
2259 AESDEC KEY STATE1
2260 AESDEC KEY STATE2
2261 AESDEC KEY STATE3
2262 AESDEC KEY STATE4
54b6a1bd 2263 movaps -0x30(TKEYP), KEY
b369e521
HY
2264 AESDEC KEY STATE1
2265 AESDEC KEY STATE2
2266 AESDEC KEY STATE3
2267 AESDEC KEY STATE4
54b6a1bd
HY
2268.align 4
2269.L4dec128:
2270 movaps -0x20(TKEYP), KEY
b369e521
HY
2271 AESDEC KEY STATE1
2272 AESDEC KEY STATE2
2273 AESDEC KEY STATE3
2274 AESDEC KEY STATE4
54b6a1bd 2275 movaps -0x10(TKEYP), KEY
b369e521
HY
2276 AESDEC KEY STATE1
2277 AESDEC KEY STATE2
2278 AESDEC KEY STATE3
2279 AESDEC KEY STATE4
54b6a1bd 2280 movaps (TKEYP), KEY
b369e521
HY
2281 AESDEC KEY STATE1
2282 AESDEC KEY STATE2
2283 AESDEC KEY STATE3
2284 AESDEC KEY STATE4
54b6a1bd 2285 movaps 0x10(TKEYP), KEY
b369e521
HY
2286 AESDEC KEY STATE1
2287 AESDEC KEY STATE2
2288 AESDEC KEY STATE3
2289 AESDEC KEY STATE4
54b6a1bd 2290 movaps 0x20(TKEYP), KEY
b369e521
HY
2291 AESDEC KEY STATE1
2292 AESDEC KEY STATE2
2293 AESDEC KEY STATE3
2294 AESDEC KEY STATE4
54b6a1bd 2295 movaps 0x30(TKEYP), KEY
b369e521
HY
2296 AESDEC KEY STATE1
2297 AESDEC KEY STATE2
2298 AESDEC KEY STATE3
2299 AESDEC KEY STATE4
54b6a1bd 2300 movaps 0x40(TKEYP), KEY
b369e521
HY
2301 AESDEC KEY STATE1
2302 AESDEC KEY STATE2
2303 AESDEC KEY STATE3
2304 AESDEC KEY STATE4
54b6a1bd 2305 movaps 0x50(TKEYP), KEY
b369e521
HY
2306 AESDEC KEY STATE1
2307 AESDEC KEY STATE2
2308 AESDEC KEY STATE3
2309 AESDEC KEY STATE4
54b6a1bd 2310 movaps 0x60(TKEYP), KEY
b369e521
HY
2311 AESDEC KEY STATE1
2312 AESDEC KEY STATE2
2313 AESDEC KEY STATE3
2314 AESDEC KEY STATE4
54b6a1bd 2315 movaps 0x70(TKEYP), KEY
b369e521
HY
2316 AESDECLAST KEY STATE1 # last round
2317 AESDECLAST KEY STATE2
2318 AESDECLAST KEY STATE3
2319 AESDECLAST KEY STATE4
54b6a1bd 2320 ret
74d8b90a 2321SYM_FUNC_END(_aesni_dec4)
54b6a1bd
HY
2322
2323/*
2324 * void aesni_ecb_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
2325 * size_t len)
2326 */
6dcc5627 2327SYM_FUNC_START(aesni_ecb_enc)
8691ccd7 2328 FRAME_BEGIN
0d258efb
MK
2329#ifndef __x86_64__
2330 pushl LEN
2331 pushl KEYP
2332 pushl KLEN
8691ccd7
JP
2333 movl (FRAME_OFFSET+16)(%esp), KEYP # ctx
2334 movl (FRAME_OFFSET+20)(%esp), OUTP # dst
2335 movl (FRAME_OFFSET+24)(%esp), INP # src
2336 movl (FRAME_OFFSET+28)(%esp), LEN # len
0d258efb 2337#endif
54b6a1bd
HY
2338 test LEN, LEN # check length
2339 jz .Lecb_enc_ret
2340 mov 480(KEYP), KLEN
2341 cmp $16, LEN
2342 jb .Lecb_enc_ret
2343 cmp $64, LEN
2344 jb .Lecb_enc_loop1
2345.align 4
2346.Lecb_enc_loop4:
2347 movups (INP), STATE1
2348 movups 0x10(INP), STATE2
2349 movups 0x20(INP), STATE3
2350 movups 0x30(INP), STATE4
2351 call _aesni_enc4
2352 movups STATE1, (OUTP)
2353 movups STATE2, 0x10(OUTP)
2354 movups STATE3, 0x20(OUTP)
2355 movups STATE4, 0x30(OUTP)
2356 sub $64, LEN
2357 add $64, INP
2358 add $64, OUTP
2359 cmp $64, LEN
2360 jge .Lecb_enc_loop4
2361 cmp $16, LEN
2362 jb .Lecb_enc_ret
2363.align 4
2364.Lecb_enc_loop1:
2365 movups (INP), STATE1
2366 call _aesni_enc1
2367 movups STATE1, (OUTP)
2368 sub $16, LEN
2369 add $16, INP
2370 add $16, OUTP
2371 cmp $16, LEN
2372 jge .Lecb_enc_loop1
2373.Lecb_enc_ret:
0d258efb
MK
2374#ifndef __x86_64__
2375 popl KLEN
2376 popl KEYP
2377 popl LEN
2378#endif
8691ccd7 2379 FRAME_END
54b6a1bd 2380 ret
6dcc5627 2381SYM_FUNC_END(aesni_ecb_enc)
54b6a1bd
HY
2382
2383/*
2384 * void aesni_ecb_dec(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
2385 * size_t len);
2386 */
6dcc5627 2387SYM_FUNC_START(aesni_ecb_dec)
8691ccd7 2388 FRAME_BEGIN
0d258efb
MK
2389#ifndef __x86_64__
2390 pushl LEN
2391 pushl KEYP
2392 pushl KLEN
8691ccd7
JP
2393 movl (FRAME_OFFSET+16)(%esp), KEYP # ctx
2394 movl (FRAME_OFFSET+20)(%esp), OUTP # dst
2395 movl (FRAME_OFFSET+24)(%esp), INP # src
2396 movl (FRAME_OFFSET+28)(%esp), LEN # len
0d258efb 2397#endif
54b6a1bd
HY
2398 test LEN, LEN
2399 jz .Lecb_dec_ret
2400 mov 480(KEYP), KLEN
2401 add $240, KEYP
2402 cmp $16, LEN
2403 jb .Lecb_dec_ret
2404 cmp $64, LEN
2405 jb .Lecb_dec_loop1
2406.align 4
2407.Lecb_dec_loop4:
2408 movups (INP), STATE1
2409 movups 0x10(INP), STATE2
2410 movups 0x20(INP), STATE3
2411 movups 0x30(INP), STATE4
2412 call _aesni_dec4
2413 movups STATE1, (OUTP)
2414 movups STATE2, 0x10(OUTP)
2415 movups STATE3, 0x20(OUTP)
2416 movups STATE4, 0x30(OUTP)
2417 sub $64, LEN
2418 add $64, INP
2419 add $64, OUTP
2420 cmp $64, LEN
2421 jge .Lecb_dec_loop4
2422 cmp $16, LEN
2423 jb .Lecb_dec_ret
2424.align 4
2425.Lecb_dec_loop1:
2426 movups (INP), STATE1
2427 call _aesni_dec1
2428 movups STATE1, (OUTP)
2429 sub $16, LEN
2430 add $16, INP
2431 add $16, OUTP
2432 cmp $16, LEN
2433 jge .Lecb_dec_loop1
2434.Lecb_dec_ret:
0d258efb
MK
2435#ifndef __x86_64__
2436 popl KLEN
2437 popl KEYP
2438 popl LEN
2439#endif
8691ccd7 2440 FRAME_END
54b6a1bd 2441 ret
6dcc5627 2442SYM_FUNC_END(aesni_ecb_dec)
54b6a1bd
HY
2443
2444/*
2445 * void aesni_cbc_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
2446 * size_t len, u8 *iv)
2447 */
6dcc5627 2448SYM_FUNC_START(aesni_cbc_enc)
8691ccd7 2449 FRAME_BEGIN
0d258efb
MK
2450#ifndef __x86_64__
2451 pushl IVP
2452 pushl LEN
2453 pushl KEYP
2454 pushl KLEN
8691ccd7
JP
2455 movl (FRAME_OFFSET+20)(%esp), KEYP # ctx
2456 movl (FRAME_OFFSET+24)(%esp), OUTP # dst
2457 movl (FRAME_OFFSET+28)(%esp), INP # src
2458 movl (FRAME_OFFSET+32)(%esp), LEN # len
2459 movl (FRAME_OFFSET+36)(%esp), IVP # iv
0d258efb 2460#endif
54b6a1bd
HY
2461 cmp $16, LEN
2462 jb .Lcbc_enc_ret
2463 mov 480(KEYP), KLEN
2464 movups (IVP), STATE # load iv as initial state
2465.align 4
2466.Lcbc_enc_loop:
2467 movups (INP), IN # load input
2468 pxor IN, STATE
2469 call _aesni_enc1
2470 movups STATE, (OUTP) # store output
2471 sub $16, LEN
2472 add $16, INP
2473 add $16, OUTP
2474 cmp $16, LEN
2475 jge .Lcbc_enc_loop
2476 movups STATE, (IVP)
2477.Lcbc_enc_ret:
0d258efb
MK
2478#ifndef __x86_64__
2479 popl KLEN
2480 popl KEYP
2481 popl LEN
2482 popl IVP
2483#endif
8691ccd7 2484 FRAME_END
54b6a1bd 2485 ret
6dcc5627 2486SYM_FUNC_END(aesni_cbc_enc)
54b6a1bd
HY
2487
2488/*
2489 * void aesni_cbc_dec(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
2490 * size_t len, u8 *iv)
2491 */
6dcc5627 2492SYM_FUNC_START(aesni_cbc_dec)
8691ccd7 2493 FRAME_BEGIN
0d258efb
MK
2494#ifndef __x86_64__
2495 pushl IVP
2496 pushl LEN
2497 pushl KEYP
2498 pushl KLEN
8691ccd7
JP
2499 movl (FRAME_OFFSET+20)(%esp), KEYP # ctx
2500 movl (FRAME_OFFSET+24)(%esp), OUTP # dst
2501 movl (FRAME_OFFSET+28)(%esp), INP # src
2502 movl (FRAME_OFFSET+32)(%esp), LEN # len
2503 movl (FRAME_OFFSET+36)(%esp), IVP # iv
0d258efb 2504#endif
54b6a1bd 2505 cmp $16, LEN
e6efaa02 2506 jb .Lcbc_dec_just_ret
54b6a1bd
HY
2507 mov 480(KEYP), KLEN
2508 add $240, KEYP
2509 movups (IVP), IV
2510 cmp $64, LEN
2511 jb .Lcbc_dec_loop1
2512.align 4
2513.Lcbc_dec_loop4:
2514 movups (INP), IN1
2515 movaps IN1, STATE1
2516 movups 0x10(INP), IN2
2517 movaps IN2, STATE2
0d258efb 2518#ifdef __x86_64__
54b6a1bd
HY
2519 movups 0x20(INP), IN3
2520 movaps IN3, STATE3
2521 movups 0x30(INP), IN4
2522 movaps IN4, STATE4
0d258efb
MK
2523#else
2524 movups 0x20(INP), IN1
2525 movaps IN1, STATE3
2526 movups 0x30(INP), IN2
2527 movaps IN2, STATE4
2528#endif
54b6a1bd
HY
2529 call _aesni_dec4
2530 pxor IV, STATE1
0d258efb 2531#ifdef __x86_64__
54b6a1bd
HY
2532 pxor IN1, STATE2
2533 pxor IN2, STATE3
2534 pxor IN3, STATE4
2535 movaps IN4, IV
0d258efb 2536#else
0d258efb
MK
2537 pxor IN1, STATE4
2538 movaps IN2, IV
7c8d5184
MK
2539 movups (INP), IN1
2540 pxor IN1, STATE2
2541 movups 0x10(INP), IN2
2542 pxor IN2, STATE3
0d258efb 2543#endif
54b6a1bd
HY
2544 movups STATE1, (OUTP)
2545 movups STATE2, 0x10(OUTP)
2546 movups STATE3, 0x20(OUTP)
2547 movups STATE4, 0x30(OUTP)
2548 sub $64, LEN
2549 add $64, INP
2550 add $64, OUTP
2551 cmp $64, LEN
2552 jge .Lcbc_dec_loop4
2553 cmp $16, LEN
2554 jb .Lcbc_dec_ret
2555.align 4
2556.Lcbc_dec_loop1:
2557 movups (INP), IN
2558 movaps IN, STATE
2559 call _aesni_dec1
2560 pxor IV, STATE
2561 movups STATE, (OUTP)
2562 movaps IN, IV
2563 sub $16, LEN
2564 add $16, INP
2565 add $16, OUTP
2566 cmp $16, LEN
2567 jge .Lcbc_dec_loop1
54b6a1bd 2568.Lcbc_dec_ret:
e6efaa02
HY
2569 movups IV, (IVP)
2570.Lcbc_dec_just_ret:
0d258efb
MK
2571#ifndef __x86_64__
2572 popl KLEN
2573 popl KEYP
2574 popl LEN
2575 popl IVP
2576#endif
8691ccd7 2577 FRAME_END
54b6a1bd 2578 ret
6dcc5627 2579SYM_FUNC_END(aesni_cbc_dec)
12387a46 2580
0d258efb 2581#ifdef __x86_64__
1253cab8 2582.pushsection .rodata
12387a46
HY
2583.align 16
2584.Lbswap_mask:
2585 .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
1253cab8 2586.popsection
12387a46
HY
2587
2588/*
2589 * _aesni_inc_init: internal ABI
2590 * setup registers used by _aesni_inc
2591 * input:
2592 * IV
2593 * output:
2594 * CTR: == IV, in little endian
2595 * TCTR_LOW: == lower qword of CTR
2596 * INC: == 1, in little endian
2597 * BSWAP_MASK == endian swapping mask
2598 */
74d8b90a 2599SYM_FUNC_START_LOCAL(_aesni_inc_init)
12387a46
HY
2600 movaps .Lbswap_mask, BSWAP_MASK
2601 movaps IV, CTR
2602 PSHUFB_XMM BSWAP_MASK CTR
2603 mov $1, TCTR_LOW
32cbd7df
HY
2604 MOVQ_R64_XMM TCTR_LOW INC
2605 MOVQ_R64_XMM CTR TCTR_LOW
12387a46 2606 ret
74d8b90a 2607SYM_FUNC_END(_aesni_inc_init)
12387a46
HY
2608
2609/*
2610 * _aesni_inc: internal ABI
2611 * Increase IV by 1, IV is in big endian
2612 * input:
2613 * IV
2614 * CTR: == IV, in little endian
2615 * TCTR_LOW: == lower qword of CTR
2616 * INC: == 1, in little endian
2617 * BSWAP_MASK == endian swapping mask
2618 * output:
2619 * IV: Increase by 1
2620 * changed:
2621 * CTR: == output IV, in little endian
2622 * TCTR_LOW: == lower qword of CTR
2623 */
74d8b90a 2624SYM_FUNC_START_LOCAL(_aesni_inc)
12387a46
HY
2625 paddq INC, CTR
2626 add $1, TCTR_LOW
2627 jnc .Linc_low
2628 pslldq $8, INC
2629 paddq INC, CTR
2630 psrldq $8, INC
2631.Linc_low:
2632 movaps CTR, IV
2633 PSHUFB_XMM BSWAP_MASK IV
2634 ret
74d8b90a 2635SYM_FUNC_END(_aesni_inc)
12387a46
HY
2636
2637/*
2638 * void aesni_ctr_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
2639 * size_t len, u8 *iv)
2640 */
6dcc5627 2641SYM_FUNC_START(aesni_ctr_enc)
8691ccd7 2642 FRAME_BEGIN
12387a46
HY
2643 cmp $16, LEN
2644 jb .Lctr_enc_just_ret
2645 mov 480(KEYP), KLEN
2646 movups (IVP), IV
2647 call _aesni_inc_init
2648 cmp $64, LEN
2649 jb .Lctr_enc_loop1
2650.align 4
2651.Lctr_enc_loop4:
2652 movaps IV, STATE1
2653 call _aesni_inc
2654 movups (INP), IN1
2655 movaps IV, STATE2
2656 call _aesni_inc
2657 movups 0x10(INP), IN2
2658 movaps IV, STATE3
2659 call _aesni_inc
2660 movups 0x20(INP), IN3
2661 movaps IV, STATE4
2662 call _aesni_inc
2663 movups 0x30(INP), IN4
2664 call _aesni_enc4
2665 pxor IN1, STATE1
2666 movups STATE1, (OUTP)
2667 pxor IN2, STATE2
2668 movups STATE2, 0x10(OUTP)
2669 pxor IN3, STATE3
2670 movups STATE3, 0x20(OUTP)
2671 pxor IN4, STATE4
2672 movups STATE4, 0x30(OUTP)
2673 sub $64, LEN
2674 add $64, INP
2675 add $64, OUTP
2676 cmp $64, LEN
2677 jge .Lctr_enc_loop4
2678 cmp $16, LEN
2679 jb .Lctr_enc_ret
2680.align 4
2681.Lctr_enc_loop1:
2682 movaps IV, STATE
2683 call _aesni_inc
2684 movups (INP), IN
2685 call _aesni_enc1
2686 pxor IN, STATE
2687 movups STATE, (OUTP)
2688 sub $16, LEN
2689 add $16, INP
2690 add $16, OUTP
2691 cmp $16, LEN
2692 jge .Lctr_enc_loop1
2693.Lctr_enc_ret:
2694 movups IV, (IVP)
2695.Lctr_enc_just_ret:
8691ccd7 2696 FRAME_END
12387a46 2697 ret
6dcc5627 2698SYM_FUNC_END(aesni_ctr_enc)
c456a9cd
JK
2699
2700/*
2701 * _aesni_gf128mul_x_ble: internal ABI
2702 * Multiply in GF(2^128) for XTS IVs
2703 * input:
2704 * IV: current IV
2705 * GF128MUL_MASK == mask with 0x87 and 0x01
2706 * output:
2707 * IV: next IV
2708 * changed:
2709 * CTR: == temporary value
2710 */
2711#define _aesni_gf128mul_x_ble() \
2712 pshufd $0x13, IV, CTR; \
2713 paddq IV, IV; \
2714 psrad $31, CTR; \
2715 pand GF128MUL_MASK, CTR; \
2716 pxor CTR, IV;
2717
2718/*
9c1e8836
KC
2719 * void aesni_xts_crypt8(const struct crypto_aes_ctx *ctx, u8 *dst,
2720 * const u8 *src, bool enc, le128 *iv)
c456a9cd 2721 */
6dcc5627 2722SYM_FUNC_START(aesni_xts_crypt8)
8691ccd7 2723 FRAME_BEGIN
c456a9cd
JK
2724 cmpb $0, %cl
2725 movl $0, %ecx
2726 movl $240, %r10d
2727 leaq _aesni_enc4, %r11
2728 leaq _aesni_dec4, %rax
2729 cmovel %r10d, %ecx
2730 cmoveq %rax, %r11
2731
2732 movdqa .Lgf128mul_x_ble_mask, GF128MUL_MASK
2733 movups (IVP), IV
2734
2735 mov 480(KEYP), KLEN
2736 addq %rcx, KEYP
2737
2738 movdqa IV, STATE1
fe6510b5
JK
2739 movdqu 0x00(INP), INC
2740 pxor INC, STATE1
c456a9cd
JK
2741 movdqu IV, 0x00(OUTP)
2742
2743 _aesni_gf128mul_x_ble()
2744 movdqa IV, STATE2
fe6510b5
JK
2745 movdqu 0x10(INP), INC
2746 pxor INC, STATE2
c456a9cd
JK
2747 movdqu IV, 0x10(OUTP)
2748
2749 _aesni_gf128mul_x_ble()
2750 movdqa IV, STATE3
fe6510b5
JK
2751 movdqu 0x20(INP), INC
2752 pxor INC, STATE3
c456a9cd
JK
2753 movdqu IV, 0x20(OUTP)
2754
2755 _aesni_gf128mul_x_ble()
2756 movdqa IV, STATE4
fe6510b5
JK
2757 movdqu 0x30(INP), INC
2758 pxor INC, STATE4
c456a9cd
JK
2759 movdqu IV, 0x30(OUTP)
2760
34fdce69 2761 CALL_NOSPEC r11
c456a9cd 2762
fe6510b5
JK
2763 movdqu 0x00(OUTP), INC
2764 pxor INC, STATE1
c456a9cd
JK
2765 movdqu STATE1, 0x00(OUTP)
2766
2767 _aesni_gf128mul_x_ble()
2768 movdqa IV, STATE1
fe6510b5
JK
2769 movdqu 0x40(INP), INC
2770 pxor INC, STATE1
c456a9cd
JK
2771 movdqu IV, 0x40(OUTP)
2772
fe6510b5
JK
2773 movdqu 0x10(OUTP), INC
2774 pxor INC, STATE2
c456a9cd
JK
2775 movdqu STATE2, 0x10(OUTP)
2776
2777 _aesni_gf128mul_x_ble()
2778 movdqa IV, STATE2
fe6510b5
JK
2779 movdqu 0x50(INP), INC
2780 pxor INC, STATE2
c456a9cd
JK
2781 movdqu IV, 0x50(OUTP)
2782
fe6510b5
JK
2783 movdqu 0x20(OUTP), INC
2784 pxor INC, STATE3
c456a9cd
JK
2785 movdqu STATE3, 0x20(OUTP)
2786
2787 _aesni_gf128mul_x_ble()
2788 movdqa IV, STATE3
fe6510b5
JK
2789 movdqu 0x60(INP), INC
2790 pxor INC, STATE3
c456a9cd
JK
2791 movdqu IV, 0x60(OUTP)
2792
fe6510b5
JK
2793 movdqu 0x30(OUTP), INC
2794 pxor INC, STATE4
c456a9cd
JK
2795 movdqu STATE4, 0x30(OUTP)
2796
2797 _aesni_gf128mul_x_ble()
2798 movdqa IV, STATE4
fe6510b5
JK
2799 movdqu 0x70(INP), INC
2800 pxor INC, STATE4
c456a9cd
JK
2801 movdqu IV, 0x70(OUTP)
2802
2803 _aesni_gf128mul_x_ble()
2804 movups IV, (IVP)
2805
34fdce69 2806 CALL_NOSPEC r11
c456a9cd 2807
fe6510b5
JK
2808 movdqu 0x40(OUTP), INC
2809 pxor INC, STATE1
c456a9cd
JK
2810 movdqu STATE1, 0x40(OUTP)
2811
fe6510b5
JK
2812 movdqu 0x50(OUTP), INC
2813 pxor INC, STATE2
c456a9cd
JK
2814 movdqu STATE2, 0x50(OUTP)
2815
fe6510b5
JK
2816 movdqu 0x60(OUTP), INC
2817 pxor INC, STATE3
c456a9cd
JK
2818 movdqu STATE3, 0x60(OUTP)
2819
fe6510b5
JK
2820 movdqu 0x70(OUTP), INC
2821 pxor INC, STATE4
c456a9cd
JK
2822 movdqu STATE4, 0x70(OUTP)
2823
8691ccd7 2824 FRAME_END
c456a9cd 2825 ret
6dcc5627 2826SYM_FUNC_END(aesni_xts_crypt8)
c456a9cd 2827
0d258efb 2828#endif