]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - arch/x86/entry/entry_64.S
x86/entry/64: Move PUSH_AND_CLEAR_REGS from interrupt macro to helper function
[thirdparty/kernel/stable.git] / arch / x86 / entry / entry_64.S
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2/*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 8 *
1da177e4
LT
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
8b4777a4
AL
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
0bd7b798 13 * A note on terminology:
4d732138
IM
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
2e91a17b
AK
16 *
17 * Some macro usage:
4d732138
IM
18 * - ENTRY/END: Define functions in the symbol table.
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
1da177e4 21 */
1da177e4
LT
22#include <linux/linkage.h>
23#include <asm/segment.h>
1da177e4
LT
24#include <asm/cache.h>
25#include <asm/errno.h>
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
784d5699 38#include <asm/export.h>
8c1f7558 39#include <asm/frame.h>
2641f08b 40#include <asm/nospec-branch.h>
d7e7528b 41#include <linux/err.h>
1da177e4 42
6fd166aa
PZ
43#include "calling.h"
44
4d732138
IM
45.code64
46.section .entry.text, "ax"
16444a8a 47
72fe4858 48#ifdef CONFIG_PARAVIRT
2be29982 49ENTRY(native_usergs_sysret64)
8c1f7558 50 UNWIND_HINT_EMPTY
72fe4858
GOC
51 swapgs
52 sysretq
8c1f7558 53END(native_usergs_sysret64)
72fe4858
GOC
54#endif /* CONFIG_PARAVIRT */
55
ca37e57b 56.macro TRACE_IRQS_FLAGS flags:req
2601e64d 57#ifdef CONFIG_TRACE_IRQFLAGS
ca37e57b 58 bt $9, \flags /* interrupts off? */
4d732138 59 jnc 1f
2601e64d
IM
60 TRACE_IRQS_ON
611:
62#endif
63.endm
64
ca37e57b
AL
65.macro TRACE_IRQS_IRETQ
66 TRACE_IRQS_FLAGS EFLAGS(%rsp)
67.endm
68
5963e317
SR
69/*
70 * When dynamic function tracer is enabled it will add a breakpoint
71 * to all locations that it is about to modify, sync CPUs, update
72 * all the code, sync CPUs, then remove the breakpoints. In this time
73 * if lockdep is enabled, it might jump back into the debug handler
74 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
75 *
76 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
77 * make sure the stack pointer does not get reset back to the top
78 * of the debug stack, and instead just reuses the current stack.
79 */
80#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
81
82.macro TRACE_IRQS_OFF_DEBUG
4d732138 83 call debug_stack_set_zero
5963e317 84 TRACE_IRQS_OFF
4d732138 85 call debug_stack_reset
5963e317
SR
86.endm
87
88.macro TRACE_IRQS_ON_DEBUG
4d732138 89 call debug_stack_set_zero
5963e317 90 TRACE_IRQS_ON
4d732138 91 call debug_stack_reset
5963e317
SR
92.endm
93
f2db9382 94.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
95 bt $9, EFLAGS(%rsp) /* interrupts off? */
96 jnc 1f
5963e317
SR
97 TRACE_IRQS_ON_DEBUG
981:
99.endm
100
101#else
4d732138
IM
102# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
103# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
104# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
105#endif
106
1da177e4 107/*
4d732138 108 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 109 *
fda57b22
AL
110 * This is the only entry point used for 64-bit system calls. The
111 * hardware interface is reasonably well designed and the register to
112 * argument mapping Linux uses fits well with the registers that are
113 * available when SYSCALL is used.
114 *
115 * SYSCALL instructions can be found inlined in libc implementations as
116 * well as some other programs and libraries. There are also a handful
117 * of SYSCALL instructions in the vDSO used, for example, as a
118 * clock_gettimeofday fallback.
119 *
4d732138 120 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
121 * then loads new ss, cs, and rip from previously programmed MSRs.
122 * rflags gets masked by a value from another MSR (so CLD and CLAC
123 * are not needed). SYSCALL does not save anything on the stack
124 * and does not change rsp.
125 *
126 * Registers on entry:
1da177e4 127 * rax system call number
b87cf63e
DV
128 * rcx return address
129 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 130 * rdi arg0
1da177e4 131 * rsi arg1
0bd7b798 132 * rdx arg2
b87cf63e 133 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
134 * r8 arg4
135 * r9 arg5
4d732138 136 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 137 *
1da177e4
LT
138 * Only called from user space.
139 *
7fcb3bc3 140 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
141 * it deals with uncanonical addresses better. SYSRET has trouble
142 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 143 */
1da177e4 144
3386bc8a
AL
145 .pushsection .entry_trampoline, "ax"
146
147/*
148 * The code in here gets remapped into cpu_entry_area's trampoline. This means
149 * that the assembler and linker have the wrong idea as to where this code
150 * lives (and, in fact, it's mapped more than once, so it's not even at a
151 * fixed address). So we can't reference any symbols outside the entry
152 * trampoline and expect it to work.
153 *
154 * Instead, we carefully abuse %rip-relative addressing.
155 * _entry_trampoline(%rip) refers to the start of the remapped) entry
156 * trampoline. We can thus find cpu_entry_area with this macro:
157 */
158
159#define CPU_ENTRY_AREA \
160 _entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)
161
162/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
4fe2d8b1
DH
163#define RSP_SCRATCH CPU_ENTRY_AREA_entry_stack + \
164 SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
3386bc8a
AL
165
166ENTRY(entry_SYSCALL_64_trampoline)
167 UNWIND_HINT_EMPTY
168 swapgs
169
170 /* Stash the user RSP. */
171 movq %rsp, RSP_SCRATCH
172
8a09317b
DH
173 /* Note: using %rsp as a scratch reg. */
174 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
175
3386bc8a
AL
176 /* Load the top of the task stack into RSP */
177 movq CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp
178
179 /* Start building the simulated IRET frame. */
180 pushq $__USER_DS /* pt_regs->ss */
181 pushq RSP_SCRATCH /* pt_regs->sp */
182 pushq %r11 /* pt_regs->flags */
183 pushq $__USER_CS /* pt_regs->cs */
184 pushq %rcx /* pt_regs->ip */
185
186 /*
187 * x86 lacks a near absolute jump, and we can't jump to the real
188 * entry text with a relative jump. We could push the target
189 * address and then use retq, but this destroys the pipeline on
190 * many CPUs (wasting over 20 cycles on Sandy Bridge). Instead,
191 * spill RDI and restore it in a second-stage trampoline.
192 */
193 pushq %rdi
194 movq $entry_SYSCALL_64_stage2, %rdi
2641f08b 195 JMP_NOSPEC %rdi
3386bc8a
AL
196END(entry_SYSCALL_64_trampoline)
197
198 .popsection
199
200ENTRY(entry_SYSCALL_64_stage2)
201 UNWIND_HINT_EMPTY
202 popq %rdi
203 jmp entry_SYSCALL_64_after_hwframe
204END(entry_SYSCALL_64_stage2)
205
b2502b41 206ENTRY(entry_SYSCALL_64)
8c1f7558 207 UNWIND_HINT_EMPTY
9ed8e7d8
DV
208 /*
209 * Interrupts are off on entry.
210 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
211 * it is too small to ever cause noticeable irq latency.
212 */
72fe4858 213
8a9949bc 214 swapgs
8a09317b 215 /*
14b1fcc6 216 * This path is only taken when PAGE_TABLE_ISOLATION is disabled so it
8a09317b
DH
217 * is not required to switch CR3.
218 */
4d732138
IM
219 movq %rsp, PER_CPU_VAR(rsp_scratch)
220 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8
DV
221
222 /* Construct struct pt_regs on stack */
4d732138
IM
223 pushq $__USER_DS /* pt_regs->ss */
224 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
4d732138
IM
225 pushq %r11 /* pt_regs->flags */
226 pushq $__USER_CS /* pt_regs->cs */
227 pushq %rcx /* pt_regs->ip */
8a9949bc 228GLOBAL(entry_SYSCALL_64_after_hwframe)
4d732138 229 pushq %rax /* pt_regs->orig_ax */
30907fd1
DB
230
231 PUSH_AND_CLEAR_REGS rax=$-ENOSYS
4d732138 232
548c3050
AL
233 TRACE_IRQS_OFF
234
1e423bff 235 /* IRQs are off. */
29ea1b25 236 movq %rsp, %rdi
1e423bff
AL
237 call do_syscall_64 /* returns with IRQs disabled */
238
29ea1b25 239 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
240
241 /*
242 * Try to use SYSRET instead of IRET if we're returning to
8a055d7f
AL
243 * a completely clean 64-bit userspace context. If we're not,
244 * go to the slow exit path.
fffbb5dc 245 */
4d732138
IM
246 movq RCX(%rsp), %rcx
247 movq RIP(%rsp), %r11
8a055d7f
AL
248
249 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
250 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
251
252 /*
253 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
254 * in kernel space. This essentially lets the user take over
17be0aec 255 * the kernel, since userspace controls RSP.
fffbb5dc 256 *
17be0aec 257 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc 258 * to be updated to remain correct on both old and new CPUs.
361b4b58 259 *
cbe0317b
KS
260 * Change top bits to match most significant bit (47th or 56th bit
261 * depending on paging mode) in the address.
fffbb5dc 262 */
17be0aec
DV
263 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
264 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
4d732138 265
17be0aec
DV
266 /* If this changed %rcx, it was not canonical */
267 cmpq %rcx, %r11
8a055d7f 268 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 269
4d732138 270 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
8a055d7f 271 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 272
4d732138
IM
273 movq R11(%rsp), %r11
274 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
8a055d7f 275 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
276
277 /*
3e035305
BP
278 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
279 * restore RF properly. If the slowpath sets it for whatever reason, we
280 * need to restore it correctly.
281 *
282 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
283 * trap from userspace immediately after SYSRET. This would cause an
284 * infinite loop whenever #DB happens with register state that satisfies
285 * the opportunistic SYSRET conditions. For example, single-stepping
286 * this user code:
fffbb5dc 287 *
4d732138 288 * movq $stuck_here, %rcx
fffbb5dc
DV
289 * pushfq
290 * popq %r11
291 * stuck_here:
292 *
293 * would never get past 'stuck_here'.
294 */
4d732138 295 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
8a055d7f 296 jnz swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
297
298 /* nothing to check for RSP */
299
4d732138 300 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
8a055d7f 301 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
302
303 /*
4d732138
IM
304 * We win! This label is here just for ease of understanding
305 * perf profiles. Nothing jumps here.
fffbb5dc
DV
306 */
307syscall_return_via_sysret:
17be0aec 308 /* rcx and r11 are already restored (see code above) */
8c1f7558 309 UNWIND_HINT_EMPTY
502af0d7 310 POP_REGS pop_rdi=0 skip_r11rcx=1
3e3b9293
AL
311
312 /*
313 * Now all regs are restored except RSP and RDI.
314 * Save old stack pointer and switch to trampoline stack.
315 */
316 movq %rsp, %rdi
c482feef 317 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
3e3b9293
AL
318
319 pushq RSP-RDI(%rdi) /* RSP */
320 pushq (%rdi) /* RDI */
321
322 /*
323 * We are on the trampoline stack. All regs except RDI are live.
324 * We can do future final exit work right here.
325 */
6fd166aa 326 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
3e3b9293 327
4fbb3910 328 popq %rdi
3e3b9293 329 popq %rsp
fffbb5dc 330 USERGS_SYSRET64
b2502b41 331END(entry_SYSCALL_64)
0bd7b798 332
0100301b
BG
333/*
334 * %rdi: prev task
335 * %rsi: next task
336 */
337ENTRY(__switch_to_asm)
8c1f7558 338 UNWIND_HINT_FUNC
0100301b
BG
339 /*
340 * Save callee-saved registers
341 * This must match the order in inactive_task_frame
342 */
343 pushq %rbp
344 pushq %rbx
345 pushq %r12
346 pushq %r13
347 pushq %r14
348 pushq %r15
349
350 /* switch stack */
351 movq %rsp, TASK_threadsp(%rdi)
352 movq TASK_threadsp(%rsi), %rsp
353
354#ifdef CONFIG_CC_STACKPROTECTOR
355 movq TASK_stack_canary(%rsi), %rbx
356 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
357#endif
358
c995efd5
DW
359#ifdef CONFIG_RETPOLINE
360 /*
361 * When switching from a shallower to a deeper call stack
362 * the RSB may either underflow or use entries populated
363 * with userspace addresses. On CPUs where those concerns
364 * exist, overwrite the RSB with entries which capture
365 * speculative execution to prevent attack.
366 */
d1c99108 367 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
c995efd5
DW
368#endif
369
0100301b
BG
370 /* restore callee-saved registers */
371 popq %r15
372 popq %r14
373 popq %r13
374 popq %r12
375 popq %rbx
376 popq %rbp
377
378 jmp __switch_to
379END(__switch_to_asm)
380
1eeb207f
DV
381/*
382 * A newly forked process directly context switches into this address.
383 *
0100301b 384 * rax: prev task we switched from
616d2483
BG
385 * rbx: kernel thread func (NULL for user thread)
386 * r12: kernel thread arg
1eeb207f
DV
387 */
388ENTRY(ret_from_fork)
8c1f7558 389 UNWIND_HINT_EMPTY
0100301b 390 movq %rax, %rdi
ebd57499 391 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 392
ebd57499
JP
393 testq %rbx, %rbx /* from kernel_thread? */
394 jnz 1f /* kernel threads are uncommon */
24d978b7 395
616d2483 3962:
8c1f7558 397 UNWIND_HINT_REGS
ebd57499 398 movq %rsp, %rdi
24d978b7
AL
399 call syscall_return_slowpath /* returns with IRQs disabled */
400 TRACE_IRQS_ON /* user mode is traced as IRQS on */
8a055d7f 401 jmp swapgs_restore_regs_and_return_to_usermode
616d2483
BG
402
4031:
404 /* kernel thread */
405 movq %r12, %rdi
2641f08b 406 CALL_NOSPEC %rbx
616d2483
BG
407 /*
408 * A kernel thread is allowed to return here after successfully
409 * calling do_execve(). Exit to userspace to complete the execve()
410 * syscall.
411 */
412 movq $0, RAX(%rsp)
413 jmp 2b
1eeb207f
DV
414END(ret_from_fork)
415
939b7871 416/*
3304c9c3
DV
417 * Build the entry stubs with some assembler magic.
418 * We pack 1 stub into every 8-byte block.
939b7871 419 */
3304c9c3 420 .align 8
939b7871 421ENTRY(irq_entries_start)
3304c9c3
DV
422 vector=FIRST_EXTERNAL_VECTOR
423 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
8c1f7558 424 UNWIND_HINT_IRET_REGS
4d732138 425 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3 426 jmp common_interrupt
3304c9c3 427 .align 8
8c1f7558 428 vector=vector+1
3304c9c3 429 .endr
939b7871
PA
430END(irq_entries_start)
431
1d3e53e8
AL
432.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
433#ifdef CONFIG_DEBUG_ENTRY
e17f8234
BO
434 pushq %rax
435 SAVE_FLAGS(CLBR_RAX)
436 testl $X86_EFLAGS_IF, %eax
1d3e53e8
AL
437 jz .Lokay_\@
438 ud2
439.Lokay_\@:
e17f8234 440 popq %rax
1d3e53e8
AL
441#endif
442.endm
443
444/*
445 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
446 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
447 * Requires kernel GSBASE.
448 *
449 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
450 */
8c1f7558 451.macro ENTER_IRQ_STACK regs=1 old_rsp
1d3e53e8
AL
452 DEBUG_ENTRY_ASSERT_IRQS_OFF
453 movq %rsp, \old_rsp
8c1f7558
JP
454
455 .if \regs
456 UNWIND_HINT_REGS base=\old_rsp
457 .endif
458
1d3e53e8 459 incl PER_CPU_VAR(irq_count)
29955909 460 jnz .Lirq_stack_push_old_rsp_\@
1d3e53e8
AL
461
462 /*
463 * Right now, if we just incremented irq_count to zero, we've
464 * claimed the IRQ stack but we haven't switched to it yet.
465 *
466 * If anything is added that can interrupt us here without using IST,
467 * it must be *extremely* careful to limit its stack usage. This
468 * could include kprobes and a hypothetical future IST-less #DB
469 * handler.
29955909
AL
470 *
471 * The OOPS unwinder relies on the word at the top of the IRQ
472 * stack linking back to the previous RSP for the entire time we're
473 * on the IRQ stack. For this to work reliably, we need to write
474 * it before we actually move ourselves to the IRQ stack.
475 */
476
477 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
478 movq PER_CPU_VAR(irq_stack_ptr), %rsp
479
480#ifdef CONFIG_DEBUG_ENTRY
481 /*
482 * If the first movq above becomes wrong due to IRQ stack layout
483 * changes, the only way we'll notice is if we try to unwind right
484 * here. Assert that we set up the stack right to catch this type
485 * of bug quickly.
1d3e53e8 486 */
29955909
AL
487 cmpq -8(%rsp), \old_rsp
488 je .Lirq_stack_okay\@
489 ud2
490 .Lirq_stack_okay\@:
491#endif
1d3e53e8 492
29955909 493.Lirq_stack_push_old_rsp_\@:
1d3e53e8 494 pushq \old_rsp
8c1f7558
JP
495
496 .if \regs
497 UNWIND_HINT_REGS indirect=1
498 .endif
1d3e53e8
AL
499.endm
500
501/*
502 * Undoes ENTER_IRQ_STACK.
503 */
8c1f7558 504.macro LEAVE_IRQ_STACK regs=1
1d3e53e8
AL
505 DEBUG_ENTRY_ASSERT_IRQS_OFF
506 /* We need to be off the IRQ stack before decrementing irq_count. */
507 popq %rsp
508
8c1f7558
JP
509 .if \regs
510 UNWIND_HINT_REGS
511 .endif
512
1d3e53e8
AL
513 /*
514 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
515 * the irq stack but we're not on it.
516 */
517
518 decl PER_CPU_VAR(irq_count)
519.endm
520
d99015b1 521/*
1da177e4
LT
522 * Interrupt entry/exit.
523 *
524 * Interrupt entry points save only callee clobbered registers in fast path.
d99015b1
AH
525 *
526 * Entry runs with interrupts off.
527 */
0e34d226
DB
528ENTRY(interrupt_entry)
529 UNWIND_HINT_FUNC
530
531 PUSH_AND_CLEAR_REGS save_ret=1
532 ENCODE_FRAME_POINTER 8
533
534 ret
535END(interrupt_entry)
1da177e4 536
722024db 537/* 0(%rsp): ~(interrupt number) */
1da177e4 538 .macro interrupt func
f6f64681 539 cld
7f2590a1
AL
540
541 testb $3, CS-ORIG_RAX(%rsp)
542 jz 1f
543 SWAPGS
544 call switch_to_thread_stack
5451:
546
0e34d226 547 call interrupt_entry
76f5df43 548
ff467594 549 testb $3, CS(%rsp)
dde74f2e 550 jz 1f
02bc7768
AL
551
552 /*
7f2590a1
AL
553 * IRQ from user mode.
554 *
f1075053
AL
555 * We need to tell lockdep that IRQs are off. We can't do this until
556 * we fix gsbase, and we should do it before enter_from_user_mode
557 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
558 * the simplest way to handle it is to just call it twice if
559 * we enter from user mode. There's no reason to optimize this since
560 * TRACE_IRQS_OFF is a no-op if lockdep is off.
561 */
562 TRACE_IRQS_OFF
563
478dc89c 564 CALL_enter_from_user_mode
02bc7768 565
76f5df43 5661:
1d3e53e8 567 ENTER_IRQ_STACK old_rsp=%rdi
f6f64681
DV
568 /* We entered an interrupt context - irqs are off: */
569 TRACE_IRQS_OFF
570
a586f98e 571 call \func /* rdi points to pt_regs */
1da177e4
LT
572 .endm
573
722024db
AH
574 /*
575 * The interrupt stubs push (~vector+0x80) onto the stack and
576 * then jump to common_interrupt.
577 */
939b7871
PA
578 .p2align CONFIG_X86_L1_CACHE_SHIFT
579common_interrupt:
ee4eb87b 580 ASM_CLAC
4d732138 581 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
1da177e4 582 interrupt do_IRQ
34061f13 583 /* 0(%rsp): old RSP */
7effaa88 584ret_from_intr:
2140a994 585 DISABLE_INTERRUPTS(CLBR_ANY)
2601e64d 586 TRACE_IRQS_OFF
625dbc3b 587
1d3e53e8 588 LEAVE_IRQ_STACK
625dbc3b 589
03335e95 590 testb $3, CS(%rsp)
dde74f2e 591 jz retint_kernel
4d732138 592
02bc7768 593 /* Interrupt came from user space */
02bc7768
AL
594GLOBAL(retint_user)
595 mov %rsp,%rdi
596 call prepare_exit_to_usermode
2601e64d 597 TRACE_IRQS_IRETQ
26c4ef9c 598
8a055d7f 599GLOBAL(swapgs_restore_regs_and_return_to_usermode)
26c4ef9c
AL
600#ifdef CONFIG_DEBUG_ENTRY
601 /* Assert that pt_regs indicates user mode. */
1e4c4f61 602 testb $3, CS(%rsp)
26c4ef9c
AL
603 jnz 1f
604 ud2
6051:
606#endif
502af0d7 607 POP_REGS pop_rdi=0
3e3b9293
AL
608
609 /*
610 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
611 * Save old stack pointer and switch to trampoline stack.
612 */
613 movq %rsp, %rdi
c482feef 614 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
3e3b9293
AL
615
616 /* Copy the IRET frame to the trampoline stack. */
617 pushq 6*8(%rdi) /* SS */
618 pushq 5*8(%rdi) /* RSP */
619 pushq 4*8(%rdi) /* EFLAGS */
620 pushq 3*8(%rdi) /* CS */
621 pushq 2*8(%rdi) /* RIP */
622
623 /* Push user RDI on the trampoline stack. */
624 pushq (%rdi)
625
626 /*
627 * We are on the trampoline stack. All regs except RDI are live.
628 * We can do future final exit work right here.
629 */
630
6fd166aa 631 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
8a09317b 632
3e3b9293
AL
633 /* Restore RDI. */
634 popq %rdi
635 SWAPGS
26c4ef9c
AL
636 INTERRUPT_RETURN
637
2601e64d 638
627276cb 639/* Returning to kernel space */
6ba71b76 640retint_kernel:
627276cb
DV
641#ifdef CONFIG_PREEMPT
642 /* Interrupts are off */
643 /* Check if we need preemption */
4d732138 644 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 645 jnc 1f
4d732138 6460: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 647 jnz 1f
627276cb 648 call preempt_schedule_irq
36acef25 649 jmp 0b
6ba71b76 6501:
627276cb 651#endif
2601e64d
IM
652 /*
653 * The iretq could re-enable interrupts:
654 */
655 TRACE_IRQS_IRETQ
fffbb5dc 656
26c4ef9c
AL
657GLOBAL(restore_regs_and_return_to_kernel)
658#ifdef CONFIG_DEBUG_ENTRY
659 /* Assert that pt_regs indicates kernel mode. */
1e4c4f61 660 testb $3, CS(%rsp)
26c4ef9c
AL
661 jz 1f
662 ud2
6631:
664#endif
502af0d7 665 POP_REGS
e872045b 666 addq $8, %rsp /* skip regs->orig_ax */
10bcc80e
MD
667 /*
668 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
669 * when returning from IPI handler.
670 */
7209a75d
AL
671 INTERRUPT_RETURN
672
673ENTRY(native_iret)
8c1f7558 674 UNWIND_HINT_IRET_REGS
3891a04a
PA
675 /*
676 * Are we returning to a stack segment from the LDT? Note: in
677 * 64-bit mode SS:RSP on the exception stack is always valid.
678 */
34273f41 679#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
680 testb $4, (SS-RIP)(%rsp)
681 jnz native_irq_return_ldt
34273f41 682#endif
3891a04a 683
af726f21 684.global native_irq_return_iret
7209a75d 685native_irq_return_iret:
b645af2d
AL
686 /*
687 * This may fault. Non-paranoid faults on return to userspace are
688 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
689 * Double-faults due to espfix64 are handled in do_double_fault.
690 * Other faults here are fatal.
691 */
1da177e4 692 iretq
3701d863 693
34273f41 694#ifdef CONFIG_X86_ESPFIX64
7209a75d 695native_irq_return_ldt:
85063fac
AL
696 /*
697 * We are running with user GSBASE. All GPRs contain their user
698 * values. We have a percpu ESPFIX stack that is eight slots
699 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
700 * of the ESPFIX stack.
701 *
702 * We clobber RAX and RDI in this code. We stash RDI on the
703 * normal stack and RAX on the ESPFIX stack.
704 *
705 * The ESPFIX stack layout we set up looks like this:
706 *
707 * --- top of ESPFIX stack ---
708 * SS
709 * RSP
710 * RFLAGS
711 * CS
712 * RIP <-- RSP points here when we're done
713 * RAX <-- espfix_waddr points here
714 * --- bottom of ESPFIX stack ---
715 */
716
717 pushq %rdi /* Stash user RDI */
8a09317b
DH
718 SWAPGS /* to kernel GS */
719 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
720
4d732138 721 movq PER_CPU_VAR(espfix_waddr), %rdi
85063fac
AL
722 movq %rax, (0*8)(%rdi) /* user RAX */
723 movq (1*8)(%rsp), %rax /* user RIP */
4d732138 724 movq %rax, (1*8)(%rdi)
85063fac 725 movq (2*8)(%rsp), %rax /* user CS */
4d732138 726 movq %rax, (2*8)(%rdi)
85063fac 727 movq (3*8)(%rsp), %rax /* user RFLAGS */
4d732138 728 movq %rax, (3*8)(%rdi)
85063fac 729 movq (5*8)(%rsp), %rax /* user SS */
4d732138 730 movq %rax, (5*8)(%rdi)
85063fac 731 movq (4*8)(%rsp), %rax /* user RSP */
4d732138 732 movq %rax, (4*8)(%rdi)
85063fac
AL
733 /* Now RAX == RSP. */
734
735 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
85063fac
AL
736
737 /*
738 * espfix_stack[31:16] == 0. The page tables are set up such that
739 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
740 * espfix_waddr for any X. That is, there are 65536 RO aliases of
741 * the same page. Set up RSP so that RSP[31:16] contains the
742 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
743 * still points to an RO alias of the ESPFIX stack.
744 */
4d732138 745 orq PER_CPU_VAR(espfix_stack), %rax
8a09317b 746
6fd166aa 747 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
8a09317b
DH
748 SWAPGS /* to user GS */
749 popq %rdi /* Restore user RDI */
750
4d732138 751 movq %rax, %rsp
8c1f7558 752 UNWIND_HINT_IRET_REGS offset=8
85063fac
AL
753
754 /*
755 * At this point, we cannot write to the stack any more, but we can
756 * still read.
757 */
758 popq %rax /* Restore user RAX */
759
760 /*
761 * RSP now points to an ordinary IRET frame, except that the page
762 * is read-only and RSP[31:16] are preloaded with the userspace
763 * values. We can now IRET back to userspace.
764 */
4d732138 765 jmp native_irq_return_iret
34273f41 766#endif
4b787e0b 767END(common_interrupt)
3891a04a 768
1da177e4
LT
769/*
770 * APIC interrupts.
0bd7b798 771 */
cf910e83 772.macro apicinterrupt3 num sym do_sym
322648d1 773ENTRY(\sym)
8c1f7558 774 UNWIND_HINT_IRET_REGS
ee4eb87b 775 ASM_CLAC
4d732138 776 pushq $~(\num)
39e95433 777.Lcommon_\sym:
322648d1 778 interrupt \do_sym
4d732138 779 jmp ret_from_intr
322648d1
AH
780END(\sym)
781.endm
1da177e4 782
469f0023 783/* Make sure APIC interrupt handlers end up in the irqentry section: */
229a7186
MH
784#define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
785#define POP_SECTION_IRQENTRY .popsection
469f0023 786
cf910e83 787.macro apicinterrupt num sym do_sym
469f0023 788PUSH_SECTION_IRQENTRY
cf910e83 789apicinterrupt3 \num \sym \do_sym
469f0023 790POP_SECTION_IRQENTRY
cf910e83
SA
791.endm
792
322648d1 793#ifdef CONFIG_SMP
4d732138
IM
794apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
795apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 796#endif
1da177e4 797
03b48632 798#ifdef CONFIG_X86_UV
4d732138 799apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 800#endif
4d732138
IM
801
802apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
803apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 804
d78f2664 805#ifdef CONFIG_HAVE_KVM
4d732138
IM
806apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
807apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
210f84b0 808apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
d78f2664
YZ
809#endif
810
33e5ff63 811#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 812apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
813#endif
814
24fd78a8 815#ifdef CONFIG_X86_MCE_AMD
4d732138 816apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
817#endif
818
33e5ff63 819#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 820apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 821#endif
1812924b 822
322648d1 823#ifdef CONFIG_SMP
4d732138
IM
824apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
825apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
826apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 827#endif
1da177e4 828
4d732138
IM
829apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
830apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 831
e360adbe 832#ifdef CONFIG_IRQ_WORK
4d732138 833apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
834#endif
835
1da177e4
LT
836/*
837 * Exception entry points.
0bd7b798 838 */
c482feef 839#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
577ed45e 840
7f2590a1
AL
841/*
842 * Switch to the thread stack. This is called with the IRET frame and
843 * orig_ax on the stack. (That is, RDI..R12 are not on the stack and
844 * space has not been allocated for them.)
845 */
846ENTRY(switch_to_thread_stack)
847 UNWIND_HINT_FUNC
848
849 pushq %rdi
8a09317b
DH
850 /* Need to switch before accessing the thread stack. */
851 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
7f2590a1
AL
852 movq %rsp, %rdi
853 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
854 UNWIND_HINT sp_offset=16 sp_reg=ORC_REG_DI
855
856 pushq 7*8(%rdi) /* regs->ss */
857 pushq 6*8(%rdi) /* regs->rsp */
858 pushq 5*8(%rdi) /* regs->eflags */
859 pushq 4*8(%rdi) /* regs->cs */
860 pushq 3*8(%rdi) /* regs->ip */
861 pushq 2*8(%rdi) /* regs->orig_ax */
862 pushq 8(%rdi) /* return address */
863 UNWIND_HINT_FUNC
864
865 movq (%rdi), %rdi
866 ret
867END(switch_to_thread_stack)
577ed45e
AL
868
869.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 870ENTRY(\sym)
98990a33 871 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
8c1f7558 872
577ed45e
AL
873 /* Sanity check */
874 .if \shift_ist != -1 && \paranoid == 0
875 .error "using shift_ist requires paranoid=1"
876 .endif
877
ee4eb87b 878 ASM_CLAC
cb5dd2c5 879
82c62fa0 880 .if \has_error_code == 0
4d732138 881 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
882 .endif
883
7f2590a1 884 .if \paranoid < 2
9e809d15 885 testb $3, CS-ORIG_RAX(%rsp) /* If coming from userspace, switch stacks */
7f2590a1 886 jnz .Lfrom_usermode_switch_stack_\@
48e08d0f 887 .endif
7f2590a1
AL
888
889 .if \paranoid
4d732138 890 call paranoid_entry
cb5dd2c5 891 .else
4d732138 892 call error_entry
cb5dd2c5 893 .endif
8c1f7558 894 UNWIND_HINT_REGS
ebfc453e 895 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 896
cb5dd2c5 897 .if \paranoid
577ed45e 898 .if \shift_ist != -1
4d732138 899 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 900 .else
b8b1d08b 901 TRACE_IRQS_OFF
cb5dd2c5 902 .endif
577ed45e 903 .endif
cb5dd2c5 904
4d732138 905 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
906
907 .if \has_error_code
4d732138
IM
908 movq ORIG_RAX(%rsp), %rsi /* get error code */
909 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 910 .else
4d732138 911 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
912 .endif
913
577ed45e 914 .if \shift_ist != -1
4d732138 915 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
916 .endif
917
4d732138 918 call \do_sym
cb5dd2c5 919
577ed45e 920 .if \shift_ist != -1
4d732138 921 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
922 .endif
923
ebfc453e 924 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 925 .if \paranoid
4d732138 926 jmp paranoid_exit
cb5dd2c5 927 .else
4d732138 928 jmp error_exit
cb5dd2c5
AL
929 .endif
930
7f2590a1 931 .if \paranoid < 2
48e08d0f 932 /*
7f2590a1 933 * Entry from userspace. Switch stacks and treat it
48e08d0f
AL
934 * as a normal entry. This means that paranoid handlers
935 * run in real process context if user_mode(regs).
936 */
7f2590a1 937.Lfrom_usermode_switch_stack_\@:
4d732138 938 call error_entry
48e08d0f 939
4d732138 940 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
941
942 .if \has_error_code
4d732138
IM
943 movq ORIG_RAX(%rsp), %rsi /* get error code */
944 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 945 .else
4d732138 946 xorl %esi, %esi /* no error code */
48e08d0f
AL
947 .endif
948
4d732138 949 call \do_sym
48e08d0f 950
4d732138 951 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 952 .endif
ddeb8f21 953END(\sym)
322648d1 954.endm
b8b1d08b 955
4d732138
IM
956idtentry divide_error do_divide_error has_error_code=0
957idtentry overflow do_overflow has_error_code=0
958idtentry bounds do_bounds has_error_code=0
959idtentry invalid_op do_invalid_op has_error_code=0
960idtentry device_not_available do_device_not_available has_error_code=0
961idtentry double_fault do_double_fault has_error_code=1 paranoid=2
962idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
963idtentry invalid_TSS do_invalid_TSS has_error_code=1
964idtentry segment_not_present do_segment_not_present has_error_code=1
965idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
966idtentry coprocessor_error do_coprocessor_error has_error_code=0
967idtentry alignment_check do_alignment_check has_error_code=1
968idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
969
970
971 /*
972 * Reload gs selector with exception handling
973 * edi: new selector
974 */
9f9d489a 975ENTRY(native_load_gs_index)
8c1f7558 976 FRAME_BEGIN
131484c8 977 pushfq
b8aa287f 978 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
ca37e57b 979 TRACE_IRQS_OFF
9f1e87ea 980 SWAPGS
42c748bb 981.Lgs_change:
4d732138 982 movl %edi, %gs
96e5d28a 9832: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 984 SWAPGS
ca37e57b 985 TRACE_IRQS_FLAGS (%rsp)
131484c8 986 popfq
8c1f7558 987 FRAME_END
9f1e87ea 988 ret
8c1f7558 989ENDPROC(native_load_gs_index)
784d5699 990EXPORT_SYMBOL(native_load_gs_index)
0bd7b798 991
42c748bb 992 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 993 .section .fixup, "ax"
1da177e4 994 /* running with kernelgs */
0bd7b798 995bad_gs:
4d732138 996 SWAPGS /* switch back to user gs */
b038c842
AL
997.macro ZAP_GS
998 /* This can't be a string because the preprocessor needs to see it. */
999 movl $__USER_DS, %eax
1000 movl %eax, %gs
1001.endm
1002 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
1003 xorl %eax, %eax
1004 movl %eax, %gs
1005 jmp 2b
9f1e87ea 1006 .previous
0bd7b798 1007
2699500b 1008/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 1009ENTRY(do_softirq_own_stack)
4d732138
IM
1010 pushq %rbp
1011 mov %rsp, %rbp
8c1f7558 1012 ENTER_IRQ_STACK regs=0 old_rsp=%r11
4d732138 1013 call __do_softirq
8c1f7558 1014 LEAVE_IRQ_STACK regs=0
2699500b 1015 leaveq
ed6b676c 1016 ret
8c1f7558 1017ENDPROC(do_softirq_own_stack)
75154f40 1018
3d75e1b8 1019#ifdef CONFIG_XEN
5878d5d6 1020idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
1021
1022/*
9f1e87ea
CG
1023 * A note on the "critical region" in our callback handler.
1024 * We want to avoid stacking callback handlers due to events occurring
1025 * during handling of the last event. To do this, we keep events disabled
1026 * until we've done all processing. HOWEVER, we must enable events before
1027 * popping the stack frame (can't be done atomically) and so it would still
1028 * be possible to get enough handler activations to overflow the stack.
1029 * Although unlikely, bugs of that kind are hard to track down, so we'd
1030 * like to avoid the possibility.
1031 * So, on entry to the handler we detect whether we interrupted an
1032 * existing activation in its critical region -- if so, we pop the current
1033 * activation and restart the handler using the previous one.
1034 */
4d732138
IM
1035ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
1036
9f1e87ea
CG
1037/*
1038 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1039 * see the correct pointer to the pt_regs
1040 */
8c1f7558 1041 UNWIND_HINT_FUNC
4d732138 1042 movq %rdi, %rsp /* we don't return, adjust the stack frame */
8c1f7558 1043 UNWIND_HINT_REGS
1d3e53e8
AL
1044
1045 ENTER_IRQ_STACK old_rsp=%r10
4d732138 1046 call xen_evtchn_do_upcall
1d3e53e8
AL
1047 LEAVE_IRQ_STACK
1048
fdfd811d 1049#ifndef CONFIG_PREEMPT
4d732138 1050 call xen_maybe_preempt_hcall
fdfd811d 1051#endif
4d732138 1052 jmp error_exit
371c394a 1053END(xen_do_hypervisor_callback)
3d75e1b8
JF
1054
1055/*
9f1e87ea
CG
1056 * Hypervisor uses this for application faults while it executes.
1057 * We get here for two reasons:
1058 * 1. Fault while reloading DS, ES, FS or GS
1059 * 2. Fault while executing IRET
1060 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1061 * registers that could be reloaded and zeroed the others.
1062 * Category 2 we fix up by killing the current process. We cannot use the
1063 * normal Linux return path in this case because if we use the IRET hypercall
1064 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1065 * We distinguish between categories by comparing each saved segment register
1066 * with its current contents: any discrepancy means we in category 1.
1067 */
3d75e1b8 1068ENTRY(xen_failsafe_callback)
8c1f7558 1069 UNWIND_HINT_EMPTY
4d732138
IM
1070 movl %ds, %ecx
1071 cmpw %cx, 0x10(%rsp)
1072 jne 1f
1073 movl %es, %ecx
1074 cmpw %cx, 0x18(%rsp)
1075 jne 1f
1076 movl %fs, %ecx
1077 cmpw %cx, 0x20(%rsp)
1078 jne 1f
1079 movl %gs, %ecx
1080 cmpw %cx, 0x28(%rsp)
1081 jne 1f
3d75e1b8 1082 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
1083 movq (%rsp), %rcx
1084 movq 8(%rsp), %r11
1085 addq $0x30, %rsp
1086 pushq $0 /* RIP */
8c1f7558 1087 UNWIND_HINT_IRET_REGS offset=8
4d732138 1088 jmp general_protection
3d75e1b8 10891: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
1090 movq (%rsp), %rcx
1091 movq 8(%rsp), %r11
1092 addq $0x30, %rsp
8c1f7558 1093 UNWIND_HINT_IRET_REGS
4d732138 1094 pushq $-1 /* orig_ax = -1 => not a system call */
3f01daec 1095 PUSH_AND_CLEAR_REGS
946c1911 1096 ENCODE_FRAME_POINTER
4d732138 1097 jmp error_exit
3d75e1b8
JF
1098END(xen_failsafe_callback)
1099
cf910e83 1100apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
1101 xen_hvm_callback_vector xen_evtchn_do_upcall
1102
3d75e1b8 1103#endif /* CONFIG_XEN */
ddeb8f21 1104
bc2b0331 1105#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 1106apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331 1107 hyperv_callback_vector hyperv_vector_handler
93286261
VK
1108
1109apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
1110 hyperv_reenlightenment_vector hyperv_reenlightenment_intr
bc2b0331
S
1111#endif /* CONFIG_HYPERV */
1112
4d732138
IM
1113idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1114idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1115idtentry stack_segment do_stack_segment has_error_code=1
1116
6cac5a92 1117#ifdef CONFIG_XEN
43e41110 1118idtentry xennmi do_nmi has_error_code=0
5878d5d6
JG
1119idtentry xendebug do_debug has_error_code=0
1120idtentry xenint3 do_int3 has_error_code=0
6cac5a92 1121#endif
4d732138
IM
1122
1123idtentry general_protection do_general_protection has_error_code=1
11a7ffb0 1124idtentry page_fault do_page_fault has_error_code=1
4d732138 1125
631bc487 1126#ifdef CONFIG_KVM_GUEST
4d732138 1127idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 1128#endif
4d732138 1129
ddeb8f21 1130#ifdef CONFIG_X86_MCE
6f41c34d 1131idtentry machine_check do_mce has_error_code=0 paranoid=1
ddeb8f21
AH
1132#endif
1133
ebfc453e 1134/*
9e809d15 1135 * Save all registers in pt_regs, and switch gs if needed.
ebfc453e
DV
1136 * Use slow, but surefire "are we in kernel?" check.
1137 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1138 */
1139ENTRY(paranoid_entry)
8c1f7558 1140 UNWIND_HINT_FUNC
1eeb207f 1141 cld
9e809d15
DB
1142 PUSH_AND_CLEAR_REGS save_ret=1
1143 ENCODE_FRAME_POINTER 8
4d732138
IM
1144 movl $1, %ebx
1145 movl $MSR_GS_BASE, %ecx
1eeb207f 1146 rdmsr
4d732138
IM
1147 testl %edx, %edx
1148 js 1f /* negative -> in kernel */
1eeb207f 1149 SWAPGS
4d732138 1150 xorl %ebx, %ebx
8a09317b
DH
1151
11521:
1153 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1154
1155 ret
ebfc453e 1156END(paranoid_entry)
ddeb8f21 1157
ebfc453e
DV
1158/*
1159 * "Paranoid" exit path from exception stack. This is invoked
1160 * only on return from non-NMI IST interrupts that came
1161 * from kernel space.
1162 *
1163 * We may be returning to very strange contexts (e.g. very early
1164 * in syscall entry), so checking for preemption here would
1165 * be complicated. Fortunately, we there's no good reason
1166 * to try to handle preemption here.
4d732138
IM
1167 *
1168 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 1169 */
ddeb8f21 1170ENTRY(paranoid_exit)
8c1f7558 1171 UNWIND_HINT_REGS
2140a994 1172 DISABLE_INTERRUPTS(CLBR_ANY)
5963e317 1173 TRACE_IRQS_OFF_DEBUG
4d732138 1174 testl %ebx, %ebx /* swapgs needed? */
e5317832 1175 jnz .Lparanoid_exit_no_swapgs
f2db9382 1176 TRACE_IRQS_IRETQ
21e94459 1177 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
ddeb8f21 1178 SWAPGS_UNSAFE_STACK
e5317832
AL
1179 jmp .Lparanoid_exit_restore
1180.Lparanoid_exit_no_swapgs:
f2db9382 1181 TRACE_IRQS_IRETQ_DEBUG
e4865757 1182 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
e5317832
AL
1183.Lparanoid_exit_restore:
1184 jmp restore_regs_and_return_to_kernel
ddeb8f21
AH
1185END(paranoid_exit)
1186
1187/*
9e809d15 1188 * Save all registers in pt_regs, and switch GS if needed.
539f5113 1189 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
1190 */
1191ENTRY(error_entry)
9e809d15 1192 UNWIND_HINT_FUNC
ddeb8f21 1193 cld
9e809d15
DB
1194 PUSH_AND_CLEAR_REGS save_ret=1
1195 ENCODE_FRAME_POINTER 8
03335e95 1196 testb $3, CS+8(%rsp)
cb6f64ed 1197 jz .Lerror_kernelspace
539f5113 1198
cb6f64ed
AL
1199 /*
1200 * We entered from user mode or we're pretending to have entered
1201 * from user mode due to an IRET fault.
1202 */
ddeb8f21 1203 SWAPGS
8a09317b
DH
1204 /* We have user CR3. Change to kernel CR3. */
1205 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
539f5113 1206
cb6f64ed 1207.Lerror_entry_from_usermode_after_swapgs:
7f2590a1
AL
1208 /* Put us onto the real thread stack. */
1209 popq %r12 /* save return addr in %12 */
1210 movq %rsp, %rdi /* arg0 = pt_regs pointer */
1211 call sync_regs
1212 movq %rax, %rsp /* switch stack */
1213 ENCODE_FRAME_POINTER
1214 pushq %r12
1215
f1075053
AL
1216 /*
1217 * We need to tell lockdep that IRQs are off. We can't do this until
1218 * we fix gsbase, and we should do it before enter_from_user_mode
1219 * (which can take locks).
1220 */
1221 TRACE_IRQS_OFF
478dc89c 1222 CALL_enter_from_user_mode
f1075053 1223 ret
02bc7768 1224
cb6f64ed 1225.Lerror_entry_done:
ddeb8f21
AH
1226 TRACE_IRQS_OFF
1227 ret
ddeb8f21 1228
ebfc453e
DV
1229 /*
1230 * There are two places in the kernel that can potentially fault with
1231 * usergs. Handle them here. B stepping K8s sometimes report a
1232 * truncated RIP for IRET exceptions returning to compat mode. Check
1233 * for these here too.
1234 */
cb6f64ed 1235.Lerror_kernelspace:
4d732138
IM
1236 incl %ebx
1237 leaq native_irq_return_iret(%rip), %rcx
1238 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1239 je .Lerror_bad_iret
4d732138
IM
1240 movl %ecx, %eax /* zero extend */
1241 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1242 je .Lbstep_iret
42c748bb 1243 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1244 jne .Lerror_entry_done
539f5113
AL
1245
1246 /*
42c748bb 1247 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1248 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1249 * .Lgs_change's error handler with kernel gsbase.
539f5113 1250 */
2fa5f04f 1251 SWAPGS
8a09317b 1252 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
2fa5f04f 1253 jmp .Lerror_entry_done
ae24ffe5 1254
cb6f64ed 1255.Lbstep_iret:
ae24ffe5 1256 /* Fix truncated RIP */
4d732138 1257 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1258 /* fall through */
1259
cb6f64ed 1260.Lerror_bad_iret:
539f5113 1261 /*
8a09317b
DH
1262 * We came from an IRET to user mode, so we have user
1263 * gsbase and CR3. Switch to kernel gsbase and CR3:
539f5113 1264 */
b645af2d 1265 SWAPGS
8a09317b 1266 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
539f5113
AL
1267
1268 /*
1269 * Pretend that the exception came from user mode: set up pt_regs
1270 * as if we faulted immediately after IRET and clear EBX so that
1271 * error_exit knows that we will be returning to user mode.
1272 */
4d732138
IM
1273 mov %rsp, %rdi
1274 call fixup_bad_iret
1275 mov %rax, %rsp
539f5113 1276 decl %ebx
cb6f64ed 1277 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1278END(error_entry)
1279
1280
539f5113 1281/*
75ca5b22 1282 * On entry, EBX is a "return to kernel mode" flag:
539f5113
AL
1283 * 1: already in kernel mode, don't need SWAPGS
1284 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1285 */
ddeb8f21 1286ENTRY(error_exit)
8c1f7558 1287 UNWIND_HINT_REGS
2140a994 1288 DISABLE_INTERRUPTS(CLBR_ANY)
ddeb8f21 1289 TRACE_IRQS_OFF
2140a994 1290 testl %ebx, %ebx
4d732138
IM
1291 jnz retint_kernel
1292 jmp retint_user
ddeb8f21
AH
1293END(error_exit)
1294
929bacec
AL
1295/*
1296 * Runs on exception stack. Xen PV does not go through this path at all,
1297 * so we can use real assembly here.
8a09317b
DH
1298 *
1299 * Registers:
1300 * %r14: Used to save/restore the CR3 of the interrupted context
1301 * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
929bacec 1302 */
ddeb8f21 1303ENTRY(nmi)
8c1f7558 1304 UNWIND_HINT_IRET_REGS
929bacec 1305
3f3c8b8c
SR
1306 /*
1307 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1308 * the iretq it performs will take us out of NMI context.
1309 * This means that we can have nested NMIs where the next
1310 * NMI is using the top of the stack of the previous NMI. We
1311 * can't let it execute because the nested NMI will corrupt the
1312 * stack of the previous NMI. NMI handlers are not re-entrant
1313 * anyway.
1314 *
1315 * To handle this case we do the following:
1316 * Check the a special location on the stack that contains
1317 * a variable that is set when NMIs are executing.
1318 * The interrupted task's stack is also checked to see if it
1319 * is an NMI stack.
1320 * If the variable is not set and the stack is not the NMI
1321 * stack then:
1322 * o Set the special variable on the stack
0b22930e
AL
1323 * o Copy the interrupt frame into an "outermost" location on the
1324 * stack
1325 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1326 * o Continue processing the NMI
1327 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1328 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1329 * o return back to the first NMI
1330 *
1331 * Now on exit of the first NMI, we first clear the stack variable
1332 * The NMI stack will tell any nested NMIs at that point that it is
1333 * nested. Then we pop the stack normally with iret, and if there was
1334 * a nested NMI that updated the copy interrupt stack frame, a
1335 * jump will be made to the repeat_nmi code that will handle the second
1336 * NMI.
9b6e6a83
AL
1337 *
1338 * However, espfix prevents us from directly returning to userspace
1339 * with a single IRET instruction. Similarly, IRET to user mode
1340 * can fault. We therefore handle NMIs from user space like
1341 * other IST entries.
3f3c8b8c
SR
1342 */
1343
e93c1730
AL
1344 ASM_CLAC
1345
146b2b09 1346 /* Use %rdx as our temp variable throughout */
4d732138 1347 pushq %rdx
3f3c8b8c 1348
9b6e6a83
AL
1349 testb $3, CS-RIP+8(%rsp)
1350 jz .Lnmi_from_kernel
1351
1352 /*
1353 * NMI from user mode. We need to run on the thread stack, but we
1354 * can't go through the normal entry paths: NMIs are masked, and
1355 * we don't want to enable interrupts, because then we'll end
1356 * up in an awkward situation in which IRQs are on but NMIs
1357 * are off.
83c133cf
AL
1358 *
1359 * We also must not push anything to the stack before switching
1360 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1361 */
1362
929bacec 1363 swapgs
9b6e6a83 1364 cld
8a09317b 1365 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
9b6e6a83
AL
1366 movq %rsp, %rdx
1367 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
8c1f7558 1368 UNWIND_HINT_IRET_REGS base=%rdx offset=8
9b6e6a83
AL
1369 pushq 5*8(%rdx) /* pt_regs->ss */
1370 pushq 4*8(%rdx) /* pt_regs->rsp */
1371 pushq 3*8(%rdx) /* pt_regs->flags */
1372 pushq 2*8(%rdx) /* pt_regs->cs */
1373 pushq 1*8(%rdx) /* pt_regs->rip */
8c1f7558 1374 UNWIND_HINT_IRET_REGS
9b6e6a83 1375 pushq $-1 /* pt_regs->orig_ax */
30907fd1 1376 PUSH_AND_CLEAR_REGS rdx=(%rdx)
946c1911 1377 ENCODE_FRAME_POINTER
9b6e6a83
AL
1378
1379 /*
1380 * At this point we no longer need to worry about stack damage
1381 * due to nesting -- we're on the normal thread stack and we're
1382 * done with the NMI stack.
1383 */
1384
1385 movq %rsp, %rdi
1386 movq $-1, %rsi
1387 call do_nmi
1388
45d5a168 1389 /*
9b6e6a83 1390 * Return back to user mode. We must *not* do the normal exit
946c1911 1391 * work, because we don't want to enable interrupts.
45d5a168 1392 */
8a055d7f 1393 jmp swapgs_restore_regs_and_return_to_usermode
45d5a168 1394
9b6e6a83 1395.Lnmi_from_kernel:
3f3c8b8c 1396 /*
0b22930e
AL
1397 * Here's what our stack frame will look like:
1398 * +---------------------------------------------------------+
1399 * | original SS |
1400 * | original Return RSP |
1401 * | original RFLAGS |
1402 * | original CS |
1403 * | original RIP |
1404 * +---------------------------------------------------------+
1405 * | temp storage for rdx |
1406 * +---------------------------------------------------------+
1407 * | "NMI executing" variable |
1408 * +---------------------------------------------------------+
1409 * | iret SS } Copied from "outermost" frame |
1410 * | iret Return RSP } on each loop iteration; overwritten |
1411 * | iret RFLAGS } by a nested NMI to force another |
1412 * | iret CS } iteration if needed. |
1413 * | iret RIP } |
1414 * +---------------------------------------------------------+
1415 * | outermost SS } initialized in first_nmi; |
1416 * | outermost Return RSP } will not be changed before |
1417 * | outermost RFLAGS } NMI processing is done. |
1418 * | outermost CS } Copied to "iret" frame on each |
1419 * | outermost RIP } iteration. |
1420 * +---------------------------------------------------------+
1421 * | pt_regs |
1422 * +---------------------------------------------------------+
1423 *
1424 * The "original" frame is used by hardware. Before re-enabling
1425 * NMIs, we need to be done with it, and we need to leave enough
1426 * space for the asm code here.
1427 *
1428 * We return by executing IRET while RSP points to the "iret" frame.
1429 * That will either return for real or it will loop back into NMI
1430 * processing.
1431 *
1432 * The "outermost" frame is copied to the "iret" frame on each
1433 * iteration of the loop, so each iteration starts with the "iret"
1434 * frame pointing to the final return target.
1435 */
1436
45d5a168 1437 /*
0b22930e
AL
1438 * Determine whether we're a nested NMI.
1439 *
a27507ca
AL
1440 * If we interrupted kernel code between repeat_nmi and
1441 * end_repeat_nmi, then we are a nested NMI. We must not
1442 * modify the "iret" frame because it's being written by
1443 * the outer NMI. That's okay; the outer NMI handler is
1444 * about to about to call do_nmi anyway, so we can just
1445 * resume the outer NMI.
45d5a168 1446 */
a27507ca
AL
1447
1448 movq $repeat_nmi, %rdx
1449 cmpq 8(%rsp), %rdx
1450 ja 1f
1451 movq $end_repeat_nmi, %rdx
1452 cmpq 8(%rsp), %rdx
1453 ja nested_nmi_out
14541:
45d5a168 1455
3f3c8b8c 1456 /*
a27507ca 1457 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1458 * This will not detect if we interrupted an outer NMI just
1459 * before IRET.
3f3c8b8c 1460 */
4d732138
IM
1461 cmpl $1, -8(%rsp)
1462 je nested_nmi
3f3c8b8c
SR
1463
1464 /*
0b22930e
AL
1465 * Now test if the previous stack was an NMI stack. This covers
1466 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1467 * "NMI executing" but before IRET. We need to be careful, though:
1468 * there is one case in which RSP could point to the NMI stack
1469 * despite there being no NMI active: naughty userspace controls
1470 * RSP at the very beginning of the SYSCALL targets. We can
1471 * pull a fast one on naughty userspace, though: we program
1472 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1473 * if it controls the kernel's RSP. We set DF before we clear
1474 * "NMI executing".
3f3c8b8c 1475 */
0784b364
DV
1476 lea 6*8(%rsp), %rdx
1477 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1478 cmpq %rdx, 4*8(%rsp)
1479 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1480 ja first_nmi
4d732138 1481
0784b364
DV
1482 subq $EXCEPTION_STKSZ, %rdx
1483 cmpq %rdx, 4*8(%rsp)
1484 /* If it is below the NMI stack, it is a normal NMI */
1485 jb first_nmi
810bc075
AL
1486
1487 /* Ah, it is within the NMI stack. */
1488
1489 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1490 jz first_nmi /* RSP was user controlled. */
1491
1492 /* This is a nested NMI. */
0784b364 1493
3f3c8b8c
SR
1494nested_nmi:
1495 /*
0b22930e
AL
1496 * Modify the "iret" frame to point to repeat_nmi, forcing another
1497 * iteration of NMI handling.
3f3c8b8c 1498 */
23a781e9 1499 subq $8, %rsp
4d732138
IM
1500 leaq -10*8(%rsp), %rdx
1501 pushq $__KERNEL_DS
1502 pushq %rdx
131484c8 1503 pushfq
4d732138
IM
1504 pushq $__KERNEL_CS
1505 pushq $repeat_nmi
3f3c8b8c
SR
1506
1507 /* Put stack back */
4d732138 1508 addq $(6*8), %rsp
3f3c8b8c
SR
1509
1510nested_nmi_out:
4d732138 1511 popq %rdx
3f3c8b8c 1512
0b22930e 1513 /* We are returning to kernel mode, so this cannot result in a fault. */
929bacec 1514 iretq
3f3c8b8c
SR
1515
1516first_nmi:
0b22930e 1517 /* Restore rdx. */
4d732138 1518 movq (%rsp), %rdx
62610913 1519
36f1a77b
AL
1520 /* Make room for "NMI executing". */
1521 pushq $0
3f3c8b8c 1522
0b22930e 1523 /* Leave room for the "iret" frame */
4d732138 1524 subq $(5*8), %rsp
28696f43 1525
0b22930e 1526 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1527 .rept 5
4d732138 1528 pushq 11*8(%rsp)
3f3c8b8c 1529 .endr
8c1f7558 1530 UNWIND_HINT_IRET_REGS
62610913 1531
79fb4ad6
SR
1532 /* Everything up to here is safe from nested NMIs */
1533
a97439aa
AL
1534#ifdef CONFIG_DEBUG_ENTRY
1535 /*
1536 * For ease of testing, unmask NMIs right away. Disabled by
1537 * default because IRET is very expensive.
1538 */
1539 pushq $0 /* SS */
1540 pushq %rsp /* RSP (minus 8 because of the previous push) */
1541 addq $8, (%rsp) /* Fix up RSP */
1542 pushfq /* RFLAGS */
1543 pushq $__KERNEL_CS /* CS */
1544 pushq $1f /* RIP */
929bacec 1545 iretq /* continues at repeat_nmi below */
8c1f7558 1546 UNWIND_HINT_IRET_REGS
a97439aa
AL
15471:
1548#endif
1549
0b22930e 1550repeat_nmi:
62610913
JB
1551 /*
1552 * If there was a nested NMI, the first NMI's iret will return
1553 * here. But NMIs are still enabled and we can take another
1554 * nested NMI. The nested NMI checks the interrupted RIP to see
1555 * if it is between repeat_nmi and end_repeat_nmi, and if so
1556 * it will just return, as we are about to repeat an NMI anyway.
1557 * This makes it safe to copy to the stack frame that a nested
1558 * NMI will update.
0b22930e
AL
1559 *
1560 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1561 * we're repeating an NMI, gsbase has the same value that it had on
1562 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1563 * gsbase if needed before we call do_nmi. "NMI executing"
1564 * is zero.
62610913 1565 */
36f1a77b 1566 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1567
62610913 1568 /*
0b22930e
AL
1569 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1570 * here must not modify the "iret" frame while we're writing to
1571 * it or it will end up containing garbage.
62610913 1572 */
4d732138 1573 addq $(10*8), %rsp
3f3c8b8c 1574 .rept 5
4d732138 1575 pushq -6*8(%rsp)
3f3c8b8c 1576 .endr
4d732138 1577 subq $(5*8), %rsp
62610913 1578end_repeat_nmi:
3f3c8b8c
SR
1579
1580 /*
0b22930e
AL
1581 * Everything below this point can be preempted by a nested NMI.
1582 * If this happens, then the inner NMI will change the "iret"
1583 * frame to point back to repeat_nmi.
3f3c8b8c 1584 */
4d732138 1585 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43 1586
1fd466ef 1587 /*
ebfc453e 1588 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1589 * as we should not be calling schedule in NMI context.
1590 * Even with normal interrupts enabled. An NMI should not be
1591 * setting NEED_RESCHED or anything that normal interrupts and
1592 * exceptions might do.
1593 */
4d732138 1594 call paranoid_entry
8c1f7558 1595 UNWIND_HINT_REGS
7fbb98c5 1596
ddeb8f21 1597 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1598 movq %rsp, %rdi
1599 movq $-1, %rsi
1600 call do_nmi
7fbb98c5 1601
21e94459 1602 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
8a09317b 1603
4d732138
IM
1604 testl %ebx, %ebx /* swapgs needed? */
1605 jnz nmi_restore
ddeb8f21
AH
1606nmi_swapgs:
1607 SWAPGS_UNSAFE_STACK
1608nmi_restore:
502af0d7 1609 POP_REGS
0b22930e 1610
471ee483
AL
1611 /*
1612 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1613 * at the "iret" frame.
1614 */
1615 addq $6*8, %rsp
28696f43 1616
810bc075
AL
1617 /*
1618 * Clear "NMI executing". Set DF first so that we can easily
1619 * distinguish the remaining code between here and IRET from
929bacec
AL
1620 * the SYSCALL entry and exit paths.
1621 *
1622 * We arguably should just inspect RIP instead, but I (Andy) wrote
1623 * this code when I had the misapprehension that Xen PV supported
1624 * NMIs, and Xen PV would break that approach.
810bc075
AL
1625 */
1626 std
1627 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1628
1629 /*
929bacec
AL
1630 * iretq reads the "iret" frame and exits the NMI stack in a
1631 * single instruction. We are returning to kernel mode, so this
1632 * cannot result in a fault. Similarly, we don't need to worry
1633 * about espfix64 on the way back to kernel mode.
0b22930e 1634 */
929bacec 1635 iretq
ddeb8f21
AH
1636END(nmi)
1637
1638ENTRY(ignore_sysret)
8c1f7558 1639 UNWIND_HINT_EMPTY
4d732138 1640 mov $-ENOSYS, %eax
ddeb8f21 1641 sysret
ddeb8f21 1642END(ignore_sysret)
2deb4be2
AL
1643
1644ENTRY(rewind_stack_do_exit)
8c1f7558 1645 UNWIND_HINT_FUNC
2deb4be2
AL
1646 /* Prevent any naive code from trying to unwind to our caller. */
1647 xorl %ebp, %ebp
1648
1649 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
8c1f7558
JP
1650 leaq -PTREGS_SIZE(%rax), %rsp
1651 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
2deb4be2
AL
1652
1653 call do_exit
2deb4be2 1654END(rewind_stack_do_exit)