]> git.ipfire.org Git - thirdparty/linux.git/blame - arch/x86/entry/entry_64.S
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / arch / x86 / entry / entry_64.S
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2/*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 8 *
1da177e4
LT
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
cb1aaebe 11 * Some of this is documented in Documentation/x86/entry_64.rst
8b4777a4 12 *
0bd7b798 13 * A note on terminology:
4d732138
IM
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
2e91a17b
AK
16 *
17 * Some macro usage:
6dcc5627 18 * - SYM_FUNC_START/END:Define functions in the symbol table.
4d732138
IM
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
1da177e4 21 */
1da177e4
LT
22#include <linux/linkage.h>
23#include <asm/segment.h>
1da177e4
LT
24#include <asm/cache.h>
25#include <asm/errno.h>
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
784d5699 38#include <asm/export.h>
8c1f7558 39#include <asm/frame.h>
2641f08b 40#include <asm/nospec-branch.h>
d7e7528b 41#include <linux/err.h>
1da177e4 42
6fd166aa
PZ
43#include "calling.h"
44
4d732138
IM
45.code64
46.section .entry.text, "ax"
16444a8a 47
72fe4858 48#ifdef CONFIG_PARAVIRT
bc7b11c0 49SYM_CODE_START(native_usergs_sysret64)
8c1f7558 50 UNWIND_HINT_EMPTY
72fe4858
GOC
51 swapgs
52 sysretq
bc7b11c0 53SYM_CODE_END(native_usergs_sysret64)
72fe4858
GOC
54#endif /* CONFIG_PARAVIRT */
55
ca37e57b 56.macro TRACE_IRQS_FLAGS flags:req
2601e64d 57#ifdef CONFIG_TRACE_IRQFLAGS
a368d7fd 58 btl $9, \flags /* interrupts off? */
4d732138 59 jnc 1f
2601e64d
IM
60 TRACE_IRQS_ON
611:
62#endif
63.endm
64
ca37e57b
AL
65.macro TRACE_IRQS_IRETQ
66 TRACE_IRQS_FLAGS EFLAGS(%rsp)
67.endm
68
5963e317
SR
69/*
70 * When dynamic function tracer is enabled it will add a breakpoint
71 * to all locations that it is about to modify, sync CPUs, update
72 * all the code, sync CPUs, then remove the breakpoints. In this time
73 * if lockdep is enabled, it might jump back into the debug handler
74 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
75 *
76 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
77 * make sure the stack pointer does not get reset back to the top
78 * of the debug stack, and instead just reuses the current stack.
79 */
80#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
81
82.macro TRACE_IRQS_OFF_DEBUG
4d732138 83 call debug_stack_set_zero
5963e317 84 TRACE_IRQS_OFF
4d732138 85 call debug_stack_reset
5963e317
SR
86.endm
87
88.macro TRACE_IRQS_ON_DEBUG
4d732138 89 call debug_stack_set_zero
5963e317 90 TRACE_IRQS_ON
4d732138 91 call debug_stack_reset
5963e317
SR
92.endm
93
f2db9382 94.macro TRACE_IRQS_IRETQ_DEBUG
6709812f 95 btl $9, EFLAGS(%rsp) /* interrupts off? */
4d732138 96 jnc 1f
5963e317
SR
97 TRACE_IRQS_ON_DEBUG
981:
99.endm
100
101#else
4d732138
IM
102# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
103# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
104# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
105#endif
106
1da177e4 107/*
4d732138 108 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 109 *
fda57b22
AL
110 * This is the only entry point used for 64-bit system calls. The
111 * hardware interface is reasonably well designed and the register to
112 * argument mapping Linux uses fits well with the registers that are
113 * available when SYSCALL is used.
114 *
115 * SYSCALL instructions can be found inlined in libc implementations as
116 * well as some other programs and libraries. There are also a handful
117 * of SYSCALL instructions in the vDSO used, for example, as a
118 * clock_gettimeofday fallback.
119 *
4d732138 120 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
121 * then loads new ss, cs, and rip from previously programmed MSRs.
122 * rflags gets masked by a value from another MSR (so CLD and CLAC
123 * are not needed). SYSCALL does not save anything on the stack
124 * and does not change rsp.
125 *
126 * Registers on entry:
1da177e4 127 * rax system call number
b87cf63e
DV
128 * rcx return address
129 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 130 * rdi arg0
1da177e4 131 * rsi arg1
0bd7b798 132 * rdx arg2
b87cf63e 133 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
134 * r8 arg4
135 * r9 arg5
4d732138 136 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 137 *
1da177e4
LT
138 * Only called from user space.
139 *
7fcb3bc3 140 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
141 * it deals with uncanonical addresses better. SYSRET has trouble
142 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 143 */
1da177e4 144
bc7b11c0 145SYM_CODE_START(entry_SYSCALL_64)
8c1f7558 146 UNWIND_HINT_EMPTY
9ed8e7d8
DV
147 /*
148 * Interrupts are off on entry.
149 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
150 * it is too small to ever cause noticeable irq latency.
151 */
72fe4858 152
8a9949bc 153 swapgs
bf904d27 154 /* tss.sp2 is scratch space. */
98f05b51 155 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
bf904d27 156 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
4d732138 157 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8
DV
158
159 /* Construct struct pt_regs on stack */
98f05b51
AL
160 pushq $__USER_DS /* pt_regs->ss */
161 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */
162 pushq %r11 /* pt_regs->flags */
163 pushq $__USER_CS /* pt_regs->cs */
164 pushq %rcx /* pt_regs->ip */
26ba4e57 165SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
98f05b51 166 pushq %rax /* pt_regs->orig_ax */
30907fd1
DB
167
168 PUSH_AND_CLEAR_REGS rax=$-ENOSYS
4d732138 169
548c3050
AL
170 TRACE_IRQS_OFF
171
1e423bff 172 /* IRQs are off. */
dfe64506
LT
173 movq %rax, %rdi
174 movq %rsp, %rsi
1e423bff
AL
175 call do_syscall_64 /* returns with IRQs disabled */
176
810f80a6 177 TRACE_IRQS_ON /* return enables interrupts */
fffbb5dc
DV
178
179 /*
180 * Try to use SYSRET instead of IRET if we're returning to
8a055d7f
AL
181 * a completely clean 64-bit userspace context. If we're not,
182 * go to the slow exit path.
fffbb5dc 183 */
4d732138
IM
184 movq RCX(%rsp), %rcx
185 movq RIP(%rsp), %r11
8a055d7f
AL
186
187 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
188 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
189
190 /*
191 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
192 * in kernel space. This essentially lets the user take over
17be0aec 193 * the kernel, since userspace controls RSP.
fffbb5dc 194 *
17be0aec 195 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc 196 * to be updated to remain correct on both old and new CPUs.
361b4b58 197 *
cbe0317b
KS
198 * Change top bits to match most significant bit (47th or 56th bit
199 * depending on paging mode) in the address.
fffbb5dc 200 */
09e61a77 201#ifdef CONFIG_X86_5LEVEL
39b95522
KS
202 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
203 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
09e61a77 204#else
17be0aec
DV
205 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
206 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
09e61a77 207#endif
4d732138 208
17be0aec
DV
209 /* If this changed %rcx, it was not canonical */
210 cmpq %rcx, %r11
8a055d7f 211 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 212
4d732138 213 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
8a055d7f 214 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 215
4d732138
IM
216 movq R11(%rsp), %r11
217 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
8a055d7f 218 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
219
220 /*
3e035305
BP
221 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
222 * restore RF properly. If the slowpath sets it for whatever reason, we
223 * need to restore it correctly.
224 *
225 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
226 * trap from userspace immediately after SYSRET. This would cause an
227 * infinite loop whenever #DB happens with register state that satisfies
228 * the opportunistic SYSRET conditions. For example, single-stepping
229 * this user code:
fffbb5dc 230 *
4d732138 231 * movq $stuck_here, %rcx
fffbb5dc
DV
232 * pushfq
233 * popq %r11
234 * stuck_here:
235 *
236 * would never get past 'stuck_here'.
237 */
4d732138 238 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
8a055d7f 239 jnz swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
240
241 /* nothing to check for RSP */
242
4d732138 243 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
8a055d7f 244 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
245
246 /*
4d732138
IM
247 * We win! This label is here just for ease of understanding
248 * perf profiles. Nothing jumps here.
fffbb5dc
DV
249 */
250syscall_return_via_sysret:
17be0aec 251 /* rcx and r11 are already restored (see code above) */
502af0d7 252 POP_REGS pop_rdi=0 skip_r11rcx=1
3e3b9293
AL
253
254 /*
255 * Now all regs are restored except RSP and RDI.
256 * Save old stack pointer and switch to trampoline stack.
257 */
258 movq %rsp, %rdi
c482feef 259 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
1fb14363 260 UNWIND_HINT_EMPTY
3e3b9293
AL
261
262 pushq RSP-RDI(%rdi) /* RSP */
263 pushq (%rdi) /* RDI */
264
265 /*
266 * We are on the trampoline stack. All regs except RDI are live.
267 * We can do future final exit work right here.
268 */
afaef01c
AP
269 STACKLEAK_ERASE_NOCLOBBER
270
6fd166aa 271 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
3e3b9293 272
4fbb3910 273 popq %rdi
3e3b9293 274 popq %rsp
fffbb5dc 275 USERGS_SYSRET64
bc7b11c0 276SYM_CODE_END(entry_SYSCALL_64)
0bd7b798 277
0100301b
BG
278/*
279 * %rdi: prev task
280 * %rsi: next task
281 */
96c64806 282SYM_FUNC_START(__switch_to_asm)
0100301b
BG
283 /*
284 * Save callee-saved registers
285 * This must match the order in inactive_task_frame
286 */
287 pushq %rbp
288 pushq %rbx
289 pushq %r12
290 pushq %r13
291 pushq %r14
292 pushq %r15
293
294 /* switch stack */
295 movq %rsp, TASK_threadsp(%rdi)
296 movq TASK_threadsp(%rsi), %rsp
297
050e9baa 298#ifdef CONFIG_STACKPROTECTOR
0100301b 299 movq TASK_stack_canary(%rsi), %rbx
e6401c13 300 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
0100301b
BG
301#endif
302
c995efd5
DW
303#ifdef CONFIG_RETPOLINE
304 /*
305 * When switching from a shallower to a deeper call stack
306 * the RSB may either underflow or use entries populated
307 * with userspace addresses. On CPUs where those concerns
308 * exist, overwrite the RSB with entries which capture
309 * speculative execution to prevent attack.
310 */
d1c99108 311 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
c995efd5
DW
312#endif
313
0100301b
BG
314 /* restore callee-saved registers */
315 popq %r15
316 popq %r14
317 popq %r13
318 popq %r12
319 popq %rbx
320 popq %rbp
321
322 jmp __switch_to
96c64806 323SYM_FUNC_END(__switch_to_asm)
0100301b 324
1eeb207f
DV
325/*
326 * A newly forked process directly context switches into this address.
327 *
0100301b 328 * rax: prev task we switched from
616d2483
BG
329 * rbx: kernel thread func (NULL for user thread)
330 * r12: kernel thread arg
1eeb207f 331 */
bc7b11c0 332SYM_CODE_START(ret_from_fork)
8c1f7558 333 UNWIND_HINT_EMPTY
0100301b 334 movq %rax, %rdi
ebd57499 335 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 336
ebd57499
JP
337 testq %rbx, %rbx /* from kernel_thread? */
338 jnz 1f /* kernel threads are uncommon */
24d978b7 339
616d2483 3402:
8c1f7558 341 UNWIND_HINT_REGS
ebd57499 342 movq %rsp, %rdi
24d978b7
AL
343 call syscall_return_slowpath /* returns with IRQs disabled */
344 TRACE_IRQS_ON /* user mode is traced as IRQS on */
8a055d7f 345 jmp swapgs_restore_regs_and_return_to_usermode
616d2483
BG
346
3471:
348 /* kernel thread */
d31a5802 349 UNWIND_HINT_EMPTY
616d2483 350 movq %r12, %rdi
2641f08b 351 CALL_NOSPEC %rbx
616d2483
BG
352 /*
353 * A kernel thread is allowed to return here after successfully
354 * calling do_execve(). Exit to userspace to complete the execve()
355 * syscall.
356 */
357 movq $0, RAX(%rsp)
358 jmp 2b
bc7b11c0 359SYM_CODE_END(ret_from_fork)
1eeb207f 360
939b7871 361/*
3304c9c3
DV
362 * Build the entry stubs with some assembler magic.
363 * We pack 1 stub into every 8-byte block.
939b7871 364 */
3304c9c3 365 .align 8
bc7b11c0 366SYM_CODE_START(irq_entries_start)
3304c9c3
DV
367 vector=FIRST_EXTERNAL_VECTOR
368 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
8c1f7558 369 UNWIND_HINT_IRET_REGS
4d732138 370 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3 371 jmp common_interrupt
3304c9c3 372 .align 8
8c1f7558 373 vector=vector+1
3304c9c3 374 .endr
bc7b11c0 375SYM_CODE_END(irq_entries_start)
939b7871 376
f8a8fe61 377 .align 8
bc7b11c0 378SYM_CODE_START(spurious_entries_start)
f8a8fe61
TG
379 vector=FIRST_SYSTEM_VECTOR
380 .rept (NR_VECTORS - FIRST_SYSTEM_VECTOR)
381 UNWIND_HINT_IRET_REGS
382 pushq $(~vector+0x80) /* Note: always in signed byte range */
383 jmp common_spurious
384 .align 8
385 vector=vector+1
386 .endr
bc7b11c0 387SYM_CODE_END(spurious_entries_start)
f8a8fe61 388
1d3e53e8
AL
389.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
390#ifdef CONFIG_DEBUG_ENTRY
e17f8234
BO
391 pushq %rax
392 SAVE_FLAGS(CLBR_RAX)
393 testl $X86_EFLAGS_IF, %eax
1d3e53e8
AL
394 jz .Lokay_\@
395 ud2
396.Lokay_\@:
e17f8234 397 popq %rax
1d3e53e8
AL
398#endif
399.endm
400
401/*
402 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
403 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
404 * Requires kernel GSBASE.
405 *
406 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
407 */
2ba64741 408.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
1d3e53e8 409 DEBUG_ENTRY_ASSERT_IRQS_OFF
2ba64741
DB
410
411 .if \save_ret
412 /*
413 * If save_ret is set, the original stack contains one additional
414 * entry -- the return address. Therefore, move the address one
415 * entry below %rsp to \old_rsp.
416 */
417 leaq 8(%rsp), \old_rsp
418 .else
1d3e53e8 419 movq %rsp, \old_rsp
2ba64741 420 .endif
8c1f7558
JP
421
422 .if \regs
423 UNWIND_HINT_REGS base=\old_rsp
424 .endif
425
1d3e53e8 426 incl PER_CPU_VAR(irq_count)
29955909 427 jnz .Lirq_stack_push_old_rsp_\@
1d3e53e8
AL
428
429 /*
430 * Right now, if we just incremented irq_count to zero, we've
431 * claimed the IRQ stack but we haven't switched to it yet.
432 *
433 * If anything is added that can interrupt us here without using IST,
434 * it must be *extremely* careful to limit its stack usage. This
435 * could include kprobes and a hypothetical future IST-less #DB
436 * handler.
29955909
AL
437 *
438 * The OOPS unwinder relies on the word at the top of the IRQ
439 * stack linking back to the previous RSP for the entire time we're
440 * on the IRQ stack. For this to work reliably, we need to write
441 * it before we actually move ourselves to the IRQ stack.
442 */
443
e6401c13 444 movq \old_rsp, PER_CPU_VAR(irq_stack_backing_store + IRQ_STACK_SIZE - 8)
758a2e31 445 movq PER_CPU_VAR(hardirq_stack_ptr), %rsp
29955909
AL
446
447#ifdef CONFIG_DEBUG_ENTRY
448 /*
449 * If the first movq above becomes wrong due to IRQ stack layout
450 * changes, the only way we'll notice is if we try to unwind right
451 * here. Assert that we set up the stack right to catch this type
452 * of bug quickly.
1d3e53e8 453 */
29955909
AL
454 cmpq -8(%rsp), \old_rsp
455 je .Lirq_stack_okay\@
456 ud2
457 .Lirq_stack_okay\@:
458#endif
1d3e53e8 459
29955909 460.Lirq_stack_push_old_rsp_\@:
1d3e53e8 461 pushq \old_rsp
8c1f7558
JP
462
463 .if \regs
464 UNWIND_HINT_REGS indirect=1
465 .endif
2ba64741
DB
466
467 .if \save_ret
468 /*
469 * Push the return address to the stack. This return address can
470 * be found at the "real" original RSP, which was offset by 8 at
471 * the beginning of this macro.
472 */
473 pushq -8(\old_rsp)
474 .endif
1d3e53e8
AL
475.endm
476
477/*
478 * Undoes ENTER_IRQ_STACK.
479 */
8c1f7558 480.macro LEAVE_IRQ_STACK regs=1
1d3e53e8
AL
481 DEBUG_ENTRY_ASSERT_IRQS_OFF
482 /* We need to be off the IRQ stack before decrementing irq_count. */
483 popq %rsp
484
8c1f7558
JP
485 .if \regs
486 UNWIND_HINT_REGS
487 .endif
488
1d3e53e8
AL
489 /*
490 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
491 * the irq stack but we're not on it.
492 */
493
494 decl PER_CPU_VAR(irq_count)
495.endm
496
d99015b1 497/*
f3d415ea 498 * Interrupt entry helper function.
d99015b1 499 *
f3d415ea
DB
500 * Entry runs with interrupts off. Stack layout at entry:
501 * +----------------------------------------------------+
502 * | regs->ss |
503 * | regs->rsp |
504 * | regs->eflags |
505 * | regs->cs |
506 * | regs->ip |
507 * +----------------------------------------------------+
508 * | regs->orig_ax = ~(interrupt number) |
509 * +----------------------------------------------------+
510 * | return address |
511 * +----------------------------------------------------+
d99015b1 512 */
bc7b11c0 513SYM_CODE_START(interrupt_entry)
81b67439 514 UNWIND_HINT_IRET_REGS offset=16
f3d415ea 515 ASM_CLAC
f6f64681 516 cld
7f2590a1 517
f3d415ea 518 testb $3, CS-ORIG_RAX+8(%rsp)
7f2590a1
AL
519 jz 1f
520 SWAPGS
18ec54fd 521 FENCE_SWAPGS_USER_ENTRY
f3d415ea
DB
522 /*
523 * Switch to the thread stack. The IRET frame and orig_ax are
524 * on the stack, as well as the return address. RDI..R12 are
525 * not (yet) on the stack and space has not (yet) been
526 * allocated for them.
527 */
90a6acc4 528 pushq %rdi
f3d415ea 529
90a6acc4
DB
530 /* Need to switch before accessing the thread stack. */
531 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
532 movq %rsp, %rdi
533 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
f3d415ea
DB
534
535 /*
536 * We have RDI, return address, and orig_ax on the stack on
537 * top of the IRET frame. That means offset=24
538 */
539 UNWIND_HINT_IRET_REGS base=%rdi offset=24
90a6acc4
DB
540
541 pushq 7*8(%rdi) /* regs->ss */
542 pushq 6*8(%rdi) /* regs->rsp */
543 pushq 5*8(%rdi) /* regs->eflags */
544 pushq 4*8(%rdi) /* regs->cs */
545 pushq 3*8(%rdi) /* regs->ip */
81b67439 546 UNWIND_HINT_IRET_REGS
90a6acc4
DB
547 pushq 2*8(%rdi) /* regs->orig_ax */
548 pushq 8(%rdi) /* return address */
90a6acc4
DB
549
550 movq (%rdi), %rdi
64dbc122 551 jmp 2f
7f2590a1 5521:
18ec54fd
JP
553 FENCE_SWAPGS_KERNEL_ENTRY
5542:
0e34d226
DB
555 PUSH_AND_CLEAR_REGS save_ret=1
556 ENCODE_FRAME_POINTER 8
76f5df43 557
2ba64741 558 testb $3, CS+8(%rsp)
dde74f2e 559 jz 1f
02bc7768
AL
560
561 /*
7f2590a1
AL
562 * IRQ from user mode.
563 *
f1075053
AL
564 * We need to tell lockdep that IRQs are off. We can't do this until
565 * we fix gsbase, and we should do it before enter_from_user_mode
f3d415ea 566 * (which can take locks). Since TRACE_IRQS_OFF is idempotent,
f1075053
AL
567 * the simplest way to handle it is to just call it twice if
568 * we enter from user mode. There's no reason to optimize this since
569 * TRACE_IRQS_OFF is a no-op if lockdep is off.
570 */
571 TRACE_IRQS_OFF
572
478dc89c 573 CALL_enter_from_user_mode
02bc7768 574
76f5df43 5751:
2ba64741 576 ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
f6f64681
DV
577 /* We entered an interrupt context - irqs are off: */
578 TRACE_IRQS_OFF
579
2ba64741 580 ret
bc7b11c0 581SYM_CODE_END(interrupt_entry)
a50480cb 582_ASM_NOKPROBE(interrupt_entry)
2ba64741 583
f3d415ea
DB
584
585/* Interrupt entry/exit. */
1da177e4 586
f8a8fe61
TG
587/*
588 * The interrupt stubs push (~vector+0x80) onto the stack and
589 * then jump to common_spurious/interrupt.
590 */
cc66936e 591SYM_CODE_START_LOCAL(common_spurious)
f8a8fe61
TG
592 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
593 call interrupt_entry
594 UNWIND_HINT_REGS indirect=1
595 call smp_spurious_interrupt /* rdi points to pt_regs */
596 jmp ret_from_intr
cc66936e 597SYM_CODE_END(common_spurious)
f8a8fe61
TG
598_ASM_NOKPROBE(common_spurious)
599
600/* common_interrupt is a hotpath. Align it */
939b7871 601 .p2align CONFIG_X86_L1_CACHE_SHIFT
cc66936e 602SYM_CODE_START_LOCAL(common_interrupt)
4d732138 603 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
3aa99fc3
DB
604 call interrupt_entry
605 UNWIND_HINT_REGS indirect=1
606 call do_IRQ /* rdi points to pt_regs */
34061f13 607 /* 0(%rsp): old RSP */
7effaa88 608ret_from_intr:
2140a994 609 DISABLE_INTERRUPTS(CLBR_ANY)
2601e64d 610 TRACE_IRQS_OFF
625dbc3b 611
1d3e53e8 612 LEAVE_IRQ_STACK
625dbc3b 613
03335e95 614 testb $3, CS(%rsp)
dde74f2e 615 jz retint_kernel
4d732138 616
02bc7768 617 /* Interrupt came from user space */
30a2441c 618.Lretint_user:
02bc7768
AL
619 mov %rsp,%rdi
620 call prepare_exit_to_usermode
810f80a6 621 TRACE_IRQS_ON
26c4ef9c 622
26ba4e57 623SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
26c4ef9c
AL
624#ifdef CONFIG_DEBUG_ENTRY
625 /* Assert that pt_regs indicates user mode. */
1e4c4f61 626 testb $3, CS(%rsp)
26c4ef9c
AL
627 jnz 1f
628 ud2
6291:
630#endif
502af0d7 631 POP_REGS pop_rdi=0
3e3b9293
AL
632
633 /*
634 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
635 * Save old stack pointer and switch to trampoline stack.
636 */
637 movq %rsp, %rdi
c482feef 638 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
1fb14363 639 UNWIND_HINT_EMPTY
3e3b9293
AL
640
641 /* Copy the IRET frame to the trampoline stack. */
642 pushq 6*8(%rdi) /* SS */
643 pushq 5*8(%rdi) /* RSP */
644 pushq 4*8(%rdi) /* EFLAGS */
645 pushq 3*8(%rdi) /* CS */
646 pushq 2*8(%rdi) /* RIP */
647
648 /* Push user RDI on the trampoline stack. */
649 pushq (%rdi)
650
651 /*
652 * We are on the trampoline stack. All regs except RDI are live.
653 * We can do future final exit work right here.
654 */
afaef01c 655 STACKLEAK_ERASE_NOCLOBBER
3e3b9293 656
6fd166aa 657 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
8a09317b 658
3e3b9293
AL
659 /* Restore RDI. */
660 popq %rdi
661 SWAPGS
26c4ef9c
AL
662 INTERRUPT_RETURN
663
2601e64d 664
627276cb 665/* Returning to kernel space */
6ba71b76 666retint_kernel:
48593975 667#ifdef CONFIG_PREEMPTION
627276cb
DV
668 /* Interrupts are off */
669 /* Check if we need preemption */
6709812f 670 btl $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 671 jnc 1f
b5b447b6 672 cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 673 jnz 1f
627276cb 674 call preempt_schedule_irq
6ba71b76 6751:
627276cb 676#endif
2601e64d
IM
677 /*
678 * The iretq could re-enable interrupts:
679 */
680 TRACE_IRQS_IRETQ
fffbb5dc 681
26ba4e57 682SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
26c4ef9c
AL
683#ifdef CONFIG_DEBUG_ENTRY
684 /* Assert that pt_regs indicates kernel mode. */
1e4c4f61 685 testb $3, CS(%rsp)
26c4ef9c
AL
686 jz 1f
687 ud2
6881:
689#endif
502af0d7 690 POP_REGS
e872045b 691 addq $8, %rsp /* skip regs->orig_ax */
10bcc80e
MD
692 /*
693 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
694 * when returning from IPI handler.
695 */
7209a75d
AL
696 INTERRUPT_RETURN
697
cc66936e 698SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL)
8c1f7558 699 UNWIND_HINT_IRET_REGS
3891a04a
PA
700 /*
701 * Are we returning to a stack segment from the LDT? Note: in
702 * 64-bit mode SS:RSP on the exception stack is always valid.
703 */
34273f41 704#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
705 testb $4, (SS-RIP)(%rsp)
706 jnz native_irq_return_ldt
34273f41 707#endif
3891a04a 708
cc66936e 709SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
b645af2d
AL
710 /*
711 * This may fault. Non-paranoid faults on return to userspace are
712 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
713 * Double-faults due to espfix64 are handled in do_double_fault.
714 * Other faults here are fatal.
715 */
1da177e4 716 iretq
3701d863 717
34273f41 718#ifdef CONFIG_X86_ESPFIX64
7209a75d 719native_irq_return_ldt:
85063fac
AL
720 /*
721 * We are running with user GSBASE. All GPRs contain their user
722 * values. We have a percpu ESPFIX stack that is eight slots
723 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
724 * of the ESPFIX stack.
725 *
726 * We clobber RAX and RDI in this code. We stash RDI on the
727 * normal stack and RAX on the ESPFIX stack.
728 *
729 * The ESPFIX stack layout we set up looks like this:
730 *
731 * --- top of ESPFIX stack ---
732 * SS
733 * RSP
734 * RFLAGS
735 * CS
736 * RIP <-- RSP points here when we're done
737 * RAX <-- espfix_waddr points here
738 * --- bottom of ESPFIX stack ---
739 */
740
741 pushq %rdi /* Stash user RDI */
8a09317b
DH
742 SWAPGS /* to kernel GS */
743 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
744
4d732138 745 movq PER_CPU_VAR(espfix_waddr), %rdi
85063fac
AL
746 movq %rax, (0*8)(%rdi) /* user RAX */
747 movq (1*8)(%rsp), %rax /* user RIP */
4d732138 748 movq %rax, (1*8)(%rdi)
85063fac 749 movq (2*8)(%rsp), %rax /* user CS */
4d732138 750 movq %rax, (2*8)(%rdi)
85063fac 751 movq (3*8)(%rsp), %rax /* user RFLAGS */
4d732138 752 movq %rax, (3*8)(%rdi)
85063fac 753 movq (5*8)(%rsp), %rax /* user SS */
4d732138 754 movq %rax, (5*8)(%rdi)
85063fac 755 movq (4*8)(%rsp), %rax /* user RSP */
4d732138 756 movq %rax, (4*8)(%rdi)
85063fac
AL
757 /* Now RAX == RSP. */
758
759 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
85063fac
AL
760
761 /*
762 * espfix_stack[31:16] == 0. The page tables are set up such that
763 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
764 * espfix_waddr for any X. That is, there are 65536 RO aliases of
765 * the same page. Set up RSP so that RSP[31:16] contains the
766 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
767 * still points to an RO alias of the ESPFIX stack.
768 */
4d732138 769 orq PER_CPU_VAR(espfix_stack), %rax
8a09317b 770
6fd166aa 771 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
8a09317b
DH
772 SWAPGS /* to user GS */
773 popq %rdi /* Restore user RDI */
774
4d732138 775 movq %rax, %rsp
8c1f7558 776 UNWIND_HINT_IRET_REGS offset=8
85063fac
AL
777
778 /*
779 * At this point, we cannot write to the stack any more, but we can
780 * still read.
781 */
782 popq %rax /* Restore user RAX */
783
784 /*
785 * RSP now points to an ordinary IRET frame, except that the page
786 * is read-only and RSP[31:16] are preloaded with the userspace
787 * values. We can now IRET back to userspace.
788 */
4d732138 789 jmp native_irq_return_iret
34273f41 790#endif
cc66936e 791SYM_CODE_END(common_interrupt)
a50480cb 792_ASM_NOKPROBE(common_interrupt)
3891a04a 793
1da177e4
LT
794/*
795 * APIC interrupts.
0bd7b798 796 */
cf910e83 797.macro apicinterrupt3 num sym do_sym
bc7b11c0 798SYM_CODE_START(\sym)
8c1f7558 799 UNWIND_HINT_IRET_REGS
4d732138 800 pushq $~(\num)
39e95433 801.Lcommon_\sym:
3aa99fc3
DB
802 call interrupt_entry
803 UNWIND_HINT_REGS indirect=1
804 call \do_sym /* rdi points to pt_regs */
4d732138 805 jmp ret_from_intr
bc7b11c0 806SYM_CODE_END(\sym)
a50480cb 807_ASM_NOKPROBE(\sym)
322648d1 808.endm
1da177e4 809
469f0023 810/* Make sure APIC interrupt handlers end up in the irqentry section: */
229a7186
MH
811#define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
812#define POP_SECTION_IRQENTRY .popsection
469f0023 813
cf910e83 814.macro apicinterrupt num sym do_sym
469f0023 815PUSH_SECTION_IRQENTRY
cf910e83 816apicinterrupt3 \num \sym \do_sym
469f0023 817POP_SECTION_IRQENTRY
cf910e83
SA
818.endm
819
322648d1 820#ifdef CONFIG_SMP
4d732138
IM
821apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
822apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 823#endif
1da177e4 824
03b48632 825#ifdef CONFIG_X86_UV
4d732138 826apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 827#endif
4d732138
IM
828
829apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
830apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 831
d78f2664 832#ifdef CONFIG_HAVE_KVM
4d732138
IM
833apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
834apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
210f84b0 835apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
d78f2664
YZ
836#endif
837
33e5ff63 838#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 839apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
840#endif
841
24fd78a8 842#ifdef CONFIG_X86_MCE_AMD
4d732138 843apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
844#endif
845
33e5ff63 846#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 847apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 848#endif
1812924b 849
322648d1 850#ifdef CONFIG_SMP
4d732138
IM
851apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
852apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
853apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 854#endif
1da177e4 855
4d732138
IM
856apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
857apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 858
e360adbe 859#ifdef CONFIG_IRQ_WORK
4d732138 860apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
861#endif
862
1da177e4
LT
863/*
864 * Exception entry points.
0bd7b798 865 */
8f34c5b5 866#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + (x) * 8)
577ed45e 867
a0d14b89 868.macro idtentry_part do_sym, has_error_code:req, read_cr2:req, paranoid:req, shift_ist=-1, ist_offset=0
2fd37912
PZ
869
870 .if \paranoid
871 call paranoid_entry
872 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
873 .else
874 call error_entry
875 .endif
876 UNWIND_HINT_REGS
877
a0d14b89 878 .if \read_cr2
6879298b
TG
879 /*
880 * Store CR2 early so subsequent faults cannot clobber it. Use R12 as
881 * intermediate storage as RDX can be clobbered in enter_from_user_mode().
882 * GET_CR2_INTO can clobber RAX.
883 */
884 GET_CR2_INTO(%r12);
a0d14b89
PZ
885 .endif
886
2fd37912
PZ
887 .if \shift_ist != -1
888 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
889 .else
890 TRACE_IRQS_OFF
891 .endif
a0d14b89
PZ
892
893 .if \paranoid == 0
894 testb $3, CS(%rsp)
895 jz .Lfrom_kernel_no_context_tracking_\@
896 CALL_enter_from_user_mode
897.Lfrom_kernel_no_context_tracking_\@:
2fd37912
PZ
898 .endif
899
900 movq %rsp, %rdi /* pt_regs pointer */
901
902 .if \has_error_code
903 movq ORIG_RAX(%rsp), %rsi /* get error code */
904 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
905 .else
906 xorl %esi, %esi /* no error code */
907 .endif
908
909 .if \shift_ist != -1
910 subq $\ist_offset, CPU_TSS_IST(\shift_ist)
911 .endif
912
6879298b
TG
913 .if \read_cr2
914 movq %r12, %rdx /* Move CR2 into 3rd argument */
915 .endif
916
2fd37912
PZ
917 call \do_sym
918
919 .if \shift_ist != -1
920 addq $\ist_offset, CPU_TSS_IST(\shift_ist)
921 .endif
922
923 .if \paranoid
924 /* this procedure expect "no swapgs" flag in ebx */
925 jmp paranoid_exit
926 .else
927 jmp error_exit
928 .endif
929
930.endm
931
bd7b1f7c
AL
932/**
933 * idtentry - Generate an IDT entry stub
934 * @sym: Name of the generated entry point
4234653e
PZ
935 * @do_sym: C function to be called
936 * @has_error_code: True if this IDT vector has an error code on the stack
937 * @paranoid: non-zero means that this vector may be invoked from
bd7b1f7c
AL
938 * kernel mode with user GSBASE and/or user CR3.
939 * 2 is special -- see below.
940 * @shift_ist: Set to an IST index if entries from kernel mode should
4234653e 941 * decrement the IST stack so that nested entries get a
bd7b1f7c 942 * fresh stack. (This is for #DB, which has a nasty habit
4234653e
PZ
943 * of recursing.)
944 * @create_gap: create a 6-word stack gap when coming from kernel mode.
a0d14b89 945 * @read_cr2: load CR2 into the 3rd argument; done before calling any C code
bd7b1f7c
AL
946 *
947 * idtentry generates an IDT stub that sets up a usable kernel context,
948 * creates struct pt_regs, and calls @do_sym. The stub has the following
949 * special behaviors:
950 *
951 * On an entry from user mode, the stub switches from the trampoline or
952 * IST stack to the normal thread stack. On an exit to user mode, the
953 * normal exit-to-usermode path is invoked.
954 *
955 * On an exit to kernel mode, if @paranoid == 0, we check for preemption,
956 * whereas we omit the preemption check if @paranoid != 0. This is purely
957 * because the implementation is simpler this way. The kernel only needs
958 * to check for asynchronous kernel preemption when IRQ handlers return.
959 *
960 * If @paranoid == 0, then the stub will handle IRET faults by pretending
961 * that the fault came from user mode. It will handle gs_change faults by
962 * pretending that the fault happened with kernel GSBASE. Since this handling
963 * is omitted for @paranoid != 0, the #GP, #SS, and #NP stubs must have
964 * @paranoid == 0. This special handling will do the wrong thing for
965 * espfix-induced #DF on IRET, so #DF must not use @paranoid == 0.
966 *
967 * @paranoid == 2 is special: the stub will never switch stacks. This is for
968 * #DF: if the thread stack is somehow unusable, we'll still get a useful OOPS.
969 */
a0d14b89 970.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1 ist_offset=0 create_gap=0 read_cr2=0
bc7b11c0 971SYM_CODE_START(\sym)
98990a33 972 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
8c1f7558 973
577ed45e 974 /* Sanity check */
4234653e 975 .if \shift_ist != -1 && \paranoid != 1
577ed45e
AL
976 .error "using shift_ist requires paranoid=1"
977 .endif
978
4234653e
PZ
979 .if \create_gap && \paranoid
980 .error "using create_gap requires paranoid=0"
981 .endif
982
ee4eb87b 983 ASM_CLAC
cb5dd2c5 984
82c62fa0 985 .if \has_error_code == 0
4d732138 986 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
987 .endif
988
071ccc96 989 .if \paranoid == 1
9e809d15 990 testb $3, CS-ORIG_RAX(%rsp) /* If coming from userspace, switch stacks */
7f2590a1 991 jnz .Lfrom_usermode_switch_stack_\@
48e08d0f 992 .endif
7f2590a1 993
2700fefd
JP
994 .if \create_gap == 1
995 /*
996 * If coming from kernel space, create a 6-word gap to allow the
997 * int3 handler to emulate a call instruction.
998 */
999 testb $3, CS-ORIG_RAX(%rsp)
1000 jnz .Lfrom_usermode_no_gap_\@
1001 .rept 6
1002 pushq 5*8(%rsp)
1003 .endr
1004 UNWIND_HINT_IRET_REGS offset=8
1005.Lfrom_usermode_no_gap_\@:
1006 .endif
1007
a0d14b89 1008 idtentry_part \do_sym, \has_error_code, \read_cr2, \paranoid, \shift_ist, \ist_offset
cb5dd2c5 1009
071ccc96 1010 .if \paranoid == 1
48e08d0f 1011 /*
7f2590a1 1012 * Entry from userspace. Switch stacks and treat it
48e08d0f
AL
1013 * as a normal entry. This means that paranoid handlers
1014 * run in real process context if user_mode(regs).
1015 */
7f2590a1 1016.Lfrom_usermode_switch_stack_\@:
a0d14b89 1017 idtentry_part \do_sym, \has_error_code, \read_cr2, paranoid=0
48e08d0f
AL
1018 .endif
1019
a50480cb 1020_ASM_NOKPROBE(\sym)
bc7b11c0 1021SYM_CODE_END(\sym)
322648d1 1022.endm
b8b1d08b 1023
4d732138
IM
1024idtentry divide_error do_divide_error has_error_code=0
1025idtentry overflow do_overflow has_error_code=0
1026idtentry bounds do_bounds has_error_code=0
1027idtentry invalid_op do_invalid_op has_error_code=0
1028idtentry device_not_available do_device_not_available has_error_code=0
a0d14b89 1029idtentry double_fault do_double_fault has_error_code=1 paranoid=2 read_cr2=1
4d732138
IM
1030idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
1031idtentry invalid_TSS do_invalid_TSS has_error_code=1
1032idtentry segment_not_present do_segment_not_present has_error_code=1
1033idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
1034idtentry coprocessor_error do_coprocessor_error has_error_code=0
1035idtentry alignment_check do_alignment_check has_error_code=1
1036idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
1037
1038
1039 /*
1040 * Reload gs selector with exception handling
1041 * edi: new selector
1042 */
6dcc5627 1043SYM_FUNC_START(native_load_gs_index)
8c1f7558 1044 FRAME_BEGIN
131484c8 1045 pushfq
b8aa287f 1046 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
ca37e57b 1047 TRACE_IRQS_OFF
9f1e87ea 1048 SWAPGS
42c748bb 1049.Lgs_change:
4d732138 1050 movl %edi, %gs
96e5d28a 10512: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 1052 SWAPGS
ca37e57b 1053 TRACE_IRQS_FLAGS (%rsp)
131484c8 1054 popfq
8c1f7558 1055 FRAME_END
9f1e87ea 1056 ret
6dcc5627 1057SYM_FUNC_END(native_load_gs_index)
784d5699 1058EXPORT_SYMBOL(native_load_gs_index)
0bd7b798 1059
98ededb6 1060 _ASM_EXTABLE(.Lgs_change, .Lbad_gs)
4d732138 1061 .section .fixup, "ax"
1da177e4 1062 /* running with kernelgs */
ef77e688 1063SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs)
4d732138 1064 SWAPGS /* switch back to user gs */
b038c842
AL
1065.macro ZAP_GS
1066 /* This can't be a string because the preprocessor needs to see it. */
1067 movl $__USER_DS, %eax
1068 movl %eax, %gs
1069.endm
1070 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
1071 xorl %eax, %eax
1072 movl %eax, %gs
1073 jmp 2b
ef77e688 1074SYM_CODE_END(.Lbad_gs)
9f1e87ea 1075 .previous
0bd7b798 1076
2699500b 1077/* Call softirq on interrupt stack. Interrupts are off. */
6dcc5627 1078SYM_FUNC_START(do_softirq_own_stack)
4d732138
IM
1079 pushq %rbp
1080 mov %rsp, %rbp
8c1f7558 1081 ENTER_IRQ_STACK regs=0 old_rsp=%r11
4d732138 1082 call __do_softirq
8c1f7558 1083 LEAVE_IRQ_STACK regs=0
2699500b 1084 leaveq
ed6b676c 1085 ret
6dcc5627 1086SYM_FUNC_END(do_softirq_own_stack)
75154f40 1087
28c11b0f 1088#ifdef CONFIG_XEN_PV
5878d5d6 1089idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
1090
1091/*
9f1e87ea
CG
1092 * A note on the "critical region" in our callback handler.
1093 * We want to avoid stacking callback handlers due to events occurring
1094 * during handling of the last event. To do this, we keep events disabled
1095 * until we've done all processing. HOWEVER, we must enable events before
1096 * popping the stack frame (can't be done atomically) and so it would still
1097 * be possible to get enough handler activations to overflow the stack.
1098 * Although unlikely, bugs of that kind are hard to track down, so we'd
1099 * like to avoid the possibility.
1100 * So, on entry to the handler we detect whether we interrupted an
1101 * existing activation in its critical region -- if so, we pop the current
1102 * activation and restart the handler using the previous one.
1103 */
ef1e0315
JS
1104/* do_hypervisor_callback(struct *pt_regs) */
1105SYM_CODE_START_LOCAL(xen_do_hypervisor_callback)
4d732138 1106
9f1e87ea
CG
1107/*
1108 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1109 * see the correct pointer to the pt_regs
1110 */
8c1f7558 1111 UNWIND_HINT_FUNC
4d732138 1112 movq %rdi, %rsp /* we don't return, adjust the stack frame */
8c1f7558 1113 UNWIND_HINT_REGS
1d3e53e8
AL
1114
1115 ENTER_IRQ_STACK old_rsp=%r10
4d732138 1116 call xen_evtchn_do_upcall
1d3e53e8
AL
1117 LEAVE_IRQ_STACK
1118
48593975 1119#ifndef CONFIG_PREEMPTION
4d732138 1120 call xen_maybe_preempt_hcall
fdfd811d 1121#endif
4d732138 1122 jmp error_exit
ef1e0315 1123SYM_CODE_END(xen_do_hypervisor_callback)
3d75e1b8
JF
1124
1125/*
9f1e87ea
CG
1126 * Hypervisor uses this for application faults while it executes.
1127 * We get here for two reasons:
1128 * 1. Fault while reloading DS, ES, FS or GS
1129 * 2. Fault while executing IRET
1130 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1131 * registers that could be reloaded and zeroed the others.
1132 * Category 2 we fix up by killing the current process. We cannot use the
1133 * normal Linux return path in this case because if we use the IRET hypercall
1134 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1135 * We distinguish between categories by comparing each saved segment register
1136 * with its current contents: any discrepancy means we in category 1.
1137 */
bc7b11c0 1138SYM_CODE_START(xen_failsafe_callback)
8c1f7558 1139 UNWIND_HINT_EMPTY
4d732138
IM
1140 movl %ds, %ecx
1141 cmpw %cx, 0x10(%rsp)
1142 jne 1f
1143 movl %es, %ecx
1144 cmpw %cx, 0x18(%rsp)
1145 jne 1f
1146 movl %fs, %ecx
1147 cmpw %cx, 0x20(%rsp)
1148 jne 1f
1149 movl %gs, %ecx
1150 cmpw %cx, 0x28(%rsp)
1151 jne 1f
3d75e1b8 1152 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
1153 movq (%rsp), %rcx
1154 movq 8(%rsp), %r11
1155 addq $0x30, %rsp
1156 pushq $0 /* RIP */
8c1f7558 1157 UNWIND_HINT_IRET_REGS offset=8
4d732138 1158 jmp general_protection
3d75e1b8 11591: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
1160 movq (%rsp), %rcx
1161 movq 8(%rsp), %r11
1162 addq $0x30, %rsp
8c1f7558 1163 UNWIND_HINT_IRET_REGS
4d732138 1164 pushq $-1 /* orig_ax = -1 => not a system call */
3f01daec 1165 PUSH_AND_CLEAR_REGS
946c1911 1166 ENCODE_FRAME_POINTER
4d732138 1167 jmp error_exit
bc7b11c0 1168SYM_CODE_END(xen_failsafe_callback)
28c11b0f 1169#endif /* CONFIG_XEN_PV */
3d75e1b8 1170
28c11b0f 1171#ifdef CONFIG_XEN_PVHVM
cf910e83 1172apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07 1173 xen_hvm_callback_vector xen_evtchn_do_upcall
28c11b0f 1174#endif
38e20b07 1175
ddeb8f21 1176
bc2b0331 1177#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 1178apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331 1179 hyperv_callback_vector hyperv_vector_handler
93286261
VK
1180
1181apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
1182 hyperv_reenlightenment_vector hyperv_reenlightenment_intr
248e742a
MK
1183
1184apicinterrupt3 HYPERV_STIMER0_VECTOR \
1185 hv_stimer0_callback_vector hv_stimer0_vector_handler
bc2b0331
S
1186#endif /* CONFIG_HYPERV */
1187
498ad393
ZY
1188#if IS_ENABLED(CONFIG_ACRN_GUEST)
1189apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1190 acrn_hv_callback_vector acrn_hv_vector_handler
1191#endif
1192
2a594d4c 1193idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=IST_INDEX_DB ist_offset=DB_STACK_OFFSET
2700fefd 1194idtentry int3 do_int3 has_error_code=0 create_gap=1
4d732138
IM
1195idtentry stack_segment do_stack_segment has_error_code=1
1196
28c11b0f 1197#ifdef CONFIG_XEN_PV
43e41110 1198idtentry xennmi do_nmi has_error_code=0
5878d5d6 1199idtentry xendebug do_debug has_error_code=0
6cac5a92 1200#endif
4d732138
IM
1201
1202idtentry general_protection do_general_protection has_error_code=1
a0d14b89 1203idtentry page_fault do_page_fault has_error_code=1 read_cr2=1
4d732138 1204
631bc487 1205#ifdef CONFIG_KVM_GUEST
a0d14b89 1206idtentry async_page_fault do_async_page_fault has_error_code=1 read_cr2=1
631bc487 1207#endif
4d732138 1208
ddeb8f21 1209#ifdef CONFIG_X86_MCE
6f41c34d 1210idtentry machine_check do_mce has_error_code=0 paranoid=1
ddeb8f21
AH
1211#endif
1212
ebfc453e 1213/*
9e809d15 1214 * Save all registers in pt_regs, and switch gs if needed.
ebfc453e
DV
1215 * Use slow, but surefire "are we in kernel?" check.
1216 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1217 */
ef1e0315 1218SYM_CODE_START_LOCAL(paranoid_entry)
8c1f7558 1219 UNWIND_HINT_FUNC
1eeb207f 1220 cld
9e809d15
DB
1221 PUSH_AND_CLEAR_REGS save_ret=1
1222 ENCODE_FRAME_POINTER 8
4d732138
IM
1223 movl $1, %ebx
1224 movl $MSR_GS_BASE, %ecx
1eeb207f 1225 rdmsr
4d732138
IM
1226 testl %edx, %edx
1227 js 1f /* negative -> in kernel */
1eeb207f 1228 SWAPGS
4d732138 1229 xorl %ebx, %ebx
8a09317b
DH
1230
12311:
16561f27
DH
1232 /*
1233 * Always stash CR3 in %r14. This value will be restored,
ae852495
AL
1234 * verbatim, at exit. Needed if paranoid_entry interrupted
1235 * another entry that already switched to the user CR3 value
1236 * but has not yet returned to userspace.
16561f27
DH
1237 *
1238 * This is also why CS (stashed in the "iret frame" by the
1239 * hardware at entry) can not be used: this may be a return
ae852495 1240 * to kernel code, but with a user CR3 value.
16561f27 1241 */
8a09317b
DH
1242 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1243
18ec54fd
JP
1244 /*
1245 * The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an
1246 * unconditional CR3 write, even in the PTI case. So do an lfence
1247 * to prevent GS speculation, regardless of whether PTI is enabled.
1248 */
1249 FENCE_SWAPGS_KERNEL_ENTRY
1250
8a09317b 1251 ret
ef1e0315 1252SYM_CODE_END(paranoid_entry)
ddeb8f21 1253
ebfc453e
DV
1254/*
1255 * "Paranoid" exit path from exception stack. This is invoked
1256 * only on return from non-NMI IST interrupts that came
1257 * from kernel space.
1258 *
1259 * We may be returning to very strange contexts (e.g. very early
1260 * in syscall entry), so checking for preemption here would
1261 * be complicated. Fortunately, we there's no good reason
1262 * to try to handle preemption here.
4d732138
IM
1263 *
1264 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 1265 */
ef1e0315 1266SYM_CODE_START_LOCAL(paranoid_exit)
8c1f7558 1267 UNWIND_HINT_REGS
2140a994 1268 DISABLE_INTERRUPTS(CLBR_ANY)
5963e317 1269 TRACE_IRQS_OFF_DEBUG
4d732138 1270 testl %ebx, %ebx /* swapgs needed? */
e5317832 1271 jnz .Lparanoid_exit_no_swapgs
f2db9382 1272 TRACE_IRQS_IRETQ
16561f27 1273 /* Always restore stashed CR3 value (see paranoid_entry) */
21e94459 1274 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
ddeb8f21 1275 SWAPGS_UNSAFE_STACK
45c08383 1276 jmp restore_regs_and_return_to_kernel
e5317832 1277.Lparanoid_exit_no_swapgs:
f2db9382 1278 TRACE_IRQS_IRETQ_DEBUG
16561f27 1279 /* Always restore stashed CR3 value (see paranoid_entry) */
e4865757 1280 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
e5317832 1281 jmp restore_regs_and_return_to_kernel
ef1e0315 1282SYM_CODE_END(paranoid_exit)
ddeb8f21
AH
1283
1284/*
9e809d15 1285 * Save all registers in pt_regs, and switch GS if needed.
ddeb8f21 1286 */
ef1e0315 1287SYM_CODE_START_LOCAL(error_entry)
9e809d15 1288 UNWIND_HINT_FUNC
ddeb8f21 1289 cld
9e809d15
DB
1290 PUSH_AND_CLEAR_REGS save_ret=1
1291 ENCODE_FRAME_POINTER 8
03335e95 1292 testb $3, CS+8(%rsp)
cb6f64ed 1293 jz .Lerror_kernelspace
539f5113 1294
cb6f64ed
AL
1295 /*
1296 * We entered from user mode or we're pretending to have entered
1297 * from user mode due to an IRET fault.
1298 */
ddeb8f21 1299 SWAPGS
18ec54fd 1300 FENCE_SWAPGS_USER_ENTRY
8a09317b
DH
1301 /* We have user CR3. Change to kernel CR3. */
1302 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
539f5113 1303
cb6f64ed 1304.Lerror_entry_from_usermode_after_swapgs:
7f2590a1
AL
1305 /* Put us onto the real thread stack. */
1306 popq %r12 /* save return addr in %12 */
1307 movq %rsp, %rdi /* arg0 = pt_regs pointer */
1308 call sync_regs
1309 movq %rax, %rsp /* switch stack */
1310 ENCODE_FRAME_POINTER
1311 pushq %r12
f1075053 1312 ret
02bc7768 1313
18ec54fd
JP
1314.Lerror_entry_done_lfence:
1315 FENCE_SWAPGS_KERNEL_ENTRY
cb6f64ed 1316.Lerror_entry_done:
ddeb8f21 1317 ret
ddeb8f21 1318
ebfc453e
DV
1319 /*
1320 * There are two places in the kernel that can potentially fault with
1321 * usergs. Handle them here. B stepping K8s sometimes report a
1322 * truncated RIP for IRET exceptions returning to compat mode. Check
1323 * for these here too.
1324 */
cb6f64ed 1325.Lerror_kernelspace:
4d732138
IM
1326 leaq native_irq_return_iret(%rip), %rcx
1327 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1328 je .Lerror_bad_iret
4d732138
IM
1329 movl %ecx, %eax /* zero extend */
1330 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1331 je .Lbstep_iret
42c748bb 1332 cmpq $.Lgs_change, RIP+8(%rsp)
18ec54fd 1333 jne .Lerror_entry_done_lfence
539f5113
AL
1334
1335 /*
42c748bb 1336 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1337 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1338 * .Lgs_change's error handler with kernel gsbase.
539f5113 1339 */
2fa5f04f 1340 SWAPGS
18ec54fd 1341 FENCE_SWAPGS_USER_ENTRY
8a09317b 1342 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
2fa5f04f 1343 jmp .Lerror_entry_done
ae24ffe5 1344
cb6f64ed 1345.Lbstep_iret:
ae24ffe5 1346 /* Fix truncated RIP */
4d732138 1347 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1348 /* fall through */
1349
cb6f64ed 1350.Lerror_bad_iret:
539f5113 1351 /*
8a09317b
DH
1352 * We came from an IRET to user mode, so we have user
1353 * gsbase and CR3. Switch to kernel gsbase and CR3:
539f5113 1354 */
b645af2d 1355 SWAPGS
18ec54fd 1356 FENCE_SWAPGS_USER_ENTRY
8a09317b 1357 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
539f5113
AL
1358
1359 /*
1360 * Pretend that the exception came from user mode: set up pt_regs
b3681dd5 1361 * as if we faulted immediately after IRET.
539f5113 1362 */
4d732138
IM
1363 mov %rsp, %rdi
1364 call fixup_bad_iret
1365 mov %rax, %rsp
cb6f64ed 1366 jmp .Lerror_entry_from_usermode_after_swapgs
ef1e0315 1367SYM_CODE_END(error_entry)
ddeb8f21 1368
ef1e0315 1369SYM_CODE_START_LOCAL(error_exit)
8c1f7558 1370 UNWIND_HINT_REGS
2140a994 1371 DISABLE_INTERRUPTS(CLBR_ANY)
ddeb8f21 1372 TRACE_IRQS_OFF
b3681dd5
AL
1373 testb $3, CS(%rsp)
1374 jz retint_kernel
30a2441c 1375 jmp .Lretint_user
ef1e0315 1376SYM_CODE_END(error_exit)
ddeb8f21 1377
929bacec
AL
1378/*
1379 * Runs on exception stack. Xen PV does not go through this path at all,
1380 * so we can use real assembly here.
8a09317b
DH
1381 *
1382 * Registers:
1383 * %r14: Used to save/restore the CR3 of the interrupted context
1384 * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
929bacec 1385 */
bc7b11c0 1386SYM_CODE_START(nmi)
8c1f7558 1387 UNWIND_HINT_IRET_REGS
929bacec 1388
3f3c8b8c
SR
1389 /*
1390 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1391 * the iretq it performs will take us out of NMI context.
1392 * This means that we can have nested NMIs where the next
1393 * NMI is using the top of the stack of the previous NMI. We
1394 * can't let it execute because the nested NMI will corrupt the
1395 * stack of the previous NMI. NMI handlers are not re-entrant
1396 * anyway.
1397 *
1398 * To handle this case we do the following:
1399 * Check the a special location on the stack that contains
1400 * a variable that is set when NMIs are executing.
1401 * The interrupted task's stack is also checked to see if it
1402 * is an NMI stack.
1403 * If the variable is not set and the stack is not the NMI
1404 * stack then:
1405 * o Set the special variable on the stack
0b22930e
AL
1406 * o Copy the interrupt frame into an "outermost" location on the
1407 * stack
1408 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1409 * o Continue processing the NMI
1410 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1411 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1412 * o return back to the first NMI
1413 *
1414 * Now on exit of the first NMI, we first clear the stack variable
1415 * The NMI stack will tell any nested NMIs at that point that it is
1416 * nested. Then we pop the stack normally with iret, and if there was
1417 * a nested NMI that updated the copy interrupt stack frame, a
1418 * jump will be made to the repeat_nmi code that will handle the second
1419 * NMI.
9b6e6a83
AL
1420 *
1421 * However, espfix prevents us from directly returning to userspace
1422 * with a single IRET instruction. Similarly, IRET to user mode
1423 * can fault. We therefore handle NMIs from user space like
1424 * other IST entries.
3f3c8b8c
SR
1425 */
1426
e93c1730
AL
1427 ASM_CLAC
1428
146b2b09 1429 /* Use %rdx as our temp variable throughout */
4d732138 1430 pushq %rdx
3f3c8b8c 1431
9b6e6a83
AL
1432 testb $3, CS-RIP+8(%rsp)
1433 jz .Lnmi_from_kernel
1434
1435 /*
1436 * NMI from user mode. We need to run on the thread stack, but we
1437 * can't go through the normal entry paths: NMIs are masked, and
1438 * we don't want to enable interrupts, because then we'll end
1439 * up in an awkward situation in which IRQs are on but NMIs
1440 * are off.
83c133cf
AL
1441 *
1442 * We also must not push anything to the stack before switching
1443 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1444 */
1445
929bacec 1446 swapgs
9b6e6a83 1447 cld
18ec54fd 1448 FENCE_SWAPGS_USER_ENTRY
8a09317b 1449 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
9b6e6a83
AL
1450 movq %rsp, %rdx
1451 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
8c1f7558 1452 UNWIND_HINT_IRET_REGS base=%rdx offset=8
9b6e6a83
AL
1453 pushq 5*8(%rdx) /* pt_regs->ss */
1454 pushq 4*8(%rdx) /* pt_regs->rsp */
1455 pushq 3*8(%rdx) /* pt_regs->flags */
1456 pushq 2*8(%rdx) /* pt_regs->cs */
1457 pushq 1*8(%rdx) /* pt_regs->rip */
8c1f7558 1458 UNWIND_HINT_IRET_REGS
9b6e6a83 1459 pushq $-1 /* pt_regs->orig_ax */
30907fd1 1460 PUSH_AND_CLEAR_REGS rdx=(%rdx)
946c1911 1461 ENCODE_FRAME_POINTER
9b6e6a83
AL
1462
1463 /*
1464 * At this point we no longer need to worry about stack damage
1465 * due to nesting -- we're on the normal thread stack and we're
1466 * done with the NMI stack.
1467 */
1468
1469 movq %rsp, %rdi
1470 movq $-1, %rsi
1471 call do_nmi
1472
45d5a168 1473 /*
9b6e6a83 1474 * Return back to user mode. We must *not* do the normal exit
946c1911 1475 * work, because we don't want to enable interrupts.
45d5a168 1476 */
8a055d7f 1477 jmp swapgs_restore_regs_and_return_to_usermode
45d5a168 1478
9b6e6a83 1479.Lnmi_from_kernel:
3f3c8b8c 1480 /*
0b22930e
AL
1481 * Here's what our stack frame will look like:
1482 * +---------------------------------------------------------+
1483 * | original SS |
1484 * | original Return RSP |
1485 * | original RFLAGS |
1486 * | original CS |
1487 * | original RIP |
1488 * +---------------------------------------------------------+
1489 * | temp storage for rdx |
1490 * +---------------------------------------------------------+
1491 * | "NMI executing" variable |
1492 * +---------------------------------------------------------+
1493 * | iret SS } Copied from "outermost" frame |
1494 * | iret Return RSP } on each loop iteration; overwritten |
1495 * | iret RFLAGS } by a nested NMI to force another |
1496 * | iret CS } iteration if needed. |
1497 * | iret RIP } |
1498 * +---------------------------------------------------------+
1499 * | outermost SS } initialized in first_nmi; |
1500 * | outermost Return RSP } will not be changed before |
1501 * | outermost RFLAGS } NMI processing is done. |
1502 * | outermost CS } Copied to "iret" frame on each |
1503 * | outermost RIP } iteration. |
1504 * +---------------------------------------------------------+
1505 * | pt_regs |
1506 * +---------------------------------------------------------+
1507 *
1508 * The "original" frame is used by hardware. Before re-enabling
1509 * NMIs, we need to be done with it, and we need to leave enough
1510 * space for the asm code here.
1511 *
1512 * We return by executing IRET while RSP points to the "iret" frame.
1513 * That will either return for real or it will loop back into NMI
1514 * processing.
1515 *
1516 * The "outermost" frame is copied to the "iret" frame on each
1517 * iteration of the loop, so each iteration starts with the "iret"
1518 * frame pointing to the final return target.
1519 */
1520
45d5a168 1521 /*
0b22930e
AL
1522 * Determine whether we're a nested NMI.
1523 *
a27507ca
AL
1524 * If we interrupted kernel code between repeat_nmi and
1525 * end_repeat_nmi, then we are a nested NMI. We must not
1526 * modify the "iret" frame because it's being written by
1527 * the outer NMI. That's okay; the outer NMI handler is
1528 * about to about to call do_nmi anyway, so we can just
1529 * resume the outer NMI.
45d5a168 1530 */
a27507ca
AL
1531
1532 movq $repeat_nmi, %rdx
1533 cmpq 8(%rsp), %rdx
1534 ja 1f
1535 movq $end_repeat_nmi, %rdx
1536 cmpq 8(%rsp), %rdx
1537 ja nested_nmi_out
15381:
45d5a168 1539
3f3c8b8c 1540 /*
a27507ca 1541 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1542 * This will not detect if we interrupted an outer NMI just
1543 * before IRET.
3f3c8b8c 1544 */
4d732138
IM
1545 cmpl $1, -8(%rsp)
1546 je nested_nmi
3f3c8b8c
SR
1547
1548 /*
0b22930e
AL
1549 * Now test if the previous stack was an NMI stack. This covers
1550 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1551 * "NMI executing" but before IRET. We need to be careful, though:
1552 * there is one case in which RSP could point to the NMI stack
1553 * despite there being no NMI active: naughty userspace controls
1554 * RSP at the very beginning of the SYSCALL targets. We can
1555 * pull a fast one on naughty userspace, though: we program
1556 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1557 * if it controls the kernel's RSP. We set DF before we clear
1558 * "NMI executing".
3f3c8b8c 1559 */
0784b364
DV
1560 lea 6*8(%rsp), %rdx
1561 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1562 cmpq %rdx, 4*8(%rsp)
1563 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1564 ja first_nmi
4d732138 1565
0784b364
DV
1566 subq $EXCEPTION_STKSZ, %rdx
1567 cmpq %rdx, 4*8(%rsp)
1568 /* If it is below the NMI stack, it is a normal NMI */
1569 jb first_nmi
810bc075
AL
1570
1571 /* Ah, it is within the NMI stack. */
1572
1573 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1574 jz first_nmi /* RSP was user controlled. */
1575
1576 /* This is a nested NMI. */
0784b364 1577
3f3c8b8c
SR
1578nested_nmi:
1579 /*
0b22930e
AL
1580 * Modify the "iret" frame to point to repeat_nmi, forcing another
1581 * iteration of NMI handling.
3f3c8b8c 1582 */
23a781e9 1583 subq $8, %rsp
4d732138
IM
1584 leaq -10*8(%rsp), %rdx
1585 pushq $__KERNEL_DS
1586 pushq %rdx
131484c8 1587 pushfq
4d732138
IM
1588 pushq $__KERNEL_CS
1589 pushq $repeat_nmi
3f3c8b8c
SR
1590
1591 /* Put stack back */
4d732138 1592 addq $(6*8), %rsp
3f3c8b8c
SR
1593
1594nested_nmi_out:
4d732138 1595 popq %rdx
3f3c8b8c 1596
0b22930e 1597 /* We are returning to kernel mode, so this cannot result in a fault. */
929bacec 1598 iretq
3f3c8b8c
SR
1599
1600first_nmi:
0b22930e 1601 /* Restore rdx. */
4d732138 1602 movq (%rsp), %rdx
62610913 1603
36f1a77b
AL
1604 /* Make room for "NMI executing". */
1605 pushq $0
3f3c8b8c 1606
0b22930e 1607 /* Leave room for the "iret" frame */
4d732138 1608 subq $(5*8), %rsp
28696f43 1609
0b22930e 1610 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1611 .rept 5
4d732138 1612 pushq 11*8(%rsp)
3f3c8b8c 1613 .endr
8c1f7558 1614 UNWIND_HINT_IRET_REGS
62610913 1615
79fb4ad6
SR
1616 /* Everything up to here is safe from nested NMIs */
1617
a97439aa
AL
1618#ifdef CONFIG_DEBUG_ENTRY
1619 /*
1620 * For ease of testing, unmask NMIs right away. Disabled by
1621 * default because IRET is very expensive.
1622 */
1623 pushq $0 /* SS */
1624 pushq %rsp /* RSP (minus 8 because of the previous push) */
1625 addq $8, (%rsp) /* Fix up RSP */
1626 pushfq /* RFLAGS */
1627 pushq $__KERNEL_CS /* CS */
1628 pushq $1f /* RIP */
929bacec 1629 iretq /* continues at repeat_nmi below */
8c1f7558 1630 UNWIND_HINT_IRET_REGS
a97439aa
AL
16311:
1632#endif
1633
0b22930e 1634repeat_nmi:
62610913
JB
1635 /*
1636 * If there was a nested NMI, the first NMI's iret will return
1637 * here. But NMIs are still enabled and we can take another
1638 * nested NMI. The nested NMI checks the interrupted RIP to see
1639 * if it is between repeat_nmi and end_repeat_nmi, and if so
1640 * it will just return, as we are about to repeat an NMI anyway.
1641 * This makes it safe to copy to the stack frame that a nested
1642 * NMI will update.
0b22930e
AL
1643 *
1644 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1645 * we're repeating an NMI, gsbase has the same value that it had on
1646 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1647 * gsbase if needed before we call do_nmi. "NMI executing"
1648 * is zero.
62610913 1649 */
36f1a77b 1650 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1651
62610913 1652 /*
0b22930e
AL
1653 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1654 * here must not modify the "iret" frame while we're writing to
1655 * it or it will end up containing garbage.
62610913 1656 */
4d732138 1657 addq $(10*8), %rsp
3f3c8b8c 1658 .rept 5
4d732138 1659 pushq -6*8(%rsp)
3f3c8b8c 1660 .endr
4d732138 1661 subq $(5*8), %rsp
62610913 1662end_repeat_nmi:
3f3c8b8c
SR
1663
1664 /*
0b22930e
AL
1665 * Everything below this point can be preempted by a nested NMI.
1666 * If this happens, then the inner NMI will change the "iret"
1667 * frame to point back to repeat_nmi.
3f3c8b8c 1668 */
4d732138 1669 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43 1670
1fd466ef 1671 /*
ebfc453e 1672 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1673 * as we should not be calling schedule in NMI context.
1674 * Even with normal interrupts enabled. An NMI should not be
1675 * setting NEED_RESCHED or anything that normal interrupts and
1676 * exceptions might do.
1677 */
4d732138 1678 call paranoid_entry
8c1f7558 1679 UNWIND_HINT_REGS
7fbb98c5 1680
ddeb8f21 1681 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1682 movq %rsp, %rdi
1683 movq $-1, %rsi
1684 call do_nmi
7fbb98c5 1685
16561f27 1686 /* Always restore stashed CR3 value (see paranoid_entry) */
21e94459 1687 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
8a09317b 1688
4d732138
IM
1689 testl %ebx, %ebx /* swapgs needed? */
1690 jnz nmi_restore
ddeb8f21
AH
1691nmi_swapgs:
1692 SWAPGS_UNSAFE_STACK
1693nmi_restore:
502af0d7 1694 POP_REGS
0b22930e 1695
471ee483
AL
1696 /*
1697 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1698 * at the "iret" frame.
1699 */
1700 addq $6*8, %rsp
28696f43 1701
810bc075
AL
1702 /*
1703 * Clear "NMI executing". Set DF first so that we can easily
1704 * distinguish the remaining code between here and IRET from
929bacec
AL
1705 * the SYSCALL entry and exit paths.
1706 *
1707 * We arguably should just inspect RIP instead, but I (Andy) wrote
1708 * this code when I had the misapprehension that Xen PV supported
1709 * NMIs, and Xen PV would break that approach.
810bc075
AL
1710 */
1711 std
1712 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1713
1714 /*
929bacec
AL
1715 * iretq reads the "iret" frame and exits the NMI stack in a
1716 * single instruction. We are returning to kernel mode, so this
1717 * cannot result in a fault. Similarly, we don't need to worry
1718 * about espfix64 on the way back to kernel mode.
0b22930e 1719 */
929bacec 1720 iretq
bc7b11c0 1721SYM_CODE_END(nmi)
ddeb8f21 1722
dffb3f9d
AL
1723#ifndef CONFIG_IA32_EMULATION
1724/*
1725 * This handles SYSCALL from 32-bit code. There is no way to program
1726 * MSRs to fully disable 32-bit SYSCALL.
1727 */
bc7b11c0 1728SYM_CODE_START(ignore_sysret)
8c1f7558 1729 UNWIND_HINT_EMPTY
4d732138 1730 mov $-ENOSYS, %eax
b2b1d94c 1731 sysretl
bc7b11c0 1732SYM_CODE_END(ignore_sysret)
dffb3f9d 1733#endif
2deb4be2 1734
bc7b11c0 1735SYM_CODE_START(rewind_stack_do_exit)
8c1f7558 1736 UNWIND_HINT_FUNC
2deb4be2
AL
1737 /* Prevent any naive code from trying to unwind to our caller. */
1738 xorl %ebp, %ebp
1739
1740 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
8c1f7558 1741 leaq -PTREGS_SIZE(%rax), %rsp
f977df7b 1742 UNWIND_HINT_REGS
2deb4be2
AL
1743
1744 call do_exit
bc7b11c0 1745SYM_CODE_END(rewind_stack_do_exit)