]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - arch/x86/entry/entry_64.S
x86/mm: Use/Fix PCID to optimize user/kernel switches
[thirdparty/kernel/stable.git] / arch / x86 / entry / entry_64.S
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2/*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 8 *
1da177e4
LT
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
8b4777a4
AL
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
0bd7b798 13 * A note on terminology:
4d732138
IM
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
2e91a17b
AK
16 *
17 * Some macro usage:
4d732138
IM
18 * - ENTRY/END: Define functions in the symbol table.
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
1da177e4 21 */
1da177e4
LT
22#include <linux/linkage.h>
23#include <asm/segment.h>
1da177e4
LT
24#include <asm/cache.h>
25#include <asm/errno.h>
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
784d5699 38#include <asm/export.h>
8c1f7558 39#include <asm/frame.h>
d7e7528b 40#include <linux/err.h>
1da177e4 41
6fd166aa
PZ
42#include "calling.h"
43
4d732138
IM
44.code64
45.section .entry.text, "ax"
16444a8a 46
72fe4858 47#ifdef CONFIG_PARAVIRT
2be29982 48ENTRY(native_usergs_sysret64)
8c1f7558 49 UNWIND_HINT_EMPTY
72fe4858
GOC
50 swapgs
51 sysretq
8c1f7558 52END(native_usergs_sysret64)
72fe4858
GOC
53#endif /* CONFIG_PARAVIRT */
54
f2db9382 55.macro TRACE_IRQS_IRETQ
2601e64d 56#ifdef CONFIG_TRACE_IRQFLAGS
4d732138
IM
57 bt $9, EFLAGS(%rsp) /* interrupts off? */
58 jnc 1f
2601e64d
IM
59 TRACE_IRQS_ON
601:
61#endif
62.endm
63
5963e317
SR
64/*
65 * When dynamic function tracer is enabled it will add a breakpoint
66 * to all locations that it is about to modify, sync CPUs, update
67 * all the code, sync CPUs, then remove the breakpoints. In this time
68 * if lockdep is enabled, it might jump back into the debug handler
69 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
70 *
71 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
72 * make sure the stack pointer does not get reset back to the top
73 * of the debug stack, and instead just reuses the current stack.
74 */
75#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
76
77.macro TRACE_IRQS_OFF_DEBUG
4d732138 78 call debug_stack_set_zero
5963e317 79 TRACE_IRQS_OFF
4d732138 80 call debug_stack_reset
5963e317
SR
81.endm
82
83.macro TRACE_IRQS_ON_DEBUG
4d732138 84 call debug_stack_set_zero
5963e317 85 TRACE_IRQS_ON
4d732138 86 call debug_stack_reset
5963e317
SR
87.endm
88
f2db9382 89.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
90 bt $9, EFLAGS(%rsp) /* interrupts off? */
91 jnc 1f
5963e317
SR
92 TRACE_IRQS_ON_DEBUG
931:
94.endm
95
96#else
4d732138
IM
97# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
98# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
99# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
100#endif
101
1da177e4 102/*
4d732138 103 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 104 *
fda57b22
AL
105 * This is the only entry point used for 64-bit system calls. The
106 * hardware interface is reasonably well designed and the register to
107 * argument mapping Linux uses fits well with the registers that are
108 * available when SYSCALL is used.
109 *
110 * SYSCALL instructions can be found inlined in libc implementations as
111 * well as some other programs and libraries. There are also a handful
112 * of SYSCALL instructions in the vDSO used, for example, as a
113 * clock_gettimeofday fallback.
114 *
4d732138 115 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
116 * then loads new ss, cs, and rip from previously programmed MSRs.
117 * rflags gets masked by a value from another MSR (so CLD and CLAC
118 * are not needed). SYSCALL does not save anything on the stack
119 * and does not change rsp.
120 *
121 * Registers on entry:
1da177e4 122 * rax system call number
b87cf63e
DV
123 * rcx return address
124 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 125 * rdi arg0
1da177e4 126 * rsi arg1
0bd7b798 127 * rdx arg2
b87cf63e 128 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
129 * r8 arg4
130 * r9 arg5
4d732138 131 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 132 *
1da177e4
LT
133 * Only called from user space.
134 *
7fcb3bc3 135 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
136 * it deals with uncanonical addresses better. SYSRET has trouble
137 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 138 */
1da177e4 139
3386bc8a
AL
140 .pushsection .entry_trampoline, "ax"
141
142/*
143 * The code in here gets remapped into cpu_entry_area's trampoline. This means
144 * that the assembler and linker have the wrong idea as to where this code
145 * lives (and, in fact, it's mapped more than once, so it's not even at a
146 * fixed address). So we can't reference any symbols outside the entry
147 * trampoline and expect it to work.
148 *
149 * Instead, we carefully abuse %rip-relative addressing.
150 * _entry_trampoline(%rip) refers to the start of the remapped) entry
151 * trampoline. We can thus find cpu_entry_area with this macro:
152 */
153
154#define CPU_ENTRY_AREA \
155 _entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)
156
157/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
4fe2d8b1
DH
158#define RSP_SCRATCH CPU_ENTRY_AREA_entry_stack + \
159 SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
3386bc8a
AL
160
161ENTRY(entry_SYSCALL_64_trampoline)
162 UNWIND_HINT_EMPTY
163 swapgs
164
165 /* Stash the user RSP. */
166 movq %rsp, RSP_SCRATCH
167
8a09317b
DH
168 /* Note: using %rsp as a scratch reg. */
169 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
170
3386bc8a
AL
171 /* Load the top of the task stack into RSP */
172 movq CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp
173
174 /* Start building the simulated IRET frame. */
175 pushq $__USER_DS /* pt_regs->ss */
176 pushq RSP_SCRATCH /* pt_regs->sp */
177 pushq %r11 /* pt_regs->flags */
178 pushq $__USER_CS /* pt_regs->cs */
179 pushq %rcx /* pt_regs->ip */
180
181 /*
182 * x86 lacks a near absolute jump, and we can't jump to the real
183 * entry text with a relative jump. We could push the target
184 * address and then use retq, but this destroys the pipeline on
185 * many CPUs (wasting over 20 cycles on Sandy Bridge). Instead,
186 * spill RDI and restore it in a second-stage trampoline.
187 */
188 pushq %rdi
189 movq $entry_SYSCALL_64_stage2, %rdi
190 jmp *%rdi
191END(entry_SYSCALL_64_trampoline)
192
193 .popsection
194
195ENTRY(entry_SYSCALL_64_stage2)
196 UNWIND_HINT_EMPTY
197 popq %rdi
198 jmp entry_SYSCALL_64_after_hwframe
199END(entry_SYSCALL_64_stage2)
200
b2502b41 201ENTRY(entry_SYSCALL_64)
8c1f7558 202 UNWIND_HINT_EMPTY
9ed8e7d8
DV
203 /*
204 * Interrupts are off on entry.
205 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
206 * it is too small to ever cause noticeable irq latency.
207 */
72fe4858 208
8a9949bc 209 swapgs
8a09317b
DH
210 /*
211 * This path is not taken when PAGE_TABLE_ISOLATION is disabled so it
212 * is not required to switch CR3.
213 */
4d732138
IM
214 movq %rsp, PER_CPU_VAR(rsp_scratch)
215 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8 216
1e423bff
AL
217 TRACE_IRQS_OFF
218
9ed8e7d8 219 /* Construct struct pt_regs on stack */
4d732138
IM
220 pushq $__USER_DS /* pt_regs->ss */
221 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
4d732138
IM
222 pushq %r11 /* pt_regs->flags */
223 pushq $__USER_CS /* pt_regs->cs */
224 pushq %rcx /* pt_regs->ip */
8a9949bc 225GLOBAL(entry_SYSCALL_64_after_hwframe)
4d732138
IM
226 pushq %rax /* pt_regs->orig_ax */
227 pushq %rdi /* pt_regs->di */
228 pushq %rsi /* pt_regs->si */
229 pushq %rdx /* pt_regs->dx */
230 pushq %rcx /* pt_regs->cx */
231 pushq $-ENOSYS /* pt_regs->ax */
232 pushq %r8 /* pt_regs->r8 */
233 pushq %r9 /* pt_regs->r9 */
234 pushq %r10 /* pt_regs->r10 */
235 pushq %r11 /* pt_regs->r11 */
236 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
8c1f7558 237 UNWIND_HINT_REGS extra=0
4d732138 238
1e423bff
AL
239 /*
240 * If we need to do entry work or if we guess we'll need to do
241 * exit work, go straight to the slow path.
242 */
15f4eae7
AL
243 movq PER_CPU_VAR(current_task), %r11
244 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
1e423bff
AL
245 jnz entry_SYSCALL64_slow_path
246
b2502b41 247entry_SYSCALL_64_fastpath:
1e423bff
AL
248 /*
249 * Easy case: enable interrupts and issue the syscall. If the syscall
250 * needs pt_regs, we'll call a stub that disables interrupts again
251 * and jumps to the slow path.
252 */
253 TRACE_IRQS_ON
254 ENABLE_INTERRUPTS(CLBR_NONE)
fca460f9 255#if __SYSCALL_MASK == ~0
4d732138 256 cmpq $__NR_syscall_max, %rax
fca460f9 257#else
4d732138
IM
258 andl $__SYSCALL_MASK, %eax
259 cmpl $__NR_syscall_max, %eax
fca460f9 260#endif
4d732138
IM
261 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
262 movq %r10, %rcx
302f5b26
AL
263
264 /*
265 * This call instruction is handled specially in stub_ptregs_64.
b7765086
AL
266 * It might end up jumping to the slow path. If it jumps, RAX
267 * and all argument registers are clobbered.
302f5b26 268 */
4d732138 269 call *sys_call_table(, %rax, 8)
302f5b26
AL
270.Lentry_SYSCALL_64_after_fastpath_call:
271
4d732138 272 movq %rax, RAX(%rsp)
146b2b09 2731:
b3494a4a
AL
274
275 /*
1e423bff
AL
276 * If we get here, then we know that pt_regs is clean for SYSRET64.
277 * If we see that no exit work is required (which we are required
278 * to check with IRQs off), then we can go straight to SYSRET64.
b3494a4a 279 */
2140a994 280 DISABLE_INTERRUPTS(CLBR_ANY)
1e423bff 281 TRACE_IRQS_OFF
15f4eae7
AL
282 movq PER_CPU_VAR(current_task), %r11
283 testl $_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
1e423bff 284 jnz 1f
b3494a4a 285
1e423bff
AL
286 LOCKDEP_SYS_EXIT
287 TRACE_IRQS_ON /* user mode is traced as IRQs on */
eb2a54c3
AL
288 movq RIP(%rsp), %rcx
289 movq EFLAGS(%rsp), %r11
a5122106 290 addq $6*8, %rsp /* skip extra regs -- they were preserved */
8c1f7558 291 UNWIND_HINT_EMPTY
a5122106 292 jmp .Lpop_c_regs_except_rcx_r11_and_sysret
1da177e4 293
1e423bff
AL
2941:
295 /*
296 * The fast path looked good when we started, but something changed
297 * along the way and we need to switch to the slow path. Calling
298 * raise(3) will trigger this, for example. IRQs are off.
299 */
29ea1b25 300 TRACE_IRQS_ON
2140a994 301 ENABLE_INTERRUPTS(CLBR_ANY)
76f5df43 302 SAVE_EXTRA_REGS
4d732138 303 movq %rsp, %rdi
1e423bff
AL
304 call syscall_return_slowpath /* returns with IRQs disabled */
305 jmp return_from_SYSCALL_64
0bd7b798 306
1e423bff
AL
307entry_SYSCALL64_slow_path:
308 /* IRQs are off. */
76f5df43 309 SAVE_EXTRA_REGS
29ea1b25 310 movq %rsp, %rdi
1e423bff
AL
311 call do_syscall_64 /* returns with IRQs disabled */
312
313return_from_SYSCALL_64:
29ea1b25 314 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
315
316 /*
317 * Try to use SYSRET instead of IRET if we're returning to
8a055d7f
AL
318 * a completely clean 64-bit userspace context. If we're not,
319 * go to the slow exit path.
fffbb5dc 320 */
4d732138
IM
321 movq RCX(%rsp), %rcx
322 movq RIP(%rsp), %r11
8a055d7f
AL
323
324 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
325 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
326
327 /*
328 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
329 * in kernel space. This essentially lets the user take over
17be0aec 330 * the kernel, since userspace controls RSP.
fffbb5dc 331 *
17be0aec 332 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc 333 * to be updated to remain correct on both old and new CPUs.
361b4b58 334 *
cbe0317b
KS
335 * Change top bits to match most significant bit (47th or 56th bit
336 * depending on paging mode) in the address.
fffbb5dc 337 */
17be0aec
DV
338 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
339 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
4d732138 340
17be0aec
DV
341 /* If this changed %rcx, it was not canonical */
342 cmpq %rcx, %r11
8a055d7f 343 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 344
4d732138 345 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
8a055d7f 346 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 347
4d732138
IM
348 movq R11(%rsp), %r11
349 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
8a055d7f 350 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
351
352 /*
3e035305
BP
353 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
354 * restore RF properly. If the slowpath sets it for whatever reason, we
355 * need to restore it correctly.
356 *
357 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
358 * trap from userspace immediately after SYSRET. This would cause an
359 * infinite loop whenever #DB happens with register state that satisfies
360 * the opportunistic SYSRET conditions. For example, single-stepping
361 * this user code:
fffbb5dc 362 *
4d732138 363 * movq $stuck_here, %rcx
fffbb5dc
DV
364 * pushfq
365 * popq %r11
366 * stuck_here:
367 *
368 * would never get past 'stuck_here'.
369 */
4d732138 370 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
8a055d7f 371 jnz swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
372
373 /* nothing to check for RSP */
374
4d732138 375 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
8a055d7f 376 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
377
378 /*
4d732138
IM
379 * We win! This label is here just for ease of understanding
380 * perf profiles. Nothing jumps here.
fffbb5dc
DV
381 */
382syscall_return_via_sysret:
17be0aec 383 /* rcx and r11 are already restored (see code above) */
8c1f7558 384 UNWIND_HINT_EMPTY
4fbb3910 385 POP_EXTRA_REGS
a5122106 386.Lpop_c_regs_except_rcx_r11_and_sysret:
4fbb3910
AL
387 popq %rsi /* skip r11 */
388 popq %r10
389 popq %r9
390 popq %r8
391 popq %rax
392 popq %rsi /* skip rcx */
393 popq %rdx
394 popq %rsi
3e3b9293
AL
395
396 /*
397 * Now all regs are restored except RSP and RDI.
398 * Save old stack pointer and switch to trampoline stack.
399 */
400 movq %rsp, %rdi
c482feef 401 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
3e3b9293
AL
402
403 pushq RSP-RDI(%rdi) /* RSP */
404 pushq (%rdi) /* RDI */
405
406 /*
407 * We are on the trampoline stack. All regs except RDI are live.
408 * We can do future final exit work right here.
409 */
6fd166aa 410 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
3e3b9293 411
4fbb3910 412 popq %rdi
3e3b9293 413 popq %rsp
fffbb5dc 414 USERGS_SYSRET64
b2502b41 415END(entry_SYSCALL_64)
0bd7b798 416
302f5b26
AL
417ENTRY(stub_ptregs_64)
418 /*
419 * Syscalls marked as needing ptregs land here.
b7765086
AL
420 * If we are on the fast path, we need to save the extra regs,
421 * which we achieve by trying again on the slow path. If we are on
422 * the slow path, the extra regs are already saved.
302f5b26
AL
423 *
424 * RAX stores a pointer to the C function implementing the syscall.
b7765086 425 * IRQs are on.
302f5b26
AL
426 */
427 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
428 jne 1f
429
b7765086
AL
430 /*
431 * Called from fast path -- disable IRQs again, pop return address
432 * and jump to slow path
433 */
2140a994 434 DISABLE_INTERRUPTS(CLBR_ANY)
b7765086 435 TRACE_IRQS_OFF
302f5b26 436 popq %rax
8c1f7558 437 UNWIND_HINT_REGS extra=0
b7765086 438 jmp entry_SYSCALL64_slow_path
302f5b26
AL
439
4401:
b3830e8d 441 jmp *%rax /* Called from C */
302f5b26
AL
442END(stub_ptregs_64)
443
444.macro ptregs_stub func
445ENTRY(ptregs_\func)
8c1f7558 446 UNWIND_HINT_FUNC
302f5b26
AL
447 leaq \func(%rip), %rax
448 jmp stub_ptregs_64
449END(ptregs_\func)
450.endm
451
452/* Instantiate ptregs_stub for each ptregs-using syscall */
453#define __SYSCALL_64_QUAL_(sym)
454#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
455#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
456#include <asm/syscalls_64.h>
fffbb5dc 457
0100301b
BG
458/*
459 * %rdi: prev task
460 * %rsi: next task
461 */
462ENTRY(__switch_to_asm)
8c1f7558 463 UNWIND_HINT_FUNC
0100301b
BG
464 /*
465 * Save callee-saved registers
466 * This must match the order in inactive_task_frame
467 */
468 pushq %rbp
469 pushq %rbx
470 pushq %r12
471 pushq %r13
472 pushq %r14
473 pushq %r15
474
475 /* switch stack */
476 movq %rsp, TASK_threadsp(%rdi)
477 movq TASK_threadsp(%rsi), %rsp
478
479#ifdef CONFIG_CC_STACKPROTECTOR
480 movq TASK_stack_canary(%rsi), %rbx
481 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
482#endif
483
484 /* restore callee-saved registers */
485 popq %r15
486 popq %r14
487 popq %r13
488 popq %r12
489 popq %rbx
490 popq %rbp
491
492 jmp __switch_to
493END(__switch_to_asm)
494
1eeb207f
DV
495/*
496 * A newly forked process directly context switches into this address.
497 *
0100301b 498 * rax: prev task we switched from
616d2483
BG
499 * rbx: kernel thread func (NULL for user thread)
500 * r12: kernel thread arg
1eeb207f
DV
501 */
502ENTRY(ret_from_fork)
8c1f7558 503 UNWIND_HINT_EMPTY
0100301b 504 movq %rax, %rdi
ebd57499 505 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 506
ebd57499
JP
507 testq %rbx, %rbx /* from kernel_thread? */
508 jnz 1f /* kernel threads are uncommon */
24d978b7 509
616d2483 5102:
8c1f7558 511 UNWIND_HINT_REGS
ebd57499 512 movq %rsp, %rdi
24d978b7
AL
513 call syscall_return_slowpath /* returns with IRQs disabled */
514 TRACE_IRQS_ON /* user mode is traced as IRQS on */
8a055d7f 515 jmp swapgs_restore_regs_and_return_to_usermode
616d2483
BG
516
5171:
518 /* kernel thread */
519 movq %r12, %rdi
520 call *%rbx
521 /*
522 * A kernel thread is allowed to return here after successfully
523 * calling do_execve(). Exit to userspace to complete the execve()
524 * syscall.
525 */
526 movq $0, RAX(%rsp)
527 jmp 2b
1eeb207f
DV
528END(ret_from_fork)
529
939b7871 530/*
3304c9c3
DV
531 * Build the entry stubs with some assembler magic.
532 * We pack 1 stub into every 8-byte block.
939b7871 533 */
3304c9c3 534 .align 8
939b7871 535ENTRY(irq_entries_start)
3304c9c3
DV
536 vector=FIRST_EXTERNAL_VECTOR
537 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
8c1f7558 538 UNWIND_HINT_IRET_REGS
4d732138 539 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3 540 jmp common_interrupt
3304c9c3 541 .align 8
8c1f7558 542 vector=vector+1
3304c9c3 543 .endr
939b7871
PA
544END(irq_entries_start)
545
1d3e53e8
AL
546.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
547#ifdef CONFIG_DEBUG_ENTRY
e17f8234
BO
548 pushq %rax
549 SAVE_FLAGS(CLBR_RAX)
550 testl $X86_EFLAGS_IF, %eax
1d3e53e8
AL
551 jz .Lokay_\@
552 ud2
553.Lokay_\@:
e17f8234 554 popq %rax
1d3e53e8
AL
555#endif
556.endm
557
558/*
559 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
560 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
561 * Requires kernel GSBASE.
562 *
563 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
564 */
8c1f7558 565.macro ENTER_IRQ_STACK regs=1 old_rsp
1d3e53e8
AL
566 DEBUG_ENTRY_ASSERT_IRQS_OFF
567 movq %rsp, \old_rsp
8c1f7558
JP
568
569 .if \regs
570 UNWIND_HINT_REGS base=\old_rsp
571 .endif
572
1d3e53e8 573 incl PER_CPU_VAR(irq_count)
29955909 574 jnz .Lirq_stack_push_old_rsp_\@
1d3e53e8
AL
575
576 /*
577 * Right now, if we just incremented irq_count to zero, we've
578 * claimed the IRQ stack but we haven't switched to it yet.
579 *
580 * If anything is added that can interrupt us here without using IST,
581 * it must be *extremely* careful to limit its stack usage. This
582 * could include kprobes and a hypothetical future IST-less #DB
583 * handler.
29955909
AL
584 *
585 * The OOPS unwinder relies on the word at the top of the IRQ
586 * stack linking back to the previous RSP for the entire time we're
587 * on the IRQ stack. For this to work reliably, we need to write
588 * it before we actually move ourselves to the IRQ stack.
589 */
590
591 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
592 movq PER_CPU_VAR(irq_stack_ptr), %rsp
593
594#ifdef CONFIG_DEBUG_ENTRY
595 /*
596 * If the first movq above becomes wrong due to IRQ stack layout
597 * changes, the only way we'll notice is if we try to unwind right
598 * here. Assert that we set up the stack right to catch this type
599 * of bug quickly.
1d3e53e8 600 */
29955909
AL
601 cmpq -8(%rsp), \old_rsp
602 je .Lirq_stack_okay\@
603 ud2
604 .Lirq_stack_okay\@:
605#endif
1d3e53e8 606
29955909 607.Lirq_stack_push_old_rsp_\@:
1d3e53e8 608 pushq \old_rsp
8c1f7558
JP
609
610 .if \regs
611 UNWIND_HINT_REGS indirect=1
612 .endif
1d3e53e8
AL
613.endm
614
615/*
616 * Undoes ENTER_IRQ_STACK.
617 */
8c1f7558 618.macro LEAVE_IRQ_STACK regs=1
1d3e53e8
AL
619 DEBUG_ENTRY_ASSERT_IRQS_OFF
620 /* We need to be off the IRQ stack before decrementing irq_count. */
621 popq %rsp
622
8c1f7558
JP
623 .if \regs
624 UNWIND_HINT_REGS
625 .endif
626
1d3e53e8
AL
627 /*
628 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
629 * the irq stack but we're not on it.
630 */
631
632 decl PER_CPU_VAR(irq_count)
633.endm
634
d99015b1 635/*
1da177e4
LT
636 * Interrupt entry/exit.
637 *
638 * Interrupt entry points save only callee clobbered registers in fast path.
d99015b1
AH
639 *
640 * Entry runs with interrupts off.
641 */
1da177e4 642
722024db 643/* 0(%rsp): ~(interrupt number) */
1da177e4 644 .macro interrupt func
f6f64681 645 cld
7f2590a1
AL
646
647 testb $3, CS-ORIG_RAX(%rsp)
648 jz 1f
649 SWAPGS
650 call switch_to_thread_stack
6511:
652
ff467594
AL
653 ALLOC_PT_GPREGS_ON_STACK
654 SAVE_C_REGS
655 SAVE_EXTRA_REGS
946c1911 656 ENCODE_FRAME_POINTER
76f5df43 657
ff467594 658 testb $3, CS(%rsp)
dde74f2e 659 jz 1f
02bc7768
AL
660
661 /*
7f2590a1
AL
662 * IRQ from user mode.
663 *
f1075053
AL
664 * We need to tell lockdep that IRQs are off. We can't do this until
665 * we fix gsbase, and we should do it before enter_from_user_mode
666 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
667 * the simplest way to handle it is to just call it twice if
668 * we enter from user mode. There's no reason to optimize this since
669 * TRACE_IRQS_OFF is a no-op if lockdep is off.
670 */
671 TRACE_IRQS_OFF
672
478dc89c 673 CALL_enter_from_user_mode
02bc7768 674
76f5df43 6751:
1d3e53e8 676 ENTER_IRQ_STACK old_rsp=%rdi
f6f64681
DV
677 /* We entered an interrupt context - irqs are off: */
678 TRACE_IRQS_OFF
679
a586f98e 680 call \func /* rdi points to pt_regs */
1da177e4
LT
681 .endm
682
722024db
AH
683 /*
684 * The interrupt stubs push (~vector+0x80) onto the stack and
685 * then jump to common_interrupt.
686 */
939b7871
PA
687 .p2align CONFIG_X86_L1_CACHE_SHIFT
688common_interrupt:
ee4eb87b 689 ASM_CLAC
4d732138 690 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
1da177e4 691 interrupt do_IRQ
34061f13 692 /* 0(%rsp): old RSP */
7effaa88 693ret_from_intr:
2140a994 694 DISABLE_INTERRUPTS(CLBR_ANY)
2601e64d 695 TRACE_IRQS_OFF
625dbc3b 696
1d3e53e8 697 LEAVE_IRQ_STACK
625dbc3b 698
03335e95 699 testb $3, CS(%rsp)
dde74f2e 700 jz retint_kernel
4d732138 701
02bc7768 702 /* Interrupt came from user space */
02bc7768
AL
703GLOBAL(retint_user)
704 mov %rsp,%rdi
705 call prepare_exit_to_usermode
2601e64d 706 TRACE_IRQS_IRETQ
26c4ef9c 707
8a055d7f 708GLOBAL(swapgs_restore_regs_and_return_to_usermode)
26c4ef9c
AL
709#ifdef CONFIG_DEBUG_ENTRY
710 /* Assert that pt_regs indicates user mode. */
1e4c4f61 711 testb $3, CS(%rsp)
26c4ef9c
AL
712 jnz 1f
713 ud2
7141:
715#endif
e872045b 716 POP_EXTRA_REGS
3e3b9293
AL
717 popq %r11
718 popq %r10
719 popq %r9
720 popq %r8
721 popq %rax
722 popq %rcx
723 popq %rdx
724 popq %rsi
725
726 /*
727 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
728 * Save old stack pointer and switch to trampoline stack.
729 */
730 movq %rsp, %rdi
c482feef 731 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
3e3b9293
AL
732
733 /* Copy the IRET frame to the trampoline stack. */
734 pushq 6*8(%rdi) /* SS */
735 pushq 5*8(%rdi) /* RSP */
736 pushq 4*8(%rdi) /* EFLAGS */
737 pushq 3*8(%rdi) /* CS */
738 pushq 2*8(%rdi) /* RIP */
739
740 /* Push user RDI on the trampoline stack. */
741 pushq (%rdi)
742
743 /*
744 * We are on the trampoline stack. All regs except RDI are live.
745 * We can do future final exit work right here.
746 */
747
6fd166aa 748 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
8a09317b 749
3e3b9293
AL
750 /* Restore RDI. */
751 popq %rdi
752 SWAPGS
26c4ef9c
AL
753 INTERRUPT_RETURN
754
2601e64d 755
627276cb 756/* Returning to kernel space */
6ba71b76 757retint_kernel:
627276cb
DV
758#ifdef CONFIG_PREEMPT
759 /* Interrupts are off */
760 /* Check if we need preemption */
4d732138 761 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 762 jnc 1f
4d732138 7630: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 764 jnz 1f
627276cb 765 call preempt_schedule_irq
36acef25 766 jmp 0b
6ba71b76 7671:
627276cb 768#endif
2601e64d
IM
769 /*
770 * The iretq could re-enable interrupts:
771 */
772 TRACE_IRQS_IRETQ
fffbb5dc 773
26c4ef9c
AL
774GLOBAL(restore_regs_and_return_to_kernel)
775#ifdef CONFIG_DEBUG_ENTRY
776 /* Assert that pt_regs indicates kernel mode. */
1e4c4f61 777 testb $3, CS(%rsp)
26c4ef9c
AL
778 jz 1f
779 ud2
7801:
781#endif
e872045b
AL
782 POP_EXTRA_REGS
783 POP_C_REGS
784 addq $8, %rsp /* skip regs->orig_ax */
7209a75d
AL
785 INTERRUPT_RETURN
786
787ENTRY(native_iret)
8c1f7558 788 UNWIND_HINT_IRET_REGS
3891a04a
PA
789 /*
790 * Are we returning to a stack segment from the LDT? Note: in
791 * 64-bit mode SS:RSP on the exception stack is always valid.
792 */
34273f41 793#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
794 testb $4, (SS-RIP)(%rsp)
795 jnz native_irq_return_ldt
34273f41 796#endif
3891a04a 797
af726f21 798.global native_irq_return_iret
7209a75d 799native_irq_return_iret:
b645af2d
AL
800 /*
801 * This may fault. Non-paranoid faults on return to userspace are
802 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
803 * Double-faults due to espfix64 are handled in do_double_fault.
804 * Other faults here are fatal.
805 */
1da177e4 806 iretq
3701d863 807
34273f41 808#ifdef CONFIG_X86_ESPFIX64
7209a75d 809native_irq_return_ldt:
85063fac
AL
810 /*
811 * We are running with user GSBASE. All GPRs contain their user
812 * values. We have a percpu ESPFIX stack that is eight slots
813 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
814 * of the ESPFIX stack.
815 *
816 * We clobber RAX and RDI in this code. We stash RDI on the
817 * normal stack and RAX on the ESPFIX stack.
818 *
819 * The ESPFIX stack layout we set up looks like this:
820 *
821 * --- top of ESPFIX stack ---
822 * SS
823 * RSP
824 * RFLAGS
825 * CS
826 * RIP <-- RSP points here when we're done
827 * RAX <-- espfix_waddr points here
828 * --- bottom of ESPFIX stack ---
829 */
830
831 pushq %rdi /* Stash user RDI */
8a09317b
DH
832 SWAPGS /* to kernel GS */
833 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
834
4d732138 835 movq PER_CPU_VAR(espfix_waddr), %rdi
85063fac
AL
836 movq %rax, (0*8)(%rdi) /* user RAX */
837 movq (1*8)(%rsp), %rax /* user RIP */
4d732138 838 movq %rax, (1*8)(%rdi)
85063fac 839 movq (2*8)(%rsp), %rax /* user CS */
4d732138 840 movq %rax, (2*8)(%rdi)
85063fac 841 movq (3*8)(%rsp), %rax /* user RFLAGS */
4d732138 842 movq %rax, (3*8)(%rdi)
85063fac 843 movq (5*8)(%rsp), %rax /* user SS */
4d732138 844 movq %rax, (5*8)(%rdi)
85063fac 845 movq (4*8)(%rsp), %rax /* user RSP */
4d732138 846 movq %rax, (4*8)(%rdi)
85063fac
AL
847 /* Now RAX == RSP. */
848
849 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
85063fac
AL
850
851 /*
852 * espfix_stack[31:16] == 0. The page tables are set up such that
853 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
854 * espfix_waddr for any X. That is, there are 65536 RO aliases of
855 * the same page. Set up RSP so that RSP[31:16] contains the
856 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
857 * still points to an RO alias of the ESPFIX stack.
858 */
4d732138 859 orq PER_CPU_VAR(espfix_stack), %rax
8a09317b 860
6fd166aa 861 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
8a09317b
DH
862 SWAPGS /* to user GS */
863 popq %rdi /* Restore user RDI */
864
4d732138 865 movq %rax, %rsp
8c1f7558 866 UNWIND_HINT_IRET_REGS offset=8
85063fac
AL
867
868 /*
869 * At this point, we cannot write to the stack any more, but we can
870 * still read.
871 */
872 popq %rax /* Restore user RAX */
873
874 /*
875 * RSP now points to an ordinary IRET frame, except that the page
876 * is read-only and RSP[31:16] are preloaded with the userspace
877 * values. We can now IRET back to userspace.
878 */
4d732138 879 jmp native_irq_return_iret
34273f41 880#endif
4b787e0b 881END(common_interrupt)
3891a04a 882
1da177e4
LT
883/*
884 * APIC interrupts.
0bd7b798 885 */
cf910e83 886.macro apicinterrupt3 num sym do_sym
322648d1 887ENTRY(\sym)
8c1f7558 888 UNWIND_HINT_IRET_REGS
ee4eb87b 889 ASM_CLAC
4d732138 890 pushq $~(\num)
39e95433 891.Lcommon_\sym:
322648d1 892 interrupt \do_sym
4d732138 893 jmp ret_from_intr
322648d1
AH
894END(\sym)
895.endm
1da177e4 896
469f0023 897/* Make sure APIC interrupt handlers end up in the irqentry section: */
229a7186
MH
898#define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
899#define POP_SECTION_IRQENTRY .popsection
469f0023 900
cf910e83 901.macro apicinterrupt num sym do_sym
469f0023 902PUSH_SECTION_IRQENTRY
cf910e83 903apicinterrupt3 \num \sym \do_sym
469f0023 904POP_SECTION_IRQENTRY
cf910e83
SA
905.endm
906
322648d1 907#ifdef CONFIG_SMP
4d732138
IM
908apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
909apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 910#endif
1da177e4 911
03b48632 912#ifdef CONFIG_X86_UV
4d732138 913apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 914#endif
4d732138
IM
915
916apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
917apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 918
d78f2664 919#ifdef CONFIG_HAVE_KVM
4d732138
IM
920apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
921apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
210f84b0 922apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
d78f2664
YZ
923#endif
924
33e5ff63 925#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 926apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
927#endif
928
24fd78a8 929#ifdef CONFIG_X86_MCE_AMD
4d732138 930apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
931#endif
932
33e5ff63 933#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 934apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 935#endif
1812924b 936
322648d1 937#ifdef CONFIG_SMP
4d732138
IM
938apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
939apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
940apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 941#endif
1da177e4 942
4d732138
IM
943apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
944apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 945
e360adbe 946#ifdef CONFIG_IRQ_WORK
4d732138 947apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
948#endif
949
1da177e4
LT
950/*
951 * Exception entry points.
0bd7b798 952 */
c482feef 953#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
577ed45e 954
7f2590a1
AL
955/*
956 * Switch to the thread stack. This is called with the IRET frame and
957 * orig_ax on the stack. (That is, RDI..R12 are not on the stack and
958 * space has not been allocated for them.)
959 */
960ENTRY(switch_to_thread_stack)
961 UNWIND_HINT_FUNC
962
963 pushq %rdi
8a09317b
DH
964 /* Need to switch before accessing the thread stack. */
965 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
7f2590a1
AL
966 movq %rsp, %rdi
967 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
968 UNWIND_HINT sp_offset=16 sp_reg=ORC_REG_DI
969
970 pushq 7*8(%rdi) /* regs->ss */
971 pushq 6*8(%rdi) /* regs->rsp */
972 pushq 5*8(%rdi) /* regs->eflags */
973 pushq 4*8(%rdi) /* regs->cs */
974 pushq 3*8(%rdi) /* regs->ip */
975 pushq 2*8(%rdi) /* regs->orig_ax */
976 pushq 8(%rdi) /* return address */
977 UNWIND_HINT_FUNC
978
979 movq (%rdi), %rdi
980 ret
981END(switch_to_thread_stack)
982
577ed45e 983.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 984ENTRY(\sym)
98990a33 985 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
8c1f7558 986
577ed45e
AL
987 /* Sanity check */
988 .if \shift_ist != -1 && \paranoid == 0
989 .error "using shift_ist requires paranoid=1"
990 .endif
991
ee4eb87b 992 ASM_CLAC
cb5dd2c5 993
82c62fa0 994 .if \has_error_code == 0
4d732138 995 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
996 .endif
997
76f5df43 998 ALLOC_PT_GPREGS_ON_STACK
cb5dd2c5 999
7f2590a1 1000 .if \paranoid < 2
4d732138 1001 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
7f2590a1 1002 jnz .Lfrom_usermode_switch_stack_\@
48e08d0f 1003 .endif
7f2590a1
AL
1004
1005 .if \paranoid
4d732138 1006 call paranoid_entry
cb5dd2c5 1007 .else
4d732138 1008 call error_entry
cb5dd2c5 1009 .endif
8c1f7558 1010 UNWIND_HINT_REGS
ebfc453e 1011 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 1012
cb5dd2c5 1013 .if \paranoid
577ed45e 1014 .if \shift_ist != -1
4d732138 1015 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 1016 .else
b8b1d08b 1017 TRACE_IRQS_OFF
cb5dd2c5 1018 .endif
577ed45e 1019 .endif
cb5dd2c5 1020
4d732138 1021 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
1022
1023 .if \has_error_code
4d732138
IM
1024 movq ORIG_RAX(%rsp), %rsi /* get error code */
1025 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 1026 .else
4d732138 1027 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
1028 .endif
1029
577ed45e 1030 .if \shift_ist != -1
4d732138 1031 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
1032 .endif
1033
4d732138 1034 call \do_sym
cb5dd2c5 1035
577ed45e 1036 .if \shift_ist != -1
4d732138 1037 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
1038 .endif
1039
ebfc453e 1040 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 1041 .if \paranoid
4d732138 1042 jmp paranoid_exit
cb5dd2c5 1043 .else
4d732138 1044 jmp error_exit
cb5dd2c5
AL
1045 .endif
1046
7f2590a1 1047 .if \paranoid < 2
48e08d0f 1048 /*
7f2590a1 1049 * Entry from userspace. Switch stacks and treat it
48e08d0f
AL
1050 * as a normal entry. This means that paranoid handlers
1051 * run in real process context if user_mode(regs).
1052 */
7f2590a1 1053.Lfrom_usermode_switch_stack_\@:
4d732138 1054 call error_entry
48e08d0f 1055
4d732138 1056 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
1057
1058 .if \has_error_code
4d732138
IM
1059 movq ORIG_RAX(%rsp), %rsi /* get error code */
1060 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 1061 .else
4d732138 1062 xorl %esi, %esi /* no error code */
48e08d0f
AL
1063 .endif
1064
4d732138 1065 call \do_sym
48e08d0f 1066
4d732138 1067 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 1068 .endif
ddeb8f21 1069END(\sym)
322648d1 1070.endm
b8b1d08b 1071
4d732138
IM
1072idtentry divide_error do_divide_error has_error_code=0
1073idtentry overflow do_overflow has_error_code=0
1074idtentry bounds do_bounds has_error_code=0
1075idtentry invalid_op do_invalid_op has_error_code=0
1076idtentry device_not_available do_device_not_available has_error_code=0
1077idtentry double_fault do_double_fault has_error_code=1 paranoid=2
1078idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
1079idtentry invalid_TSS do_invalid_TSS has_error_code=1
1080idtentry segment_not_present do_segment_not_present has_error_code=1
1081idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
1082idtentry coprocessor_error do_coprocessor_error has_error_code=0
1083idtentry alignment_check do_alignment_check has_error_code=1
1084idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
1085
1086
1087 /*
1088 * Reload gs selector with exception handling
1089 * edi: new selector
1090 */
9f9d489a 1091ENTRY(native_load_gs_index)
8c1f7558 1092 FRAME_BEGIN
131484c8 1093 pushfq
b8aa287f 1094 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
9f1e87ea 1095 SWAPGS
42c748bb 1096.Lgs_change:
4d732138 1097 movl %edi, %gs
96e5d28a 10982: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 1099 SWAPGS
131484c8 1100 popfq
8c1f7558 1101 FRAME_END
9f1e87ea 1102 ret
8c1f7558 1103ENDPROC(native_load_gs_index)
784d5699 1104EXPORT_SYMBOL(native_load_gs_index)
0bd7b798 1105
42c748bb 1106 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 1107 .section .fixup, "ax"
1da177e4 1108 /* running with kernelgs */
0bd7b798 1109bad_gs:
4d732138 1110 SWAPGS /* switch back to user gs */
b038c842
AL
1111.macro ZAP_GS
1112 /* This can't be a string because the preprocessor needs to see it. */
1113 movl $__USER_DS, %eax
1114 movl %eax, %gs
1115.endm
1116 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
1117 xorl %eax, %eax
1118 movl %eax, %gs
1119 jmp 2b
9f1e87ea 1120 .previous
0bd7b798 1121
2699500b 1122/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 1123ENTRY(do_softirq_own_stack)
4d732138
IM
1124 pushq %rbp
1125 mov %rsp, %rbp
8c1f7558 1126 ENTER_IRQ_STACK regs=0 old_rsp=%r11
4d732138 1127 call __do_softirq
8c1f7558 1128 LEAVE_IRQ_STACK regs=0
2699500b 1129 leaveq
ed6b676c 1130 ret
8c1f7558 1131ENDPROC(do_softirq_own_stack)
75154f40 1132
3d75e1b8 1133#ifdef CONFIG_XEN
5878d5d6 1134idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
1135
1136/*
9f1e87ea
CG
1137 * A note on the "critical region" in our callback handler.
1138 * We want to avoid stacking callback handlers due to events occurring
1139 * during handling of the last event. To do this, we keep events disabled
1140 * until we've done all processing. HOWEVER, we must enable events before
1141 * popping the stack frame (can't be done atomically) and so it would still
1142 * be possible to get enough handler activations to overflow the stack.
1143 * Although unlikely, bugs of that kind are hard to track down, so we'd
1144 * like to avoid the possibility.
1145 * So, on entry to the handler we detect whether we interrupted an
1146 * existing activation in its critical region -- if so, we pop the current
1147 * activation and restart the handler using the previous one.
1148 */
4d732138
IM
1149ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
1150
9f1e87ea
CG
1151/*
1152 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1153 * see the correct pointer to the pt_regs
1154 */
8c1f7558 1155 UNWIND_HINT_FUNC
4d732138 1156 movq %rdi, %rsp /* we don't return, adjust the stack frame */
8c1f7558 1157 UNWIND_HINT_REGS
1d3e53e8
AL
1158
1159 ENTER_IRQ_STACK old_rsp=%r10
4d732138 1160 call xen_evtchn_do_upcall
1d3e53e8
AL
1161 LEAVE_IRQ_STACK
1162
fdfd811d 1163#ifndef CONFIG_PREEMPT
4d732138 1164 call xen_maybe_preempt_hcall
fdfd811d 1165#endif
4d732138 1166 jmp error_exit
371c394a 1167END(xen_do_hypervisor_callback)
3d75e1b8
JF
1168
1169/*
9f1e87ea
CG
1170 * Hypervisor uses this for application faults while it executes.
1171 * We get here for two reasons:
1172 * 1. Fault while reloading DS, ES, FS or GS
1173 * 2. Fault while executing IRET
1174 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1175 * registers that could be reloaded and zeroed the others.
1176 * Category 2 we fix up by killing the current process. We cannot use the
1177 * normal Linux return path in this case because if we use the IRET hypercall
1178 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1179 * We distinguish between categories by comparing each saved segment register
1180 * with its current contents: any discrepancy means we in category 1.
1181 */
3d75e1b8 1182ENTRY(xen_failsafe_callback)
8c1f7558 1183 UNWIND_HINT_EMPTY
4d732138
IM
1184 movl %ds, %ecx
1185 cmpw %cx, 0x10(%rsp)
1186 jne 1f
1187 movl %es, %ecx
1188 cmpw %cx, 0x18(%rsp)
1189 jne 1f
1190 movl %fs, %ecx
1191 cmpw %cx, 0x20(%rsp)
1192 jne 1f
1193 movl %gs, %ecx
1194 cmpw %cx, 0x28(%rsp)
1195 jne 1f
3d75e1b8 1196 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
1197 movq (%rsp), %rcx
1198 movq 8(%rsp), %r11
1199 addq $0x30, %rsp
1200 pushq $0 /* RIP */
8c1f7558 1201 UNWIND_HINT_IRET_REGS offset=8
4d732138 1202 jmp general_protection
3d75e1b8 12031: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
1204 movq (%rsp), %rcx
1205 movq 8(%rsp), %r11
1206 addq $0x30, %rsp
8c1f7558 1207 UNWIND_HINT_IRET_REGS
4d732138 1208 pushq $-1 /* orig_ax = -1 => not a system call */
76f5df43
DV
1209 ALLOC_PT_GPREGS_ON_STACK
1210 SAVE_C_REGS
1211 SAVE_EXTRA_REGS
946c1911 1212 ENCODE_FRAME_POINTER
4d732138 1213 jmp error_exit
3d75e1b8
JF
1214END(xen_failsafe_callback)
1215
cf910e83 1216apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
1217 xen_hvm_callback_vector xen_evtchn_do_upcall
1218
3d75e1b8 1219#endif /* CONFIG_XEN */
ddeb8f21 1220
bc2b0331 1221#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 1222apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331
S
1223 hyperv_callback_vector hyperv_vector_handler
1224#endif /* CONFIG_HYPERV */
1225
4d732138
IM
1226idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1227idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1228idtentry stack_segment do_stack_segment has_error_code=1
1229
6cac5a92 1230#ifdef CONFIG_XEN
43e41110 1231idtentry xennmi do_nmi has_error_code=0
5878d5d6
JG
1232idtentry xendebug do_debug has_error_code=0
1233idtentry xenint3 do_int3 has_error_code=0
6cac5a92 1234#endif
4d732138
IM
1235
1236idtentry general_protection do_general_protection has_error_code=1
11a7ffb0 1237idtentry page_fault do_page_fault has_error_code=1
4d732138 1238
631bc487 1239#ifdef CONFIG_KVM_GUEST
4d732138 1240idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 1241#endif
4d732138 1242
ddeb8f21 1243#ifdef CONFIG_X86_MCE
4d732138 1244idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
ddeb8f21
AH
1245#endif
1246
ebfc453e
DV
1247/*
1248 * Save all registers in pt_regs, and switch gs if needed.
1249 * Use slow, but surefire "are we in kernel?" check.
1250 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1251 */
1252ENTRY(paranoid_entry)
8c1f7558 1253 UNWIND_HINT_FUNC
1eeb207f
DV
1254 cld
1255 SAVE_C_REGS 8
1256 SAVE_EXTRA_REGS 8
946c1911 1257 ENCODE_FRAME_POINTER 8
4d732138
IM
1258 movl $1, %ebx
1259 movl $MSR_GS_BASE, %ecx
1eeb207f 1260 rdmsr
4d732138
IM
1261 testl %edx, %edx
1262 js 1f /* negative -> in kernel */
1eeb207f 1263 SWAPGS
4d732138 1264 xorl %ebx, %ebx
8a09317b
DH
1265
12661:
1267 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1268
1269 ret
ebfc453e 1270END(paranoid_entry)
ddeb8f21 1271
ebfc453e
DV
1272/*
1273 * "Paranoid" exit path from exception stack. This is invoked
1274 * only on return from non-NMI IST interrupts that came
1275 * from kernel space.
1276 *
1277 * We may be returning to very strange contexts (e.g. very early
1278 * in syscall entry), so checking for preemption here would
1279 * be complicated. Fortunately, we there's no good reason
1280 * to try to handle preemption here.
4d732138
IM
1281 *
1282 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 1283 */
ddeb8f21 1284ENTRY(paranoid_exit)
8c1f7558 1285 UNWIND_HINT_REGS
2140a994 1286 DISABLE_INTERRUPTS(CLBR_ANY)
5963e317 1287 TRACE_IRQS_OFF_DEBUG
4d732138 1288 testl %ebx, %ebx /* swapgs needed? */
e5317832 1289 jnz .Lparanoid_exit_no_swapgs
f2db9382 1290 TRACE_IRQS_IRETQ
8a09317b 1291 RESTORE_CR3 save_reg=%r14
ddeb8f21 1292 SWAPGS_UNSAFE_STACK
e5317832
AL
1293 jmp .Lparanoid_exit_restore
1294.Lparanoid_exit_no_swapgs:
f2db9382 1295 TRACE_IRQS_IRETQ_DEBUG
e5317832
AL
1296.Lparanoid_exit_restore:
1297 jmp restore_regs_and_return_to_kernel
ddeb8f21
AH
1298END(paranoid_exit)
1299
1300/*
ebfc453e 1301 * Save all registers in pt_regs, and switch gs if needed.
539f5113 1302 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
1303 */
1304ENTRY(error_entry)
8c1f7558 1305 UNWIND_HINT_FUNC
ddeb8f21 1306 cld
76f5df43
DV
1307 SAVE_C_REGS 8
1308 SAVE_EXTRA_REGS 8
946c1911 1309 ENCODE_FRAME_POINTER 8
4d732138 1310 xorl %ebx, %ebx
03335e95 1311 testb $3, CS+8(%rsp)
cb6f64ed 1312 jz .Lerror_kernelspace
539f5113 1313
cb6f64ed
AL
1314 /*
1315 * We entered from user mode or we're pretending to have entered
1316 * from user mode due to an IRET fault.
1317 */
ddeb8f21 1318 SWAPGS
8a09317b
DH
1319 /* We have user CR3. Change to kernel CR3. */
1320 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
539f5113 1321
cb6f64ed 1322.Lerror_entry_from_usermode_after_swapgs:
7f2590a1
AL
1323 /* Put us onto the real thread stack. */
1324 popq %r12 /* save return addr in %12 */
1325 movq %rsp, %rdi /* arg0 = pt_regs pointer */
1326 call sync_regs
1327 movq %rax, %rsp /* switch stack */
1328 ENCODE_FRAME_POINTER
1329 pushq %r12
1330
f1075053
AL
1331 /*
1332 * We need to tell lockdep that IRQs are off. We can't do this until
1333 * we fix gsbase, and we should do it before enter_from_user_mode
1334 * (which can take locks).
1335 */
1336 TRACE_IRQS_OFF
478dc89c 1337 CALL_enter_from_user_mode
f1075053 1338 ret
02bc7768 1339
cb6f64ed 1340.Lerror_entry_done:
ddeb8f21
AH
1341 TRACE_IRQS_OFF
1342 ret
ddeb8f21 1343
ebfc453e
DV
1344 /*
1345 * There are two places in the kernel that can potentially fault with
1346 * usergs. Handle them here. B stepping K8s sometimes report a
1347 * truncated RIP for IRET exceptions returning to compat mode. Check
1348 * for these here too.
1349 */
cb6f64ed 1350.Lerror_kernelspace:
4d732138
IM
1351 incl %ebx
1352 leaq native_irq_return_iret(%rip), %rcx
1353 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1354 je .Lerror_bad_iret
4d732138
IM
1355 movl %ecx, %eax /* zero extend */
1356 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1357 je .Lbstep_iret
42c748bb 1358 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1359 jne .Lerror_entry_done
539f5113
AL
1360
1361 /*
42c748bb 1362 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1363 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1364 * .Lgs_change's error handler with kernel gsbase.
539f5113 1365 */
2fa5f04f 1366 SWAPGS
8a09317b 1367 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
2fa5f04f 1368 jmp .Lerror_entry_done
ae24ffe5 1369
cb6f64ed 1370.Lbstep_iret:
ae24ffe5 1371 /* Fix truncated RIP */
4d732138 1372 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1373 /* fall through */
1374
cb6f64ed 1375.Lerror_bad_iret:
539f5113 1376 /*
8a09317b
DH
1377 * We came from an IRET to user mode, so we have user
1378 * gsbase and CR3. Switch to kernel gsbase and CR3:
539f5113 1379 */
b645af2d 1380 SWAPGS
8a09317b 1381 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
539f5113
AL
1382
1383 /*
1384 * Pretend that the exception came from user mode: set up pt_regs
1385 * as if we faulted immediately after IRET and clear EBX so that
1386 * error_exit knows that we will be returning to user mode.
1387 */
4d732138
IM
1388 mov %rsp, %rdi
1389 call fixup_bad_iret
1390 mov %rax, %rsp
539f5113 1391 decl %ebx
cb6f64ed 1392 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1393END(error_entry)
1394
1395
539f5113 1396/*
75ca5b22 1397 * On entry, EBX is a "return to kernel mode" flag:
539f5113
AL
1398 * 1: already in kernel mode, don't need SWAPGS
1399 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1400 */
ddeb8f21 1401ENTRY(error_exit)
8c1f7558 1402 UNWIND_HINT_REGS
2140a994 1403 DISABLE_INTERRUPTS(CLBR_ANY)
ddeb8f21 1404 TRACE_IRQS_OFF
2140a994 1405 testl %ebx, %ebx
4d732138
IM
1406 jnz retint_kernel
1407 jmp retint_user
ddeb8f21
AH
1408END(error_exit)
1409
929bacec
AL
1410/*
1411 * Runs on exception stack. Xen PV does not go through this path at all,
1412 * so we can use real assembly here.
8a09317b
DH
1413 *
1414 * Registers:
1415 * %r14: Used to save/restore the CR3 of the interrupted context
1416 * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
929bacec 1417 */
ddeb8f21 1418ENTRY(nmi)
8c1f7558 1419 UNWIND_HINT_IRET_REGS
929bacec 1420
3f3c8b8c
SR
1421 /*
1422 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1423 * the iretq it performs will take us out of NMI context.
1424 * This means that we can have nested NMIs where the next
1425 * NMI is using the top of the stack of the previous NMI. We
1426 * can't let it execute because the nested NMI will corrupt the
1427 * stack of the previous NMI. NMI handlers are not re-entrant
1428 * anyway.
1429 *
1430 * To handle this case we do the following:
1431 * Check the a special location on the stack that contains
1432 * a variable that is set when NMIs are executing.
1433 * The interrupted task's stack is also checked to see if it
1434 * is an NMI stack.
1435 * If the variable is not set and the stack is not the NMI
1436 * stack then:
1437 * o Set the special variable on the stack
0b22930e
AL
1438 * o Copy the interrupt frame into an "outermost" location on the
1439 * stack
1440 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1441 * o Continue processing the NMI
1442 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1443 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1444 * o return back to the first NMI
1445 *
1446 * Now on exit of the first NMI, we first clear the stack variable
1447 * The NMI stack will tell any nested NMIs at that point that it is
1448 * nested. Then we pop the stack normally with iret, and if there was
1449 * a nested NMI that updated the copy interrupt stack frame, a
1450 * jump will be made to the repeat_nmi code that will handle the second
1451 * NMI.
9b6e6a83
AL
1452 *
1453 * However, espfix prevents us from directly returning to userspace
1454 * with a single IRET instruction. Similarly, IRET to user mode
1455 * can fault. We therefore handle NMIs from user space like
1456 * other IST entries.
3f3c8b8c
SR
1457 */
1458
e93c1730
AL
1459 ASM_CLAC
1460
146b2b09 1461 /* Use %rdx as our temp variable throughout */
4d732138 1462 pushq %rdx
3f3c8b8c 1463
9b6e6a83
AL
1464 testb $3, CS-RIP+8(%rsp)
1465 jz .Lnmi_from_kernel
1466
1467 /*
1468 * NMI from user mode. We need to run on the thread stack, but we
1469 * can't go through the normal entry paths: NMIs are masked, and
1470 * we don't want to enable interrupts, because then we'll end
1471 * up in an awkward situation in which IRQs are on but NMIs
1472 * are off.
83c133cf
AL
1473 *
1474 * We also must not push anything to the stack before switching
1475 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1476 */
1477
929bacec 1478 swapgs
9b6e6a83 1479 cld
8a09317b 1480 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
9b6e6a83
AL
1481 movq %rsp, %rdx
1482 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
8c1f7558 1483 UNWIND_HINT_IRET_REGS base=%rdx offset=8
9b6e6a83
AL
1484 pushq 5*8(%rdx) /* pt_regs->ss */
1485 pushq 4*8(%rdx) /* pt_regs->rsp */
1486 pushq 3*8(%rdx) /* pt_regs->flags */
1487 pushq 2*8(%rdx) /* pt_regs->cs */
1488 pushq 1*8(%rdx) /* pt_regs->rip */
8c1f7558 1489 UNWIND_HINT_IRET_REGS
9b6e6a83
AL
1490 pushq $-1 /* pt_regs->orig_ax */
1491 pushq %rdi /* pt_regs->di */
1492 pushq %rsi /* pt_regs->si */
1493 pushq (%rdx) /* pt_regs->dx */
1494 pushq %rcx /* pt_regs->cx */
1495 pushq %rax /* pt_regs->ax */
1496 pushq %r8 /* pt_regs->r8 */
1497 pushq %r9 /* pt_regs->r9 */
1498 pushq %r10 /* pt_regs->r10 */
1499 pushq %r11 /* pt_regs->r11 */
1500 pushq %rbx /* pt_regs->rbx */
1501 pushq %rbp /* pt_regs->rbp */
1502 pushq %r12 /* pt_regs->r12 */
1503 pushq %r13 /* pt_regs->r13 */
1504 pushq %r14 /* pt_regs->r14 */
1505 pushq %r15 /* pt_regs->r15 */
8c1f7558 1506 UNWIND_HINT_REGS
946c1911 1507 ENCODE_FRAME_POINTER
9b6e6a83
AL
1508
1509 /*
1510 * At this point we no longer need to worry about stack damage
1511 * due to nesting -- we're on the normal thread stack and we're
1512 * done with the NMI stack.
1513 */
1514
1515 movq %rsp, %rdi
1516 movq $-1, %rsi
1517 call do_nmi
1518
45d5a168 1519 /*
9b6e6a83 1520 * Return back to user mode. We must *not* do the normal exit
946c1911 1521 * work, because we don't want to enable interrupts.
45d5a168 1522 */
8a055d7f 1523 jmp swapgs_restore_regs_and_return_to_usermode
45d5a168 1524
9b6e6a83 1525.Lnmi_from_kernel:
3f3c8b8c 1526 /*
0b22930e
AL
1527 * Here's what our stack frame will look like:
1528 * +---------------------------------------------------------+
1529 * | original SS |
1530 * | original Return RSP |
1531 * | original RFLAGS |
1532 * | original CS |
1533 * | original RIP |
1534 * +---------------------------------------------------------+
1535 * | temp storage for rdx |
1536 * +---------------------------------------------------------+
1537 * | "NMI executing" variable |
1538 * +---------------------------------------------------------+
1539 * | iret SS } Copied from "outermost" frame |
1540 * | iret Return RSP } on each loop iteration; overwritten |
1541 * | iret RFLAGS } by a nested NMI to force another |
1542 * | iret CS } iteration if needed. |
1543 * | iret RIP } |
1544 * +---------------------------------------------------------+
1545 * | outermost SS } initialized in first_nmi; |
1546 * | outermost Return RSP } will not be changed before |
1547 * | outermost RFLAGS } NMI processing is done. |
1548 * | outermost CS } Copied to "iret" frame on each |
1549 * | outermost RIP } iteration. |
1550 * +---------------------------------------------------------+
1551 * | pt_regs |
1552 * +---------------------------------------------------------+
1553 *
1554 * The "original" frame is used by hardware. Before re-enabling
1555 * NMIs, we need to be done with it, and we need to leave enough
1556 * space for the asm code here.
1557 *
1558 * We return by executing IRET while RSP points to the "iret" frame.
1559 * That will either return for real or it will loop back into NMI
1560 * processing.
1561 *
1562 * The "outermost" frame is copied to the "iret" frame on each
1563 * iteration of the loop, so each iteration starts with the "iret"
1564 * frame pointing to the final return target.
1565 */
1566
45d5a168 1567 /*
0b22930e
AL
1568 * Determine whether we're a nested NMI.
1569 *
a27507ca
AL
1570 * If we interrupted kernel code between repeat_nmi and
1571 * end_repeat_nmi, then we are a nested NMI. We must not
1572 * modify the "iret" frame because it's being written by
1573 * the outer NMI. That's okay; the outer NMI handler is
1574 * about to about to call do_nmi anyway, so we can just
1575 * resume the outer NMI.
45d5a168 1576 */
a27507ca
AL
1577
1578 movq $repeat_nmi, %rdx
1579 cmpq 8(%rsp), %rdx
1580 ja 1f
1581 movq $end_repeat_nmi, %rdx
1582 cmpq 8(%rsp), %rdx
1583 ja nested_nmi_out
15841:
45d5a168 1585
3f3c8b8c 1586 /*
a27507ca 1587 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1588 * This will not detect if we interrupted an outer NMI just
1589 * before IRET.
3f3c8b8c 1590 */
4d732138
IM
1591 cmpl $1, -8(%rsp)
1592 je nested_nmi
3f3c8b8c
SR
1593
1594 /*
0b22930e
AL
1595 * Now test if the previous stack was an NMI stack. This covers
1596 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1597 * "NMI executing" but before IRET. We need to be careful, though:
1598 * there is one case in which RSP could point to the NMI stack
1599 * despite there being no NMI active: naughty userspace controls
1600 * RSP at the very beginning of the SYSCALL targets. We can
1601 * pull a fast one on naughty userspace, though: we program
1602 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1603 * if it controls the kernel's RSP. We set DF before we clear
1604 * "NMI executing".
3f3c8b8c 1605 */
0784b364
DV
1606 lea 6*8(%rsp), %rdx
1607 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1608 cmpq %rdx, 4*8(%rsp)
1609 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1610 ja first_nmi
4d732138 1611
0784b364
DV
1612 subq $EXCEPTION_STKSZ, %rdx
1613 cmpq %rdx, 4*8(%rsp)
1614 /* If it is below the NMI stack, it is a normal NMI */
1615 jb first_nmi
810bc075
AL
1616
1617 /* Ah, it is within the NMI stack. */
1618
1619 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1620 jz first_nmi /* RSP was user controlled. */
1621
1622 /* This is a nested NMI. */
0784b364 1623
3f3c8b8c
SR
1624nested_nmi:
1625 /*
0b22930e
AL
1626 * Modify the "iret" frame to point to repeat_nmi, forcing another
1627 * iteration of NMI handling.
3f3c8b8c 1628 */
23a781e9 1629 subq $8, %rsp
4d732138
IM
1630 leaq -10*8(%rsp), %rdx
1631 pushq $__KERNEL_DS
1632 pushq %rdx
131484c8 1633 pushfq
4d732138
IM
1634 pushq $__KERNEL_CS
1635 pushq $repeat_nmi
3f3c8b8c
SR
1636
1637 /* Put stack back */
4d732138 1638 addq $(6*8), %rsp
3f3c8b8c
SR
1639
1640nested_nmi_out:
4d732138 1641 popq %rdx
3f3c8b8c 1642
0b22930e 1643 /* We are returning to kernel mode, so this cannot result in a fault. */
929bacec 1644 iretq
3f3c8b8c
SR
1645
1646first_nmi:
0b22930e 1647 /* Restore rdx. */
4d732138 1648 movq (%rsp), %rdx
62610913 1649
36f1a77b
AL
1650 /* Make room for "NMI executing". */
1651 pushq $0
3f3c8b8c 1652
0b22930e 1653 /* Leave room for the "iret" frame */
4d732138 1654 subq $(5*8), %rsp
28696f43 1655
0b22930e 1656 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1657 .rept 5
4d732138 1658 pushq 11*8(%rsp)
3f3c8b8c 1659 .endr
8c1f7558 1660 UNWIND_HINT_IRET_REGS
62610913 1661
79fb4ad6
SR
1662 /* Everything up to here is safe from nested NMIs */
1663
a97439aa
AL
1664#ifdef CONFIG_DEBUG_ENTRY
1665 /*
1666 * For ease of testing, unmask NMIs right away. Disabled by
1667 * default because IRET is very expensive.
1668 */
1669 pushq $0 /* SS */
1670 pushq %rsp /* RSP (minus 8 because of the previous push) */
1671 addq $8, (%rsp) /* Fix up RSP */
1672 pushfq /* RFLAGS */
1673 pushq $__KERNEL_CS /* CS */
1674 pushq $1f /* RIP */
929bacec 1675 iretq /* continues at repeat_nmi below */
8c1f7558 1676 UNWIND_HINT_IRET_REGS
a97439aa
AL
16771:
1678#endif
1679
0b22930e 1680repeat_nmi:
62610913
JB
1681 /*
1682 * If there was a nested NMI, the first NMI's iret will return
1683 * here. But NMIs are still enabled and we can take another
1684 * nested NMI. The nested NMI checks the interrupted RIP to see
1685 * if it is between repeat_nmi and end_repeat_nmi, and if so
1686 * it will just return, as we are about to repeat an NMI anyway.
1687 * This makes it safe to copy to the stack frame that a nested
1688 * NMI will update.
0b22930e
AL
1689 *
1690 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1691 * we're repeating an NMI, gsbase has the same value that it had on
1692 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1693 * gsbase if needed before we call do_nmi. "NMI executing"
1694 * is zero.
62610913 1695 */
36f1a77b 1696 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1697
62610913 1698 /*
0b22930e
AL
1699 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1700 * here must not modify the "iret" frame while we're writing to
1701 * it or it will end up containing garbage.
62610913 1702 */
4d732138 1703 addq $(10*8), %rsp
3f3c8b8c 1704 .rept 5
4d732138 1705 pushq -6*8(%rsp)
3f3c8b8c 1706 .endr
4d732138 1707 subq $(5*8), %rsp
62610913 1708end_repeat_nmi:
3f3c8b8c
SR
1709
1710 /*
0b22930e
AL
1711 * Everything below this point can be preempted by a nested NMI.
1712 * If this happens, then the inner NMI will change the "iret"
1713 * frame to point back to repeat_nmi.
3f3c8b8c 1714 */
4d732138 1715 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43
DV
1716 ALLOC_PT_GPREGS_ON_STACK
1717
1fd466ef 1718 /*
ebfc453e 1719 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1720 * as we should not be calling schedule in NMI context.
1721 * Even with normal interrupts enabled. An NMI should not be
1722 * setting NEED_RESCHED or anything that normal interrupts and
1723 * exceptions might do.
1724 */
4d732138 1725 call paranoid_entry
8c1f7558 1726 UNWIND_HINT_REGS
7fbb98c5 1727
ddeb8f21 1728 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1729 movq %rsp, %rdi
1730 movq $-1, %rsi
1731 call do_nmi
7fbb98c5 1732
8a09317b
DH
1733 RESTORE_CR3 save_reg=%r14
1734
4d732138
IM
1735 testl %ebx, %ebx /* swapgs needed? */
1736 jnz nmi_restore
ddeb8f21
AH
1737nmi_swapgs:
1738 SWAPGS_UNSAFE_STACK
1739nmi_restore:
471ee483
AL
1740 POP_EXTRA_REGS
1741 POP_C_REGS
0b22930e 1742
471ee483
AL
1743 /*
1744 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1745 * at the "iret" frame.
1746 */
1747 addq $6*8, %rsp
28696f43 1748
810bc075
AL
1749 /*
1750 * Clear "NMI executing". Set DF first so that we can easily
1751 * distinguish the remaining code between here and IRET from
929bacec
AL
1752 * the SYSCALL entry and exit paths.
1753 *
1754 * We arguably should just inspect RIP instead, but I (Andy) wrote
1755 * this code when I had the misapprehension that Xen PV supported
1756 * NMIs, and Xen PV would break that approach.
810bc075
AL
1757 */
1758 std
1759 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1760
1761 /*
929bacec
AL
1762 * iretq reads the "iret" frame and exits the NMI stack in a
1763 * single instruction. We are returning to kernel mode, so this
1764 * cannot result in a fault. Similarly, we don't need to worry
1765 * about espfix64 on the way back to kernel mode.
0b22930e 1766 */
929bacec 1767 iretq
ddeb8f21
AH
1768END(nmi)
1769
1770ENTRY(ignore_sysret)
8c1f7558 1771 UNWIND_HINT_EMPTY
4d732138 1772 mov $-ENOSYS, %eax
ddeb8f21 1773 sysret
ddeb8f21 1774END(ignore_sysret)
2deb4be2
AL
1775
1776ENTRY(rewind_stack_do_exit)
8c1f7558 1777 UNWIND_HINT_FUNC
2deb4be2
AL
1778 /* Prevent any naive code from trying to unwind to our caller. */
1779 xorl %ebp, %ebp
1780
1781 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
8c1f7558
JP
1782 leaq -PTREGS_SIZE(%rax), %rsp
1783 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
2deb4be2
AL
1784
1785 call do_exit
2deb4be2 1786END(rewind_stack_do_exit)