]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - arch/x86/entry/entry_64.S
x86/entry/64: Use a per-CPU trampoline stack for IDT entries
[thirdparty/kernel/stable.git] / arch / x86 / entry / entry_64.S
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2/*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 8 *
1da177e4
LT
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
8b4777a4
AL
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
0bd7b798 13 * A note on terminology:
4d732138
IM
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
2e91a17b
AK
16 *
17 * Some macro usage:
4d732138
IM
18 * - ENTRY/END: Define functions in the symbol table.
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
1da177e4 21 */
1da177e4
LT
22#include <linux/linkage.h>
23#include <asm/segment.h>
1da177e4
LT
24#include <asm/cache.h>
25#include <asm/errno.h>
d36f9479 26#include "calling.h"
e2d5df93 27#include <asm/asm-offsets.h>
1da177e4
LT
28#include <asm/msr.h>
29#include <asm/unistd.h>
30#include <asm/thread_info.h>
31#include <asm/hw_irq.h>
0341c14d 32#include <asm/page_types.h>
2601e64d 33#include <asm/irqflags.h>
72fe4858 34#include <asm/paravirt.h>
9939ddaf 35#include <asm/percpu.h>
d7abc0fa 36#include <asm/asm.h>
63bcff2a 37#include <asm/smap.h>
3891a04a 38#include <asm/pgtable_types.h>
784d5699 39#include <asm/export.h>
8c1f7558 40#include <asm/frame.h>
d7e7528b 41#include <linux/err.h>
1da177e4 42
4d732138
IM
43.code64
44.section .entry.text, "ax"
16444a8a 45
72fe4858 46#ifdef CONFIG_PARAVIRT
2be29982 47ENTRY(native_usergs_sysret64)
8c1f7558 48 UNWIND_HINT_EMPTY
72fe4858
GOC
49 swapgs
50 sysretq
8c1f7558 51END(native_usergs_sysret64)
72fe4858
GOC
52#endif /* CONFIG_PARAVIRT */
53
f2db9382 54.macro TRACE_IRQS_IRETQ
2601e64d 55#ifdef CONFIG_TRACE_IRQFLAGS
4d732138
IM
56 bt $9, EFLAGS(%rsp) /* interrupts off? */
57 jnc 1f
2601e64d
IM
58 TRACE_IRQS_ON
591:
60#endif
61.endm
62
5963e317
SR
63/*
64 * When dynamic function tracer is enabled it will add a breakpoint
65 * to all locations that it is about to modify, sync CPUs, update
66 * all the code, sync CPUs, then remove the breakpoints. In this time
67 * if lockdep is enabled, it might jump back into the debug handler
68 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
69 *
70 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
71 * make sure the stack pointer does not get reset back to the top
72 * of the debug stack, and instead just reuses the current stack.
73 */
74#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
75
76.macro TRACE_IRQS_OFF_DEBUG
4d732138 77 call debug_stack_set_zero
5963e317 78 TRACE_IRQS_OFF
4d732138 79 call debug_stack_reset
5963e317
SR
80.endm
81
82.macro TRACE_IRQS_ON_DEBUG
4d732138 83 call debug_stack_set_zero
5963e317 84 TRACE_IRQS_ON
4d732138 85 call debug_stack_reset
5963e317
SR
86.endm
87
f2db9382 88.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
89 bt $9, EFLAGS(%rsp) /* interrupts off? */
90 jnc 1f
5963e317
SR
91 TRACE_IRQS_ON_DEBUG
921:
93.endm
94
95#else
4d732138
IM
96# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
97# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
98# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
99#endif
100
1da177e4 101/*
4d732138 102 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 103 *
fda57b22
AL
104 * This is the only entry point used for 64-bit system calls. The
105 * hardware interface is reasonably well designed and the register to
106 * argument mapping Linux uses fits well with the registers that are
107 * available when SYSCALL is used.
108 *
109 * SYSCALL instructions can be found inlined in libc implementations as
110 * well as some other programs and libraries. There are also a handful
111 * of SYSCALL instructions in the vDSO used, for example, as a
112 * clock_gettimeofday fallback.
113 *
4d732138 114 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
115 * then loads new ss, cs, and rip from previously programmed MSRs.
116 * rflags gets masked by a value from another MSR (so CLD and CLAC
117 * are not needed). SYSCALL does not save anything on the stack
118 * and does not change rsp.
119 *
120 * Registers on entry:
1da177e4 121 * rax system call number
b87cf63e
DV
122 * rcx return address
123 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 124 * rdi arg0
1da177e4 125 * rsi arg1
0bd7b798 126 * rdx arg2
b87cf63e 127 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
128 * r8 arg4
129 * r9 arg5
4d732138 130 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 131 *
1da177e4
LT
132 * Only called from user space.
133 *
7fcb3bc3 134 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
135 * it deals with uncanonical addresses better. SYSRET has trouble
136 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 137 */
1da177e4 138
b2502b41 139ENTRY(entry_SYSCALL_64)
8c1f7558 140 UNWIND_HINT_EMPTY
9ed8e7d8
DV
141 /*
142 * Interrupts are off on entry.
143 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
144 * it is too small to ever cause noticeable irq latency.
145 */
72fe4858 146
8a9949bc 147 swapgs
4d732138
IM
148 movq %rsp, PER_CPU_VAR(rsp_scratch)
149 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8 150
1e423bff
AL
151 TRACE_IRQS_OFF
152
9ed8e7d8 153 /* Construct struct pt_regs on stack */
4d732138
IM
154 pushq $__USER_DS /* pt_regs->ss */
155 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
4d732138
IM
156 pushq %r11 /* pt_regs->flags */
157 pushq $__USER_CS /* pt_regs->cs */
158 pushq %rcx /* pt_regs->ip */
8a9949bc 159GLOBAL(entry_SYSCALL_64_after_hwframe)
4d732138
IM
160 pushq %rax /* pt_regs->orig_ax */
161 pushq %rdi /* pt_regs->di */
162 pushq %rsi /* pt_regs->si */
163 pushq %rdx /* pt_regs->dx */
164 pushq %rcx /* pt_regs->cx */
165 pushq $-ENOSYS /* pt_regs->ax */
166 pushq %r8 /* pt_regs->r8 */
167 pushq %r9 /* pt_regs->r9 */
168 pushq %r10 /* pt_regs->r10 */
169 pushq %r11 /* pt_regs->r11 */
170 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
8c1f7558 171 UNWIND_HINT_REGS extra=0
4d732138 172
1e423bff
AL
173 /*
174 * If we need to do entry work or if we guess we'll need to do
175 * exit work, go straight to the slow path.
176 */
15f4eae7
AL
177 movq PER_CPU_VAR(current_task), %r11
178 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
1e423bff
AL
179 jnz entry_SYSCALL64_slow_path
180
b2502b41 181entry_SYSCALL_64_fastpath:
1e423bff
AL
182 /*
183 * Easy case: enable interrupts and issue the syscall. If the syscall
184 * needs pt_regs, we'll call a stub that disables interrupts again
185 * and jumps to the slow path.
186 */
187 TRACE_IRQS_ON
188 ENABLE_INTERRUPTS(CLBR_NONE)
fca460f9 189#if __SYSCALL_MASK == ~0
4d732138 190 cmpq $__NR_syscall_max, %rax
fca460f9 191#else
4d732138
IM
192 andl $__SYSCALL_MASK, %eax
193 cmpl $__NR_syscall_max, %eax
fca460f9 194#endif
4d732138
IM
195 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
196 movq %r10, %rcx
302f5b26
AL
197
198 /*
199 * This call instruction is handled specially in stub_ptregs_64.
b7765086
AL
200 * It might end up jumping to the slow path. If it jumps, RAX
201 * and all argument registers are clobbered.
302f5b26 202 */
4d732138 203 call *sys_call_table(, %rax, 8)
302f5b26
AL
204.Lentry_SYSCALL_64_after_fastpath_call:
205
4d732138 206 movq %rax, RAX(%rsp)
146b2b09 2071:
b3494a4a
AL
208
209 /*
1e423bff
AL
210 * If we get here, then we know that pt_regs is clean for SYSRET64.
211 * If we see that no exit work is required (which we are required
212 * to check with IRQs off), then we can go straight to SYSRET64.
b3494a4a 213 */
2140a994 214 DISABLE_INTERRUPTS(CLBR_ANY)
1e423bff 215 TRACE_IRQS_OFF
15f4eae7
AL
216 movq PER_CPU_VAR(current_task), %r11
217 testl $_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
1e423bff 218 jnz 1f
b3494a4a 219
1e423bff
AL
220 LOCKDEP_SYS_EXIT
221 TRACE_IRQS_ON /* user mode is traced as IRQs on */
eb2a54c3
AL
222 movq RIP(%rsp), %rcx
223 movq EFLAGS(%rsp), %r11
a5122106 224 addq $6*8, %rsp /* skip extra regs -- they were preserved */
8c1f7558 225 UNWIND_HINT_EMPTY
a5122106 226 jmp .Lpop_c_regs_except_rcx_r11_and_sysret
1da177e4 227
1e423bff
AL
2281:
229 /*
230 * The fast path looked good when we started, but something changed
231 * along the way and we need to switch to the slow path. Calling
232 * raise(3) will trigger this, for example. IRQs are off.
233 */
29ea1b25 234 TRACE_IRQS_ON
2140a994 235 ENABLE_INTERRUPTS(CLBR_ANY)
76f5df43 236 SAVE_EXTRA_REGS
4d732138 237 movq %rsp, %rdi
1e423bff
AL
238 call syscall_return_slowpath /* returns with IRQs disabled */
239 jmp return_from_SYSCALL_64
0bd7b798 240
1e423bff
AL
241entry_SYSCALL64_slow_path:
242 /* IRQs are off. */
76f5df43 243 SAVE_EXTRA_REGS
29ea1b25 244 movq %rsp, %rdi
1e423bff
AL
245 call do_syscall_64 /* returns with IRQs disabled */
246
247return_from_SYSCALL_64:
29ea1b25 248 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
249
250 /*
251 * Try to use SYSRET instead of IRET if we're returning to
8a055d7f
AL
252 * a completely clean 64-bit userspace context. If we're not,
253 * go to the slow exit path.
fffbb5dc 254 */
4d732138
IM
255 movq RCX(%rsp), %rcx
256 movq RIP(%rsp), %r11
8a055d7f
AL
257
258 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
259 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
260
261 /*
262 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
263 * in kernel space. This essentially lets the user take over
17be0aec 264 * the kernel, since userspace controls RSP.
fffbb5dc 265 *
17be0aec 266 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc 267 * to be updated to remain correct on both old and new CPUs.
361b4b58 268 *
cbe0317b
KS
269 * Change top bits to match most significant bit (47th or 56th bit
270 * depending on paging mode) in the address.
fffbb5dc 271 */
17be0aec
DV
272 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
273 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
4d732138 274
17be0aec
DV
275 /* If this changed %rcx, it was not canonical */
276 cmpq %rcx, %r11
8a055d7f 277 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 278
4d732138 279 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
8a055d7f 280 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 281
4d732138
IM
282 movq R11(%rsp), %r11
283 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
8a055d7f 284 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
285
286 /*
3e035305
BP
287 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
288 * restore RF properly. If the slowpath sets it for whatever reason, we
289 * need to restore it correctly.
290 *
291 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
292 * trap from userspace immediately after SYSRET. This would cause an
293 * infinite loop whenever #DB happens with register state that satisfies
294 * the opportunistic SYSRET conditions. For example, single-stepping
295 * this user code:
fffbb5dc 296 *
4d732138 297 * movq $stuck_here, %rcx
fffbb5dc
DV
298 * pushfq
299 * popq %r11
300 * stuck_here:
301 *
302 * would never get past 'stuck_here'.
303 */
4d732138 304 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
8a055d7f 305 jnz swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
306
307 /* nothing to check for RSP */
308
4d732138 309 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
8a055d7f 310 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
311
312 /*
4d732138
IM
313 * We win! This label is here just for ease of understanding
314 * perf profiles. Nothing jumps here.
fffbb5dc
DV
315 */
316syscall_return_via_sysret:
17be0aec 317 /* rcx and r11 are already restored (see code above) */
8c1f7558 318 UNWIND_HINT_EMPTY
4fbb3910 319 POP_EXTRA_REGS
a5122106 320.Lpop_c_regs_except_rcx_r11_and_sysret:
4fbb3910
AL
321 popq %rsi /* skip r11 */
322 popq %r10
323 popq %r9
324 popq %r8
325 popq %rax
326 popq %rsi /* skip rcx */
327 popq %rdx
328 popq %rsi
329 popq %rdi
330 movq RSP-ORIG_RAX(%rsp), %rsp
fffbb5dc 331 USERGS_SYSRET64
b2502b41 332END(entry_SYSCALL_64)
0bd7b798 333
302f5b26
AL
334ENTRY(stub_ptregs_64)
335 /*
336 * Syscalls marked as needing ptregs land here.
b7765086
AL
337 * If we are on the fast path, we need to save the extra regs,
338 * which we achieve by trying again on the slow path. If we are on
339 * the slow path, the extra regs are already saved.
302f5b26
AL
340 *
341 * RAX stores a pointer to the C function implementing the syscall.
b7765086 342 * IRQs are on.
302f5b26
AL
343 */
344 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
345 jne 1f
346
b7765086
AL
347 /*
348 * Called from fast path -- disable IRQs again, pop return address
349 * and jump to slow path
350 */
2140a994 351 DISABLE_INTERRUPTS(CLBR_ANY)
b7765086 352 TRACE_IRQS_OFF
302f5b26 353 popq %rax
8c1f7558 354 UNWIND_HINT_REGS extra=0
b7765086 355 jmp entry_SYSCALL64_slow_path
302f5b26
AL
356
3571:
b3830e8d 358 jmp *%rax /* Called from C */
302f5b26
AL
359END(stub_ptregs_64)
360
361.macro ptregs_stub func
362ENTRY(ptregs_\func)
8c1f7558 363 UNWIND_HINT_FUNC
302f5b26
AL
364 leaq \func(%rip), %rax
365 jmp stub_ptregs_64
366END(ptregs_\func)
367.endm
368
369/* Instantiate ptregs_stub for each ptregs-using syscall */
370#define __SYSCALL_64_QUAL_(sym)
371#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
372#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
373#include <asm/syscalls_64.h>
fffbb5dc 374
0100301b
BG
375/*
376 * %rdi: prev task
377 * %rsi: next task
378 */
379ENTRY(__switch_to_asm)
8c1f7558 380 UNWIND_HINT_FUNC
0100301b
BG
381 /*
382 * Save callee-saved registers
383 * This must match the order in inactive_task_frame
384 */
385 pushq %rbp
386 pushq %rbx
387 pushq %r12
388 pushq %r13
389 pushq %r14
390 pushq %r15
391
392 /* switch stack */
393 movq %rsp, TASK_threadsp(%rdi)
394 movq TASK_threadsp(%rsi), %rsp
395
396#ifdef CONFIG_CC_STACKPROTECTOR
397 movq TASK_stack_canary(%rsi), %rbx
398 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
399#endif
400
401 /* restore callee-saved registers */
402 popq %r15
403 popq %r14
404 popq %r13
405 popq %r12
406 popq %rbx
407 popq %rbp
408
409 jmp __switch_to
410END(__switch_to_asm)
411
1eeb207f
DV
412/*
413 * A newly forked process directly context switches into this address.
414 *
0100301b 415 * rax: prev task we switched from
616d2483
BG
416 * rbx: kernel thread func (NULL for user thread)
417 * r12: kernel thread arg
1eeb207f
DV
418 */
419ENTRY(ret_from_fork)
8c1f7558 420 UNWIND_HINT_EMPTY
0100301b 421 movq %rax, %rdi
ebd57499 422 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 423
ebd57499
JP
424 testq %rbx, %rbx /* from kernel_thread? */
425 jnz 1f /* kernel threads are uncommon */
24d978b7 426
616d2483 4272:
8c1f7558 428 UNWIND_HINT_REGS
ebd57499 429 movq %rsp, %rdi
24d978b7
AL
430 call syscall_return_slowpath /* returns with IRQs disabled */
431 TRACE_IRQS_ON /* user mode is traced as IRQS on */
8a055d7f 432 jmp swapgs_restore_regs_and_return_to_usermode
616d2483
BG
433
4341:
435 /* kernel thread */
436 movq %r12, %rdi
437 call *%rbx
438 /*
439 * A kernel thread is allowed to return here after successfully
440 * calling do_execve(). Exit to userspace to complete the execve()
441 * syscall.
442 */
443 movq $0, RAX(%rsp)
444 jmp 2b
1eeb207f
DV
445END(ret_from_fork)
446
939b7871 447/*
3304c9c3
DV
448 * Build the entry stubs with some assembler magic.
449 * We pack 1 stub into every 8-byte block.
939b7871 450 */
3304c9c3 451 .align 8
939b7871 452ENTRY(irq_entries_start)
3304c9c3
DV
453 vector=FIRST_EXTERNAL_VECTOR
454 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
8c1f7558 455 UNWIND_HINT_IRET_REGS
4d732138 456 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3 457 jmp common_interrupt
3304c9c3 458 .align 8
8c1f7558 459 vector=vector+1
3304c9c3 460 .endr
939b7871
PA
461END(irq_entries_start)
462
1d3e53e8
AL
463.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
464#ifdef CONFIG_DEBUG_ENTRY
e17f8234
BO
465 pushq %rax
466 SAVE_FLAGS(CLBR_RAX)
467 testl $X86_EFLAGS_IF, %eax
1d3e53e8
AL
468 jz .Lokay_\@
469 ud2
470.Lokay_\@:
e17f8234 471 popq %rax
1d3e53e8
AL
472#endif
473.endm
474
475/*
476 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
477 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
478 * Requires kernel GSBASE.
479 *
480 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
481 */
8c1f7558 482.macro ENTER_IRQ_STACK regs=1 old_rsp
1d3e53e8
AL
483 DEBUG_ENTRY_ASSERT_IRQS_OFF
484 movq %rsp, \old_rsp
8c1f7558
JP
485
486 .if \regs
487 UNWIND_HINT_REGS base=\old_rsp
488 .endif
489
1d3e53e8 490 incl PER_CPU_VAR(irq_count)
29955909 491 jnz .Lirq_stack_push_old_rsp_\@
1d3e53e8
AL
492
493 /*
494 * Right now, if we just incremented irq_count to zero, we've
495 * claimed the IRQ stack but we haven't switched to it yet.
496 *
497 * If anything is added that can interrupt us here without using IST,
498 * it must be *extremely* careful to limit its stack usage. This
499 * could include kprobes and a hypothetical future IST-less #DB
500 * handler.
29955909
AL
501 *
502 * The OOPS unwinder relies on the word at the top of the IRQ
503 * stack linking back to the previous RSP for the entire time we're
504 * on the IRQ stack. For this to work reliably, we need to write
505 * it before we actually move ourselves to the IRQ stack.
506 */
507
508 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
509 movq PER_CPU_VAR(irq_stack_ptr), %rsp
510
511#ifdef CONFIG_DEBUG_ENTRY
512 /*
513 * If the first movq above becomes wrong due to IRQ stack layout
514 * changes, the only way we'll notice is if we try to unwind right
515 * here. Assert that we set up the stack right to catch this type
516 * of bug quickly.
1d3e53e8 517 */
29955909
AL
518 cmpq -8(%rsp), \old_rsp
519 je .Lirq_stack_okay\@
520 ud2
521 .Lirq_stack_okay\@:
522#endif
1d3e53e8 523
29955909 524.Lirq_stack_push_old_rsp_\@:
1d3e53e8 525 pushq \old_rsp
8c1f7558
JP
526
527 .if \regs
528 UNWIND_HINT_REGS indirect=1
529 .endif
1d3e53e8
AL
530.endm
531
532/*
533 * Undoes ENTER_IRQ_STACK.
534 */
8c1f7558 535.macro LEAVE_IRQ_STACK regs=1
1d3e53e8
AL
536 DEBUG_ENTRY_ASSERT_IRQS_OFF
537 /* We need to be off the IRQ stack before decrementing irq_count. */
538 popq %rsp
539
8c1f7558
JP
540 .if \regs
541 UNWIND_HINT_REGS
542 .endif
543
1d3e53e8
AL
544 /*
545 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
546 * the irq stack but we're not on it.
547 */
548
549 decl PER_CPU_VAR(irq_count)
550.endm
551
d99015b1 552/*
1da177e4
LT
553 * Interrupt entry/exit.
554 *
555 * Interrupt entry points save only callee clobbered registers in fast path.
d99015b1
AH
556 *
557 * Entry runs with interrupts off.
558 */
1da177e4 559
722024db 560/* 0(%rsp): ~(interrupt number) */
1da177e4 561 .macro interrupt func
f6f64681 562 cld
7f2590a1
AL
563
564 testb $3, CS-ORIG_RAX(%rsp)
565 jz 1f
566 SWAPGS
567 call switch_to_thread_stack
5681:
569
ff467594
AL
570 ALLOC_PT_GPREGS_ON_STACK
571 SAVE_C_REGS
572 SAVE_EXTRA_REGS
946c1911 573 ENCODE_FRAME_POINTER
76f5df43 574
ff467594 575 testb $3, CS(%rsp)
dde74f2e 576 jz 1f
02bc7768
AL
577
578 /*
7f2590a1
AL
579 * IRQ from user mode.
580 *
f1075053
AL
581 * We need to tell lockdep that IRQs are off. We can't do this until
582 * we fix gsbase, and we should do it before enter_from_user_mode
583 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
584 * the simplest way to handle it is to just call it twice if
585 * we enter from user mode. There's no reason to optimize this since
586 * TRACE_IRQS_OFF is a no-op if lockdep is off.
587 */
588 TRACE_IRQS_OFF
589
478dc89c 590 CALL_enter_from_user_mode
02bc7768 591
76f5df43 5921:
1d3e53e8 593 ENTER_IRQ_STACK old_rsp=%rdi
f6f64681
DV
594 /* We entered an interrupt context - irqs are off: */
595 TRACE_IRQS_OFF
596
a586f98e 597 call \func /* rdi points to pt_regs */
1da177e4
LT
598 .endm
599
722024db
AH
600 /*
601 * The interrupt stubs push (~vector+0x80) onto the stack and
602 * then jump to common_interrupt.
603 */
939b7871
PA
604 .p2align CONFIG_X86_L1_CACHE_SHIFT
605common_interrupt:
ee4eb87b 606 ASM_CLAC
4d732138 607 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
1da177e4 608 interrupt do_IRQ
34061f13 609 /* 0(%rsp): old RSP */
7effaa88 610ret_from_intr:
2140a994 611 DISABLE_INTERRUPTS(CLBR_ANY)
2601e64d 612 TRACE_IRQS_OFF
625dbc3b 613
1d3e53e8 614 LEAVE_IRQ_STACK
625dbc3b 615
03335e95 616 testb $3, CS(%rsp)
dde74f2e 617 jz retint_kernel
4d732138 618
02bc7768 619 /* Interrupt came from user space */
02bc7768
AL
620GLOBAL(retint_user)
621 mov %rsp,%rdi
622 call prepare_exit_to_usermode
2601e64d 623 TRACE_IRQS_IRETQ
26c4ef9c 624
8a055d7f 625GLOBAL(swapgs_restore_regs_and_return_to_usermode)
26c4ef9c
AL
626#ifdef CONFIG_DEBUG_ENTRY
627 /* Assert that pt_regs indicates user mode. */
1e4c4f61 628 testb $3, CS(%rsp)
26c4ef9c
AL
629 jnz 1f
630 ud2
6311:
632#endif
72fe4858 633 SWAPGS
e872045b
AL
634 POP_EXTRA_REGS
635 POP_C_REGS
636 addq $8, %rsp /* skip regs->orig_ax */
26c4ef9c
AL
637 INTERRUPT_RETURN
638
2601e64d 639
627276cb 640/* Returning to kernel space */
6ba71b76 641retint_kernel:
627276cb
DV
642#ifdef CONFIG_PREEMPT
643 /* Interrupts are off */
644 /* Check if we need preemption */
4d732138 645 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 646 jnc 1f
4d732138 6470: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 648 jnz 1f
627276cb 649 call preempt_schedule_irq
36acef25 650 jmp 0b
6ba71b76 6511:
627276cb 652#endif
2601e64d
IM
653 /*
654 * The iretq could re-enable interrupts:
655 */
656 TRACE_IRQS_IRETQ
fffbb5dc 657
26c4ef9c
AL
658GLOBAL(restore_regs_and_return_to_kernel)
659#ifdef CONFIG_DEBUG_ENTRY
660 /* Assert that pt_regs indicates kernel mode. */
1e4c4f61 661 testb $3, CS(%rsp)
26c4ef9c
AL
662 jz 1f
663 ud2
6641:
665#endif
e872045b
AL
666 POP_EXTRA_REGS
667 POP_C_REGS
668 addq $8, %rsp /* skip regs->orig_ax */
7209a75d
AL
669 INTERRUPT_RETURN
670
671ENTRY(native_iret)
8c1f7558 672 UNWIND_HINT_IRET_REGS
3891a04a
PA
673 /*
674 * Are we returning to a stack segment from the LDT? Note: in
675 * 64-bit mode SS:RSP on the exception stack is always valid.
676 */
34273f41 677#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
678 testb $4, (SS-RIP)(%rsp)
679 jnz native_irq_return_ldt
34273f41 680#endif
3891a04a 681
af726f21 682.global native_irq_return_iret
7209a75d 683native_irq_return_iret:
b645af2d
AL
684 /*
685 * This may fault. Non-paranoid faults on return to userspace are
686 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
687 * Double-faults due to espfix64 are handled in do_double_fault.
688 * Other faults here are fatal.
689 */
1da177e4 690 iretq
3701d863 691
34273f41 692#ifdef CONFIG_X86_ESPFIX64
7209a75d 693native_irq_return_ldt:
85063fac
AL
694 /*
695 * We are running with user GSBASE. All GPRs contain their user
696 * values. We have a percpu ESPFIX stack that is eight slots
697 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
698 * of the ESPFIX stack.
699 *
700 * We clobber RAX and RDI in this code. We stash RDI on the
701 * normal stack and RAX on the ESPFIX stack.
702 *
703 * The ESPFIX stack layout we set up looks like this:
704 *
705 * --- top of ESPFIX stack ---
706 * SS
707 * RSP
708 * RFLAGS
709 * CS
710 * RIP <-- RSP points here when we're done
711 * RAX <-- espfix_waddr points here
712 * --- bottom of ESPFIX stack ---
713 */
714
715 pushq %rdi /* Stash user RDI */
3891a04a 716 SWAPGS
4d732138 717 movq PER_CPU_VAR(espfix_waddr), %rdi
85063fac
AL
718 movq %rax, (0*8)(%rdi) /* user RAX */
719 movq (1*8)(%rsp), %rax /* user RIP */
4d732138 720 movq %rax, (1*8)(%rdi)
85063fac 721 movq (2*8)(%rsp), %rax /* user CS */
4d732138 722 movq %rax, (2*8)(%rdi)
85063fac 723 movq (3*8)(%rsp), %rax /* user RFLAGS */
4d732138 724 movq %rax, (3*8)(%rdi)
85063fac 725 movq (5*8)(%rsp), %rax /* user SS */
4d732138 726 movq %rax, (5*8)(%rdi)
85063fac 727 movq (4*8)(%rsp), %rax /* user RSP */
4d732138 728 movq %rax, (4*8)(%rdi)
85063fac
AL
729 /* Now RAX == RSP. */
730
731 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
732 popq %rdi /* Restore user RDI */
733
734 /*
735 * espfix_stack[31:16] == 0. The page tables are set up such that
736 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
737 * espfix_waddr for any X. That is, there are 65536 RO aliases of
738 * the same page. Set up RSP so that RSP[31:16] contains the
739 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
740 * still points to an RO alias of the ESPFIX stack.
741 */
4d732138 742 orq PER_CPU_VAR(espfix_stack), %rax
3891a04a 743 SWAPGS
4d732138 744 movq %rax, %rsp
8c1f7558 745 UNWIND_HINT_IRET_REGS offset=8
85063fac
AL
746
747 /*
748 * At this point, we cannot write to the stack any more, but we can
749 * still read.
750 */
751 popq %rax /* Restore user RAX */
752
753 /*
754 * RSP now points to an ordinary IRET frame, except that the page
755 * is read-only and RSP[31:16] are preloaded with the userspace
756 * values. We can now IRET back to userspace.
757 */
4d732138 758 jmp native_irq_return_iret
34273f41 759#endif
4b787e0b 760END(common_interrupt)
3891a04a 761
1da177e4
LT
762/*
763 * APIC interrupts.
0bd7b798 764 */
cf910e83 765.macro apicinterrupt3 num sym do_sym
322648d1 766ENTRY(\sym)
8c1f7558 767 UNWIND_HINT_IRET_REGS
ee4eb87b 768 ASM_CLAC
4d732138 769 pushq $~(\num)
39e95433 770.Lcommon_\sym:
322648d1 771 interrupt \do_sym
4d732138 772 jmp ret_from_intr
322648d1
AH
773END(\sym)
774.endm
1da177e4 775
469f0023 776/* Make sure APIC interrupt handlers end up in the irqentry section: */
229a7186
MH
777#define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
778#define POP_SECTION_IRQENTRY .popsection
469f0023 779
cf910e83 780.macro apicinterrupt num sym do_sym
469f0023 781PUSH_SECTION_IRQENTRY
cf910e83 782apicinterrupt3 \num \sym \do_sym
469f0023 783POP_SECTION_IRQENTRY
cf910e83
SA
784.endm
785
322648d1 786#ifdef CONFIG_SMP
4d732138
IM
787apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
788apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 789#endif
1da177e4 790
03b48632 791#ifdef CONFIG_X86_UV
4d732138 792apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 793#endif
4d732138
IM
794
795apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
796apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 797
d78f2664 798#ifdef CONFIG_HAVE_KVM
4d732138
IM
799apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
800apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
210f84b0 801apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
d78f2664
YZ
802#endif
803
33e5ff63 804#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 805apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
806#endif
807
24fd78a8 808#ifdef CONFIG_X86_MCE_AMD
4d732138 809apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
810#endif
811
33e5ff63 812#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 813apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 814#endif
1812924b 815
322648d1 816#ifdef CONFIG_SMP
4d732138
IM
817apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
818apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
819apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 820#endif
1da177e4 821
4d732138
IM
822apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
823apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 824
e360adbe 825#ifdef CONFIG_IRQ_WORK
4d732138 826apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
827#endif
828
1da177e4
LT
829/*
830 * Exception entry points.
0bd7b798 831 */
9b476688 832#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
577ed45e 833
7f2590a1
AL
834/*
835 * Switch to the thread stack. This is called with the IRET frame and
836 * orig_ax on the stack. (That is, RDI..R12 are not on the stack and
837 * space has not been allocated for them.)
838 */
839ENTRY(switch_to_thread_stack)
840 UNWIND_HINT_FUNC
841
842 pushq %rdi
843 movq %rsp, %rdi
844 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
845 UNWIND_HINT sp_offset=16 sp_reg=ORC_REG_DI
846
847 pushq 7*8(%rdi) /* regs->ss */
848 pushq 6*8(%rdi) /* regs->rsp */
849 pushq 5*8(%rdi) /* regs->eflags */
850 pushq 4*8(%rdi) /* regs->cs */
851 pushq 3*8(%rdi) /* regs->ip */
852 pushq 2*8(%rdi) /* regs->orig_ax */
853 pushq 8(%rdi) /* return address */
854 UNWIND_HINT_FUNC
855
856 movq (%rdi), %rdi
857 ret
858END(switch_to_thread_stack)
859
577ed45e 860.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 861ENTRY(\sym)
98990a33 862 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
8c1f7558 863
577ed45e
AL
864 /* Sanity check */
865 .if \shift_ist != -1 && \paranoid == 0
866 .error "using shift_ist requires paranoid=1"
867 .endif
868
ee4eb87b 869 ASM_CLAC
cb5dd2c5 870
82c62fa0 871 .if \has_error_code == 0
4d732138 872 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
873 .endif
874
76f5df43 875 ALLOC_PT_GPREGS_ON_STACK
cb5dd2c5 876
7f2590a1 877 .if \paranoid < 2
4d732138 878 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
7f2590a1 879 jnz .Lfrom_usermode_switch_stack_\@
48e08d0f 880 .endif
7f2590a1
AL
881
882 .if \paranoid
4d732138 883 call paranoid_entry
cb5dd2c5 884 .else
4d732138 885 call error_entry
cb5dd2c5 886 .endif
8c1f7558 887 UNWIND_HINT_REGS
ebfc453e 888 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 889
cb5dd2c5 890 .if \paranoid
577ed45e 891 .if \shift_ist != -1
4d732138 892 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 893 .else
b8b1d08b 894 TRACE_IRQS_OFF
cb5dd2c5 895 .endif
577ed45e 896 .endif
cb5dd2c5 897
4d732138 898 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
899
900 .if \has_error_code
4d732138
IM
901 movq ORIG_RAX(%rsp), %rsi /* get error code */
902 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 903 .else
4d732138 904 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
905 .endif
906
577ed45e 907 .if \shift_ist != -1
4d732138 908 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
909 .endif
910
4d732138 911 call \do_sym
cb5dd2c5 912
577ed45e 913 .if \shift_ist != -1
4d732138 914 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
915 .endif
916
ebfc453e 917 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 918 .if \paranoid
4d732138 919 jmp paranoid_exit
cb5dd2c5 920 .else
4d732138 921 jmp error_exit
cb5dd2c5
AL
922 .endif
923
7f2590a1 924 .if \paranoid < 2
48e08d0f 925 /*
7f2590a1 926 * Entry from userspace. Switch stacks and treat it
48e08d0f
AL
927 * as a normal entry. This means that paranoid handlers
928 * run in real process context if user_mode(regs).
929 */
7f2590a1 930.Lfrom_usermode_switch_stack_\@:
4d732138 931 call error_entry
48e08d0f 932
4d732138 933 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
934
935 .if \has_error_code
4d732138
IM
936 movq ORIG_RAX(%rsp), %rsi /* get error code */
937 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 938 .else
4d732138 939 xorl %esi, %esi /* no error code */
48e08d0f
AL
940 .endif
941
4d732138 942 call \do_sym
48e08d0f 943
4d732138 944 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 945 .endif
ddeb8f21 946END(\sym)
322648d1 947.endm
b8b1d08b 948
4d732138
IM
949idtentry divide_error do_divide_error has_error_code=0
950idtentry overflow do_overflow has_error_code=0
951idtentry bounds do_bounds has_error_code=0
952idtentry invalid_op do_invalid_op has_error_code=0
953idtentry device_not_available do_device_not_available has_error_code=0
954idtentry double_fault do_double_fault has_error_code=1 paranoid=2
955idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
956idtentry invalid_TSS do_invalid_TSS has_error_code=1
957idtentry segment_not_present do_segment_not_present has_error_code=1
958idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
959idtentry coprocessor_error do_coprocessor_error has_error_code=0
960idtentry alignment_check do_alignment_check has_error_code=1
961idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
962
963
964 /*
965 * Reload gs selector with exception handling
966 * edi: new selector
967 */
9f9d489a 968ENTRY(native_load_gs_index)
8c1f7558 969 FRAME_BEGIN
131484c8 970 pushfq
b8aa287f 971 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
9f1e87ea 972 SWAPGS
42c748bb 973.Lgs_change:
4d732138 974 movl %edi, %gs
96e5d28a 9752: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 976 SWAPGS
131484c8 977 popfq
8c1f7558 978 FRAME_END
9f1e87ea 979 ret
8c1f7558 980ENDPROC(native_load_gs_index)
784d5699 981EXPORT_SYMBOL(native_load_gs_index)
0bd7b798 982
42c748bb 983 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 984 .section .fixup, "ax"
1da177e4 985 /* running with kernelgs */
0bd7b798 986bad_gs:
4d732138 987 SWAPGS /* switch back to user gs */
b038c842
AL
988.macro ZAP_GS
989 /* This can't be a string because the preprocessor needs to see it. */
990 movl $__USER_DS, %eax
991 movl %eax, %gs
992.endm
993 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
994 xorl %eax, %eax
995 movl %eax, %gs
996 jmp 2b
9f1e87ea 997 .previous
0bd7b798 998
2699500b 999/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 1000ENTRY(do_softirq_own_stack)
4d732138
IM
1001 pushq %rbp
1002 mov %rsp, %rbp
8c1f7558 1003 ENTER_IRQ_STACK regs=0 old_rsp=%r11
4d732138 1004 call __do_softirq
8c1f7558 1005 LEAVE_IRQ_STACK regs=0
2699500b 1006 leaveq
ed6b676c 1007 ret
8c1f7558 1008ENDPROC(do_softirq_own_stack)
75154f40 1009
3d75e1b8 1010#ifdef CONFIG_XEN
5878d5d6 1011idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
1012
1013/*
9f1e87ea
CG
1014 * A note on the "critical region" in our callback handler.
1015 * We want to avoid stacking callback handlers due to events occurring
1016 * during handling of the last event. To do this, we keep events disabled
1017 * until we've done all processing. HOWEVER, we must enable events before
1018 * popping the stack frame (can't be done atomically) and so it would still
1019 * be possible to get enough handler activations to overflow the stack.
1020 * Although unlikely, bugs of that kind are hard to track down, so we'd
1021 * like to avoid the possibility.
1022 * So, on entry to the handler we detect whether we interrupted an
1023 * existing activation in its critical region -- if so, we pop the current
1024 * activation and restart the handler using the previous one.
1025 */
4d732138
IM
1026ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
1027
9f1e87ea
CG
1028/*
1029 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1030 * see the correct pointer to the pt_regs
1031 */
8c1f7558 1032 UNWIND_HINT_FUNC
4d732138 1033 movq %rdi, %rsp /* we don't return, adjust the stack frame */
8c1f7558 1034 UNWIND_HINT_REGS
1d3e53e8
AL
1035
1036 ENTER_IRQ_STACK old_rsp=%r10
4d732138 1037 call xen_evtchn_do_upcall
1d3e53e8
AL
1038 LEAVE_IRQ_STACK
1039
fdfd811d 1040#ifndef CONFIG_PREEMPT
4d732138 1041 call xen_maybe_preempt_hcall
fdfd811d 1042#endif
4d732138 1043 jmp error_exit
371c394a 1044END(xen_do_hypervisor_callback)
3d75e1b8
JF
1045
1046/*
9f1e87ea
CG
1047 * Hypervisor uses this for application faults while it executes.
1048 * We get here for two reasons:
1049 * 1. Fault while reloading DS, ES, FS or GS
1050 * 2. Fault while executing IRET
1051 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1052 * registers that could be reloaded and zeroed the others.
1053 * Category 2 we fix up by killing the current process. We cannot use the
1054 * normal Linux return path in this case because if we use the IRET hypercall
1055 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1056 * We distinguish between categories by comparing each saved segment register
1057 * with its current contents: any discrepancy means we in category 1.
1058 */
3d75e1b8 1059ENTRY(xen_failsafe_callback)
8c1f7558 1060 UNWIND_HINT_EMPTY
4d732138
IM
1061 movl %ds, %ecx
1062 cmpw %cx, 0x10(%rsp)
1063 jne 1f
1064 movl %es, %ecx
1065 cmpw %cx, 0x18(%rsp)
1066 jne 1f
1067 movl %fs, %ecx
1068 cmpw %cx, 0x20(%rsp)
1069 jne 1f
1070 movl %gs, %ecx
1071 cmpw %cx, 0x28(%rsp)
1072 jne 1f
3d75e1b8 1073 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
1074 movq (%rsp), %rcx
1075 movq 8(%rsp), %r11
1076 addq $0x30, %rsp
1077 pushq $0 /* RIP */
8c1f7558 1078 UNWIND_HINT_IRET_REGS offset=8
4d732138 1079 jmp general_protection
3d75e1b8 10801: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
1081 movq (%rsp), %rcx
1082 movq 8(%rsp), %r11
1083 addq $0x30, %rsp
8c1f7558 1084 UNWIND_HINT_IRET_REGS
4d732138 1085 pushq $-1 /* orig_ax = -1 => not a system call */
76f5df43
DV
1086 ALLOC_PT_GPREGS_ON_STACK
1087 SAVE_C_REGS
1088 SAVE_EXTRA_REGS
946c1911 1089 ENCODE_FRAME_POINTER
4d732138 1090 jmp error_exit
3d75e1b8
JF
1091END(xen_failsafe_callback)
1092
cf910e83 1093apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
1094 xen_hvm_callback_vector xen_evtchn_do_upcall
1095
3d75e1b8 1096#endif /* CONFIG_XEN */
ddeb8f21 1097
bc2b0331 1098#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 1099apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331
S
1100 hyperv_callback_vector hyperv_vector_handler
1101#endif /* CONFIG_HYPERV */
1102
4d732138
IM
1103idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1104idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1105idtentry stack_segment do_stack_segment has_error_code=1
1106
6cac5a92 1107#ifdef CONFIG_XEN
43e41110 1108idtentry xennmi do_nmi has_error_code=0
5878d5d6
JG
1109idtentry xendebug do_debug has_error_code=0
1110idtentry xenint3 do_int3 has_error_code=0
6cac5a92 1111#endif
4d732138
IM
1112
1113idtentry general_protection do_general_protection has_error_code=1
11a7ffb0 1114idtentry page_fault do_page_fault has_error_code=1
4d732138 1115
631bc487 1116#ifdef CONFIG_KVM_GUEST
4d732138 1117idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 1118#endif
4d732138 1119
ddeb8f21 1120#ifdef CONFIG_X86_MCE
4d732138 1121idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
ddeb8f21
AH
1122#endif
1123
ebfc453e
DV
1124/*
1125 * Save all registers in pt_regs, and switch gs if needed.
1126 * Use slow, but surefire "are we in kernel?" check.
1127 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1128 */
1129ENTRY(paranoid_entry)
8c1f7558 1130 UNWIND_HINT_FUNC
1eeb207f
DV
1131 cld
1132 SAVE_C_REGS 8
1133 SAVE_EXTRA_REGS 8
946c1911 1134 ENCODE_FRAME_POINTER 8
4d732138
IM
1135 movl $1, %ebx
1136 movl $MSR_GS_BASE, %ecx
1eeb207f 1137 rdmsr
4d732138
IM
1138 testl %edx, %edx
1139 js 1f /* negative -> in kernel */
1eeb207f 1140 SWAPGS
4d732138 1141 xorl %ebx, %ebx
1eeb207f 11421: ret
ebfc453e 1143END(paranoid_entry)
ddeb8f21 1144
ebfc453e
DV
1145/*
1146 * "Paranoid" exit path from exception stack. This is invoked
1147 * only on return from non-NMI IST interrupts that came
1148 * from kernel space.
1149 *
1150 * We may be returning to very strange contexts (e.g. very early
1151 * in syscall entry), so checking for preemption here would
1152 * be complicated. Fortunately, we there's no good reason
1153 * to try to handle preemption here.
4d732138
IM
1154 *
1155 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 1156 */
ddeb8f21 1157ENTRY(paranoid_exit)
8c1f7558 1158 UNWIND_HINT_REGS
2140a994 1159 DISABLE_INTERRUPTS(CLBR_ANY)
5963e317 1160 TRACE_IRQS_OFF_DEBUG
4d732138 1161 testl %ebx, %ebx /* swapgs needed? */
e5317832 1162 jnz .Lparanoid_exit_no_swapgs
f2db9382 1163 TRACE_IRQS_IRETQ
ddeb8f21 1164 SWAPGS_UNSAFE_STACK
e5317832
AL
1165 jmp .Lparanoid_exit_restore
1166.Lparanoid_exit_no_swapgs:
f2db9382 1167 TRACE_IRQS_IRETQ_DEBUG
e5317832
AL
1168.Lparanoid_exit_restore:
1169 jmp restore_regs_and_return_to_kernel
ddeb8f21
AH
1170END(paranoid_exit)
1171
1172/*
ebfc453e 1173 * Save all registers in pt_regs, and switch gs if needed.
539f5113 1174 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
1175 */
1176ENTRY(error_entry)
8c1f7558 1177 UNWIND_HINT_FUNC
ddeb8f21 1178 cld
76f5df43
DV
1179 SAVE_C_REGS 8
1180 SAVE_EXTRA_REGS 8
946c1911 1181 ENCODE_FRAME_POINTER 8
4d732138 1182 xorl %ebx, %ebx
03335e95 1183 testb $3, CS+8(%rsp)
cb6f64ed 1184 jz .Lerror_kernelspace
539f5113 1185
cb6f64ed
AL
1186 /*
1187 * We entered from user mode or we're pretending to have entered
1188 * from user mode due to an IRET fault.
1189 */
ddeb8f21 1190 SWAPGS
539f5113 1191
cb6f64ed 1192.Lerror_entry_from_usermode_after_swapgs:
7f2590a1
AL
1193 /* Put us onto the real thread stack. */
1194 popq %r12 /* save return addr in %12 */
1195 movq %rsp, %rdi /* arg0 = pt_regs pointer */
1196 call sync_regs
1197 movq %rax, %rsp /* switch stack */
1198 ENCODE_FRAME_POINTER
1199 pushq %r12
1200
f1075053
AL
1201 /*
1202 * We need to tell lockdep that IRQs are off. We can't do this until
1203 * we fix gsbase, and we should do it before enter_from_user_mode
1204 * (which can take locks).
1205 */
1206 TRACE_IRQS_OFF
478dc89c 1207 CALL_enter_from_user_mode
f1075053 1208 ret
02bc7768 1209
cb6f64ed 1210.Lerror_entry_done:
ddeb8f21
AH
1211 TRACE_IRQS_OFF
1212 ret
ddeb8f21 1213
ebfc453e
DV
1214 /*
1215 * There are two places in the kernel that can potentially fault with
1216 * usergs. Handle them here. B stepping K8s sometimes report a
1217 * truncated RIP for IRET exceptions returning to compat mode. Check
1218 * for these here too.
1219 */
cb6f64ed 1220.Lerror_kernelspace:
4d732138
IM
1221 incl %ebx
1222 leaq native_irq_return_iret(%rip), %rcx
1223 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1224 je .Lerror_bad_iret
4d732138
IM
1225 movl %ecx, %eax /* zero extend */
1226 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1227 je .Lbstep_iret
42c748bb 1228 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1229 jne .Lerror_entry_done
539f5113
AL
1230
1231 /*
42c748bb 1232 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1233 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1234 * .Lgs_change's error handler with kernel gsbase.
539f5113 1235 */
2fa5f04f
WL
1236 SWAPGS
1237 jmp .Lerror_entry_done
ae24ffe5 1238
cb6f64ed 1239.Lbstep_iret:
ae24ffe5 1240 /* Fix truncated RIP */
4d732138 1241 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1242 /* fall through */
1243
cb6f64ed 1244.Lerror_bad_iret:
539f5113
AL
1245 /*
1246 * We came from an IRET to user mode, so we have user gsbase.
1247 * Switch to kernel gsbase:
1248 */
b645af2d 1249 SWAPGS
539f5113
AL
1250
1251 /*
1252 * Pretend that the exception came from user mode: set up pt_regs
1253 * as if we faulted immediately after IRET and clear EBX so that
1254 * error_exit knows that we will be returning to user mode.
1255 */
4d732138
IM
1256 mov %rsp, %rdi
1257 call fixup_bad_iret
1258 mov %rax, %rsp
539f5113 1259 decl %ebx
cb6f64ed 1260 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1261END(error_entry)
1262
1263
539f5113 1264/*
75ca5b22 1265 * On entry, EBX is a "return to kernel mode" flag:
539f5113
AL
1266 * 1: already in kernel mode, don't need SWAPGS
1267 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1268 */
ddeb8f21 1269ENTRY(error_exit)
8c1f7558 1270 UNWIND_HINT_REGS
2140a994 1271 DISABLE_INTERRUPTS(CLBR_ANY)
ddeb8f21 1272 TRACE_IRQS_OFF
2140a994 1273 testl %ebx, %ebx
4d732138
IM
1274 jnz retint_kernel
1275 jmp retint_user
ddeb8f21
AH
1276END(error_exit)
1277
929bacec
AL
1278/*
1279 * Runs on exception stack. Xen PV does not go through this path at all,
1280 * so we can use real assembly here.
1281 */
ddeb8f21 1282ENTRY(nmi)
8c1f7558 1283 UNWIND_HINT_IRET_REGS
929bacec 1284
3f3c8b8c
SR
1285 /*
1286 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1287 * the iretq it performs will take us out of NMI context.
1288 * This means that we can have nested NMIs where the next
1289 * NMI is using the top of the stack of the previous NMI. We
1290 * can't let it execute because the nested NMI will corrupt the
1291 * stack of the previous NMI. NMI handlers are not re-entrant
1292 * anyway.
1293 *
1294 * To handle this case we do the following:
1295 * Check the a special location on the stack that contains
1296 * a variable that is set when NMIs are executing.
1297 * The interrupted task's stack is also checked to see if it
1298 * is an NMI stack.
1299 * If the variable is not set and the stack is not the NMI
1300 * stack then:
1301 * o Set the special variable on the stack
0b22930e
AL
1302 * o Copy the interrupt frame into an "outermost" location on the
1303 * stack
1304 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1305 * o Continue processing the NMI
1306 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1307 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1308 * o return back to the first NMI
1309 *
1310 * Now on exit of the first NMI, we first clear the stack variable
1311 * The NMI stack will tell any nested NMIs at that point that it is
1312 * nested. Then we pop the stack normally with iret, and if there was
1313 * a nested NMI that updated the copy interrupt stack frame, a
1314 * jump will be made to the repeat_nmi code that will handle the second
1315 * NMI.
9b6e6a83
AL
1316 *
1317 * However, espfix prevents us from directly returning to userspace
1318 * with a single IRET instruction. Similarly, IRET to user mode
1319 * can fault. We therefore handle NMIs from user space like
1320 * other IST entries.
3f3c8b8c
SR
1321 */
1322
e93c1730
AL
1323 ASM_CLAC
1324
146b2b09 1325 /* Use %rdx as our temp variable throughout */
4d732138 1326 pushq %rdx
3f3c8b8c 1327
9b6e6a83
AL
1328 testb $3, CS-RIP+8(%rsp)
1329 jz .Lnmi_from_kernel
1330
1331 /*
1332 * NMI from user mode. We need to run on the thread stack, but we
1333 * can't go through the normal entry paths: NMIs are masked, and
1334 * we don't want to enable interrupts, because then we'll end
1335 * up in an awkward situation in which IRQs are on but NMIs
1336 * are off.
83c133cf
AL
1337 *
1338 * We also must not push anything to the stack before switching
1339 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1340 */
1341
929bacec 1342 swapgs
9b6e6a83
AL
1343 cld
1344 movq %rsp, %rdx
1345 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
8c1f7558 1346 UNWIND_HINT_IRET_REGS base=%rdx offset=8
9b6e6a83
AL
1347 pushq 5*8(%rdx) /* pt_regs->ss */
1348 pushq 4*8(%rdx) /* pt_regs->rsp */
1349 pushq 3*8(%rdx) /* pt_regs->flags */
1350 pushq 2*8(%rdx) /* pt_regs->cs */
1351 pushq 1*8(%rdx) /* pt_regs->rip */
8c1f7558 1352 UNWIND_HINT_IRET_REGS
9b6e6a83
AL
1353 pushq $-1 /* pt_regs->orig_ax */
1354 pushq %rdi /* pt_regs->di */
1355 pushq %rsi /* pt_regs->si */
1356 pushq (%rdx) /* pt_regs->dx */
1357 pushq %rcx /* pt_regs->cx */
1358 pushq %rax /* pt_regs->ax */
1359 pushq %r8 /* pt_regs->r8 */
1360 pushq %r9 /* pt_regs->r9 */
1361 pushq %r10 /* pt_regs->r10 */
1362 pushq %r11 /* pt_regs->r11 */
1363 pushq %rbx /* pt_regs->rbx */
1364 pushq %rbp /* pt_regs->rbp */
1365 pushq %r12 /* pt_regs->r12 */
1366 pushq %r13 /* pt_regs->r13 */
1367 pushq %r14 /* pt_regs->r14 */
1368 pushq %r15 /* pt_regs->r15 */
8c1f7558 1369 UNWIND_HINT_REGS
946c1911 1370 ENCODE_FRAME_POINTER
9b6e6a83
AL
1371
1372 /*
1373 * At this point we no longer need to worry about stack damage
1374 * due to nesting -- we're on the normal thread stack and we're
1375 * done with the NMI stack.
1376 */
1377
1378 movq %rsp, %rdi
1379 movq $-1, %rsi
1380 call do_nmi
1381
45d5a168 1382 /*
9b6e6a83 1383 * Return back to user mode. We must *not* do the normal exit
946c1911 1384 * work, because we don't want to enable interrupts.
45d5a168 1385 */
8a055d7f 1386 jmp swapgs_restore_regs_and_return_to_usermode
45d5a168 1387
9b6e6a83 1388.Lnmi_from_kernel:
3f3c8b8c 1389 /*
0b22930e
AL
1390 * Here's what our stack frame will look like:
1391 * +---------------------------------------------------------+
1392 * | original SS |
1393 * | original Return RSP |
1394 * | original RFLAGS |
1395 * | original CS |
1396 * | original RIP |
1397 * +---------------------------------------------------------+
1398 * | temp storage for rdx |
1399 * +---------------------------------------------------------+
1400 * | "NMI executing" variable |
1401 * +---------------------------------------------------------+
1402 * | iret SS } Copied from "outermost" frame |
1403 * | iret Return RSP } on each loop iteration; overwritten |
1404 * | iret RFLAGS } by a nested NMI to force another |
1405 * | iret CS } iteration if needed. |
1406 * | iret RIP } |
1407 * +---------------------------------------------------------+
1408 * | outermost SS } initialized in first_nmi; |
1409 * | outermost Return RSP } will not be changed before |
1410 * | outermost RFLAGS } NMI processing is done. |
1411 * | outermost CS } Copied to "iret" frame on each |
1412 * | outermost RIP } iteration. |
1413 * +---------------------------------------------------------+
1414 * | pt_regs |
1415 * +---------------------------------------------------------+
1416 *
1417 * The "original" frame is used by hardware. Before re-enabling
1418 * NMIs, we need to be done with it, and we need to leave enough
1419 * space for the asm code here.
1420 *
1421 * We return by executing IRET while RSP points to the "iret" frame.
1422 * That will either return for real or it will loop back into NMI
1423 * processing.
1424 *
1425 * The "outermost" frame is copied to the "iret" frame on each
1426 * iteration of the loop, so each iteration starts with the "iret"
1427 * frame pointing to the final return target.
1428 */
1429
45d5a168 1430 /*
0b22930e
AL
1431 * Determine whether we're a nested NMI.
1432 *
a27507ca
AL
1433 * If we interrupted kernel code between repeat_nmi and
1434 * end_repeat_nmi, then we are a nested NMI. We must not
1435 * modify the "iret" frame because it's being written by
1436 * the outer NMI. That's okay; the outer NMI handler is
1437 * about to about to call do_nmi anyway, so we can just
1438 * resume the outer NMI.
45d5a168 1439 */
a27507ca
AL
1440
1441 movq $repeat_nmi, %rdx
1442 cmpq 8(%rsp), %rdx
1443 ja 1f
1444 movq $end_repeat_nmi, %rdx
1445 cmpq 8(%rsp), %rdx
1446 ja nested_nmi_out
14471:
45d5a168 1448
3f3c8b8c 1449 /*
a27507ca 1450 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1451 * This will not detect if we interrupted an outer NMI just
1452 * before IRET.
3f3c8b8c 1453 */
4d732138
IM
1454 cmpl $1, -8(%rsp)
1455 je nested_nmi
3f3c8b8c
SR
1456
1457 /*
0b22930e
AL
1458 * Now test if the previous stack was an NMI stack. This covers
1459 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1460 * "NMI executing" but before IRET. We need to be careful, though:
1461 * there is one case in which RSP could point to the NMI stack
1462 * despite there being no NMI active: naughty userspace controls
1463 * RSP at the very beginning of the SYSCALL targets. We can
1464 * pull a fast one on naughty userspace, though: we program
1465 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1466 * if it controls the kernel's RSP. We set DF before we clear
1467 * "NMI executing".
3f3c8b8c 1468 */
0784b364
DV
1469 lea 6*8(%rsp), %rdx
1470 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1471 cmpq %rdx, 4*8(%rsp)
1472 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1473 ja first_nmi
4d732138 1474
0784b364
DV
1475 subq $EXCEPTION_STKSZ, %rdx
1476 cmpq %rdx, 4*8(%rsp)
1477 /* If it is below the NMI stack, it is a normal NMI */
1478 jb first_nmi
810bc075
AL
1479
1480 /* Ah, it is within the NMI stack. */
1481
1482 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1483 jz first_nmi /* RSP was user controlled. */
1484
1485 /* This is a nested NMI. */
0784b364 1486
3f3c8b8c
SR
1487nested_nmi:
1488 /*
0b22930e
AL
1489 * Modify the "iret" frame to point to repeat_nmi, forcing another
1490 * iteration of NMI handling.
3f3c8b8c 1491 */
23a781e9 1492 subq $8, %rsp
4d732138
IM
1493 leaq -10*8(%rsp), %rdx
1494 pushq $__KERNEL_DS
1495 pushq %rdx
131484c8 1496 pushfq
4d732138
IM
1497 pushq $__KERNEL_CS
1498 pushq $repeat_nmi
3f3c8b8c
SR
1499
1500 /* Put stack back */
4d732138 1501 addq $(6*8), %rsp
3f3c8b8c
SR
1502
1503nested_nmi_out:
4d732138 1504 popq %rdx
3f3c8b8c 1505
0b22930e 1506 /* We are returning to kernel mode, so this cannot result in a fault. */
929bacec 1507 iretq
3f3c8b8c
SR
1508
1509first_nmi:
0b22930e 1510 /* Restore rdx. */
4d732138 1511 movq (%rsp), %rdx
62610913 1512
36f1a77b
AL
1513 /* Make room for "NMI executing". */
1514 pushq $0
3f3c8b8c 1515
0b22930e 1516 /* Leave room for the "iret" frame */
4d732138 1517 subq $(5*8), %rsp
28696f43 1518
0b22930e 1519 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1520 .rept 5
4d732138 1521 pushq 11*8(%rsp)
3f3c8b8c 1522 .endr
8c1f7558 1523 UNWIND_HINT_IRET_REGS
62610913 1524
79fb4ad6
SR
1525 /* Everything up to here is safe from nested NMIs */
1526
a97439aa
AL
1527#ifdef CONFIG_DEBUG_ENTRY
1528 /*
1529 * For ease of testing, unmask NMIs right away. Disabled by
1530 * default because IRET is very expensive.
1531 */
1532 pushq $0 /* SS */
1533 pushq %rsp /* RSP (minus 8 because of the previous push) */
1534 addq $8, (%rsp) /* Fix up RSP */
1535 pushfq /* RFLAGS */
1536 pushq $__KERNEL_CS /* CS */
1537 pushq $1f /* RIP */
929bacec 1538 iretq /* continues at repeat_nmi below */
8c1f7558 1539 UNWIND_HINT_IRET_REGS
a97439aa
AL
15401:
1541#endif
1542
0b22930e 1543repeat_nmi:
62610913
JB
1544 /*
1545 * If there was a nested NMI, the first NMI's iret will return
1546 * here. But NMIs are still enabled and we can take another
1547 * nested NMI. The nested NMI checks the interrupted RIP to see
1548 * if it is between repeat_nmi and end_repeat_nmi, and if so
1549 * it will just return, as we are about to repeat an NMI anyway.
1550 * This makes it safe to copy to the stack frame that a nested
1551 * NMI will update.
0b22930e
AL
1552 *
1553 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1554 * we're repeating an NMI, gsbase has the same value that it had on
1555 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1556 * gsbase if needed before we call do_nmi. "NMI executing"
1557 * is zero.
62610913 1558 */
36f1a77b 1559 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1560
62610913 1561 /*
0b22930e
AL
1562 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1563 * here must not modify the "iret" frame while we're writing to
1564 * it or it will end up containing garbage.
62610913 1565 */
4d732138 1566 addq $(10*8), %rsp
3f3c8b8c 1567 .rept 5
4d732138 1568 pushq -6*8(%rsp)
3f3c8b8c 1569 .endr
4d732138 1570 subq $(5*8), %rsp
62610913 1571end_repeat_nmi:
3f3c8b8c
SR
1572
1573 /*
0b22930e
AL
1574 * Everything below this point can be preempted by a nested NMI.
1575 * If this happens, then the inner NMI will change the "iret"
1576 * frame to point back to repeat_nmi.
3f3c8b8c 1577 */
4d732138 1578 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43
DV
1579 ALLOC_PT_GPREGS_ON_STACK
1580
1fd466ef 1581 /*
ebfc453e 1582 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1583 * as we should not be calling schedule in NMI context.
1584 * Even with normal interrupts enabled. An NMI should not be
1585 * setting NEED_RESCHED or anything that normal interrupts and
1586 * exceptions might do.
1587 */
4d732138 1588 call paranoid_entry
8c1f7558 1589 UNWIND_HINT_REGS
7fbb98c5 1590
ddeb8f21 1591 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1592 movq %rsp, %rdi
1593 movq $-1, %rsi
1594 call do_nmi
7fbb98c5 1595
4d732138
IM
1596 testl %ebx, %ebx /* swapgs needed? */
1597 jnz nmi_restore
ddeb8f21
AH
1598nmi_swapgs:
1599 SWAPGS_UNSAFE_STACK
1600nmi_restore:
471ee483
AL
1601 POP_EXTRA_REGS
1602 POP_C_REGS
0b22930e 1603
471ee483
AL
1604 /*
1605 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1606 * at the "iret" frame.
1607 */
1608 addq $6*8, %rsp
28696f43 1609
810bc075
AL
1610 /*
1611 * Clear "NMI executing". Set DF first so that we can easily
1612 * distinguish the remaining code between here and IRET from
929bacec
AL
1613 * the SYSCALL entry and exit paths.
1614 *
1615 * We arguably should just inspect RIP instead, but I (Andy) wrote
1616 * this code when I had the misapprehension that Xen PV supported
1617 * NMIs, and Xen PV would break that approach.
810bc075
AL
1618 */
1619 std
1620 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1621
1622 /*
929bacec
AL
1623 * iretq reads the "iret" frame and exits the NMI stack in a
1624 * single instruction. We are returning to kernel mode, so this
1625 * cannot result in a fault. Similarly, we don't need to worry
1626 * about espfix64 on the way back to kernel mode.
0b22930e 1627 */
929bacec 1628 iretq
ddeb8f21
AH
1629END(nmi)
1630
1631ENTRY(ignore_sysret)
8c1f7558 1632 UNWIND_HINT_EMPTY
4d732138 1633 mov $-ENOSYS, %eax
ddeb8f21 1634 sysret
ddeb8f21 1635END(ignore_sysret)
2deb4be2
AL
1636
1637ENTRY(rewind_stack_do_exit)
8c1f7558 1638 UNWIND_HINT_FUNC
2deb4be2
AL
1639 /* Prevent any naive code from trying to unwind to our caller. */
1640 xorl %ebp, %ebp
1641
1642 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
8c1f7558
JP
1643 leaq -PTREGS_SIZE(%rax), %rsp
1644 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
2deb4be2
AL
1645
1646 call do_exit
2deb4be2 1647END(rewind_stack_do_exit)