]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - arch/x86/entry/entry_64.S
x86/entry/64: Use the TSS sp2 slot for SYSCALL/SYSRET scratch space
[thirdparty/kernel/stable.git] / arch / x86 / entry / entry_64.S
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2/*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 8 *
1da177e4
LT
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
8b4777a4
AL
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
0bd7b798 13 * A note on terminology:
4d732138
IM
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
2e91a17b
AK
16 *
17 * Some macro usage:
4d732138
IM
18 * - ENTRY/END: Define functions in the symbol table.
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
1da177e4 21 */
1da177e4
LT
22#include <linux/linkage.h>
23#include <asm/segment.h>
1da177e4
LT
24#include <asm/cache.h>
25#include <asm/errno.h>
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
784d5699 38#include <asm/export.h>
8c1f7558 39#include <asm/frame.h>
2641f08b 40#include <asm/nospec-branch.h>
d7e7528b 41#include <linux/err.h>
1da177e4 42
6fd166aa
PZ
43#include "calling.h"
44
4d732138
IM
45.code64
46.section .entry.text, "ax"
16444a8a 47
72fe4858 48#ifdef CONFIG_PARAVIRT
2be29982 49ENTRY(native_usergs_sysret64)
8c1f7558 50 UNWIND_HINT_EMPTY
72fe4858
GOC
51 swapgs
52 sysretq
8c1f7558 53END(native_usergs_sysret64)
72fe4858
GOC
54#endif /* CONFIG_PARAVIRT */
55
ca37e57b 56.macro TRACE_IRQS_FLAGS flags:req
2601e64d 57#ifdef CONFIG_TRACE_IRQFLAGS
a368d7fd 58 btl $9, \flags /* interrupts off? */
4d732138 59 jnc 1f
2601e64d
IM
60 TRACE_IRQS_ON
611:
62#endif
63.endm
64
ca37e57b
AL
65.macro TRACE_IRQS_IRETQ
66 TRACE_IRQS_FLAGS EFLAGS(%rsp)
67.endm
68
5963e317
SR
69/*
70 * When dynamic function tracer is enabled it will add a breakpoint
71 * to all locations that it is about to modify, sync CPUs, update
72 * all the code, sync CPUs, then remove the breakpoints. In this time
73 * if lockdep is enabled, it might jump back into the debug handler
74 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
75 *
76 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
77 * make sure the stack pointer does not get reset back to the top
78 * of the debug stack, and instead just reuses the current stack.
79 */
80#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
81
82.macro TRACE_IRQS_OFF_DEBUG
4d732138 83 call debug_stack_set_zero
5963e317 84 TRACE_IRQS_OFF
4d732138 85 call debug_stack_reset
5963e317
SR
86.endm
87
88.macro TRACE_IRQS_ON_DEBUG
4d732138 89 call debug_stack_set_zero
5963e317 90 TRACE_IRQS_ON
4d732138 91 call debug_stack_reset
5963e317
SR
92.endm
93
f2db9382 94.macro TRACE_IRQS_IRETQ_DEBUG
6709812f 95 btl $9, EFLAGS(%rsp) /* interrupts off? */
4d732138 96 jnc 1f
5963e317
SR
97 TRACE_IRQS_ON_DEBUG
981:
99.endm
100
101#else
4d732138
IM
102# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
103# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
104# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
105#endif
106
1da177e4 107/*
4d732138 108 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 109 *
fda57b22
AL
110 * This is the only entry point used for 64-bit system calls. The
111 * hardware interface is reasonably well designed and the register to
112 * argument mapping Linux uses fits well with the registers that are
113 * available when SYSCALL is used.
114 *
115 * SYSCALL instructions can be found inlined in libc implementations as
116 * well as some other programs and libraries. There are also a handful
117 * of SYSCALL instructions in the vDSO used, for example, as a
118 * clock_gettimeofday fallback.
119 *
4d732138 120 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
121 * then loads new ss, cs, and rip from previously programmed MSRs.
122 * rflags gets masked by a value from another MSR (so CLD and CLAC
123 * are not needed). SYSCALL does not save anything on the stack
124 * and does not change rsp.
125 *
126 * Registers on entry:
1da177e4 127 * rax system call number
b87cf63e
DV
128 * rcx return address
129 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 130 * rdi arg0
1da177e4 131 * rsi arg1
0bd7b798 132 * rdx arg2
b87cf63e 133 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
134 * r8 arg4
135 * r9 arg5
4d732138 136 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 137 *
1da177e4
LT
138 * Only called from user space.
139 *
7fcb3bc3 140 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
141 * it deals with uncanonical addresses better. SYSRET has trouble
142 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 143 */
1da177e4 144
3386bc8a
AL
145 .pushsection .entry_trampoline, "ax"
146
147/*
148 * The code in here gets remapped into cpu_entry_area's trampoline. This means
149 * that the assembler and linker have the wrong idea as to where this code
150 * lives (and, in fact, it's mapped more than once, so it's not even at a
151 * fixed address). So we can't reference any symbols outside the entry
152 * trampoline and expect it to work.
153 *
154 * Instead, we carefully abuse %rip-relative addressing.
155 * _entry_trampoline(%rip) refers to the start of the remapped) entry
156 * trampoline. We can thus find cpu_entry_area with this macro:
157 */
158
159#define CPU_ENTRY_AREA \
160 _entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)
161
162/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
4fe2d8b1
DH
163#define RSP_SCRATCH CPU_ENTRY_AREA_entry_stack + \
164 SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
3386bc8a
AL
165
166ENTRY(entry_SYSCALL_64_trampoline)
167 UNWIND_HINT_EMPTY
168 swapgs
169
170 /* Stash the user RSP. */
171 movq %rsp, RSP_SCRATCH
172
8a09317b
DH
173 /* Note: using %rsp as a scratch reg. */
174 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
175
3386bc8a
AL
176 /* Load the top of the task stack into RSP */
177 movq CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp
178
179 /* Start building the simulated IRET frame. */
180 pushq $__USER_DS /* pt_regs->ss */
181 pushq RSP_SCRATCH /* pt_regs->sp */
182 pushq %r11 /* pt_regs->flags */
183 pushq $__USER_CS /* pt_regs->cs */
184 pushq %rcx /* pt_regs->ip */
185
186 /*
187 * x86 lacks a near absolute jump, and we can't jump to the real
188 * entry text with a relative jump. We could push the target
189 * address and then use retq, but this destroys the pipeline on
190 * many CPUs (wasting over 20 cycles on Sandy Bridge). Instead,
191 * spill RDI and restore it in a second-stage trampoline.
192 */
193 pushq %rdi
194 movq $entry_SYSCALL_64_stage2, %rdi
2641f08b 195 JMP_NOSPEC %rdi
3386bc8a
AL
196END(entry_SYSCALL_64_trampoline)
197
198 .popsection
199
200ENTRY(entry_SYSCALL_64_stage2)
201 UNWIND_HINT_EMPTY
202 popq %rdi
203 jmp entry_SYSCALL_64_after_hwframe
204END(entry_SYSCALL_64_stage2)
205
b2502b41 206ENTRY(entry_SYSCALL_64)
8c1f7558 207 UNWIND_HINT_EMPTY
9ed8e7d8
DV
208 /*
209 * Interrupts are off on entry.
210 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
211 * it is too small to ever cause noticeable irq latency.
212 */
72fe4858 213
8a9949bc 214 swapgs
8a09317b 215 /*
14b1fcc6 216 * This path is only taken when PAGE_TABLE_ISOLATION is disabled so it
8a09317b 217 * is not required to switch CR3.
98f05b51
AL
218 *
219 * tss.sp2 is scratch space.
8a09317b 220 */
98f05b51 221 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
4d732138 222 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8
DV
223
224 /* Construct struct pt_regs on stack */
98f05b51
AL
225 pushq $__USER_DS /* pt_regs->ss */
226 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */
227 pushq %r11 /* pt_regs->flags */
228 pushq $__USER_CS /* pt_regs->cs */
229 pushq %rcx /* pt_regs->ip */
8a9949bc 230GLOBAL(entry_SYSCALL_64_after_hwframe)
98f05b51 231 pushq %rax /* pt_regs->orig_ax */
30907fd1
DB
232
233 PUSH_AND_CLEAR_REGS rax=$-ENOSYS
4d732138 234
548c3050
AL
235 TRACE_IRQS_OFF
236
1e423bff 237 /* IRQs are off. */
dfe64506
LT
238 movq %rax, %rdi
239 movq %rsp, %rsi
1e423bff
AL
240 call do_syscall_64 /* returns with IRQs disabled */
241
29ea1b25 242 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
243
244 /*
245 * Try to use SYSRET instead of IRET if we're returning to
8a055d7f
AL
246 * a completely clean 64-bit userspace context. If we're not,
247 * go to the slow exit path.
fffbb5dc 248 */
4d732138
IM
249 movq RCX(%rsp), %rcx
250 movq RIP(%rsp), %r11
8a055d7f
AL
251
252 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
253 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
254
255 /*
256 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
257 * in kernel space. This essentially lets the user take over
17be0aec 258 * the kernel, since userspace controls RSP.
fffbb5dc 259 *
17be0aec 260 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc 261 * to be updated to remain correct on both old and new CPUs.
361b4b58 262 *
cbe0317b
KS
263 * Change top bits to match most significant bit (47th or 56th bit
264 * depending on paging mode) in the address.
fffbb5dc 265 */
09e61a77 266#ifdef CONFIG_X86_5LEVEL
39b95522
KS
267 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
268 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
09e61a77 269#else
17be0aec
DV
270 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
271 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
09e61a77 272#endif
4d732138 273
17be0aec
DV
274 /* If this changed %rcx, it was not canonical */
275 cmpq %rcx, %r11
8a055d7f 276 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 277
4d732138 278 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
8a055d7f 279 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 280
4d732138
IM
281 movq R11(%rsp), %r11
282 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
8a055d7f 283 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
284
285 /*
3e035305
BP
286 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
287 * restore RF properly. If the slowpath sets it for whatever reason, we
288 * need to restore it correctly.
289 *
290 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
291 * trap from userspace immediately after SYSRET. This would cause an
292 * infinite loop whenever #DB happens with register state that satisfies
293 * the opportunistic SYSRET conditions. For example, single-stepping
294 * this user code:
fffbb5dc 295 *
4d732138 296 * movq $stuck_here, %rcx
fffbb5dc
DV
297 * pushfq
298 * popq %r11
299 * stuck_here:
300 *
301 * would never get past 'stuck_here'.
302 */
4d732138 303 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
8a055d7f 304 jnz swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
305
306 /* nothing to check for RSP */
307
4d732138 308 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
8a055d7f 309 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
310
311 /*
4d732138
IM
312 * We win! This label is here just for ease of understanding
313 * perf profiles. Nothing jumps here.
fffbb5dc
DV
314 */
315syscall_return_via_sysret:
17be0aec 316 /* rcx and r11 are already restored (see code above) */
8c1f7558 317 UNWIND_HINT_EMPTY
502af0d7 318 POP_REGS pop_rdi=0 skip_r11rcx=1
3e3b9293
AL
319
320 /*
321 * Now all regs are restored except RSP and RDI.
322 * Save old stack pointer and switch to trampoline stack.
323 */
324 movq %rsp, %rdi
c482feef 325 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
3e3b9293
AL
326
327 pushq RSP-RDI(%rdi) /* RSP */
328 pushq (%rdi) /* RDI */
329
330 /*
331 * We are on the trampoline stack. All regs except RDI are live.
332 * We can do future final exit work right here.
333 */
6fd166aa 334 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
3e3b9293 335
4fbb3910 336 popq %rdi
3e3b9293 337 popq %rsp
fffbb5dc 338 USERGS_SYSRET64
b2502b41 339END(entry_SYSCALL_64)
0bd7b798 340
0100301b
BG
341/*
342 * %rdi: prev task
343 * %rsi: next task
344 */
345ENTRY(__switch_to_asm)
8c1f7558 346 UNWIND_HINT_FUNC
0100301b
BG
347 /*
348 * Save callee-saved registers
349 * This must match the order in inactive_task_frame
350 */
351 pushq %rbp
352 pushq %rbx
353 pushq %r12
354 pushq %r13
355 pushq %r14
356 pushq %r15
357
358 /* switch stack */
359 movq %rsp, TASK_threadsp(%rdi)
360 movq TASK_threadsp(%rsi), %rsp
361
050e9baa 362#ifdef CONFIG_STACKPROTECTOR
0100301b
BG
363 movq TASK_stack_canary(%rsi), %rbx
364 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
365#endif
366
c995efd5
DW
367#ifdef CONFIG_RETPOLINE
368 /*
369 * When switching from a shallower to a deeper call stack
370 * the RSB may either underflow or use entries populated
371 * with userspace addresses. On CPUs where those concerns
372 * exist, overwrite the RSB with entries which capture
373 * speculative execution to prevent attack.
374 */
d1c99108 375 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
c995efd5
DW
376#endif
377
0100301b
BG
378 /* restore callee-saved registers */
379 popq %r15
380 popq %r14
381 popq %r13
382 popq %r12
383 popq %rbx
384 popq %rbp
385
386 jmp __switch_to
387END(__switch_to_asm)
388
1eeb207f
DV
389/*
390 * A newly forked process directly context switches into this address.
391 *
0100301b 392 * rax: prev task we switched from
616d2483
BG
393 * rbx: kernel thread func (NULL for user thread)
394 * r12: kernel thread arg
1eeb207f
DV
395 */
396ENTRY(ret_from_fork)
8c1f7558 397 UNWIND_HINT_EMPTY
0100301b 398 movq %rax, %rdi
ebd57499 399 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 400
ebd57499
JP
401 testq %rbx, %rbx /* from kernel_thread? */
402 jnz 1f /* kernel threads are uncommon */
24d978b7 403
616d2483 4042:
8c1f7558 405 UNWIND_HINT_REGS
ebd57499 406 movq %rsp, %rdi
24d978b7
AL
407 call syscall_return_slowpath /* returns with IRQs disabled */
408 TRACE_IRQS_ON /* user mode is traced as IRQS on */
8a055d7f 409 jmp swapgs_restore_regs_and_return_to_usermode
616d2483
BG
410
4111:
412 /* kernel thread */
d31a5802 413 UNWIND_HINT_EMPTY
616d2483 414 movq %r12, %rdi
2641f08b 415 CALL_NOSPEC %rbx
616d2483
BG
416 /*
417 * A kernel thread is allowed to return here after successfully
418 * calling do_execve(). Exit to userspace to complete the execve()
419 * syscall.
420 */
421 movq $0, RAX(%rsp)
422 jmp 2b
1eeb207f
DV
423END(ret_from_fork)
424
939b7871 425/*
3304c9c3
DV
426 * Build the entry stubs with some assembler magic.
427 * We pack 1 stub into every 8-byte block.
939b7871 428 */
3304c9c3 429 .align 8
939b7871 430ENTRY(irq_entries_start)
3304c9c3
DV
431 vector=FIRST_EXTERNAL_VECTOR
432 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
8c1f7558 433 UNWIND_HINT_IRET_REGS
4d732138 434 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3 435 jmp common_interrupt
3304c9c3 436 .align 8
8c1f7558 437 vector=vector+1
3304c9c3 438 .endr
939b7871
PA
439END(irq_entries_start)
440
1d3e53e8
AL
441.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
442#ifdef CONFIG_DEBUG_ENTRY
e17f8234
BO
443 pushq %rax
444 SAVE_FLAGS(CLBR_RAX)
445 testl $X86_EFLAGS_IF, %eax
1d3e53e8
AL
446 jz .Lokay_\@
447 ud2
448.Lokay_\@:
e17f8234 449 popq %rax
1d3e53e8
AL
450#endif
451.endm
452
453/*
454 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
455 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
456 * Requires kernel GSBASE.
457 *
458 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
459 */
2ba64741 460.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
1d3e53e8 461 DEBUG_ENTRY_ASSERT_IRQS_OFF
2ba64741
DB
462
463 .if \save_ret
464 /*
465 * If save_ret is set, the original stack contains one additional
466 * entry -- the return address. Therefore, move the address one
467 * entry below %rsp to \old_rsp.
468 */
469 leaq 8(%rsp), \old_rsp
470 .else
1d3e53e8 471 movq %rsp, \old_rsp
2ba64741 472 .endif
8c1f7558
JP
473
474 .if \regs
475 UNWIND_HINT_REGS base=\old_rsp
476 .endif
477
1d3e53e8 478 incl PER_CPU_VAR(irq_count)
29955909 479 jnz .Lirq_stack_push_old_rsp_\@
1d3e53e8
AL
480
481 /*
482 * Right now, if we just incremented irq_count to zero, we've
483 * claimed the IRQ stack but we haven't switched to it yet.
484 *
485 * If anything is added that can interrupt us here without using IST,
486 * it must be *extremely* careful to limit its stack usage. This
487 * could include kprobes and a hypothetical future IST-less #DB
488 * handler.
29955909
AL
489 *
490 * The OOPS unwinder relies on the word at the top of the IRQ
491 * stack linking back to the previous RSP for the entire time we're
492 * on the IRQ stack. For this to work reliably, we need to write
493 * it before we actually move ourselves to the IRQ stack.
494 */
495
496 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
497 movq PER_CPU_VAR(irq_stack_ptr), %rsp
498
499#ifdef CONFIG_DEBUG_ENTRY
500 /*
501 * If the first movq above becomes wrong due to IRQ stack layout
502 * changes, the only way we'll notice is if we try to unwind right
503 * here. Assert that we set up the stack right to catch this type
504 * of bug quickly.
1d3e53e8 505 */
29955909
AL
506 cmpq -8(%rsp), \old_rsp
507 je .Lirq_stack_okay\@
508 ud2
509 .Lirq_stack_okay\@:
510#endif
1d3e53e8 511
29955909 512.Lirq_stack_push_old_rsp_\@:
1d3e53e8 513 pushq \old_rsp
8c1f7558
JP
514
515 .if \regs
516 UNWIND_HINT_REGS indirect=1
517 .endif
2ba64741
DB
518
519 .if \save_ret
520 /*
521 * Push the return address to the stack. This return address can
522 * be found at the "real" original RSP, which was offset by 8 at
523 * the beginning of this macro.
524 */
525 pushq -8(\old_rsp)
526 .endif
1d3e53e8
AL
527.endm
528
529/*
530 * Undoes ENTER_IRQ_STACK.
531 */
8c1f7558 532.macro LEAVE_IRQ_STACK regs=1
1d3e53e8
AL
533 DEBUG_ENTRY_ASSERT_IRQS_OFF
534 /* We need to be off the IRQ stack before decrementing irq_count. */
535 popq %rsp
536
8c1f7558
JP
537 .if \regs
538 UNWIND_HINT_REGS
539 .endif
540
1d3e53e8
AL
541 /*
542 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
543 * the irq stack but we're not on it.
544 */
545
546 decl PER_CPU_VAR(irq_count)
547.endm
548
d99015b1 549/*
f3d415ea 550 * Interrupt entry helper function.
d99015b1 551 *
f3d415ea
DB
552 * Entry runs with interrupts off. Stack layout at entry:
553 * +----------------------------------------------------+
554 * | regs->ss |
555 * | regs->rsp |
556 * | regs->eflags |
557 * | regs->cs |
558 * | regs->ip |
559 * +----------------------------------------------------+
560 * | regs->orig_ax = ~(interrupt number) |
561 * +----------------------------------------------------+
562 * | return address |
563 * +----------------------------------------------------+
d99015b1 564 */
f3d415ea
DB
565ENTRY(interrupt_entry)
566 UNWIND_HINT_FUNC
567 ASM_CLAC
f6f64681 568 cld
7f2590a1 569
f3d415ea 570 testb $3, CS-ORIG_RAX+8(%rsp)
7f2590a1
AL
571 jz 1f
572 SWAPGS
f3d415ea
DB
573
574 /*
575 * Switch to the thread stack. The IRET frame and orig_ax are
576 * on the stack, as well as the return address. RDI..R12 are
577 * not (yet) on the stack and space has not (yet) been
578 * allocated for them.
579 */
90a6acc4 580 pushq %rdi
f3d415ea 581
90a6acc4
DB
582 /* Need to switch before accessing the thread stack. */
583 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
584 movq %rsp, %rdi
585 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
f3d415ea
DB
586
587 /*
588 * We have RDI, return address, and orig_ax on the stack on
589 * top of the IRET frame. That means offset=24
590 */
591 UNWIND_HINT_IRET_REGS base=%rdi offset=24
90a6acc4
DB
592
593 pushq 7*8(%rdi) /* regs->ss */
594 pushq 6*8(%rdi) /* regs->rsp */
595 pushq 5*8(%rdi) /* regs->eflags */
596 pushq 4*8(%rdi) /* regs->cs */
597 pushq 3*8(%rdi) /* regs->ip */
598 pushq 2*8(%rdi) /* regs->orig_ax */
599 pushq 8(%rdi) /* return address */
600 UNWIND_HINT_FUNC
601
602 movq (%rdi), %rdi
7f2590a1
AL
6031:
604
0e34d226
DB
605 PUSH_AND_CLEAR_REGS save_ret=1
606 ENCODE_FRAME_POINTER 8
76f5df43 607
2ba64741 608 testb $3, CS+8(%rsp)
dde74f2e 609 jz 1f
02bc7768
AL
610
611 /*
7f2590a1
AL
612 * IRQ from user mode.
613 *
f1075053
AL
614 * We need to tell lockdep that IRQs are off. We can't do this until
615 * we fix gsbase, and we should do it before enter_from_user_mode
f3d415ea 616 * (which can take locks). Since TRACE_IRQS_OFF is idempotent,
f1075053
AL
617 * the simplest way to handle it is to just call it twice if
618 * we enter from user mode. There's no reason to optimize this since
619 * TRACE_IRQS_OFF is a no-op if lockdep is off.
620 */
621 TRACE_IRQS_OFF
622
478dc89c 623 CALL_enter_from_user_mode
02bc7768 624
76f5df43 6251:
2ba64741 626 ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
f6f64681
DV
627 /* We entered an interrupt context - irqs are off: */
628 TRACE_IRQS_OFF
629
2ba64741
DB
630 ret
631END(interrupt_entry)
632
f3d415ea
DB
633
634/* Interrupt entry/exit. */
1da177e4 635
722024db
AH
636 /*
637 * The interrupt stubs push (~vector+0x80) onto the stack and
638 * then jump to common_interrupt.
639 */
939b7871
PA
640 .p2align CONFIG_X86_L1_CACHE_SHIFT
641common_interrupt:
4d732138 642 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
3aa99fc3
DB
643 call interrupt_entry
644 UNWIND_HINT_REGS indirect=1
645 call do_IRQ /* rdi points to pt_regs */
34061f13 646 /* 0(%rsp): old RSP */
7effaa88 647ret_from_intr:
2140a994 648 DISABLE_INTERRUPTS(CLBR_ANY)
2601e64d 649 TRACE_IRQS_OFF
625dbc3b 650
1d3e53e8 651 LEAVE_IRQ_STACK
625dbc3b 652
03335e95 653 testb $3, CS(%rsp)
dde74f2e 654 jz retint_kernel
4d732138 655
02bc7768 656 /* Interrupt came from user space */
02bc7768
AL
657GLOBAL(retint_user)
658 mov %rsp,%rdi
659 call prepare_exit_to_usermode
2601e64d 660 TRACE_IRQS_IRETQ
26c4ef9c 661
8a055d7f 662GLOBAL(swapgs_restore_regs_and_return_to_usermode)
26c4ef9c
AL
663#ifdef CONFIG_DEBUG_ENTRY
664 /* Assert that pt_regs indicates user mode. */
1e4c4f61 665 testb $3, CS(%rsp)
26c4ef9c
AL
666 jnz 1f
667 ud2
6681:
669#endif
502af0d7 670 POP_REGS pop_rdi=0
3e3b9293
AL
671
672 /*
673 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
674 * Save old stack pointer and switch to trampoline stack.
675 */
676 movq %rsp, %rdi
c482feef 677 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
3e3b9293
AL
678
679 /* Copy the IRET frame to the trampoline stack. */
680 pushq 6*8(%rdi) /* SS */
681 pushq 5*8(%rdi) /* RSP */
682 pushq 4*8(%rdi) /* EFLAGS */
683 pushq 3*8(%rdi) /* CS */
684 pushq 2*8(%rdi) /* RIP */
685
686 /* Push user RDI on the trampoline stack. */
687 pushq (%rdi)
688
689 /*
690 * We are on the trampoline stack. All regs except RDI are live.
691 * We can do future final exit work right here.
692 */
693
6fd166aa 694 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
8a09317b 695
3e3b9293
AL
696 /* Restore RDI. */
697 popq %rdi
698 SWAPGS
26c4ef9c
AL
699 INTERRUPT_RETURN
700
2601e64d 701
627276cb 702/* Returning to kernel space */
6ba71b76 703retint_kernel:
627276cb
DV
704#ifdef CONFIG_PREEMPT
705 /* Interrupts are off */
706 /* Check if we need preemption */
6709812f 707 btl $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 708 jnc 1f
4d732138 7090: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 710 jnz 1f
627276cb 711 call preempt_schedule_irq
36acef25 712 jmp 0b
6ba71b76 7131:
627276cb 714#endif
2601e64d
IM
715 /*
716 * The iretq could re-enable interrupts:
717 */
718 TRACE_IRQS_IRETQ
fffbb5dc 719
26c4ef9c
AL
720GLOBAL(restore_regs_and_return_to_kernel)
721#ifdef CONFIG_DEBUG_ENTRY
722 /* Assert that pt_regs indicates kernel mode. */
1e4c4f61 723 testb $3, CS(%rsp)
26c4ef9c
AL
724 jz 1f
725 ud2
7261:
727#endif
502af0d7 728 POP_REGS
e872045b 729 addq $8, %rsp /* skip regs->orig_ax */
10bcc80e
MD
730 /*
731 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
732 * when returning from IPI handler.
733 */
7209a75d
AL
734 INTERRUPT_RETURN
735
736ENTRY(native_iret)
8c1f7558 737 UNWIND_HINT_IRET_REGS
3891a04a
PA
738 /*
739 * Are we returning to a stack segment from the LDT? Note: in
740 * 64-bit mode SS:RSP on the exception stack is always valid.
741 */
34273f41 742#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
743 testb $4, (SS-RIP)(%rsp)
744 jnz native_irq_return_ldt
34273f41 745#endif
3891a04a 746
af726f21 747.global native_irq_return_iret
7209a75d 748native_irq_return_iret:
b645af2d
AL
749 /*
750 * This may fault. Non-paranoid faults on return to userspace are
751 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
752 * Double-faults due to espfix64 are handled in do_double_fault.
753 * Other faults here are fatal.
754 */
1da177e4 755 iretq
3701d863 756
34273f41 757#ifdef CONFIG_X86_ESPFIX64
7209a75d 758native_irq_return_ldt:
85063fac
AL
759 /*
760 * We are running with user GSBASE. All GPRs contain their user
761 * values. We have a percpu ESPFIX stack that is eight slots
762 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
763 * of the ESPFIX stack.
764 *
765 * We clobber RAX and RDI in this code. We stash RDI on the
766 * normal stack and RAX on the ESPFIX stack.
767 *
768 * The ESPFIX stack layout we set up looks like this:
769 *
770 * --- top of ESPFIX stack ---
771 * SS
772 * RSP
773 * RFLAGS
774 * CS
775 * RIP <-- RSP points here when we're done
776 * RAX <-- espfix_waddr points here
777 * --- bottom of ESPFIX stack ---
778 */
779
780 pushq %rdi /* Stash user RDI */
8a09317b
DH
781 SWAPGS /* to kernel GS */
782 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
783
4d732138 784 movq PER_CPU_VAR(espfix_waddr), %rdi
85063fac
AL
785 movq %rax, (0*8)(%rdi) /* user RAX */
786 movq (1*8)(%rsp), %rax /* user RIP */
4d732138 787 movq %rax, (1*8)(%rdi)
85063fac 788 movq (2*8)(%rsp), %rax /* user CS */
4d732138 789 movq %rax, (2*8)(%rdi)
85063fac 790 movq (3*8)(%rsp), %rax /* user RFLAGS */
4d732138 791 movq %rax, (3*8)(%rdi)
85063fac 792 movq (5*8)(%rsp), %rax /* user SS */
4d732138 793 movq %rax, (5*8)(%rdi)
85063fac 794 movq (4*8)(%rsp), %rax /* user RSP */
4d732138 795 movq %rax, (4*8)(%rdi)
85063fac
AL
796 /* Now RAX == RSP. */
797
798 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
85063fac
AL
799
800 /*
801 * espfix_stack[31:16] == 0. The page tables are set up such that
802 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
803 * espfix_waddr for any X. That is, there are 65536 RO aliases of
804 * the same page. Set up RSP so that RSP[31:16] contains the
805 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
806 * still points to an RO alias of the ESPFIX stack.
807 */
4d732138 808 orq PER_CPU_VAR(espfix_stack), %rax
8a09317b 809
6fd166aa 810 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
8a09317b
DH
811 SWAPGS /* to user GS */
812 popq %rdi /* Restore user RDI */
813
4d732138 814 movq %rax, %rsp
8c1f7558 815 UNWIND_HINT_IRET_REGS offset=8
85063fac
AL
816
817 /*
818 * At this point, we cannot write to the stack any more, but we can
819 * still read.
820 */
821 popq %rax /* Restore user RAX */
822
823 /*
824 * RSP now points to an ordinary IRET frame, except that the page
825 * is read-only and RSP[31:16] are preloaded with the userspace
826 * values. We can now IRET back to userspace.
827 */
4d732138 828 jmp native_irq_return_iret
34273f41 829#endif
4b787e0b 830END(common_interrupt)
3891a04a 831
1da177e4
LT
832/*
833 * APIC interrupts.
0bd7b798 834 */
cf910e83 835.macro apicinterrupt3 num sym do_sym
322648d1 836ENTRY(\sym)
8c1f7558 837 UNWIND_HINT_IRET_REGS
4d732138 838 pushq $~(\num)
39e95433 839.Lcommon_\sym:
3aa99fc3
DB
840 call interrupt_entry
841 UNWIND_HINT_REGS indirect=1
842 call \do_sym /* rdi points to pt_regs */
4d732138 843 jmp ret_from_intr
322648d1
AH
844END(\sym)
845.endm
1da177e4 846
469f0023 847/* Make sure APIC interrupt handlers end up in the irqentry section: */
229a7186
MH
848#define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
849#define POP_SECTION_IRQENTRY .popsection
469f0023 850
cf910e83 851.macro apicinterrupt num sym do_sym
469f0023 852PUSH_SECTION_IRQENTRY
cf910e83 853apicinterrupt3 \num \sym \do_sym
469f0023 854POP_SECTION_IRQENTRY
cf910e83
SA
855.endm
856
322648d1 857#ifdef CONFIG_SMP
4d732138
IM
858apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
859apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 860#endif
1da177e4 861
03b48632 862#ifdef CONFIG_X86_UV
4d732138 863apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 864#endif
4d732138
IM
865
866apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
867apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 868
d78f2664 869#ifdef CONFIG_HAVE_KVM
4d732138
IM
870apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
871apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
210f84b0 872apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
d78f2664
YZ
873#endif
874
33e5ff63 875#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 876apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
877#endif
878
24fd78a8 879#ifdef CONFIG_X86_MCE_AMD
4d732138 880apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
881#endif
882
33e5ff63 883#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 884apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 885#endif
1812924b 886
322648d1 887#ifdef CONFIG_SMP
4d732138
IM
888apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
889apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
890apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 891#endif
1da177e4 892
4d732138
IM
893apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
894apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 895
e360adbe 896#ifdef CONFIG_IRQ_WORK
4d732138 897apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
898#endif
899
1da177e4
LT
900/*
901 * Exception entry points.
0bd7b798 902 */
c482feef 903#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
577ed45e 904
bd7b1f7c
AL
905/**
906 * idtentry - Generate an IDT entry stub
907 * @sym: Name of the generated entry point
908 * @do_sym: C function to be called
909 * @has_error_code: True if this IDT vector has an error code on the stack
910 * @paranoid: non-zero means that this vector may be invoked from
911 * kernel mode with user GSBASE and/or user CR3.
912 * 2 is special -- see below.
913 * @shift_ist: Set to an IST index if entries from kernel mode should
914 * decrement the IST stack so that nested entries get a
915 * fresh stack. (This is for #DB, which has a nasty habit
916 * of recursing.)
917 *
918 * idtentry generates an IDT stub that sets up a usable kernel context,
919 * creates struct pt_regs, and calls @do_sym. The stub has the following
920 * special behaviors:
921 *
922 * On an entry from user mode, the stub switches from the trampoline or
923 * IST stack to the normal thread stack. On an exit to user mode, the
924 * normal exit-to-usermode path is invoked.
925 *
926 * On an exit to kernel mode, if @paranoid == 0, we check for preemption,
927 * whereas we omit the preemption check if @paranoid != 0. This is purely
928 * because the implementation is simpler this way. The kernel only needs
929 * to check for asynchronous kernel preemption when IRQ handlers return.
930 *
931 * If @paranoid == 0, then the stub will handle IRET faults by pretending
932 * that the fault came from user mode. It will handle gs_change faults by
933 * pretending that the fault happened with kernel GSBASE. Since this handling
934 * is omitted for @paranoid != 0, the #GP, #SS, and #NP stubs must have
935 * @paranoid == 0. This special handling will do the wrong thing for
936 * espfix-induced #DF on IRET, so #DF must not use @paranoid == 0.
937 *
938 * @paranoid == 2 is special: the stub will never switch stacks. This is for
939 * #DF: if the thread stack is somehow unusable, we'll still get a useful OOPS.
940 */
577ed45e 941.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 942ENTRY(\sym)
98990a33 943 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
8c1f7558 944
577ed45e
AL
945 /* Sanity check */
946 .if \shift_ist != -1 && \paranoid == 0
947 .error "using shift_ist requires paranoid=1"
948 .endif
949
ee4eb87b 950 ASM_CLAC
cb5dd2c5 951
82c62fa0 952 .if \has_error_code == 0
4d732138 953 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
954 .endif
955
071ccc96 956 .if \paranoid == 1
9e809d15 957 testb $3, CS-ORIG_RAX(%rsp) /* If coming from userspace, switch stacks */
7f2590a1 958 jnz .Lfrom_usermode_switch_stack_\@
48e08d0f 959 .endif
7f2590a1
AL
960
961 .if \paranoid
4d732138 962 call paranoid_entry
cb5dd2c5 963 .else
4d732138 964 call error_entry
cb5dd2c5 965 .endif
8c1f7558 966 UNWIND_HINT_REGS
ebfc453e 967 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 968
cb5dd2c5 969 .if \paranoid
577ed45e 970 .if \shift_ist != -1
4d732138 971 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 972 .else
b8b1d08b 973 TRACE_IRQS_OFF
cb5dd2c5 974 .endif
577ed45e 975 .endif
cb5dd2c5 976
4d732138 977 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
978
979 .if \has_error_code
4d732138
IM
980 movq ORIG_RAX(%rsp), %rsi /* get error code */
981 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 982 .else
4d732138 983 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
984 .endif
985
577ed45e 986 .if \shift_ist != -1
4d732138 987 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
988 .endif
989
4d732138 990 call \do_sym
cb5dd2c5 991
577ed45e 992 .if \shift_ist != -1
4d732138 993 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
994 .endif
995
ebfc453e 996 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 997 .if \paranoid
4d732138 998 jmp paranoid_exit
cb5dd2c5 999 .else
4d732138 1000 jmp error_exit
cb5dd2c5
AL
1001 .endif
1002
071ccc96 1003 .if \paranoid == 1
48e08d0f 1004 /*
7f2590a1 1005 * Entry from userspace. Switch stacks and treat it
48e08d0f
AL
1006 * as a normal entry. This means that paranoid handlers
1007 * run in real process context if user_mode(regs).
1008 */
7f2590a1 1009.Lfrom_usermode_switch_stack_\@:
4d732138 1010 call error_entry
48e08d0f 1011
4d732138 1012 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
1013
1014 .if \has_error_code
4d732138
IM
1015 movq ORIG_RAX(%rsp), %rsi /* get error code */
1016 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 1017 .else
4d732138 1018 xorl %esi, %esi /* no error code */
48e08d0f
AL
1019 .endif
1020
4d732138 1021 call \do_sym
48e08d0f 1022
b3681dd5 1023 jmp error_exit
48e08d0f 1024 .endif
ddeb8f21 1025END(\sym)
322648d1 1026.endm
b8b1d08b 1027
4d732138
IM
1028idtentry divide_error do_divide_error has_error_code=0
1029idtentry overflow do_overflow has_error_code=0
1030idtentry bounds do_bounds has_error_code=0
1031idtentry invalid_op do_invalid_op has_error_code=0
1032idtentry device_not_available do_device_not_available has_error_code=0
1033idtentry double_fault do_double_fault has_error_code=1 paranoid=2
1034idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
1035idtentry invalid_TSS do_invalid_TSS has_error_code=1
1036idtentry segment_not_present do_segment_not_present has_error_code=1
1037idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
1038idtentry coprocessor_error do_coprocessor_error has_error_code=0
1039idtentry alignment_check do_alignment_check has_error_code=1
1040idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
1041
1042
1043 /*
1044 * Reload gs selector with exception handling
1045 * edi: new selector
1046 */
9f9d489a 1047ENTRY(native_load_gs_index)
8c1f7558 1048 FRAME_BEGIN
131484c8 1049 pushfq
b8aa287f 1050 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
ca37e57b 1051 TRACE_IRQS_OFF
9f1e87ea 1052 SWAPGS
42c748bb 1053.Lgs_change:
4d732138 1054 movl %edi, %gs
96e5d28a 10552: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 1056 SWAPGS
ca37e57b 1057 TRACE_IRQS_FLAGS (%rsp)
131484c8 1058 popfq
8c1f7558 1059 FRAME_END
9f1e87ea 1060 ret
8c1f7558 1061ENDPROC(native_load_gs_index)
784d5699 1062EXPORT_SYMBOL(native_load_gs_index)
0bd7b798 1063
42c748bb 1064 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 1065 .section .fixup, "ax"
1da177e4 1066 /* running with kernelgs */
0bd7b798 1067bad_gs:
4d732138 1068 SWAPGS /* switch back to user gs */
b038c842
AL
1069.macro ZAP_GS
1070 /* This can't be a string because the preprocessor needs to see it. */
1071 movl $__USER_DS, %eax
1072 movl %eax, %gs
1073.endm
1074 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
1075 xorl %eax, %eax
1076 movl %eax, %gs
1077 jmp 2b
9f1e87ea 1078 .previous
0bd7b798 1079
2699500b 1080/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 1081ENTRY(do_softirq_own_stack)
4d732138
IM
1082 pushq %rbp
1083 mov %rsp, %rbp
8c1f7558 1084 ENTER_IRQ_STACK regs=0 old_rsp=%r11
4d732138 1085 call __do_softirq
8c1f7558 1086 LEAVE_IRQ_STACK regs=0
2699500b 1087 leaveq
ed6b676c 1088 ret
8c1f7558 1089ENDPROC(do_softirq_own_stack)
75154f40 1090
3d75e1b8 1091#ifdef CONFIG_XEN
5878d5d6 1092idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
1093
1094/*
9f1e87ea
CG
1095 * A note on the "critical region" in our callback handler.
1096 * We want to avoid stacking callback handlers due to events occurring
1097 * during handling of the last event. To do this, we keep events disabled
1098 * until we've done all processing. HOWEVER, we must enable events before
1099 * popping the stack frame (can't be done atomically) and so it would still
1100 * be possible to get enough handler activations to overflow the stack.
1101 * Although unlikely, bugs of that kind are hard to track down, so we'd
1102 * like to avoid the possibility.
1103 * So, on entry to the handler we detect whether we interrupted an
1104 * existing activation in its critical region -- if so, we pop the current
1105 * activation and restart the handler using the previous one.
1106 */
4d732138
IM
1107ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
1108
9f1e87ea
CG
1109/*
1110 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1111 * see the correct pointer to the pt_regs
1112 */
8c1f7558 1113 UNWIND_HINT_FUNC
4d732138 1114 movq %rdi, %rsp /* we don't return, adjust the stack frame */
8c1f7558 1115 UNWIND_HINT_REGS
1d3e53e8
AL
1116
1117 ENTER_IRQ_STACK old_rsp=%r10
4d732138 1118 call xen_evtchn_do_upcall
1d3e53e8
AL
1119 LEAVE_IRQ_STACK
1120
fdfd811d 1121#ifndef CONFIG_PREEMPT
4d732138 1122 call xen_maybe_preempt_hcall
fdfd811d 1123#endif
4d732138 1124 jmp error_exit
371c394a 1125END(xen_do_hypervisor_callback)
3d75e1b8
JF
1126
1127/*
9f1e87ea
CG
1128 * Hypervisor uses this for application faults while it executes.
1129 * We get here for two reasons:
1130 * 1. Fault while reloading DS, ES, FS or GS
1131 * 2. Fault while executing IRET
1132 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1133 * registers that could be reloaded and zeroed the others.
1134 * Category 2 we fix up by killing the current process. We cannot use the
1135 * normal Linux return path in this case because if we use the IRET hypercall
1136 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1137 * We distinguish between categories by comparing each saved segment register
1138 * with its current contents: any discrepancy means we in category 1.
1139 */
3d75e1b8 1140ENTRY(xen_failsafe_callback)
8c1f7558 1141 UNWIND_HINT_EMPTY
4d732138
IM
1142 movl %ds, %ecx
1143 cmpw %cx, 0x10(%rsp)
1144 jne 1f
1145 movl %es, %ecx
1146 cmpw %cx, 0x18(%rsp)
1147 jne 1f
1148 movl %fs, %ecx
1149 cmpw %cx, 0x20(%rsp)
1150 jne 1f
1151 movl %gs, %ecx
1152 cmpw %cx, 0x28(%rsp)
1153 jne 1f
3d75e1b8 1154 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
1155 movq (%rsp), %rcx
1156 movq 8(%rsp), %r11
1157 addq $0x30, %rsp
1158 pushq $0 /* RIP */
8c1f7558 1159 UNWIND_HINT_IRET_REGS offset=8
4d732138 1160 jmp general_protection
3d75e1b8 11611: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
1162 movq (%rsp), %rcx
1163 movq 8(%rsp), %r11
1164 addq $0x30, %rsp
8c1f7558 1165 UNWIND_HINT_IRET_REGS
4d732138 1166 pushq $-1 /* orig_ax = -1 => not a system call */
3f01daec 1167 PUSH_AND_CLEAR_REGS
946c1911 1168 ENCODE_FRAME_POINTER
4d732138 1169 jmp error_exit
3d75e1b8
JF
1170END(xen_failsafe_callback)
1171
cf910e83 1172apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
1173 xen_hvm_callback_vector xen_evtchn_do_upcall
1174
3d75e1b8 1175#endif /* CONFIG_XEN */
ddeb8f21 1176
bc2b0331 1177#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 1178apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331 1179 hyperv_callback_vector hyperv_vector_handler
93286261
VK
1180
1181apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
1182 hyperv_reenlightenment_vector hyperv_reenlightenment_intr
248e742a
MK
1183
1184apicinterrupt3 HYPERV_STIMER0_VECTOR \
1185 hv_stimer0_callback_vector hv_stimer0_vector_handler
bc2b0331
S
1186#endif /* CONFIG_HYPERV */
1187
4d732138 1188idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
d8ba61ba 1189idtentry int3 do_int3 has_error_code=0
4d732138
IM
1190idtentry stack_segment do_stack_segment has_error_code=1
1191
6cac5a92 1192#ifdef CONFIG_XEN
43e41110 1193idtentry xennmi do_nmi has_error_code=0
5878d5d6
JG
1194idtentry xendebug do_debug has_error_code=0
1195idtentry xenint3 do_int3 has_error_code=0
6cac5a92 1196#endif
4d732138
IM
1197
1198idtentry general_protection do_general_protection has_error_code=1
11a7ffb0 1199idtentry page_fault do_page_fault has_error_code=1
4d732138 1200
631bc487 1201#ifdef CONFIG_KVM_GUEST
4d732138 1202idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 1203#endif
4d732138 1204
ddeb8f21 1205#ifdef CONFIG_X86_MCE
6f41c34d 1206idtentry machine_check do_mce has_error_code=0 paranoid=1
ddeb8f21
AH
1207#endif
1208
ebfc453e 1209/*
9e809d15 1210 * Save all registers in pt_regs, and switch gs if needed.
ebfc453e
DV
1211 * Use slow, but surefire "are we in kernel?" check.
1212 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1213 */
1214ENTRY(paranoid_entry)
8c1f7558 1215 UNWIND_HINT_FUNC
1eeb207f 1216 cld
9e809d15
DB
1217 PUSH_AND_CLEAR_REGS save_ret=1
1218 ENCODE_FRAME_POINTER 8
4d732138
IM
1219 movl $1, %ebx
1220 movl $MSR_GS_BASE, %ecx
1eeb207f 1221 rdmsr
4d732138
IM
1222 testl %edx, %edx
1223 js 1f /* negative -> in kernel */
1eeb207f 1224 SWAPGS
4d732138 1225 xorl %ebx, %ebx
8a09317b
DH
1226
12271:
1228 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1229
1230 ret
ebfc453e 1231END(paranoid_entry)
ddeb8f21 1232
ebfc453e
DV
1233/*
1234 * "Paranoid" exit path from exception stack. This is invoked
1235 * only on return from non-NMI IST interrupts that came
1236 * from kernel space.
1237 *
1238 * We may be returning to very strange contexts (e.g. very early
1239 * in syscall entry), so checking for preemption here would
1240 * be complicated. Fortunately, we there's no good reason
1241 * to try to handle preemption here.
4d732138
IM
1242 *
1243 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 1244 */
ddeb8f21 1245ENTRY(paranoid_exit)
8c1f7558 1246 UNWIND_HINT_REGS
2140a994 1247 DISABLE_INTERRUPTS(CLBR_ANY)
5963e317 1248 TRACE_IRQS_OFF_DEBUG
4d732138 1249 testl %ebx, %ebx /* swapgs needed? */
e5317832 1250 jnz .Lparanoid_exit_no_swapgs
f2db9382 1251 TRACE_IRQS_IRETQ
21e94459 1252 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
ddeb8f21 1253 SWAPGS_UNSAFE_STACK
e5317832
AL
1254 jmp .Lparanoid_exit_restore
1255.Lparanoid_exit_no_swapgs:
f2db9382 1256 TRACE_IRQS_IRETQ_DEBUG
e4865757 1257 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
e5317832
AL
1258.Lparanoid_exit_restore:
1259 jmp restore_regs_and_return_to_kernel
ddeb8f21
AH
1260END(paranoid_exit)
1261
1262/*
9e809d15 1263 * Save all registers in pt_regs, and switch GS if needed.
ddeb8f21
AH
1264 */
1265ENTRY(error_entry)
9e809d15 1266 UNWIND_HINT_FUNC
ddeb8f21 1267 cld
9e809d15
DB
1268 PUSH_AND_CLEAR_REGS save_ret=1
1269 ENCODE_FRAME_POINTER 8
03335e95 1270 testb $3, CS+8(%rsp)
cb6f64ed 1271 jz .Lerror_kernelspace
539f5113 1272
cb6f64ed
AL
1273 /*
1274 * We entered from user mode or we're pretending to have entered
1275 * from user mode due to an IRET fault.
1276 */
ddeb8f21 1277 SWAPGS
8a09317b
DH
1278 /* We have user CR3. Change to kernel CR3. */
1279 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
539f5113 1280
cb6f64ed 1281.Lerror_entry_from_usermode_after_swapgs:
7f2590a1
AL
1282 /* Put us onto the real thread stack. */
1283 popq %r12 /* save return addr in %12 */
1284 movq %rsp, %rdi /* arg0 = pt_regs pointer */
1285 call sync_regs
1286 movq %rax, %rsp /* switch stack */
1287 ENCODE_FRAME_POINTER
1288 pushq %r12
1289
f1075053
AL
1290 /*
1291 * We need to tell lockdep that IRQs are off. We can't do this until
1292 * we fix gsbase, and we should do it before enter_from_user_mode
1293 * (which can take locks).
1294 */
1295 TRACE_IRQS_OFF
478dc89c 1296 CALL_enter_from_user_mode
f1075053 1297 ret
02bc7768 1298
cb6f64ed 1299.Lerror_entry_done:
ddeb8f21
AH
1300 TRACE_IRQS_OFF
1301 ret
ddeb8f21 1302
ebfc453e
DV
1303 /*
1304 * There are two places in the kernel that can potentially fault with
1305 * usergs. Handle them here. B stepping K8s sometimes report a
1306 * truncated RIP for IRET exceptions returning to compat mode. Check
1307 * for these here too.
1308 */
cb6f64ed 1309.Lerror_kernelspace:
4d732138
IM
1310 leaq native_irq_return_iret(%rip), %rcx
1311 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1312 je .Lerror_bad_iret
4d732138
IM
1313 movl %ecx, %eax /* zero extend */
1314 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1315 je .Lbstep_iret
42c748bb 1316 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1317 jne .Lerror_entry_done
539f5113
AL
1318
1319 /*
42c748bb 1320 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1321 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1322 * .Lgs_change's error handler with kernel gsbase.
539f5113 1323 */
2fa5f04f 1324 SWAPGS
8a09317b 1325 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
2fa5f04f 1326 jmp .Lerror_entry_done
ae24ffe5 1327
cb6f64ed 1328.Lbstep_iret:
ae24ffe5 1329 /* Fix truncated RIP */
4d732138 1330 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1331 /* fall through */
1332
cb6f64ed 1333.Lerror_bad_iret:
539f5113 1334 /*
8a09317b
DH
1335 * We came from an IRET to user mode, so we have user
1336 * gsbase and CR3. Switch to kernel gsbase and CR3:
539f5113 1337 */
b645af2d 1338 SWAPGS
8a09317b 1339 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
539f5113
AL
1340
1341 /*
1342 * Pretend that the exception came from user mode: set up pt_regs
b3681dd5 1343 * as if we faulted immediately after IRET.
539f5113 1344 */
4d732138
IM
1345 mov %rsp, %rdi
1346 call fixup_bad_iret
1347 mov %rax, %rsp
cb6f64ed 1348 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1349END(error_entry)
1350
ddeb8f21 1351ENTRY(error_exit)
8c1f7558 1352 UNWIND_HINT_REGS
2140a994 1353 DISABLE_INTERRUPTS(CLBR_ANY)
ddeb8f21 1354 TRACE_IRQS_OFF
b3681dd5
AL
1355 testb $3, CS(%rsp)
1356 jz retint_kernel
4d732138 1357 jmp retint_user
ddeb8f21
AH
1358END(error_exit)
1359
929bacec
AL
1360/*
1361 * Runs on exception stack. Xen PV does not go through this path at all,
1362 * so we can use real assembly here.
8a09317b
DH
1363 *
1364 * Registers:
1365 * %r14: Used to save/restore the CR3 of the interrupted context
1366 * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
929bacec 1367 */
ddeb8f21 1368ENTRY(nmi)
8c1f7558 1369 UNWIND_HINT_IRET_REGS
929bacec 1370
3f3c8b8c
SR
1371 /*
1372 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1373 * the iretq it performs will take us out of NMI context.
1374 * This means that we can have nested NMIs where the next
1375 * NMI is using the top of the stack of the previous NMI. We
1376 * can't let it execute because the nested NMI will corrupt the
1377 * stack of the previous NMI. NMI handlers are not re-entrant
1378 * anyway.
1379 *
1380 * To handle this case we do the following:
1381 * Check the a special location on the stack that contains
1382 * a variable that is set when NMIs are executing.
1383 * The interrupted task's stack is also checked to see if it
1384 * is an NMI stack.
1385 * If the variable is not set and the stack is not the NMI
1386 * stack then:
1387 * o Set the special variable on the stack
0b22930e
AL
1388 * o Copy the interrupt frame into an "outermost" location on the
1389 * stack
1390 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1391 * o Continue processing the NMI
1392 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1393 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1394 * o return back to the first NMI
1395 *
1396 * Now on exit of the first NMI, we first clear the stack variable
1397 * The NMI stack will tell any nested NMIs at that point that it is
1398 * nested. Then we pop the stack normally with iret, and if there was
1399 * a nested NMI that updated the copy interrupt stack frame, a
1400 * jump will be made to the repeat_nmi code that will handle the second
1401 * NMI.
9b6e6a83
AL
1402 *
1403 * However, espfix prevents us from directly returning to userspace
1404 * with a single IRET instruction. Similarly, IRET to user mode
1405 * can fault. We therefore handle NMIs from user space like
1406 * other IST entries.
3f3c8b8c
SR
1407 */
1408
e93c1730
AL
1409 ASM_CLAC
1410
146b2b09 1411 /* Use %rdx as our temp variable throughout */
4d732138 1412 pushq %rdx
3f3c8b8c 1413
9b6e6a83
AL
1414 testb $3, CS-RIP+8(%rsp)
1415 jz .Lnmi_from_kernel
1416
1417 /*
1418 * NMI from user mode. We need to run on the thread stack, but we
1419 * can't go through the normal entry paths: NMIs are masked, and
1420 * we don't want to enable interrupts, because then we'll end
1421 * up in an awkward situation in which IRQs are on but NMIs
1422 * are off.
83c133cf
AL
1423 *
1424 * We also must not push anything to the stack before switching
1425 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1426 */
1427
929bacec 1428 swapgs
9b6e6a83 1429 cld
8a09317b 1430 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
9b6e6a83
AL
1431 movq %rsp, %rdx
1432 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
8c1f7558 1433 UNWIND_HINT_IRET_REGS base=%rdx offset=8
9b6e6a83
AL
1434 pushq 5*8(%rdx) /* pt_regs->ss */
1435 pushq 4*8(%rdx) /* pt_regs->rsp */
1436 pushq 3*8(%rdx) /* pt_regs->flags */
1437 pushq 2*8(%rdx) /* pt_regs->cs */
1438 pushq 1*8(%rdx) /* pt_regs->rip */
8c1f7558 1439 UNWIND_HINT_IRET_REGS
9b6e6a83 1440 pushq $-1 /* pt_regs->orig_ax */
30907fd1 1441 PUSH_AND_CLEAR_REGS rdx=(%rdx)
946c1911 1442 ENCODE_FRAME_POINTER
9b6e6a83
AL
1443
1444 /*
1445 * At this point we no longer need to worry about stack damage
1446 * due to nesting -- we're on the normal thread stack and we're
1447 * done with the NMI stack.
1448 */
1449
1450 movq %rsp, %rdi
1451 movq $-1, %rsi
1452 call do_nmi
1453
45d5a168 1454 /*
9b6e6a83 1455 * Return back to user mode. We must *not* do the normal exit
946c1911 1456 * work, because we don't want to enable interrupts.
45d5a168 1457 */
8a055d7f 1458 jmp swapgs_restore_regs_and_return_to_usermode
45d5a168 1459
9b6e6a83 1460.Lnmi_from_kernel:
3f3c8b8c 1461 /*
0b22930e
AL
1462 * Here's what our stack frame will look like:
1463 * +---------------------------------------------------------+
1464 * | original SS |
1465 * | original Return RSP |
1466 * | original RFLAGS |
1467 * | original CS |
1468 * | original RIP |
1469 * +---------------------------------------------------------+
1470 * | temp storage for rdx |
1471 * +---------------------------------------------------------+
1472 * | "NMI executing" variable |
1473 * +---------------------------------------------------------+
1474 * | iret SS } Copied from "outermost" frame |
1475 * | iret Return RSP } on each loop iteration; overwritten |
1476 * | iret RFLAGS } by a nested NMI to force another |
1477 * | iret CS } iteration if needed. |
1478 * | iret RIP } |
1479 * +---------------------------------------------------------+
1480 * | outermost SS } initialized in first_nmi; |
1481 * | outermost Return RSP } will not be changed before |
1482 * | outermost RFLAGS } NMI processing is done. |
1483 * | outermost CS } Copied to "iret" frame on each |
1484 * | outermost RIP } iteration. |
1485 * +---------------------------------------------------------+
1486 * | pt_regs |
1487 * +---------------------------------------------------------+
1488 *
1489 * The "original" frame is used by hardware. Before re-enabling
1490 * NMIs, we need to be done with it, and we need to leave enough
1491 * space for the asm code here.
1492 *
1493 * We return by executing IRET while RSP points to the "iret" frame.
1494 * That will either return for real or it will loop back into NMI
1495 * processing.
1496 *
1497 * The "outermost" frame is copied to the "iret" frame on each
1498 * iteration of the loop, so each iteration starts with the "iret"
1499 * frame pointing to the final return target.
1500 */
1501
45d5a168 1502 /*
0b22930e
AL
1503 * Determine whether we're a nested NMI.
1504 *
a27507ca
AL
1505 * If we interrupted kernel code between repeat_nmi and
1506 * end_repeat_nmi, then we are a nested NMI. We must not
1507 * modify the "iret" frame because it's being written by
1508 * the outer NMI. That's okay; the outer NMI handler is
1509 * about to about to call do_nmi anyway, so we can just
1510 * resume the outer NMI.
45d5a168 1511 */
a27507ca
AL
1512
1513 movq $repeat_nmi, %rdx
1514 cmpq 8(%rsp), %rdx
1515 ja 1f
1516 movq $end_repeat_nmi, %rdx
1517 cmpq 8(%rsp), %rdx
1518 ja nested_nmi_out
15191:
45d5a168 1520
3f3c8b8c 1521 /*
a27507ca 1522 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1523 * This will not detect if we interrupted an outer NMI just
1524 * before IRET.
3f3c8b8c 1525 */
4d732138
IM
1526 cmpl $1, -8(%rsp)
1527 je nested_nmi
3f3c8b8c
SR
1528
1529 /*
0b22930e
AL
1530 * Now test if the previous stack was an NMI stack. This covers
1531 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1532 * "NMI executing" but before IRET. We need to be careful, though:
1533 * there is one case in which RSP could point to the NMI stack
1534 * despite there being no NMI active: naughty userspace controls
1535 * RSP at the very beginning of the SYSCALL targets. We can
1536 * pull a fast one on naughty userspace, though: we program
1537 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1538 * if it controls the kernel's RSP. We set DF before we clear
1539 * "NMI executing".
3f3c8b8c 1540 */
0784b364
DV
1541 lea 6*8(%rsp), %rdx
1542 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1543 cmpq %rdx, 4*8(%rsp)
1544 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1545 ja first_nmi
4d732138 1546
0784b364
DV
1547 subq $EXCEPTION_STKSZ, %rdx
1548 cmpq %rdx, 4*8(%rsp)
1549 /* If it is below the NMI stack, it is a normal NMI */
1550 jb first_nmi
810bc075
AL
1551
1552 /* Ah, it is within the NMI stack. */
1553
1554 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1555 jz first_nmi /* RSP was user controlled. */
1556
1557 /* This is a nested NMI. */
0784b364 1558
3f3c8b8c
SR
1559nested_nmi:
1560 /*
0b22930e
AL
1561 * Modify the "iret" frame to point to repeat_nmi, forcing another
1562 * iteration of NMI handling.
3f3c8b8c 1563 */
23a781e9 1564 subq $8, %rsp
4d732138
IM
1565 leaq -10*8(%rsp), %rdx
1566 pushq $__KERNEL_DS
1567 pushq %rdx
131484c8 1568 pushfq
4d732138
IM
1569 pushq $__KERNEL_CS
1570 pushq $repeat_nmi
3f3c8b8c
SR
1571
1572 /* Put stack back */
4d732138 1573 addq $(6*8), %rsp
3f3c8b8c
SR
1574
1575nested_nmi_out:
4d732138 1576 popq %rdx
3f3c8b8c 1577
0b22930e 1578 /* We are returning to kernel mode, so this cannot result in a fault. */
929bacec 1579 iretq
3f3c8b8c
SR
1580
1581first_nmi:
0b22930e 1582 /* Restore rdx. */
4d732138 1583 movq (%rsp), %rdx
62610913 1584
36f1a77b
AL
1585 /* Make room for "NMI executing". */
1586 pushq $0
3f3c8b8c 1587
0b22930e 1588 /* Leave room for the "iret" frame */
4d732138 1589 subq $(5*8), %rsp
28696f43 1590
0b22930e 1591 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1592 .rept 5
4d732138 1593 pushq 11*8(%rsp)
3f3c8b8c 1594 .endr
8c1f7558 1595 UNWIND_HINT_IRET_REGS
62610913 1596
79fb4ad6
SR
1597 /* Everything up to here is safe from nested NMIs */
1598
a97439aa
AL
1599#ifdef CONFIG_DEBUG_ENTRY
1600 /*
1601 * For ease of testing, unmask NMIs right away. Disabled by
1602 * default because IRET is very expensive.
1603 */
1604 pushq $0 /* SS */
1605 pushq %rsp /* RSP (minus 8 because of the previous push) */
1606 addq $8, (%rsp) /* Fix up RSP */
1607 pushfq /* RFLAGS */
1608 pushq $__KERNEL_CS /* CS */
1609 pushq $1f /* RIP */
929bacec 1610 iretq /* continues at repeat_nmi below */
8c1f7558 1611 UNWIND_HINT_IRET_REGS
a97439aa
AL
16121:
1613#endif
1614
0b22930e 1615repeat_nmi:
62610913
JB
1616 /*
1617 * If there was a nested NMI, the first NMI's iret will return
1618 * here. But NMIs are still enabled and we can take another
1619 * nested NMI. The nested NMI checks the interrupted RIP to see
1620 * if it is between repeat_nmi and end_repeat_nmi, and if so
1621 * it will just return, as we are about to repeat an NMI anyway.
1622 * This makes it safe to copy to the stack frame that a nested
1623 * NMI will update.
0b22930e
AL
1624 *
1625 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1626 * we're repeating an NMI, gsbase has the same value that it had on
1627 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1628 * gsbase if needed before we call do_nmi. "NMI executing"
1629 * is zero.
62610913 1630 */
36f1a77b 1631 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1632
62610913 1633 /*
0b22930e
AL
1634 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1635 * here must not modify the "iret" frame while we're writing to
1636 * it or it will end up containing garbage.
62610913 1637 */
4d732138 1638 addq $(10*8), %rsp
3f3c8b8c 1639 .rept 5
4d732138 1640 pushq -6*8(%rsp)
3f3c8b8c 1641 .endr
4d732138 1642 subq $(5*8), %rsp
62610913 1643end_repeat_nmi:
3f3c8b8c
SR
1644
1645 /*
0b22930e
AL
1646 * Everything below this point can be preempted by a nested NMI.
1647 * If this happens, then the inner NMI will change the "iret"
1648 * frame to point back to repeat_nmi.
3f3c8b8c 1649 */
4d732138 1650 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43 1651
1fd466ef 1652 /*
ebfc453e 1653 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1654 * as we should not be calling schedule in NMI context.
1655 * Even with normal interrupts enabled. An NMI should not be
1656 * setting NEED_RESCHED or anything that normal interrupts and
1657 * exceptions might do.
1658 */
4d732138 1659 call paranoid_entry
8c1f7558 1660 UNWIND_HINT_REGS
7fbb98c5 1661
ddeb8f21 1662 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1663 movq %rsp, %rdi
1664 movq $-1, %rsi
1665 call do_nmi
7fbb98c5 1666
21e94459 1667 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
8a09317b 1668
4d732138
IM
1669 testl %ebx, %ebx /* swapgs needed? */
1670 jnz nmi_restore
ddeb8f21
AH
1671nmi_swapgs:
1672 SWAPGS_UNSAFE_STACK
1673nmi_restore:
502af0d7 1674 POP_REGS
0b22930e 1675
471ee483
AL
1676 /*
1677 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1678 * at the "iret" frame.
1679 */
1680 addq $6*8, %rsp
28696f43 1681
810bc075
AL
1682 /*
1683 * Clear "NMI executing". Set DF first so that we can easily
1684 * distinguish the remaining code between here and IRET from
929bacec
AL
1685 * the SYSCALL entry and exit paths.
1686 *
1687 * We arguably should just inspect RIP instead, but I (Andy) wrote
1688 * this code when I had the misapprehension that Xen PV supported
1689 * NMIs, and Xen PV would break that approach.
810bc075
AL
1690 */
1691 std
1692 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1693
1694 /*
929bacec
AL
1695 * iretq reads the "iret" frame and exits the NMI stack in a
1696 * single instruction. We are returning to kernel mode, so this
1697 * cannot result in a fault. Similarly, we don't need to worry
1698 * about espfix64 on the way back to kernel mode.
0b22930e 1699 */
929bacec 1700 iretq
ddeb8f21
AH
1701END(nmi)
1702
1703ENTRY(ignore_sysret)
8c1f7558 1704 UNWIND_HINT_EMPTY
4d732138 1705 mov $-ENOSYS, %eax
ddeb8f21 1706 sysret
ddeb8f21 1707END(ignore_sysret)
2deb4be2
AL
1708
1709ENTRY(rewind_stack_do_exit)
8c1f7558 1710 UNWIND_HINT_FUNC
2deb4be2
AL
1711 /* Prevent any naive code from trying to unwind to our caller. */
1712 xorl %ebp, %ebp
1713
1714 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
8c1f7558
JP
1715 leaq -PTREGS_SIZE(%rax), %rsp
1716 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
2deb4be2
AL
1717
1718 call do_exit
2deb4be2 1719END(rewind_stack_do_exit)