]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - arch/x86/entry/entry_64.S
Merge branch 'core/objtool' into x86/asm, to pick up dependent changes
[thirdparty/kernel/stable.git] / arch / x86 / entry / entry_64.S
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 7 *
1da177e4
LT
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
8b4777a4
AL
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
0bd7b798 12 * A note on terminology:
4d732138
IM
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
2e91a17b
AK
15 *
16 * Some macro usage:
4d732138
IM
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
1da177e4 20 */
1da177e4
LT
21#include <linux/linkage.h>
22#include <asm/segment.h>
1da177e4
LT
23#include <asm/cache.h>
24#include <asm/errno.h>
d36f9479 25#include "calling.h"
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
784d5699 38#include <asm/export.h>
8c1f7558 39#include <asm/frame.h>
d7e7528b 40#include <linux/err.h>
1da177e4 41
4d732138
IM
42.code64
43.section .entry.text, "ax"
16444a8a 44
72fe4858 45#ifdef CONFIG_PARAVIRT
2be29982 46ENTRY(native_usergs_sysret64)
8c1f7558 47 UNWIND_HINT_EMPTY
72fe4858
GOC
48 swapgs
49 sysretq
8c1f7558 50END(native_usergs_sysret64)
72fe4858
GOC
51#endif /* CONFIG_PARAVIRT */
52
f2db9382 53.macro TRACE_IRQS_IRETQ
2601e64d 54#ifdef CONFIG_TRACE_IRQFLAGS
4d732138
IM
55 bt $9, EFLAGS(%rsp) /* interrupts off? */
56 jnc 1f
2601e64d
IM
57 TRACE_IRQS_ON
581:
59#endif
60.endm
61
5963e317
SR
62/*
63 * When dynamic function tracer is enabled it will add a breakpoint
64 * to all locations that it is about to modify, sync CPUs, update
65 * all the code, sync CPUs, then remove the breakpoints. In this time
66 * if lockdep is enabled, it might jump back into the debug handler
67 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
68 *
69 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
70 * make sure the stack pointer does not get reset back to the top
71 * of the debug stack, and instead just reuses the current stack.
72 */
73#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
74
75.macro TRACE_IRQS_OFF_DEBUG
4d732138 76 call debug_stack_set_zero
5963e317 77 TRACE_IRQS_OFF
4d732138 78 call debug_stack_reset
5963e317
SR
79.endm
80
81.macro TRACE_IRQS_ON_DEBUG
4d732138 82 call debug_stack_set_zero
5963e317 83 TRACE_IRQS_ON
4d732138 84 call debug_stack_reset
5963e317
SR
85.endm
86
f2db9382 87.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
88 bt $9, EFLAGS(%rsp) /* interrupts off? */
89 jnc 1f
5963e317
SR
90 TRACE_IRQS_ON_DEBUG
911:
92.endm
93
94#else
4d732138
IM
95# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
96# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
97# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
98#endif
99
1da177e4 100/*
4d732138 101 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 102 *
fda57b22
AL
103 * This is the only entry point used for 64-bit system calls. The
104 * hardware interface is reasonably well designed and the register to
105 * argument mapping Linux uses fits well with the registers that are
106 * available when SYSCALL is used.
107 *
108 * SYSCALL instructions can be found inlined in libc implementations as
109 * well as some other programs and libraries. There are also a handful
110 * of SYSCALL instructions in the vDSO used, for example, as a
111 * clock_gettimeofday fallback.
112 *
4d732138 113 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
114 * then loads new ss, cs, and rip from previously programmed MSRs.
115 * rflags gets masked by a value from another MSR (so CLD and CLAC
116 * are not needed). SYSCALL does not save anything on the stack
117 * and does not change rsp.
118 *
119 * Registers on entry:
1da177e4 120 * rax system call number
b87cf63e
DV
121 * rcx return address
122 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 123 * rdi arg0
1da177e4 124 * rsi arg1
0bd7b798 125 * rdx arg2
b87cf63e 126 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
127 * r8 arg4
128 * r9 arg5
4d732138 129 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 130 *
1da177e4
LT
131 * Only called from user space.
132 *
7fcb3bc3 133 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
134 * it deals with uncanonical addresses better. SYSRET has trouble
135 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 136 */
1da177e4 137
b2502b41 138ENTRY(entry_SYSCALL_64)
8c1f7558 139 UNWIND_HINT_EMPTY
9ed8e7d8
DV
140 /*
141 * Interrupts are off on entry.
142 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
143 * it is too small to ever cause noticeable irq latency.
144 */
72fe4858 145
8a9949bc 146 swapgs
4d732138
IM
147 movq %rsp, PER_CPU_VAR(rsp_scratch)
148 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8 149
1e423bff
AL
150 TRACE_IRQS_OFF
151
9ed8e7d8 152 /* Construct struct pt_regs on stack */
4d732138
IM
153 pushq $__USER_DS /* pt_regs->ss */
154 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
4d732138
IM
155 pushq %r11 /* pt_regs->flags */
156 pushq $__USER_CS /* pt_regs->cs */
157 pushq %rcx /* pt_regs->ip */
8a9949bc 158GLOBAL(entry_SYSCALL_64_after_hwframe)
4d732138
IM
159 pushq %rax /* pt_regs->orig_ax */
160 pushq %rdi /* pt_regs->di */
161 pushq %rsi /* pt_regs->si */
162 pushq %rdx /* pt_regs->dx */
163 pushq %rcx /* pt_regs->cx */
164 pushq $-ENOSYS /* pt_regs->ax */
165 pushq %r8 /* pt_regs->r8 */
166 pushq %r9 /* pt_regs->r9 */
167 pushq %r10 /* pt_regs->r10 */
168 pushq %r11 /* pt_regs->r11 */
169 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
8c1f7558 170 UNWIND_HINT_REGS extra=0
4d732138 171
1e423bff
AL
172 /*
173 * If we need to do entry work or if we guess we'll need to do
174 * exit work, go straight to the slow path.
175 */
15f4eae7
AL
176 movq PER_CPU_VAR(current_task), %r11
177 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
1e423bff
AL
178 jnz entry_SYSCALL64_slow_path
179
b2502b41 180entry_SYSCALL_64_fastpath:
1e423bff
AL
181 /*
182 * Easy case: enable interrupts and issue the syscall. If the syscall
183 * needs pt_regs, we'll call a stub that disables interrupts again
184 * and jumps to the slow path.
185 */
186 TRACE_IRQS_ON
187 ENABLE_INTERRUPTS(CLBR_NONE)
fca460f9 188#if __SYSCALL_MASK == ~0
4d732138 189 cmpq $__NR_syscall_max, %rax
fca460f9 190#else
4d732138
IM
191 andl $__SYSCALL_MASK, %eax
192 cmpl $__NR_syscall_max, %eax
fca460f9 193#endif
4d732138
IM
194 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
195 movq %r10, %rcx
302f5b26
AL
196
197 /*
198 * This call instruction is handled specially in stub_ptregs_64.
b7765086
AL
199 * It might end up jumping to the slow path. If it jumps, RAX
200 * and all argument registers are clobbered.
302f5b26 201 */
4d732138 202 call *sys_call_table(, %rax, 8)
302f5b26
AL
203.Lentry_SYSCALL_64_after_fastpath_call:
204
4d732138 205 movq %rax, RAX(%rsp)
146b2b09 2061:
b3494a4a
AL
207
208 /*
1e423bff
AL
209 * If we get here, then we know that pt_regs is clean for SYSRET64.
210 * If we see that no exit work is required (which we are required
211 * to check with IRQs off), then we can go straight to SYSRET64.
b3494a4a 212 */
2140a994 213 DISABLE_INTERRUPTS(CLBR_ANY)
1e423bff 214 TRACE_IRQS_OFF
15f4eae7
AL
215 movq PER_CPU_VAR(current_task), %r11
216 testl $_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
1e423bff 217 jnz 1f
b3494a4a 218
1e423bff
AL
219 LOCKDEP_SYS_EXIT
220 TRACE_IRQS_ON /* user mode is traced as IRQs on */
eb2a54c3
AL
221 movq RIP(%rsp), %rcx
222 movq EFLAGS(%rsp), %r11
223 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 224 movq RSP(%rsp), %rsp
8c1f7558 225 UNWIND_HINT_EMPTY
2be29982 226 USERGS_SYSRET64
1da177e4 227
1e423bff
AL
2281:
229 /*
230 * The fast path looked good when we started, but something changed
231 * along the way and we need to switch to the slow path. Calling
232 * raise(3) will trigger this, for example. IRQs are off.
233 */
29ea1b25 234 TRACE_IRQS_ON
2140a994 235 ENABLE_INTERRUPTS(CLBR_ANY)
76f5df43 236 SAVE_EXTRA_REGS
4d732138 237 movq %rsp, %rdi
1e423bff
AL
238 call syscall_return_slowpath /* returns with IRQs disabled */
239 jmp return_from_SYSCALL_64
0bd7b798 240
1e423bff
AL
241entry_SYSCALL64_slow_path:
242 /* IRQs are off. */
76f5df43 243 SAVE_EXTRA_REGS
29ea1b25 244 movq %rsp, %rdi
1e423bff
AL
245 call do_syscall_64 /* returns with IRQs disabled */
246
247return_from_SYSCALL_64:
76f5df43 248 RESTORE_EXTRA_REGS
29ea1b25 249 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
250
251 /*
252 * Try to use SYSRET instead of IRET if we're returning to
253 * a completely clean 64-bit userspace context.
254 */
4d732138
IM
255 movq RCX(%rsp), %rcx
256 movq RIP(%rsp), %r11
257 cmpq %rcx, %r11 /* RCX == RIP */
258 jne opportunistic_sysret_failed
fffbb5dc
DV
259
260 /*
261 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
262 * in kernel space. This essentially lets the user take over
17be0aec 263 * the kernel, since userspace controls RSP.
fffbb5dc 264 *
17be0aec 265 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc 266 * to be updated to remain correct on both old and new CPUs.
361b4b58 267 *
cbe0317b
KS
268 * Change top bits to match most significant bit (47th or 56th bit
269 * depending on paging mode) in the address.
fffbb5dc 270 */
17be0aec
DV
271 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
272 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
4d732138 273
17be0aec
DV
274 /* If this changed %rcx, it was not canonical */
275 cmpq %rcx, %r11
276 jne opportunistic_sysret_failed
fffbb5dc 277
4d732138
IM
278 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
279 jne opportunistic_sysret_failed
fffbb5dc 280
4d732138
IM
281 movq R11(%rsp), %r11
282 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
283 jne opportunistic_sysret_failed
fffbb5dc
DV
284
285 /*
3e035305
BP
286 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
287 * restore RF properly. If the slowpath sets it for whatever reason, we
288 * need to restore it correctly.
289 *
290 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
291 * trap from userspace immediately after SYSRET. This would cause an
292 * infinite loop whenever #DB happens with register state that satisfies
293 * the opportunistic SYSRET conditions. For example, single-stepping
294 * this user code:
fffbb5dc 295 *
4d732138 296 * movq $stuck_here, %rcx
fffbb5dc
DV
297 * pushfq
298 * popq %r11
299 * stuck_here:
300 *
301 * would never get past 'stuck_here'.
302 */
4d732138
IM
303 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
304 jnz opportunistic_sysret_failed
fffbb5dc
DV
305
306 /* nothing to check for RSP */
307
4d732138
IM
308 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
309 jne opportunistic_sysret_failed
fffbb5dc
DV
310
311 /*
4d732138
IM
312 * We win! This label is here just for ease of understanding
313 * perf profiles. Nothing jumps here.
fffbb5dc
DV
314 */
315syscall_return_via_sysret:
17be0aec
DV
316 /* rcx and r11 are already restored (see code above) */
317 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 318 movq RSP(%rsp), %rsp
8c1f7558 319 UNWIND_HINT_EMPTY
fffbb5dc 320 USERGS_SYSRET64
fffbb5dc
DV
321
322opportunistic_sysret_failed:
323 SWAPGS
324 jmp restore_c_regs_and_iret
b2502b41 325END(entry_SYSCALL_64)
0bd7b798 326
302f5b26
AL
327ENTRY(stub_ptregs_64)
328 /*
329 * Syscalls marked as needing ptregs land here.
b7765086
AL
330 * If we are on the fast path, we need to save the extra regs,
331 * which we achieve by trying again on the slow path. If we are on
332 * the slow path, the extra regs are already saved.
302f5b26
AL
333 *
334 * RAX stores a pointer to the C function implementing the syscall.
b7765086 335 * IRQs are on.
302f5b26
AL
336 */
337 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
338 jne 1f
339
b7765086
AL
340 /*
341 * Called from fast path -- disable IRQs again, pop return address
342 * and jump to slow path
343 */
2140a994 344 DISABLE_INTERRUPTS(CLBR_ANY)
b7765086 345 TRACE_IRQS_OFF
302f5b26 346 popq %rax
8c1f7558 347 UNWIND_HINT_REGS extra=0
b7765086 348 jmp entry_SYSCALL64_slow_path
302f5b26
AL
349
3501:
b3830e8d 351 jmp *%rax /* Called from C */
302f5b26
AL
352END(stub_ptregs_64)
353
354.macro ptregs_stub func
355ENTRY(ptregs_\func)
8c1f7558 356 UNWIND_HINT_FUNC
302f5b26
AL
357 leaq \func(%rip), %rax
358 jmp stub_ptregs_64
359END(ptregs_\func)
360.endm
361
362/* Instantiate ptregs_stub for each ptregs-using syscall */
363#define __SYSCALL_64_QUAL_(sym)
364#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
365#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
366#include <asm/syscalls_64.h>
fffbb5dc 367
0100301b
BG
368/*
369 * %rdi: prev task
370 * %rsi: next task
371 */
372ENTRY(__switch_to_asm)
8c1f7558 373 UNWIND_HINT_FUNC
0100301b
BG
374 /*
375 * Save callee-saved registers
376 * This must match the order in inactive_task_frame
377 */
378 pushq %rbp
379 pushq %rbx
380 pushq %r12
381 pushq %r13
382 pushq %r14
383 pushq %r15
384
385 /* switch stack */
386 movq %rsp, TASK_threadsp(%rdi)
387 movq TASK_threadsp(%rsi), %rsp
388
389#ifdef CONFIG_CC_STACKPROTECTOR
390 movq TASK_stack_canary(%rsi), %rbx
391 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
392#endif
393
394 /* restore callee-saved registers */
395 popq %r15
396 popq %r14
397 popq %r13
398 popq %r12
399 popq %rbx
400 popq %rbp
401
402 jmp __switch_to
403END(__switch_to_asm)
404
1eeb207f
DV
405/*
406 * A newly forked process directly context switches into this address.
407 *
0100301b 408 * rax: prev task we switched from
616d2483
BG
409 * rbx: kernel thread func (NULL for user thread)
410 * r12: kernel thread arg
1eeb207f
DV
411 */
412ENTRY(ret_from_fork)
8c1f7558 413 UNWIND_HINT_EMPTY
0100301b 414 movq %rax, %rdi
ebd57499 415 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 416
ebd57499
JP
417 testq %rbx, %rbx /* from kernel_thread? */
418 jnz 1f /* kernel threads are uncommon */
24d978b7 419
616d2483 4202:
8c1f7558 421 UNWIND_HINT_REGS
ebd57499 422 movq %rsp, %rdi
24d978b7
AL
423 call syscall_return_slowpath /* returns with IRQs disabled */
424 TRACE_IRQS_ON /* user mode is traced as IRQS on */
425 SWAPGS
426 jmp restore_regs_and_iret
616d2483
BG
427
4281:
429 /* kernel thread */
430 movq %r12, %rdi
431 call *%rbx
432 /*
433 * A kernel thread is allowed to return here after successfully
434 * calling do_execve(). Exit to userspace to complete the execve()
435 * syscall.
436 */
437 movq $0, RAX(%rsp)
438 jmp 2b
1eeb207f
DV
439END(ret_from_fork)
440
939b7871 441/*
3304c9c3
DV
442 * Build the entry stubs with some assembler magic.
443 * We pack 1 stub into every 8-byte block.
939b7871 444 */
3304c9c3 445 .align 8
939b7871 446ENTRY(irq_entries_start)
3304c9c3
DV
447 vector=FIRST_EXTERNAL_VECTOR
448 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
8c1f7558 449 UNWIND_HINT_IRET_REGS
4d732138 450 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3 451 jmp common_interrupt
3304c9c3 452 .align 8
8c1f7558 453 vector=vector+1
3304c9c3 454 .endr
939b7871
PA
455END(irq_entries_start)
456
1d3e53e8
AL
457.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
458#ifdef CONFIG_DEBUG_ENTRY
459 pushfq
460 testl $X86_EFLAGS_IF, (%rsp)
461 jz .Lokay_\@
462 ud2
463.Lokay_\@:
464 addq $8, %rsp
465#endif
466.endm
467
468/*
469 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
470 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
471 * Requires kernel GSBASE.
472 *
473 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
474 */
8c1f7558 475.macro ENTER_IRQ_STACK regs=1 old_rsp
1d3e53e8
AL
476 DEBUG_ENTRY_ASSERT_IRQS_OFF
477 movq %rsp, \old_rsp
8c1f7558
JP
478
479 .if \regs
480 UNWIND_HINT_REGS base=\old_rsp
481 .endif
482
1d3e53e8 483 incl PER_CPU_VAR(irq_count)
29955909 484 jnz .Lirq_stack_push_old_rsp_\@
1d3e53e8
AL
485
486 /*
487 * Right now, if we just incremented irq_count to zero, we've
488 * claimed the IRQ stack but we haven't switched to it yet.
489 *
490 * If anything is added that can interrupt us here without using IST,
491 * it must be *extremely* careful to limit its stack usage. This
492 * could include kprobes and a hypothetical future IST-less #DB
493 * handler.
29955909
AL
494 *
495 * The OOPS unwinder relies on the word at the top of the IRQ
496 * stack linking back to the previous RSP for the entire time we're
497 * on the IRQ stack. For this to work reliably, we need to write
498 * it before we actually move ourselves to the IRQ stack.
499 */
500
501 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
502 movq PER_CPU_VAR(irq_stack_ptr), %rsp
503
504#ifdef CONFIG_DEBUG_ENTRY
505 /*
506 * If the first movq above becomes wrong due to IRQ stack layout
507 * changes, the only way we'll notice is if we try to unwind right
508 * here. Assert that we set up the stack right to catch this type
509 * of bug quickly.
1d3e53e8 510 */
29955909
AL
511 cmpq -8(%rsp), \old_rsp
512 je .Lirq_stack_okay\@
513 ud2
514 .Lirq_stack_okay\@:
515#endif
1d3e53e8 516
29955909 517.Lirq_stack_push_old_rsp_\@:
1d3e53e8 518 pushq \old_rsp
8c1f7558
JP
519
520 .if \regs
521 UNWIND_HINT_REGS indirect=1
522 .endif
1d3e53e8
AL
523.endm
524
525/*
526 * Undoes ENTER_IRQ_STACK.
527 */
8c1f7558 528.macro LEAVE_IRQ_STACK regs=1
1d3e53e8
AL
529 DEBUG_ENTRY_ASSERT_IRQS_OFF
530 /* We need to be off the IRQ stack before decrementing irq_count. */
531 popq %rsp
532
8c1f7558
JP
533 .if \regs
534 UNWIND_HINT_REGS
535 .endif
536
1d3e53e8
AL
537 /*
538 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
539 * the irq stack but we're not on it.
540 */
541
542 decl PER_CPU_VAR(irq_count)
543.endm
544
d99015b1 545/*
1da177e4
LT
546 * Interrupt entry/exit.
547 *
548 * Interrupt entry points save only callee clobbered registers in fast path.
d99015b1
AH
549 *
550 * Entry runs with interrupts off.
551 */
1da177e4 552
722024db 553/* 0(%rsp): ~(interrupt number) */
1da177e4 554 .macro interrupt func
f6f64681 555 cld
ff467594
AL
556 ALLOC_PT_GPREGS_ON_STACK
557 SAVE_C_REGS
558 SAVE_EXTRA_REGS
946c1911 559 ENCODE_FRAME_POINTER
76f5df43 560
ff467594 561 testb $3, CS(%rsp)
dde74f2e 562 jz 1f
02bc7768
AL
563
564 /*
565 * IRQ from user mode. Switch to kernel gsbase and inform context
566 * tracking that we're in kernel mode.
567 */
f6f64681 568 SWAPGS
f1075053
AL
569
570 /*
571 * We need to tell lockdep that IRQs are off. We can't do this until
572 * we fix gsbase, and we should do it before enter_from_user_mode
573 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
574 * the simplest way to handle it is to just call it twice if
575 * we enter from user mode. There's no reason to optimize this since
576 * TRACE_IRQS_OFF is a no-op if lockdep is off.
577 */
578 TRACE_IRQS_OFF
579
478dc89c 580 CALL_enter_from_user_mode
02bc7768 581
76f5df43 5821:
1d3e53e8 583 ENTER_IRQ_STACK old_rsp=%rdi
f6f64681
DV
584 /* We entered an interrupt context - irqs are off: */
585 TRACE_IRQS_OFF
586
a586f98e 587 call \func /* rdi points to pt_regs */
1da177e4
LT
588 .endm
589
722024db
AH
590 /*
591 * The interrupt stubs push (~vector+0x80) onto the stack and
592 * then jump to common_interrupt.
593 */
939b7871
PA
594 .p2align CONFIG_X86_L1_CACHE_SHIFT
595common_interrupt:
ee4eb87b 596 ASM_CLAC
4d732138 597 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
1da177e4 598 interrupt do_IRQ
34061f13 599 /* 0(%rsp): old RSP */
7effaa88 600ret_from_intr:
2140a994 601 DISABLE_INTERRUPTS(CLBR_ANY)
2601e64d 602 TRACE_IRQS_OFF
625dbc3b 603
1d3e53e8 604 LEAVE_IRQ_STACK
625dbc3b 605
03335e95 606 testb $3, CS(%rsp)
dde74f2e 607 jz retint_kernel
4d732138 608
02bc7768 609 /* Interrupt came from user space */
02bc7768
AL
610GLOBAL(retint_user)
611 mov %rsp,%rdi
612 call prepare_exit_to_usermode
2601e64d 613 TRACE_IRQS_IRETQ
72fe4858 614 SWAPGS
ff467594 615 jmp restore_regs_and_iret
2601e64d 616
627276cb 617/* Returning to kernel space */
6ba71b76 618retint_kernel:
627276cb
DV
619#ifdef CONFIG_PREEMPT
620 /* Interrupts are off */
621 /* Check if we need preemption */
4d732138 622 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 623 jnc 1f
4d732138 6240: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 625 jnz 1f
627276cb 626 call preempt_schedule_irq
36acef25 627 jmp 0b
6ba71b76 6281:
627276cb 629#endif
2601e64d
IM
630 /*
631 * The iretq could re-enable interrupts:
632 */
633 TRACE_IRQS_IRETQ
fffbb5dc
DV
634
635/*
636 * At this label, code paths which return to kernel and to user,
637 * which come from interrupts/exception and from syscalls, merge.
638 */
ee08c6bd 639GLOBAL(restore_regs_and_iret)
ff467594 640 RESTORE_EXTRA_REGS
fffbb5dc 641restore_c_regs_and_iret:
76f5df43
DV
642 RESTORE_C_REGS
643 REMOVE_PT_GPREGS_FROM_STACK 8
7209a75d
AL
644 INTERRUPT_RETURN
645
646ENTRY(native_iret)
8c1f7558 647 UNWIND_HINT_IRET_REGS
3891a04a
PA
648 /*
649 * Are we returning to a stack segment from the LDT? Note: in
650 * 64-bit mode SS:RSP on the exception stack is always valid.
651 */
34273f41 652#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
653 testb $4, (SS-RIP)(%rsp)
654 jnz native_irq_return_ldt
34273f41 655#endif
3891a04a 656
af726f21 657.global native_irq_return_iret
7209a75d 658native_irq_return_iret:
b645af2d
AL
659 /*
660 * This may fault. Non-paranoid faults on return to userspace are
661 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
662 * Double-faults due to espfix64 are handled in do_double_fault.
663 * Other faults here are fatal.
664 */
1da177e4 665 iretq
3701d863 666
34273f41 667#ifdef CONFIG_X86_ESPFIX64
7209a75d 668native_irq_return_ldt:
85063fac
AL
669 /*
670 * We are running with user GSBASE. All GPRs contain their user
671 * values. We have a percpu ESPFIX stack that is eight slots
672 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
673 * of the ESPFIX stack.
674 *
675 * We clobber RAX and RDI in this code. We stash RDI on the
676 * normal stack and RAX on the ESPFIX stack.
677 *
678 * The ESPFIX stack layout we set up looks like this:
679 *
680 * --- top of ESPFIX stack ---
681 * SS
682 * RSP
683 * RFLAGS
684 * CS
685 * RIP <-- RSP points here when we're done
686 * RAX <-- espfix_waddr points here
687 * --- bottom of ESPFIX stack ---
688 */
689
690 pushq %rdi /* Stash user RDI */
3891a04a 691 SWAPGS
4d732138 692 movq PER_CPU_VAR(espfix_waddr), %rdi
85063fac
AL
693 movq %rax, (0*8)(%rdi) /* user RAX */
694 movq (1*8)(%rsp), %rax /* user RIP */
4d732138 695 movq %rax, (1*8)(%rdi)
85063fac 696 movq (2*8)(%rsp), %rax /* user CS */
4d732138 697 movq %rax, (2*8)(%rdi)
85063fac 698 movq (3*8)(%rsp), %rax /* user RFLAGS */
4d732138 699 movq %rax, (3*8)(%rdi)
85063fac 700 movq (5*8)(%rsp), %rax /* user SS */
4d732138 701 movq %rax, (5*8)(%rdi)
85063fac 702 movq (4*8)(%rsp), %rax /* user RSP */
4d732138 703 movq %rax, (4*8)(%rdi)
85063fac
AL
704 /* Now RAX == RSP. */
705
706 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
707 popq %rdi /* Restore user RDI */
708
709 /*
710 * espfix_stack[31:16] == 0. The page tables are set up such that
711 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
712 * espfix_waddr for any X. That is, there are 65536 RO aliases of
713 * the same page. Set up RSP so that RSP[31:16] contains the
714 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
715 * still points to an RO alias of the ESPFIX stack.
716 */
4d732138 717 orq PER_CPU_VAR(espfix_stack), %rax
3891a04a 718 SWAPGS
4d732138 719 movq %rax, %rsp
8c1f7558 720 UNWIND_HINT_IRET_REGS offset=8
85063fac
AL
721
722 /*
723 * At this point, we cannot write to the stack any more, but we can
724 * still read.
725 */
726 popq %rax /* Restore user RAX */
727
728 /*
729 * RSP now points to an ordinary IRET frame, except that the page
730 * is read-only and RSP[31:16] are preloaded with the userspace
731 * values. We can now IRET back to userspace.
732 */
4d732138 733 jmp native_irq_return_iret
34273f41 734#endif
4b787e0b 735END(common_interrupt)
3891a04a 736
1da177e4
LT
737/*
738 * APIC interrupts.
0bd7b798 739 */
cf910e83 740.macro apicinterrupt3 num sym do_sym
322648d1 741ENTRY(\sym)
8c1f7558 742 UNWIND_HINT_IRET_REGS
ee4eb87b 743 ASM_CLAC
4d732138 744 pushq $~(\num)
39e95433 745.Lcommon_\sym:
322648d1 746 interrupt \do_sym
4d732138 747 jmp ret_from_intr
322648d1
AH
748END(\sym)
749.endm
1da177e4 750
469f0023 751/* Make sure APIC interrupt handlers end up in the irqentry section: */
229a7186
MH
752#define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
753#define POP_SECTION_IRQENTRY .popsection
469f0023 754
cf910e83 755.macro apicinterrupt num sym do_sym
469f0023 756PUSH_SECTION_IRQENTRY
cf910e83 757apicinterrupt3 \num \sym \do_sym
469f0023 758POP_SECTION_IRQENTRY
cf910e83
SA
759.endm
760
322648d1 761#ifdef CONFIG_SMP
4d732138
IM
762apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
763apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 764#endif
1da177e4 765
03b48632 766#ifdef CONFIG_X86_UV
4d732138 767apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 768#endif
4d732138
IM
769
770apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
771apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 772
d78f2664 773#ifdef CONFIG_HAVE_KVM
4d732138
IM
774apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
775apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
210f84b0 776apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
d78f2664
YZ
777#endif
778
33e5ff63 779#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 780apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
781#endif
782
24fd78a8 783#ifdef CONFIG_X86_MCE_AMD
4d732138 784apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
785#endif
786
33e5ff63 787#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 788apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 789#endif
1812924b 790
322648d1 791#ifdef CONFIG_SMP
4d732138
IM
792apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
793apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
794apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 795#endif
1da177e4 796
4d732138
IM
797apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
798apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 799
e360adbe 800#ifdef CONFIG_IRQ_WORK
4d732138 801apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
802#endif
803
1da177e4
LT
804/*
805 * Exception entry points.
0bd7b798 806 */
9b476688 807#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
577ed45e
AL
808
809.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 810ENTRY(\sym)
98990a33 811 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
8c1f7558 812
577ed45e
AL
813 /* Sanity check */
814 .if \shift_ist != -1 && \paranoid == 0
815 .error "using shift_ist requires paranoid=1"
816 .endif
817
ee4eb87b 818 ASM_CLAC
cb5dd2c5
AL
819
820 .ifeq \has_error_code
4d732138 821 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
822 .endif
823
76f5df43 824 ALLOC_PT_GPREGS_ON_STACK
cb5dd2c5
AL
825
826 .if \paranoid
48e08d0f 827 .if \paranoid == 1
4d732138
IM
828 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
829 jnz 1f
48e08d0f 830 .endif
4d732138 831 call paranoid_entry
cb5dd2c5 832 .else
4d732138 833 call error_entry
cb5dd2c5 834 .endif
8c1f7558 835 UNWIND_HINT_REGS
ebfc453e 836 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 837
cb5dd2c5 838 .if \paranoid
577ed45e 839 .if \shift_ist != -1
4d732138 840 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 841 .else
b8b1d08b 842 TRACE_IRQS_OFF
cb5dd2c5 843 .endif
577ed45e 844 .endif
cb5dd2c5 845
4d732138 846 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
847
848 .if \has_error_code
4d732138
IM
849 movq ORIG_RAX(%rsp), %rsi /* get error code */
850 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 851 .else
4d732138 852 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
853 .endif
854
577ed45e 855 .if \shift_ist != -1
4d732138 856 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
857 .endif
858
4d732138 859 call \do_sym
cb5dd2c5 860
577ed45e 861 .if \shift_ist != -1
4d732138 862 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
863 .endif
864
ebfc453e 865 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 866 .if \paranoid
4d732138 867 jmp paranoid_exit
cb5dd2c5 868 .else
4d732138 869 jmp error_exit
cb5dd2c5
AL
870 .endif
871
48e08d0f 872 .if \paranoid == 1
48e08d0f
AL
873 /*
874 * Paranoid entry from userspace. Switch stacks and treat it
875 * as a normal entry. This means that paranoid handlers
876 * run in real process context if user_mode(regs).
877 */
8781:
4d732138 879 call error_entry
48e08d0f 880
48e08d0f 881
4d732138
IM
882 movq %rsp, %rdi /* pt_regs pointer */
883 call sync_regs
884 movq %rax, %rsp /* switch stack */
48e08d0f 885
4d732138 886 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
887
888 .if \has_error_code
4d732138
IM
889 movq ORIG_RAX(%rsp), %rsi /* get error code */
890 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 891 .else
4d732138 892 xorl %esi, %esi /* no error code */
48e08d0f
AL
893 .endif
894
4d732138 895 call \do_sym
48e08d0f 896
4d732138 897 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 898 .endif
ddeb8f21 899END(\sym)
322648d1 900.endm
b8b1d08b 901
4d732138
IM
902idtentry divide_error do_divide_error has_error_code=0
903idtentry overflow do_overflow has_error_code=0
904idtentry bounds do_bounds has_error_code=0
905idtentry invalid_op do_invalid_op has_error_code=0
906idtentry device_not_available do_device_not_available has_error_code=0
907idtentry double_fault do_double_fault has_error_code=1 paranoid=2
908idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
909idtentry invalid_TSS do_invalid_TSS has_error_code=1
910idtentry segment_not_present do_segment_not_present has_error_code=1
911idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
912idtentry coprocessor_error do_coprocessor_error has_error_code=0
913idtentry alignment_check do_alignment_check has_error_code=1
914idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
915
916
917 /*
918 * Reload gs selector with exception handling
919 * edi: new selector
920 */
9f9d489a 921ENTRY(native_load_gs_index)
8c1f7558 922 FRAME_BEGIN
131484c8 923 pushfq
b8aa287f 924 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
9f1e87ea 925 SWAPGS
42c748bb 926.Lgs_change:
4d732138 927 movl %edi, %gs
96e5d28a 9282: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 929 SWAPGS
131484c8 930 popfq
8c1f7558 931 FRAME_END
9f1e87ea 932 ret
8c1f7558 933ENDPROC(native_load_gs_index)
784d5699 934EXPORT_SYMBOL(native_load_gs_index)
0bd7b798 935
42c748bb 936 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 937 .section .fixup, "ax"
1da177e4 938 /* running with kernelgs */
0bd7b798 939bad_gs:
4d732138 940 SWAPGS /* switch back to user gs */
b038c842
AL
941.macro ZAP_GS
942 /* This can't be a string because the preprocessor needs to see it. */
943 movl $__USER_DS, %eax
944 movl %eax, %gs
945.endm
946 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
947 xorl %eax, %eax
948 movl %eax, %gs
949 jmp 2b
9f1e87ea 950 .previous
0bd7b798 951
2699500b 952/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 953ENTRY(do_softirq_own_stack)
4d732138
IM
954 pushq %rbp
955 mov %rsp, %rbp
8c1f7558 956 ENTER_IRQ_STACK regs=0 old_rsp=%r11
4d732138 957 call __do_softirq
8c1f7558 958 LEAVE_IRQ_STACK regs=0
2699500b 959 leaveq
ed6b676c 960 ret
8c1f7558 961ENDPROC(do_softirq_own_stack)
75154f40 962
3d75e1b8 963#ifdef CONFIG_XEN
5878d5d6 964idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
965
966/*
9f1e87ea
CG
967 * A note on the "critical region" in our callback handler.
968 * We want to avoid stacking callback handlers due to events occurring
969 * during handling of the last event. To do this, we keep events disabled
970 * until we've done all processing. HOWEVER, we must enable events before
971 * popping the stack frame (can't be done atomically) and so it would still
972 * be possible to get enough handler activations to overflow the stack.
973 * Although unlikely, bugs of that kind are hard to track down, so we'd
974 * like to avoid the possibility.
975 * So, on entry to the handler we detect whether we interrupted an
976 * existing activation in its critical region -- if so, we pop the current
977 * activation and restart the handler using the previous one.
978 */
4d732138
IM
979ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
980
9f1e87ea
CG
981/*
982 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
983 * see the correct pointer to the pt_regs
984 */
8c1f7558 985 UNWIND_HINT_FUNC
4d732138 986 movq %rdi, %rsp /* we don't return, adjust the stack frame */
8c1f7558 987 UNWIND_HINT_REGS
1d3e53e8
AL
988
989 ENTER_IRQ_STACK old_rsp=%r10
4d732138 990 call xen_evtchn_do_upcall
1d3e53e8
AL
991 LEAVE_IRQ_STACK
992
fdfd811d 993#ifndef CONFIG_PREEMPT
4d732138 994 call xen_maybe_preempt_hcall
fdfd811d 995#endif
4d732138 996 jmp error_exit
371c394a 997END(xen_do_hypervisor_callback)
3d75e1b8
JF
998
999/*
9f1e87ea
CG
1000 * Hypervisor uses this for application faults while it executes.
1001 * We get here for two reasons:
1002 * 1. Fault while reloading DS, ES, FS or GS
1003 * 2. Fault while executing IRET
1004 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1005 * registers that could be reloaded and zeroed the others.
1006 * Category 2 we fix up by killing the current process. We cannot use the
1007 * normal Linux return path in this case because if we use the IRET hypercall
1008 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1009 * We distinguish between categories by comparing each saved segment register
1010 * with its current contents: any discrepancy means we in category 1.
1011 */
3d75e1b8 1012ENTRY(xen_failsafe_callback)
8c1f7558 1013 UNWIND_HINT_EMPTY
4d732138
IM
1014 movl %ds, %ecx
1015 cmpw %cx, 0x10(%rsp)
1016 jne 1f
1017 movl %es, %ecx
1018 cmpw %cx, 0x18(%rsp)
1019 jne 1f
1020 movl %fs, %ecx
1021 cmpw %cx, 0x20(%rsp)
1022 jne 1f
1023 movl %gs, %ecx
1024 cmpw %cx, 0x28(%rsp)
1025 jne 1f
3d75e1b8 1026 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
1027 movq (%rsp), %rcx
1028 movq 8(%rsp), %r11
1029 addq $0x30, %rsp
1030 pushq $0 /* RIP */
8c1f7558 1031 UNWIND_HINT_IRET_REGS offset=8
4d732138 1032 jmp general_protection
3d75e1b8 10331: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
1034 movq (%rsp), %rcx
1035 movq 8(%rsp), %r11
1036 addq $0x30, %rsp
8c1f7558 1037 UNWIND_HINT_IRET_REGS
4d732138 1038 pushq $-1 /* orig_ax = -1 => not a system call */
76f5df43
DV
1039 ALLOC_PT_GPREGS_ON_STACK
1040 SAVE_C_REGS
1041 SAVE_EXTRA_REGS
946c1911 1042 ENCODE_FRAME_POINTER
4d732138 1043 jmp error_exit
3d75e1b8
JF
1044END(xen_failsafe_callback)
1045
cf910e83 1046apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
1047 xen_hvm_callback_vector xen_evtchn_do_upcall
1048
3d75e1b8 1049#endif /* CONFIG_XEN */
ddeb8f21 1050
bc2b0331 1051#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 1052apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331
S
1053 hyperv_callback_vector hyperv_vector_handler
1054#endif /* CONFIG_HYPERV */
1055
4d732138
IM
1056idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1057idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1058idtentry stack_segment do_stack_segment has_error_code=1
1059
6cac5a92 1060#ifdef CONFIG_XEN
5878d5d6
JG
1061idtentry xendebug do_debug has_error_code=0
1062idtentry xenint3 do_int3 has_error_code=0
6cac5a92 1063#endif
4d732138
IM
1064
1065idtentry general_protection do_general_protection has_error_code=1
11a7ffb0 1066idtentry page_fault do_page_fault has_error_code=1
4d732138 1067
631bc487 1068#ifdef CONFIG_KVM_GUEST
4d732138 1069idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 1070#endif
4d732138 1071
ddeb8f21 1072#ifdef CONFIG_X86_MCE
4d732138 1073idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
ddeb8f21
AH
1074#endif
1075
ebfc453e
DV
1076/*
1077 * Save all registers in pt_regs, and switch gs if needed.
1078 * Use slow, but surefire "are we in kernel?" check.
1079 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1080 */
1081ENTRY(paranoid_entry)
8c1f7558 1082 UNWIND_HINT_FUNC
1eeb207f
DV
1083 cld
1084 SAVE_C_REGS 8
1085 SAVE_EXTRA_REGS 8
946c1911 1086 ENCODE_FRAME_POINTER 8
4d732138
IM
1087 movl $1, %ebx
1088 movl $MSR_GS_BASE, %ecx
1eeb207f 1089 rdmsr
4d732138
IM
1090 testl %edx, %edx
1091 js 1f /* negative -> in kernel */
1eeb207f 1092 SWAPGS
4d732138 1093 xorl %ebx, %ebx
1eeb207f 10941: ret
ebfc453e 1095END(paranoid_entry)
ddeb8f21 1096
ebfc453e
DV
1097/*
1098 * "Paranoid" exit path from exception stack. This is invoked
1099 * only on return from non-NMI IST interrupts that came
1100 * from kernel space.
1101 *
1102 * We may be returning to very strange contexts (e.g. very early
1103 * in syscall entry), so checking for preemption here would
1104 * be complicated. Fortunately, we there's no good reason
1105 * to try to handle preemption here.
4d732138
IM
1106 *
1107 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 1108 */
ddeb8f21 1109ENTRY(paranoid_exit)
8c1f7558 1110 UNWIND_HINT_REGS
2140a994 1111 DISABLE_INTERRUPTS(CLBR_ANY)
5963e317 1112 TRACE_IRQS_OFF_DEBUG
4d732138
IM
1113 testl %ebx, %ebx /* swapgs needed? */
1114 jnz paranoid_exit_no_swapgs
f2db9382 1115 TRACE_IRQS_IRETQ
ddeb8f21 1116 SWAPGS_UNSAFE_STACK
4d732138 1117 jmp paranoid_exit_restore
0d550836 1118paranoid_exit_no_swapgs:
f2db9382 1119 TRACE_IRQS_IRETQ_DEBUG
0d550836 1120paranoid_exit_restore:
76f5df43
DV
1121 RESTORE_EXTRA_REGS
1122 RESTORE_C_REGS
1123 REMOVE_PT_GPREGS_FROM_STACK 8
48e08d0f 1124 INTERRUPT_RETURN
ddeb8f21
AH
1125END(paranoid_exit)
1126
1127/*
ebfc453e 1128 * Save all registers in pt_regs, and switch gs if needed.
539f5113 1129 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
1130 */
1131ENTRY(error_entry)
8c1f7558 1132 UNWIND_HINT_FUNC
ddeb8f21 1133 cld
76f5df43
DV
1134 SAVE_C_REGS 8
1135 SAVE_EXTRA_REGS 8
946c1911 1136 ENCODE_FRAME_POINTER 8
4d732138 1137 xorl %ebx, %ebx
03335e95 1138 testb $3, CS+8(%rsp)
cb6f64ed 1139 jz .Lerror_kernelspace
539f5113 1140
cb6f64ed
AL
1141 /*
1142 * We entered from user mode or we're pretending to have entered
1143 * from user mode due to an IRET fault.
1144 */
ddeb8f21 1145 SWAPGS
539f5113 1146
cb6f64ed 1147.Lerror_entry_from_usermode_after_swapgs:
f1075053
AL
1148 /*
1149 * We need to tell lockdep that IRQs are off. We can't do this until
1150 * we fix gsbase, and we should do it before enter_from_user_mode
1151 * (which can take locks).
1152 */
1153 TRACE_IRQS_OFF
478dc89c 1154 CALL_enter_from_user_mode
f1075053 1155 ret
02bc7768 1156
cb6f64ed 1157.Lerror_entry_done:
ddeb8f21
AH
1158 TRACE_IRQS_OFF
1159 ret
ddeb8f21 1160
ebfc453e
DV
1161 /*
1162 * There are two places in the kernel that can potentially fault with
1163 * usergs. Handle them here. B stepping K8s sometimes report a
1164 * truncated RIP for IRET exceptions returning to compat mode. Check
1165 * for these here too.
1166 */
cb6f64ed 1167.Lerror_kernelspace:
4d732138
IM
1168 incl %ebx
1169 leaq native_irq_return_iret(%rip), %rcx
1170 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1171 je .Lerror_bad_iret
4d732138
IM
1172 movl %ecx, %eax /* zero extend */
1173 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1174 je .Lbstep_iret
42c748bb 1175 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1176 jne .Lerror_entry_done
539f5113
AL
1177
1178 /*
42c748bb 1179 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1180 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1181 * .Lgs_change's error handler with kernel gsbase.
539f5113 1182 */
2fa5f04f
WL
1183 SWAPGS
1184 jmp .Lerror_entry_done
ae24ffe5 1185
cb6f64ed 1186.Lbstep_iret:
ae24ffe5 1187 /* Fix truncated RIP */
4d732138 1188 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1189 /* fall through */
1190
cb6f64ed 1191.Lerror_bad_iret:
539f5113
AL
1192 /*
1193 * We came from an IRET to user mode, so we have user gsbase.
1194 * Switch to kernel gsbase:
1195 */
b645af2d 1196 SWAPGS
539f5113
AL
1197
1198 /*
1199 * Pretend that the exception came from user mode: set up pt_regs
1200 * as if we faulted immediately after IRET and clear EBX so that
1201 * error_exit knows that we will be returning to user mode.
1202 */
4d732138
IM
1203 mov %rsp, %rdi
1204 call fixup_bad_iret
1205 mov %rax, %rsp
539f5113 1206 decl %ebx
cb6f64ed 1207 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1208END(error_entry)
1209
1210
539f5113 1211/*
75ca5b22 1212 * On entry, EBX is a "return to kernel mode" flag:
539f5113
AL
1213 * 1: already in kernel mode, don't need SWAPGS
1214 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1215 */
ddeb8f21 1216ENTRY(error_exit)
8c1f7558 1217 UNWIND_HINT_REGS
2140a994 1218 DISABLE_INTERRUPTS(CLBR_ANY)
ddeb8f21 1219 TRACE_IRQS_OFF
2140a994 1220 testl %ebx, %ebx
4d732138
IM
1221 jnz retint_kernel
1222 jmp retint_user
ddeb8f21
AH
1223END(error_exit)
1224
0784b364 1225/* Runs on exception stack */
5878d5d6 1226/* XXX: broken on Xen PV */
ddeb8f21 1227ENTRY(nmi)
8c1f7558 1228 UNWIND_HINT_IRET_REGS
3f3c8b8c
SR
1229 /*
1230 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1231 * the iretq it performs will take us out of NMI context.
1232 * This means that we can have nested NMIs where the next
1233 * NMI is using the top of the stack of the previous NMI. We
1234 * can't let it execute because the nested NMI will corrupt the
1235 * stack of the previous NMI. NMI handlers are not re-entrant
1236 * anyway.
1237 *
1238 * To handle this case we do the following:
1239 * Check the a special location on the stack that contains
1240 * a variable that is set when NMIs are executing.
1241 * The interrupted task's stack is also checked to see if it
1242 * is an NMI stack.
1243 * If the variable is not set and the stack is not the NMI
1244 * stack then:
1245 * o Set the special variable on the stack
0b22930e
AL
1246 * o Copy the interrupt frame into an "outermost" location on the
1247 * stack
1248 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1249 * o Continue processing the NMI
1250 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1251 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1252 * o return back to the first NMI
1253 *
1254 * Now on exit of the first NMI, we first clear the stack variable
1255 * The NMI stack will tell any nested NMIs at that point that it is
1256 * nested. Then we pop the stack normally with iret, and if there was
1257 * a nested NMI that updated the copy interrupt stack frame, a
1258 * jump will be made to the repeat_nmi code that will handle the second
1259 * NMI.
9b6e6a83
AL
1260 *
1261 * However, espfix prevents us from directly returning to userspace
1262 * with a single IRET instruction. Similarly, IRET to user mode
1263 * can fault. We therefore handle NMIs from user space like
1264 * other IST entries.
3f3c8b8c
SR
1265 */
1266
e93c1730
AL
1267 ASM_CLAC
1268
146b2b09 1269 /* Use %rdx as our temp variable throughout */
4d732138 1270 pushq %rdx
3f3c8b8c 1271
9b6e6a83
AL
1272 testb $3, CS-RIP+8(%rsp)
1273 jz .Lnmi_from_kernel
1274
1275 /*
1276 * NMI from user mode. We need to run on the thread stack, but we
1277 * can't go through the normal entry paths: NMIs are masked, and
1278 * we don't want to enable interrupts, because then we'll end
1279 * up in an awkward situation in which IRQs are on but NMIs
1280 * are off.
83c133cf
AL
1281 *
1282 * We also must not push anything to the stack before switching
1283 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1284 */
1285
83c133cf 1286 SWAPGS_UNSAFE_STACK
9b6e6a83
AL
1287 cld
1288 movq %rsp, %rdx
1289 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
8c1f7558 1290 UNWIND_HINT_IRET_REGS base=%rdx offset=8
9b6e6a83
AL
1291 pushq 5*8(%rdx) /* pt_regs->ss */
1292 pushq 4*8(%rdx) /* pt_regs->rsp */
1293 pushq 3*8(%rdx) /* pt_regs->flags */
1294 pushq 2*8(%rdx) /* pt_regs->cs */
1295 pushq 1*8(%rdx) /* pt_regs->rip */
8c1f7558 1296 UNWIND_HINT_IRET_REGS
9b6e6a83
AL
1297 pushq $-1 /* pt_regs->orig_ax */
1298 pushq %rdi /* pt_regs->di */
1299 pushq %rsi /* pt_regs->si */
1300 pushq (%rdx) /* pt_regs->dx */
1301 pushq %rcx /* pt_regs->cx */
1302 pushq %rax /* pt_regs->ax */
1303 pushq %r8 /* pt_regs->r8 */
1304 pushq %r9 /* pt_regs->r9 */
1305 pushq %r10 /* pt_regs->r10 */
1306 pushq %r11 /* pt_regs->r11 */
1307 pushq %rbx /* pt_regs->rbx */
1308 pushq %rbp /* pt_regs->rbp */
1309 pushq %r12 /* pt_regs->r12 */
1310 pushq %r13 /* pt_regs->r13 */
1311 pushq %r14 /* pt_regs->r14 */
1312 pushq %r15 /* pt_regs->r15 */
8c1f7558 1313 UNWIND_HINT_REGS
946c1911 1314 ENCODE_FRAME_POINTER
9b6e6a83
AL
1315
1316 /*
1317 * At this point we no longer need to worry about stack damage
1318 * due to nesting -- we're on the normal thread stack and we're
1319 * done with the NMI stack.
1320 */
1321
1322 movq %rsp, %rdi
1323 movq $-1, %rsi
1324 call do_nmi
1325
45d5a168 1326 /*
9b6e6a83 1327 * Return back to user mode. We must *not* do the normal exit
946c1911 1328 * work, because we don't want to enable interrupts.
45d5a168 1329 */
9b6e6a83 1330 SWAPGS
946c1911 1331 jmp restore_regs_and_iret
45d5a168 1332
9b6e6a83 1333.Lnmi_from_kernel:
3f3c8b8c 1334 /*
0b22930e
AL
1335 * Here's what our stack frame will look like:
1336 * +---------------------------------------------------------+
1337 * | original SS |
1338 * | original Return RSP |
1339 * | original RFLAGS |
1340 * | original CS |
1341 * | original RIP |
1342 * +---------------------------------------------------------+
1343 * | temp storage for rdx |
1344 * +---------------------------------------------------------+
1345 * | "NMI executing" variable |
1346 * +---------------------------------------------------------+
1347 * | iret SS } Copied from "outermost" frame |
1348 * | iret Return RSP } on each loop iteration; overwritten |
1349 * | iret RFLAGS } by a nested NMI to force another |
1350 * | iret CS } iteration if needed. |
1351 * | iret RIP } |
1352 * +---------------------------------------------------------+
1353 * | outermost SS } initialized in first_nmi; |
1354 * | outermost Return RSP } will not be changed before |
1355 * | outermost RFLAGS } NMI processing is done. |
1356 * | outermost CS } Copied to "iret" frame on each |
1357 * | outermost RIP } iteration. |
1358 * +---------------------------------------------------------+
1359 * | pt_regs |
1360 * +---------------------------------------------------------+
1361 *
1362 * The "original" frame is used by hardware. Before re-enabling
1363 * NMIs, we need to be done with it, and we need to leave enough
1364 * space for the asm code here.
1365 *
1366 * We return by executing IRET while RSP points to the "iret" frame.
1367 * That will either return for real or it will loop back into NMI
1368 * processing.
1369 *
1370 * The "outermost" frame is copied to the "iret" frame on each
1371 * iteration of the loop, so each iteration starts with the "iret"
1372 * frame pointing to the final return target.
1373 */
1374
45d5a168 1375 /*
0b22930e
AL
1376 * Determine whether we're a nested NMI.
1377 *
a27507ca
AL
1378 * If we interrupted kernel code between repeat_nmi and
1379 * end_repeat_nmi, then we are a nested NMI. We must not
1380 * modify the "iret" frame because it's being written by
1381 * the outer NMI. That's okay; the outer NMI handler is
1382 * about to about to call do_nmi anyway, so we can just
1383 * resume the outer NMI.
45d5a168 1384 */
a27507ca
AL
1385
1386 movq $repeat_nmi, %rdx
1387 cmpq 8(%rsp), %rdx
1388 ja 1f
1389 movq $end_repeat_nmi, %rdx
1390 cmpq 8(%rsp), %rdx
1391 ja nested_nmi_out
13921:
45d5a168 1393
3f3c8b8c 1394 /*
a27507ca 1395 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1396 * This will not detect if we interrupted an outer NMI just
1397 * before IRET.
3f3c8b8c 1398 */
4d732138
IM
1399 cmpl $1, -8(%rsp)
1400 je nested_nmi
3f3c8b8c
SR
1401
1402 /*
0b22930e
AL
1403 * Now test if the previous stack was an NMI stack. This covers
1404 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1405 * "NMI executing" but before IRET. We need to be careful, though:
1406 * there is one case in which RSP could point to the NMI stack
1407 * despite there being no NMI active: naughty userspace controls
1408 * RSP at the very beginning of the SYSCALL targets. We can
1409 * pull a fast one on naughty userspace, though: we program
1410 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1411 * if it controls the kernel's RSP. We set DF before we clear
1412 * "NMI executing".
3f3c8b8c 1413 */
0784b364
DV
1414 lea 6*8(%rsp), %rdx
1415 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1416 cmpq %rdx, 4*8(%rsp)
1417 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1418 ja first_nmi
4d732138 1419
0784b364
DV
1420 subq $EXCEPTION_STKSZ, %rdx
1421 cmpq %rdx, 4*8(%rsp)
1422 /* If it is below the NMI stack, it is a normal NMI */
1423 jb first_nmi
810bc075
AL
1424
1425 /* Ah, it is within the NMI stack. */
1426
1427 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1428 jz first_nmi /* RSP was user controlled. */
1429
1430 /* This is a nested NMI. */
0784b364 1431
3f3c8b8c
SR
1432nested_nmi:
1433 /*
0b22930e
AL
1434 * Modify the "iret" frame to point to repeat_nmi, forcing another
1435 * iteration of NMI handling.
3f3c8b8c 1436 */
23a781e9 1437 subq $8, %rsp
4d732138
IM
1438 leaq -10*8(%rsp), %rdx
1439 pushq $__KERNEL_DS
1440 pushq %rdx
131484c8 1441 pushfq
4d732138
IM
1442 pushq $__KERNEL_CS
1443 pushq $repeat_nmi
3f3c8b8c
SR
1444
1445 /* Put stack back */
4d732138 1446 addq $(6*8), %rsp
3f3c8b8c
SR
1447
1448nested_nmi_out:
4d732138 1449 popq %rdx
3f3c8b8c 1450
0b22930e 1451 /* We are returning to kernel mode, so this cannot result in a fault. */
3f3c8b8c
SR
1452 INTERRUPT_RETURN
1453
1454first_nmi:
0b22930e 1455 /* Restore rdx. */
4d732138 1456 movq (%rsp), %rdx
62610913 1457
36f1a77b
AL
1458 /* Make room for "NMI executing". */
1459 pushq $0
3f3c8b8c 1460
0b22930e 1461 /* Leave room for the "iret" frame */
4d732138 1462 subq $(5*8), %rsp
28696f43 1463
0b22930e 1464 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1465 .rept 5
4d732138 1466 pushq 11*8(%rsp)
3f3c8b8c 1467 .endr
8c1f7558 1468 UNWIND_HINT_IRET_REGS
62610913 1469
79fb4ad6
SR
1470 /* Everything up to here is safe from nested NMIs */
1471
a97439aa
AL
1472#ifdef CONFIG_DEBUG_ENTRY
1473 /*
1474 * For ease of testing, unmask NMIs right away. Disabled by
1475 * default because IRET is very expensive.
1476 */
1477 pushq $0 /* SS */
1478 pushq %rsp /* RSP (minus 8 because of the previous push) */
1479 addq $8, (%rsp) /* Fix up RSP */
1480 pushfq /* RFLAGS */
1481 pushq $__KERNEL_CS /* CS */
1482 pushq $1f /* RIP */
1483 INTERRUPT_RETURN /* continues at repeat_nmi below */
8c1f7558 1484 UNWIND_HINT_IRET_REGS
a97439aa
AL
14851:
1486#endif
1487
0b22930e 1488repeat_nmi:
62610913
JB
1489 /*
1490 * If there was a nested NMI, the first NMI's iret will return
1491 * here. But NMIs are still enabled and we can take another
1492 * nested NMI. The nested NMI checks the interrupted RIP to see
1493 * if it is between repeat_nmi and end_repeat_nmi, and if so
1494 * it will just return, as we are about to repeat an NMI anyway.
1495 * This makes it safe to copy to the stack frame that a nested
1496 * NMI will update.
0b22930e
AL
1497 *
1498 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1499 * we're repeating an NMI, gsbase has the same value that it had on
1500 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1501 * gsbase if needed before we call do_nmi. "NMI executing"
1502 * is zero.
62610913 1503 */
36f1a77b 1504 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1505
62610913 1506 /*
0b22930e
AL
1507 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1508 * here must not modify the "iret" frame while we're writing to
1509 * it or it will end up containing garbage.
62610913 1510 */
4d732138 1511 addq $(10*8), %rsp
3f3c8b8c 1512 .rept 5
4d732138 1513 pushq -6*8(%rsp)
3f3c8b8c 1514 .endr
4d732138 1515 subq $(5*8), %rsp
62610913 1516end_repeat_nmi:
3f3c8b8c
SR
1517
1518 /*
0b22930e
AL
1519 * Everything below this point can be preempted by a nested NMI.
1520 * If this happens, then the inner NMI will change the "iret"
1521 * frame to point back to repeat_nmi.
3f3c8b8c 1522 */
4d732138 1523 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43
DV
1524 ALLOC_PT_GPREGS_ON_STACK
1525
1fd466ef 1526 /*
ebfc453e 1527 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1528 * as we should not be calling schedule in NMI context.
1529 * Even with normal interrupts enabled. An NMI should not be
1530 * setting NEED_RESCHED or anything that normal interrupts and
1531 * exceptions might do.
1532 */
4d732138 1533 call paranoid_entry
8c1f7558 1534 UNWIND_HINT_REGS
7fbb98c5 1535
ddeb8f21 1536 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1537 movq %rsp, %rdi
1538 movq $-1, %rsi
1539 call do_nmi
7fbb98c5 1540
4d732138
IM
1541 testl %ebx, %ebx /* swapgs needed? */
1542 jnz nmi_restore
ddeb8f21
AH
1543nmi_swapgs:
1544 SWAPGS_UNSAFE_STACK
1545nmi_restore:
76f5df43
DV
1546 RESTORE_EXTRA_REGS
1547 RESTORE_C_REGS
0b22930e
AL
1548
1549 /* Point RSP at the "iret" frame. */
76f5df43 1550 REMOVE_PT_GPREGS_FROM_STACK 6*8
28696f43 1551
810bc075
AL
1552 /*
1553 * Clear "NMI executing". Set DF first so that we can easily
1554 * distinguish the remaining code between here and IRET from
1555 * the SYSCALL entry and exit paths. On a native kernel, we
1556 * could just inspect RIP, but, on paravirt kernels,
1557 * INTERRUPT_RETURN can translate into a jump into a
1558 * hypercall page.
1559 */
1560 std
1561 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1562
1563 /*
1564 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1565 * stack in a single instruction. We are returning to kernel
1566 * mode, so this cannot result in a fault.
1567 */
5ca6f70f 1568 INTERRUPT_RETURN
ddeb8f21
AH
1569END(nmi)
1570
1571ENTRY(ignore_sysret)
8c1f7558 1572 UNWIND_HINT_EMPTY
4d732138 1573 mov $-ENOSYS, %eax
ddeb8f21 1574 sysret
ddeb8f21 1575END(ignore_sysret)
2deb4be2
AL
1576
1577ENTRY(rewind_stack_do_exit)
8c1f7558 1578 UNWIND_HINT_FUNC
2deb4be2
AL
1579 /* Prevent any naive code from trying to unwind to our caller. */
1580 xorl %ebp, %ebp
1581
1582 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
8c1f7558
JP
1583 leaq -PTREGS_SIZE(%rax), %rsp
1584 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
2deb4be2
AL
1585
1586 call do_exit
2deb4be2 1587END(rewind_stack_do_exit)