]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - arch/x86/kernel/cpu/common.c
x86/entry: Clean up the SYSENTER_stack code
[thirdparty/kernel/stable.git] / arch / x86 / kernel / cpu / common.c
CommitLineData
f0fc4aff 1#include <linux/bootmem.h>
9766cdbc 2#include <linux/linkage.h>
f0fc4aff 3#include <linux/bitops.h>
9766cdbc 4#include <linux/kernel.h>
186f4360 5#include <linux/export.h>
9766cdbc
JSR
6#include <linux/percpu.h>
7#include <linux/string.h>
ee098e1a 8#include <linux/ctype.h>
1da177e4 9#include <linux/delay.h>
68e21be2 10#include <linux/sched/mm.h>
e6017571 11#include <linux/sched/clock.h>
9164bb4a 12#include <linux/sched/task.h>
9766cdbc 13#include <linux/init.h>
0f46efeb 14#include <linux/kprobes.h>
9766cdbc 15#include <linux/kgdb.h>
1da177e4 16#include <linux/smp.h>
9766cdbc 17#include <linux/io.h>
b51ef52d 18#include <linux/syscore_ops.h>
9766cdbc
JSR
19
20#include <asm/stackprotector.h>
cdd6c482 21#include <asm/perf_event.h>
1da177e4 22#include <asm/mmu_context.h>
49d859d7 23#include <asm/archrandom.h>
9766cdbc
JSR
24#include <asm/hypervisor.h>
25#include <asm/processor.h>
1e02ce4c 26#include <asm/tlbflush.h>
f649e938 27#include <asm/debugreg.h>
9766cdbc 28#include <asm/sections.h>
f40c3300 29#include <asm/vsyscall.h>
8bdbd962
AC
30#include <linux/topology.h>
31#include <linux/cpumask.h>
9766cdbc 32#include <asm/pgtable.h>
60063497 33#include <linux/atomic.h>
9766cdbc
JSR
34#include <asm/proto.h>
35#include <asm/setup.h>
36#include <asm/apic.h>
37#include <asm/desc.h>
78f7f1e5 38#include <asm/fpu/internal.h>
27b07da7 39#include <asm/mtrr.h>
0274f955 40#include <asm/hwcap2.h>
8bdbd962 41#include <linux/numa.h>
9766cdbc 42#include <asm/asm.h>
0f6ff2bc 43#include <asm/bugs.h>
9766cdbc 44#include <asm/cpu.h>
a03a3e28 45#include <asm/mce.h>
9766cdbc 46#include <asm/msr.h>
8d4a4300 47#include <asm/pat.h>
d288e1cf
FY
48#include <asm/microcode.h>
49#include <asm/microcode_intel.h>
e641f5f5
IM
50
51#ifdef CONFIG_X86_LOCAL_APIC
bdbcdd48 52#include <asm/uv/uv.h>
1da177e4
LT
53#endif
54
55#include "cpu.h"
56
0274f955
GA
57u32 elf_hwcap2 __read_mostly;
58
c2d1cec1 59/* all of these masks are initialized in setup_cpu_local_masks() */
c2d1cec1 60cpumask_var_t cpu_initialized_mask;
9766cdbc
JSR
61cpumask_var_t cpu_callout_mask;
62cpumask_var_t cpu_callin_mask;
c2d1cec1
MT
63
64/* representing cpus for which sibling maps can be computed */
65cpumask_var_t cpu_sibling_setup_mask;
66
2f2f52ba 67/* correctly size the local cpu masks */
4369f1fb 68void __init setup_cpu_local_masks(void)
2f2f52ba
BG
69{
70 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
71 alloc_bootmem_cpumask_var(&cpu_callin_mask);
72 alloc_bootmem_cpumask_var(&cpu_callout_mask);
73 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
74}
75
148f9bb8 76static void default_init(struct cpuinfo_x86 *c)
e8055139
OZ
77{
78#ifdef CONFIG_X86_64
27c13ece 79 cpu_detect_cache_sizes(c);
e8055139
OZ
80#else
81 /* Not much we can do here... */
82 /* Check if at least it has cpuid */
83 if (c->cpuid_level == -1) {
84 /* No cpuid. It must be an ancient CPU */
85 if (c->x86 == 4)
86 strcpy(c->x86_model_id, "486");
87 else if (c->x86 == 3)
88 strcpy(c->x86_model_id, "386");
89 }
90#endif
91}
92
148f9bb8 93static const struct cpu_dev default_cpu = {
e8055139
OZ
94 .c_init = default_init,
95 .c_vendor = "Unknown",
96 .c_x86_vendor = X86_VENDOR_UNKNOWN,
97};
98
148f9bb8 99static const struct cpu_dev *this_cpu = &default_cpu;
0a488a53 100
06deef89 101DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
950ad7ff 102#ifdef CONFIG_X86_64
06deef89
BG
103 /*
104 * We need valid kernel segments for data and code in long mode too
105 * IRET will check the segment types kkeil 2000/10/28
106 * Also sysret mandates a special GDT layout
107 *
9766cdbc 108 * TLS descriptors are currently at a different place compared to i386.
06deef89
BG
109 * Hopefully nobody expects them at a fixed place (Wine?)
110 */
1e5de182
AM
111 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
112 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
113 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
114 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
115 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
116 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
950ad7ff 117#else
1e5de182
AM
118 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
119 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
120 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
121 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
bf504672
RR
122 /*
123 * Segments used for calling PnP BIOS have byte granularity.
124 * They code segments and data segments have fixed 64k limits,
125 * the transfer segment sizes are set at run time.
126 */
6842ef0e 127 /* 32-bit code */
1e5de182 128 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
6842ef0e 129 /* 16-bit code */
1e5de182 130 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
6842ef0e 131 /* 16-bit data */
1e5de182 132 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
6842ef0e 133 /* 16-bit data */
1e5de182 134 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
6842ef0e 135 /* 16-bit data */
1e5de182 136 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
bf504672
RR
137 /*
138 * The APM segments have byte granularity and their bases
139 * are set at run time. All have 64k limits.
140 */
6842ef0e 141 /* 32-bit code */
1e5de182 142 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
bf504672 143 /* 16-bit code */
1e5de182 144 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
6842ef0e 145 /* data */
72c4d853 146 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
bf504672 147
1e5de182
AM
148 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
149 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
60a5317f 150 GDT_STACK_CANARY_INIT
950ad7ff 151#endif
06deef89 152} };
7a61d35d 153EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
ae1ee11b 154
8c3641e9 155static int __init x86_mpx_setup(char *s)
0c752a93 156{
8c3641e9 157 /* require an exact match without trailing characters */
2cd3949f
DH
158 if (strlen(s))
159 return 0;
0c752a93 160
8c3641e9
DH
161 /* do not emit a message if the feature is not present */
162 if (!boot_cpu_has(X86_FEATURE_MPX))
163 return 1;
6bad06b7 164
8c3641e9
DH
165 setup_clear_cpu_cap(X86_FEATURE_MPX);
166 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
b6f42a4a
FY
167 return 1;
168}
8c3641e9 169__setup("nompx", x86_mpx_setup);
b6f42a4a 170
0790c9aa 171#ifdef CONFIG_X86_64
c7ad5ad2 172static int __init x86_nopcid_setup(char *s)
0790c9aa 173{
c7ad5ad2
AL
174 /* nopcid doesn't accept parameters */
175 if (s)
176 return -EINVAL;
0790c9aa
AL
177
178 /* do not emit a message if the feature is not present */
179 if (!boot_cpu_has(X86_FEATURE_PCID))
c7ad5ad2 180 return 0;
0790c9aa
AL
181
182 setup_clear_cpu_cap(X86_FEATURE_PCID);
183 pr_info("nopcid: PCID feature disabled\n");
c7ad5ad2 184 return 0;
0790c9aa 185}
c7ad5ad2 186early_param("nopcid", x86_nopcid_setup);
0790c9aa
AL
187#endif
188
d12a72b8
AL
189static int __init x86_noinvpcid_setup(char *s)
190{
191 /* noinvpcid doesn't accept parameters */
192 if (s)
193 return -EINVAL;
194
195 /* do not emit a message if the feature is not present */
196 if (!boot_cpu_has(X86_FEATURE_INVPCID))
197 return 0;
198
199 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
200 pr_info("noinvpcid: INVPCID feature disabled\n");
201 return 0;
202}
203early_param("noinvpcid", x86_noinvpcid_setup);
204
ba51dced 205#ifdef CONFIG_X86_32
148f9bb8
PG
206static int cachesize_override = -1;
207static int disable_x86_serial_nr = 1;
1da177e4 208
0a488a53
YL
209static int __init cachesize_setup(char *str)
210{
211 get_option(&str, &cachesize_override);
212 return 1;
213}
214__setup("cachesize=", cachesize_setup);
215
0a488a53
YL
216static int __init x86_sep_setup(char *s)
217{
218 setup_clear_cpu_cap(X86_FEATURE_SEP);
219 return 1;
220}
221__setup("nosep", x86_sep_setup);
222
223/* Standard macro to see if a specific flag is changeable */
224static inline int flag_is_changeable_p(u32 flag)
225{
226 u32 f1, f2;
227
94f6bac1
KH
228 /*
229 * Cyrix and IDT cpus allow disabling of CPUID
230 * so the code below may return different results
231 * when it is executed before and after enabling
232 * the CPUID. Add "volatile" to not allow gcc to
233 * optimize the subsequent calls to this function.
234 */
0f3fa48a
IM
235 asm volatile ("pushfl \n\t"
236 "pushfl \n\t"
237 "popl %0 \n\t"
238 "movl %0, %1 \n\t"
239 "xorl %2, %0 \n\t"
240 "pushl %0 \n\t"
241 "popfl \n\t"
242 "pushfl \n\t"
243 "popl %0 \n\t"
244 "popfl \n\t"
245
94f6bac1
KH
246 : "=&r" (f1), "=&r" (f2)
247 : "ir" (flag));
0a488a53
YL
248
249 return ((f1^f2) & flag) != 0;
250}
251
252/* Probe for the CPUID instruction */
148f9bb8 253int have_cpuid_p(void)
0a488a53
YL
254{
255 return flag_is_changeable_p(X86_EFLAGS_ID);
256}
257
148f9bb8 258static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
0a488a53 259{
0f3fa48a
IM
260 unsigned long lo, hi;
261
262 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
263 return;
264
265 /* Disable processor serial number: */
266
267 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
268 lo |= 0x200000;
269 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
270
1b74dde7 271 pr_notice("CPU serial number disabled.\n");
0f3fa48a
IM
272 clear_cpu_cap(c, X86_FEATURE_PN);
273
274 /* Disabling the serial number may affect the cpuid level */
275 c->cpuid_level = cpuid_eax(0);
0a488a53
YL
276}
277
278static int __init x86_serial_nr_setup(char *s)
279{
280 disable_x86_serial_nr = 0;
281 return 1;
282}
283__setup("serialnumber", x86_serial_nr_setup);
ba51dced 284#else
102bbe3a
YL
285static inline int flag_is_changeable_p(u32 flag)
286{
287 return 1;
288}
102bbe3a
YL
289static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
290{
291}
ba51dced 292#endif
0a488a53 293
de5397ad
FY
294static __init int setup_disable_smep(char *arg)
295{
b2cc2a07 296 setup_clear_cpu_cap(X86_FEATURE_SMEP);
0f6ff2bc
DH
297 /* Check for things that depend on SMEP being enabled: */
298 check_mpx_erratum(&boot_cpu_data);
de5397ad
FY
299 return 1;
300}
301__setup("nosmep", setup_disable_smep);
302
b2cc2a07 303static __always_inline void setup_smep(struct cpuinfo_x86 *c)
de5397ad 304{
b2cc2a07 305 if (cpu_has(c, X86_FEATURE_SMEP))
375074cc 306 cr4_set_bits(X86_CR4_SMEP);
de5397ad
FY
307}
308
52b6179a
PA
309static __init int setup_disable_smap(char *arg)
310{
b2cc2a07 311 setup_clear_cpu_cap(X86_FEATURE_SMAP);
52b6179a
PA
312 return 1;
313}
314__setup("nosmap", setup_disable_smap);
315
b2cc2a07
PA
316static __always_inline void setup_smap(struct cpuinfo_x86 *c)
317{
581b7f15 318 unsigned long eflags = native_save_fl();
b2cc2a07
PA
319
320 /* This should have been cleared long ago */
b2cc2a07
PA
321 BUG_ON(eflags & X86_EFLAGS_AC);
322
03bbd596
PA
323 if (cpu_has(c, X86_FEATURE_SMAP)) {
324#ifdef CONFIG_X86_SMAP
375074cc 325 cr4_set_bits(X86_CR4_SMAP);
03bbd596 326#else
375074cc 327 cr4_clear_bits(X86_CR4_SMAP);
03bbd596
PA
328#endif
329 }
de5397ad
FY
330}
331
06976945
DH
332/*
333 * Protection Keys are not available in 32-bit mode.
334 */
335static bool pku_disabled;
336
337static __always_inline void setup_pku(struct cpuinfo_x86 *c)
338{
e8df1a95
DH
339 /* check the boot processor, plus compile options for PKU: */
340 if (!cpu_feature_enabled(X86_FEATURE_PKU))
341 return;
342 /* checks the actual processor's cpuid bits: */
06976945
DH
343 if (!cpu_has(c, X86_FEATURE_PKU))
344 return;
345 if (pku_disabled)
346 return;
347
348 cr4_set_bits(X86_CR4_PKE);
349 /*
350 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
351 * cpuid bit to be set. We need to ensure that we
352 * update that bit in this CPU's "cpu_info".
353 */
354 get_cpu_cap(c);
355}
356
357#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
358static __init int setup_disable_pku(char *arg)
359{
360 /*
361 * Do not clear the X86_FEATURE_PKU bit. All of the
362 * runtime checks are against OSPKE so clearing the
363 * bit does nothing.
364 *
365 * This way, we will see "pku" in cpuinfo, but not
366 * "ospke", which is exactly what we want. It shows
367 * that the CPU has PKU, but the OS has not enabled it.
368 * This happens to be exactly how a system would look
369 * if we disabled the config option.
370 */
371 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
372 pku_disabled = true;
373 return 1;
374}
375__setup("nopku", setup_disable_pku);
376#endif /* CONFIG_X86_64 */
377
b38b0665
PA
378/*
379 * Some CPU features depend on higher CPUID levels, which may not always
380 * be available due to CPUID level capping or broken virtualization
381 * software. Add those features to this table to auto-disable them.
382 */
383struct cpuid_dependent_feature {
384 u32 feature;
385 u32 level;
386};
0f3fa48a 387
148f9bb8 388static const struct cpuid_dependent_feature
b38b0665
PA
389cpuid_dependent_features[] = {
390 { X86_FEATURE_MWAIT, 0x00000005 },
391 { X86_FEATURE_DCA, 0x00000009 },
392 { X86_FEATURE_XSAVE, 0x0000000d },
393 { 0, 0 }
394};
395
148f9bb8 396static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
b38b0665
PA
397{
398 const struct cpuid_dependent_feature *df;
9766cdbc 399
b38b0665 400 for (df = cpuid_dependent_features; df->feature; df++) {
0f3fa48a
IM
401
402 if (!cpu_has(c, df->feature))
403 continue;
b38b0665
PA
404 /*
405 * Note: cpuid_level is set to -1 if unavailable, but
406 * extended_extended_level is set to 0 if unavailable
407 * and the legitimate extended levels are all negative
408 * when signed; hence the weird messing around with
409 * signs here...
410 */
0f3fa48a 411 if (!((s32)df->level < 0 ?
f6db44df 412 (u32)df->level > (u32)c->extended_cpuid_level :
0f3fa48a
IM
413 (s32)df->level > (s32)c->cpuid_level))
414 continue;
415
416 clear_cpu_cap(c, df->feature);
417 if (!warn)
418 continue;
419
1b74dde7
CY
420 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
421 x86_cap_flag(df->feature), df->level);
b38b0665 422 }
f6db44df 423}
b38b0665 424
102bbe3a
YL
425/*
426 * Naming convention should be: <Name> [(<Codename>)]
427 * This table only is used unless init_<vendor>() below doesn't set it;
0f3fa48a
IM
428 * in particular, if CPUID levels 0x80000002..4 are supported, this
429 * isn't used
102bbe3a
YL
430 */
431
432/* Look up CPU names by table lookup. */
148f9bb8 433static const char *table_lookup_model(struct cpuinfo_x86 *c)
102bbe3a 434{
09dc68d9
JB
435#ifdef CONFIG_X86_32
436 const struct legacy_cpu_model_info *info;
102bbe3a
YL
437
438 if (c->x86_model >= 16)
439 return NULL; /* Range check */
440
441 if (!this_cpu)
442 return NULL;
443
09dc68d9 444 info = this_cpu->legacy_models;
102bbe3a 445
09dc68d9 446 while (info->family) {
102bbe3a
YL
447 if (info->family == c->x86)
448 return info->model_names[c->x86_model];
449 info++;
450 }
09dc68d9 451#endif
102bbe3a
YL
452 return NULL; /* Not found */
453}
454
148f9bb8
PG
455__u32 cpu_caps_cleared[NCAPINTS];
456__u32 cpu_caps_set[NCAPINTS];
7d851c8d 457
11e3a840
JF
458void load_percpu_segment(int cpu)
459{
460#ifdef CONFIG_X86_32
461 loadsegment(fs, __KERNEL_PERCPU);
462#else
45e876f7 463 __loadsegment_simple(gs, 0);
11e3a840
JF
464 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
465#endif
60a5317f 466 load_stack_canary_segment();
11e3a840
JF
467}
468
72f5e08d
AL
469#ifdef CONFIG_X86_32
470/* The 32-bit entry code needs to find cpu_entry_area. */
471DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
472#endif
473
40e7f949
AL
474#ifdef CONFIG_X86_64
475/*
476 * Special IST stacks which the CPU switches to when it calls
477 * an IST-marked descriptor entry. Up to 7 stacks (hardware
478 * limit), all of them are 4K, except the debug stack which
479 * is 8K.
480 */
481static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
482 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
483 [DEBUG_STACK - 1] = DEBUG_STKSZ
484};
485
486static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
487 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
488#endif
489
490static void __init
491set_percpu_fixmap_pages(int idx, void *ptr, int pages, pgprot_t prot)
492{
493 for ( ; pages; pages--, idx--, ptr += PAGE_SIZE)
494 __set_fixmap(idx, per_cpu_ptr_to_phys(ptr), prot);
495}
496
ef8813ab 497/* Setup the fixmap mappings only once per-processor */
40e7f949 498static void __init setup_cpu_entry_area(int cpu)
b23adb7d 499{
45fc8757 500#ifdef CONFIG_X86_64
3386bc8a
AL
501 extern char _entry_trampoline[];
502
b23adb7d 503 /* On 64-bit systems, we use a read-only fixmap GDT. */
ef8813ab 504 pgprot_t gdt_prot = PAGE_KERNEL_RO;
45fc8757 505#else
b23adb7d
AL
506 /*
507 * On native 32-bit systems, the GDT cannot be read-only because
508 * our double fault handler uses a task gate, and entering through
509 * a task gate needs to change an available TSS to busy. If the GDT
510 * is read-only, that will triple fault.
511 *
512 * On Xen PV, the GDT must be read-only because the hypervisor requires
513 * it.
514 */
ef8813ab 515 pgprot_t gdt_prot = boot_cpu_has(X86_FEATURE_XENPV) ?
b23adb7d 516 PAGE_KERNEL_RO : PAGE_KERNEL;
45fc8757 517#endif
69218e47 518
ef8813ab 519 __set_fixmap(get_cpu_entry_area_index(cpu, gdt), get_cpu_gdt_paddr(cpu), gdt_prot);
1a935bc3
AL
520
521 /*
522 * The Intel SDM says (Volume 3, 7.2.1):
523 *
524 * Avoid placing a page boundary in the part of the TSS that the
525 * processor reads during a task switch (the first 104 bytes). The
526 * processor may not correctly perform address translations if a
527 * boundary occurs in this area. During a task switch, the processor
528 * reads and writes into the first 104 bytes of each TSS (using
529 * contiguous physical addresses beginning with the physical address
530 * of the first byte of the TSS). So, after TSS access begins, if
531 * part of the 104 bytes is not physically contiguous, the processor
532 * will access incorrect information without generating a page-fault
533 * exception.
534 *
535 * There are also a lot of errata involving the TSS spanning a page
536 * boundary. Assert that we're not doing that.
537 */
538 BUILD_BUG_ON((offsetof(struct tss_struct, x86_tss) ^
539 offsetofend(struct tss_struct, x86_tss)) & PAGE_MASK);
72f5e08d
AL
540 BUILD_BUG_ON(sizeof(struct tss_struct) % PAGE_SIZE != 0);
541 set_percpu_fixmap_pages(get_cpu_entry_area_index(cpu, tss),
542 &per_cpu(cpu_tss, cpu),
543 sizeof(struct tss_struct) / PAGE_SIZE,
544 PAGE_KERNEL);
1a935bc3 545
72f5e08d 546#ifdef CONFIG_X86_32
40e7f949 547 per_cpu(cpu_entry_area, cpu) = get_cpu_entry_area(cpu);
72f5e08d 548#endif
3386bc8a
AL
549
550#ifdef CONFIG_X86_64
40e7f949
AL
551 BUILD_BUG_ON(sizeof(exception_stacks) % PAGE_SIZE != 0);
552 BUILD_BUG_ON(sizeof(exception_stacks) !=
553 sizeof(((struct cpu_entry_area *)0)->exception_stacks));
554 set_percpu_fixmap_pages(get_cpu_entry_area_index(cpu, exception_stacks),
555 &per_cpu(exception_stacks, cpu),
556 sizeof(exception_stacks) / PAGE_SIZE,
557 PAGE_KERNEL);
558
3386bc8a
AL
559 __set_fixmap(get_cpu_entry_area_index(cpu, entry_trampoline),
560 __pa_symbol(_entry_trampoline), PAGE_KERNEL_RX);
561#endif
69218e47
TG
562}
563
40e7f949
AL
564void __init setup_cpu_entry_areas(void)
565{
566 unsigned int cpu;
567
568 for_each_possible_cpu(cpu)
569 setup_cpu_entry_area(cpu);
570}
571
45fc8757
TG
572/* Load the original GDT from the per-cpu structure */
573void load_direct_gdt(int cpu)
574{
575 struct desc_ptr gdt_descr;
576
577 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
578 gdt_descr.size = GDT_SIZE - 1;
579 load_gdt(&gdt_descr);
580}
581EXPORT_SYMBOL_GPL(load_direct_gdt);
582
69218e47
TG
583/* Load a fixmap remapping of the per-cpu GDT */
584void load_fixmap_gdt(int cpu)
585{
586 struct desc_ptr gdt_descr;
587
588 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
589 gdt_descr.size = GDT_SIZE - 1;
590 load_gdt(&gdt_descr);
591}
45fc8757 592EXPORT_SYMBOL_GPL(load_fixmap_gdt);
69218e47 593
0f3fa48a
IM
594/*
595 * Current gdt points %fs at the "master" per-cpu area: after this,
596 * it's on the real one.
597 */
552be871 598void switch_to_new_gdt(int cpu)
9d31d35b 599{
45fc8757
TG
600 /* Load the original GDT */
601 load_direct_gdt(cpu);
2697fbd5 602 /* Reload the per-cpu base */
11e3a840 603 load_percpu_segment(cpu);
9d31d35b
YL
604}
605
148f9bb8 606static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
1da177e4 607
148f9bb8 608static void get_model_name(struct cpuinfo_x86 *c)
1da177e4
LT
609{
610 unsigned int *v;
ee098e1a 611 char *p, *q, *s;
1da177e4 612
3da99c97 613 if (c->extended_cpuid_level < 0x80000004)
1b05d60d 614 return;
1da177e4 615
0f3fa48a 616 v = (unsigned int *)c->x86_model_id;
1da177e4
LT
617 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
618 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
619 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
620 c->x86_model_id[48] = 0;
621
ee098e1a
BP
622 /* Trim whitespace */
623 p = q = s = &c->x86_model_id[0];
624
625 while (*p == ' ')
626 p++;
627
628 while (*p) {
629 /* Note the last non-whitespace index */
630 if (!isspace(*p))
631 s = q;
632
633 *q++ = *p++;
634 }
635
636 *(s + 1) = '\0';
1da177e4
LT
637}
638
148f9bb8 639void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
1da177e4 640{
9d31d35b 641 unsigned int n, dummy, ebx, ecx, edx, l2size;
1da177e4 642
3da99c97 643 n = c->extended_cpuid_level;
1da177e4
LT
644
645 if (n >= 0x80000005) {
9d31d35b 646 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
9d31d35b 647 c->x86_cache_size = (ecx>>24) + (edx>>24);
140fc727
YL
648#ifdef CONFIG_X86_64
649 /* On K8 L1 TLB is inclusive, so don't count it */
650 c->x86_tlbsize = 0;
651#endif
1da177e4
LT
652 }
653
654 if (n < 0x80000006) /* Some chips just has a large L1. */
655 return;
656
0a488a53 657 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
1da177e4 658 l2size = ecx >> 16;
34048c9e 659
140fc727
YL
660#ifdef CONFIG_X86_64
661 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
662#else
1da177e4 663 /* do processor-specific cache resizing */
09dc68d9
JB
664 if (this_cpu->legacy_cache_size)
665 l2size = this_cpu->legacy_cache_size(c, l2size);
1da177e4
LT
666
667 /* Allow user to override all this if necessary. */
668 if (cachesize_override != -1)
669 l2size = cachesize_override;
670
34048c9e 671 if (l2size == 0)
1da177e4 672 return; /* Again, no L2 cache is possible */
140fc727 673#endif
1da177e4
LT
674
675 c->x86_cache_size = l2size;
1da177e4
LT
676}
677
e0ba94f1
AS
678u16 __read_mostly tlb_lli_4k[NR_INFO];
679u16 __read_mostly tlb_lli_2m[NR_INFO];
680u16 __read_mostly tlb_lli_4m[NR_INFO];
681u16 __read_mostly tlb_lld_4k[NR_INFO];
682u16 __read_mostly tlb_lld_2m[NR_INFO];
683u16 __read_mostly tlb_lld_4m[NR_INFO];
dd360393 684u16 __read_mostly tlb_lld_1g[NR_INFO];
e0ba94f1 685
f94fe119 686static void cpu_detect_tlb(struct cpuinfo_x86 *c)
e0ba94f1
AS
687{
688 if (this_cpu->c_detect_tlb)
689 this_cpu->c_detect_tlb(c);
690
f94fe119 691 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
e0ba94f1 692 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
f94fe119
SH
693 tlb_lli_4m[ENTRIES]);
694
695 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
696 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
697 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
e0ba94f1
AS
698}
699
148f9bb8 700void detect_ht(struct cpuinfo_x86 *c)
1da177e4 701{
c8e56d20 702#ifdef CONFIG_SMP
0a488a53
YL
703 u32 eax, ebx, ecx, edx;
704 int index_msb, core_bits;
2eaad1fd 705 static bool printed;
1da177e4 706
0a488a53 707 if (!cpu_has(c, X86_FEATURE_HT))
9d31d35b 708 return;
1da177e4 709
0a488a53
YL
710 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
711 goto out;
1da177e4 712
1cd78776
YL
713 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
714 return;
1da177e4 715
0a488a53 716 cpuid(1, &eax, &ebx, &ecx, &edx);
1da177e4 717
9d31d35b
YL
718 smp_num_siblings = (ebx & 0xff0000) >> 16;
719
720 if (smp_num_siblings == 1) {
1b74dde7 721 pr_info_once("CPU0: Hyper-Threading is disabled\n");
0f3fa48a
IM
722 goto out;
723 }
9d31d35b 724
0f3fa48a
IM
725 if (smp_num_siblings <= 1)
726 goto out;
9d31d35b 727
0f3fa48a
IM
728 index_msb = get_count_order(smp_num_siblings);
729 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
9d31d35b 730
0f3fa48a 731 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
9d31d35b 732
0f3fa48a 733 index_msb = get_count_order(smp_num_siblings);
9d31d35b 734
0f3fa48a 735 core_bits = get_count_order(c->x86_max_cores);
9d31d35b 736
0f3fa48a
IM
737 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
738 ((1 << core_bits) - 1);
1da177e4 739
0a488a53 740out:
2eaad1fd 741 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
1b74dde7
CY
742 pr_info("CPU: Physical Processor ID: %d\n",
743 c->phys_proc_id);
744 pr_info("CPU: Processor Core ID: %d\n",
745 c->cpu_core_id);
2eaad1fd 746 printed = 1;
9d31d35b 747 }
9d31d35b 748#endif
97e4db7c 749}
1da177e4 750
148f9bb8 751static void get_cpu_vendor(struct cpuinfo_x86 *c)
1da177e4
LT
752{
753 char *v = c->x86_vendor_id;
0f3fa48a 754 int i;
1da177e4
LT
755
756 for (i = 0; i < X86_VENDOR_NUM; i++) {
10a434fc
YL
757 if (!cpu_devs[i])
758 break;
759
760 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
761 (cpu_devs[i]->c_ident[1] &&
762 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
0f3fa48a 763
10a434fc
YL
764 this_cpu = cpu_devs[i];
765 c->x86_vendor = this_cpu->c_x86_vendor;
766 return;
1da177e4
LT
767 }
768 }
10a434fc 769
1b74dde7
CY
770 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
771 "CPU: Your system may be unstable.\n", v);
10a434fc 772
fe38d855
CE
773 c->x86_vendor = X86_VENDOR_UNKNOWN;
774 this_cpu = &default_cpu;
1da177e4
LT
775}
776
148f9bb8 777void cpu_detect(struct cpuinfo_x86 *c)
1da177e4 778{
1da177e4 779 /* Get vendor name */
4a148513
HH
780 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
781 (unsigned int *)&c->x86_vendor_id[0],
782 (unsigned int *)&c->x86_vendor_id[8],
783 (unsigned int *)&c->x86_vendor_id[4]);
1da177e4 784
1da177e4 785 c->x86 = 4;
9d31d35b 786 /* Intel-defined flags: level 0x00000001 */
1da177e4
LT
787 if (c->cpuid_level >= 0x00000001) {
788 u32 junk, tfms, cap0, misc;
0f3fa48a 789
1da177e4 790 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
99f925ce
BP
791 c->x86 = x86_family(tfms);
792 c->x86_model = x86_model(tfms);
793 c->x86_mask = x86_stepping(tfms);
0f3fa48a 794
d4387bd3 795 if (cap0 & (1<<19)) {
d4387bd3 796 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
9d31d35b 797 c->x86_cache_alignment = c->x86_clflush_size;
d4387bd3 798 }
1da177e4 799 }
1da177e4 800}
3da99c97 801
8bf1ebca
AL
802static void apply_forced_caps(struct cpuinfo_x86 *c)
803{
804 int i;
805
806 for (i = 0; i < NCAPINTS; i++) {
807 c->x86_capability[i] &= ~cpu_caps_cleared[i];
808 c->x86_capability[i] |= cpu_caps_set[i];
809 }
810}
811
148f9bb8 812void get_cpu_cap(struct cpuinfo_x86 *c)
093af8d7 813{
39c06df4 814 u32 eax, ebx, ecx, edx;
093af8d7 815
3da99c97
YL
816 /* Intel-defined flags: level 0x00000001 */
817 if (c->cpuid_level >= 0x00000001) {
39c06df4 818 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
0f3fa48a 819
39c06df4
BP
820 c->x86_capability[CPUID_1_ECX] = ecx;
821 c->x86_capability[CPUID_1_EDX] = edx;
3da99c97 822 }
093af8d7 823
3df8d920
AL
824 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
825 if (c->cpuid_level >= 0x00000006)
826 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
827
bdc802dc
PA
828 /* Additional Intel-defined flags: level 0x00000007 */
829 if (c->cpuid_level >= 0x00000007) {
bdc802dc 830 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
39c06df4 831 c->x86_capability[CPUID_7_0_EBX] = ebx;
dfb4a70f 832 c->x86_capability[CPUID_7_ECX] = ecx;
bdc802dc
PA
833 }
834
6229ad27
FY
835 /* Extended state features: level 0x0000000d */
836 if (c->cpuid_level >= 0x0000000d) {
6229ad27
FY
837 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
838
39c06df4 839 c->x86_capability[CPUID_D_1_EAX] = eax;
6229ad27
FY
840 }
841
cbc82b17
PWJ
842 /* Additional Intel-defined flags: level 0x0000000F */
843 if (c->cpuid_level >= 0x0000000F) {
cbc82b17
PWJ
844
845 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
846 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
39c06df4
BP
847 c->x86_capability[CPUID_F_0_EDX] = edx;
848
cbc82b17
PWJ
849 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
850 /* will be overridden if occupancy monitoring exists */
851 c->x86_cache_max_rmid = ebx;
852
853 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
854 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
39c06df4
BP
855 c->x86_capability[CPUID_F_1_EDX] = edx;
856
33c3cc7a
VS
857 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
858 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
859 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
cbc82b17
PWJ
860 c->x86_cache_max_rmid = ecx;
861 c->x86_cache_occ_scale = ebx;
862 }
863 } else {
864 c->x86_cache_max_rmid = -1;
865 c->x86_cache_occ_scale = -1;
866 }
867 }
868
3da99c97 869 /* AMD-defined flags: level 0x80000001 */
39c06df4
BP
870 eax = cpuid_eax(0x80000000);
871 c->extended_cpuid_level = eax;
872
873 if ((eax & 0xffff0000) == 0x80000000) {
874 if (eax >= 0x80000001) {
875 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
0f3fa48a 876
39c06df4
BP
877 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
878 c->x86_capability[CPUID_8000_0001_EDX] = edx;
093af8d7 879 }
093af8d7 880 }
093af8d7 881
71faad43
YG
882 if (c->extended_cpuid_level >= 0x80000007) {
883 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
884
885 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
886 c->x86_power = edx;
887 }
888
5122c890 889 if (c->extended_cpuid_level >= 0x80000008) {
39c06df4 890 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
5122c890
YL
891
892 c->x86_virt_bits = (eax >> 8) & 0xff;
893 c->x86_phys_bits = eax & 0xff;
39c06df4 894 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
093af8d7 895 }
13c6c532
JB
896#ifdef CONFIG_X86_32
897 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
898 c->x86_phys_bits = 36;
5122c890 899#endif
e3224234 900
2ccd71f1 901 if (c->extended_cpuid_level >= 0x8000000a)
39c06df4 902 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
093af8d7 903
1dedefd1 904 init_scattered_cpuid_features(c);
60d34501
AL
905
906 /*
907 * Clear/Set all flags overridden by options, after probe.
908 * This needs to happen each time we re-probe, which may happen
909 * several times during CPU initialization.
910 */
911 apply_forced_caps(c);
093af8d7 912}
1da177e4 913
148f9bb8 914static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
aef93c8b
YL
915{
916#ifdef CONFIG_X86_32
917 int i;
918
919 /*
920 * First of all, decide if this is a 486 or higher
921 * It's a 486 if we can modify the AC flag
922 */
923 if (flag_is_changeable_p(X86_EFLAGS_AC))
924 c->x86 = 4;
925 else
926 c->x86 = 3;
927
928 for (i = 0; i < X86_VENDOR_NUM; i++)
929 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
930 c->x86_vendor_id[0] = 0;
931 cpu_devs[i]->c_identify(c);
932 if (c->x86_vendor_id[0]) {
933 get_cpu_vendor(c);
934 break;
935 }
936 }
937#endif
938}
939
34048c9e
PC
940/*
941 * Do minimum CPU detection early.
942 * Fields really needed: vendor, cpuid_level, family, model, mask,
943 * cache alignment.
944 * The others are not touched to avoid unwanted side effects.
945 *
946 * WARNING: this function is only called on the BP. Don't add code here
947 * that is supposed to run on all CPUs.
948 */
3da99c97 949static void __init early_identify_cpu(struct cpuinfo_x86 *c)
d7cd5611 950{
6627d242
YL
951#ifdef CONFIG_X86_64
952 c->x86_clflush_size = 64;
13c6c532
JB
953 c->x86_phys_bits = 36;
954 c->x86_virt_bits = 48;
6627d242 955#else
d4387bd3 956 c->x86_clflush_size = 32;
13c6c532
JB
957 c->x86_phys_bits = 32;
958 c->x86_virt_bits = 32;
6627d242 959#endif
0a488a53 960 c->x86_cache_alignment = c->x86_clflush_size;
d7cd5611 961
3da99c97 962 memset(&c->x86_capability, 0, sizeof c->x86_capability);
0a488a53 963 c->extended_cpuid_level = 0;
d7cd5611 964
aef93c8b 965 /* cyrix could have cpuid enabled via c_identify()*/
05fb3c19
AL
966 if (have_cpuid_p()) {
967 cpu_detect(c);
968 get_cpu_vendor(c);
969 get_cpu_cap(c);
78d1b296 970 setup_force_cpu_cap(X86_FEATURE_CPUID);
d7cd5611 971
05fb3c19
AL
972 if (this_cpu->c_early_init)
973 this_cpu->c_early_init(c);
12cf105c 974
05fb3c19
AL
975 c->cpu_index = 0;
976 filter_cpuid_features(c, false);
093af8d7 977
05fb3c19
AL
978 if (this_cpu->c_bsp_init)
979 this_cpu->c_bsp_init(c);
78d1b296
BP
980 } else {
981 identify_cpu_without_cpuid(c);
982 setup_clear_cpu_cap(X86_FEATURE_CPUID);
05fb3c19 983 }
c3b83598
BP
984
985 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
db52ef74 986 fpu__init_system(c);
b8b7abae
AL
987
988#ifdef CONFIG_X86_32
989 /*
990 * Regardless of whether PCID is enumerated, the SDM says
991 * that it can't be enabled in 32-bit mode.
992 */
993 setup_clear_cpu_cap(X86_FEATURE_PCID);
994#endif
d7cd5611
RR
995}
996
9d31d35b
YL
997void __init early_cpu_init(void)
998{
02dde8b4 999 const struct cpu_dev *const *cdev;
10a434fc
YL
1000 int count = 0;
1001
ac23f253 1002#ifdef CONFIG_PROCESSOR_SELECT
1b74dde7 1003 pr_info("KERNEL supported cpus:\n");
31c997ca
IM
1004#endif
1005
10a434fc 1006 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
02dde8b4 1007 const struct cpu_dev *cpudev = *cdev;
9d31d35b 1008
10a434fc
YL
1009 if (count >= X86_VENDOR_NUM)
1010 break;
1011 cpu_devs[count] = cpudev;
1012 count++;
1013
ac23f253 1014#ifdef CONFIG_PROCESSOR_SELECT
31c997ca
IM
1015 {
1016 unsigned int j;
1017
1018 for (j = 0; j < 2; j++) {
1019 if (!cpudev->c_ident[j])
1020 continue;
1b74dde7 1021 pr_info(" %s %s\n", cpudev->c_vendor,
31c997ca
IM
1022 cpudev->c_ident[j]);
1023 }
10a434fc 1024 }
0388423d 1025#endif
10a434fc 1026 }
9d31d35b 1027 early_identify_cpu(&boot_cpu_data);
d7cd5611 1028}
093af8d7 1029
b6734c35 1030/*
366d4a43
BP
1031 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1032 * unfortunately, that's not true in practice because of early VIA
1033 * chips and (more importantly) broken virtualizers that are not easy
1034 * to detect. In the latter case it doesn't even *fail* reliably, so
1035 * probing for it doesn't even work. Disable it completely on 32-bit
ba0593bf 1036 * unless we can find a reliable way to detect all the broken cases.
366d4a43 1037 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
b6734c35 1038 */
148f9bb8 1039static void detect_nopl(struct cpuinfo_x86 *c)
b6734c35 1040{
366d4a43 1041#ifdef CONFIG_X86_32
b6734c35 1042 clear_cpu_cap(c, X86_FEATURE_NOPL);
366d4a43
BP
1043#else
1044 set_cpu_cap(c, X86_FEATURE_NOPL);
58a5aac5 1045#endif
d7cd5611 1046}
58a5aac5 1047
7a5d6704
AL
1048static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1049{
1050#ifdef CONFIG_X86_64
58a5aac5 1051 /*
7a5d6704
AL
1052 * Empirically, writing zero to a segment selector on AMD does
1053 * not clear the base, whereas writing zero to a segment
1054 * selector on Intel does clear the base. Intel's behavior
1055 * allows slightly faster context switches in the common case
1056 * where GS is unused by the prev and next threads.
58a5aac5 1057 *
7a5d6704
AL
1058 * Since neither vendor documents this anywhere that I can see,
1059 * detect it directly instead of hardcoding the choice by
1060 * vendor.
1061 *
1062 * I've designated AMD's behavior as the "bug" because it's
1063 * counterintuitive and less friendly.
58a5aac5 1064 */
7a5d6704
AL
1065
1066 unsigned long old_base, tmp;
1067 rdmsrl(MSR_FS_BASE, old_base);
1068 wrmsrl(MSR_FS_BASE, 1);
1069 loadsegment(fs, 0);
1070 rdmsrl(MSR_FS_BASE, tmp);
1071 if (tmp != 0)
1072 set_cpu_bug(c, X86_BUG_NULL_SEG);
1073 wrmsrl(MSR_FS_BASE, old_base);
366d4a43 1074#endif
d7cd5611
RR
1075}
1076
148f9bb8 1077static void generic_identify(struct cpuinfo_x86 *c)
1da177e4 1078{
aef93c8b 1079 c->extended_cpuid_level = 0;
1da177e4 1080
3da99c97 1081 if (!have_cpuid_p())
aef93c8b 1082 identify_cpu_without_cpuid(c);
1d67953f 1083
aef93c8b 1084 /* cyrix could have cpuid enabled via c_identify()*/
a9853dd6 1085 if (!have_cpuid_p())
aef93c8b 1086 return;
1da177e4 1087
3da99c97 1088 cpu_detect(c);
1da177e4 1089
3da99c97 1090 get_cpu_vendor(c);
1da177e4 1091
3da99c97 1092 get_cpu_cap(c);
1da177e4 1093
3da99c97
YL
1094 if (c->cpuid_level >= 0x00000001) {
1095 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
b89d3b3e 1096#ifdef CONFIG_X86_32
c8e56d20 1097# ifdef CONFIG_SMP
cb8cc442 1098 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
b89d3b3e 1099# else
3da99c97 1100 c->apicid = c->initial_apicid;
b89d3b3e
YL
1101# endif
1102#endif
b89d3b3e 1103 c->phys_proc_id = c->initial_apicid;
3da99c97 1104 }
1da177e4 1105
1b05d60d 1106 get_model_name(c); /* Default name */
1da177e4 1107
3da99c97 1108 detect_nopl(c);
7a5d6704
AL
1109
1110 detect_null_seg_behavior(c);
0230bb03
AL
1111
1112 /*
1113 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1114 * systems that run Linux at CPL > 0 may or may not have the
1115 * issue, but, even if they have the issue, there's absolutely
1116 * nothing we can do about it because we can't use the real IRET
1117 * instruction.
1118 *
1119 * NB: For the time being, only 32-bit kernels support
1120 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1121 * whether to apply espfix using paravirt hooks. If any
1122 * non-paravirt system ever shows up that does *not* have the
1123 * ESPFIX issue, we can change this.
1124 */
1125#ifdef CONFIG_X86_32
1126# ifdef CONFIG_PARAVIRT
1127 do {
1128 extern void native_iret(void);
1129 if (pv_cpu_ops.iret == native_iret)
1130 set_cpu_bug(c, X86_BUG_ESPFIX);
1131 } while (0);
1132# else
1133 set_cpu_bug(c, X86_BUG_ESPFIX);
1134# endif
1135#endif
1da177e4 1136}
1da177e4 1137
cbc82b17
PWJ
1138static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1139{
1140 /*
1141 * The heavy lifting of max_rmid and cache_occ_scale are handled
1142 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1143 * in case CQM bits really aren't there in this CPU.
1144 */
1145 if (c != &boot_cpu_data) {
1146 boot_cpu_data.x86_cache_max_rmid =
1147 min(boot_cpu_data.x86_cache_max_rmid,
1148 c->x86_cache_max_rmid);
1149 }
1150}
1151
d49597fd 1152/*
9d85eb91
TG
1153 * Validate that ACPI/mptables have the same information about the
1154 * effective APIC id and update the package map.
d49597fd 1155 */
9d85eb91 1156static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
d49597fd
TG
1157{
1158#ifdef CONFIG_SMP
9d85eb91 1159 unsigned int apicid, cpu = smp_processor_id();
d49597fd
TG
1160
1161 apicid = apic->cpu_present_to_apicid(cpu);
d49597fd 1162
9d85eb91
TG
1163 if (apicid != c->apicid) {
1164 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
d49597fd 1165 cpu, apicid, c->initial_apicid);
d49597fd 1166 }
9d85eb91 1167 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
d49597fd
TG
1168#else
1169 c->logical_proc_id = 0;
1170#endif
1171}
1172
1da177e4
LT
1173/*
1174 * This does the hard work of actually picking apart the CPU stuff...
1175 */
148f9bb8 1176static void identify_cpu(struct cpuinfo_x86 *c)
1da177e4
LT
1177{
1178 int i;
1179
1180 c->loops_per_jiffy = loops_per_jiffy;
1181 c->x86_cache_size = -1;
1182 c->x86_vendor = X86_VENDOR_UNKNOWN;
1da177e4
LT
1183 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1184 c->x86_vendor_id[0] = '\0'; /* Unset */
1185 c->x86_model_id[0] = '\0'; /* Unset */
94605eff 1186 c->x86_max_cores = 1;
102bbe3a 1187 c->x86_coreid_bits = 0;
79a8b9aa 1188 c->cu_id = 0xff;
11fdd252 1189#ifdef CONFIG_X86_64
102bbe3a 1190 c->x86_clflush_size = 64;
13c6c532
JB
1191 c->x86_phys_bits = 36;
1192 c->x86_virt_bits = 48;
102bbe3a
YL
1193#else
1194 c->cpuid_level = -1; /* CPUID not detected */
770d132f 1195 c->x86_clflush_size = 32;
13c6c532
JB
1196 c->x86_phys_bits = 32;
1197 c->x86_virt_bits = 32;
102bbe3a
YL
1198#endif
1199 c->x86_cache_alignment = c->x86_clflush_size;
1da177e4
LT
1200 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1201
1da177e4
LT
1202 generic_identify(c);
1203
3898534d 1204 if (this_cpu->c_identify)
1da177e4
LT
1205 this_cpu->c_identify(c);
1206
6a6256f9 1207 /* Clear/Set all flags overridden by options, after probe */
8bf1ebca 1208 apply_forced_caps(c);
2759c328 1209
102bbe3a 1210#ifdef CONFIG_X86_64
cb8cc442 1211 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
102bbe3a
YL
1212#endif
1213
1da177e4
LT
1214 /*
1215 * Vendor-specific initialization. In this section we
1216 * canonicalize the feature flags, meaning if there are
1217 * features a certain CPU supports which CPUID doesn't
1218 * tell us, CPUID claiming incorrect flags, or other bugs,
1219 * we handle them here.
1220 *
1221 * At the end of this section, c->x86_capability better
1222 * indicate the features this CPU genuinely supports!
1223 */
1224 if (this_cpu->c_init)
1225 this_cpu->c_init(c);
1226
1227 /* Disable the PN if appropriate */
1228 squash_the_stupid_serial_number(c);
1229
b2cc2a07
PA
1230 /* Set up SMEP/SMAP */
1231 setup_smep(c);
1232 setup_smap(c);
1233
1da177e4 1234 /*
0f3fa48a
IM
1235 * The vendor-specific functions might have changed features.
1236 * Now we do "generic changes."
1da177e4
LT
1237 */
1238
b38b0665
PA
1239 /* Filter out anything that depends on CPUID levels we don't have */
1240 filter_cpuid_features(c, true);
1241
1da177e4 1242 /* If the model name is still unset, do table lookup. */
34048c9e 1243 if (!c->x86_model_id[0]) {
02dde8b4 1244 const char *p;
1da177e4 1245 p = table_lookup_model(c);
34048c9e 1246 if (p)
1da177e4
LT
1247 strcpy(c->x86_model_id, p);
1248 else
1249 /* Last resort... */
1250 sprintf(c->x86_model_id, "%02x/%02x",
54a20f8c 1251 c->x86, c->x86_model);
1da177e4
LT
1252 }
1253
102bbe3a
YL
1254#ifdef CONFIG_X86_64
1255 detect_ht(c);
1256#endif
1257
49d859d7 1258 x86_init_rdrand(c);
cbc82b17 1259 x86_init_cache_qos(c);
06976945 1260 setup_pku(c);
3e0c3737
YL
1261
1262 /*
6a6256f9 1263 * Clear/Set all flags overridden by options, need do it
3e0c3737
YL
1264 * before following smp all cpus cap AND.
1265 */
8bf1ebca 1266 apply_forced_caps(c);
3e0c3737 1267
1da177e4
LT
1268 /*
1269 * On SMP, boot_cpu_data holds the common feature set between
1270 * all CPUs; so make sure that we indicate which features are
1271 * common between the CPUs. The first time this routine gets
1272 * executed, c == &boot_cpu_data.
1273 */
34048c9e 1274 if (c != &boot_cpu_data) {
1da177e4 1275 /* AND the already accumulated flags with these */
9d31d35b 1276 for (i = 0; i < NCAPINTS; i++)
1da177e4 1277 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
65fc985b
BP
1278
1279 /* OR, i.e. replicate the bug flags */
1280 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1281 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1da177e4
LT
1282 }
1283
1284 /* Init Machine Check Exception if available. */
5e09954a 1285 mcheck_cpu_init(c);
30d432df
AK
1286
1287 select_idle_routine(c);
102bbe3a 1288
de2d9445 1289#ifdef CONFIG_NUMA
102bbe3a
YL
1290 numa_add_cpu(smp_processor_id());
1291#endif
a6c4e076 1292}
31ab269a 1293
8b6c0ab1
IM
1294/*
1295 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1296 * on 32-bit kernels:
1297 */
cfda7bb9
AL
1298#ifdef CONFIG_X86_32
1299void enable_sep_cpu(void)
1300{
8b6c0ab1
IM
1301 struct tss_struct *tss;
1302 int cpu;
cfda7bb9 1303
b3edfda4
BP
1304 if (!boot_cpu_has(X86_FEATURE_SEP))
1305 return;
1306
8b6c0ab1
IM
1307 cpu = get_cpu();
1308 tss = &per_cpu(cpu_tss, cpu);
1309
8b6c0ab1 1310 /*
cf9328cc
AL
1311 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1312 * see the big comment in struct x86_hw_tss's definition.
8b6c0ab1 1313 */
cfda7bb9
AL
1314
1315 tss->x86_tss.ss1 = __KERNEL_CS;
8b6c0ab1 1316 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
0f9a4810 1317 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_SYSENTER_stack(cpu) + 1), 0);
4c8cd0c5 1318 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
8b6c0ab1 1319
cfda7bb9
AL
1320 put_cpu();
1321}
e04d645f
GC
1322#endif
1323
a6c4e076
JF
1324void __init identify_boot_cpu(void)
1325{
1326 identify_cpu(&boot_cpu_data);
102bbe3a 1327#ifdef CONFIG_X86_32
a6c4e076 1328 sysenter_setup();
6fe940d6 1329 enable_sep_cpu();
102bbe3a 1330#endif
5b556332 1331 cpu_detect_tlb(&boot_cpu_data);
a6c4e076 1332}
3b520b23 1333
148f9bb8 1334void identify_secondary_cpu(struct cpuinfo_x86 *c)
a6c4e076
JF
1335{
1336 BUG_ON(c == &boot_cpu_data);
1337 identify_cpu(c);
102bbe3a 1338#ifdef CONFIG_X86_32
a6c4e076 1339 enable_sep_cpu();
102bbe3a 1340#endif
a6c4e076 1341 mtrr_ap_init();
9d85eb91 1342 validate_apic_and_package_id(c);
1da177e4
LT
1343}
1344
191679fd
AK
1345static __init int setup_noclflush(char *arg)
1346{
840d2830 1347 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
da4aaa7d 1348 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
191679fd
AK
1349 return 1;
1350}
1351__setup("noclflush", setup_noclflush);
1352
148f9bb8 1353void print_cpu_info(struct cpuinfo_x86 *c)
1da177e4 1354{
02dde8b4 1355 const char *vendor = NULL;
1da177e4 1356
0f3fa48a 1357 if (c->x86_vendor < X86_VENDOR_NUM) {
1da177e4 1358 vendor = this_cpu->c_vendor;
0f3fa48a
IM
1359 } else {
1360 if (c->cpuid_level >= 0)
1361 vendor = c->x86_vendor_id;
1362 }
1da177e4 1363
bd32a8cf 1364 if (vendor && !strstr(c->x86_model_id, vendor))
1b74dde7 1365 pr_cont("%s ", vendor);
1da177e4 1366
9d31d35b 1367 if (c->x86_model_id[0])
1b74dde7 1368 pr_cont("%s", c->x86_model_id);
1da177e4 1369 else
1b74dde7 1370 pr_cont("%d86", c->x86);
1da177e4 1371
1b74dde7 1372 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
924e101a 1373
34048c9e 1374 if (c->x86_mask || c->cpuid_level >= 0)
1b74dde7 1375 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1da177e4 1376 else
1b74dde7 1377 pr_cont(")\n");
1da177e4
LT
1378}
1379
0c2a3913
AK
1380/*
1381 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1382 * But we need to keep a dummy __setup around otherwise it would
1383 * show up as an environment variable for init.
1384 */
1385static __init int setup_clearcpuid(char *arg)
ac72e788 1386{
ac72e788
AK
1387 return 1;
1388}
0c2a3913 1389__setup("clearcpuid=", setup_clearcpuid);
ac72e788 1390
d5494d4f 1391#ifdef CONFIG_X86_64
947e76cd 1392DEFINE_PER_CPU_FIRST(union irq_stack_union,
277d5b40 1393 irq_stack_union) __aligned(PAGE_SIZE) __visible;
0f3fa48a 1394
bdf977b3 1395/*
a7fcf28d
AL
1396 * The following percpu variables are hot. Align current_task to
1397 * cacheline size such that they fall in the same cacheline.
bdf977b3
TH
1398 */
1399DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1400 &init_task;
1401EXPORT_PER_CPU_SYMBOL(current_task);
d5494d4f 1402
bdf977b3 1403DEFINE_PER_CPU(char *, irq_stack_ptr) =
4950d6d4 1404 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
bdf977b3 1405
277d5b40 1406DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
d5494d4f 1407
c2daa3be
PZ
1408DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1409EXPORT_PER_CPU_SYMBOL(__preempt_count);
1410
d5494d4f
YL
1411/* May not be marked __init: used by software suspend */
1412void syscall_init(void)
1da177e4 1413{
3386bc8a
AL
1414 extern char _entry_trampoline[];
1415 extern char entry_SYSCALL_64_trampoline[];
1416
72f5e08d 1417 int cpu = smp_processor_id();
3386bc8a
AL
1418 unsigned long SYSCALL64_entry_trampoline =
1419 (unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1420 (entry_SYSCALL_64_trampoline - _entry_trampoline);
72f5e08d 1421
31ac34ca 1422 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
3386bc8a 1423 wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
d56fe4bf
IM
1424
1425#ifdef CONFIG_IA32_EMULATION
47edb651 1426 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
a76c7f46 1427 /*
487d1edb
DV
1428 * This only works on Intel CPUs.
1429 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1430 * This does not cause SYSENTER to jump to the wrong location, because
1431 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
a76c7f46
DV
1432 */
1433 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
0f9a4810 1434 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_SYSENTER_stack(cpu) + 1));
4c8cd0c5 1435 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
d56fe4bf 1436#else
47edb651 1437 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
6b51311c 1438 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
d56fe4bf
IM
1439 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1440 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
d5494d4f 1441#endif
03ae5768 1442
d5494d4f
YL
1443 /* Flags to clear on syscall */
1444 wrmsrl(MSR_SYSCALL_MASK,
63bcff2a 1445 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
8c7aa698 1446 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1da177e4 1447}
62111195 1448
d5494d4f
YL
1449/*
1450 * Copies of the original ist values from the tss are only accessed during
1451 * debugging, no special alignment required.
1452 */
1453DEFINE_PER_CPU(struct orig_ist, orig_ist);
1454
228bdaa9 1455static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
42181186 1456DEFINE_PER_CPU(int, debug_stack_usage);
228bdaa9
SR
1457
1458int is_debug_stack(unsigned long addr)
1459{
89cbc767
CL
1460 return __this_cpu_read(debug_stack_usage) ||
1461 (addr <= __this_cpu_read(debug_stack_addr) &&
1462 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
228bdaa9 1463}
0f46efeb 1464NOKPROBE_SYMBOL(is_debug_stack);
228bdaa9 1465
629f4f9d 1466DEFINE_PER_CPU(u32, debug_idt_ctr);
f8988175 1467
228bdaa9
SR
1468void debug_stack_set_zero(void)
1469{
629f4f9d
SA
1470 this_cpu_inc(debug_idt_ctr);
1471 load_current_idt();
228bdaa9 1472}
0f46efeb 1473NOKPROBE_SYMBOL(debug_stack_set_zero);
228bdaa9
SR
1474
1475void debug_stack_reset(void)
1476{
629f4f9d 1477 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
f8988175 1478 return;
629f4f9d
SA
1479 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1480 load_current_idt();
228bdaa9 1481}
0f46efeb 1482NOKPROBE_SYMBOL(debug_stack_reset);
228bdaa9 1483
0f3fa48a 1484#else /* CONFIG_X86_64 */
d5494d4f 1485
bdf977b3
TH
1486DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1487EXPORT_PER_CPU_SYMBOL(current_task);
c2daa3be
PZ
1488DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1489EXPORT_PER_CPU_SYMBOL(__preempt_count);
bdf977b3 1490
a7fcf28d
AL
1491/*
1492 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1493 * the top of the kernel stack. Use an extra percpu variable to track the
1494 * top of the kernel stack directly.
1495 */
1496DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1497 (unsigned long)&init_thread_union + THREAD_SIZE;
1498EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1499
60a5317f 1500#ifdef CONFIG_CC_STACKPROTECTOR
53f82452 1501DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
60a5317f 1502#endif
d5494d4f 1503
0f3fa48a 1504#endif /* CONFIG_X86_64 */
c5413fbe 1505
9766cdbc
JSR
1506/*
1507 * Clear all 6 debug registers:
1508 */
1509static void clear_all_debug_regs(void)
1510{
1511 int i;
1512
1513 for (i = 0; i < 8; i++) {
1514 /* Ignore db4, db5 */
1515 if ((i == 4) || (i == 5))
1516 continue;
1517
1518 set_debugreg(0, i);
1519 }
1520}
c5413fbe 1521
0bb9fef9
JW
1522#ifdef CONFIG_KGDB
1523/*
1524 * Restore debug regs if using kgdbwait and you have a kernel debugger
1525 * connection established.
1526 */
1527static void dbg_restore_debug_regs(void)
1528{
1529 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1530 arch_kgdb_ops.correct_hw_break();
1531}
1532#else /* ! CONFIG_KGDB */
1533#define dbg_restore_debug_regs()
1534#endif /* ! CONFIG_KGDB */
1535
ce4b1b16
IM
1536static void wait_for_master_cpu(int cpu)
1537{
1538#ifdef CONFIG_SMP
1539 /*
1540 * wait for ACK from master CPU before continuing
1541 * with AP initialization
1542 */
1543 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1544 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1545 cpu_relax();
1546#endif
1547}
1548
d2cbcc49
RR
1549/*
1550 * cpu_init() initializes state that is per-CPU. Some data is already
1551 * initialized (naturally) in the bootstrap process, such as the GDT
1552 * and IDT. We reload them nevertheless, this function acts as a
1553 * 'CPU state barrier', nothing should get across.
1ba76586 1554 * A lot of state is already set up in PDA init for 64 bit
d2cbcc49 1555 */
1ba76586 1556#ifdef CONFIG_X86_64
0f3fa48a 1557
148f9bb8 1558void cpu_init(void)
1ba76586 1559{
0fe1e009 1560 struct orig_ist *oist;
1ba76586 1561 struct task_struct *me;
0f3fa48a
IM
1562 struct tss_struct *t;
1563 unsigned long v;
fb59831b 1564 int cpu = raw_smp_processor_id();
1ba76586
YL
1565 int i;
1566
ce4b1b16
IM
1567 wait_for_master_cpu(cpu);
1568
1e02ce4c
AL
1569 /*
1570 * Initialize the CR4 shadow before doing anything that could
1571 * try to read it.
1572 */
1573 cr4_init_shadow();
1574
777284b6
BP
1575 if (cpu)
1576 load_ucode_ap();
e6ebf5de 1577
24933b82 1578 t = &per_cpu(cpu_tss, cpu);
0fe1e009 1579 oist = &per_cpu(orig_ist, cpu);
0f3fa48a 1580
e7a22c1e 1581#ifdef CONFIG_NUMA
27fd185f 1582 if (this_cpu_read(numa_node) == 0 &&
e534c7c5
LS
1583 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1584 set_numa_node(early_cpu_to_node(cpu));
e7a22c1e 1585#endif
1ba76586
YL
1586
1587 me = current;
1588
2eaad1fd 1589 pr_debug("Initializing CPU#%d\n", cpu);
1ba76586 1590
375074cc 1591 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1ba76586
YL
1592
1593 /*
1594 * Initialize the per-CPU GDT with the boot GDT,
1595 * and set up the GDT descriptor:
1596 */
1597
552be871 1598 switch_to_new_gdt(cpu);
2697fbd5
BG
1599 loadsegment(fs, 0);
1600
cf910e83 1601 load_current_idt();
1ba76586
YL
1602
1603 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1604 syscall_init();
1605
1606 wrmsrl(MSR_FS_BASE, 0);
1607 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1608 barrier();
1609
4763ed4d 1610 x86_configure_nx();
659006bf 1611 x2apic_setup();
1ba76586
YL
1612
1613 /*
1614 * set up and load the per-CPU TSS
1615 */
0fe1e009 1616 if (!oist->ist[0]) {
40e7f949 1617 char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
0f3fa48a 1618
1ba76586 1619 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
0f3fa48a 1620 estacks += exception_stack_sizes[v];
0fe1e009 1621 oist->ist[v] = t->x86_tss.ist[v] =
1ba76586 1622 (unsigned long)estacks;
228bdaa9
SR
1623 if (v == DEBUG_STACK-1)
1624 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1ba76586
YL
1625 }
1626 }
1627
7fb983b4 1628 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
0f3fa48a 1629
1ba76586
YL
1630 /*
1631 * <= is required because the CPU will access up to
1632 * 8 bits beyond the end of the IO permission bitmap.
1633 */
1634 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1635 t->io_bitmap[i] = ~0UL;
1636
f1f10076 1637 mmgrab(&init_mm);
1ba76586 1638 me->active_mm = &init_mm;
8c5dfd25 1639 BUG_ON(me->mm);
72c0098d 1640 initialize_tlbstate_and_flush();
1ba76586
YL
1641 enter_lazy_tlb(&init_mm, me);
1642
20bb8344 1643 /*
7f2590a1
AL
1644 * Initialize the TSS. sp0 points to the entry trampoline stack
1645 * regardless of what task is running.
20bb8344 1646 */
72f5e08d 1647 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1ba76586 1648 load_TR_desc();
0f9a4810 1649 load_sp0((unsigned long)(cpu_SYSENTER_stack(cpu) + 1));
20bb8344 1650
37868fe1 1651 load_mm_ldt(&init_mm);
1ba76586 1652
0bb9fef9
JW
1653 clear_all_debug_regs();
1654 dbg_restore_debug_regs();
1ba76586 1655
21c4cd10 1656 fpu__init_cpu();
1ba76586 1657
1ba76586
YL
1658 if (is_uv_system())
1659 uv_cpu_init();
69218e47 1660
69218e47 1661 load_fixmap_gdt(cpu);
1ba76586
YL
1662}
1663
1664#else
1665
148f9bb8 1666void cpu_init(void)
9ee79a3d 1667{
d2cbcc49
RR
1668 int cpu = smp_processor_id();
1669 struct task_struct *curr = current;
24933b82 1670 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
62111195 1671
ce4b1b16 1672 wait_for_master_cpu(cpu);
e6ebf5de 1673
5b2bdbc8
SR
1674 /*
1675 * Initialize the CR4 shadow before doing anything that could
1676 * try to read it.
1677 */
1678 cr4_init_shadow();
1679
ce4b1b16 1680 show_ucode_info_early();
62111195 1681
1b74dde7 1682 pr_info("Initializing CPU#%d\n", cpu);
62111195 1683
362f924b 1684 if (cpu_feature_enabled(X86_FEATURE_VME) ||
59e21e3d 1685 boot_cpu_has(X86_FEATURE_TSC) ||
362f924b 1686 boot_cpu_has(X86_FEATURE_DE))
375074cc 1687 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
62111195 1688
cf910e83 1689 load_current_idt();
552be871 1690 switch_to_new_gdt(cpu);
1da177e4 1691
1da177e4
LT
1692 /*
1693 * Set up and load the per-CPU TSS and LDT
1694 */
f1f10076 1695 mmgrab(&init_mm);
62111195 1696 curr->active_mm = &init_mm;
8c5dfd25 1697 BUG_ON(curr->mm);
72c0098d 1698 initialize_tlbstate_and_flush();
62111195 1699 enter_lazy_tlb(&init_mm, curr);
1da177e4 1700
20bb8344
AL
1701 /*
1702 * Initialize the TSS. Don't bother initializing sp0, as the initial
1703 * task never enters user mode.
1704 */
72f5e08d 1705 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1da177e4 1706 load_TR_desc();
20bb8344 1707
37868fe1 1708 load_mm_ldt(&init_mm);
1da177e4 1709
7fb983b4 1710 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
f9a196b8 1711
22c4e308 1712#ifdef CONFIG_DOUBLEFAULT
1da177e4
LT
1713 /* Set up doublefault TSS pointer in the GDT */
1714 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
22c4e308 1715#endif
1da177e4 1716
9766cdbc 1717 clear_all_debug_regs();
0bb9fef9 1718 dbg_restore_debug_regs();
1da177e4 1719
21c4cd10 1720 fpu__init_cpu();
69218e47 1721
69218e47 1722 load_fixmap_gdt(cpu);
1da177e4 1723}
1ba76586 1724#endif
5700f743 1725
b51ef52d
LA
1726static void bsp_resume(void)
1727{
1728 if (this_cpu->c_bsp_resume)
1729 this_cpu->c_bsp_resume(&boot_cpu_data);
1730}
1731
1732static struct syscore_ops cpu_syscore_ops = {
1733 .resume = bsp_resume,
1734};
1735
1736static int __init init_cpu_syscore(void)
1737{
1738 register_syscore_ops(&cpu_syscore_ops);
1739 return 0;
1740}
1741core_initcall(init_cpu_syscore);