]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - arch/x86/kernel/cpu/common.c
x86/doublefault/32: Rename doublefault.c to doublefault_32.c
[thirdparty/kernel/stable.git] / arch / x86 / kernel / cpu / common.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
2458e53f
KS
2/* cpu_feature_enabled() cannot be used this early */
3#define USE_EARLY_PGTABLE_L5
4
57c8a661 5#include <linux/memblock.h>
9766cdbc 6#include <linux/linkage.h>
f0fc4aff 7#include <linux/bitops.h>
9766cdbc 8#include <linux/kernel.h>
186f4360 9#include <linux/export.h>
9766cdbc
JSR
10#include <linux/percpu.h>
11#include <linux/string.h>
ee098e1a 12#include <linux/ctype.h>
1da177e4 13#include <linux/delay.h>
68e21be2 14#include <linux/sched/mm.h>
e6017571 15#include <linux/sched/clock.h>
9164bb4a 16#include <linux/sched/task.h>
9766cdbc 17#include <linux/init.h>
0f46efeb 18#include <linux/kprobes.h>
9766cdbc 19#include <linux/kgdb.h>
1da177e4 20#include <linux/smp.h>
9766cdbc 21#include <linux/io.h>
b51ef52d 22#include <linux/syscore_ops.h>
9766cdbc
JSR
23
24#include <asm/stackprotector.h>
cdd6c482 25#include <asm/perf_event.h>
1da177e4 26#include <asm/mmu_context.h>
49d859d7 27#include <asm/archrandom.h>
9766cdbc
JSR
28#include <asm/hypervisor.h>
29#include <asm/processor.h>
1e02ce4c 30#include <asm/tlbflush.h>
f649e938 31#include <asm/debugreg.h>
9766cdbc 32#include <asm/sections.h>
f40c3300 33#include <asm/vsyscall.h>
8bdbd962
AC
34#include <linux/topology.h>
35#include <linux/cpumask.h>
9766cdbc 36#include <asm/pgtable.h>
60063497 37#include <linux/atomic.h>
9766cdbc
JSR
38#include <asm/proto.h>
39#include <asm/setup.h>
40#include <asm/apic.h>
41#include <asm/desc.h>
78f7f1e5 42#include <asm/fpu/internal.h>
27b07da7 43#include <asm/mtrr.h>
0274f955 44#include <asm/hwcap2.h>
8bdbd962 45#include <linux/numa.h>
9766cdbc 46#include <asm/asm.h>
0f6ff2bc 47#include <asm/bugs.h>
9766cdbc 48#include <asm/cpu.h>
a03a3e28 49#include <asm/mce.h>
9766cdbc 50#include <asm/msr.h>
8d4a4300 51#include <asm/pat.h>
d288e1cf
FY
52#include <asm/microcode.h>
53#include <asm/microcode_intel.h>
fec9434a
DW
54#include <asm/intel-family.h>
55#include <asm/cpu_device_id.h>
bdbcdd48 56#include <asm/uv/uv.h>
1da177e4
LT
57
58#include "cpu.h"
59
0274f955
GA
60u32 elf_hwcap2 __read_mostly;
61
c2d1cec1 62/* all of these masks are initialized in setup_cpu_local_masks() */
c2d1cec1 63cpumask_var_t cpu_initialized_mask;
9766cdbc
JSR
64cpumask_var_t cpu_callout_mask;
65cpumask_var_t cpu_callin_mask;
c2d1cec1
MT
66
67/* representing cpus for which sibling maps can be computed */
68cpumask_var_t cpu_sibling_setup_mask;
69
f8b64d08
BP
70/* Number of siblings per CPU package */
71int smp_num_siblings = 1;
72EXPORT_SYMBOL(smp_num_siblings);
73
74/* Last level cache ID of each logical CPU */
75DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
76
2f2f52ba 77/* correctly size the local cpu masks */
4369f1fb 78void __init setup_cpu_local_masks(void)
2f2f52ba
BG
79{
80 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
81 alloc_bootmem_cpumask_var(&cpu_callin_mask);
82 alloc_bootmem_cpumask_var(&cpu_callout_mask);
83 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
84}
85
148f9bb8 86static void default_init(struct cpuinfo_x86 *c)
e8055139
OZ
87{
88#ifdef CONFIG_X86_64
27c13ece 89 cpu_detect_cache_sizes(c);
e8055139
OZ
90#else
91 /* Not much we can do here... */
92 /* Check if at least it has cpuid */
93 if (c->cpuid_level == -1) {
94 /* No cpuid. It must be an ancient CPU */
95 if (c->x86 == 4)
96 strcpy(c->x86_model_id, "486");
97 else if (c->x86 == 3)
98 strcpy(c->x86_model_id, "386");
99 }
100#endif
101}
102
148f9bb8 103static const struct cpu_dev default_cpu = {
e8055139
OZ
104 .c_init = default_init,
105 .c_vendor = "Unknown",
106 .c_x86_vendor = X86_VENDOR_UNKNOWN,
107};
108
148f9bb8 109static const struct cpu_dev *this_cpu = &default_cpu;
0a488a53 110
06deef89 111DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
950ad7ff 112#ifdef CONFIG_X86_64
06deef89
BG
113 /*
114 * We need valid kernel segments for data and code in long mode too
115 * IRET will check the segment types kkeil 2000/10/28
116 * Also sysret mandates a special GDT layout
117 *
9766cdbc 118 * TLS descriptors are currently at a different place compared to i386.
06deef89
BG
119 * Hopefully nobody expects them at a fixed place (Wine?)
120 */
1e5de182
AM
121 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
122 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
123 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
124 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
125 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
126 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
950ad7ff 127#else
1e5de182
AM
128 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
129 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
130 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
131 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
bf504672
RR
132 /*
133 * Segments used for calling PnP BIOS have byte granularity.
134 * They code segments and data segments have fixed 64k limits,
135 * the transfer segment sizes are set at run time.
136 */
6842ef0e 137 /* 32-bit code */
1e5de182 138 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
6842ef0e 139 /* 16-bit code */
1e5de182 140 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
6842ef0e 141 /* 16-bit data */
1e5de182 142 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
6842ef0e 143 /* 16-bit data */
1e5de182 144 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
6842ef0e 145 /* 16-bit data */
1e5de182 146 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
bf504672
RR
147 /*
148 * The APM segments have byte granularity and their bases
149 * are set at run time. All have 64k limits.
150 */
6842ef0e 151 /* 32-bit code */
1e5de182 152 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
bf504672 153 /* 16-bit code */
1e5de182 154 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
6842ef0e 155 /* data */
72c4d853 156 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
bf504672 157
1e5de182
AM
158 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
159 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
60a5317f 160 GDT_STACK_CANARY_INIT
950ad7ff 161#endif
06deef89 162} };
7a61d35d 163EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
ae1ee11b 164
8c3641e9 165static int __init x86_mpx_setup(char *s)
0c752a93 166{
8c3641e9 167 /* require an exact match without trailing characters */
2cd3949f
DH
168 if (strlen(s))
169 return 0;
0c752a93 170
8c3641e9
DH
171 /* do not emit a message if the feature is not present */
172 if (!boot_cpu_has(X86_FEATURE_MPX))
173 return 1;
6bad06b7 174
8c3641e9
DH
175 setup_clear_cpu_cap(X86_FEATURE_MPX);
176 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
b6f42a4a
FY
177 return 1;
178}
8c3641e9 179__setup("nompx", x86_mpx_setup);
b6f42a4a 180
0790c9aa 181#ifdef CONFIG_X86_64
c7ad5ad2 182static int __init x86_nopcid_setup(char *s)
0790c9aa 183{
c7ad5ad2
AL
184 /* nopcid doesn't accept parameters */
185 if (s)
186 return -EINVAL;
0790c9aa
AL
187
188 /* do not emit a message if the feature is not present */
189 if (!boot_cpu_has(X86_FEATURE_PCID))
c7ad5ad2 190 return 0;
0790c9aa
AL
191
192 setup_clear_cpu_cap(X86_FEATURE_PCID);
193 pr_info("nopcid: PCID feature disabled\n");
c7ad5ad2 194 return 0;
0790c9aa 195}
c7ad5ad2 196early_param("nopcid", x86_nopcid_setup);
0790c9aa
AL
197#endif
198
d12a72b8
AL
199static int __init x86_noinvpcid_setup(char *s)
200{
201 /* noinvpcid doesn't accept parameters */
202 if (s)
203 return -EINVAL;
204
205 /* do not emit a message if the feature is not present */
206 if (!boot_cpu_has(X86_FEATURE_INVPCID))
207 return 0;
208
209 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
210 pr_info("noinvpcid: INVPCID feature disabled\n");
211 return 0;
212}
213early_param("noinvpcid", x86_noinvpcid_setup);
214
ba51dced 215#ifdef CONFIG_X86_32
148f9bb8
PG
216static int cachesize_override = -1;
217static int disable_x86_serial_nr = 1;
1da177e4 218
0a488a53
YL
219static int __init cachesize_setup(char *str)
220{
221 get_option(&str, &cachesize_override);
222 return 1;
223}
224__setup("cachesize=", cachesize_setup);
225
0a488a53
YL
226static int __init x86_sep_setup(char *s)
227{
228 setup_clear_cpu_cap(X86_FEATURE_SEP);
229 return 1;
230}
231__setup("nosep", x86_sep_setup);
232
233/* Standard macro to see if a specific flag is changeable */
234static inline int flag_is_changeable_p(u32 flag)
235{
236 u32 f1, f2;
237
94f6bac1
KH
238 /*
239 * Cyrix and IDT cpus allow disabling of CPUID
240 * so the code below may return different results
241 * when it is executed before and after enabling
242 * the CPUID. Add "volatile" to not allow gcc to
243 * optimize the subsequent calls to this function.
244 */
0f3fa48a
IM
245 asm volatile ("pushfl \n\t"
246 "pushfl \n\t"
247 "popl %0 \n\t"
248 "movl %0, %1 \n\t"
249 "xorl %2, %0 \n\t"
250 "pushl %0 \n\t"
251 "popfl \n\t"
252 "pushfl \n\t"
253 "popl %0 \n\t"
254 "popfl \n\t"
255
94f6bac1
KH
256 : "=&r" (f1), "=&r" (f2)
257 : "ir" (flag));
0a488a53
YL
258
259 return ((f1^f2) & flag) != 0;
260}
261
262/* Probe for the CPUID instruction */
148f9bb8 263int have_cpuid_p(void)
0a488a53
YL
264{
265 return flag_is_changeable_p(X86_EFLAGS_ID);
266}
267
148f9bb8 268static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
0a488a53 269{
0f3fa48a
IM
270 unsigned long lo, hi;
271
272 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
273 return;
274
275 /* Disable processor serial number: */
276
277 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
278 lo |= 0x200000;
279 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
280
1b74dde7 281 pr_notice("CPU serial number disabled.\n");
0f3fa48a
IM
282 clear_cpu_cap(c, X86_FEATURE_PN);
283
284 /* Disabling the serial number may affect the cpuid level */
285 c->cpuid_level = cpuid_eax(0);
0a488a53
YL
286}
287
288static int __init x86_serial_nr_setup(char *s)
289{
290 disable_x86_serial_nr = 0;
291 return 1;
292}
293__setup("serialnumber", x86_serial_nr_setup);
ba51dced 294#else
102bbe3a
YL
295static inline int flag_is_changeable_p(u32 flag)
296{
297 return 1;
298}
102bbe3a
YL
299static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
300{
301}
ba51dced 302#endif
0a488a53 303
de5397ad
FY
304static __init int setup_disable_smep(char *arg)
305{
b2cc2a07 306 setup_clear_cpu_cap(X86_FEATURE_SMEP);
0f6ff2bc
DH
307 /* Check for things that depend on SMEP being enabled: */
308 check_mpx_erratum(&boot_cpu_data);
de5397ad
FY
309 return 1;
310}
311__setup("nosmep", setup_disable_smep);
312
b2cc2a07 313static __always_inline void setup_smep(struct cpuinfo_x86 *c)
de5397ad 314{
b2cc2a07 315 if (cpu_has(c, X86_FEATURE_SMEP))
375074cc 316 cr4_set_bits(X86_CR4_SMEP);
de5397ad
FY
317}
318
52b6179a
PA
319static __init int setup_disable_smap(char *arg)
320{
b2cc2a07 321 setup_clear_cpu_cap(X86_FEATURE_SMAP);
52b6179a
PA
322 return 1;
323}
324__setup("nosmap", setup_disable_smap);
325
b2cc2a07
PA
326static __always_inline void setup_smap(struct cpuinfo_x86 *c)
327{
581b7f15 328 unsigned long eflags = native_save_fl();
b2cc2a07
PA
329
330 /* This should have been cleared long ago */
b2cc2a07
PA
331 BUG_ON(eflags & X86_EFLAGS_AC);
332
03bbd596
PA
333 if (cpu_has(c, X86_FEATURE_SMAP)) {
334#ifdef CONFIG_X86_SMAP
375074cc 335 cr4_set_bits(X86_CR4_SMAP);
03bbd596 336#else
375074cc 337 cr4_clear_bits(X86_CR4_SMAP);
03bbd596
PA
338#endif
339 }
de5397ad
FY
340}
341
aa35f896
RN
342static __always_inline void setup_umip(struct cpuinfo_x86 *c)
343{
344 /* Check the boot processor, plus build option for UMIP. */
345 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
346 goto out;
347
348 /* Check the current processor's cpuid bits. */
349 if (!cpu_has(c, X86_FEATURE_UMIP))
350 goto out;
351
352 cr4_set_bits(X86_CR4_UMIP);
353
438cbf88 354 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
770c7755 355
aa35f896
RN
356 return;
357
358out:
359 /*
360 * Make sure UMIP is disabled in case it was enabled in a
361 * previous boot (e.g., via kexec).
362 */
363 cr4_clear_bits(X86_CR4_UMIP);
364}
365
7652ac92
TG
366static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
367static unsigned long cr4_pinned_bits __ro_after_init;
368
369void native_write_cr0(unsigned long val)
370{
371 unsigned long bits_missing = 0;
372
373set_register:
374 asm volatile("mov %0,%%cr0": "+r" (val), "+m" (__force_order));
375
376 if (static_branch_likely(&cr_pinning)) {
377 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
378 bits_missing = X86_CR0_WP;
379 val |= bits_missing;
380 goto set_register;
381 }
382 /* Warn after we've set the missing bits. */
383 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
384 }
385}
386EXPORT_SYMBOL(native_write_cr0);
387
388void native_write_cr4(unsigned long val)
389{
390 unsigned long bits_missing = 0;
391
392set_register:
393 asm volatile("mov %0,%%cr4": "+r" (val), "+m" (cr4_pinned_bits));
394
395 if (static_branch_likely(&cr_pinning)) {
396 if (unlikely((val & cr4_pinned_bits) != cr4_pinned_bits)) {
397 bits_missing = ~val & cr4_pinned_bits;
398 val |= bits_missing;
399 goto set_register;
400 }
401 /* Warn after we've set the missing bits. */
402 WARN_ONCE(bits_missing, "CR4 bits went missing: %lx!?\n",
403 bits_missing);
404 }
405}
406EXPORT_SYMBOL(native_write_cr4);
407
408void cr4_init(void)
409{
410 unsigned long cr4 = __read_cr4();
411
412 if (boot_cpu_has(X86_FEATURE_PCID))
413 cr4 |= X86_CR4_PCIDE;
414 if (static_branch_likely(&cr_pinning))
415 cr4 |= cr4_pinned_bits;
416
417 __write_cr4(cr4);
418
419 /* Initialize cr4 shadow for this CPU. */
420 this_cpu_write(cpu_tlbstate.cr4, cr4);
421}
873d50d5
KC
422
423/*
424 * Once CPU feature detection is finished (and boot params have been
425 * parsed), record any of the sensitive CR bits that are set, and
426 * enable CR pinning.
427 */
428static void __init setup_cr_pinning(void)
429{
430 unsigned long mask;
431
432 mask = (X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP);
433 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & mask;
434 static_key_enable(&cr_pinning.key);
435}
436
06976945
DH
437/*
438 * Protection Keys are not available in 32-bit mode.
439 */
440static bool pku_disabled;
441
442static __always_inline void setup_pku(struct cpuinfo_x86 *c)
443{
a5eff725
SAS
444 struct pkru_state *pk;
445
e8df1a95
DH
446 /* check the boot processor, plus compile options for PKU: */
447 if (!cpu_feature_enabled(X86_FEATURE_PKU))
448 return;
449 /* checks the actual processor's cpuid bits: */
06976945
DH
450 if (!cpu_has(c, X86_FEATURE_PKU))
451 return;
452 if (pku_disabled)
453 return;
454
455 cr4_set_bits(X86_CR4_PKE);
a5eff725
SAS
456 pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
457 if (pk)
458 pk->pkru = init_pkru_value;
06976945
DH
459 /*
460 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
461 * cpuid bit to be set. We need to ensure that we
462 * update that bit in this CPU's "cpu_info".
463 */
464 get_cpu_cap(c);
465}
466
467#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
468static __init int setup_disable_pku(char *arg)
469{
470 /*
471 * Do not clear the X86_FEATURE_PKU bit. All of the
472 * runtime checks are against OSPKE so clearing the
473 * bit does nothing.
474 *
475 * This way, we will see "pku" in cpuinfo, but not
476 * "ospke", which is exactly what we want. It shows
477 * that the CPU has PKU, but the OS has not enabled it.
478 * This happens to be exactly how a system would look
479 * if we disabled the config option.
480 */
481 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
482 pku_disabled = true;
483 return 1;
484}
485__setup("nopku", setup_disable_pku);
486#endif /* CONFIG_X86_64 */
487
b38b0665
PA
488/*
489 * Some CPU features depend on higher CPUID levels, which may not always
490 * be available due to CPUID level capping or broken virtualization
491 * software. Add those features to this table to auto-disable them.
492 */
493struct cpuid_dependent_feature {
494 u32 feature;
495 u32 level;
496};
0f3fa48a 497
148f9bb8 498static const struct cpuid_dependent_feature
b38b0665
PA
499cpuid_dependent_features[] = {
500 { X86_FEATURE_MWAIT, 0x00000005 },
501 { X86_FEATURE_DCA, 0x00000009 },
502 { X86_FEATURE_XSAVE, 0x0000000d },
503 { 0, 0 }
504};
505
148f9bb8 506static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
b38b0665
PA
507{
508 const struct cpuid_dependent_feature *df;
9766cdbc 509
b38b0665 510 for (df = cpuid_dependent_features; df->feature; df++) {
0f3fa48a
IM
511
512 if (!cpu_has(c, df->feature))
513 continue;
b38b0665
PA
514 /*
515 * Note: cpuid_level is set to -1 if unavailable, but
516 * extended_extended_level is set to 0 if unavailable
517 * and the legitimate extended levels are all negative
518 * when signed; hence the weird messing around with
519 * signs here...
520 */
0f3fa48a 521 if (!((s32)df->level < 0 ?
f6db44df 522 (u32)df->level > (u32)c->extended_cpuid_level :
0f3fa48a
IM
523 (s32)df->level > (s32)c->cpuid_level))
524 continue;
525
526 clear_cpu_cap(c, df->feature);
527 if (!warn)
528 continue;
529
1b74dde7
CY
530 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
531 x86_cap_flag(df->feature), df->level);
b38b0665 532 }
f6db44df 533}
b38b0665 534
102bbe3a
YL
535/*
536 * Naming convention should be: <Name> [(<Codename>)]
537 * This table only is used unless init_<vendor>() below doesn't set it;
0f3fa48a
IM
538 * in particular, if CPUID levels 0x80000002..4 are supported, this
539 * isn't used
102bbe3a
YL
540 */
541
542/* Look up CPU names by table lookup. */
148f9bb8 543static const char *table_lookup_model(struct cpuinfo_x86 *c)
102bbe3a 544{
09dc68d9
JB
545#ifdef CONFIG_X86_32
546 const struct legacy_cpu_model_info *info;
102bbe3a
YL
547
548 if (c->x86_model >= 16)
549 return NULL; /* Range check */
550
551 if (!this_cpu)
552 return NULL;
553
09dc68d9 554 info = this_cpu->legacy_models;
102bbe3a 555
09dc68d9 556 while (info->family) {
102bbe3a
YL
557 if (info->family == c->x86)
558 return info->model_names[c->x86_model];
559 info++;
560 }
09dc68d9 561#endif
102bbe3a
YL
562 return NULL; /* Not found */
563}
564
f6a892dd
FY
565/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
566__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
567__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
7d851c8d 568
11e3a840
JF
569void load_percpu_segment(int cpu)
570{
571#ifdef CONFIG_X86_32
572 loadsegment(fs, __KERNEL_PERCPU);
573#else
45e876f7 574 __loadsegment_simple(gs, 0);
35060ed6 575 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
11e3a840 576#endif
60a5317f 577 load_stack_canary_segment();
11e3a840
JF
578}
579
72f5e08d
AL
580#ifdef CONFIG_X86_32
581/* The 32-bit entry code needs to find cpu_entry_area. */
582DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
583#endif
584
45fc8757
TG
585/* Load the original GDT from the per-cpu structure */
586void load_direct_gdt(int cpu)
587{
588 struct desc_ptr gdt_descr;
589
590 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
591 gdt_descr.size = GDT_SIZE - 1;
592 load_gdt(&gdt_descr);
593}
594EXPORT_SYMBOL_GPL(load_direct_gdt);
595
69218e47
TG
596/* Load a fixmap remapping of the per-cpu GDT */
597void load_fixmap_gdt(int cpu)
598{
599 struct desc_ptr gdt_descr;
600
601 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
602 gdt_descr.size = GDT_SIZE - 1;
603 load_gdt(&gdt_descr);
604}
45fc8757 605EXPORT_SYMBOL_GPL(load_fixmap_gdt);
69218e47 606
0f3fa48a
IM
607/*
608 * Current gdt points %fs at the "master" per-cpu area: after this,
609 * it's on the real one.
610 */
552be871 611void switch_to_new_gdt(int cpu)
9d31d35b 612{
45fc8757
TG
613 /* Load the original GDT */
614 load_direct_gdt(cpu);
2697fbd5 615 /* Reload the per-cpu base */
11e3a840 616 load_percpu_segment(cpu);
9d31d35b
YL
617}
618
148f9bb8 619static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
1da177e4 620
148f9bb8 621static void get_model_name(struct cpuinfo_x86 *c)
1da177e4
LT
622{
623 unsigned int *v;
ee098e1a 624 char *p, *q, *s;
1da177e4 625
3da99c97 626 if (c->extended_cpuid_level < 0x80000004)
1b05d60d 627 return;
1da177e4 628
0f3fa48a 629 v = (unsigned int *)c->x86_model_id;
1da177e4
LT
630 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
631 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
632 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
633 c->x86_model_id[48] = 0;
634
ee098e1a
BP
635 /* Trim whitespace */
636 p = q = s = &c->x86_model_id[0];
637
638 while (*p == ' ')
639 p++;
640
641 while (*p) {
642 /* Note the last non-whitespace index */
643 if (!isspace(*p))
644 s = q;
645
646 *q++ = *p++;
647 }
648
649 *(s + 1) = '\0';
1da177e4
LT
650}
651
9305bd6c 652void detect_num_cpu_cores(struct cpuinfo_x86 *c)
2cc61be6
DW
653{
654 unsigned int eax, ebx, ecx, edx;
655
9305bd6c 656 c->x86_max_cores = 1;
2cc61be6 657 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
9305bd6c 658 return;
2cc61be6
DW
659
660 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
661 if (eax & 0x1f)
9305bd6c 662 c->x86_max_cores = (eax >> 26) + 1;
2cc61be6
DW
663}
664
148f9bb8 665void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
1da177e4 666{
9d31d35b 667 unsigned int n, dummy, ebx, ecx, edx, l2size;
1da177e4 668
3da99c97 669 n = c->extended_cpuid_level;
1da177e4
LT
670
671 if (n >= 0x80000005) {
9d31d35b 672 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
9d31d35b 673 c->x86_cache_size = (ecx>>24) + (edx>>24);
140fc727
YL
674#ifdef CONFIG_X86_64
675 /* On K8 L1 TLB is inclusive, so don't count it */
676 c->x86_tlbsize = 0;
677#endif
1da177e4
LT
678 }
679
680 if (n < 0x80000006) /* Some chips just has a large L1. */
681 return;
682
0a488a53 683 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
1da177e4 684 l2size = ecx >> 16;
34048c9e 685
140fc727
YL
686#ifdef CONFIG_X86_64
687 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
688#else
1da177e4 689 /* do processor-specific cache resizing */
09dc68d9
JB
690 if (this_cpu->legacy_cache_size)
691 l2size = this_cpu->legacy_cache_size(c, l2size);
1da177e4
LT
692
693 /* Allow user to override all this if necessary. */
694 if (cachesize_override != -1)
695 l2size = cachesize_override;
696
34048c9e 697 if (l2size == 0)
1da177e4 698 return; /* Again, no L2 cache is possible */
140fc727 699#endif
1da177e4
LT
700
701 c->x86_cache_size = l2size;
1da177e4
LT
702}
703
e0ba94f1
AS
704u16 __read_mostly tlb_lli_4k[NR_INFO];
705u16 __read_mostly tlb_lli_2m[NR_INFO];
706u16 __read_mostly tlb_lli_4m[NR_INFO];
707u16 __read_mostly tlb_lld_4k[NR_INFO];
708u16 __read_mostly tlb_lld_2m[NR_INFO];
709u16 __read_mostly tlb_lld_4m[NR_INFO];
dd360393 710u16 __read_mostly tlb_lld_1g[NR_INFO];
e0ba94f1 711
f94fe119 712static void cpu_detect_tlb(struct cpuinfo_x86 *c)
e0ba94f1
AS
713{
714 if (this_cpu->c_detect_tlb)
715 this_cpu->c_detect_tlb(c);
716
f94fe119 717 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
e0ba94f1 718 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
f94fe119
SH
719 tlb_lli_4m[ENTRIES]);
720
721 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
722 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
723 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
e0ba94f1
AS
724}
725
545401f4 726int detect_ht_early(struct cpuinfo_x86 *c)
1da177e4 727{
c8e56d20 728#ifdef CONFIG_SMP
0a488a53 729 u32 eax, ebx, ecx, edx;
1da177e4 730
0a488a53 731 if (!cpu_has(c, X86_FEATURE_HT))
545401f4 732 return -1;
1da177e4 733
0a488a53 734 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
545401f4 735 return -1;
1da177e4 736
1cd78776 737 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
545401f4 738 return -1;
1da177e4 739
0a488a53 740 cpuid(1, &eax, &ebx, &ecx, &edx);
1da177e4 741
9d31d35b 742 smp_num_siblings = (ebx & 0xff0000) >> 16;
545401f4 743 if (smp_num_siblings == 1)
1b74dde7 744 pr_info_once("CPU0: Hyper-Threading is disabled\n");
545401f4
TG
745#endif
746 return 0;
747}
9d31d35b 748
545401f4
TG
749void detect_ht(struct cpuinfo_x86 *c)
750{
751#ifdef CONFIG_SMP
752 int index_msb, core_bits;
55e6d279 753
545401f4 754 if (detect_ht_early(c) < 0)
55e6d279 755 return;
9d31d35b 756
0f3fa48a
IM
757 index_msb = get_count_order(smp_num_siblings);
758 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
9d31d35b 759
0f3fa48a 760 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
9d31d35b 761
0f3fa48a 762 index_msb = get_count_order(smp_num_siblings);
9d31d35b 763
0f3fa48a 764 core_bits = get_count_order(c->x86_max_cores);
9d31d35b 765
0f3fa48a
IM
766 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
767 ((1 << core_bits) - 1);
9d31d35b 768#endif
97e4db7c 769}
1da177e4 770
148f9bb8 771static void get_cpu_vendor(struct cpuinfo_x86 *c)
1da177e4
LT
772{
773 char *v = c->x86_vendor_id;
0f3fa48a 774 int i;
1da177e4
LT
775
776 for (i = 0; i < X86_VENDOR_NUM; i++) {
10a434fc
YL
777 if (!cpu_devs[i])
778 break;
779
780 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
781 (cpu_devs[i]->c_ident[1] &&
782 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
0f3fa48a 783
10a434fc
YL
784 this_cpu = cpu_devs[i];
785 c->x86_vendor = this_cpu->c_x86_vendor;
786 return;
1da177e4
LT
787 }
788 }
10a434fc 789
1b74dde7
CY
790 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
791 "CPU: Your system may be unstable.\n", v);
10a434fc 792
fe38d855
CE
793 c->x86_vendor = X86_VENDOR_UNKNOWN;
794 this_cpu = &default_cpu;
1da177e4
LT
795}
796
148f9bb8 797void cpu_detect(struct cpuinfo_x86 *c)
1da177e4 798{
1da177e4 799 /* Get vendor name */
4a148513
HH
800 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
801 (unsigned int *)&c->x86_vendor_id[0],
802 (unsigned int *)&c->x86_vendor_id[8],
803 (unsigned int *)&c->x86_vendor_id[4]);
1da177e4 804
1da177e4 805 c->x86 = 4;
9d31d35b 806 /* Intel-defined flags: level 0x00000001 */
1da177e4
LT
807 if (c->cpuid_level >= 0x00000001) {
808 u32 junk, tfms, cap0, misc;
0f3fa48a 809
1da177e4 810 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
99f925ce
BP
811 c->x86 = x86_family(tfms);
812 c->x86_model = x86_model(tfms);
b399151c 813 c->x86_stepping = x86_stepping(tfms);
0f3fa48a 814
d4387bd3 815 if (cap0 & (1<<19)) {
d4387bd3 816 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
9d31d35b 817 c->x86_cache_alignment = c->x86_clflush_size;
d4387bd3 818 }
1da177e4 819 }
1da177e4 820}
3da99c97 821
8bf1ebca
AL
822static void apply_forced_caps(struct cpuinfo_x86 *c)
823{
824 int i;
825
6cbd2171 826 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
8bf1ebca
AL
827 c->x86_capability[i] &= ~cpu_caps_cleared[i];
828 c->x86_capability[i] |= cpu_caps_set[i];
829 }
830}
831
7fcae111
DW
832static void init_speculation_control(struct cpuinfo_x86 *c)
833{
834 /*
835 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
836 * and they also have a different bit for STIBP support. Also,
837 * a hypervisor might have set the individual AMD bits even on
838 * Intel CPUs, for finer-grained selection of what's available.
7fcae111
DW
839 */
840 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
841 set_cpu_cap(c, X86_FEATURE_IBRS);
842 set_cpu_cap(c, X86_FEATURE_IBPB);
7eb8956a 843 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
7fcae111 844 }
e7c587da 845
7fcae111
DW
846 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
847 set_cpu_cap(c, X86_FEATURE_STIBP);
e7c587da 848
bc226f07
TL
849 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
850 cpu_has(c, X86_FEATURE_VIRT_SSBD))
52817587
TG
851 set_cpu_cap(c, X86_FEATURE_SSBD);
852
7eb8956a 853 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
e7c587da 854 set_cpu_cap(c, X86_FEATURE_IBRS);
7eb8956a
TG
855 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
856 }
e7c587da
BP
857
858 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
859 set_cpu_cap(c, X86_FEATURE_IBPB);
860
7eb8956a 861 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
e7c587da 862 set_cpu_cap(c, X86_FEATURE_STIBP);
7eb8956a
TG
863 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
864 }
6ac2f49e
KRW
865
866 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
867 set_cpu_cap(c, X86_FEATURE_SSBD);
868 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
869 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
870 }
7fcae111
DW
871}
872
45fc56e6
BP
873static void init_cqm(struct cpuinfo_x86 *c)
874{
acec0ce0
FY
875 if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
876 c->x86_cache_max_rmid = -1;
877 c->x86_cache_occ_scale = -1;
878 return;
879 }
45fc56e6 880
acec0ce0
FY
881 /* will be overridden if occupancy monitoring exists */
882 c->x86_cache_max_rmid = cpuid_ebx(0xf);
883
884 if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
885 cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
886 cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
887 u32 eax, ebx, ecx, edx;
888
889 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
890 cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
891
892 c->x86_cache_max_rmid = ecx;
893 c->x86_cache_occ_scale = ebx;
45fc56e6
BP
894 }
895}
896
148f9bb8 897void get_cpu_cap(struct cpuinfo_x86 *c)
093af8d7 898{
39c06df4 899 u32 eax, ebx, ecx, edx;
093af8d7 900
3da99c97
YL
901 /* Intel-defined flags: level 0x00000001 */
902 if (c->cpuid_level >= 0x00000001) {
39c06df4 903 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
0f3fa48a 904
39c06df4
BP
905 c->x86_capability[CPUID_1_ECX] = ecx;
906 c->x86_capability[CPUID_1_EDX] = edx;
3da99c97 907 }
093af8d7 908
3df8d920
AL
909 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
910 if (c->cpuid_level >= 0x00000006)
911 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
912
bdc802dc
PA
913 /* Additional Intel-defined flags: level 0x00000007 */
914 if (c->cpuid_level >= 0x00000007) {
bdc802dc 915 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
39c06df4 916 c->x86_capability[CPUID_7_0_EBX] = ebx;
dfb4a70f 917 c->x86_capability[CPUID_7_ECX] = ecx;
95ca0ee8 918 c->x86_capability[CPUID_7_EDX] = edx;
b302e4b1
FY
919
920 /* Check valid sub-leaf index before accessing it */
921 if (eax >= 1) {
922 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
923 c->x86_capability[CPUID_7_1_EAX] = eax;
924 }
bdc802dc
PA
925 }
926
6229ad27
FY
927 /* Extended state features: level 0x0000000d */
928 if (c->cpuid_level >= 0x0000000d) {
6229ad27
FY
929 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
930
39c06df4 931 c->x86_capability[CPUID_D_1_EAX] = eax;
6229ad27
FY
932 }
933
3da99c97 934 /* AMD-defined flags: level 0x80000001 */
39c06df4
BP
935 eax = cpuid_eax(0x80000000);
936 c->extended_cpuid_level = eax;
937
938 if ((eax & 0xffff0000) == 0x80000000) {
939 if (eax >= 0x80000001) {
940 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
0f3fa48a 941
39c06df4
BP
942 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
943 c->x86_capability[CPUID_8000_0001_EDX] = edx;
093af8d7 944 }
093af8d7 945 }
093af8d7 946
71faad43
YG
947 if (c->extended_cpuid_level >= 0x80000007) {
948 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
949
950 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
951 c->x86_power = edx;
952 }
953
c65732e4
TG
954 if (c->extended_cpuid_level >= 0x80000008) {
955 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
956 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
957 }
958
2ccd71f1 959 if (c->extended_cpuid_level >= 0x8000000a)
39c06df4 960 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
093af8d7 961
1dedefd1 962 init_scattered_cpuid_features(c);
7fcae111 963 init_speculation_control(c);
45fc56e6 964 init_cqm(c);
60d34501
AL
965
966 /*
967 * Clear/Set all flags overridden by options, after probe.
968 * This needs to happen each time we re-probe, which may happen
969 * several times during CPU initialization.
970 */
971 apply_forced_caps(c);
093af8d7 972}
1da177e4 973
405c018a 974void get_cpu_address_sizes(struct cpuinfo_x86 *c)
d94a155c
KS
975{
976 u32 eax, ebx, ecx, edx;
977
978 if (c->extended_cpuid_level >= 0x80000008) {
979 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
980
981 c->x86_virt_bits = (eax >> 8) & 0xff;
982 c->x86_phys_bits = eax & 0xff;
d94a155c
KS
983 }
984#ifdef CONFIG_X86_32
985 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
986 c->x86_phys_bits = 36;
987#endif
cc51e542 988 c->x86_cache_bits = c->x86_phys_bits;
d94a155c
KS
989}
990
148f9bb8 991static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
aef93c8b
YL
992{
993#ifdef CONFIG_X86_32
994 int i;
995
996 /*
997 * First of all, decide if this is a 486 or higher
998 * It's a 486 if we can modify the AC flag
999 */
1000 if (flag_is_changeable_p(X86_EFLAGS_AC))
1001 c->x86 = 4;
1002 else
1003 c->x86 = 3;
1004
1005 for (i = 0; i < X86_VENDOR_NUM; i++)
1006 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1007 c->x86_vendor_id[0] = 0;
1008 cpu_devs[i]->c_identify(c);
1009 if (c->x86_vendor_id[0]) {
1010 get_cpu_vendor(c);
1011 break;
1012 }
1013 }
1014#endif
1015}
1016
db4d30fb
VT
1017#define NO_SPECULATION BIT(0)
1018#define NO_MELTDOWN BIT(1)
1019#define NO_SSB BIT(2)
1020#define NO_L1TF BIT(3)
1021#define NO_MDS BIT(4)
1022#define MSBDS_ONLY BIT(5)
1023#define NO_SWAPGS BIT(6)
1024#define NO_ITLB_MULTIHIT BIT(7)
36ad3513
TG
1025
1026#define VULNWL(_vendor, _family, _model, _whitelist) \
1027 { X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
1028
1029#define VULNWL_INTEL(model, whitelist) \
1030 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1031
1032#define VULNWL_AMD(family, whitelist) \
1033 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1034
1035#define VULNWL_HYGON(family, whitelist) \
1036 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1037
1038static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1039 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1040 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1041 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1042 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1043
ed5194c2 1044 /* Intel Family 6 */
db4d30fb
VT
1045 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1046 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1047 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1048 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1049 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1050
1051 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1052 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1053 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1054 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1055 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1056 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
36ad3513
TG
1057
1058 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1059
db4d30fb
VT
1060 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1061 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
36ad3513 1062
db4d30fb
VT
1063 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1065 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
f36cf386
TG
1066
1067 /*
1068 * Technically, swapgs isn't serializing on AMD (despite it previously
1069 * being documented as such in the APM). But according to AMD, %gs is
1070 * updated non-speculatively, and the issuing of %gs-relative memory
1071 * operands will be blocked until the %gs update completes, which is
1072 * good enough for our purposes.
1073 */
ed5194c2 1074
cad14885
PG
1075 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT),
1076
ed5194c2 1077 /* AMD Family 0xf - 0x12 */
db4d30fb
VT
1078 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1079 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1080 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1081 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
36ad3513
TG
1082
1083 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
db4d30fb
VT
1084 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1085 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
fec9434a
DW
1086 {}
1087};
1088
36ad3513
TG
1089static bool __init cpu_matches(unsigned long which)
1090{
1091 const struct x86_cpu_id *m = x86_match_cpu(cpu_vuln_whitelist);
c456442c 1092
36ad3513
TG
1093 return m && !!(m->driver_data & which);
1094}
17dbca11 1095
286836a7 1096u64 x86_read_arch_cap_msr(void)
fec9434a
DW
1097{
1098 u64 ia32_cap = 0;
1099
286836a7
PG
1100 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1101 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1102
1103 return ia32_cap;
1104}
1105
1106static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1107{
1108 u64 ia32_cap = x86_read_arch_cap_msr();
1109
db4d30fb
VT
1110 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1111 if (!cpu_matches(NO_ITLB_MULTIHIT) && !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1112 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1113
36ad3513 1114 if (cpu_matches(NO_SPECULATION))
8ecc4979
DB
1115 return;
1116
1117 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1118 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1119
36ad3513 1120 if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
24809860 1121 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
c456442c
KRW
1122 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1123
706d5168
SP
1124 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1125 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1126
e261f209 1127 if (!cpu_matches(NO_MDS) && !(ia32_cap & ARCH_CAP_MDS_NO)) {
ed5194c2 1128 setup_force_cpu_bug(X86_BUG_MDS);
e261f209
TG
1129 if (cpu_matches(MSBDS_ONLY))
1130 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1131 }
ed5194c2 1132
f36cf386
TG
1133 if (!cpu_matches(NO_SWAPGS))
1134 setup_force_cpu_bug(X86_BUG_SWAPGS);
1135
1b42f017
PG
1136 /*
1137 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1138 * - TSX is supported or
1139 * - TSX_CTRL is present
1140 *
1141 * TSX_CTRL check is needed for cases when TSX could be disabled before
1142 * the kernel boot e.g. kexec.
1143 * TSX_CTRL check alone is not sufficient for cases when the microcode
1144 * update is not present or running as guest that don't get TSX_CTRL.
1145 */
1146 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1147 (cpu_has(c, X86_FEATURE_RTM) ||
1148 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1149 setup_force_cpu_bug(X86_BUG_TAA);
1150
36ad3513 1151 if (cpu_matches(NO_MELTDOWN))
4a28bfe3 1152 return;
fec9434a 1153
fec9434a
DW
1154 /* Rogue Data Cache Load? No! */
1155 if (ia32_cap & ARCH_CAP_RDCL_NO)
4a28bfe3 1156 return;
fec9434a 1157
4a28bfe3 1158 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
17dbca11 1159
36ad3513 1160 if (cpu_matches(NO_L1TF))
17dbca11
AK
1161 return;
1162
1163 setup_force_cpu_bug(X86_BUG_L1TF);
fec9434a
DW
1164}
1165
8990cac6
PT
1166/*
1167 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1168 * unfortunately, that's not true in practice because of early VIA
1169 * chips and (more importantly) broken virtualizers that are not easy
1170 * to detect. In the latter case it doesn't even *fail* reliably, so
1171 * probing for it doesn't even work. Disable it completely on 32-bit
1172 * unless we can find a reliable way to detect all the broken cases.
1173 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1174 */
9b3661cd 1175static void detect_nopl(void)
8990cac6
PT
1176{
1177#ifdef CONFIG_X86_32
9b3661cd 1178 setup_clear_cpu_cap(X86_FEATURE_NOPL);
8990cac6 1179#else
9b3661cd 1180 setup_force_cpu_cap(X86_FEATURE_NOPL);
8990cac6
PT
1181#endif
1182}
1183
34048c9e
PC
1184/*
1185 * Do minimum CPU detection early.
1186 * Fields really needed: vendor, cpuid_level, family, model, mask,
1187 * cache alignment.
1188 * The others are not touched to avoid unwanted side effects.
1189 *
a1652bb8
JD
1190 * WARNING: this function is only called on the boot CPU. Don't add code
1191 * here that is supposed to run on all CPUs.
34048c9e 1192 */
3da99c97 1193static void __init early_identify_cpu(struct cpuinfo_x86 *c)
d7cd5611 1194{
6627d242
YL
1195#ifdef CONFIG_X86_64
1196 c->x86_clflush_size = 64;
13c6c532
JB
1197 c->x86_phys_bits = 36;
1198 c->x86_virt_bits = 48;
6627d242 1199#else
d4387bd3 1200 c->x86_clflush_size = 32;
13c6c532
JB
1201 c->x86_phys_bits = 32;
1202 c->x86_virt_bits = 32;
6627d242 1203#endif
0a488a53 1204 c->x86_cache_alignment = c->x86_clflush_size;
d7cd5611 1205
0e96f31e 1206 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
0a488a53 1207 c->extended_cpuid_level = 0;
d7cd5611 1208
2893cc8f
MW
1209 if (!have_cpuid_p())
1210 identify_cpu_without_cpuid(c);
1211
aef93c8b 1212 /* cyrix could have cpuid enabled via c_identify()*/
05fb3c19
AL
1213 if (have_cpuid_p()) {
1214 cpu_detect(c);
1215 get_cpu_vendor(c);
1216 get_cpu_cap(c);
d94a155c 1217 get_cpu_address_sizes(c);
78d1b296 1218 setup_force_cpu_cap(X86_FEATURE_CPUID);
d7cd5611 1219
05fb3c19
AL
1220 if (this_cpu->c_early_init)
1221 this_cpu->c_early_init(c);
12cf105c 1222
05fb3c19
AL
1223 c->cpu_index = 0;
1224 filter_cpuid_features(c, false);
093af8d7 1225
05fb3c19
AL
1226 if (this_cpu->c_bsp_init)
1227 this_cpu->c_bsp_init(c);
78d1b296 1228 } else {
78d1b296 1229 setup_clear_cpu_cap(X86_FEATURE_CPUID);
05fb3c19 1230 }
c3b83598
BP
1231
1232 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
a89f040f 1233
4a28bfe3 1234 cpu_set_bug_bits(c);
99c6fa25 1235
db52ef74 1236 fpu__init_system(c);
b8b7abae
AL
1237
1238#ifdef CONFIG_X86_32
1239 /*
1240 * Regardless of whether PCID is enumerated, the SDM says
1241 * that it can't be enabled in 32-bit mode.
1242 */
1243 setup_clear_cpu_cap(X86_FEATURE_PCID);
1244#endif
372fddf7
KS
1245
1246 /*
1247 * Later in the boot process pgtable_l5_enabled() relies on
1248 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1249 * enabled by this point we need to clear the feature bit to avoid
1250 * false-positives at the later stage.
1251 *
1252 * pgtable_l5_enabled() can be false here for several reasons:
1253 * - 5-level paging is disabled compile-time;
1254 * - it's 32-bit kernel;
1255 * - machine doesn't support 5-level paging;
1256 * - user specified 'no5lvl' in kernel command line.
1257 */
1258 if (!pgtable_l5_enabled())
1259 setup_clear_cpu_cap(X86_FEATURE_LA57);
8990cac6 1260
9b3661cd 1261 detect_nopl();
d7cd5611
RR
1262}
1263
9d31d35b
YL
1264void __init early_cpu_init(void)
1265{
02dde8b4 1266 const struct cpu_dev *const *cdev;
10a434fc
YL
1267 int count = 0;
1268
ac23f253 1269#ifdef CONFIG_PROCESSOR_SELECT
1b74dde7 1270 pr_info("KERNEL supported cpus:\n");
31c997ca
IM
1271#endif
1272
10a434fc 1273 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
02dde8b4 1274 const struct cpu_dev *cpudev = *cdev;
9d31d35b 1275
10a434fc
YL
1276 if (count >= X86_VENDOR_NUM)
1277 break;
1278 cpu_devs[count] = cpudev;
1279 count++;
1280
ac23f253 1281#ifdef CONFIG_PROCESSOR_SELECT
31c997ca
IM
1282 {
1283 unsigned int j;
1284
1285 for (j = 0; j < 2; j++) {
1286 if (!cpudev->c_ident[j])
1287 continue;
1b74dde7 1288 pr_info(" %s %s\n", cpudev->c_vendor,
31c997ca
IM
1289 cpudev->c_ident[j]);
1290 }
10a434fc 1291 }
0388423d 1292#endif
10a434fc 1293 }
9d31d35b 1294 early_identify_cpu(&boot_cpu_data);
d7cd5611 1295}
093af8d7 1296
7a5d6704
AL
1297static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1298{
1299#ifdef CONFIG_X86_64
58a5aac5 1300 /*
7a5d6704
AL
1301 * Empirically, writing zero to a segment selector on AMD does
1302 * not clear the base, whereas writing zero to a segment
1303 * selector on Intel does clear the base. Intel's behavior
1304 * allows slightly faster context switches in the common case
1305 * where GS is unused by the prev and next threads.
58a5aac5 1306 *
7a5d6704
AL
1307 * Since neither vendor documents this anywhere that I can see,
1308 * detect it directly instead of hardcoding the choice by
1309 * vendor.
1310 *
1311 * I've designated AMD's behavior as the "bug" because it's
1312 * counterintuitive and less friendly.
58a5aac5 1313 */
7a5d6704
AL
1314
1315 unsigned long old_base, tmp;
1316 rdmsrl(MSR_FS_BASE, old_base);
1317 wrmsrl(MSR_FS_BASE, 1);
1318 loadsegment(fs, 0);
1319 rdmsrl(MSR_FS_BASE, tmp);
1320 if (tmp != 0)
1321 set_cpu_bug(c, X86_BUG_NULL_SEG);
1322 wrmsrl(MSR_FS_BASE, old_base);
366d4a43 1323#endif
d7cd5611
RR
1324}
1325
148f9bb8 1326static void generic_identify(struct cpuinfo_x86 *c)
1da177e4 1327{
aef93c8b 1328 c->extended_cpuid_level = 0;
1da177e4 1329
3da99c97 1330 if (!have_cpuid_p())
aef93c8b 1331 identify_cpu_without_cpuid(c);
1d67953f 1332
aef93c8b 1333 /* cyrix could have cpuid enabled via c_identify()*/
a9853dd6 1334 if (!have_cpuid_p())
aef93c8b 1335 return;
1da177e4 1336
3da99c97 1337 cpu_detect(c);
1da177e4 1338
3da99c97 1339 get_cpu_vendor(c);
1da177e4 1340
3da99c97 1341 get_cpu_cap(c);
1da177e4 1342
d94a155c
KS
1343 get_cpu_address_sizes(c);
1344
3da99c97
YL
1345 if (c->cpuid_level >= 0x00000001) {
1346 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
b89d3b3e 1347#ifdef CONFIG_X86_32
c8e56d20 1348# ifdef CONFIG_SMP
cb8cc442 1349 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
b89d3b3e 1350# else
3da99c97 1351 c->apicid = c->initial_apicid;
b89d3b3e
YL
1352# endif
1353#endif
b89d3b3e 1354 c->phys_proc_id = c->initial_apicid;
3da99c97 1355 }
1da177e4 1356
1b05d60d 1357 get_model_name(c); /* Default name */
1da177e4 1358
7a5d6704 1359 detect_null_seg_behavior(c);
0230bb03
AL
1360
1361 /*
1362 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1363 * systems that run Linux at CPL > 0 may or may not have the
1364 * issue, but, even if they have the issue, there's absolutely
1365 * nothing we can do about it because we can't use the real IRET
1366 * instruction.
1367 *
1368 * NB: For the time being, only 32-bit kernels support
1369 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1370 * whether to apply espfix using paravirt hooks. If any
1371 * non-paravirt system ever shows up that does *not* have the
1372 * ESPFIX issue, we can change this.
1373 */
1374#ifdef CONFIG_X86_32
9bad5658 1375# ifdef CONFIG_PARAVIRT_XXL
0230bb03
AL
1376 do {
1377 extern void native_iret(void);
5c83511b 1378 if (pv_ops.cpu.iret == native_iret)
0230bb03
AL
1379 set_cpu_bug(c, X86_BUG_ESPFIX);
1380 } while (0);
1381# else
1382 set_cpu_bug(c, X86_BUG_ESPFIX);
1383# endif
1384#endif
1da177e4 1385}
1da177e4 1386
cbc82b17
PWJ
1387static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1388{
1389 /*
1390 * The heavy lifting of max_rmid and cache_occ_scale are handled
1391 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1392 * in case CQM bits really aren't there in this CPU.
1393 */
1394 if (c != &boot_cpu_data) {
1395 boot_cpu_data.x86_cache_max_rmid =
1396 min(boot_cpu_data.x86_cache_max_rmid,
1397 c->x86_cache_max_rmid);
1398 }
1399}
1400
d49597fd 1401/*
9d85eb91
TG
1402 * Validate that ACPI/mptables have the same information about the
1403 * effective APIC id and update the package map.
d49597fd 1404 */
9d85eb91 1405static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
d49597fd
TG
1406{
1407#ifdef CONFIG_SMP
9d85eb91 1408 unsigned int apicid, cpu = smp_processor_id();
d49597fd
TG
1409
1410 apicid = apic->cpu_present_to_apicid(cpu);
d49597fd 1411
9d85eb91
TG
1412 if (apicid != c->apicid) {
1413 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
d49597fd 1414 cpu, apicid, c->initial_apicid);
d49597fd 1415 }
9d85eb91 1416 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
212bf4fd 1417 BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
d49597fd
TG
1418#else
1419 c->logical_proc_id = 0;
1420#endif
1421}
1422
1da177e4
LT
1423/*
1424 * This does the hard work of actually picking apart the CPU stuff...
1425 */
148f9bb8 1426static void identify_cpu(struct cpuinfo_x86 *c)
1da177e4
LT
1427{
1428 int i;
1429
1430 c->loops_per_jiffy = loops_per_jiffy;
24dbc600 1431 c->x86_cache_size = 0;
1da177e4 1432 c->x86_vendor = X86_VENDOR_UNKNOWN;
b399151c 1433 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1da177e4
LT
1434 c->x86_vendor_id[0] = '\0'; /* Unset */
1435 c->x86_model_id[0] = '\0'; /* Unset */
94605eff 1436 c->x86_max_cores = 1;
102bbe3a 1437 c->x86_coreid_bits = 0;
79a8b9aa 1438 c->cu_id = 0xff;
11fdd252 1439#ifdef CONFIG_X86_64
102bbe3a 1440 c->x86_clflush_size = 64;
13c6c532
JB
1441 c->x86_phys_bits = 36;
1442 c->x86_virt_bits = 48;
102bbe3a
YL
1443#else
1444 c->cpuid_level = -1; /* CPUID not detected */
770d132f 1445 c->x86_clflush_size = 32;
13c6c532
JB
1446 c->x86_phys_bits = 32;
1447 c->x86_virt_bits = 32;
102bbe3a
YL
1448#endif
1449 c->x86_cache_alignment = c->x86_clflush_size;
0e96f31e 1450 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1da177e4 1451
1da177e4
LT
1452 generic_identify(c);
1453
3898534d 1454 if (this_cpu->c_identify)
1da177e4
LT
1455 this_cpu->c_identify(c);
1456
6a6256f9 1457 /* Clear/Set all flags overridden by options, after probe */
8bf1ebca 1458 apply_forced_caps(c);
2759c328 1459
102bbe3a 1460#ifdef CONFIG_X86_64
cb8cc442 1461 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
102bbe3a
YL
1462#endif
1463
1da177e4
LT
1464 /*
1465 * Vendor-specific initialization. In this section we
1466 * canonicalize the feature flags, meaning if there are
1467 * features a certain CPU supports which CPUID doesn't
1468 * tell us, CPUID claiming incorrect flags, or other bugs,
1469 * we handle them here.
1470 *
1471 * At the end of this section, c->x86_capability better
1472 * indicate the features this CPU genuinely supports!
1473 */
1474 if (this_cpu->c_init)
1475 this_cpu->c_init(c);
1476
1477 /* Disable the PN if appropriate */
1478 squash_the_stupid_serial_number(c);
1479
aa35f896 1480 /* Set up SMEP/SMAP/UMIP */
b2cc2a07
PA
1481 setup_smep(c);
1482 setup_smap(c);
aa35f896 1483 setup_umip(c);
b2cc2a07 1484
1da177e4 1485 /*
0f3fa48a
IM
1486 * The vendor-specific functions might have changed features.
1487 * Now we do "generic changes."
1da177e4
LT
1488 */
1489
b38b0665
PA
1490 /* Filter out anything that depends on CPUID levels we don't have */
1491 filter_cpuid_features(c, true);
1492
1da177e4 1493 /* If the model name is still unset, do table lookup. */
34048c9e 1494 if (!c->x86_model_id[0]) {
02dde8b4 1495 const char *p;
1da177e4 1496 p = table_lookup_model(c);
34048c9e 1497 if (p)
1da177e4
LT
1498 strcpy(c->x86_model_id, p);
1499 else
1500 /* Last resort... */
1501 sprintf(c->x86_model_id, "%02x/%02x",
54a20f8c 1502 c->x86, c->x86_model);
1da177e4
LT
1503 }
1504
102bbe3a
YL
1505#ifdef CONFIG_X86_64
1506 detect_ht(c);
1507#endif
1508
49d859d7 1509 x86_init_rdrand(c);
cbc82b17 1510 x86_init_cache_qos(c);
06976945 1511 setup_pku(c);
3e0c3737
YL
1512
1513 /*
6a6256f9 1514 * Clear/Set all flags overridden by options, need do it
3e0c3737
YL
1515 * before following smp all cpus cap AND.
1516 */
8bf1ebca 1517 apply_forced_caps(c);
3e0c3737 1518
1da177e4
LT
1519 /*
1520 * On SMP, boot_cpu_data holds the common feature set between
1521 * all CPUs; so make sure that we indicate which features are
1522 * common between the CPUs. The first time this routine gets
1523 * executed, c == &boot_cpu_data.
1524 */
34048c9e 1525 if (c != &boot_cpu_data) {
1da177e4 1526 /* AND the already accumulated flags with these */
9d31d35b 1527 for (i = 0; i < NCAPINTS; i++)
1da177e4 1528 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
65fc985b
BP
1529
1530 /* OR, i.e. replicate the bug flags */
1531 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1532 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1da177e4
LT
1533 }
1534
1535 /* Init Machine Check Exception if available. */
5e09954a 1536 mcheck_cpu_init(c);
30d432df
AK
1537
1538 select_idle_routine(c);
102bbe3a 1539
de2d9445 1540#ifdef CONFIG_NUMA
102bbe3a
YL
1541 numa_add_cpu(smp_processor_id());
1542#endif
a6c4e076 1543}
31ab269a 1544
8b6c0ab1
IM
1545/*
1546 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1547 * on 32-bit kernels:
1548 */
cfda7bb9
AL
1549#ifdef CONFIG_X86_32
1550void enable_sep_cpu(void)
1551{
8b6c0ab1
IM
1552 struct tss_struct *tss;
1553 int cpu;
cfda7bb9 1554
b3edfda4
BP
1555 if (!boot_cpu_has(X86_FEATURE_SEP))
1556 return;
1557
8b6c0ab1 1558 cpu = get_cpu();
c482feef 1559 tss = &per_cpu(cpu_tss_rw, cpu);
8b6c0ab1 1560
8b6c0ab1 1561 /*
cf9328cc
AL
1562 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1563 * see the big comment in struct x86_hw_tss's definition.
8b6c0ab1 1564 */
cfda7bb9
AL
1565
1566 tss->x86_tss.ss1 = __KERNEL_CS;
8b6c0ab1 1567 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
4fe2d8b1 1568 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
4c8cd0c5 1569 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
8b6c0ab1 1570
cfda7bb9
AL
1571 put_cpu();
1572}
e04d645f
GC
1573#endif
1574
a6c4e076
JF
1575void __init identify_boot_cpu(void)
1576{
1577 identify_cpu(&boot_cpu_data);
102bbe3a 1578#ifdef CONFIG_X86_32
a6c4e076 1579 sysenter_setup();
6fe940d6 1580 enable_sep_cpu();
102bbe3a 1581#endif
5b556332 1582 cpu_detect_tlb(&boot_cpu_data);
873d50d5 1583 setup_cr_pinning();
95c5824f
PG
1584
1585 tsx_init();
a6c4e076 1586}
3b520b23 1587
148f9bb8 1588void identify_secondary_cpu(struct cpuinfo_x86 *c)
a6c4e076
JF
1589{
1590 BUG_ON(c == &boot_cpu_data);
1591 identify_cpu(c);
102bbe3a 1592#ifdef CONFIG_X86_32
a6c4e076 1593 enable_sep_cpu();
102bbe3a 1594#endif
a6c4e076 1595 mtrr_ap_init();
9d85eb91 1596 validate_apic_and_package_id(c);
77243971 1597 x86_spec_ctrl_setup_ap();
1da177e4
LT
1598}
1599
191679fd
AK
1600static __init int setup_noclflush(char *arg)
1601{
840d2830 1602 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
da4aaa7d 1603 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
191679fd
AK
1604 return 1;
1605}
1606__setup("noclflush", setup_noclflush);
1607
148f9bb8 1608void print_cpu_info(struct cpuinfo_x86 *c)
1da177e4 1609{
02dde8b4 1610 const char *vendor = NULL;
1da177e4 1611
0f3fa48a 1612 if (c->x86_vendor < X86_VENDOR_NUM) {
1da177e4 1613 vendor = this_cpu->c_vendor;
0f3fa48a
IM
1614 } else {
1615 if (c->cpuid_level >= 0)
1616 vendor = c->x86_vendor_id;
1617 }
1da177e4 1618
bd32a8cf 1619 if (vendor && !strstr(c->x86_model_id, vendor))
1b74dde7 1620 pr_cont("%s ", vendor);
1da177e4 1621
9d31d35b 1622 if (c->x86_model_id[0])
1b74dde7 1623 pr_cont("%s", c->x86_model_id);
1da177e4 1624 else
1b74dde7 1625 pr_cont("%d86", c->x86);
1da177e4 1626
1b74dde7 1627 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
924e101a 1628
b399151c
JZ
1629 if (c->x86_stepping || c->cpuid_level >= 0)
1630 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1da177e4 1631 else
1b74dde7 1632 pr_cont(")\n");
1da177e4
LT
1633}
1634
0c2a3913
AK
1635/*
1636 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1637 * But we need to keep a dummy __setup around otherwise it would
1638 * show up as an environment variable for init.
1639 */
1640static __init int setup_clearcpuid(char *arg)
ac72e788 1641{
ac72e788
AK
1642 return 1;
1643}
0c2a3913 1644__setup("clearcpuid=", setup_clearcpuid);
ac72e788 1645
d5494d4f 1646#ifdef CONFIG_X86_64
e6401c13
AL
1647DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1648 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1649EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
0f3fa48a 1650
bdf977b3 1651/*
a7fcf28d
AL
1652 * The following percpu variables are hot. Align current_task to
1653 * cacheline size such that they fall in the same cacheline.
bdf977b3
TH
1654 */
1655DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1656 &init_task;
1657EXPORT_PER_CPU_SYMBOL(current_task);
d5494d4f 1658
e6401c13 1659DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
277d5b40 1660DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
d5494d4f 1661
c2daa3be
PZ
1662DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1663EXPORT_PER_CPU_SYMBOL(__preempt_count);
1664
d5494d4f
YL
1665/* May not be marked __init: used by software suspend */
1666void syscall_init(void)
1da177e4 1667{
31ac34ca 1668 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
bf904d27 1669 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
d56fe4bf
IM
1670
1671#ifdef CONFIG_IA32_EMULATION
47edb651 1672 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
a76c7f46 1673 /*
487d1edb
DV
1674 * This only works on Intel CPUs.
1675 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1676 * This does not cause SYSENTER to jump to the wrong location, because
1677 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
a76c7f46
DV
1678 */
1679 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
8e6b65a1 1680 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1681 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
4c8cd0c5 1682 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
d56fe4bf 1683#else
47edb651 1684 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
6b51311c 1685 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
d56fe4bf
IM
1686 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1687 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
d5494d4f 1688#endif
03ae5768 1689
d5494d4f
YL
1690 /* Flags to clear on syscall */
1691 wrmsrl(MSR_SYSCALL_MASK,
63bcff2a 1692 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
8c7aa698 1693 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1da177e4 1694}
62111195 1695
42181186 1696DEFINE_PER_CPU(int, debug_stack_usage);
629f4f9d 1697DEFINE_PER_CPU(u32, debug_idt_ctr);
f8988175 1698
228bdaa9
SR
1699void debug_stack_set_zero(void)
1700{
629f4f9d
SA
1701 this_cpu_inc(debug_idt_ctr);
1702 load_current_idt();
228bdaa9 1703}
0f46efeb 1704NOKPROBE_SYMBOL(debug_stack_set_zero);
228bdaa9
SR
1705
1706void debug_stack_reset(void)
1707{
629f4f9d 1708 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
f8988175 1709 return;
629f4f9d
SA
1710 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1711 load_current_idt();
228bdaa9 1712}
0f46efeb 1713NOKPROBE_SYMBOL(debug_stack_reset);
228bdaa9 1714
0f3fa48a 1715#else /* CONFIG_X86_64 */
d5494d4f 1716
bdf977b3
TH
1717DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1718EXPORT_PER_CPU_SYMBOL(current_task);
c2daa3be
PZ
1719DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1720EXPORT_PER_CPU_SYMBOL(__preempt_count);
bdf977b3 1721
a7fcf28d
AL
1722/*
1723 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1724 * the top of the kernel stack. Use an extra percpu variable to track the
1725 * top of the kernel stack directly.
1726 */
1727DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1728 (unsigned long)&init_thread_union + THREAD_SIZE;
1729EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1730
050e9baa 1731#ifdef CONFIG_STACKPROTECTOR
53f82452 1732DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
60a5317f 1733#endif
d5494d4f 1734
0f3fa48a 1735#endif /* CONFIG_X86_64 */
c5413fbe 1736
9766cdbc
JSR
1737/*
1738 * Clear all 6 debug registers:
1739 */
1740static void clear_all_debug_regs(void)
1741{
1742 int i;
1743
1744 for (i = 0; i < 8; i++) {
1745 /* Ignore db4, db5 */
1746 if ((i == 4) || (i == 5))
1747 continue;
1748
1749 set_debugreg(0, i);
1750 }
1751}
c5413fbe 1752
0bb9fef9
JW
1753#ifdef CONFIG_KGDB
1754/*
1755 * Restore debug regs if using kgdbwait and you have a kernel debugger
1756 * connection established.
1757 */
1758static void dbg_restore_debug_regs(void)
1759{
1760 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1761 arch_kgdb_ops.correct_hw_break();
1762}
1763#else /* ! CONFIG_KGDB */
1764#define dbg_restore_debug_regs()
1765#endif /* ! CONFIG_KGDB */
1766
ce4b1b16
IM
1767static void wait_for_master_cpu(int cpu)
1768{
1769#ifdef CONFIG_SMP
1770 /*
1771 * wait for ACK from master CPU before continuing
1772 * with AP initialization
1773 */
1774 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1775 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1776 cpu_relax();
1777#endif
1778}
1779
b2e2ba57 1780#ifdef CONFIG_X86_64
505b7899 1781static inline void setup_getcpu(int cpu)
b2e2ba57 1782{
22245bdf 1783 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
b2e2ba57
CB
1784 struct desc_struct d = { };
1785
67e87d43 1786 if (boot_cpu_has(X86_FEATURE_RDTSCP))
b2e2ba57
CB
1787 write_rdtscp_aux(cpudata);
1788
1789 /* Store CPU and node number in limit. */
1790 d.limit0 = cpudata;
1791 d.limit1 = cpudata >> 16;
1792
1793 d.type = 5; /* RO data, expand down, accessed */
1794 d.dpl = 3; /* Visible to user code */
1795 d.s = 1; /* Not a system segment */
1796 d.p = 1; /* Present */
1797 d.d = 1; /* 32-bit */
1798
22245bdf 1799 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
b2e2ba57 1800}
505b7899
TG
1801
1802static inline void ucode_cpu_init(int cpu)
1803{
1804 if (cpu)
1805 load_ucode_ap();
1806}
1807
1808static inline void tss_setup_ist(struct tss_struct *tss)
1809{
1810 /* Set up the per-CPU TSS IST stacks */
1811 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1812 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1813 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1814 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1815}
1816
1817static inline void gdt_setup_doublefault_tss(int cpu) { }
1818
1819#else /* CONFIG_X86_64 */
1820
1821static inline void setup_getcpu(int cpu) { }
1822
1823static inline void ucode_cpu_init(int cpu)
1824{
1825 show_ucode_info_early();
1826}
1827
1828static inline void tss_setup_ist(struct tss_struct *tss) { }
1829
1830static inline void gdt_setup_doublefault_tss(int cpu)
1831{
1832#ifdef CONFIG_DOUBLEFAULT
1833 /* Set up the doublefault TSS pointer in the GDT */
1834 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
b2e2ba57 1835#endif
505b7899
TG
1836}
1837#endif /* !CONFIG_X86_64 */
b2e2ba57 1838
111e7b15
TG
1839static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1840{
1841 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1842
1843#ifdef CONFIG_X86_IOPL_IOPERM
1844 tss->io_bitmap.prev_max = 0;
1845 tss->io_bitmap.prev_sequence = 0;
1846 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1847 /*
1848 * Invalidate the extra array entry past the end of the all
1849 * permission bitmap as required by the hardware.
1850 */
1851 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
b2e2ba57 1852#endif
111e7b15 1853}
b2e2ba57 1854
d2cbcc49
RR
1855/*
1856 * cpu_init() initializes state that is per-CPU. Some data is already
1857 * initialized (naturally) in the bootstrap process, such as the GDT
1858 * and IDT. We reload them nevertheless, this function acts as a
1859 * 'CPU state barrier', nothing should get across.
1860 */
148f9bb8 1861void cpu_init(void)
1ba76586 1862{
505b7899
TG
1863 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1864 struct task_struct *cur = current;
f6ef7322 1865 int cpu = raw_smp_processor_id();
1ba76586 1866
ce4b1b16
IM
1867 wait_for_master_cpu(cpu);
1868
505b7899 1869 ucode_cpu_init(cpu);
0f3fa48a 1870
e7a22c1e 1871#ifdef CONFIG_NUMA
27fd185f 1872 if (this_cpu_read(numa_node) == 0 &&
e534c7c5
LS
1873 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1874 set_numa_node(early_cpu_to_node(cpu));
e7a22c1e 1875#endif
b2e2ba57 1876 setup_getcpu(cpu);
1ba76586 1877
2eaad1fd 1878 pr_debug("Initializing CPU#%d\n", cpu);
1ba76586 1879
505b7899
TG
1880 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1881 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1882 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1ba76586
YL
1883
1884 /*
1885 * Initialize the per-CPU GDT with the boot GDT,
1886 * and set up the GDT descriptor:
1887 */
552be871 1888 switch_to_new_gdt(cpu);
cf910e83 1889 load_current_idt();
1ba76586 1890
505b7899
TG
1891 if (IS_ENABLED(CONFIG_X86_64)) {
1892 loadsegment(fs, 0);
1893 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1894 syscall_init();
1ba76586 1895
505b7899
TG
1896 wrmsrl(MSR_FS_BASE, 0);
1897 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1898 barrier();
1ba76586 1899
505b7899 1900 x2apic_setup();
1ba76586
YL
1901 }
1902
f1f10076 1903 mmgrab(&init_mm);
505b7899
TG
1904 cur->active_mm = &init_mm;
1905 BUG_ON(cur->mm);
72c0098d 1906 initialize_tlbstate_and_flush();
505b7899 1907 enter_lazy_tlb(&init_mm, cur);
1ba76586 1908
505b7899
TG
1909 /* Initialize the TSS. */
1910 tss_setup_ist(tss);
111e7b15 1911 tss_setup_io_bitmap(tss);
72f5e08d 1912 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
505b7899 1913
1ba76586 1914 load_TR_desc();
505b7899
TG
1915 /*
1916 * sp0 points to the entry trampoline stack regardless of what task
1917 * is running.
1918 */
4fe2d8b1 1919 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
20bb8344 1920
37868fe1 1921 load_mm_ldt(&init_mm);
1ba76586 1922
0bb9fef9
JW
1923 clear_all_debug_regs();
1924 dbg_restore_debug_regs();
1ba76586 1925
505b7899
TG
1926 gdt_setup_doublefault_tss(cpu);
1927
21c4cd10 1928 fpu__init_cpu();
1ba76586 1929
1ba76586
YL
1930 if (is_uv_system())
1931 uv_cpu_init();
69218e47 1932
69218e47 1933 load_fixmap_gdt(cpu);
1ba76586
YL
1934}
1935
1008c52c
BP
1936/*
1937 * The microcode loader calls this upon late microcode load to recheck features,
1938 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1939 * hotplug lock.
1940 */
1941void microcode_check(void)
1942{
42ca8082
BP
1943 struct cpuinfo_x86 info;
1944
1008c52c 1945 perf_check_microcode();
42ca8082
BP
1946
1947 /* Reload CPUID max function as it might've changed. */
1948 info.cpuid_level = cpuid_eax(0);
1949
1950 /*
1951 * Copy all capability leafs to pick up the synthetic ones so that
1952 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1953 * get overwritten in get_cpu_cap().
1954 */
1955 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1956
1957 get_cpu_cap(&info);
1958
1959 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1960 return;
1961
1962 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1963 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1008c52c 1964}
9c92374b
TG
1965
1966/*
1967 * Invoked from core CPU hotplug code after hotplug operations
1968 */
1969void arch_smt_update(void)
1970{
1971 /* Handle the speculative execution misfeatures */
1972 cpu_bugs_smt_update();
6a1cb5f5
TG
1973 /* Check whether IPI broadcasting can be enabled */
1974 apic_smt_update();
9c92374b 1975}