]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - arch/x86/mm/pgtable.c
x86/mm/pti: Allow NX poison to be set in p4d/pgd
[thirdparty/kernel/linux.git] / arch / x86 / mm / pgtable.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
4f76cd38 2#include <linux/mm.h>
5a0e3ad6 3#include <linux/gfp.h>
4f76cd38 4#include <asm/pgalloc.h>
ee5aa8d3 5#include <asm/pgtable.h>
4f76cd38 6#include <asm/tlb.h>
a1d5a869 7#include <asm/fixmap.h>
6b637835 8#include <asm/mtrr.h>
4f76cd38 9
3e79ec7d 10#define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_NOTRACK | __GFP_ZERO)
9e730237 11
14315592
IC
12#ifdef CONFIG_HIGHPTE
13#define PGALLOC_USER_GFP __GFP_HIGHMEM
14#else
15#define PGALLOC_USER_GFP 0
16#endif
17
18gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
19
4f76cd38
JF
20pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
21{
3e79ec7d 22 return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
4f76cd38
JF
23}
24
25pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
26{
27 struct page *pte;
28
14315592 29 pte = alloc_pages(__userpte_alloc_gfp, 0);
cecbd1b5
KS
30 if (!pte)
31 return NULL;
32 if (!pgtable_page_ctor(pte)) {
33 __free_page(pte);
34 return NULL;
35 }
4f76cd38
JF
36 return pte;
37}
38
14315592
IC
39static int __init setup_userpte(char *arg)
40{
41 if (!arg)
42 return -EINVAL;
43
44 /*
45 * "userpte=nohigh" disables allocation of user pagetables in
46 * high memory.
47 */
48 if (strcmp(arg, "nohigh") == 0)
49 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
50 else
51 return -EINVAL;
52 return 0;
53}
54early_param("userpte", setup_userpte);
55
9e1b32ca 56void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
397f687a
JF
57{
58 pgtable_page_dtor(pte);
6944a9c8 59 paravirt_release_pte(page_to_pfn(pte));
9e52fc2b 60 tlb_remove_table(tlb, pte);
397f687a
JF
61}
62
98233368 63#if CONFIG_PGTABLE_LEVELS > 2
9e1b32ca 64void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
170fdff7 65{
c283610e 66 struct page *page = virt_to_page(pmd);
6944a9c8 67 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
1de14c3c
DH
68 /*
69 * NOTE! For PAE, any changes to the top page-directory-pointer-table
70 * entries need a full cr3 reload to flush.
71 */
72#ifdef CONFIG_X86_PAE
73 tlb->need_flush_all = 1;
74#endif
c283610e 75 pgtable_pmd_page_dtor(page);
9e52fc2b 76 tlb_remove_table(tlb, page);
170fdff7 77}
5a5f8f42 78
98233368 79#if CONFIG_PGTABLE_LEVELS > 3
9e1b32ca 80void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
5a5f8f42 81{
2761fa09 82 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
9e52fc2b 83 tlb_remove_table(tlb, virt_to_page(pud));
5a5f8f42 84}
b8504058
KS
85
86#if CONFIG_PGTABLE_LEVELS > 4
87void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
88{
89 paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
9e52fc2b 90 tlb_remove_table(tlb, virt_to_page(p4d));
b8504058
KS
91}
92#endif /* CONFIG_PGTABLE_LEVELS > 4 */
98233368
KS
93#endif /* CONFIG_PGTABLE_LEVELS > 3 */
94#endif /* CONFIG_PGTABLE_LEVELS > 2 */
170fdff7 95
4f76cd38
JF
96static inline void pgd_list_add(pgd_t *pgd)
97{
98 struct page *page = virt_to_page(pgd);
4f76cd38 99
4f76cd38 100 list_add(&page->lru, &pgd_list);
4f76cd38
JF
101}
102
103static inline void pgd_list_del(pgd_t *pgd)
104{
105 struct page *page = virt_to_page(pgd);
4f76cd38 106
4f76cd38 107 list_del(&page->lru);
4f76cd38
JF
108}
109
4f76cd38 110#define UNSHARED_PTRS_PER_PGD \
68db065c 111 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
4f76cd38 112
617d34d9
JF
113
114static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
115{
116 BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
117 virt_to_page(pgd)->index = (pgoff_t)mm;
118}
119
120struct mm_struct *pgd_page_get_mm(struct page *page)
121{
122 return (struct mm_struct *)page->index;
123}
124
125static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
4f76cd38 126{
4f76cd38
JF
127 /* If the pgd points to a shared pagetable level (either the
128 ptes in non-PAE, or shared PMD in PAE), then just copy the
129 references from swapper_pg_dir. */
98233368
KS
130 if (CONFIG_PGTABLE_LEVELS == 2 ||
131 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
b8504058 132 CONFIG_PGTABLE_LEVELS >= 4) {
68db065c
JF
133 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
134 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
4f76cd38 135 KERNEL_PGD_PTRS);
4f76cd38
JF
136 }
137
138 /* list required to sync kernel mapping updates */
617d34d9
JF
139 if (!SHARED_KERNEL_PMD) {
140 pgd_set_mm(pgd, mm);
4f76cd38 141 pgd_list_add(pgd);
617d34d9 142 }
4f76cd38
JF
143}
144
17b74627 145static void pgd_dtor(pgd_t *pgd)
4f76cd38 146{
4f76cd38
JF
147 if (SHARED_KERNEL_PMD)
148 return;
149
a79e53d8 150 spin_lock(&pgd_lock);
4f76cd38 151 pgd_list_del(pgd);
a79e53d8 152 spin_unlock(&pgd_lock);
4f76cd38
JF
153}
154
85958b46
JF
155/*
156 * List of all pgd's needed for non-PAE so it can invalidate entries
157 * in both cached and uncached pgd's; not needed for PAE since the
158 * kernel pmd is shared. If PAE were not to share the pmd a similar
159 * tactic would be needed. This is essentially codepath-based locking
160 * against pageattr.c; it is the unique case in which a valid change
161 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
162 * vmalloc faults work because attached pagetables are never freed.
6d49e352 163 * -- nyc
85958b46
JF
164 */
165
4f76cd38 166#ifdef CONFIG_X86_PAE
d8d5900e
JF
167/*
168 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
169 * updating the top-level pagetable entries to guarantee the
170 * processor notices the update. Since this is expensive, and
171 * all 4 top-level entries are used almost immediately in a
172 * new process's life, we just pre-populate them here.
173 *
174 * Also, if we're in a paravirt environment where the kernel pmd is
175 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
176 * and initialize the kernel pmds here.
177 */
178#define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
179
180void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
181{
182 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
183
184 /* Note: almost everything apart from _PAGE_PRESENT is
185 reserved at the pmd (PDPT) level. */
186 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
187
188 /*
189 * According to Intel App note "TLBs, Paging-Structure Caches,
190 * and Their Invalidation", April 2007, document 317080-001,
191 * section 8.1: in PAE mode we explicitly have to flush the
192 * TLB via cr3 if the top-level pgd is changed...
193 */
4981d01e 194 flush_tlb_mm(mm);
d8d5900e
JF
195}
196#else /* !CONFIG_X86_PAE */
197
198/* No need to prepopulate any pagetable entries in non-PAE modes. */
199#define PREALLOCATED_PMDS 0
200
201#endif /* CONFIG_X86_PAE */
202
dc6c9a35 203static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
d8d5900e
JF
204{
205 int i;
206
207 for(i = 0; i < PREALLOCATED_PMDS; i++)
09ef4939
KS
208 if (pmds[i]) {
209 pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
d8d5900e 210 free_page((unsigned long)pmds[i]);
dc6c9a35 211 mm_dec_nr_pmds(mm);
09ef4939 212 }
d8d5900e
JF
213}
214
dc6c9a35 215static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
d8d5900e
JF
216{
217 int i;
218 bool failed = false;
3e79ec7d
VD
219 gfp_t gfp = PGALLOC_GFP;
220
221 if (mm == &init_mm)
222 gfp &= ~__GFP_ACCOUNT;
d8d5900e
JF
223
224 for(i = 0; i < PREALLOCATED_PMDS; i++) {
3e79ec7d 225 pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
09ef4939 226 if (!pmd)
d8d5900e 227 failed = true;
09ef4939 228 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
2a46eed5 229 free_page((unsigned long)pmd);
09ef4939
KS
230 pmd = NULL;
231 failed = true;
232 }
dc6c9a35
KS
233 if (pmd)
234 mm_inc_nr_pmds(mm);
d8d5900e
JF
235 pmds[i] = pmd;
236 }
237
238 if (failed) {
dc6c9a35 239 free_pmds(mm, pmds);
d8d5900e
JF
240 return -ENOMEM;
241 }
242
243 return 0;
244}
245
4f76cd38
JF
246/*
247 * Mop up any pmd pages which may still be attached to the pgd.
248 * Normally they will be freed by munmap/exit_mmap, but any pmd we
249 * preallocate which never got a corresponding vma will need to be
250 * freed manually.
251 */
252static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
253{
254 int i;
255
d8d5900e 256 for(i = 0; i < PREALLOCATED_PMDS; i++) {
4f76cd38
JF
257 pgd_t pgd = pgdp[i];
258
259 if (pgd_val(pgd) != 0) {
260 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
261
262 pgdp[i] = native_make_pgd(0);
263
6944a9c8 264 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
4f76cd38 265 pmd_free(mm, pmd);
dc6c9a35 266 mm_dec_nr_pmds(mm);
4f76cd38
JF
267 }
268 }
269}
270
d8d5900e 271static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
4f76cd38 272{
e0c4f675 273 p4d_t *p4d;
4f76cd38 274 pud_t *pud;
4f76cd38
JF
275 int i;
276
cf3e5050
JF
277 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
278 return;
279
e0c4f675
KS
280 p4d = p4d_offset(pgd, 0);
281 pud = pud_offset(p4d, 0);
4f76cd38 282
73b44ff4 283 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
d8d5900e 284 pmd_t *pmd = pmds[i];
4f76cd38 285
68db065c 286 if (i >= KERNEL_PGD_BOUNDARY)
4f76cd38
JF
287 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
288 sizeof(pmd_t) * PTRS_PER_PMD);
289
290 pud_populate(mm, pud, pmd);
291 }
4f76cd38 292}
1ec1fe73 293
1db491f7
FY
294/*
295 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
296 * assumes that pgd should be in one page.
297 *
298 * But kernel with PAE paging that is not running as a Xen domain
299 * only needs to allocate 32 bytes for pgd instead of one page.
300 */
301#ifdef CONFIG_X86_PAE
302
303#include <linux/slab.h>
304
305#define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
306#define PGD_ALIGN 32
307
308static struct kmem_cache *pgd_cache;
309
310static int __init pgd_cache_init(void)
311{
312 /*
313 * When PAE kernel is running as a Xen domain, it does not use
314 * shared kernel pmd. And this requires a whole page for pgd.
315 */
316 if (!SHARED_KERNEL_PMD)
317 return 0;
318
319 /*
320 * when PAE kernel is not running as a Xen domain, it uses
321 * shared kernel pmd. Shared kernel pmd does not require a whole
322 * page for pgd. We are able to just allocate a 32-byte for pgd.
323 * During boot time, we create a 32-byte slab for pgd table allocation.
324 */
325 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
326 SLAB_PANIC, NULL);
327 if (!pgd_cache)
328 return -ENOMEM;
329
330 return 0;
331}
332core_initcall(pgd_cache_init);
333
334static inline pgd_t *_pgd_alloc(void)
335{
336 /*
337 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
338 * We allocate one page for pgd.
339 */
340 if (!SHARED_KERNEL_PMD)
341 return (pgd_t *)__get_free_page(PGALLOC_GFP);
342
343 /*
344 * Now PAE kernel is not running as a Xen domain. We can allocate
345 * a 32-byte slab for pgd to save memory space.
346 */
347 return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
348}
349
350static inline void _pgd_free(pgd_t *pgd)
351{
352 if (!SHARED_KERNEL_PMD)
353 free_page((unsigned long)pgd);
354 else
355 kmem_cache_free(pgd_cache, pgd);
356}
357#else
358static inline pgd_t *_pgd_alloc(void)
359{
360 return (pgd_t *)__get_free_page(PGALLOC_GFP);
361}
362
363static inline void _pgd_free(pgd_t *pgd)
364{
365 free_page((unsigned long)pgd);
366}
367#endif /* CONFIG_X86_PAE */
368
d8d5900e 369pgd_t *pgd_alloc(struct mm_struct *mm)
1ec1fe73 370{
d8d5900e
JF
371 pgd_t *pgd;
372 pmd_t *pmds[PREALLOCATED_PMDS];
1ec1fe73 373
1db491f7 374 pgd = _pgd_alloc();
d8d5900e
JF
375
376 if (pgd == NULL)
377 goto out;
378
379 mm->pgd = pgd;
380
dc6c9a35 381 if (preallocate_pmds(mm, pmds) != 0)
d8d5900e
JF
382 goto out_free_pgd;
383
384 if (paravirt_pgd_alloc(mm) != 0)
385 goto out_free_pmds;
1ec1fe73
IM
386
387 /*
d8d5900e
JF
388 * Make sure that pre-populating the pmds is atomic with
389 * respect to anything walking the pgd_list, so that they
390 * never see a partially populated pgd.
1ec1fe73 391 */
a79e53d8 392 spin_lock(&pgd_lock);
4f76cd38 393
617d34d9 394 pgd_ctor(mm, pgd);
d8d5900e 395 pgd_prepopulate_pmd(mm, pgd, pmds);
4f76cd38 396
a79e53d8 397 spin_unlock(&pgd_lock);
4f76cd38
JF
398
399 return pgd;
d8d5900e
JF
400
401out_free_pmds:
dc6c9a35 402 free_pmds(mm, pmds);
d8d5900e 403out_free_pgd:
1db491f7 404 _pgd_free(pgd);
d8d5900e
JF
405out:
406 return NULL;
4f76cd38
JF
407}
408
409void pgd_free(struct mm_struct *mm, pgd_t *pgd)
410{
411 pgd_mop_up_pmds(mm, pgd);
412 pgd_dtor(pgd);
eba0045f 413 paravirt_pgd_free(mm, pgd);
1db491f7 414 _pgd_free(pgd);
4f76cd38 415}
ee5aa8d3 416
0f9a921c
RR
417/*
418 * Used to set accessed or dirty bits in the page table entries
419 * on other architectures. On x86, the accessed and dirty bits
420 * are tracked by hardware. However, do_wp_page calls this function
421 * to also make the pte writeable at the same time the dirty bit is
422 * set. In that case we do actually need to write the PTE.
423 */
ee5aa8d3
JF
424int ptep_set_access_flags(struct vm_area_struct *vma,
425 unsigned long address, pte_t *ptep,
426 pte_t entry, int dirty)
427{
428 int changed = !pte_same(*ptep, entry);
429
87930019 430 if (changed && dirty)
ee5aa8d3 431 *ptep = entry;
ee5aa8d3
JF
432
433 return changed;
434}
f9fbf1a3 435
db3eb96f
AA
436#ifdef CONFIG_TRANSPARENT_HUGEPAGE
437int pmdp_set_access_flags(struct vm_area_struct *vma,
438 unsigned long address, pmd_t *pmdp,
439 pmd_t entry, int dirty)
440{
441 int changed = !pmd_same(*pmdp, entry);
442
443 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
444
445 if (changed && dirty) {
446 *pmdp = entry;
5e4bf1a5
IM
447 /*
448 * We had a write-protection fault here and changed the pmd
449 * to to more permissive. No need to flush the TLB for that,
450 * #PF is architecturally guaranteed to do that and in the
451 * worst-case we'll generate a spurious fault.
452 */
db3eb96f
AA
453 }
454
455 return changed;
456}
a00cc7d9
MW
457
458int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
459 pud_t *pudp, pud_t entry, int dirty)
460{
461 int changed = !pud_same(*pudp, entry);
462
463 VM_BUG_ON(address & ~HPAGE_PUD_MASK);
464
465 if (changed && dirty) {
466 *pudp = entry;
467 /*
468 * We had a write-protection fault here and changed the pud
469 * to to more permissive. No need to flush the TLB for that,
470 * #PF is architecturally guaranteed to do that and in the
471 * worst-case we'll generate a spurious fault.
472 */
473 }
474
475 return changed;
476}
db3eb96f
AA
477#endif
478
f9fbf1a3
JF
479int ptep_test_and_clear_young(struct vm_area_struct *vma,
480 unsigned long addr, pte_t *ptep)
481{
482 int ret = 0;
483
484 if (pte_young(*ptep))
485 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
48e23957 486 (unsigned long *) &ptep->pte);
f9fbf1a3 487
f9fbf1a3
JF
488 return ret;
489}
c20311e1 490
db3eb96f
AA
491#ifdef CONFIG_TRANSPARENT_HUGEPAGE
492int pmdp_test_and_clear_young(struct vm_area_struct *vma,
493 unsigned long addr, pmd_t *pmdp)
494{
495 int ret = 0;
496
497 if (pmd_young(*pmdp))
498 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
f2d6bfe9 499 (unsigned long *)pmdp);
db3eb96f 500
db3eb96f
AA
501 return ret;
502}
a00cc7d9
MW
503int pudp_test_and_clear_young(struct vm_area_struct *vma,
504 unsigned long addr, pud_t *pudp)
505{
506 int ret = 0;
507
508 if (pud_young(*pudp))
509 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
510 (unsigned long *)pudp);
511
512 return ret;
513}
db3eb96f
AA
514#endif
515
c20311e1
JF
516int ptep_clear_flush_young(struct vm_area_struct *vma,
517 unsigned long address, pte_t *ptep)
518{
b13b1d2d
SL
519 /*
520 * On x86 CPUs, clearing the accessed bit without a TLB flush
521 * doesn't cause data corruption. [ It could cause incorrect
522 * page aging and the (mistaken) reclaim of hot pages, but the
523 * chance of that should be relatively low. ]
524 *
525 * So as a performance optimization don't flush the TLB when
526 * clearing the accessed bit, it will eventually be flushed by
527 * a context switch or a VM operation anyway. [ In the rare
528 * event of it not getting flushed for a long time the delay
529 * shouldn't really matter because there's no real memory
530 * pressure for swapout to react to. ]
531 */
532 return ptep_test_and_clear_young(vma, address, ptep);
c20311e1 533}
7c7e6e07 534
db3eb96f
AA
535#ifdef CONFIG_TRANSPARENT_HUGEPAGE
536int pmdp_clear_flush_young(struct vm_area_struct *vma,
537 unsigned long address, pmd_t *pmdp)
538{
539 int young;
540
541 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
542
543 young = pmdp_test_and_clear_young(vma, address, pmdp);
544 if (young)
545 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
546
547 return young;
548}
db3eb96f
AA
549#endif
550
fd862dde
GP
551/**
552 * reserve_top_address - reserves a hole in the top of kernel address space
553 * @reserve - size of hole to reserve
554 *
555 * Can be used to relocate the fixmap area and poke a hole in the top
556 * of kernel address space to make room for a hypervisor.
557 */
558void __init reserve_top_address(unsigned long reserve)
559{
560#ifdef CONFIG_X86_32
561 BUG_ON(fixmaps_set > 0);
73159fdc
AL
562 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
563 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
564 -reserve, __FIXADDR_TOP + PAGE_SIZE);
fd862dde
GP
565#endif
566}
567
7c7e6e07
JF
568int fixmaps_set;
569
aeaaa59c 570void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
7c7e6e07
JF
571{
572 unsigned long address = __fix_to_virt(idx);
573
574 if (idx >= __end_of_fixed_addresses) {
575 BUG();
576 return;
577 }
aeaaa59c 578 set_pte_vaddr(address, pte);
7c7e6e07
JF
579 fixmaps_set++;
580}
aeaaa59c 581
3b3809ac
MH
582void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
583 pgprot_t flags)
aeaaa59c
JF
584{
585 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
586}
6b637835
TK
587
588#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
b8504058
KS
589#ifdef CONFIG_X86_5LEVEL
590/**
591 * p4d_set_huge - setup kernel P4D mapping
592 *
593 * No 512GB pages yet -- always return 0
594 */
595int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
596{
597 return 0;
598}
599
600/**
601 * p4d_clear_huge - clear kernel P4D mapping when it is set
602 *
603 * No 512GB pages yet -- always return 0
604 */
605int p4d_clear_huge(p4d_t *p4d)
606{
607 return 0;
608}
609#endif
610
3d3ca416
TK
611/**
612 * pud_set_huge - setup kernel PUD mapping
613 *
b73522e0
TK
614 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
615 * function sets up a huge page only if any of the following conditions are met:
616 *
617 * - MTRRs are disabled, or
618 *
619 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
620 *
621 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
622 * has no effect on the requested PAT memory type.
623 *
624 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
625 * page mapping attempt fails.
3d3ca416
TK
626 *
627 * Returns 1 on success and 0 on failure.
628 */
6b637835
TK
629int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
630{
b73522e0 631 u8 mtrr, uniform;
6b637835 632
b73522e0
TK
633 mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
634 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
635 (mtrr != MTRR_TYPE_WRBACK))
6b637835
TK
636 return 0;
637
638 prot = pgprot_4k_2_large(prot);
639
640 set_pte((pte_t *)pud, pfn_pte(
641 (u64)addr >> PAGE_SHIFT,
642 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
643
644 return 1;
645}
646
3d3ca416
TK
647/**
648 * pmd_set_huge - setup kernel PMD mapping
649 *
b73522e0 650 * See text over pud_set_huge() above.
3d3ca416
TK
651 *
652 * Returns 1 on success and 0 on failure.
653 */
6b637835
TK
654int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
655{
b73522e0 656 u8 mtrr, uniform;
6b637835 657
b73522e0
TK
658 mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
659 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
660 (mtrr != MTRR_TYPE_WRBACK)) {
661 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
662 __func__, addr, addr + PMD_SIZE);
6b637835 663 return 0;
b73522e0 664 }
6b637835
TK
665
666 prot = pgprot_4k_2_large(prot);
667
668 set_pte((pte_t *)pmd, pfn_pte(
669 (u64)addr >> PAGE_SHIFT,
670 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
671
672 return 1;
673}
674
3d3ca416
TK
675/**
676 * pud_clear_huge - clear kernel PUD mapping when it is set
677 *
678 * Returns 1 on success and 0 on failure (no PUD map is found).
679 */
6b637835
TK
680int pud_clear_huge(pud_t *pud)
681{
682 if (pud_large(*pud)) {
683 pud_clear(pud);
684 return 1;
685 }
686
687 return 0;
688}
689
3d3ca416
TK
690/**
691 * pmd_clear_huge - clear kernel PMD mapping when it is set
692 *
693 * Returns 1 on success and 0 on failure (no PMD map is found).
694 */
6b637835
TK
695int pmd_clear_huge(pmd_t *pmd)
696{
697 if (pmd_large(*pmd)) {
698 pmd_clear(pmd);
699 return 1;
700 }
701
702 return 0;
703}
704#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */