]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - arch/x86/mm/pgtable.c
x86/mm: Extend headers with basic definitions to support 5-level paging
[thirdparty/kernel/linux.git] / arch / x86 / mm / pgtable.c
CommitLineData
4f76cd38 1#include <linux/mm.h>
5a0e3ad6 2#include <linux/gfp.h>
4f76cd38 3#include <asm/pgalloc.h>
ee5aa8d3 4#include <asm/pgtable.h>
4f76cd38 5#include <asm/tlb.h>
a1d5a869 6#include <asm/fixmap.h>
6b637835 7#include <asm/mtrr.h>
4f76cd38 8
3e79ec7d 9#define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_NOTRACK | __GFP_ZERO)
9e730237 10
14315592
IC
11#ifdef CONFIG_HIGHPTE
12#define PGALLOC_USER_GFP __GFP_HIGHMEM
13#else
14#define PGALLOC_USER_GFP 0
15#endif
16
17gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
18
4f76cd38
JF
19pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
20{
3e79ec7d 21 return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
4f76cd38
JF
22}
23
24pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
25{
26 struct page *pte;
27
14315592 28 pte = alloc_pages(__userpte_alloc_gfp, 0);
cecbd1b5
KS
29 if (!pte)
30 return NULL;
31 if (!pgtable_page_ctor(pte)) {
32 __free_page(pte);
33 return NULL;
34 }
4f76cd38
JF
35 return pte;
36}
37
14315592
IC
38static int __init setup_userpte(char *arg)
39{
40 if (!arg)
41 return -EINVAL;
42
43 /*
44 * "userpte=nohigh" disables allocation of user pagetables in
45 * high memory.
46 */
47 if (strcmp(arg, "nohigh") == 0)
48 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
49 else
50 return -EINVAL;
51 return 0;
52}
53early_param("userpte", setup_userpte);
54
9e1b32ca 55void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
397f687a
JF
56{
57 pgtable_page_dtor(pte);
6944a9c8 58 paravirt_release_pte(page_to_pfn(pte));
397f687a
JF
59 tlb_remove_page(tlb, pte);
60}
61
98233368 62#if CONFIG_PGTABLE_LEVELS > 2
9e1b32ca 63void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
170fdff7 64{
c283610e 65 struct page *page = virt_to_page(pmd);
6944a9c8 66 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
1de14c3c
DH
67 /*
68 * NOTE! For PAE, any changes to the top page-directory-pointer-table
69 * entries need a full cr3 reload to flush.
70 */
71#ifdef CONFIG_X86_PAE
72 tlb->need_flush_all = 1;
73#endif
c283610e
KS
74 pgtable_pmd_page_dtor(page);
75 tlb_remove_page(tlb, page);
170fdff7 76}
5a5f8f42 77
98233368 78#if CONFIG_PGTABLE_LEVELS > 3
9e1b32ca 79void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
5a5f8f42 80{
2761fa09 81 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
5a5f8f42
JF
82 tlb_remove_page(tlb, virt_to_page(pud));
83}
98233368
KS
84#endif /* CONFIG_PGTABLE_LEVELS > 3 */
85#endif /* CONFIG_PGTABLE_LEVELS > 2 */
170fdff7 86
4f76cd38
JF
87static inline void pgd_list_add(pgd_t *pgd)
88{
89 struct page *page = virt_to_page(pgd);
4f76cd38 90
4f76cd38 91 list_add(&page->lru, &pgd_list);
4f76cd38
JF
92}
93
94static inline void pgd_list_del(pgd_t *pgd)
95{
96 struct page *page = virt_to_page(pgd);
4f76cd38 97
4f76cd38 98 list_del(&page->lru);
4f76cd38
JF
99}
100
4f76cd38 101#define UNSHARED_PTRS_PER_PGD \
68db065c 102 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
4f76cd38 103
617d34d9
JF
104
105static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
106{
107 BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
108 virt_to_page(pgd)->index = (pgoff_t)mm;
109}
110
111struct mm_struct *pgd_page_get_mm(struct page *page)
112{
113 return (struct mm_struct *)page->index;
114}
115
116static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
4f76cd38 117{
4f76cd38
JF
118 /* If the pgd points to a shared pagetable level (either the
119 ptes in non-PAE, or shared PMD in PAE), then just copy the
120 references from swapper_pg_dir. */
98233368
KS
121 if (CONFIG_PGTABLE_LEVELS == 2 ||
122 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
123 CONFIG_PGTABLE_LEVELS == 4) {
68db065c
JF
124 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
125 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
4f76cd38 126 KERNEL_PGD_PTRS);
4f76cd38
JF
127 }
128
129 /* list required to sync kernel mapping updates */
617d34d9
JF
130 if (!SHARED_KERNEL_PMD) {
131 pgd_set_mm(pgd, mm);
4f76cd38 132 pgd_list_add(pgd);
617d34d9 133 }
4f76cd38
JF
134}
135
17b74627 136static void pgd_dtor(pgd_t *pgd)
4f76cd38 137{
4f76cd38
JF
138 if (SHARED_KERNEL_PMD)
139 return;
140
a79e53d8 141 spin_lock(&pgd_lock);
4f76cd38 142 pgd_list_del(pgd);
a79e53d8 143 spin_unlock(&pgd_lock);
4f76cd38
JF
144}
145
85958b46
JF
146/*
147 * List of all pgd's needed for non-PAE so it can invalidate entries
148 * in both cached and uncached pgd's; not needed for PAE since the
149 * kernel pmd is shared. If PAE were not to share the pmd a similar
150 * tactic would be needed. This is essentially codepath-based locking
151 * against pageattr.c; it is the unique case in which a valid change
152 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
153 * vmalloc faults work because attached pagetables are never freed.
6d49e352 154 * -- nyc
85958b46
JF
155 */
156
4f76cd38 157#ifdef CONFIG_X86_PAE
d8d5900e
JF
158/*
159 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
160 * updating the top-level pagetable entries to guarantee the
161 * processor notices the update. Since this is expensive, and
162 * all 4 top-level entries are used almost immediately in a
163 * new process's life, we just pre-populate them here.
164 *
165 * Also, if we're in a paravirt environment where the kernel pmd is
166 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
167 * and initialize the kernel pmds here.
168 */
169#define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
170
171void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
172{
173 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
174
175 /* Note: almost everything apart from _PAGE_PRESENT is
176 reserved at the pmd (PDPT) level. */
177 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
178
179 /*
180 * According to Intel App note "TLBs, Paging-Structure Caches,
181 * and Their Invalidation", April 2007, document 317080-001,
182 * section 8.1: in PAE mode we explicitly have to flush the
183 * TLB via cr3 if the top-level pgd is changed...
184 */
4981d01e 185 flush_tlb_mm(mm);
d8d5900e
JF
186}
187#else /* !CONFIG_X86_PAE */
188
189/* No need to prepopulate any pagetable entries in non-PAE modes. */
190#define PREALLOCATED_PMDS 0
191
192#endif /* CONFIG_X86_PAE */
193
dc6c9a35 194static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
d8d5900e
JF
195{
196 int i;
197
198 for(i = 0; i < PREALLOCATED_PMDS; i++)
09ef4939
KS
199 if (pmds[i]) {
200 pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
d8d5900e 201 free_page((unsigned long)pmds[i]);
dc6c9a35 202 mm_dec_nr_pmds(mm);
09ef4939 203 }
d8d5900e
JF
204}
205
dc6c9a35 206static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
d8d5900e
JF
207{
208 int i;
209 bool failed = false;
3e79ec7d
VD
210 gfp_t gfp = PGALLOC_GFP;
211
212 if (mm == &init_mm)
213 gfp &= ~__GFP_ACCOUNT;
d8d5900e
JF
214
215 for(i = 0; i < PREALLOCATED_PMDS; i++) {
3e79ec7d 216 pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
09ef4939 217 if (!pmd)
d8d5900e 218 failed = true;
09ef4939 219 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
2a46eed5 220 free_page((unsigned long)pmd);
09ef4939
KS
221 pmd = NULL;
222 failed = true;
223 }
dc6c9a35
KS
224 if (pmd)
225 mm_inc_nr_pmds(mm);
d8d5900e
JF
226 pmds[i] = pmd;
227 }
228
229 if (failed) {
dc6c9a35 230 free_pmds(mm, pmds);
d8d5900e
JF
231 return -ENOMEM;
232 }
233
234 return 0;
235}
236
4f76cd38
JF
237/*
238 * Mop up any pmd pages which may still be attached to the pgd.
239 * Normally they will be freed by munmap/exit_mmap, but any pmd we
240 * preallocate which never got a corresponding vma will need to be
241 * freed manually.
242 */
243static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
244{
245 int i;
246
d8d5900e 247 for(i = 0; i < PREALLOCATED_PMDS; i++) {
4f76cd38
JF
248 pgd_t pgd = pgdp[i];
249
250 if (pgd_val(pgd) != 0) {
251 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
252
253 pgdp[i] = native_make_pgd(0);
254
6944a9c8 255 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
4f76cd38 256 pmd_free(mm, pmd);
dc6c9a35 257 mm_dec_nr_pmds(mm);
4f76cd38
JF
258 }
259 }
260}
261
d8d5900e 262static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
4f76cd38
JF
263{
264 pud_t *pud;
4f76cd38
JF
265 int i;
266
cf3e5050
JF
267 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
268 return;
269
4f76cd38 270 pud = pud_offset(pgd, 0);
4f76cd38 271
73b44ff4 272 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
d8d5900e 273 pmd_t *pmd = pmds[i];
4f76cd38 274
68db065c 275 if (i >= KERNEL_PGD_BOUNDARY)
4f76cd38
JF
276 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
277 sizeof(pmd_t) * PTRS_PER_PMD);
278
279 pud_populate(mm, pud, pmd);
280 }
4f76cd38 281}
1ec1fe73 282
1db491f7
FY
283/*
284 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
285 * assumes that pgd should be in one page.
286 *
287 * But kernel with PAE paging that is not running as a Xen domain
288 * only needs to allocate 32 bytes for pgd instead of one page.
289 */
290#ifdef CONFIG_X86_PAE
291
292#include <linux/slab.h>
293
294#define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
295#define PGD_ALIGN 32
296
297static struct kmem_cache *pgd_cache;
298
299static int __init pgd_cache_init(void)
300{
301 /*
302 * When PAE kernel is running as a Xen domain, it does not use
303 * shared kernel pmd. And this requires a whole page for pgd.
304 */
305 if (!SHARED_KERNEL_PMD)
306 return 0;
307
308 /*
309 * when PAE kernel is not running as a Xen domain, it uses
310 * shared kernel pmd. Shared kernel pmd does not require a whole
311 * page for pgd. We are able to just allocate a 32-byte for pgd.
312 * During boot time, we create a 32-byte slab for pgd table allocation.
313 */
314 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
315 SLAB_PANIC, NULL);
316 if (!pgd_cache)
317 return -ENOMEM;
318
319 return 0;
320}
321core_initcall(pgd_cache_init);
322
323static inline pgd_t *_pgd_alloc(void)
324{
325 /*
326 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
327 * We allocate one page for pgd.
328 */
329 if (!SHARED_KERNEL_PMD)
330 return (pgd_t *)__get_free_page(PGALLOC_GFP);
331
332 /*
333 * Now PAE kernel is not running as a Xen domain. We can allocate
334 * a 32-byte slab for pgd to save memory space.
335 */
336 return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
337}
338
339static inline void _pgd_free(pgd_t *pgd)
340{
341 if (!SHARED_KERNEL_PMD)
342 free_page((unsigned long)pgd);
343 else
344 kmem_cache_free(pgd_cache, pgd);
345}
346#else
347static inline pgd_t *_pgd_alloc(void)
348{
349 return (pgd_t *)__get_free_page(PGALLOC_GFP);
350}
351
352static inline void _pgd_free(pgd_t *pgd)
353{
354 free_page((unsigned long)pgd);
355}
356#endif /* CONFIG_X86_PAE */
357
d8d5900e 358pgd_t *pgd_alloc(struct mm_struct *mm)
1ec1fe73 359{
d8d5900e
JF
360 pgd_t *pgd;
361 pmd_t *pmds[PREALLOCATED_PMDS];
1ec1fe73 362
1db491f7 363 pgd = _pgd_alloc();
d8d5900e
JF
364
365 if (pgd == NULL)
366 goto out;
367
368 mm->pgd = pgd;
369
dc6c9a35 370 if (preallocate_pmds(mm, pmds) != 0)
d8d5900e
JF
371 goto out_free_pgd;
372
373 if (paravirt_pgd_alloc(mm) != 0)
374 goto out_free_pmds;
1ec1fe73
IM
375
376 /*
d8d5900e
JF
377 * Make sure that pre-populating the pmds is atomic with
378 * respect to anything walking the pgd_list, so that they
379 * never see a partially populated pgd.
1ec1fe73 380 */
a79e53d8 381 spin_lock(&pgd_lock);
4f76cd38 382
617d34d9 383 pgd_ctor(mm, pgd);
d8d5900e 384 pgd_prepopulate_pmd(mm, pgd, pmds);
4f76cd38 385
a79e53d8 386 spin_unlock(&pgd_lock);
4f76cd38
JF
387
388 return pgd;
d8d5900e
JF
389
390out_free_pmds:
dc6c9a35 391 free_pmds(mm, pmds);
d8d5900e 392out_free_pgd:
1db491f7 393 _pgd_free(pgd);
d8d5900e
JF
394out:
395 return NULL;
4f76cd38
JF
396}
397
398void pgd_free(struct mm_struct *mm, pgd_t *pgd)
399{
400 pgd_mop_up_pmds(mm, pgd);
401 pgd_dtor(pgd);
eba0045f 402 paravirt_pgd_free(mm, pgd);
1db491f7 403 _pgd_free(pgd);
4f76cd38 404}
ee5aa8d3 405
0f9a921c
RR
406/*
407 * Used to set accessed or dirty bits in the page table entries
408 * on other architectures. On x86, the accessed and dirty bits
409 * are tracked by hardware. However, do_wp_page calls this function
410 * to also make the pte writeable at the same time the dirty bit is
411 * set. In that case we do actually need to write the PTE.
412 */
ee5aa8d3
JF
413int ptep_set_access_flags(struct vm_area_struct *vma,
414 unsigned long address, pte_t *ptep,
415 pte_t entry, int dirty)
416{
417 int changed = !pte_same(*ptep, entry);
418
419 if (changed && dirty) {
420 *ptep = entry;
d6ccc3ec 421 pte_update(vma->vm_mm, address, ptep);
ee5aa8d3
JF
422 }
423
424 return changed;
425}
f9fbf1a3 426
db3eb96f
AA
427#ifdef CONFIG_TRANSPARENT_HUGEPAGE
428int pmdp_set_access_flags(struct vm_area_struct *vma,
429 unsigned long address, pmd_t *pmdp,
430 pmd_t entry, int dirty)
431{
432 int changed = !pmd_same(*pmdp, entry);
433
434 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
435
436 if (changed && dirty) {
437 *pmdp = entry;
5e4bf1a5
IM
438 /*
439 * We had a write-protection fault here and changed the pmd
440 * to to more permissive. No need to flush the TLB for that,
441 * #PF is architecturally guaranteed to do that and in the
442 * worst-case we'll generate a spurious fault.
443 */
db3eb96f
AA
444 }
445
446 return changed;
447}
a00cc7d9
MW
448
449int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
450 pud_t *pudp, pud_t entry, int dirty)
451{
452 int changed = !pud_same(*pudp, entry);
453
454 VM_BUG_ON(address & ~HPAGE_PUD_MASK);
455
456 if (changed && dirty) {
457 *pudp = entry;
458 /*
459 * We had a write-protection fault here and changed the pud
460 * to to more permissive. No need to flush the TLB for that,
461 * #PF is architecturally guaranteed to do that and in the
462 * worst-case we'll generate a spurious fault.
463 */
464 }
465
466 return changed;
467}
db3eb96f
AA
468#endif
469
f9fbf1a3
JF
470int ptep_test_and_clear_young(struct vm_area_struct *vma,
471 unsigned long addr, pte_t *ptep)
472{
473 int ret = 0;
474
475 if (pte_young(*ptep))
476 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
48e23957 477 (unsigned long *) &ptep->pte);
f9fbf1a3
JF
478
479 if (ret)
480 pte_update(vma->vm_mm, addr, ptep);
481
482 return ret;
483}
c20311e1 484
db3eb96f
AA
485#ifdef CONFIG_TRANSPARENT_HUGEPAGE
486int pmdp_test_and_clear_young(struct vm_area_struct *vma,
487 unsigned long addr, pmd_t *pmdp)
488{
489 int ret = 0;
490
491 if (pmd_young(*pmdp))
492 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
f2d6bfe9 493 (unsigned long *)pmdp);
db3eb96f 494
db3eb96f
AA
495 return ret;
496}
a00cc7d9
MW
497int pudp_test_and_clear_young(struct vm_area_struct *vma,
498 unsigned long addr, pud_t *pudp)
499{
500 int ret = 0;
501
502 if (pud_young(*pudp))
503 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
504 (unsigned long *)pudp);
505
506 return ret;
507}
db3eb96f
AA
508#endif
509
c20311e1
JF
510int ptep_clear_flush_young(struct vm_area_struct *vma,
511 unsigned long address, pte_t *ptep)
512{
b13b1d2d
SL
513 /*
514 * On x86 CPUs, clearing the accessed bit without a TLB flush
515 * doesn't cause data corruption. [ It could cause incorrect
516 * page aging and the (mistaken) reclaim of hot pages, but the
517 * chance of that should be relatively low. ]
518 *
519 * So as a performance optimization don't flush the TLB when
520 * clearing the accessed bit, it will eventually be flushed by
521 * a context switch or a VM operation anyway. [ In the rare
522 * event of it not getting flushed for a long time the delay
523 * shouldn't really matter because there's no real memory
524 * pressure for swapout to react to. ]
525 */
526 return ptep_test_and_clear_young(vma, address, ptep);
c20311e1 527}
7c7e6e07 528
db3eb96f
AA
529#ifdef CONFIG_TRANSPARENT_HUGEPAGE
530int pmdp_clear_flush_young(struct vm_area_struct *vma,
531 unsigned long address, pmd_t *pmdp)
532{
533 int young;
534
535 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
536
537 young = pmdp_test_and_clear_young(vma, address, pmdp);
538 if (young)
539 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
540
541 return young;
542}
db3eb96f
AA
543#endif
544
fd862dde
GP
545/**
546 * reserve_top_address - reserves a hole in the top of kernel address space
547 * @reserve - size of hole to reserve
548 *
549 * Can be used to relocate the fixmap area and poke a hole in the top
550 * of kernel address space to make room for a hypervisor.
551 */
552void __init reserve_top_address(unsigned long reserve)
553{
554#ifdef CONFIG_X86_32
555 BUG_ON(fixmaps_set > 0);
73159fdc
AL
556 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
557 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
558 -reserve, __FIXADDR_TOP + PAGE_SIZE);
fd862dde
GP
559#endif
560}
561
7c7e6e07
JF
562int fixmaps_set;
563
aeaaa59c 564void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
7c7e6e07
JF
565{
566 unsigned long address = __fix_to_virt(idx);
567
568 if (idx >= __end_of_fixed_addresses) {
569 BUG();
570 return;
571 }
aeaaa59c 572 set_pte_vaddr(address, pte);
7c7e6e07
JF
573 fixmaps_set++;
574}
aeaaa59c 575
3b3809ac
MH
576void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
577 pgprot_t flags)
aeaaa59c
JF
578{
579 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
580}
6b637835
TK
581
582#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
3d3ca416
TK
583/**
584 * pud_set_huge - setup kernel PUD mapping
585 *
b73522e0
TK
586 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
587 * function sets up a huge page only if any of the following conditions are met:
588 *
589 * - MTRRs are disabled, or
590 *
591 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
592 *
593 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
594 * has no effect on the requested PAT memory type.
595 *
596 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
597 * page mapping attempt fails.
3d3ca416
TK
598 *
599 * Returns 1 on success and 0 on failure.
600 */
6b637835
TK
601int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
602{
b73522e0 603 u8 mtrr, uniform;
6b637835 604
b73522e0
TK
605 mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
606 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
607 (mtrr != MTRR_TYPE_WRBACK))
6b637835
TK
608 return 0;
609
610 prot = pgprot_4k_2_large(prot);
611
612 set_pte((pte_t *)pud, pfn_pte(
613 (u64)addr >> PAGE_SHIFT,
614 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
615
616 return 1;
617}
618
3d3ca416
TK
619/**
620 * pmd_set_huge - setup kernel PMD mapping
621 *
b73522e0 622 * See text over pud_set_huge() above.
3d3ca416
TK
623 *
624 * Returns 1 on success and 0 on failure.
625 */
6b637835
TK
626int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
627{
b73522e0 628 u8 mtrr, uniform;
6b637835 629
b73522e0
TK
630 mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
631 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
632 (mtrr != MTRR_TYPE_WRBACK)) {
633 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
634 __func__, addr, addr + PMD_SIZE);
6b637835 635 return 0;
b73522e0 636 }
6b637835
TK
637
638 prot = pgprot_4k_2_large(prot);
639
640 set_pte((pte_t *)pmd, pfn_pte(
641 (u64)addr >> PAGE_SHIFT,
642 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
643
644 return 1;
645}
646
3d3ca416
TK
647/**
648 * pud_clear_huge - clear kernel PUD mapping when it is set
649 *
650 * Returns 1 on success and 0 on failure (no PUD map is found).
651 */
6b637835
TK
652int pud_clear_huge(pud_t *pud)
653{
654 if (pud_large(*pud)) {
655 pud_clear(pud);
656 return 1;
657 }
658
659 return 0;
660}
661
3d3ca416
TK
662/**
663 * pmd_clear_huge - clear kernel PMD mapping when it is set
664 *
665 * Returns 1 on success and 0 on failure (no PMD map is found).
666 */
6b637835
TK
667int pmd_clear_huge(pmd_t *pmd)
668{
669 if (pmd_large(*pmd)) {
670 pmd_clear(pmd);
671 return 1;
672 }
673
674 return 0;
675}
676#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */