]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - block/blk-core.c
IB/hfi1: Resend the TID RDMA WRITE DATA packets
[thirdparty/kernel/stable.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
30abb3a6 37#include <linux/bpf.h>
55782138
LZ
38
39#define CREATE_TRACE_POINTS
40#include <trace/events/block.h>
1da177e4 41
8324aa91 42#include "blk.h"
43a5e4e2 43#include "blk-mq.h"
bd166ef1 44#include "blk-mq-sched.h"
bca6b067 45#include "blk-pm.h"
c1c80384 46#include "blk-rq-qos.h"
8324aa91 47
18fbda91
OS
48#ifdef CONFIG_DEBUG_FS
49struct dentry *blk_debugfs_root;
50#endif
51
d07335e5 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 55EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 56EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 57
a73f730d
TH
58DEFINE_IDA(blk_queue_ida);
59
1da177e4
LT
60/*
61 * For queue allocation
62 */
6728cb0e 63struct kmem_cache *blk_requestq_cachep;
1da177e4 64
1da177e4
LT
65/*
66 * Controlling structure to kblockd
67 */
ff856bad 68static struct workqueue_struct *kblockd_workqueue;
1da177e4 69
8814ce8a
BVA
70/**
71 * blk_queue_flag_set - atomically set a queue flag
72 * @flag: flag to be set
73 * @q: request queue
74 */
75void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
76{
57d74df9 77 set_bit(flag, &q->queue_flags);
8814ce8a
BVA
78}
79EXPORT_SYMBOL(blk_queue_flag_set);
80
81/**
82 * blk_queue_flag_clear - atomically clear a queue flag
83 * @flag: flag to be cleared
84 * @q: request queue
85 */
86void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
87{
57d74df9 88 clear_bit(flag, &q->queue_flags);
8814ce8a
BVA
89}
90EXPORT_SYMBOL(blk_queue_flag_clear);
91
92/**
93 * blk_queue_flag_test_and_set - atomically test and set a queue flag
94 * @flag: flag to be set
95 * @q: request queue
96 *
97 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
98 * the flag was already set.
99 */
100bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
101{
57d74df9 102 return test_and_set_bit(flag, &q->queue_flags);
8814ce8a
BVA
103}
104EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
105
2a4aa30c 106void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 107{
1afb20f3
FT
108 memset(rq, 0, sizeof(*rq));
109
1da177e4 110 INIT_LIST_HEAD(&rq->queuelist);
63a71386 111 rq->q = q;
a2dec7b3 112 rq->__sector = (sector_t) -1;
2e662b65
JA
113 INIT_HLIST_NODE(&rq->hash);
114 RB_CLEAR_NODE(&rq->rb_node);
63a71386 115 rq->tag = -1;
bd166ef1 116 rq->internal_tag = -1;
522a7775 117 rq->start_time_ns = ktime_get_ns();
09e099d4 118 rq->part = NULL;
1da177e4 119}
2a4aa30c 120EXPORT_SYMBOL(blk_rq_init);
1da177e4 121
2a842aca
CH
122static const struct {
123 int errno;
124 const char *name;
125} blk_errors[] = {
126 [BLK_STS_OK] = { 0, "" },
127 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
128 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
129 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
130 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
131 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
132 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
133 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
134 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
135 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 136 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 137 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 138
4e4cbee9
CH
139 /* device mapper special case, should not leak out: */
140 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
141
2a842aca
CH
142 /* everything else not covered above: */
143 [BLK_STS_IOERR] = { -EIO, "I/O" },
144};
145
146blk_status_t errno_to_blk_status(int errno)
147{
148 int i;
149
150 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
151 if (blk_errors[i].errno == errno)
152 return (__force blk_status_t)i;
153 }
154
155 return BLK_STS_IOERR;
156}
157EXPORT_SYMBOL_GPL(errno_to_blk_status);
158
159int blk_status_to_errno(blk_status_t status)
160{
161 int idx = (__force int)status;
162
34bd9c1c 163 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
164 return -EIO;
165 return blk_errors[idx].errno;
166}
167EXPORT_SYMBOL_GPL(blk_status_to_errno);
168
169static void print_req_error(struct request *req, blk_status_t status)
170{
171 int idx = (__force int)status;
172
34bd9c1c 173 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
174 return;
175
2149da07
BS
176 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu flags %x\n",
177 __func__, blk_errors[idx].name,
178 req->rq_disk ? req->rq_disk->disk_name : "?",
179 (unsigned long long)blk_rq_pos(req),
180 req->cmd_flags);
2a842aca
CH
181}
182
5bb23a68 183static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 184 unsigned int nbytes, blk_status_t error)
1da177e4 185{
78d8e58a 186 if (error)
4e4cbee9 187 bio->bi_status = error;
797e7dbb 188
e8064021 189 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 190 bio_set_flag(bio, BIO_QUIET);
08bafc03 191
f79ea416 192 bio_advance(bio, nbytes);
7ba1ba12 193
143a87f4 194 /* don't actually finish bio if it's part of flush sequence */
e8064021 195 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 196 bio_endio(bio);
1da177e4 197}
1da177e4 198
1da177e4
LT
199void blk_dump_rq_flags(struct request *rq, char *msg)
200{
aebf526b
CH
201 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
202 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 203 (unsigned long long) rq->cmd_flags);
1da177e4 204
83096ebf
TH
205 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
206 (unsigned long long)blk_rq_pos(rq),
207 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
208 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
209 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 210}
1da177e4
LT
211EXPORT_SYMBOL(blk_dump_rq_flags);
212
1da177e4
LT
213/**
214 * blk_sync_queue - cancel any pending callbacks on a queue
215 * @q: the queue
216 *
217 * Description:
218 * The block layer may perform asynchronous callback activity
219 * on a queue, such as calling the unplug function after a timeout.
220 * A block device may call blk_sync_queue to ensure that any
221 * such activity is cancelled, thus allowing it to release resources
59c51591 222 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
223 * that its ->make_request_fn will not re-add plugging prior to calling
224 * this function.
225 *
da527770 226 * This function does not cancel any asynchronous activity arising
da3dae54 227 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 228 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 229 *
1da177e4
LT
230 */
231void blk_sync_queue(struct request_queue *q)
232{
70ed28b9 233 del_timer_sync(&q->timeout);
4e9b6f20 234 cancel_work_sync(&q->timeout_work);
f04c1fe7 235
344e9ffc 236 if (queue_is_mq(q)) {
f04c1fe7
ML
237 struct blk_mq_hw_ctx *hctx;
238 int i;
239
aba7afc5 240 cancel_delayed_work_sync(&q->requeue_work);
21c6e939 241 queue_for_each_hw_ctx(q, hctx, i)
9f993737 242 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7 243 }
1da177e4
LT
244}
245EXPORT_SYMBOL(blk_sync_queue);
246
c9254f2d 247/**
cd84a62e 248 * blk_set_pm_only - increment pm_only counter
c9254f2d 249 * @q: request queue pointer
c9254f2d 250 */
cd84a62e 251void blk_set_pm_only(struct request_queue *q)
c9254f2d 252{
cd84a62e 253 atomic_inc(&q->pm_only);
c9254f2d 254}
cd84a62e 255EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 256
cd84a62e 257void blk_clear_pm_only(struct request_queue *q)
c9254f2d 258{
cd84a62e
BVA
259 int pm_only;
260
261 pm_only = atomic_dec_return(&q->pm_only);
262 WARN_ON_ONCE(pm_only < 0);
263 if (pm_only == 0)
264 wake_up_all(&q->mq_freeze_wq);
c9254f2d 265}
cd84a62e 266EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 267
165125e1 268void blk_put_queue(struct request_queue *q)
483f4afc
AV
269{
270 kobject_put(&q->kobj);
271}
d86e0e83 272EXPORT_SYMBOL(blk_put_queue);
483f4afc 273
aed3ea94
JA
274void blk_set_queue_dying(struct request_queue *q)
275{
8814ce8a 276 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
aed3ea94 277
d3cfb2a0
ML
278 /*
279 * When queue DYING flag is set, we need to block new req
280 * entering queue, so we call blk_freeze_queue_start() to
281 * prevent I/O from crossing blk_queue_enter().
282 */
283 blk_freeze_queue_start(q);
284
344e9ffc 285 if (queue_is_mq(q))
aed3ea94 286 blk_mq_wake_waiters(q);
055f6e18
ML
287
288 /* Make blk_queue_enter() reexamine the DYING flag. */
289 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
290}
291EXPORT_SYMBOL_GPL(blk_set_queue_dying);
292
4cf6324b
BVA
293/* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
294void blk_exit_queue(struct request_queue *q)
295{
296 /*
297 * Since the I/O scheduler exit code may access cgroup information,
298 * perform I/O scheduler exit before disassociating from the block
299 * cgroup controller.
300 */
301 if (q->elevator) {
302 ioc_clear_queue(q);
303 elevator_exit(q, q->elevator);
304 q->elevator = NULL;
305 }
306
307 /*
308 * Remove all references to @q from the block cgroup controller before
309 * restoring @q->queue_lock to avoid that restoring this pointer causes
310 * e.g. blkcg_print_blkgs() to crash.
311 */
312 blkcg_exit_queue(q);
313
314 /*
315 * Since the cgroup code may dereference the @q->backing_dev_info
316 * pointer, only decrease its reference count after having removed the
317 * association with the block cgroup controller.
318 */
319 bdi_put(q->backing_dev_info);
320}
321
c9a929dd
TH
322/**
323 * blk_cleanup_queue - shutdown a request queue
324 * @q: request queue to shutdown
325 *
c246e80d
BVA
326 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
327 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 328 */
6728cb0e 329void blk_cleanup_queue(struct request_queue *q)
483f4afc 330{
3f3299d5 331 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 332 mutex_lock(&q->sysfs_lock);
aed3ea94 333 blk_set_queue_dying(q);
6ecf23af 334
57d74df9
CH
335 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
336 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
337 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
338 mutex_unlock(&q->sysfs_lock);
339
c246e80d
BVA
340 /*
341 * Drain all requests queued before DYING marking. Set DEAD flag to
342 * prevent that q->request_fn() gets invoked after draining finished.
343 */
3ef28e83 344 blk_freeze_queue(q);
c57cdf7a
ML
345
346 rq_qos_exit(q);
347
57d74df9 348 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
c9a929dd 349
c2856ae2
ML
350 /*
351 * make sure all in-progress dispatch are completed because
352 * blk_freeze_queue() can only complete all requests, and
353 * dispatch may still be in-progress since we dispatch requests
1311326c
ML
354 * from more than one contexts.
355 *
8dc765d4
ML
356 * We rely on driver to deal with the race in case that queue
357 * initialization isn't done.
c2856ae2 358 */
344e9ffc 359 if (queue_is_mq(q) && blk_queue_init_done(q))
c2856ae2
ML
360 blk_mq_quiesce_queue(q);
361
5a48fc14
DW
362 /* for synchronous bio-based driver finish in-flight integrity i/o */
363 blk_flush_integrity();
364
c9a929dd 365 /* @q won't process any more request, flush async actions */
dc3b17cc 366 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
367 blk_sync_queue(q);
368
a063057d
BVA
369 /*
370 * I/O scheduler exit is only safe after the sysfs scheduler attribute
371 * has been removed.
372 */
373 WARN_ON_ONCE(q->kobj.state_in_sysfs);
374
4cf6324b 375 blk_exit_queue(q);
a063057d 376
344e9ffc 377 if (queue_is_mq(q))
45a9c9d9 378 blk_mq_free_queue(q);
a1ce35fa 379
3ef28e83 380 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 381
c9a929dd 382 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
383 blk_put_queue(q);
384}
1da177e4
LT
385EXPORT_SYMBOL(blk_cleanup_queue);
386
165125e1 387struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 388{
6d469642 389 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
390}
391EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 392
3a0a5299
BVA
393/**
394 * blk_queue_enter() - try to increase q->q_usage_counter
395 * @q: request queue pointer
396 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
397 */
9a95e4ef 398int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 399{
cd84a62e 400 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
3a0a5299 401
3ef28e83 402 while (true) {
3a0a5299 403 bool success = false;
3ef28e83 404
818e0fa2 405 rcu_read_lock();
3a0a5299
BVA
406 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
407 /*
cd84a62e
BVA
408 * The code that increments the pm_only counter is
409 * responsible for ensuring that that counter is
410 * globally visible before the queue is unfrozen.
3a0a5299 411 */
cd84a62e 412 if (pm || !blk_queue_pm_only(q)) {
3a0a5299
BVA
413 success = true;
414 } else {
415 percpu_ref_put(&q->q_usage_counter);
416 }
417 }
818e0fa2 418 rcu_read_unlock();
3a0a5299
BVA
419
420 if (success)
3ef28e83
DW
421 return 0;
422
3a0a5299 423 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
424 return -EBUSY;
425
5ed61d3f 426 /*
1671d522 427 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 428 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
429 * .q_usage_counter and reading .mq_freeze_depth or
430 * queue dying flag, otherwise the following wait may
431 * never return if the two reads are reordered.
5ed61d3f
ML
432 */
433 smp_rmb();
434
1dc3039b
AJ
435 wait_event(q->mq_freeze_wq,
436 (atomic_read(&q->mq_freeze_depth) == 0 &&
0d25bd07
BVA
437 (pm || (blk_pm_request_resume(q),
438 !blk_queue_pm_only(q)))) ||
1dc3039b 439 blk_queue_dying(q));
3ef28e83
DW
440 if (blk_queue_dying(q))
441 return -ENODEV;
3ef28e83
DW
442 }
443}
444
445void blk_queue_exit(struct request_queue *q)
446{
447 percpu_ref_put(&q->q_usage_counter);
448}
449
450static void blk_queue_usage_counter_release(struct percpu_ref *ref)
451{
452 struct request_queue *q =
453 container_of(ref, struct request_queue, q_usage_counter);
454
455 wake_up_all(&q->mq_freeze_wq);
456}
457
bca237a5 458static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 459{
bca237a5 460 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
461
462 kblockd_schedule_work(&q->timeout_work);
463}
464
498f6650
BVA
465/**
466 * blk_alloc_queue_node - allocate a request queue
467 * @gfp_mask: memory allocation flags
468 * @node_id: NUMA node to allocate memory from
498f6650 469 */
6d469642 470struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 471{
165125e1 472 struct request_queue *q;
338aa96d 473 int ret;
1946089a 474
8324aa91 475 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 476 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
477 if (!q)
478 return NULL;
479
cbf62af3
CH
480 INIT_LIST_HEAD(&q->queue_head);
481 q->last_merge = NULL;
cbf62af3 482
00380a40 483 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 484 if (q->id < 0)
3d2936f4 485 goto fail_q;
a73f730d 486
338aa96d
KO
487 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
488 if (ret)
54efd50b
KO
489 goto fail_id;
490
d03f6cdc
JK
491 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
492 if (!q->backing_dev_info)
493 goto fail_split;
494
a83b576c
JA
495 q->stats = blk_alloc_queue_stats();
496 if (!q->stats)
497 goto fail_stats;
498
dc3b17cc 499 q->backing_dev_info->ra_pages =
09cbfeaf 500 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
501 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
502 q->backing_dev_info->name = "block";
5151412d 503 q->node = node_id;
0989a025 504
bca237a5
KC
505 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
506 laptop_mode_timer_fn, 0);
507 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
4e9b6f20 508 INIT_WORK(&q->timeout_work, NULL);
a612fddf 509 INIT_LIST_HEAD(&q->icq_list);
4eef3049 510#ifdef CONFIG_BLK_CGROUP
e8989fae 511 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 512#endif
483f4afc 513
8324aa91 514 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 515
5acb3cc2
WL
516#ifdef CONFIG_BLK_DEV_IO_TRACE
517 mutex_init(&q->blk_trace_mutex);
518#endif
483f4afc 519 mutex_init(&q->sysfs_lock);
0d945c1f 520 spin_lock_init(&q->queue_lock);
c94a96ac 521
320ae51f
JA
522 init_waitqueue_head(&q->mq_freeze_wq);
523
3ef28e83
DW
524 /*
525 * Init percpu_ref in atomic mode so that it's faster to shutdown.
526 * See blk_register_queue() for details.
527 */
528 if (percpu_ref_init(&q->q_usage_counter,
529 blk_queue_usage_counter_release,
530 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 531 goto fail_bdi;
f51b802c 532
3ef28e83
DW
533 if (blkcg_init_queue(q))
534 goto fail_ref;
535
1da177e4 536 return q;
a73f730d 537
3ef28e83
DW
538fail_ref:
539 percpu_ref_exit(&q->q_usage_counter);
fff4996b 540fail_bdi:
a83b576c
JA
541 blk_free_queue_stats(q->stats);
542fail_stats:
d03f6cdc 543 bdi_put(q->backing_dev_info);
54efd50b 544fail_split:
338aa96d 545 bioset_exit(&q->bio_split);
a73f730d
TH
546fail_id:
547 ida_simple_remove(&blk_queue_ida, q->id);
548fail_q:
549 kmem_cache_free(blk_requestq_cachep, q);
550 return NULL;
1da177e4 551}
1946089a 552EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4 553
09ac46c4 554bool blk_get_queue(struct request_queue *q)
1da177e4 555{
3f3299d5 556 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
557 __blk_get_queue(q);
558 return true;
1da177e4
LT
559 }
560
09ac46c4 561 return false;
1da177e4 562}
d86e0e83 563EXPORT_SYMBOL(blk_get_queue);
1da177e4 564
a1ce35fa
JA
565/**
566 * blk_get_request - allocate a request
567 * @q: request queue to allocate a request for
568 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
569 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1da177e4 570 */
a1ce35fa
JA
571struct request *blk_get_request(struct request_queue *q, unsigned int op,
572 blk_mq_req_flags_t flags)
1da177e4 573{
a1ce35fa 574 struct request *req;
1da177e4 575
a1ce35fa
JA
576 WARN_ON_ONCE(op & REQ_NOWAIT);
577 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1da177e4 578
a1ce35fa
JA
579 req = blk_mq_alloc_request(q, op, flags);
580 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
581 q->mq_ops->initialize_rq_fn(req);
1da177e4 582
a1ce35fa 583 return req;
1da177e4 584}
a1ce35fa 585EXPORT_SYMBOL(blk_get_request);
1da177e4 586
1da177e4
LT
587void blk_put_request(struct request *req)
588{
a1ce35fa 589 blk_mq_free_request(req);
1da177e4 590}
1da177e4
LT
591EXPORT_SYMBOL(blk_put_request);
592
320ae51f
JA
593bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
594 struct bio *bio)
73c10101 595{
1eff9d32 596 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 597
73c10101
JA
598 if (!ll_back_merge_fn(q, req, bio))
599 return false;
600
8c1cf6bb 601 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
602
603 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
604 blk_rq_set_mixed_merge(req);
605
606 req->biotail->bi_next = bio;
607 req->biotail = bio;
4f024f37 608 req->__data_len += bio->bi_iter.bi_size;
73c10101 609
320ae51f 610 blk_account_io_start(req, false);
73c10101
JA
611 return true;
612}
613
320ae51f
JA
614bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
615 struct bio *bio)
73c10101 616{
1eff9d32 617 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 618
73c10101
JA
619 if (!ll_front_merge_fn(q, req, bio))
620 return false;
621
8c1cf6bb 622 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
623
624 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
625 blk_rq_set_mixed_merge(req);
626
73c10101
JA
627 bio->bi_next = req->bio;
628 req->bio = bio;
629
4f024f37
KO
630 req->__sector = bio->bi_iter.bi_sector;
631 req->__data_len += bio->bi_iter.bi_size;
73c10101 632
320ae51f 633 blk_account_io_start(req, false);
73c10101
JA
634 return true;
635}
636
1e739730
CH
637bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
638 struct bio *bio)
639{
640 unsigned short segments = blk_rq_nr_discard_segments(req);
641
642 if (segments >= queue_max_discard_segments(q))
643 goto no_merge;
644 if (blk_rq_sectors(req) + bio_sectors(bio) >
645 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
646 goto no_merge;
647
648 req->biotail->bi_next = bio;
649 req->biotail = bio;
650 req->__data_len += bio->bi_iter.bi_size;
1e739730
CH
651 req->nr_phys_segments = segments + 1;
652
653 blk_account_io_start(req, false);
654 return true;
655no_merge:
656 req_set_nomerge(q, req);
657 return false;
658}
659
bd87b589 660/**
320ae51f 661 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
662 * @q: request_queue new bio is being queued at
663 * @bio: new bio being queued
ccc2600b
RD
664 * @same_queue_rq: pointer to &struct request that gets filled in when
665 * another request associated with @q is found on the plug list
666 * (optional, may be %NULL)
bd87b589
TH
667 *
668 * Determine whether @bio being queued on @q can be merged with a request
669 * on %current's plugged list. Returns %true if merge was successful,
670 * otherwise %false.
671 *
07c2bd37
TH
672 * Plugging coalesces IOs from the same issuer for the same purpose without
673 * going through @q->queue_lock. As such it's more of an issuing mechanism
674 * than scheduling, and the request, while may have elvpriv data, is not
675 * added on the elevator at this point. In addition, we don't have
676 * reliable access to the elevator outside queue lock. Only check basic
677 * merging parameters without querying the elevator.
da41a589
RE
678 *
679 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 680 */
320ae51f 681bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f 682 struct request **same_queue_rq)
73c10101
JA
683{
684 struct blk_plug *plug;
685 struct request *rq;
92f399c7 686 struct list_head *plug_list;
73c10101 687
bd87b589 688 plug = current->plug;
73c10101 689 if (!plug)
34fe7c05 690 return false;
73c10101 691
a1ce35fa 692 plug_list = &plug->mq_list;
92f399c7
SL
693
694 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 695 bool merged = false;
73c10101 696
5f0ed774 697 if (rq->q == q && same_queue_rq) {
5b3f341f
SL
698 /*
699 * Only blk-mq multiple hardware queues case checks the
700 * rq in the same queue, there should be only one such
701 * rq in a queue
702 **/
5f0ed774 703 *same_queue_rq = rq;
5b3f341f 704 }
56ebdaf2 705
07c2bd37 706 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
707 continue;
708
34fe7c05
CH
709 switch (blk_try_merge(rq, bio)) {
710 case ELEVATOR_BACK_MERGE:
711 merged = bio_attempt_back_merge(q, rq, bio);
712 break;
713 case ELEVATOR_FRONT_MERGE:
714 merged = bio_attempt_front_merge(q, rq, bio);
715 break;
1e739730
CH
716 case ELEVATOR_DISCARD_MERGE:
717 merged = bio_attempt_discard_merge(q, rq, bio);
718 break;
34fe7c05
CH
719 default:
720 break;
73c10101 721 }
34fe7c05
CH
722
723 if (merged)
724 return true;
73c10101 725 }
34fe7c05
CH
726
727 return false;
73c10101
JA
728}
729
da8d7f07 730void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 731{
1eff9d32 732 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 733 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 734
4f024f37 735 req->__sector = bio->bi_iter.bi_sector;
20578bdf 736 req->ioprio = bio_prio(bio);
cb6934f8 737 req->write_hint = bio->bi_write_hint;
bc1c56fd 738 blk_rq_bio_prep(req->q, req, bio);
52d9e675 739}
da8d7f07 740EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 741
52c5e62d 742static void handle_bad_sector(struct bio *bio, sector_t maxsector)
1da177e4
LT
743{
744 char b[BDEVNAME_SIZE];
745
746 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 747 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 748 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 749 (unsigned long long)bio_end_sector(bio),
52c5e62d 750 (long long)maxsector);
1da177e4
LT
751}
752
c17bb495
AM
753#ifdef CONFIG_FAIL_MAKE_REQUEST
754
755static DECLARE_FAULT_ATTR(fail_make_request);
756
757static int __init setup_fail_make_request(char *str)
758{
759 return setup_fault_attr(&fail_make_request, str);
760}
761__setup("fail_make_request=", setup_fail_make_request);
762
b2c9cd37 763static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 764{
b2c9cd37 765 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
766}
767
768static int __init fail_make_request_debugfs(void)
769{
dd48c085
AM
770 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
771 NULL, &fail_make_request);
772
21f9fcd8 773 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
774}
775
776late_initcall(fail_make_request_debugfs);
777
778#else /* CONFIG_FAIL_MAKE_REQUEST */
779
b2c9cd37
AM
780static inline bool should_fail_request(struct hd_struct *part,
781 unsigned int bytes)
c17bb495 782{
b2c9cd37 783 return false;
c17bb495
AM
784}
785
786#endif /* CONFIG_FAIL_MAKE_REQUEST */
787
721c7fc7
ID
788static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
789{
b089cfd9
JA
790 const int op = bio_op(bio);
791
8b2ded1c 792 if (part->policy && op_is_write(op)) {
721c7fc7
ID
793 char b[BDEVNAME_SIZE];
794
8b2ded1c
MP
795 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
796 return false;
797
a32e236e 798 WARN_ONCE(1,
721c7fc7
ID
799 "generic_make_request: Trying to write "
800 "to read-only block-device %s (partno %d)\n",
801 bio_devname(bio, b), part->partno);
a32e236e
LT
802 /* Older lvm-tools actually trigger this */
803 return false;
721c7fc7
ID
804 }
805
806 return false;
807}
808
30abb3a6
HM
809static noinline int should_fail_bio(struct bio *bio)
810{
811 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
812 return -EIO;
813 return 0;
814}
815ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
816
52c5e62d
CH
817/*
818 * Check whether this bio extends beyond the end of the device or partition.
819 * This may well happen - the kernel calls bread() without checking the size of
820 * the device, e.g., when mounting a file system.
821 */
822static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
823{
824 unsigned int nr_sectors = bio_sectors(bio);
825
826 if (nr_sectors && maxsector &&
827 (nr_sectors > maxsector ||
828 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
829 handle_bad_sector(bio, maxsector);
830 return -EIO;
831 }
832 return 0;
833}
834
74d46992
CH
835/*
836 * Remap block n of partition p to block n+start(p) of the disk.
837 */
838static inline int blk_partition_remap(struct bio *bio)
839{
840 struct hd_struct *p;
52c5e62d 841 int ret = -EIO;
74d46992 842
721c7fc7
ID
843 rcu_read_lock();
844 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
52c5e62d
CH
845 if (unlikely(!p))
846 goto out;
847 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
848 goto out;
849 if (unlikely(bio_check_ro(bio, p)))
721c7fc7 850 goto out;
721c7fc7 851
74d46992
CH
852 /*
853 * Zone reset does not include bi_size so bio_sectors() is always 0.
854 * Include a test for the reset op code and perform the remap if needed.
855 */
52c5e62d
CH
856 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
857 if (bio_check_eod(bio, part_nr_sects_read(p)))
858 goto out;
859 bio->bi_iter.bi_sector += p->start_sect;
52c5e62d
CH
860 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
861 bio->bi_iter.bi_sector - p->start_sect);
862 }
c04fa44b 863 bio->bi_partno = 0;
52c5e62d 864 ret = 0;
721c7fc7
ID
865out:
866 rcu_read_unlock();
74d46992
CH
867 return ret;
868}
869
27a84d54
CH
870static noinline_for_stack bool
871generic_make_request_checks(struct bio *bio)
1da177e4 872{
165125e1 873 struct request_queue *q;
5a7bbad2 874 int nr_sectors = bio_sectors(bio);
4e4cbee9 875 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 876 char b[BDEVNAME_SIZE];
1da177e4
LT
877
878 might_sleep();
1da177e4 879
74d46992 880 q = bio->bi_disk->queue;
5a7bbad2
CH
881 if (unlikely(!q)) {
882 printk(KERN_ERR
883 "generic_make_request: Trying to access "
884 "nonexistent block-device %s (%Lu)\n",
74d46992 885 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
886 goto end_io;
887 }
c17bb495 888
03a07c92
GR
889 /*
890 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
891 * if queue is not a request based queue.
892 */
344e9ffc 893 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
03a07c92
GR
894 goto not_supported;
895
30abb3a6 896 if (should_fail_bio(bio))
5a7bbad2 897 goto end_io;
2056a782 898
52c5e62d
CH
899 if (bio->bi_partno) {
900 if (unlikely(blk_partition_remap(bio)))
721c7fc7
ID
901 goto end_io;
902 } else {
52c5e62d
CH
903 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
904 goto end_io;
905 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
721c7fc7
ID
906 goto end_io;
907 }
2056a782 908
5a7bbad2
CH
909 /*
910 * Filter flush bio's early so that make_request based
911 * drivers without flush support don't have to worry
912 * about them.
913 */
f3a8ab7d 914 if (op_is_flush(bio->bi_opf) &&
c888a8f9 915 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 916 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 917 if (!nr_sectors) {
4e4cbee9 918 status = BLK_STS_OK;
51fd77bd
JA
919 goto end_io;
920 }
5a7bbad2 921 }
5ddfe969 922
d04c406f
CH
923 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
924 bio->bi_opf &= ~REQ_HIPRI;
925
288dab8a
CH
926 switch (bio_op(bio)) {
927 case REQ_OP_DISCARD:
928 if (!blk_queue_discard(q))
929 goto not_supported;
930 break;
931 case REQ_OP_SECURE_ERASE:
932 if (!blk_queue_secure_erase(q))
933 goto not_supported;
934 break;
935 case REQ_OP_WRITE_SAME:
74d46992 936 if (!q->limits.max_write_same_sectors)
288dab8a 937 goto not_supported;
58886785 938 break;
2d253440 939 case REQ_OP_ZONE_RESET:
74d46992 940 if (!blk_queue_is_zoned(q))
2d253440 941 goto not_supported;
288dab8a 942 break;
a6f0788e 943 case REQ_OP_WRITE_ZEROES:
74d46992 944 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
945 goto not_supported;
946 break;
288dab8a
CH
947 default:
948 break;
5a7bbad2 949 }
01edede4 950
7f4b35d1
TH
951 /*
952 * Various block parts want %current->io_context and lazy ioc
953 * allocation ends up trading a lot of pain for a small amount of
954 * memory. Just allocate it upfront. This may fail and block
955 * layer knows how to live with it.
956 */
957 create_io_context(GFP_ATOMIC, q->node);
958
ae118896
TH
959 if (!blkcg_bio_issue_check(q, bio))
960 return false;
27a84d54 961
fbbaf700
N
962 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
963 trace_block_bio_queue(q, bio);
964 /* Now that enqueuing has been traced, we need to trace
965 * completion as well.
966 */
967 bio_set_flag(bio, BIO_TRACE_COMPLETION);
968 }
27a84d54 969 return true;
a7384677 970
288dab8a 971not_supported:
4e4cbee9 972 status = BLK_STS_NOTSUPP;
a7384677 973end_io:
4e4cbee9 974 bio->bi_status = status;
4246a0b6 975 bio_endio(bio);
27a84d54 976 return false;
1da177e4
LT
977}
978
27a84d54
CH
979/**
980 * generic_make_request - hand a buffer to its device driver for I/O
981 * @bio: The bio describing the location in memory and on the device.
982 *
983 * generic_make_request() is used to make I/O requests of block
984 * devices. It is passed a &struct bio, which describes the I/O that needs
985 * to be done.
986 *
987 * generic_make_request() does not return any status. The
988 * success/failure status of the request, along with notification of
989 * completion, is delivered asynchronously through the bio->bi_end_io
990 * function described (one day) else where.
991 *
992 * The caller of generic_make_request must make sure that bi_io_vec
993 * are set to describe the memory buffer, and that bi_dev and bi_sector are
994 * set to describe the device address, and the
995 * bi_end_io and optionally bi_private are set to describe how
996 * completion notification should be signaled.
997 *
998 * generic_make_request and the drivers it calls may use bi_next if this
999 * bio happens to be merged with someone else, and may resubmit the bio to
1000 * a lower device by calling into generic_make_request recursively, which
1001 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 1002 */
dece1635 1003blk_qc_t generic_make_request(struct bio *bio)
d89d8796 1004{
f5fe1b51
N
1005 /*
1006 * bio_list_on_stack[0] contains bios submitted by the current
1007 * make_request_fn.
1008 * bio_list_on_stack[1] contains bios that were submitted before
1009 * the current make_request_fn, but that haven't been processed
1010 * yet.
1011 */
1012 struct bio_list bio_list_on_stack[2];
37f9579f
BVA
1013 blk_mq_req_flags_t flags = 0;
1014 struct request_queue *q = bio->bi_disk->queue;
dece1635 1015 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 1016
37f9579f
BVA
1017 if (bio->bi_opf & REQ_NOWAIT)
1018 flags = BLK_MQ_REQ_NOWAIT;
cd4a4ae4
JA
1019 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
1020 blk_queue_enter_live(q);
1021 else if (blk_queue_enter(q, flags) < 0) {
37f9579f
BVA
1022 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
1023 bio_wouldblock_error(bio);
1024 else
1025 bio_io_error(bio);
1026 return ret;
1027 }
1028
27a84d54 1029 if (!generic_make_request_checks(bio))
dece1635 1030 goto out;
27a84d54
CH
1031
1032 /*
1033 * We only want one ->make_request_fn to be active at a time, else
1034 * stack usage with stacked devices could be a problem. So use
1035 * current->bio_list to keep a list of requests submited by a
1036 * make_request_fn function. current->bio_list is also used as a
1037 * flag to say if generic_make_request is currently active in this
1038 * task or not. If it is NULL, then no make_request is active. If
1039 * it is non-NULL, then a make_request is active, and new requests
1040 * should be added at the tail
1041 */
bddd87c7 1042 if (current->bio_list) {
f5fe1b51 1043 bio_list_add(&current->bio_list[0], bio);
dece1635 1044 goto out;
d89d8796 1045 }
27a84d54 1046
d89d8796
NB
1047 /* following loop may be a bit non-obvious, and so deserves some
1048 * explanation.
1049 * Before entering the loop, bio->bi_next is NULL (as all callers
1050 * ensure that) so we have a list with a single bio.
1051 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1052 * we assign bio_list to a pointer to the bio_list_on_stack,
1053 * thus initialising the bio_list of new bios to be
27a84d54 1054 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1055 * through a recursive call to generic_make_request. If it
1056 * did, we find a non-NULL value in bio_list and re-enter the loop
1057 * from the top. In this case we really did just take the bio
bddd87c7 1058 * of the top of the list (no pretending) and so remove it from
27a84d54 1059 * bio_list, and call into ->make_request() again.
d89d8796
NB
1060 */
1061 BUG_ON(bio->bi_next);
f5fe1b51
N
1062 bio_list_init(&bio_list_on_stack[0]);
1063 current->bio_list = bio_list_on_stack;
d89d8796 1064 do {
37f9579f
BVA
1065 bool enter_succeeded = true;
1066
1067 if (unlikely(q != bio->bi_disk->queue)) {
1068 if (q)
1069 blk_queue_exit(q);
1070 q = bio->bi_disk->queue;
1071 flags = 0;
1072 if (bio->bi_opf & REQ_NOWAIT)
1073 flags = BLK_MQ_REQ_NOWAIT;
1074 if (blk_queue_enter(q, flags) < 0) {
1075 enter_succeeded = false;
1076 q = NULL;
1077 }
1078 }
27a84d54 1079
37f9579f 1080 if (enter_succeeded) {
79bd9959
N
1081 struct bio_list lower, same;
1082
1083 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
1084 bio_list_on_stack[1] = bio_list_on_stack[0];
1085 bio_list_init(&bio_list_on_stack[0]);
dece1635 1086 ret = q->make_request_fn(q, bio);
3ef28e83 1087
79bd9959
N
1088 /* sort new bios into those for a lower level
1089 * and those for the same level
1090 */
1091 bio_list_init(&lower);
1092 bio_list_init(&same);
f5fe1b51 1093 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 1094 if (q == bio->bi_disk->queue)
79bd9959
N
1095 bio_list_add(&same, bio);
1096 else
1097 bio_list_add(&lower, bio);
1098 /* now assemble so we handle the lowest level first */
f5fe1b51
N
1099 bio_list_merge(&bio_list_on_stack[0], &lower);
1100 bio_list_merge(&bio_list_on_stack[0], &same);
1101 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 1102 } else {
03a07c92
GR
1103 if (unlikely(!blk_queue_dying(q) &&
1104 (bio->bi_opf & REQ_NOWAIT)))
1105 bio_wouldblock_error(bio);
1106 else
1107 bio_io_error(bio);
3ef28e83 1108 }
f5fe1b51 1109 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 1110 } while (bio);
bddd87c7 1111 current->bio_list = NULL; /* deactivate */
dece1635
JA
1112
1113out:
37f9579f
BVA
1114 if (q)
1115 blk_queue_exit(q);
dece1635 1116 return ret;
d89d8796 1117}
1da177e4
LT
1118EXPORT_SYMBOL(generic_make_request);
1119
f421e1d9
CH
1120/**
1121 * direct_make_request - hand a buffer directly to its device driver for I/O
1122 * @bio: The bio describing the location in memory and on the device.
1123 *
1124 * This function behaves like generic_make_request(), but does not protect
1125 * against recursion. Must only be used if the called driver is known
1126 * to not call generic_make_request (or direct_make_request) again from
1127 * its make_request function. (Calling direct_make_request again from
1128 * a workqueue is perfectly fine as that doesn't recurse).
1129 */
1130blk_qc_t direct_make_request(struct bio *bio)
1131{
1132 struct request_queue *q = bio->bi_disk->queue;
1133 bool nowait = bio->bi_opf & REQ_NOWAIT;
1134 blk_qc_t ret;
1135
1136 if (!generic_make_request_checks(bio))
1137 return BLK_QC_T_NONE;
1138
3a0a5299 1139 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
f421e1d9
CH
1140 if (nowait && !blk_queue_dying(q))
1141 bio->bi_status = BLK_STS_AGAIN;
1142 else
1143 bio->bi_status = BLK_STS_IOERR;
1144 bio_endio(bio);
1145 return BLK_QC_T_NONE;
1146 }
1147
1148 ret = q->make_request_fn(q, bio);
1149 blk_queue_exit(q);
1150 return ret;
1151}
1152EXPORT_SYMBOL_GPL(direct_make_request);
1153
1da177e4 1154/**
710027a4 1155 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1156 * @bio: The &struct bio which describes the I/O
1157 *
1158 * submit_bio() is very similar in purpose to generic_make_request(), and
1159 * uses that function to do most of the work. Both are fairly rough
710027a4 1160 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1161 *
1162 */
4e49ea4a 1163blk_qc_t submit_bio(struct bio *bio)
1da177e4 1164{
bf2de6f5
JA
1165 /*
1166 * If it's a regular read/write or a barrier with data attached,
1167 * go through the normal accounting stuff before submission.
1168 */
e2a60da7 1169 if (bio_has_data(bio)) {
4363ac7c
MP
1170 unsigned int count;
1171
95fe6c1a 1172 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
7c5a0dcf 1173 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
4363ac7c
MP
1174 else
1175 count = bio_sectors(bio);
1176
a8ebb056 1177 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
1178 count_vm_events(PGPGOUT, count);
1179 } else {
4f024f37 1180 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
1181 count_vm_events(PGPGIN, count);
1182 }
1183
1184 if (unlikely(block_dump)) {
1185 char b[BDEVNAME_SIZE];
8dcbdc74 1186 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1187 current->comm, task_pid_nr(current),
a8ebb056 1188 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 1189 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 1190 bio_devname(bio, b), count);
bf2de6f5 1191 }
1da177e4
LT
1192 }
1193
dece1635 1194 return generic_make_request(bio);
1da177e4 1195}
1da177e4
LT
1196EXPORT_SYMBOL(submit_bio);
1197
82124d60 1198/**
bf4e6b4e
HR
1199 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1200 * for new the queue limits
82124d60
KU
1201 * @q: the queue
1202 * @rq: the request being checked
1203 *
1204 * Description:
1205 * @rq may have been made based on weaker limitations of upper-level queues
1206 * in request stacking drivers, and it may violate the limitation of @q.
1207 * Since the block layer and the underlying device driver trust @rq
1208 * after it is inserted to @q, it should be checked against @q before
1209 * the insertion using this generic function.
1210 *
82124d60 1211 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
1212 * limits when retrying requests on other queues. Those requests need
1213 * to be checked against the new queue limits again during dispatch.
82124d60 1214 */
bf4e6b4e
HR
1215static int blk_cloned_rq_check_limits(struct request_queue *q,
1216 struct request *rq)
82124d60 1217{
8fe0d473 1218 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
1219 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1220 return -EIO;
1221 }
1222
1223 /*
1224 * queue's settings related to segment counting like q->bounce_pfn
1225 * may differ from that of other stacking queues.
1226 * Recalculate it to check the request correctly on this queue's
1227 * limitation.
1228 */
1229 blk_recalc_rq_segments(rq);
8a78362c 1230 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1231 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1232 return -EIO;
1233 }
1234
1235 return 0;
1236}
82124d60
KU
1237
1238/**
1239 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1240 * @q: the queue to submit the request
1241 * @rq: the request being queued
1242 */
2a842aca 1243blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60 1244{
d6a51a97
JW
1245 blk_qc_t unused;
1246
bf4e6b4e 1247 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 1248 return BLK_STS_IOERR;
82124d60 1249
b2c9cd37
AM
1250 if (rq->rq_disk &&
1251 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 1252 return BLK_STS_IOERR;
82124d60 1253
a1ce35fa
JA
1254 if (blk_queue_io_stat(q))
1255 blk_account_io_start(rq, true);
82124d60
KU
1256
1257 /*
a1ce35fa
JA
1258 * Since we have a scheduler attached on the top device,
1259 * bypass a potential scheduler on the bottom device for
1260 * insert.
82124d60 1261 */
d6a51a97 1262 return blk_mq_try_issue_directly(rq->mq_hctx, rq, &unused, true, true);
82124d60
KU
1263}
1264EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1265
80a761fd
TH
1266/**
1267 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1268 * @rq: request to examine
1269 *
1270 * Description:
1271 * A request could be merge of IOs which require different failure
1272 * handling. This function determines the number of bytes which
1273 * can be failed from the beginning of the request without
1274 * crossing into area which need to be retried further.
1275 *
1276 * Return:
1277 * The number of bytes to fail.
80a761fd
TH
1278 */
1279unsigned int blk_rq_err_bytes(const struct request *rq)
1280{
1281 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1282 unsigned int bytes = 0;
1283 struct bio *bio;
1284
e8064021 1285 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
1286 return blk_rq_bytes(rq);
1287
1288 /*
1289 * Currently the only 'mixing' which can happen is between
1290 * different fastfail types. We can safely fail portions
1291 * which have all the failfast bits that the first one has -
1292 * the ones which are at least as eager to fail as the first
1293 * one.
1294 */
1295 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 1296 if ((bio->bi_opf & ff) != ff)
80a761fd 1297 break;
4f024f37 1298 bytes += bio->bi_iter.bi_size;
80a761fd
TH
1299 }
1300
1301 /* this could lead to infinite loop */
1302 BUG_ON(blk_rq_bytes(rq) && !bytes);
1303 return bytes;
1304}
1305EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1306
320ae51f 1307void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 1308{
c2553b58 1309 if (blk_do_io_stat(req)) {
ddcf35d3 1310 const int sgrp = op_stat_group(req_op(req));
bc58ba94 1311 struct hd_struct *part;
bc58ba94 1312
112f158f 1313 part_stat_lock();
09e099d4 1314 part = req->part;
112f158f 1315 part_stat_add(part, sectors[sgrp], bytes >> 9);
bc58ba94
JA
1316 part_stat_unlock();
1317 }
1318}
1319
522a7775 1320void blk_account_io_done(struct request *req, u64 now)
bc58ba94 1321{
bc58ba94 1322 /*
dd4c133f
TH
1323 * Account IO completion. flush_rq isn't accounted as a
1324 * normal IO on queueing nor completion. Accounting the
1325 * containing request is enough.
bc58ba94 1326 */
e8064021 1327 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
ddcf35d3 1328 const int sgrp = op_stat_group(req_op(req));
bc58ba94 1329 struct hd_struct *part;
bc58ba94 1330
112f158f 1331 part_stat_lock();
09e099d4 1332 part = req->part;
bc58ba94 1333
5b18b5a7 1334 update_io_ticks(part, jiffies);
112f158f
MS
1335 part_stat_inc(part, ios[sgrp]);
1336 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
5b18b5a7 1337 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
ddcf35d3 1338 part_dec_in_flight(req->q, part, rq_data_dir(req));
bc58ba94 1339
6c23a968 1340 hd_struct_put(part);
bc58ba94
JA
1341 part_stat_unlock();
1342 }
1343}
1344
320ae51f
JA
1345void blk_account_io_start(struct request *rq, bool new_io)
1346{
1347 struct hd_struct *part;
1348 int rw = rq_data_dir(rq);
320ae51f
JA
1349
1350 if (!blk_do_io_stat(rq))
1351 return;
1352
112f158f 1353 part_stat_lock();
320ae51f
JA
1354
1355 if (!new_io) {
1356 part = rq->part;
112f158f 1357 part_stat_inc(part, merges[rw]);
320ae51f
JA
1358 } else {
1359 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1360 if (!hd_struct_try_get(part)) {
1361 /*
1362 * The partition is already being removed,
1363 * the request will be accounted on the disk only
1364 *
1365 * We take a reference on disk->part0 although that
1366 * partition will never be deleted, so we can treat
1367 * it as any other partition.
1368 */
1369 part = &rq->rq_disk->part0;
1370 hd_struct_get(part);
1371 }
d62e26b3 1372 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
1373 rq->part = part;
1374 }
1375
5b18b5a7
MP
1376 update_io_ticks(part, jiffies);
1377
320ae51f
JA
1378 part_stat_unlock();
1379}
1380
ef71de8b
CH
1381/*
1382 * Steal bios from a request and add them to a bio list.
1383 * The request must not have been partially completed before.
1384 */
1385void blk_steal_bios(struct bio_list *list, struct request *rq)
1386{
1387 if (rq->bio) {
1388 if (list->tail)
1389 list->tail->bi_next = rq->bio;
1390 else
1391 list->head = rq->bio;
1392 list->tail = rq->biotail;
1393
1394 rq->bio = NULL;
1395 rq->biotail = NULL;
1396 }
1397
1398 rq->__data_len = 0;
1399}
1400EXPORT_SYMBOL_GPL(blk_steal_bios);
1401
3bcddeac 1402/**
2e60e022 1403 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1404 * @req: the request being processed
2a842aca 1405 * @error: block status code
8ebf9756 1406 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1407 *
1408 * Description:
8ebf9756
RD
1409 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1410 * the request structure even if @req doesn't have leftover.
1411 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1412 *
1413 * This special helper function is only for request stacking drivers
1414 * (e.g. request-based dm) so that they can handle partial completion.
1415 * Actual device drivers should use blk_end_request instead.
1416 *
1417 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1418 * %false return from this function.
3bcddeac 1419 *
1954e9a9
BVA
1420 * Note:
1421 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1422 * blk_rq_bytes() and in blk_update_request().
1423 *
3bcddeac 1424 * Return:
2e60e022
TH
1425 * %false - this request doesn't have any more data
1426 * %true - this request has more data
3bcddeac 1427 **/
2a842aca
CH
1428bool blk_update_request(struct request *req, blk_status_t error,
1429 unsigned int nr_bytes)
1da177e4 1430{
f79ea416 1431 int total_bytes;
1da177e4 1432
2a842aca 1433 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 1434
2e60e022
TH
1435 if (!req->bio)
1436 return false;
1437
2a842aca
CH
1438 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1439 !(req->rq_flags & RQF_QUIET)))
1440 print_req_error(req, error);
1da177e4 1441
bc58ba94 1442 blk_account_io_completion(req, nr_bytes);
d72d904a 1443
f79ea416
KO
1444 total_bytes = 0;
1445 while (req->bio) {
1446 struct bio *bio = req->bio;
4f024f37 1447 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 1448
9c24c10a 1449 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 1450 req->bio = bio->bi_next;
1da177e4 1451
fbbaf700
N
1452 /* Completion has already been traced */
1453 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 1454 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 1455
f79ea416
KO
1456 total_bytes += bio_bytes;
1457 nr_bytes -= bio_bytes;
1da177e4 1458
f79ea416
KO
1459 if (!nr_bytes)
1460 break;
1da177e4
LT
1461 }
1462
1463 /*
1464 * completely done
1465 */
2e60e022
TH
1466 if (!req->bio) {
1467 /*
1468 * Reset counters so that the request stacking driver
1469 * can find how many bytes remain in the request
1470 * later.
1471 */
a2dec7b3 1472 req->__data_len = 0;
2e60e022
TH
1473 return false;
1474 }
1da177e4 1475
a2dec7b3 1476 req->__data_len -= total_bytes;
2e46e8b2
TH
1477
1478 /* update sector only for requests with clear definition of sector */
57292b58 1479 if (!blk_rq_is_passthrough(req))
a2dec7b3 1480 req->__sector += total_bytes >> 9;
2e46e8b2 1481
80a761fd 1482 /* mixed attributes always follow the first bio */
e8064021 1483 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 1484 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 1485 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
1486 }
1487
ed6565e7
CH
1488 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1489 /*
1490 * If total number of sectors is less than the first segment
1491 * size, something has gone terribly wrong.
1492 */
1493 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1494 blk_dump_rq_flags(req, "request botched");
1495 req->__data_len = blk_rq_cur_bytes(req);
1496 }
2e46e8b2 1497
ed6565e7
CH
1498 /* recalculate the number of segments */
1499 blk_recalc_rq_segments(req);
1500 }
2e46e8b2 1501
2e60e022 1502 return true;
1da177e4 1503}
2e60e022 1504EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 1505
86db1e29
JA
1506void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
1507 struct bio *bio)
1da177e4 1508{
b4f42e28 1509 if (bio_has_data(bio))
fb2dce86 1510 rq->nr_phys_segments = bio_phys_segments(q, bio);
445251d0
JA
1511 else if (bio_op(bio) == REQ_OP_DISCARD)
1512 rq->nr_phys_segments = 1;
b4f42e28 1513
4f024f37 1514 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 1515 rq->bio = rq->biotail = bio;
1da177e4 1516
74d46992
CH
1517 if (bio->bi_disk)
1518 rq->rq_disk = bio->bi_disk;
66846572 1519}
1da177e4 1520
2d4dc890
IL
1521#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1522/**
1523 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1524 * @rq: the request to be flushed
1525 *
1526 * Description:
1527 * Flush all pages in @rq.
1528 */
1529void rq_flush_dcache_pages(struct request *rq)
1530{
1531 struct req_iterator iter;
7988613b 1532 struct bio_vec bvec;
2d4dc890
IL
1533
1534 rq_for_each_segment(bvec, rq, iter)
7988613b 1535 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1536}
1537EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1538#endif
1539
ef9e3fac
KU
1540/**
1541 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1542 * @q : the queue of the device being checked
1543 *
1544 * Description:
1545 * Check if underlying low-level drivers of a device are busy.
1546 * If the drivers want to export their busy state, they must set own
1547 * exporting function using blk_queue_lld_busy() first.
1548 *
1549 * Basically, this function is used only by request stacking drivers
1550 * to stop dispatching requests to underlying devices when underlying
1551 * devices are busy. This behavior helps more I/O merging on the queue
1552 * of the request stacking driver and prevents I/O throughput regression
1553 * on burst I/O load.
1554 *
1555 * Return:
1556 * 0 - Not busy (The request stacking driver should dispatch request)
1557 * 1 - Busy (The request stacking driver should stop dispatching request)
1558 */
1559int blk_lld_busy(struct request_queue *q)
1560{
344e9ffc 1561 if (queue_is_mq(q) && q->mq_ops->busy)
9ba20527 1562 return q->mq_ops->busy(q);
ef9e3fac
KU
1563
1564 return 0;
1565}
1566EXPORT_SYMBOL_GPL(blk_lld_busy);
1567
78d8e58a
MS
1568/**
1569 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1570 * @rq: the clone request to be cleaned up
1571 *
1572 * Description:
1573 * Free all bios in @rq for a cloned request.
1574 */
1575void blk_rq_unprep_clone(struct request *rq)
1576{
1577 struct bio *bio;
1578
1579 while ((bio = rq->bio) != NULL) {
1580 rq->bio = bio->bi_next;
1581
1582 bio_put(bio);
1583 }
1584}
1585EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1586
1587/*
1588 * Copy attributes of the original request to the clone request.
1589 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1590 */
1591static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d 1592{
b0fd271d
KU
1593 dst->__sector = blk_rq_pos(src);
1594 dst->__data_len = blk_rq_bytes(src);
297ba57d
BVA
1595 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1596 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1597 dst->special_vec = src->special_vec;
1598 }
b0fd271d
KU
1599 dst->nr_phys_segments = src->nr_phys_segments;
1600 dst->ioprio = src->ioprio;
1601 dst->extra_len = src->extra_len;
78d8e58a
MS
1602}
1603
1604/**
1605 * blk_rq_prep_clone - Helper function to setup clone request
1606 * @rq: the request to be setup
1607 * @rq_src: original request to be cloned
1608 * @bs: bio_set that bios for clone are allocated from
1609 * @gfp_mask: memory allocation mask for bio
1610 * @bio_ctr: setup function to be called for each clone bio.
1611 * Returns %0 for success, non %0 for failure.
1612 * @data: private data to be passed to @bio_ctr
1613 *
1614 * Description:
1615 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1616 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1617 * are not copied, and copying such parts is the caller's responsibility.
1618 * Also, pages which the original bios are pointing to are not copied
1619 * and the cloned bios just point same pages.
1620 * So cloned bios must be completed before original bios, which means
1621 * the caller must complete @rq before @rq_src.
1622 */
1623int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1624 struct bio_set *bs, gfp_t gfp_mask,
1625 int (*bio_ctr)(struct bio *, struct bio *, void *),
1626 void *data)
1627{
1628 struct bio *bio, *bio_src;
1629
1630 if (!bs)
f4f8154a 1631 bs = &fs_bio_set;
78d8e58a
MS
1632
1633 __rq_for_each_bio(bio_src, rq_src) {
1634 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1635 if (!bio)
1636 goto free_and_out;
1637
1638 if (bio_ctr && bio_ctr(bio, bio_src, data))
1639 goto free_and_out;
1640
1641 if (rq->bio) {
1642 rq->biotail->bi_next = bio;
1643 rq->biotail = bio;
1644 } else
1645 rq->bio = rq->biotail = bio;
1646 }
1647
1648 __blk_rq_prep_clone(rq, rq_src);
1649
1650 return 0;
1651
1652free_and_out:
1653 if (bio)
1654 bio_put(bio);
1655 blk_rq_unprep_clone(rq);
1656
1657 return -ENOMEM;
b0fd271d
KU
1658}
1659EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1660
59c3d45e 1661int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
1662{
1663 return queue_work(kblockd_workqueue, work);
1664}
1da177e4
LT
1665EXPORT_SYMBOL(kblockd_schedule_work);
1666
ee63cfa7
JA
1667int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1668{
1669 return queue_work_on(cpu, kblockd_workqueue, work);
1670}
1671EXPORT_SYMBOL(kblockd_schedule_work_on);
1672
818cd1cb
JA
1673int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1674 unsigned long delay)
1675{
1676 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1677}
1678EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1679
75df7136
SJ
1680/**
1681 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1682 * @plug: The &struct blk_plug that needs to be initialized
1683 *
1684 * Description:
40405851
JM
1685 * blk_start_plug() indicates to the block layer an intent by the caller
1686 * to submit multiple I/O requests in a batch. The block layer may use
1687 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1688 * is called. However, the block layer may choose to submit requests
1689 * before a call to blk_finish_plug() if the number of queued I/Os
1690 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1691 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1692 * the task schedules (see below).
1693 *
75df7136
SJ
1694 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1695 * pending I/O should the task end up blocking between blk_start_plug() and
1696 * blk_finish_plug(). This is important from a performance perspective, but
1697 * also ensures that we don't deadlock. For instance, if the task is blocking
1698 * for a memory allocation, memory reclaim could end up wanting to free a
1699 * page belonging to that request that is currently residing in our private
1700 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1701 * this kind of deadlock.
1702 */
73c10101
JA
1703void blk_start_plug(struct blk_plug *plug)
1704{
1705 struct task_struct *tsk = current;
1706
dd6cf3e1
SL
1707 /*
1708 * If this is a nested plug, don't actually assign it.
1709 */
1710 if (tsk->plug)
1711 return;
1712
320ae51f 1713 INIT_LIST_HEAD(&plug->mq_list);
048c9374 1714 INIT_LIST_HEAD(&plug->cb_list);
5f0ed774 1715 plug->rq_count = 0;
ce5b009c 1716 plug->multiple_queues = false;
5f0ed774 1717
73c10101 1718 /*
dd6cf3e1
SL
1719 * Store ordering should not be needed here, since a potential
1720 * preempt will imply a full memory barrier
73c10101 1721 */
dd6cf3e1 1722 tsk->plug = plug;
73c10101
JA
1723}
1724EXPORT_SYMBOL(blk_start_plug);
1725
74018dc3 1726static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
1727{
1728 LIST_HEAD(callbacks);
1729
2a7d5559
SL
1730 while (!list_empty(&plug->cb_list)) {
1731 list_splice_init(&plug->cb_list, &callbacks);
048c9374 1732
2a7d5559
SL
1733 while (!list_empty(&callbacks)) {
1734 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
1735 struct blk_plug_cb,
1736 list);
2a7d5559 1737 list_del(&cb->list);
74018dc3 1738 cb->callback(cb, from_schedule);
2a7d5559 1739 }
048c9374
N
1740 }
1741}
1742
9cbb1750
N
1743struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1744 int size)
1745{
1746 struct blk_plug *plug = current->plug;
1747 struct blk_plug_cb *cb;
1748
1749 if (!plug)
1750 return NULL;
1751
1752 list_for_each_entry(cb, &plug->cb_list, list)
1753 if (cb->callback == unplug && cb->data == data)
1754 return cb;
1755
1756 /* Not currently on the callback list */
1757 BUG_ON(size < sizeof(*cb));
1758 cb = kzalloc(size, GFP_ATOMIC);
1759 if (cb) {
1760 cb->data = data;
1761 cb->callback = unplug;
1762 list_add(&cb->list, &plug->cb_list);
1763 }
1764 return cb;
1765}
1766EXPORT_SYMBOL(blk_check_plugged);
1767
49cac01e 1768void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101 1769{
74018dc3 1770 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
1771
1772 if (!list_empty(&plug->mq_list))
1773 blk_mq_flush_plug_list(plug, from_schedule);
73c10101 1774}
73c10101 1775
40405851
JM
1776/**
1777 * blk_finish_plug - mark the end of a batch of submitted I/O
1778 * @plug: The &struct blk_plug passed to blk_start_plug()
1779 *
1780 * Description:
1781 * Indicate that a batch of I/O submissions is complete. This function
1782 * must be paired with an initial call to blk_start_plug(). The intent
1783 * is to allow the block layer to optimize I/O submission. See the
1784 * documentation for blk_start_plug() for more information.
1785 */
73c10101
JA
1786void blk_finish_plug(struct blk_plug *plug)
1787{
dd6cf3e1
SL
1788 if (plug != current->plug)
1789 return;
f6603783 1790 blk_flush_plug_list(plug, false);
73c10101 1791
dd6cf3e1 1792 current->plug = NULL;
73c10101 1793}
88b996cd 1794EXPORT_SYMBOL(blk_finish_plug);
73c10101 1795
1da177e4
LT
1796int __init blk_dev_init(void)
1797{
ef295ecf
CH
1798 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1799 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 1800 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
1801 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1802 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 1803
89b90be2
TH
1804 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1805 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 1806 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
1807 if (!kblockd_workqueue)
1808 panic("Failed to create kblockd\n");
1809
c2789bd4 1810 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 1811 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 1812
18fbda91
OS
1813#ifdef CONFIG_DEBUG_FS
1814 blk_debugfs_root = debugfs_create_dir("block", NULL);
1815#endif
1816
d38ecf93 1817 return 0;
1da177e4 1818}