]> git.ipfire.org Git - people/arne_f/kernel.git/blame - block/blk-mq.c
block: make part_in_flight() take an array of two ints
[people/arne_f/kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
cf43e6be 36#include "blk-stat.h"
87760e5e 37#include "blk-wbt.h"
bd166ef1 38#include "blk-mq-sched.h"
320ae51f 39
34dbad5d
OS
40static void blk_mq_poll_stats_start(struct request_queue *q);
41static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
42
720b8ccc
SB
43static int blk_mq_poll_stats_bkt(const struct request *rq)
44{
45 int ddir, bytes, bucket;
46
99c749a4 47 ddir = rq_data_dir(rq);
720b8ccc
SB
48 bytes = blk_rq_bytes(rq);
49
50 bucket = ddir + 2*(ilog2(bytes) - 9);
51
52 if (bucket < 0)
53 return -1;
54 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
55 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
56
57 return bucket;
58}
59
320ae51f
JA
60/*
61 * Check if any of the ctx's have pending work in this hardware queue
62 */
50e1dab8 63bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 64{
bd166ef1
JA
65 return sbitmap_any_bit_set(&hctx->ctx_map) ||
66 !list_empty_careful(&hctx->dispatch) ||
67 blk_mq_sched_has_work(hctx);
1429d7c9
JA
68}
69
320ae51f
JA
70/*
71 * Mark this ctx as having pending work in this hardware queue
72 */
73static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75{
88459642
OS
76 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
77 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
78}
79
80static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82{
88459642 83 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
84}
85
1671d522 86void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 87{
4ecd4fef 88 int freeze_depth;
cddd5d17 89
4ecd4fef
CH
90 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
91 if (freeze_depth == 1) {
3ef28e83 92 percpu_ref_kill(&q->q_usage_counter);
b94ec296 93 blk_mq_run_hw_queues(q, false);
cddd5d17 94 }
f3af020b 95}
1671d522 96EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 97
6bae363e 98void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 99{
3ef28e83 100 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 101}
6bae363e 102EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 103
f91328c4
KB
104int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
105 unsigned long timeout)
106{
107 return wait_event_timeout(q->mq_freeze_wq,
108 percpu_ref_is_zero(&q->q_usage_counter),
109 timeout);
110}
111EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 112
f3af020b
TH
113/*
114 * Guarantee no request is in use, so we can change any data structure of
115 * the queue afterward.
116 */
3ef28e83 117void blk_freeze_queue(struct request_queue *q)
f3af020b 118{
3ef28e83
DW
119 /*
120 * In the !blk_mq case we are only calling this to kill the
121 * q_usage_counter, otherwise this increases the freeze depth
122 * and waits for it to return to zero. For this reason there is
123 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
124 * exported to drivers as the only user for unfreeze is blk_mq.
125 */
1671d522 126 blk_freeze_queue_start(q);
f3af020b
TH
127 blk_mq_freeze_queue_wait(q);
128}
3ef28e83
DW
129
130void blk_mq_freeze_queue(struct request_queue *q)
131{
132 /*
133 * ...just an alias to keep freeze and unfreeze actions balanced
134 * in the blk_mq_* namespace
135 */
136 blk_freeze_queue(q);
137}
c761d96b 138EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 139
b4c6a028 140void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 141{
4ecd4fef 142 int freeze_depth;
320ae51f 143
4ecd4fef
CH
144 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
145 WARN_ON_ONCE(freeze_depth < 0);
146 if (!freeze_depth) {
3ef28e83 147 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 148 wake_up_all(&q->mq_freeze_wq);
add703fd 149 }
320ae51f 150}
b4c6a028 151EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 152
852ec809
BVA
153/*
154 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
155 * mpt3sas driver such that this function can be removed.
156 */
157void blk_mq_quiesce_queue_nowait(struct request_queue *q)
158{
159 unsigned long flags;
160
161 spin_lock_irqsave(q->queue_lock, flags);
162 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
163 spin_unlock_irqrestore(q->queue_lock, flags);
164}
165EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
166
6a83e74d 167/**
69e07c4a 168 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
169 * @q: request queue.
170 *
171 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
172 * callback function is invoked. Once this function is returned, we make
173 * sure no dispatch can happen until the queue is unquiesced via
174 * blk_mq_unquiesce_queue().
6a83e74d
BVA
175 */
176void blk_mq_quiesce_queue(struct request_queue *q)
177{
178 struct blk_mq_hw_ctx *hctx;
179 unsigned int i;
180 bool rcu = false;
181
1d9e9bc6 182 blk_mq_quiesce_queue_nowait(q);
f4560ffe 183
6a83e74d
BVA
184 queue_for_each_hw_ctx(q, hctx, i) {
185 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 186 synchronize_srcu(hctx->queue_rq_srcu);
6a83e74d
BVA
187 else
188 rcu = true;
189 }
190 if (rcu)
191 synchronize_rcu();
192}
193EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
194
e4e73913
ML
195/*
196 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
197 * @q: request queue.
198 *
199 * This function recovers queue into the state before quiescing
200 * which is done by blk_mq_quiesce_queue.
201 */
202void blk_mq_unquiesce_queue(struct request_queue *q)
203{
852ec809
BVA
204 unsigned long flags;
205
206 spin_lock_irqsave(q->queue_lock, flags);
f4560ffe 207 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
852ec809 208 spin_unlock_irqrestore(q->queue_lock, flags);
f4560ffe 209
1d9e9bc6
ML
210 /* dispatch requests which are inserted during quiescing */
211 blk_mq_run_hw_queues(q, true);
e4e73913
ML
212}
213EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
214
aed3ea94
JA
215void blk_mq_wake_waiters(struct request_queue *q)
216{
217 struct blk_mq_hw_ctx *hctx;
218 unsigned int i;
219
220 queue_for_each_hw_ctx(q, hctx, i)
221 if (blk_mq_hw_queue_mapped(hctx))
222 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
223
224 /*
225 * If we are called because the queue has now been marked as
226 * dying, we need to ensure that processes currently waiting on
227 * the queue are notified as well.
228 */
229 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
230}
231
320ae51f
JA
232bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
233{
234 return blk_mq_has_free_tags(hctx->tags);
235}
236EXPORT_SYMBOL(blk_mq_can_queue);
237
e4cdf1a1
CH
238static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
239 unsigned int tag, unsigned int op)
320ae51f 240{
e4cdf1a1
CH
241 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
242 struct request *rq = tags->static_rqs[tag];
243
c3a148d2
BVA
244 rq->rq_flags = 0;
245
e4cdf1a1
CH
246 if (data->flags & BLK_MQ_REQ_INTERNAL) {
247 rq->tag = -1;
248 rq->internal_tag = tag;
249 } else {
250 if (blk_mq_tag_busy(data->hctx)) {
251 rq->rq_flags = RQF_MQ_INFLIGHT;
252 atomic_inc(&data->hctx->nr_active);
253 }
254 rq->tag = tag;
255 rq->internal_tag = -1;
256 data->hctx->tags->rqs[rq->tag] = rq;
257 }
258
af76e555
CH
259 INIT_LIST_HEAD(&rq->queuelist);
260 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
261 rq->q = data->q;
262 rq->mq_ctx = data->ctx;
ef295ecf 263 rq->cmd_flags = op;
e4cdf1a1 264 if (blk_queue_io_stat(data->q))
e8064021 265 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
266 /* do not touch atomic flags, it needs atomic ops against the timer */
267 rq->cpu = -1;
af76e555
CH
268 INIT_HLIST_NODE(&rq->hash);
269 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
270 rq->rq_disk = NULL;
271 rq->part = NULL;
3ee32372 272 rq->start_time = jiffies;
af76e555
CH
273#ifdef CONFIG_BLK_CGROUP
274 rq->rl = NULL;
0fec08b4 275 set_start_time_ns(rq);
af76e555
CH
276 rq->io_start_time_ns = 0;
277#endif
278 rq->nr_phys_segments = 0;
279#if defined(CONFIG_BLK_DEV_INTEGRITY)
280 rq->nr_integrity_segments = 0;
281#endif
af76e555
CH
282 rq->special = NULL;
283 /* tag was already set */
af76e555 284 rq->extra_len = 0;
af76e555 285
af76e555 286 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
287 rq->timeout = 0;
288
af76e555
CH
289 rq->end_io = NULL;
290 rq->end_io_data = NULL;
291 rq->next_rq = NULL;
292
e4cdf1a1
CH
293 data->ctx->rq_dispatched[op_is_sync(op)]++;
294 return rq;
5dee8577
CH
295}
296
d2c0d383
CH
297static struct request *blk_mq_get_request(struct request_queue *q,
298 struct bio *bio, unsigned int op,
299 struct blk_mq_alloc_data *data)
300{
301 struct elevator_queue *e = q->elevator;
302 struct request *rq;
e4cdf1a1 303 unsigned int tag;
d2c0d383
CH
304
305 blk_queue_enter_live(q);
306 data->q = q;
307 if (likely(!data->ctx))
308 data->ctx = blk_mq_get_ctx(q);
309 if (likely(!data->hctx))
310 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
03a07c92
GR
311 if (op & REQ_NOWAIT)
312 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
313
314 if (e) {
315 data->flags |= BLK_MQ_REQ_INTERNAL;
316
317 /*
318 * Flush requests are special and go directly to the
319 * dispatch list.
320 */
5bbf4e5a
CH
321 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
322 e->type->ops.mq.limit_depth(op, data);
d2c0d383
CH
323 }
324
e4cdf1a1
CH
325 tag = blk_mq_get_tag(data);
326 if (tag == BLK_MQ_TAG_FAIL) {
037cebb8
CH
327 blk_queue_exit(q);
328 return NULL;
d2c0d383
CH
329 }
330
e4cdf1a1 331 rq = blk_mq_rq_ctx_init(data, tag, op);
037cebb8
CH
332 if (!op_is_flush(op)) {
333 rq->elv.icq = NULL;
5bbf4e5a 334 if (e && e->type->ops.mq.prepare_request) {
44e8c2bf
CH
335 if (e->type->icq_cache && rq_ioc(bio))
336 blk_mq_sched_assign_ioc(rq, bio);
337
5bbf4e5a
CH
338 e->type->ops.mq.prepare_request(rq, bio);
339 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 340 }
037cebb8
CH
341 }
342 data->hctx->queued++;
343 return rq;
d2c0d383
CH
344}
345
cd6ce148 346struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
6f3b0e8b 347 unsigned int flags)
320ae51f 348{
5a797e00 349 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 350 struct request *rq;
a492f075 351 int ret;
320ae51f 352
6f3b0e8b 353 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
354 if (ret)
355 return ERR_PTR(ret);
320ae51f 356
cd6ce148 357 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
841bac2c 358
bd166ef1
JA
359 blk_mq_put_ctx(alloc_data.ctx);
360 blk_queue_exit(q);
361
362 if (!rq)
a492f075 363 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
364
365 rq->__data_len = 0;
366 rq->__sector = (sector_t) -1;
367 rq->bio = rq->biotail = NULL;
320ae51f
JA
368 return rq;
369}
4bb659b1 370EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 371
cd6ce148
BVA
372struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
373 unsigned int op, unsigned int flags, unsigned int hctx_idx)
1f5bd336 374{
6d2809d5 375 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 376 struct request *rq;
6d2809d5 377 unsigned int cpu;
1f5bd336
ML
378 int ret;
379
380 /*
381 * If the tag allocator sleeps we could get an allocation for a
382 * different hardware context. No need to complicate the low level
383 * allocator for this for the rare use case of a command tied to
384 * a specific queue.
385 */
386 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
387 return ERR_PTR(-EINVAL);
388
389 if (hctx_idx >= q->nr_hw_queues)
390 return ERR_PTR(-EIO);
391
392 ret = blk_queue_enter(q, true);
393 if (ret)
394 return ERR_PTR(ret);
395
c8712c6a
CH
396 /*
397 * Check if the hardware context is actually mapped to anything.
398 * If not tell the caller that it should skip this queue.
399 */
6d2809d5
OS
400 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
401 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
402 blk_queue_exit(q);
403 return ERR_PTR(-EXDEV);
c8712c6a 404 }
6d2809d5
OS
405 cpu = cpumask_first(alloc_data.hctx->cpumask);
406 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 407
cd6ce148 408 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
c8712c6a 409
c8712c6a 410 blk_queue_exit(q);
6d2809d5
OS
411
412 if (!rq)
413 return ERR_PTR(-EWOULDBLOCK);
414
415 return rq;
1f5bd336
ML
416}
417EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
418
6af54051 419void blk_mq_free_request(struct request *rq)
320ae51f 420{
320ae51f 421 struct request_queue *q = rq->q;
6af54051
CH
422 struct elevator_queue *e = q->elevator;
423 struct blk_mq_ctx *ctx = rq->mq_ctx;
424 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
425 const int sched_tag = rq->internal_tag;
426
5bbf4e5a 427 if (rq->rq_flags & RQF_ELVPRIV) {
6af54051
CH
428 if (e && e->type->ops.mq.finish_request)
429 e->type->ops.mq.finish_request(rq);
430 if (rq->elv.icq) {
431 put_io_context(rq->elv.icq->ioc);
432 rq->elv.icq = NULL;
433 }
434 }
320ae51f 435
6af54051 436 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 437 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 438 atomic_dec(&hctx->nr_active);
87760e5e
JA
439
440 wbt_done(q->rq_wb, &rq->issue_stat);
0d2602ca 441
af76e555 442 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 443 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
444 if (rq->tag != -1)
445 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
446 if (sched_tag != -1)
c05f8525 447 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
6d8c6c0f 448 blk_mq_sched_restart(hctx);
3ef28e83 449 blk_queue_exit(q);
320ae51f 450}
1a3b595a 451EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 452
2a842aca 453inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 454{
0d11e6ac
ML
455 blk_account_io_done(rq);
456
91b63639 457 if (rq->end_io) {
87760e5e 458 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 459 rq->end_io(rq, error);
91b63639
CH
460 } else {
461 if (unlikely(blk_bidi_rq(rq)))
462 blk_mq_free_request(rq->next_rq);
320ae51f 463 blk_mq_free_request(rq);
91b63639 464 }
320ae51f 465}
c8a446ad 466EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 467
2a842aca 468void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
469{
470 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
471 BUG();
c8a446ad 472 __blk_mq_end_request(rq, error);
63151a44 473}
c8a446ad 474EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 475
30a91cb4 476static void __blk_mq_complete_request_remote(void *data)
320ae51f 477{
3d6efbf6 478 struct request *rq = data;
320ae51f 479
30a91cb4 480 rq->q->softirq_done_fn(rq);
320ae51f 481}
320ae51f 482
453f8341 483static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
484{
485 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 486 bool shared = false;
320ae51f
JA
487 int cpu;
488
453f8341
CH
489 if (rq->internal_tag != -1)
490 blk_mq_sched_completed_request(rq);
491 if (rq->rq_flags & RQF_STATS) {
492 blk_mq_poll_stats_start(rq->q);
493 blk_stat_add(rq);
494 }
495
38535201 496 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
497 rq->q->softirq_done_fn(rq);
498 return;
499 }
320ae51f
JA
500
501 cpu = get_cpu();
38535201
CH
502 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
503 shared = cpus_share_cache(cpu, ctx->cpu);
504
505 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 506 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
507 rq->csd.info = rq;
508 rq->csd.flags = 0;
c46fff2a 509 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 510 } else {
30a91cb4 511 rq->q->softirq_done_fn(rq);
3d6efbf6 512 }
320ae51f
JA
513 put_cpu();
514}
30a91cb4
CH
515
516/**
517 * blk_mq_complete_request - end I/O on a request
518 * @rq: the request being processed
519 *
520 * Description:
521 * Ends all I/O on a request. It does not handle partial completions.
522 * The actual completion happens out-of-order, through a IPI handler.
523 **/
08e0029a 524void blk_mq_complete_request(struct request *rq)
30a91cb4 525{
95f09684
JA
526 struct request_queue *q = rq->q;
527
528 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 529 return;
08e0029a 530 if (!blk_mark_rq_complete(rq))
ed851860 531 __blk_mq_complete_request(rq);
30a91cb4
CH
532}
533EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 534
973c0191
KB
535int blk_mq_request_started(struct request *rq)
536{
537 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
538}
539EXPORT_SYMBOL_GPL(blk_mq_request_started);
540
e2490073 541void blk_mq_start_request(struct request *rq)
320ae51f
JA
542{
543 struct request_queue *q = rq->q;
544
bd166ef1
JA
545 blk_mq_sched_started_request(rq);
546
320ae51f
JA
547 trace_block_rq_issue(q, rq);
548
cf43e6be 549 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 550 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 551 rq->rq_flags |= RQF_STATS;
87760e5e 552 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
553 }
554
2b8393b4 555 blk_add_timer(rq);
87ee7b11 556
538b7534
JA
557 /*
558 * Ensure that ->deadline is visible before set the started
559 * flag and clear the completed flag.
560 */
561 smp_mb__before_atomic();
562
87ee7b11
JA
563 /*
564 * Mark us as started and clear complete. Complete might have been
565 * set if requeue raced with timeout, which then marked it as
566 * complete. So be sure to clear complete again when we start
567 * the request, otherwise we'll ignore the completion event.
568 */
4b570521
JA
569 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
570 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
571 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
572 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
573
574 if (q->dma_drain_size && blk_rq_bytes(rq)) {
575 /*
576 * Make sure space for the drain appears. We know we can do
577 * this because max_hw_segments has been adjusted to be one
578 * fewer than the device can handle.
579 */
580 rq->nr_phys_segments++;
581 }
320ae51f 582}
e2490073 583EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 584
d9d149a3
ML
585/*
586 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
48b99c9d 587 * flag isn't set yet, so there may be race with timeout handler,
d9d149a3
ML
588 * but given rq->deadline is just set in .queue_rq() under
589 * this situation, the race won't be possible in reality because
590 * rq->timeout should be set as big enough to cover the window
591 * between blk_mq_start_request() called from .queue_rq() and
592 * clearing REQ_ATOM_STARTED here.
593 */
ed0791b2 594static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
595{
596 struct request_queue *q = rq->q;
597
598 trace_block_rq_requeue(q, rq);
87760e5e 599 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 600 blk_mq_sched_requeue_request(rq);
49f5baa5 601
e2490073
CH
602 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
603 if (q->dma_drain_size && blk_rq_bytes(rq))
604 rq->nr_phys_segments--;
605 }
320ae51f
JA
606}
607
2b053aca 608void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 609{
ed0791b2 610 __blk_mq_requeue_request(rq);
ed0791b2 611
ed0791b2 612 BUG_ON(blk_queued_rq(rq));
2b053aca 613 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
614}
615EXPORT_SYMBOL(blk_mq_requeue_request);
616
6fca6a61
CH
617static void blk_mq_requeue_work(struct work_struct *work)
618{
619 struct request_queue *q =
2849450a 620 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
621 LIST_HEAD(rq_list);
622 struct request *rq, *next;
6fca6a61 623
18e9781d 624 spin_lock_irq(&q->requeue_lock);
6fca6a61 625 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 626 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
627
628 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 629 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
630 continue;
631
e8064021 632 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 633 list_del_init(&rq->queuelist);
bd6737f1 634 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
635 }
636
637 while (!list_empty(&rq_list)) {
638 rq = list_entry(rq_list.next, struct request, queuelist);
639 list_del_init(&rq->queuelist);
bd6737f1 640 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
641 }
642
52d7f1b5 643 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
644}
645
2b053aca
BVA
646void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
647 bool kick_requeue_list)
6fca6a61
CH
648{
649 struct request_queue *q = rq->q;
650 unsigned long flags;
651
652 /*
653 * We abuse this flag that is otherwise used by the I/O scheduler to
654 * request head insertation from the workqueue.
655 */
e8064021 656 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
657
658 spin_lock_irqsave(&q->requeue_lock, flags);
659 if (at_head) {
e8064021 660 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
661 list_add(&rq->queuelist, &q->requeue_list);
662 } else {
663 list_add_tail(&rq->queuelist, &q->requeue_list);
664 }
665 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
666
667 if (kick_requeue_list)
668 blk_mq_kick_requeue_list(q);
6fca6a61
CH
669}
670EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
671
672void blk_mq_kick_requeue_list(struct request_queue *q)
673{
2849450a 674 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
675}
676EXPORT_SYMBOL(blk_mq_kick_requeue_list);
677
2849450a
MS
678void blk_mq_delay_kick_requeue_list(struct request_queue *q,
679 unsigned long msecs)
680{
681 kblockd_schedule_delayed_work(&q->requeue_work,
682 msecs_to_jiffies(msecs));
683}
684EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
685
0e62f51f
JA
686struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
687{
88c7b2b7
JA
688 if (tag < tags->nr_tags) {
689 prefetch(tags->rqs[tag]);
4ee86bab 690 return tags->rqs[tag];
88c7b2b7 691 }
4ee86bab
HR
692
693 return NULL;
24d2f903
CH
694}
695EXPORT_SYMBOL(blk_mq_tag_to_rq);
696
320ae51f 697struct blk_mq_timeout_data {
46f92d42
CH
698 unsigned long next;
699 unsigned int next_set;
320ae51f
JA
700};
701
90415837 702void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 703{
f8a5b122 704 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 705 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
706
707 /*
708 * We know that complete is set at this point. If STARTED isn't set
709 * anymore, then the request isn't active and the "timeout" should
710 * just be ignored. This can happen due to the bitflag ordering.
711 * Timeout first checks if STARTED is set, and if it is, assumes
712 * the request is active. But if we race with completion, then
48b99c9d 713 * both flags will get cleared. So check here again, and ignore
87ee7b11
JA
714 * a timeout event with a request that isn't active.
715 */
46f92d42
CH
716 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
717 return;
87ee7b11 718
46f92d42 719 if (ops->timeout)
0152fb6b 720 ret = ops->timeout(req, reserved);
46f92d42
CH
721
722 switch (ret) {
723 case BLK_EH_HANDLED:
724 __blk_mq_complete_request(req);
725 break;
726 case BLK_EH_RESET_TIMER:
727 blk_add_timer(req);
728 blk_clear_rq_complete(req);
729 break;
730 case BLK_EH_NOT_HANDLED:
731 break;
732 default:
733 printk(KERN_ERR "block: bad eh return: %d\n", ret);
734 break;
735 }
87ee7b11 736}
5b3f25fc 737
81481eb4
CH
738static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
739 struct request *rq, void *priv, bool reserved)
740{
741 struct blk_mq_timeout_data *data = priv;
87ee7b11 742
95a49603 743 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 744 return;
87ee7b11 745
d9d149a3
ML
746 /*
747 * The rq being checked may have been freed and reallocated
748 * out already here, we avoid this race by checking rq->deadline
749 * and REQ_ATOM_COMPLETE flag together:
750 *
751 * - if rq->deadline is observed as new value because of
752 * reusing, the rq won't be timed out because of timing.
753 * - if rq->deadline is observed as previous value,
754 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
755 * because we put a barrier between setting rq->deadline
756 * and clearing the flag in blk_mq_start_request(), so
757 * this rq won't be timed out too.
758 */
46f92d42
CH
759 if (time_after_eq(jiffies, rq->deadline)) {
760 if (!blk_mark_rq_complete(rq))
0152fb6b 761 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
762 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
763 data->next = rq->deadline;
764 data->next_set = 1;
765 }
87ee7b11
JA
766}
767
287922eb 768static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 769{
287922eb
CH
770 struct request_queue *q =
771 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
772 struct blk_mq_timeout_data data = {
773 .next = 0,
774 .next_set = 0,
775 };
81481eb4 776 int i;
320ae51f 777
71f79fb3
GKB
778 /* A deadlock might occur if a request is stuck requiring a
779 * timeout at the same time a queue freeze is waiting
780 * completion, since the timeout code would not be able to
781 * acquire the queue reference here.
782 *
783 * That's why we don't use blk_queue_enter here; instead, we use
784 * percpu_ref_tryget directly, because we need to be able to
785 * obtain a reference even in the short window between the queue
786 * starting to freeze, by dropping the first reference in
1671d522 787 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
788 * consumed, marked by the instant q_usage_counter reaches
789 * zero.
790 */
791 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
792 return;
793
0bf6cd5b 794 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 795
81481eb4
CH
796 if (data.next_set) {
797 data.next = blk_rq_timeout(round_jiffies_up(data.next));
798 mod_timer(&q->timeout, data.next);
0d2602ca 799 } else {
0bf6cd5b
CH
800 struct blk_mq_hw_ctx *hctx;
801
f054b56c
ML
802 queue_for_each_hw_ctx(q, hctx, i) {
803 /* the hctx may be unmapped, so check it here */
804 if (blk_mq_hw_queue_mapped(hctx))
805 blk_mq_tag_idle(hctx);
806 }
0d2602ca 807 }
287922eb 808 blk_queue_exit(q);
320ae51f
JA
809}
810
88459642
OS
811struct flush_busy_ctx_data {
812 struct blk_mq_hw_ctx *hctx;
813 struct list_head *list;
814};
815
816static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
817{
818 struct flush_busy_ctx_data *flush_data = data;
819 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
820 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
821
822 sbitmap_clear_bit(sb, bitnr);
823 spin_lock(&ctx->lock);
824 list_splice_tail_init(&ctx->rq_list, flush_data->list);
825 spin_unlock(&ctx->lock);
826 return true;
827}
828
1429d7c9
JA
829/*
830 * Process software queues that have been marked busy, splicing them
831 * to the for-dispatch
832 */
2c3ad667 833void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 834{
88459642
OS
835 struct flush_busy_ctx_data data = {
836 .hctx = hctx,
837 .list = list,
838 };
1429d7c9 839
88459642 840 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 841}
2c3ad667 842EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 843
703fd1c0
JA
844static inline unsigned int queued_to_index(unsigned int queued)
845{
846 if (!queued)
847 return 0;
1429d7c9 848
703fd1c0 849 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
850}
851
bd6737f1
JA
852bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
853 bool wait)
bd166ef1
JA
854{
855 struct blk_mq_alloc_data data = {
856 .q = rq->q,
bd166ef1
JA
857 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
858 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
859 };
860
5feeacdd
JA
861 might_sleep_if(wait);
862
81380ca1
OS
863 if (rq->tag != -1)
864 goto done;
bd166ef1 865
415b806d
SG
866 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
867 data.flags |= BLK_MQ_REQ_RESERVED;
868
bd166ef1
JA
869 rq->tag = blk_mq_get_tag(&data);
870 if (rq->tag >= 0) {
200e86b3
JA
871 if (blk_mq_tag_busy(data.hctx)) {
872 rq->rq_flags |= RQF_MQ_INFLIGHT;
873 atomic_inc(&data.hctx->nr_active);
874 }
bd166ef1 875 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
876 }
877
81380ca1
OS
878done:
879 if (hctx)
880 *hctx = data.hctx;
881 return rq->tag != -1;
bd166ef1
JA
882}
883
113285b4
JA
884static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
885 struct request *rq)
99cf1dc5 886{
99cf1dc5
JA
887 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
888 rq->tag = -1;
889
890 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
891 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
892 atomic_dec(&hctx->nr_active);
893 }
894}
895
113285b4
JA
896static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
897 struct request *rq)
898{
899 if (rq->tag == -1 || rq->internal_tag == -1)
900 return;
901
902 __blk_mq_put_driver_tag(hctx, rq);
903}
904
905static void blk_mq_put_driver_tag(struct request *rq)
906{
907 struct blk_mq_hw_ctx *hctx;
908
909 if (rq->tag == -1 || rq->internal_tag == -1)
910 return;
911
912 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
913 __blk_mq_put_driver_tag(hctx, rq);
914}
915
bd166ef1
JA
916/*
917 * If we fail getting a driver tag because all the driver tags are already
918 * assigned and on the dispatch list, BUT the first entry does not have a
919 * tag, then we could deadlock. For that case, move entries with assigned
920 * driver tags to the front, leaving the set of tagged requests in the
921 * same order, and the untagged set in the same order.
922 */
923static bool reorder_tags_to_front(struct list_head *list)
924{
925 struct request *rq, *tmp, *first = NULL;
926
927 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
928 if (rq == first)
929 break;
930 if (rq->tag != -1) {
931 list_move(&rq->queuelist, list);
932 if (!first)
933 first = rq;
934 }
935 }
936
937 return first != NULL;
938}
939
ac6424b9 940static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
da55f2cc
OS
941 void *key)
942{
943 struct blk_mq_hw_ctx *hctx;
944
945 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
946
2055da97 947 list_del(&wait->entry);
da55f2cc
OS
948 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
949 blk_mq_run_hw_queue(hctx, true);
950 return 1;
951}
952
953static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
954{
955 struct sbq_wait_state *ws;
956
957 /*
958 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
959 * The thread which wins the race to grab this bit adds the hardware
960 * queue to the wait queue.
961 */
962 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
963 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
964 return false;
965
966 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
967 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
968
969 /*
970 * As soon as this returns, it's no longer safe to fiddle with
971 * hctx->dispatch_wait, since a completion can wake up the wait queue
972 * and unlock the bit.
973 */
974 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
975 return true;
976}
977
81380ca1 978bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
320ae51f 979{
81380ca1 980 struct blk_mq_hw_ctx *hctx;
320ae51f 981 struct request *rq;
fc17b653 982 int errors, queued;
320ae51f 983
81380ca1
OS
984 if (list_empty(list))
985 return false;
986
320ae51f
JA
987 /*
988 * Now process all the entries, sending them to the driver.
989 */
93efe981 990 errors = queued = 0;
81380ca1 991 do {
74c45052 992 struct blk_mq_queue_data bd;
fc17b653 993 blk_status_t ret;
320ae51f 994
f04c3df3 995 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
996 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
997 if (!queued && reorder_tags_to_front(list))
998 continue;
3c782d67
JA
999
1000 /*
da55f2cc
OS
1001 * The initial allocation attempt failed, so we need to
1002 * rerun the hardware queue when a tag is freed.
3c782d67 1003 */
807b1041
OS
1004 if (!blk_mq_dispatch_wait_add(hctx))
1005 break;
1006
1007 /*
1008 * It's possible that a tag was freed in the window
1009 * between the allocation failure and adding the
1010 * hardware queue to the wait queue.
1011 */
1012 if (!blk_mq_get_driver_tag(rq, &hctx, false))
3c782d67 1013 break;
bd166ef1 1014 }
da55f2cc 1015
320ae51f 1016 list_del_init(&rq->queuelist);
320ae51f 1017
74c45052 1018 bd.rq = rq;
113285b4
JA
1019
1020 /*
1021 * Flag last if we have no more requests, or if we have more
1022 * but can't assign a driver tag to it.
1023 */
1024 if (list_empty(list))
1025 bd.last = true;
1026 else {
1027 struct request *nxt;
1028
1029 nxt = list_first_entry(list, struct request, queuelist);
1030 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1031 }
74c45052
JA
1032
1033 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653 1034 if (ret == BLK_STS_RESOURCE) {
113285b4 1035 blk_mq_put_driver_tag_hctx(hctx, rq);
f04c3df3 1036 list_add(&rq->queuelist, list);
ed0791b2 1037 __blk_mq_requeue_request(rq);
320ae51f 1038 break;
fc17b653
CH
1039 }
1040
1041 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1042 errors++;
2a842aca 1043 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1044 continue;
320ae51f
JA
1045 }
1046
fc17b653 1047 queued++;
81380ca1 1048 } while (!list_empty(list));
320ae51f 1049
703fd1c0 1050 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1051
1052 /*
1053 * Any items that need requeuing? Stuff them into hctx->dispatch,
1054 * that is where we will continue on next queue run.
1055 */
f04c3df3 1056 if (!list_empty(list)) {
113285b4 1057 /*
710c785f
BVA
1058 * If an I/O scheduler has been configured and we got a driver
1059 * tag for the next request already, free it again.
113285b4
JA
1060 */
1061 rq = list_first_entry(list, struct request, queuelist);
1062 blk_mq_put_driver_tag(rq);
1063
320ae51f 1064 spin_lock(&hctx->lock);
c13660a0 1065 list_splice_init(list, &hctx->dispatch);
320ae51f 1066 spin_unlock(&hctx->lock);
f04c3df3 1067
9ba52e58 1068 /*
710c785f
BVA
1069 * If SCHED_RESTART was set by the caller of this function and
1070 * it is no longer set that means that it was cleared by another
1071 * thread and hence that a queue rerun is needed.
9ba52e58 1072 *
710c785f
BVA
1073 * If TAG_WAITING is set that means that an I/O scheduler has
1074 * been configured and another thread is waiting for a driver
1075 * tag. To guarantee fairness, do not rerun this hardware queue
1076 * but let the other thread grab the driver tag.
bd166ef1 1077 *
710c785f
BVA
1078 * If no I/O scheduler has been configured it is possible that
1079 * the hardware queue got stopped and restarted before requests
1080 * were pushed back onto the dispatch list. Rerun the queue to
1081 * avoid starvation. Notes:
1082 * - blk_mq_run_hw_queue() checks whether or not a queue has
1083 * been stopped before rerunning a queue.
1084 * - Some but not all block drivers stop a queue before
fc17b653 1085 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1086 * and dm-rq.
bd166ef1 1087 */
da55f2cc
OS
1088 if (!blk_mq_sched_needs_restart(hctx) &&
1089 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
bd166ef1 1090 blk_mq_run_hw_queue(hctx, true);
320ae51f 1091 }
f04c3df3 1092
93efe981 1093 return (queued + errors) != 0;
f04c3df3
JA
1094}
1095
6a83e74d
BVA
1096static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1097{
1098 int srcu_idx;
1099
b7a71e66
JA
1100 /*
1101 * We should be running this queue from one of the CPUs that
1102 * are mapped to it.
1103 */
6a83e74d
BVA
1104 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1105 cpu_online(hctx->next_cpu));
1106
b7a71e66
JA
1107 /*
1108 * We can't run the queue inline with ints disabled. Ensure that
1109 * we catch bad users of this early.
1110 */
1111 WARN_ON_ONCE(in_interrupt());
1112
6a83e74d
BVA
1113 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1114 rcu_read_lock();
bd166ef1 1115 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1116 rcu_read_unlock();
1117 } else {
bf4907c0
JA
1118 might_sleep();
1119
07319678 1120 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
bd166ef1 1121 blk_mq_sched_dispatch_requests(hctx);
07319678 1122 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
6a83e74d
BVA
1123 }
1124}
1125
506e931f
JA
1126/*
1127 * It'd be great if the workqueue API had a way to pass
1128 * in a mask and had some smarts for more clever placement.
1129 * For now we just round-robin here, switching for every
1130 * BLK_MQ_CPU_WORK_BATCH queued items.
1131 */
1132static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1133{
b657d7e6
CH
1134 if (hctx->queue->nr_hw_queues == 1)
1135 return WORK_CPU_UNBOUND;
506e931f
JA
1136
1137 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1138 int next_cpu;
506e931f
JA
1139
1140 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1141 if (next_cpu >= nr_cpu_ids)
1142 next_cpu = cpumask_first(hctx->cpumask);
1143
1144 hctx->next_cpu = next_cpu;
1145 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1146 }
1147
b657d7e6 1148 return hctx->next_cpu;
506e931f
JA
1149}
1150
7587a5ae
BVA
1151static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1152 unsigned long msecs)
320ae51f 1153{
5435c023
BVA
1154 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1155 return;
1156
1157 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1158 return;
1159
1b792f2f 1160 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1161 int cpu = get_cpu();
1162 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1163 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1164 put_cpu();
398205b8
PB
1165 return;
1166 }
e4043dcf 1167
2a90d4aa 1168 put_cpu();
e4043dcf 1169 }
398205b8 1170
9f993737
JA
1171 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1172 &hctx->run_work,
1173 msecs_to_jiffies(msecs));
7587a5ae
BVA
1174}
1175
1176void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1177{
1178 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1179}
1180EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1181
1182void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1183{
1184 __blk_mq_delay_run_hw_queue(hctx, async, 0);
320ae51f 1185}
5b727272 1186EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1187
b94ec296 1188void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1189{
1190 struct blk_mq_hw_ctx *hctx;
1191 int i;
1192
1193 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1194 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1195 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1196 continue;
1197
b94ec296 1198 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1199 }
1200}
b94ec296 1201EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1202
fd001443
BVA
1203/**
1204 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1205 * @q: request queue.
1206 *
1207 * The caller is responsible for serializing this function against
1208 * blk_mq_{start,stop}_hw_queue().
1209 */
1210bool blk_mq_queue_stopped(struct request_queue *q)
1211{
1212 struct blk_mq_hw_ctx *hctx;
1213 int i;
1214
1215 queue_for_each_hw_ctx(q, hctx, i)
1216 if (blk_mq_hctx_stopped(hctx))
1217 return true;
1218
1219 return false;
1220}
1221EXPORT_SYMBOL(blk_mq_queue_stopped);
1222
39a70c76
ML
1223/*
1224 * This function is often used for pausing .queue_rq() by driver when
1225 * there isn't enough resource or some conditions aren't satisfied, and
1226 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1227 *
1228 * We do not guarantee that dispatch can be drained or blocked
1229 * after blk_mq_stop_hw_queue() returns. Please use
1230 * blk_mq_quiesce_queue() for that requirement.
1231 */
2719aa21
JA
1232void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1233{
641a9ed6 1234 cancel_delayed_work(&hctx->run_work);
280d45f6 1235
641a9ed6 1236 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1237}
641a9ed6 1238EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1239
39a70c76
ML
1240/*
1241 * This function is often used for pausing .queue_rq() by driver when
1242 * there isn't enough resource or some conditions aren't satisfied, and
1243 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1244 *
1245 * We do not guarantee that dispatch can be drained or blocked
1246 * after blk_mq_stop_hw_queues() returns. Please use
1247 * blk_mq_quiesce_queue() for that requirement.
1248 */
2719aa21
JA
1249void blk_mq_stop_hw_queues(struct request_queue *q)
1250{
641a9ed6
ML
1251 struct blk_mq_hw_ctx *hctx;
1252 int i;
1253
1254 queue_for_each_hw_ctx(q, hctx, i)
1255 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1256}
1257EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1258
320ae51f
JA
1259void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1260{
1261 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1262
0ffbce80 1263 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1264}
1265EXPORT_SYMBOL(blk_mq_start_hw_queue);
1266
2f268556
CH
1267void blk_mq_start_hw_queues(struct request_queue *q)
1268{
1269 struct blk_mq_hw_ctx *hctx;
1270 int i;
1271
1272 queue_for_each_hw_ctx(q, hctx, i)
1273 blk_mq_start_hw_queue(hctx);
1274}
1275EXPORT_SYMBOL(blk_mq_start_hw_queues);
1276
ae911c5e
JA
1277void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1278{
1279 if (!blk_mq_hctx_stopped(hctx))
1280 return;
1281
1282 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1283 blk_mq_run_hw_queue(hctx, async);
1284}
1285EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1286
1b4a3258 1287void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1288{
1289 struct blk_mq_hw_ctx *hctx;
1290 int i;
1291
ae911c5e
JA
1292 queue_for_each_hw_ctx(q, hctx, i)
1293 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1294}
1295EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1296
70f4db63 1297static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1298{
1299 struct blk_mq_hw_ctx *hctx;
1300
9f993737 1301 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1302
21c6e939
JA
1303 /*
1304 * If we are stopped, don't run the queue. The exception is if
1305 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1306 * the STOPPED bit and run it.
1307 */
1308 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1309 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1310 return;
7587a5ae 1311
21c6e939
JA
1312 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1313 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1314 }
7587a5ae
BVA
1315
1316 __blk_mq_run_hw_queue(hctx);
1317}
1318
70f4db63
CH
1319
1320void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1321{
5435c023 1322 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
19c66e59 1323 return;
70f4db63 1324
21c6e939
JA
1325 /*
1326 * Stop the hw queue, then modify currently delayed work.
1327 * This should prevent us from running the queue prematurely.
1328 * Mark the queue as auto-clearing STOPPED when it runs.
1329 */
7e79dadc 1330 blk_mq_stop_hw_queue(hctx);
21c6e939
JA
1331 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1332 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1333 &hctx->run_work,
1334 msecs_to_jiffies(msecs));
70f4db63
CH
1335}
1336EXPORT_SYMBOL(blk_mq_delay_queue);
1337
cfd0c552 1338static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1339 struct request *rq,
1340 bool at_head)
320ae51f 1341{
e57690fe
JA
1342 struct blk_mq_ctx *ctx = rq->mq_ctx;
1343
7b607814
BVA
1344 lockdep_assert_held(&ctx->lock);
1345
01b983c9
JA
1346 trace_block_rq_insert(hctx->queue, rq);
1347
72a0a36e
CH
1348 if (at_head)
1349 list_add(&rq->queuelist, &ctx->rq_list);
1350 else
1351 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1352}
4bb659b1 1353
2c3ad667
JA
1354void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1355 bool at_head)
cfd0c552
ML
1356{
1357 struct blk_mq_ctx *ctx = rq->mq_ctx;
1358
7b607814
BVA
1359 lockdep_assert_held(&ctx->lock);
1360
e57690fe 1361 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1362 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1363}
1364
bd166ef1
JA
1365void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1366 struct list_head *list)
320ae51f
JA
1367
1368{
320ae51f
JA
1369 /*
1370 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1371 * offline now
1372 */
1373 spin_lock(&ctx->lock);
1374 while (!list_empty(list)) {
1375 struct request *rq;
1376
1377 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1378 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1379 list_del_init(&rq->queuelist);
e57690fe 1380 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1381 }
cfd0c552 1382 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1383 spin_unlock(&ctx->lock);
320ae51f
JA
1384}
1385
1386static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1387{
1388 struct request *rqa = container_of(a, struct request, queuelist);
1389 struct request *rqb = container_of(b, struct request, queuelist);
1390
1391 return !(rqa->mq_ctx < rqb->mq_ctx ||
1392 (rqa->mq_ctx == rqb->mq_ctx &&
1393 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1394}
1395
1396void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1397{
1398 struct blk_mq_ctx *this_ctx;
1399 struct request_queue *this_q;
1400 struct request *rq;
1401 LIST_HEAD(list);
1402 LIST_HEAD(ctx_list);
1403 unsigned int depth;
1404
1405 list_splice_init(&plug->mq_list, &list);
1406
1407 list_sort(NULL, &list, plug_ctx_cmp);
1408
1409 this_q = NULL;
1410 this_ctx = NULL;
1411 depth = 0;
1412
1413 while (!list_empty(&list)) {
1414 rq = list_entry_rq(list.next);
1415 list_del_init(&rq->queuelist);
1416 BUG_ON(!rq->q);
1417 if (rq->mq_ctx != this_ctx) {
1418 if (this_ctx) {
bd166ef1
JA
1419 trace_block_unplug(this_q, depth, from_schedule);
1420 blk_mq_sched_insert_requests(this_q, this_ctx,
1421 &ctx_list,
1422 from_schedule);
320ae51f
JA
1423 }
1424
1425 this_ctx = rq->mq_ctx;
1426 this_q = rq->q;
1427 depth = 0;
1428 }
1429
1430 depth++;
1431 list_add_tail(&rq->queuelist, &ctx_list);
1432 }
1433
1434 /*
1435 * If 'this_ctx' is set, we know we have entries to complete
1436 * on 'ctx_list'. Do those.
1437 */
1438 if (this_ctx) {
bd166ef1
JA
1439 trace_block_unplug(this_q, depth, from_schedule);
1440 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1441 from_schedule);
320ae51f
JA
1442 }
1443}
1444
1445static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1446{
da8d7f07 1447 blk_init_request_from_bio(rq, bio);
4b570521 1448
6e85eaf3 1449 blk_account_io_start(rq, true);
320ae51f
JA
1450}
1451
274a5843
JA
1452static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1453{
1454 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1455 !blk_queue_nomerges(hctx->queue);
1456}
1457
ab42f35d
ML
1458static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1459 struct blk_mq_ctx *ctx,
1460 struct request *rq)
1461{
1462 spin_lock(&ctx->lock);
1463 __blk_mq_insert_request(hctx, rq, false);
1464 spin_unlock(&ctx->lock);
07068d5b 1465}
14ec77f3 1466
fd2d3326
JA
1467static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1468{
bd166ef1
JA
1469 if (rq->tag != -1)
1470 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1471
1472 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1473}
1474
d964f04a
ML
1475static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1476 struct request *rq,
1477 blk_qc_t *cookie, bool may_sleep)
f984df1f 1478{
f984df1f 1479 struct request_queue *q = rq->q;
f984df1f
SL
1480 struct blk_mq_queue_data bd = {
1481 .rq = rq,
d945a365 1482 .last = true,
f984df1f 1483 };
bd166ef1 1484 blk_qc_t new_cookie;
f06345ad 1485 blk_status_t ret;
d964f04a
ML
1486 bool run_queue = true;
1487
f4560ffe
ML
1488 /* RCU or SRCU read lock is needed before checking quiesced flag */
1489 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a
ML
1490 run_queue = false;
1491 goto insert;
1492 }
f984df1f 1493
bd166ef1 1494 if (q->elevator)
2253efc8
BVA
1495 goto insert;
1496
d964f04a 1497 if (!blk_mq_get_driver_tag(rq, NULL, false))
bd166ef1
JA
1498 goto insert;
1499
1500 new_cookie = request_to_qc_t(hctx, rq);
1501
f984df1f
SL
1502 /*
1503 * For OK queue, we are done. For error, kill it. Any other
1504 * error (busy), just add it to our list as we previously
1505 * would have done
1506 */
1507 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653
CH
1508 switch (ret) {
1509 case BLK_STS_OK:
7b371636 1510 *cookie = new_cookie;
2253efc8 1511 return;
fc17b653
CH
1512 case BLK_STS_RESOURCE:
1513 __blk_mq_requeue_request(rq);
1514 goto insert;
1515 default:
7b371636 1516 *cookie = BLK_QC_T_NONE;
fc17b653 1517 blk_mq_end_request(rq, ret);
2253efc8 1518 return;
f984df1f 1519 }
7b371636 1520
2253efc8 1521insert:
d964f04a 1522 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
f984df1f
SL
1523}
1524
5eb6126e
CH
1525static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1526 struct request *rq, blk_qc_t *cookie)
1527{
1528 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1529 rcu_read_lock();
d964f04a 1530 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
5eb6126e
CH
1531 rcu_read_unlock();
1532 } else {
bf4907c0
JA
1533 unsigned int srcu_idx;
1534
1535 might_sleep();
1536
07319678 1537 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
d964f04a 1538 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
07319678 1539 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
5eb6126e
CH
1540 }
1541}
1542
dece1635 1543static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1544{
ef295ecf 1545 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1546 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1547 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1548 struct request *rq;
5eb6126e 1549 unsigned int request_count = 0;
f984df1f 1550 struct blk_plug *plug;
5b3f341f 1551 struct request *same_queue_rq = NULL;
7b371636 1552 blk_qc_t cookie;
87760e5e 1553 unsigned int wb_acct;
07068d5b
JA
1554
1555 blk_queue_bounce(q, &bio);
1556
af67c31f 1557 blk_queue_split(q, &bio);
f36ea50c 1558
e23947bd 1559 if (!bio_integrity_prep(bio))
dece1635 1560 return BLK_QC_T_NONE;
07068d5b 1561
87c279e6
OS
1562 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1563 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1564 return BLK_QC_T_NONE;
f984df1f 1565
bd166ef1
JA
1566 if (blk_mq_sched_bio_merge(q, bio))
1567 return BLK_QC_T_NONE;
1568
87760e5e
JA
1569 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1570
bd166ef1
JA
1571 trace_block_getrq(q, bio, bio->bi_opf);
1572
d2c0d383 1573 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1574 if (unlikely(!rq)) {
1575 __wbt_done(q->rq_wb, wb_acct);
03a07c92
GR
1576 if (bio->bi_opf & REQ_NOWAIT)
1577 bio_wouldblock_error(bio);
dece1635 1578 return BLK_QC_T_NONE;
87760e5e
JA
1579 }
1580
1581 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1582
fd2d3326 1583 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1584
f984df1f 1585 plug = current->plug;
07068d5b 1586 if (unlikely(is_flush_fua)) {
f984df1f 1587 blk_mq_put_ctx(data.ctx);
07068d5b 1588 blk_mq_bio_to_request(rq, bio);
a4d907b6
CH
1589 if (q->elevator) {
1590 blk_mq_sched_insert_request(rq, false, true, true,
1591 true);
6a83e74d 1592 } else {
a4d907b6
CH
1593 blk_insert_flush(rq);
1594 blk_mq_run_hw_queue(data.hctx, true);
6a83e74d 1595 }
a4d907b6 1596 } else if (plug && q->nr_hw_queues == 1) {
600271d9
SL
1597 struct request *last = NULL;
1598
b00c53e8 1599 blk_mq_put_ctx(data.ctx);
e6c4438b 1600 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1601
1602 /*
1603 * @request_count may become stale because of schedule
1604 * out, so check the list again.
1605 */
1606 if (list_empty(&plug->mq_list))
1607 request_count = 0;
254d259d
CH
1608 else if (blk_queue_nomerges(q))
1609 request_count = blk_plug_queued_count(q);
1610
676d0607 1611 if (!request_count)
e6c4438b 1612 trace_block_plug(q);
600271d9
SL
1613 else
1614 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1615
600271d9
SL
1616 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1617 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1618 blk_flush_plug_list(plug, false);
1619 trace_block_plug(q);
320ae51f 1620 }
b094f89c 1621
e6c4438b 1622 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1623 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1624 blk_mq_bio_to_request(rq, bio);
07068d5b 1625
07068d5b 1626 /*
6a83e74d 1627 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1628 * Otherwise the existing request in the plug list will be
1629 * issued. So the plug list will have one request at most
2299722c
CH
1630 * The plug list might get flushed before this. If that happens,
1631 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1632 */
2299722c
CH
1633 if (list_empty(&plug->mq_list))
1634 same_queue_rq = NULL;
1635 if (same_queue_rq)
1636 list_del_init(&same_queue_rq->queuelist);
1637 list_add_tail(&rq->queuelist, &plug->mq_list);
1638
bf4907c0
JA
1639 blk_mq_put_ctx(data.ctx);
1640
dad7a3be
ML
1641 if (same_queue_rq) {
1642 data.hctx = blk_mq_map_queue(q,
1643 same_queue_rq->mq_ctx->cpu);
2299722c
CH
1644 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1645 &cookie);
dad7a3be 1646 }
a4d907b6 1647 } else if (q->nr_hw_queues > 1 && is_sync) {
bf4907c0 1648 blk_mq_put_ctx(data.ctx);
2299722c 1649 blk_mq_bio_to_request(rq, bio);
2299722c 1650 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
a4d907b6 1651 } else if (q->elevator) {
b00c53e8 1652 blk_mq_put_ctx(data.ctx);
bd166ef1 1653 blk_mq_bio_to_request(rq, bio);
a4d907b6 1654 blk_mq_sched_insert_request(rq, false, true, true, true);
ab42f35d 1655 } else {
b00c53e8 1656 blk_mq_put_ctx(data.ctx);
ab42f35d
ML
1657 blk_mq_bio_to_request(rq, bio);
1658 blk_mq_queue_io(data.hctx, data.ctx, rq);
a4d907b6 1659 blk_mq_run_hw_queue(data.hctx, true);
ab42f35d 1660 }
320ae51f 1661
7b371636 1662 return cookie;
320ae51f
JA
1663}
1664
cc71a6f4
JA
1665void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1666 unsigned int hctx_idx)
95363efd 1667{
e9b267d9 1668 struct page *page;
320ae51f 1669
24d2f903 1670 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1671 int i;
320ae51f 1672
24d2f903 1673 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1674 struct request *rq = tags->static_rqs[i];
1675
1676 if (!rq)
e9b267d9 1677 continue;
d6296d39 1678 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 1679 tags->static_rqs[i] = NULL;
e9b267d9 1680 }
320ae51f 1681 }
320ae51f 1682
24d2f903
CH
1683 while (!list_empty(&tags->page_list)) {
1684 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1685 list_del_init(&page->lru);
f75782e4
CM
1686 /*
1687 * Remove kmemleak object previously allocated in
1688 * blk_mq_init_rq_map().
1689 */
1690 kmemleak_free(page_address(page));
320ae51f
JA
1691 __free_pages(page, page->private);
1692 }
cc71a6f4 1693}
320ae51f 1694
cc71a6f4
JA
1695void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1696{
24d2f903 1697 kfree(tags->rqs);
cc71a6f4 1698 tags->rqs = NULL;
2af8cbe3
JA
1699 kfree(tags->static_rqs);
1700 tags->static_rqs = NULL;
320ae51f 1701
24d2f903 1702 blk_mq_free_tags(tags);
320ae51f
JA
1703}
1704
cc71a6f4
JA
1705struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1706 unsigned int hctx_idx,
1707 unsigned int nr_tags,
1708 unsigned int reserved_tags)
320ae51f 1709{
24d2f903 1710 struct blk_mq_tags *tags;
59f082e4 1711 int node;
320ae51f 1712
59f082e4
SL
1713 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1714 if (node == NUMA_NO_NODE)
1715 node = set->numa_node;
1716
1717 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1718 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1719 if (!tags)
1720 return NULL;
320ae51f 1721
cc71a6f4 1722 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1723 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1724 node);
24d2f903
CH
1725 if (!tags->rqs) {
1726 blk_mq_free_tags(tags);
1727 return NULL;
1728 }
320ae51f 1729
2af8cbe3
JA
1730 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1731 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1732 node);
2af8cbe3
JA
1733 if (!tags->static_rqs) {
1734 kfree(tags->rqs);
1735 blk_mq_free_tags(tags);
1736 return NULL;
1737 }
1738
cc71a6f4
JA
1739 return tags;
1740}
1741
1742static size_t order_to_size(unsigned int order)
1743{
1744 return (size_t)PAGE_SIZE << order;
1745}
1746
1747int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1748 unsigned int hctx_idx, unsigned int depth)
1749{
1750 unsigned int i, j, entries_per_page, max_order = 4;
1751 size_t rq_size, left;
59f082e4
SL
1752 int node;
1753
1754 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1755 if (node == NUMA_NO_NODE)
1756 node = set->numa_node;
cc71a6f4
JA
1757
1758 INIT_LIST_HEAD(&tags->page_list);
1759
320ae51f
JA
1760 /*
1761 * rq_size is the size of the request plus driver payload, rounded
1762 * to the cacheline size
1763 */
24d2f903 1764 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1765 cache_line_size());
cc71a6f4 1766 left = rq_size * depth;
320ae51f 1767
cc71a6f4 1768 for (i = 0; i < depth; ) {
320ae51f
JA
1769 int this_order = max_order;
1770 struct page *page;
1771 int to_do;
1772 void *p;
1773
b3a834b1 1774 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1775 this_order--;
1776
1777 do {
59f082e4 1778 page = alloc_pages_node(node,
36e1f3d1 1779 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1780 this_order);
320ae51f
JA
1781 if (page)
1782 break;
1783 if (!this_order--)
1784 break;
1785 if (order_to_size(this_order) < rq_size)
1786 break;
1787 } while (1);
1788
1789 if (!page)
24d2f903 1790 goto fail;
320ae51f
JA
1791
1792 page->private = this_order;
24d2f903 1793 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1794
1795 p = page_address(page);
f75782e4
CM
1796 /*
1797 * Allow kmemleak to scan these pages as they contain pointers
1798 * to additional allocations like via ops->init_request().
1799 */
36e1f3d1 1800 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1801 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1802 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1803 left -= to_do * rq_size;
1804 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1805 struct request *rq = p;
1806
1807 tags->static_rqs[i] = rq;
24d2f903 1808 if (set->ops->init_request) {
d6296d39 1809 if (set->ops->init_request(set, rq, hctx_idx,
59f082e4 1810 node)) {
2af8cbe3 1811 tags->static_rqs[i] = NULL;
24d2f903 1812 goto fail;
a5164405 1813 }
e9b267d9
CH
1814 }
1815
320ae51f
JA
1816 p += rq_size;
1817 i++;
1818 }
1819 }
cc71a6f4 1820 return 0;
320ae51f 1821
24d2f903 1822fail:
cc71a6f4
JA
1823 blk_mq_free_rqs(set, tags, hctx_idx);
1824 return -ENOMEM;
320ae51f
JA
1825}
1826
e57690fe
JA
1827/*
1828 * 'cpu' is going away. splice any existing rq_list entries from this
1829 * software queue to the hw queue dispatch list, and ensure that it
1830 * gets run.
1831 */
9467f859 1832static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1833{
9467f859 1834 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1835 struct blk_mq_ctx *ctx;
1836 LIST_HEAD(tmp);
1837
9467f859 1838 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1839 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1840
1841 spin_lock(&ctx->lock);
1842 if (!list_empty(&ctx->rq_list)) {
1843 list_splice_init(&ctx->rq_list, &tmp);
1844 blk_mq_hctx_clear_pending(hctx, ctx);
1845 }
1846 spin_unlock(&ctx->lock);
1847
1848 if (list_empty(&tmp))
9467f859 1849 return 0;
484b4061 1850
e57690fe
JA
1851 spin_lock(&hctx->lock);
1852 list_splice_tail_init(&tmp, &hctx->dispatch);
1853 spin_unlock(&hctx->lock);
484b4061
JA
1854
1855 blk_mq_run_hw_queue(hctx, true);
9467f859 1856 return 0;
484b4061
JA
1857}
1858
9467f859 1859static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1860{
9467f859
TG
1861 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1862 &hctx->cpuhp_dead);
484b4061
JA
1863}
1864
c3b4afca 1865/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1866static void blk_mq_exit_hctx(struct request_queue *q,
1867 struct blk_mq_tag_set *set,
1868 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1869{
9c1051aa
OS
1870 blk_mq_debugfs_unregister_hctx(hctx);
1871
08e98fc6
ML
1872 blk_mq_tag_idle(hctx);
1873
f70ced09 1874 if (set->ops->exit_request)
d6296d39 1875 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 1876
93252632
OS
1877 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1878
08e98fc6
ML
1879 if (set->ops->exit_hctx)
1880 set->ops->exit_hctx(hctx, hctx_idx);
1881
6a83e74d 1882 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 1883 cleanup_srcu_struct(hctx->queue_rq_srcu);
6a83e74d 1884
9467f859 1885 blk_mq_remove_cpuhp(hctx);
f70ced09 1886 blk_free_flush_queue(hctx->fq);
88459642 1887 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1888}
1889
624dbe47
ML
1890static void blk_mq_exit_hw_queues(struct request_queue *q,
1891 struct blk_mq_tag_set *set, int nr_queue)
1892{
1893 struct blk_mq_hw_ctx *hctx;
1894 unsigned int i;
1895
1896 queue_for_each_hw_ctx(q, hctx, i) {
1897 if (i == nr_queue)
1898 break;
08e98fc6 1899 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1900 }
624dbe47
ML
1901}
1902
08e98fc6
ML
1903static int blk_mq_init_hctx(struct request_queue *q,
1904 struct blk_mq_tag_set *set,
1905 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1906{
08e98fc6
ML
1907 int node;
1908
1909 node = hctx->numa_node;
1910 if (node == NUMA_NO_NODE)
1911 node = hctx->numa_node = set->numa_node;
1912
9f993737 1913 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1914 spin_lock_init(&hctx->lock);
1915 INIT_LIST_HEAD(&hctx->dispatch);
1916 hctx->queue = q;
2404e607 1917 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1918
9467f859 1919 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1920
1921 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1922
1923 /*
08e98fc6
ML
1924 * Allocate space for all possible cpus to avoid allocation at
1925 * runtime
320ae51f 1926 */
08e98fc6
ML
1927 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1928 GFP_KERNEL, node);
1929 if (!hctx->ctxs)
1930 goto unregister_cpu_notifier;
320ae51f 1931
88459642
OS
1932 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1933 node))
08e98fc6 1934 goto free_ctxs;
320ae51f 1935
08e98fc6 1936 hctx->nr_ctx = 0;
320ae51f 1937
08e98fc6
ML
1938 if (set->ops->init_hctx &&
1939 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1940 goto free_bitmap;
320ae51f 1941
93252632
OS
1942 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1943 goto exit_hctx;
1944
f70ced09
ML
1945 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1946 if (!hctx->fq)
93252632 1947 goto sched_exit_hctx;
320ae51f 1948
f70ced09 1949 if (set->ops->init_request &&
d6296d39
CH
1950 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1951 node))
f70ced09 1952 goto free_fq;
320ae51f 1953
6a83e74d 1954 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 1955 init_srcu_struct(hctx->queue_rq_srcu);
6a83e74d 1956
9c1051aa
OS
1957 blk_mq_debugfs_register_hctx(q, hctx);
1958
08e98fc6 1959 return 0;
320ae51f 1960
f70ced09
ML
1961 free_fq:
1962 kfree(hctx->fq);
93252632
OS
1963 sched_exit_hctx:
1964 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
1965 exit_hctx:
1966 if (set->ops->exit_hctx)
1967 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1968 free_bitmap:
88459642 1969 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1970 free_ctxs:
1971 kfree(hctx->ctxs);
1972 unregister_cpu_notifier:
9467f859 1973 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
1974 return -1;
1975}
320ae51f 1976
320ae51f
JA
1977static void blk_mq_init_cpu_queues(struct request_queue *q,
1978 unsigned int nr_hw_queues)
1979{
1980 unsigned int i;
1981
1982 for_each_possible_cpu(i) {
1983 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1984 struct blk_mq_hw_ctx *hctx;
1985
320ae51f
JA
1986 __ctx->cpu = i;
1987 spin_lock_init(&__ctx->lock);
1988 INIT_LIST_HEAD(&__ctx->rq_list);
1989 __ctx->queue = q;
1990
4b855ad3
CH
1991 /* If the cpu isn't present, the cpu is mapped to first hctx */
1992 if (!cpu_present(i))
320ae51f
JA
1993 continue;
1994
7d7e0f90 1995 hctx = blk_mq_map_queue(q, i);
e4043dcf 1996
320ae51f
JA
1997 /*
1998 * Set local node, IFF we have more than one hw queue. If
1999 * not, we remain on the home node of the device
2000 */
2001 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 2002 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
2003 }
2004}
2005
cc71a6f4
JA
2006static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2007{
2008 int ret = 0;
2009
2010 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2011 set->queue_depth, set->reserved_tags);
2012 if (!set->tags[hctx_idx])
2013 return false;
2014
2015 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2016 set->queue_depth);
2017 if (!ret)
2018 return true;
2019
2020 blk_mq_free_rq_map(set->tags[hctx_idx]);
2021 set->tags[hctx_idx] = NULL;
2022 return false;
2023}
2024
2025static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2026 unsigned int hctx_idx)
2027{
bd166ef1
JA
2028 if (set->tags[hctx_idx]) {
2029 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2030 blk_mq_free_rq_map(set->tags[hctx_idx]);
2031 set->tags[hctx_idx] = NULL;
2032 }
cc71a6f4
JA
2033}
2034
4b855ad3 2035static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2036{
d1b1cea1 2037 unsigned int i, hctx_idx;
320ae51f
JA
2038 struct blk_mq_hw_ctx *hctx;
2039 struct blk_mq_ctx *ctx;
2a34c087 2040 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2041
60de074b
AM
2042 /*
2043 * Avoid others reading imcomplete hctx->cpumask through sysfs
2044 */
2045 mutex_lock(&q->sysfs_lock);
2046
320ae51f 2047 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2048 cpumask_clear(hctx->cpumask);
320ae51f
JA
2049 hctx->nr_ctx = 0;
2050 }
2051
2052 /*
4b855ad3
CH
2053 * Map software to hardware queues.
2054 *
2055 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2056 */
4b855ad3 2057 for_each_present_cpu(i) {
d1b1cea1
GKB
2058 hctx_idx = q->mq_map[i];
2059 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2060 if (!set->tags[hctx_idx] &&
2061 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2062 /*
2063 * If tags initialization fail for some hctx,
2064 * that hctx won't be brought online. In this
2065 * case, remap the current ctx to hctx[0] which
2066 * is guaranteed to always have tags allocated
2067 */
cc71a6f4 2068 q->mq_map[i] = 0;
d1b1cea1
GKB
2069 }
2070
897bb0c7 2071 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2072 hctx = blk_mq_map_queue(q, i);
868f2f0b 2073
e4043dcf 2074 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2075 ctx->index_hw = hctx->nr_ctx;
2076 hctx->ctxs[hctx->nr_ctx++] = ctx;
2077 }
506e931f 2078
60de074b
AM
2079 mutex_unlock(&q->sysfs_lock);
2080
506e931f 2081 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2082 /*
a68aafa5
JA
2083 * If no software queues are mapped to this hardware queue,
2084 * disable it and free the request entries.
484b4061
JA
2085 */
2086 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2087 /* Never unmap queue 0. We need it as a
2088 * fallback in case of a new remap fails
2089 * allocation
2090 */
cc71a6f4
JA
2091 if (i && set->tags[i])
2092 blk_mq_free_map_and_requests(set, i);
2093
2a34c087 2094 hctx->tags = NULL;
484b4061
JA
2095 continue;
2096 }
2097
2a34c087
ML
2098 hctx->tags = set->tags[i];
2099 WARN_ON(!hctx->tags);
2100
889fa31f
CY
2101 /*
2102 * Set the map size to the number of mapped software queues.
2103 * This is more accurate and more efficient than looping
2104 * over all possibly mapped software queues.
2105 */
88459642 2106 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2107
484b4061
JA
2108 /*
2109 * Initialize batch roundrobin counts
2110 */
506e931f
JA
2111 hctx->next_cpu = cpumask_first(hctx->cpumask);
2112 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2113 }
320ae51f
JA
2114}
2115
8e8320c9
JA
2116/*
2117 * Caller needs to ensure that we're either frozen/quiesced, or that
2118 * the queue isn't live yet.
2119 */
2404e607 2120static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2121{
2122 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2123 int i;
2124
2404e607 2125 queue_for_each_hw_ctx(q, hctx, i) {
8e8320c9
JA
2126 if (shared) {
2127 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2128 atomic_inc(&q->shared_hctx_restart);
2404e607 2129 hctx->flags |= BLK_MQ_F_TAG_SHARED;
8e8320c9
JA
2130 } else {
2131 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2132 atomic_dec(&q->shared_hctx_restart);
2404e607 2133 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
8e8320c9 2134 }
2404e607
JM
2135 }
2136}
2137
8e8320c9
JA
2138static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2139 bool shared)
2404e607
JM
2140{
2141 struct request_queue *q;
0d2602ca 2142
705cda97
BVA
2143 lockdep_assert_held(&set->tag_list_lock);
2144
0d2602ca
JA
2145 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2146 blk_mq_freeze_queue(q);
2404e607 2147 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2148 blk_mq_unfreeze_queue(q);
2149 }
2150}
2151
2152static void blk_mq_del_queue_tag_set(struct request_queue *q)
2153{
2154 struct blk_mq_tag_set *set = q->tag_set;
2155
0d2602ca 2156 mutex_lock(&set->tag_list_lock);
705cda97
BVA
2157 list_del_rcu(&q->tag_set_list);
2158 INIT_LIST_HEAD(&q->tag_set_list);
2404e607
JM
2159 if (list_is_singular(&set->tag_list)) {
2160 /* just transitioned to unshared */
2161 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2162 /* update existing queue */
2163 blk_mq_update_tag_set_depth(set, false);
2164 }
0d2602ca 2165 mutex_unlock(&set->tag_list_lock);
705cda97
BVA
2166
2167 synchronize_rcu();
0d2602ca
JA
2168}
2169
2170static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2171 struct request_queue *q)
2172{
2173 q->tag_set = set;
2174
2175 mutex_lock(&set->tag_list_lock);
2404e607
JM
2176
2177 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2178 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2179 set->flags |= BLK_MQ_F_TAG_SHARED;
2180 /* update existing queue */
2181 blk_mq_update_tag_set_depth(set, true);
2182 }
2183 if (set->flags & BLK_MQ_F_TAG_SHARED)
2184 queue_set_hctx_shared(q, true);
705cda97 2185 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2186
0d2602ca
JA
2187 mutex_unlock(&set->tag_list_lock);
2188}
2189
e09aae7e
ML
2190/*
2191 * It is the actual release handler for mq, but we do it from
2192 * request queue's release handler for avoiding use-after-free
2193 * and headache because q->mq_kobj shouldn't have been introduced,
2194 * but we can't group ctx/kctx kobj without it.
2195 */
2196void blk_mq_release(struct request_queue *q)
2197{
2198 struct blk_mq_hw_ctx *hctx;
2199 unsigned int i;
2200
2201 /* hctx kobj stays in hctx */
c3b4afca
ML
2202 queue_for_each_hw_ctx(q, hctx, i) {
2203 if (!hctx)
2204 continue;
6c8b232e 2205 kobject_put(&hctx->kobj);
c3b4afca 2206 }
e09aae7e 2207
a723bab3
AM
2208 q->mq_map = NULL;
2209
e09aae7e
ML
2210 kfree(q->queue_hw_ctx);
2211
7ea5fe31
ML
2212 /*
2213 * release .mq_kobj and sw queue's kobject now because
2214 * both share lifetime with request queue.
2215 */
2216 blk_mq_sysfs_deinit(q);
2217
e09aae7e
ML
2218 free_percpu(q->queue_ctx);
2219}
2220
24d2f903 2221struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2222{
2223 struct request_queue *uninit_q, *q;
2224
2225 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2226 if (!uninit_q)
2227 return ERR_PTR(-ENOMEM);
2228
2229 q = blk_mq_init_allocated_queue(set, uninit_q);
2230 if (IS_ERR(q))
2231 blk_cleanup_queue(uninit_q);
2232
2233 return q;
2234}
2235EXPORT_SYMBOL(blk_mq_init_queue);
2236
07319678
BVA
2237static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2238{
2239 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2240
2241 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2242 __alignof__(struct blk_mq_hw_ctx)) !=
2243 sizeof(struct blk_mq_hw_ctx));
2244
2245 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2246 hw_ctx_size += sizeof(struct srcu_struct);
2247
2248 return hw_ctx_size;
2249}
2250
868f2f0b
KB
2251static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2252 struct request_queue *q)
320ae51f 2253{
868f2f0b
KB
2254 int i, j;
2255 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2256
868f2f0b 2257 blk_mq_sysfs_unregister(q);
24d2f903 2258 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2259 int node;
f14bbe77 2260
868f2f0b
KB
2261 if (hctxs[i])
2262 continue;
2263
2264 node = blk_mq_hw_queue_to_node(q->mq_map, i);
07319678 2265 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
cdef54dd 2266 GFP_KERNEL, node);
320ae51f 2267 if (!hctxs[i])
868f2f0b 2268 break;
320ae51f 2269
a86073e4 2270 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2271 node)) {
2272 kfree(hctxs[i]);
2273 hctxs[i] = NULL;
2274 break;
2275 }
e4043dcf 2276
0d2602ca 2277 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2278 hctxs[i]->numa_node = node;
320ae51f 2279 hctxs[i]->queue_num = i;
868f2f0b
KB
2280
2281 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2282 free_cpumask_var(hctxs[i]->cpumask);
2283 kfree(hctxs[i]);
2284 hctxs[i] = NULL;
2285 break;
2286 }
2287 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2288 }
868f2f0b
KB
2289 for (j = i; j < q->nr_hw_queues; j++) {
2290 struct blk_mq_hw_ctx *hctx = hctxs[j];
2291
2292 if (hctx) {
cc71a6f4
JA
2293 if (hctx->tags)
2294 blk_mq_free_map_and_requests(set, j);
868f2f0b 2295 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2296 kobject_put(&hctx->kobj);
868f2f0b
KB
2297 hctxs[j] = NULL;
2298
2299 }
2300 }
2301 q->nr_hw_queues = i;
2302 blk_mq_sysfs_register(q);
2303}
2304
2305struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2306 struct request_queue *q)
2307{
66841672
ML
2308 /* mark the queue as mq asap */
2309 q->mq_ops = set->ops;
2310
34dbad5d 2311 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2312 blk_mq_poll_stats_bkt,
2313 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2314 if (!q->poll_cb)
2315 goto err_exit;
2316
868f2f0b
KB
2317 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2318 if (!q->queue_ctx)
c7de5726 2319 goto err_exit;
868f2f0b 2320
737f98cf
ML
2321 /* init q->mq_kobj and sw queues' kobjects */
2322 blk_mq_sysfs_init(q);
2323
868f2f0b
KB
2324 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2325 GFP_KERNEL, set->numa_node);
2326 if (!q->queue_hw_ctx)
2327 goto err_percpu;
2328
bdd17e75 2329 q->mq_map = set->mq_map;
868f2f0b
KB
2330
2331 blk_mq_realloc_hw_ctxs(set, q);
2332 if (!q->nr_hw_queues)
2333 goto err_hctxs;
320ae51f 2334
287922eb 2335 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2336 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2337
2338 q->nr_queues = nr_cpu_ids;
320ae51f 2339
94eddfbe 2340 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2341
05f1dd53
JA
2342 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2343 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2344
1be036e9
CH
2345 q->sg_reserved_size = INT_MAX;
2346
2849450a 2347 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2348 INIT_LIST_HEAD(&q->requeue_list);
2349 spin_lock_init(&q->requeue_lock);
2350
254d259d 2351 blk_queue_make_request(q, blk_mq_make_request);
07068d5b 2352
eba71768
JA
2353 /*
2354 * Do this after blk_queue_make_request() overrides it...
2355 */
2356 q->nr_requests = set->queue_depth;
2357
64f1c21e
JA
2358 /*
2359 * Default to classic polling
2360 */
2361 q->poll_nsec = -1;
2362
24d2f903
CH
2363 if (set->ops->complete)
2364 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2365
24d2f903 2366 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2367 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2368 blk_mq_map_swqueue(q);
4593fdbe 2369
d3484991
JA
2370 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2371 int ret;
2372
2373 ret = blk_mq_sched_init(q);
2374 if (ret)
2375 return ERR_PTR(ret);
2376 }
2377
320ae51f 2378 return q;
18741986 2379
320ae51f 2380err_hctxs:
868f2f0b 2381 kfree(q->queue_hw_ctx);
320ae51f 2382err_percpu:
868f2f0b 2383 free_percpu(q->queue_ctx);
c7de5726
ML
2384err_exit:
2385 q->mq_ops = NULL;
320ae51f
JA
2386 return ERR_PTR(-ENOMEM);
2387}
b62c21b7 2388EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2389
2390void blk_mq_free_queue(struct request_queue *q)
2391{
624dbe47 2392 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2393
0d2602ca 2394 blk_mq_del_queue_tag_set(q);
624dbe47 2395 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2396}
320ae51f
JA
2397
2398/* Basically redo blk_mq_init_queue with queue frozen */
4b855ad3 2399static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f 2400{
4ecd4fef 2401 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2402
9c1051aa 2403 blk_mq_debugfs_unregister_hctxs(q);
67aec14c
JA
2404 blk_mq_sysfs_unregister(q);
2405
320ae51f
JA
2406 /*
2407 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2408 * we should change hctx numa_node according to new topology (this
2409 * involves free and re-allocate memory, worthy doing?)
2410 */
2411
4b855ad3 2412 blk_mq_map_swqueue(q);
320ae51f 2413
67aec14c 2414 blk_mq_sysfs_register(q);
9c1051aa 2415 blk_mq_debugfs_register_hctxs(q);
320ae51f
JA
2416}
2417
a5164405
JA
2418static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2419{
2420 int i;
2421
cc71a6f4
JA
2422 for (i = 0; i < set->nr_hw_queues; i++)
2423 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2424 goto out_unwind;
a5164405
JA
2425
2426 return 0;
2427
2428out_unwind:
2429 while (--i >= 0)
cc71a6f4 2430 blk_mq_free_rq_map(set->tags[i]);
a5164405 2431
a5164405
JA
2432 return -ENOMEM;
2433}
2434
2435/*
2436 * Allocate the request maps associated with this tag_set. Note that this
2437 * may reduce the depth asked for, if memory is tight. set->queue_depth
2438 * will be updated to reflect the allocated depth.
2439 */
2440static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2441{
2442 unsigned int depth;
2443 int err;
2444
2445 depth = set->queue_depth;
2446 do {
2447 err = __blk_mq_alloc_rq_maps(set);
2448 if (!err)
2449 break;
2450
2451 set->queue_depth >>= 1;
2452 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2453 err = -ENOMEM;
2454 break;
2455 }
2456 } while (set->queue_depth);
2457
2458 if (!set->queue_depth || err) {
2459 pr_err("blk-mq: failed to allocate request map\n");
2460 return -ENOMEM;
2461 }
2462
2463 if (depth != set->queue_depth)
2464 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2465 depth, set->queue_depth);
2466
2467 return 0;
2468}
2469
ebe8bddb
OS
2470static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2471{
2472 if (set->ops->map_queues)
2473 return set->ops->map_queues(set);
2474 else
2475 return blk_mq_map_queues(set);
2476}
2477
a4391c64
JA
2478/*
2479 * Alloc a tag set to be associated with one or more request queues.
2480 * May fail with EINVAL for various error conditions. May adjust the
2481 * requested depth down, if if it too large. In that case, the set
2482 * value will be stored in set->queue_depth.
2483 */
24d2f903
CH
2484int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2485{
da695ba2
CH
2486 int ret;
2487
205fb5f5
BVA
2488 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2489
24d2f903
CH
2490 if (!set->nr_hw_queues)
2491 return -EINVAL;
a4391c64 2492 if (!set->queue_depth)
24d2f903
CH
2493 return -EINVAL;
2494 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2495 return -EINVAL;
2496
7d7e0f90 2497 if (!set->ops->queue_rq)
24d2f903
CH
2498 return -EINVAL;
2499
a4391c64
JA
2500 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2501 pr_info("blk-mq: reduced tag depth to %u\n",
2502 BLK_MQ_MAX_DEPTH);
2503 set->queue_depth = BLK_MQ_MAX_DEPTH;
2504 }
24d2f903 2505
6637fadf
SL
2506 /*
2507 * If a crashdump is active, then we are potentially in a very
2508 * memory constrained environment. Limit us to 1 queue and
2509 * 64 tags to prevent using too much memory.
2510 */
2511 if (is_kdump_kernel()) {
2512 set->nr_hw_queues = 1;
2513 set->queue_depth = min(64U, set->queue_depth);
2514 }
868f2f0b
KB
2515 /*
2516 * There is no use for more h/w queues than cpus.
2517 */
2518 if (set->nr_hw_queues > nr_cpu_ids)
2519 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2520
868f2f0b 2521 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2522 GFP_KERNEL, set->numa_node);
2523 if (!set->tags)
a5164405 2524 return -ENOMEM;
24d2f903 2525
da695ba2
CH
2526 ret = -ENOMEM;
2527 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2528 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2529 if (!set->mq_map)
2530 goto out_free_tags;
2531
ebe8bddb 2532 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2533 if (ret)
2534 goto out_free_mq_map;
2535
2536 ret = blk_mq_alloc_rq_maps(set);
2537 if (ret)
bdd17e75 2538 goto out_free_mq_map;
24d2f903 2539
0d2602ca
JA
2540 mutex_init(&set->tag_list_lock);
2541 INIT_LIST_HEAD(&set->tag_list);
2542
24d2f903 2543 return 0;
bdd17e75
CH
2544
2545out_free_mq_map:
2546 kfree(set->mq_map);
2547 set->mq_map = NULL;
2548out_free_tags:
5676e7b6
RE
2549 kfree(set->tags);
2550 set->tags = NULL;
da695ba2 2551 return ret;
24d2f903
CH
2552}
2553EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2554
2555void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2556{
2557 int i;
2558
cc71a6f4
JA
2559 for (i = 0; i < nr_cpu_ids; i++)
2560 blk_mq_free_map_and_requests(set, i);
484b4061 2561
bdd17e75
CH
2562 kfree(set->mq_map);
2563 set->mq_map = NULL;
2564
981bd189 2565 kfree(set->tags);
5676e7b6 2566 set->tags = NULL;
24d2f903
CH
2567}
2568EXPORT_SYMBOL(blk_mq_free_tag_set);
2569
e3a2b3f9
JA
2570int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2571{
2572 struct blk_mq_tag_set *set = q->tag_set;
2573 struct blk_mq_hw_ctx *hctx;
2574 int i, ret;
2575
bd166ef1 2576 if (!set)
e3a2b3f9
JA
2577 return -EINVAL;
2578
70f36b60 2579 blk_mq_freeze_queue(q);
70f36b60 2580
e3a2b3f9
JA
2581 ret = 0;
2582 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2583 if (!hctx->tags)
2584 continue;
bd166ef1
JA
2585 /*
2586 * If we're using an MQ scheduler, just update the scheduler
2587 * queue depth. This is similar to what the old code would do.
2588 */
70f36b60
JA
2589 if (!hctx->sched_tags) {
2590 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2591 min(nr, set->queue_depth),
2592 false);
2593 } else {
2594 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2595 nr, true);
2596 }
e3a2b3f9
JA
2597 if (ret)
2598 break;
2599 }
2600
2601 if (!ret)
2602 q->nr_requests = nr;
2603
70f36b60 2604 blk_mq_unfreeze_queue(q);
70f36b60 2605
e3a2b3f9
JA
2606 return ret;
2607}
2608
e4dc2b32
KB
2609static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2610 int nr_hw_queues)
868f2f0b
KB
2611{
2612 struct request_queue *q;
2613
705cda97
BVA
2614 lockdep_assert_held(&set->tag_list_lock);
2615
868f2f0b
KB
2616 if (nr_hw_queues > nr_cpu_ids)
2617 nr_hw_queues = nr_cpu_ids;
2618 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2619 return;
2620
2621 list_for_each_entry(q, &set->tag_list, tag_set_list)
2622 blk_mq_freeze_queue(q);
2623
2624 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2625 blk_mq_update_queue_map(set);
868f2f0b
KB
2626 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2627 blk_mq_realloc_hw_ctxs(set, q);
4b855ad3 2628 blk_mq_queue_reinit(q);
868f2f0b
KB
2629 }
2630
2631 list_for_each_entry(q, &set->tag_list, tag_set_list)
2632 blk_mq_unfreeze_queue(q);
2633}
e4dc2b32
KB
2634
2635void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2636{
2637 mutex_lock(&set->tag_list_lock);
2638 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2639 mutex_unlock(&set->tag_list_lock);
2640}
868f2f0b
KB
2641EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2642
34dbad5d
OS
2643/* Enable polling stats and return whether they were already enabled. */
2644static bool blk_poll_stats_enable(struct request_queue *q)
2645{
2646 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2647 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2648 return true;
2649 blk_stat_add_callback(q, q->poll_cb);
2650 return false;
2651}
2652
2653static void blk_mq_poll_stats_start(struct request_queue *q)
2654{
2655 /*
2656 * We don't arm the callback if polling stats are not enabled or the
2657 * callback is already active.
2658 */
2659 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2660 blk_stat_is_active(q->poll_cb))
2661 return;
2662
2663 blk_stat_activate_msecs(q->poll_cb, 100);
2664}
2665
2666static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2667{
2668 struct request_queue *q = cb->data;
720b8ccc 2669 int bucket;
34dbad5d 2670
720b8ccc
SB
2671 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2672 if (cb->stat[bucket].nr_samples)
2673 q->poll_stat[bucket] = cb->stat[bucket];
2674 }
34dbad5d
OS
2675}
2676
64f1c21e
JA
2677static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2678 struct blk_mq_hw_ctx *hctx,
2679 struct request *rq)
2680{
64f1c21e 2681 unsigned long ret = 0;
720b8ccc 2682 int bucket;
64f1c21e
JA
2683
2684 /*
2685 * If stats collection isn't on, don't sleep but turn it on for
2686 * future users
2687 */
34dbad5d 2688 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2689 return 0;
2690
64f1c21e
JA
2691 /*
2692 * As an optimistic guess, use half of the mean service time
2693 * for this type of request. We can (and should) make this smarter.
2694 * For instance, if the completion latencies are tight, we can
2695 * get closer than just half the mean. This is especially
2696 * important on devices where the completion latencies are longer
720b8ccc
SB
2697 * than ~10 usec. We do use the stats for the relevant IO size
2698 * if available which does lead to better estimates.
64f1c21e 2699 */
720b8ccc
SB
2700 bucket = blk_mq_poll_stats_bkt(rq);
2701 if (bucket < 0)
2702 return ret;
2703
2704 if (q->poll_stat[bucket].nr_samples)
2705 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
2706
2707 return ret;
2708}
2709
06426adf 2710static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2711 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2712 struct request *rq)
2713{
2714 struct hrtimer_sleeper hs;
2715 enum hrtimer_mode mode;
64f1c21e 2716 unsigned int nsecs;
06426adf
JA
2717 ktime_t kt;
2718
64f1c21e
JA
2719 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2720 return false;
2721
2722 /*
2723 * poll_nsec can be:
2724 *
2725 * -1: don't ever hybrid sleep
2726 * 0: use half of prev avg
2727 * >0: use this specific value
2728 */
2729 if (q->poll_nsec == -1)
2730 return false;
2731 else if (q->poll_nsec > 0)
2732 nsecs = q->poll_nsec;
2733 else
2734 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2735
2736 if (!nsecs)
06426adf
JA
2737 return false;
2738
2739 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2740
2741 /*
2742 * This will be replaced with the stats tracking code, using
2743 * 'avg_completion_time / 2' as the pre-sleep target.
2744 */
8b0e1953 2745 kt = nsecs;
06426adf
JA
2746
2747 mode = HRTIMER_MODE_REL;
2748 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2749 hrtimer_set_expires(&hs.timer, kt);
2750
2751 hrtimer_init_sleeper(&hs, current);
2752 do {
2753 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2754 break;
2755 set_current_state(TASK_UNINTERRUPTIBLE);
2756 hrtimer_start_expires(&hs.timer, mode);
2757 if (hs.task)
2758 io_schedule();
2759 hrtimer_cancel(&hs.timer);
2760 mode = HRTIMER_MODE_ABS;
2761 } while (hs.task && !signal_pending(current));
2762
2763 __set_current_state(TASK_RUNNING);
2764 destroy_hrtimer_on_stack(&hs.timer);
2765 return true;
2766}
2767
bbd7bb70
JA
2768static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2769{
2770 struct request_queue *q = hctx->queue;
2771 long state;
2772
06426adf
JA
2773 /*
2774 * If we sleep, have the caller restart the poll loop to reset
2775 * the state. Like for the other success return cases, the
2776 * caller is responsible for checking if the IO completed. If
2777 * the IO isn't complete, we'll get called again and will go
2778 * straight to the busy poll loop.
2779 */
64f1c21e 2780 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2781 return true;
2782
bbd7bb70
JA
2783 hctx->poll_considered++;
2784
2785 state = current->state;
2786 while (!need_resched()) {
2787 int ret;
2788
2789 hctx->poll_invoked++;
2790
2791 ret = q->mq_ops->poll(hctx, rq->tag);
2792 if (ret > 0) {
2793 hctx->poll_success++;
2794 set_current_state(TASK_RUNNING);
2795 return true;
2796 }
2797
2798 if (signal_pending_state(state, current))
2799 set_current_state(TASK_RUNNING);
2800
2801 if (current->state == TASK_RUNNING)
2802 return true;
2803 if (ret < 0)
2804 break;
2805 cpu_relax();
2806 }
2807
2808 return false;
2809}
2810
2811bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2812{
2813 struct blk_mq_hw_ctx *hctx;
2814 struct blk_plug *plug;
2815 struct request *rq;
2816
2817 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2818 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2819 return false;
2820
2821 plug = current->plug;
2822 if (plug)
2823 blk_flush_plug_list(plug, false);
2824
2825 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2826 if (!blk_qc_t_is_internal(cookie))
2827 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3a07bb1d 2828 else {
bd166ef1 2829 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3a07bb1d
JA
2830 /*
2831 * With scheduling, if the request has completed, we'll
2832 * get a NULL return here, as we clear the sched tag when
2833 * that happens. The request still remains valid, like always,
2834 * so we should be safe with just the NULL check.
2835 */
2836 if (!rq)
2837 return false;
2838 }
bbd7bb70
JA
2839
2840 return __blk_mq_poll(hctx, rq);
2841}
2842EXPORT_SYMBOL_GPL(blk_mq_poll);
2843
320ae51f
JA
2844static int __init blk_mq_init(void)
2845{
9467f859
TG
2846 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2847 blk_mq_hctx_notify_dead);
320ae51f
JA
2848 return 0;
2849}
2850subsys_initcall(blk_mq_init);