]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - block/blk-mq.c
block: flush: avoid to figure out flush queue unnecessarily
[thirdparty/kernel/stable.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/mm.h>
13#include <linux/init.h>
14#include <linux/slab.h>
15#include <linux/workqueue.h>
16#include <linux/smp.h>
17#include <linux/llist.h>
18#include <linux/list_sort.h>
19#include <linux/cpu.h>
20#include <linux/cache.h>
21#include <linux/sched/sysctl.h>
22#include <linux/delay.h>
aedcd72f 23#include <linux/crash_dump.h>
320ae51f
JA
24
25#include <trace/events/block.h>
26
27#include <linux/blk-mq.h>
28#include "blk.h"
29#include "blk-mq.h"
30#include "blk-mq-tag.h"
31
32static DEFINE_MUTEX(all_q_mutex);
33static LIST_HEAD(all_q_list);
34
35static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
320ae51f
JA
37/*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41{
42 unsigned int i;
43
1429d7c9
JA
44 for (i = 0; i < hctx->ctx_map.map_size; i++)
45 if (hctx->ctx_map.map[i].word)
320ae51f
JA
46 return true;
47
48 return false;
49}
50
1429d7c9
JA
51static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
53{
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55}
56
57#define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
320ae51f
JA
60/*
61 * Mark this ctx as having pending work in this hardware queue
62 */
63static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
65{
1429d7c9
JA
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70}
71
72static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
74{
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
78}
79
320ae51f
JA
80static int blk_mq_queue_enter(struct request_queue *q)
81{
add703fd
TH
82 while (true) {
83 int ret;
320ae51f 84
add703fd
TH
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
320ae51f 87
add703fd
TH
88 ret = wait_event_interruptible(q->mq_freeze_wq,
89 !q->mq_freeze_depth || blk_queue_dying(q));
90 if (blk_queue_dying(q))
91 return -ENODEV;
92 if (ret)
93 return ret;
94 }
320ae51f
JA
95}
96
97static void blk_mq_queue_exit(struct request_queue *q)
98{
add703fd
TH
99 percpu_ref_put(&q->mq_usage_counter);
100}
101
102static void blk_mq_usage_counter_release(struct percpu_ref *ref)
103{
104 struct request_queue *q =
105 container_of(ref, struct request_queue, mq_usage_counter);
106
107 wake_up_all(&q->mq_freeze_wq);
320ae51f
JA
108}
109
72d6f02a
TH
110/*
111 * Guarantee no request is in use, so we can change any data structure of
112 * the queue afterward.
113 */
114void blk_mq_freeze_queue(struct request_queue *q)
43a5e4e2 115{
cddd5d17
TH
116 bool freeze;
117
72d6f02a 118 spin_lock_irq(q->queue_lock);
cddd5d17 119 freeze = !q->mq_freeze_depth++;
72d6f02a
TH
120 spin_unlock_irq(q->queue_lock);
121
cddd5d17
TH
122 if (freeze) {
123 percpu_ref_kill(&q->mq_usage_counter);
124 blk_mq_run_queues(q, false);
125 }
add703fd 126 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
43a5e4e2
ML
127}
128
320ae51f
JA
129static void blk_mq_unfreeze_queue(struct request_queue *q)
130{
cddd5d17 131 bool wake;
320ae51f
JA
132
133 spin_lock_irq(q->queue_lock);
780db207
TH
134 wake = !--q->mq_freeze_depth;
135 WARN_ON_ONCE(q->mq_freeze_depth < 0);
320ae51f 136 spin_unlock_irq(q->queue_lock);
add703fd
TH
137 if (wake) {
138 percpu_ref_reinit(&q->mq_usage_counter);
320ae51f 139 wake_up_all(&q->mq_freeze_wq);
add703fd 140 }
320ae51f
JA
141}
142
143bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
144{
145 return blk_mq_has_free_tags(hctx->tags);
146}
147EXPORT_SYMBOL(blk_mq_can_queue);
148
94eddfbe
JA
149static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
150 struct request *rq, unsigned int rw_flags)
320ae51f 151{
94eddfbe
JA
152 if (blk_queue_io_stat(q))
153 rw_flags |= REQ_IO_STAT;
154
af76e555
CH
155 INIT_LIST_HEAD(&rq->queuelist);
156 /* csd/requeue_work/fifo_time is initialized before use */
157 rq->q = q;
320ae51f 158 rq->mq_ctx = ctx;
0d2602ca 159 rq->cmd_flags |= rw_flags;
af76e555
CH
160 /* do not touch atomic flags, it needs atomic ops against the timer */
161 rq->cpu = -1;
af76e555
CH
162 INIT_HLIST_NODE(&rq->hash);
163 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
164 rq->rq_disk = NULL;
165 rq->part = NULL;
3ee32372 166 rq->start_time = jiffies;
af76e555
CH
167#ifdef CONFIG_BLK_CGROUP
168 rq->rl = NULL;
0fec08b4 169 set_start_time_ns(rq);
af76e555
CH
170 rq->io_start_time_ns = 0;
171#endif
172 rq->nr_phys_segments = 0;
173#if defined(CONFIG_BLK_DEV_INTEGRITY)
174 rq->nr_integrity_segments = 0;
175#endif
af76e555
CH
176 rq->special = NULL;
177 /* tag was already set */
178 rq->errors = 0;
af76e555 179
6f4a1626
TB
180 rq->cmd = rq->__cmd;
181
af76e555
CH
182 rq->extra_len = 0;
183 rq->sense_len = 0;
184 rq->resid_len = 0;
185 rq->sense = NULL;
186
af76e555 187 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
188 rq->timeout = 0;
189
af76e555
CH
190 rq->end_io = NULL;
191 rq->end_io_data = NULL;
192 rq->next_rq = NULL;
193
320ae51f
JA
194 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
195}
196
5dee8577 197static struct request *
cb96a42c 198__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
5dee8577
CH
199{
200 struct request *rq;
201 unsigned int tag;
202
cb96a42c 203 tag = blk_mq_get_tag(data);
5dee8577 204 if (tag != BLK_MQ_TAG_FAIL) {
cb96a42c 205 rq = data->hctx->tags->rqs[tag];
5dee8577 206
cb96a42c 207 if (blk_mq_tag_busy(data->hctx)) {
5dee8577 208 rq->cmd_flags = REQ_MQ_INFLIGHT;
cb96a42c 209 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
210 }
211
212 rq->tag = tag;
cb96a42c 213 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
5dee8577
CH
214 return rq;
215 }
216
217 return NULL;
218}
219
4ce01dd1
CH
220struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
221 bool reserved)
320ae51f 222{
d852564f
CH
223 struct blk_mq_ctx *ctx;
224 struct blk_mq_hw_ctx *hctx;
320ae51f 225 struct request *rq;
cb96a42c 226 struct blk_mq_alloc_data alloc_data;
a492f075 227 int ret;
320ae51f 228
a492f075
JL
229 ret = blk_mq_queue_enter(q);
230 if (ret)
231 return ERR_PTR(ret);
320ae51f 232
d852564f
CH
233 ctx = blk_mq_get_ctx(q);
234 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
235 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
236 reserved, ctx, hctx);
d852564f 237
cb96a42c 238 rq = __blk_mq_alloc_request(&alloc_data, rw);
d852564f
CH
239 if (!rq && (gfp & __GFP_WAIT)) {
240 __blk_mq_run_hw_queue(hctx);
241 blk_mq_put_ctx(ctx);
242
243 ctx = blk_mq_get_ctx(q);
244 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
245 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
246 hctx);
247 rq = __blk_mq_alloc_request(&alloc_data, rw);
248 ctx = alloc_data.ctx;
d852564f
CH
249 }
250 blk_mq_put_ctx(ctx);
a492f075
JL
251 if (!rq)
252 return ERR_PTR(-EWOULDBLOCK);
320ae51f
JA
253 return rq;
254}
4bb659b1 255EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 256
320ae51f
JA
257static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
258 struct blk_mq_ctx *ctx, struct request *rq)
259{
260 const int tag = rq->tag;
261 struct request_queue *q = rq->q;
262
0d2602ca
JA
263 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
264 atomic_dec(&hctx->nr_active);
683d0e12 265 rq->cmd_flags = 0;
0d2602ca 266
af76e555 267 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 268 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
320ae51f
JA
269 blk_mq_queue_exit(q);
270}
271
272void blk_mq_free_request(struct request *rq)
273{
274 struct blk_mq_ctx *ctx = rq->mq_ctx;
275 struct blk_mq_hw_ctx *hctx;
276 struct request_queue *q = rq->q;
277
278 ctx->rq_completed[rq_is_sync(rq)]++;
279
280 hctx = q->mq_ops->map_queue(q, ctx->cpu);
281 __blk_mq_free_request(hctx, ctx, rq);
282}
283
8727af4b
CH
284/*
285 * Clone all relevant state from a request that has been put on hold in
286 * the flush state machine into the preallocated flush request that hangs
287 * off the request queue.
288 *
289 * For a driver the flush request should be invisible, that's why we are
290 * impersonating the original request here.
291 */
292void blk_mq_clone_flush_request(struct request *flush_rq,
293 struct request *orig_rq)
294{
295 struct blk_mq_hw_ctx *hctx =
296 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
297
298 flush_rq->mq_ctx = orig_rq->mq_ctx;
299 flush_rq->tag = orig_rq->tag;
300 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
301 hctx->cmd_size);
302}
303
c8a446ad 304inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 305{
0d11e6ac
ML
306 blk_account_io_done(rq);
307
91b63639 308 if (rq->end_io) {
320ae51f 309 rq->end_io(rq, error);
91b63639
CH
310 } else {
311 if (unlikely(blk_bidi_rq(rq)))
312 blk_mq_free_request(rq->next_rq);
320ae51f 313 blk_mq_free_request(rq);
91b63639 314 }
320ae51f 315}
c8a446ad 316EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 317
c8a446ad 318void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
319{
320 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
321 BUG();
c8a446ad 322 __blk_mq_end_request(rq, error);
63151a44 323}
c8a446ad 324EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 325
30a91cb4 326static void __blk_mq_complete_request_remote(void *data)
320ae51f 327{
3d6efbf6 328 struct request *rq = data;
320ae51f 329
30a91cb4 330 rq->q->softirq_done_fn(rq);
320ae51f 331}
320ae51f 332
ed851860 333static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
334{
335 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 336 bool shared = false;
320ae51f
JA
337 int cpu;
338
38535201 339 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
340 rq->q->softirq_done_fn(rq);
341 return;
342 }
320ae51f
JA
343
344 cpu = get_cpu();
38535201
CH
345 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
346 shared = cpus_share_cache(cpu, ctx->cpu);
347
348 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 349 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
350 rq->csd.info = rq;
351 rq->csd.flags = 0;
c46fff2a 352 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 353 } else {
30a91cb4 354 rq->q->softirq_done_fn(rq);
3d6efbf6 355 }
320ae51f
JA
356 put_cpu();
357}
30a91cb4 358
ed851860
JA
359void __blk_mq_complete_request(struct request *rq)
360{
361 struct request_queue *q = rq->q;
362
363 if (!q->softirq_done_fn)
c8a446ad 364 blk_mq_end_request(rq, rq->errors);
ed851860
JA
365 else
366 blk_mq_ipi_complete_request(rq);
367}
368
30a91cb4
CH
369/**
370 * blk_mq_complete_request - end I/O on a request
371 * @rq: the request being processed
372 *
373 * Description:
374 * Ends all I/O on a request. It does not handle partial completions.
375 * The actual completion happens out-of-order, through a IPI handler.
376 **/
377void blk_mq_complete_request(struct request *rq)
378{
95f09684
JA
379 struct request_queue *q = rq->q;
380
381 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 382 return;
ed851860
JA
383 if (!blk_mark_rq_complete(rq))
384 __blk_mq_complete_request(rq);
30a91cb4
CH
385}
386EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 387
e2490073 388void blk_mq_start_request(struct request *rq)
320ae51f
JA
389{
390 struct request_queue *q = rq->q;
391
392 trace_block_rq_issue(q, rq);
393
742ee69b 394 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
395 if (unlikely(blk_bidi_rq(rq)))
396 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 397
2b8393b4 398 blk_add_timer(rq);
87ee7b11 399
538b7534
JA
400 /*
401 * Ensure that ->deadline is visible before set the started
402 * flag and clear the completed flag.
403 */
404 smp_mb__before_atomic();
405
87ee7b11
JA
406 /*
407 * Mark us as started and clear complete. Complete might have been
408 * set if requeue raced with timeout, which then marked it as
409 * complete. So be sure to clear complete again when we start
410 * the request, otherwise we'll ignore the completion event.
411 */
4b570521
JA
412 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
413 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
414 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
415 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
416
417 if (q->dma_drain_size && blk_rq_bytes(rq)) {
418 /*
419 * Make sure space for the drain appears. We know we can do
420 * this because max_hw_segments has been adjusted to be one
421 * fewer than the device can handle.
422 */
423 rq->nr_phys_segments++;
424 }
320ae51f 425}
e2490073 426EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 427
ed0791b2 428static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
429{
430 struct request_queue *q = rq->q;
431
432 trace_block_rq_requeue(q, rq);
49f5baa5 433
e2490073
CH
434 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
435 if (q->dma_drain_size && blk_rq_bytes(rq))
436 rq->nr_phys_segments--;
437 }
320ae51f
JA
438}
439
ed0791b2
CH
440void blk_mq_requeue_request(struct request *rq)
441{
ed0791b2 442 __blk_mq_requeue_request(rq);
ed0791b2 443
ed0791b2 444 BUG_ON(blk_queued_rq(rq));
6fca6a61 445 blk_mq_add_to_requeue_list(rq, true);
ed0791b2
CH
446}
447EXPORT_SYMBOL(blk_mq_requeue_request);
448
6fca6a61
CH
449static void blk_mq_requeue_work(struct work_struct *work)
450{
451 struct request_queue *q =
452 container_of(work, struct request_queue, requeue_work);
453 LIST_HEAD(rq_list);
454 struct request *rq, *next;
455 unsigned long flags;
456
457 spin_lock_irqsave(&q->requeue_lock, flags);
458 list_splice_init(&q->requeue_list, &rq_list);
459 spin_unlock_irqrestore(&q->requeue_lock, flags);
460
461 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
462 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
463 continue;
464
465 rq->cmd_flags &= ~REQ_SOFTBARRIER;
466 list_del_init(&rq->queuelist);
467 blk_mq_insert_request(rq, true, false, false);
468 }
469
470 while (!list_empty(&rq_list)) {
471 rq = list_entry(rq_list.next, struct request, queuelist);
472 list_del_init(&rq->queuelist);
473 blk_mq_insert_request(rq, false, false, false);
474 }
475
8b957415
JA
476 /*
477 * Use the start variant of queue running here, so that running
478 * the requeue work will kick stopped queues.
479 */
480 blk_mq_start_hw_queues(q);
6fca6a61
CH
481}
482
483void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
484{
485 struct request_queue *q = rq->q;
486 unsigned long flags;
487
488 /*
489 * We abuse this flag that is otherwise used by the I/O scheduler to
490 * request head insertation from the workqueue.
491 */
492 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
493
494 spin_lock_irqsave(&q->requeue_lock, flags);
495 if (at_head) {
496 rq->cmd_flags |= REQ_SOFTBARRIER;
497 list_add(&rq->queuelist, &q->requeue_list);
498 } else {
499 list_add_tail(&rq->queuelist, &q->requeue_list);
500 }
501 spin_unlock_irqrestore(&q->requeue_lock, flags);
502}
503EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
504
505void blk_mq_kick_requeue_list(struct request_queue *q)
506{
507 kblockd_schedule_work(&q->requeue_work);
508}
509EXPORT_SYMBOL(blk_mq_kick_requeue_list);
510
7c94e1c1
ML
511static inline bool is_flush_request(struct request *rq,
512 struct blk_flush_queue *fq, unsigned int tag)
24d2f903 513{
0e62f51f 514 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
7c94e1c1 515 fq->flush_rq->tag == tag);
0e62f51f
JA
516}
517
518struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
519{
520 struct request *rq = tags->rqs[tag];
7c94e1c1 521 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q);
22302375 522
7c94e1c1 523 if (!is_flush_request(rq, fq, tag))
0e62f51f 524 return rq;
22302375 525
7c94e1c1 526 return fq->flush_rq;
24d2f903
CH
527}
528EXPORT_SYMBOL(blk_mq_tag_to_rq);
529
46f92d42
CH
530struct blk_mq_timeout_data {
531 unsigned long next;
532 unsigned int next_set;
533};
534
90415837 535void blk_mq_rq_timed_out(struct request *req, bool reserved)
87ee7b11 536{
46f92d42
CH
537 struct blk_mq_ops *ops = req->q->mq_ops;
538 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
539
540 /*
541 * We know that complete is set at this point. If STARTED isn't set
542 * anymore, then the request isn't active and the "timeout" should
543 * just be ignored. This can happen due to the bitflag ordering.
544 * Timeout first checks if STARTED is set, and if it is, assumes
545 * the request is active. But if we race with completion, then
546 * we both flags will get cleared. So check here again, and ignore
547 * a timeout event with a request that isn't active.
548 */
46f92d42
CH
549 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
550 return;
87ee7b11 551
46f92d42 552 if (ops->timeout)
0152fb6b 553 ret = ops->timeout(req, reserved);
46f92d42
CH
554
555 switch (ret) {
556 case BLK_EH_HANDLED:
557 __blk_mq_complete_request(req);
558 break;
559 case BLK_EH_RESET_TIMER:
560 blk_add_timer(req);
561 blk_clear_rq_complete(req);
562 break;
563 case BLK_EH_NOT_HANDLED:
564 break;
565 default:
566 printk(KERN_ERR "block: bad eh return: %d\n", ret);
567 break;
568 }
87ee7b11 569}
81481eb4 570
81481eb4
CH
571static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
572 struct request *rq, void *priv, bool reserved)
573{
574 struct blk_mq_timeout_data *data = priv;
87ee7b11 575
46f92d42
CH
576 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
577 return;
578
579 if (time_after_eq(jiffies, rq->deadline)) {
580 if (!blk_mark_rq_complete(rq))
0152fb6b 581 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
582 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
583 data->next = rq->deadline;
584 data->next_set = 1;
585 }
81481eb4
CH
586}
587
588static void blk_mq_rq_timer(unsigned long priv)
320ae51f 589{
81481eb4
CH
590 struct request_queue *q = (struct request_queue *)priv;
591 struct blk_mq_timeout_data data = {
592 .next = 0,
593 .next_set = 0,
594 };
320ae51f 595 struct blk_mq_hw_ctx *hctx;
81481eb4 596 int i;
320ae51f 597
484b4061
JA
598 queue_for_each_hw_ctx(q, hctx, i) {
599 /*
600 * If not software queues are currently mapped to this
601 * hardware queue, there's nothing to check
602 */
603 if (!hctx->nr_ctx || !hctx->tags)
604 continue;
605
81481eb4 606 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
484b4061 607 }
320ae51f 608
81481eb4
CH
609 if (data.next_set) {
610 data.next = blk_rq_timeout(round_jiffies_up(data.next));
611 mod_timer(&q->timeout, data.next);
0d2602ca
JA
612 } else {
613 queue_for_each_hw_ctx(q, hctx, i)
614 blk_mq_tag_idle(hctx);
615 }
320ae51f
JA
616}
617
618/*
619 * Reverse check our software queue for entries that we could potentially
620 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
621 * too much time checking for merges.
622 */
623static bool blk_mq_attempt_merge(struct request_queue *q,
624 struct blk_mq_ctx *ctx, struct bio *bio)
625{
626 struct request *rq;
627 int checked = 8;
628
629 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
630 int el_ret;
631
632 if (!checked--)
633 break;
634
635 if (!blk_rq_merge_ok(rq, bio))
636 continue;
637
638 el_ret = blk_try_merge(rq, bio);
639 if (el_ret == ELEVATOR_BACK_MERGE) {
640 if (bio_attempt_back_merge(q, rq, bio)) {
641 ctx->rq_merged++;
642 return true;
643 }
644 break;
645 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
646 if (bio_attempt_front_merge(q, rq, bio)) {
647 ctx->rq_merged++;
648 return true;
649 }
650 break;
651 }
652 }
653
654 return false;
655}
656
1429d7c9
JA
657/*
658 * Process software queues that have been marked busy, splicing them
659 * to the for-dispatch
660 */
661static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
662{
663 struct blk_mq_ctx *ctx;
664 int i;
665
666 for (i = 0; i < hctx->ctx_map.map_size; i++) {
667 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
668 unsigned int off, bit;
669
670 if (!bm->word)
671 continue;
672
673 bit = 0;
674 off = i * hctx->ctx_map.bits_per_word;
675 do {
676 bit = find_next_bit(&bm->word, bm->depth, bit);
677 if (bit >= bm->depth)
678 break;
679
680 ctx = hctx->ctxs[bit + off];
681 clear_bit(bit, &bm->word);
682 spin_lock(&ctx->lock);
683 list_splice_tail_init(&ctx->rq_list, list);
684 spin_unlock(&ctx->lock);
685
686 bit++;
687 } while (1);
688 }
689}
690
320ae51f
JA
691/*
692 * Run this hardware queue, pulling any software queues mapped to it in.
693 * Note that this function currently has various problems around ordering
694 * of IO. In particular, we'd like FIFO behaviour on handling existing
695 * items on the hctx->dispatch list. Ignore that for now.
696 */
697static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
698{
699 struct request_queue *q = hctx->queue;
320ae51f
JA
700 struct request *rq;
701 LIST_HEAD(rq_list);
1429d7c9 702 int queued;
320ae51f 703
fd1270d5 704 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 705
5d12f905 706 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
707 return;
708
709 hctx->run++;
710
711 /*
712 * Touch any software queue that has pending entries.
713 */
1429d7c9 714 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
715
716 /*
717 * If we have previous entries on our dispatch list, grab them
718 * and stuff them at the front for more fair dispatch.
719 */
720 if (!list_empty_careful(&hctx->dispatch)) {
721 spin_lock(&hctx->lock);
722 if (!list_empty(&hctx->dispatch))
723 list_splice_init(&hctx->dispatch, &rq_list);
724 spin_unlock(&hctx->lock);
725 }
726
320ae51f
JA
727 /*
728 * Now process all the entries, sending them to the driver.
729 */
1429d7c9 730 queued = 0;
320ae51f
JA
731 while (!list_empty(&rq_list)) {
732 int ret;
733
734 rq = list_first_entry(&rq_list, struct request, queuelist);
735 list_del_init(&rq->queuelist);
320ae51f 736
bf572297 737 ret = q->mq_ops->queue_rq(hctx, rq, list_empty(&rq_list));
320ae51f
JA
738 switch (ret) {
739 case BLK_MQ_RQ_QUEUE_OK:
740 queued++;
741 continue;
742 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 743 list_add(&rq->queuelist, &rq_list);
ed0791b2 744 __blk_mq_requeue_request(rq);
320ae51f
JA
745 break;
746 default:
747 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 748 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 749 rq->errors = -EIO;
c8a446ad 750 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
751 break;
752 }
753
754 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
755 break;
756 }
757
758 if (!queued)
759 hctx->dispatched[0]++;
760 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
761 hctx->dispatched[ilog2(queued) + 1]++;
762
763 /*
764 * Any items that need requeuing? Stuff them into hctx->dispatch,
765 * that is where we will continue on next queue run.
766 */
767 if (!list_empty(&rq_list)) {
768 spin_lock(&hctx->lock);
769 list_splice(&rq_list, &hctx->dispatch);
770 spin_unlock(&hctx->lock);
771 }
772}
773
506e931f
JA
774/*
775 * It'd be great if the workqueue API had a way to pass
776 * in a mask and had some smarts for more clever placement.
777 * For now we just round-robin here, switching for every
778 * BLK_MQ_CPU_WORK_BATCH queued items.
779 */
780static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
781{
782 int cpu = hctx->next_cpu;
783
784 if (--hctx->next_cpu_batch <= 0) {
785 int next_cpu;
786
787 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
788 if (next_cpu >= nr_cpu_ids)
789 next_cpu = cpumask_first(hctx->cpumask);
790
791 hctx->next_cpu = next_cpu;
792 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
793 }
794
795 return cpu;
796}
797
320ae51f
JA
798void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
799{
5d12f905 800 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
801 return;
802
e4043dcf 803 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
320ae51f 804 __blk_mq_run_hw_queue(hctx);
e4043dcf 805 else if (hctx->queue->nr_hw_queues == 1)
70f4db63 806 kblockd_schedule_delayed_work(&hctx->run_work, 0);
e4043dcf
JA
807 else {
808 unsigned int cpu;
809
506e931f 810 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63 811 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
e4043dcf 812 }
320ae51f
JA
813}
814
815void blk_mq_run_queues(struct request_queue *q, bool async)
816{
817 struct blk_mq_hw_ctx *hctx;
818 int i;
819
820 queue_for_each_hw_ctx(q, hctx, i) {
821 if ((!blk_mq_hctx_has_pending(hctx) &&
822 list_empty_careful(&hctx->dispatch)) ||
5d12f905 823 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
824 continue;
825
e4043dcf 826 preempt_disable();
320ae51f 827 blk_mq_run_hw_queue(hctx, async);
e4043dcf 828 preempt_enable();
320ae51f
JA
829 }
830}
831EXPORT_SYMBOL(blk_mq_run_queues);
832
833void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
834{
70f4db63
CH
835 cancel_delayed_work(&hctx->run_work);
836 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
837 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
838}
839EXPORT_SYMBOL(blk_mq_stop_hw_queue);
840
280d45f6
CH
841void blk_mq_stop_hw_queues(struct request_queue *q)
842{
843 struct blk_mq_hw_ctx *hctx;
844 int i;
845
846 queue_for_each_hw_ctx(q, hctx, i)
847 blk_mq_stop_hw_queue(hctx);
848}
849EXPORT_SYMBOL(blk_mq_stop_hw_queues);
850
320ae51f
JA
851void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
852{
853 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf
JA
854
855 preempt_disable();
0ffbce80 856 blk_mq_run_hw_queue(hctx, false);
e4043dcf 857 preempt_enable();
320ae51f
JA
858}
859EXPORT_SYMBOL(blk_mq_start_hw_queue);
860
2f268556
CH
861void blk_mq_start_hw_queues(struct request_queue *q)
862{
863 struct blk_mq_hw_ctx *hctx;
864 int i;
865
866 queue_for_each_hw_ctx(q, hctx, i)
867 blk_mq_start_hw_queue(hctx);
868}
869EXPORT_SYMBOL(blk_mq_start_hw_queues);
870
871
1b4a3258 872void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
873{
874 struct blk_mq_hw_ctx *hctx;
875 int i;
876
877 queue_for_each_hw_ctx(q, hctx, i) {
878 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
879 continue;
880
881 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 882 preempt_disable();
1b4a3258 883 blk_mq_run_hw_queue(hctx, async);
e4043dcf 884 preempt_enable();
320ae51f
JA
885 }
886}
887EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
888
70f4db63 889static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
890{
891 struct blk_mq_hw_ctx *hctx;
892
70f4db63 893 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 894
320ae51f
JA
895 __blk_mq_run_hw_queue(hctx);
896}
897
70f4db63
CH
898static void blk_mq_delay_work_fn(struct work_struct *work)
899{
900 struct blk_mq_hw_ctx *hctx;
901
902 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
903
904 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
905 __blk_mq_run_hw_queue(hctx);
906}
907
908void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
909{
910 unsigned long tmo = msecs_to_jiffies(msecs);
911
912 if (hctx->queue->nr_hw_queues == 1)
913 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
914 else {
915 unsigned int cpu;
916
506e931f 917 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63
CH
918 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
919 }
920}
921EXPORT_SYMBOL(blk_mq_delay_queue);
922
320ae51f 923static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 924 struct request *rq, bool at_head)
320ae51f
JA
925{
926 struct blk_mq_ctx *ctx = rq->mq_ctx;
927
01b983c9
JA
928 trace_block_rq_insert(hctx->queue, rq);
929
72a0a36e
CH
930 if (at_head)
931 list_add(&rq->queuelist, &ctx->rq_list);
932 else
933 list_add_tail(&rq->queuelist, &ctx->rq_list);
4bb659b1 934
320ae51f 935 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
936}
937
eeabc850
CH
938void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
939 bool async)
320ae51f 940{
eeabc850 941 struct request_queue *q = rq->q;
320ae51f 942 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
943 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
944
945 current_ctx = blk_mq_get_ctx(q);
946 if (!cpu_online(ctx->cpu))
947 rq->mq_ctx = ctx = current_ctx;
320ae51f 948
320ae51f
JA
949 hctx = q->mq_ops->map_queue(q, ctx->cpu);
950
a57a178a
CH
951 spin_lock(&ctx->lock);
952 __blk_mq_insert_request(hctx, rq, at_head);
953 spin_unlock(&ctx->lock);
320ae51f 954
320ae51f
JA
955 if (run_queue)
956 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
957
958 blk_mq_put_ctx(current_ctx);
320ae51f
JA
959}
960
961static void blk_mq_insert_requests(struct request_queue *q,
962 struct blk_mq_ctx *ctx,
963 struct list_head *list,
964 int depth,
965 bool from_schedule)
966
967{
968 struct blk_mq_hw_ctx *hctx;
969 struct blk_mq_ctx *current_ctx;
970
971 trace_block_unplug(q, depth, !from_schedule);
972
973 current_ctx = blk_mq_get_ctx(q);
974
975 if (!cpu_online(ctx->cpu))
976 ctx = current_ctx;
977 hctx = q->mq_ops->map_queue(q, ctx->cpu);
978
979 /*
980 * preemption doesn't flush plug list, so it's possible ctx->cpu is
981 * offline now
982 */
983 spin_lock(&ctx->lock);
984 while (!list_empty(list)) {
985 struct request *rq;
986
987 rq = list_first_entry(list, struct request, queuelist);
988 list_del_init(&rq->queuelist);
989 rq->mq_ctx = ctx;
72a0a36e 990 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
991 }
992 spin_unlock(&ctx->lock);
993
320ae51f 994 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 995 blk_mq_put_ctx(current_ctx);
320ae51f
JA
996}
997
998static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
999{
1000 struct request *rqa = container_of(a, struct request, queuelist);
1001 struct request *rqb = container_of(b, struct request, queuelist);
1002
1003 return !(rqa->mq_ctx < rqb->mq_ctx ||
1004 (rqa->mq_ctx == rqb->mq_ctx &&
1005 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1006}
1007
1008void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1009{
1010 struct blk_mq_ctx *this_ctx;
1011 struct request_queue *this_q;
1012 struct request *rq;
1013 LIST_HEAD(list);
1014 LIST_HEAD(ctx_list);
1015 unsigned int depth;
1016
1017 list_splice_init(&plug->mq_list, &list);
1018
1019 list_sort(NULL, &list, plug_ctx_cmp);
1020
1021 this_q = NULL;
1022 this_ctx = NULL;
1023 depth = 0;
1024
1025 while (!list_empty(&list)) {
1026 rq = list_entry_rq(list.next);
1027 list_del_init(&rq->queuelist);
1028 BUG_ON(!rq->q);
1029 if (rq->mq_ctx != this_ctx) {
1030 if (this_ctx) {
1031 blk_mq_insert_requests(this_q, this_ctx,
1032 &ctx_list, depth,
1033 from_schedule);
1034 }
1035
1036 this_ctx = rq->mq_ctx;
1037 this_q = rq->q;
1038 depth = 0;
1039 }
1040
1041 depth++;
1042 list_add_tail(&rq->queuelist, &ctx_list);
1043 }
1044
1045 /*
1046 * If 'this_ctx' is set, we know we have entries to complete
1047 * on 'ctx_list'. Do those.
1048 */
1049 if (this_ctx) {
1050 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1051 from_schedule);
1052 }
1053}
1054
1055static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1056{
1057 init_request_from_bio(rq, bio);
4b570521 1058
3ee32372 1059 if (blk_do_io_stat(rq))
4b570521 1060 blk_account_io_start(rq, 1);
320ae51f
JA
1061}
1062
274a5843
JA
1063static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1064{
1065 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1066 !blk_queue_nomerges(hctx->queue);
1067}
1068
07068d5b
JA
1069static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1070 struct blk_mq_ctx *ctx,
1071 struct request *rq, struct bio *bio)
320ae51f 1072{
274a5843 1073 if (!hctx_allow_merges(hctx)) {
07068d5b
JA
1074 blk_mq_bio_to_request(rq, bio);
1075 spin_lock(&ctx->lock);
1076insert_rq:
1077 __blk_mq_insert_request(hctx, rq, false);
1078 spin_unlock(&ctx->lock);
1079 return false;
1080 } else {
274a5843
JA
1081 struct request_queue *q = hctx->queue;
1082
07068d5b
JA
1083 spin_lock(&ctx->lock);
1084 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1085 blk_mq_bio_to_request(rq, bio);
1086 goto insert_rq;
1087 }
320ae51f 1088
07068d5b
JA
1089 spin_unlock(&ctx->lock);
1090 __blk_mq_free_request(hctx, ctx, rq);
1091 return true;
14ec77f3 1092 }
07068d5b 1093}
14ec77f3 1094
07068d5b
JA
1095struct blk_map_ctx {
1096 struct blk_mq_hw_ctx *hctx;
1097 struct blk_mq_ctx *ctx;
1098};
1099
1100static struct request *blk_mq_map_request(struct request_queue *q,
1101 struct bio *bio,
1102 struct blk_map_ctx *data)
1103{
1104 struct blk_mq_hw_ctx *hctx;
1105 struct blk_mq_ctx *ctx;
1106 struct request *rq;
1107 int rw = bio_data_dir(bio);
cb96a42c 1108 struct blk_mq_alloc_data alloc_data;
320ae51f 1109
07068d5b 1110 if (unlikely(blk_mq_queue_enter(q))) {
320ae51f 1111 bio_endio(bio, -EIO);
07068d5b 1112 return NULL;
320ae51f
JA
1113 }
1114
1115 ctx = blk_mq_get_ctx(q);
1116 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1117
07068d5b 1118 if (rw_is_sync(bio->bi_rw))
27fbf4e8 1119 rw |= REQ_SYNC;
07068d5b 1120
320ae51f 1121 trace_block_getrq(q, bio, rw);
cb96a42c
ML
1122 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1123 hctx);
1124 rq = __blk_mq_alloc_request(&alloc_data, rw);
5dee8577 1125 if (unlikely(!rq)) {
793597a6 1126 __blk_mq_run_hw_queue(hctx);
320ae51f
JA
1127 blk_mq_put_ctx(ctx);
1128 trace_block_sleeprq(q, bio, rw);
793597a6
CH
1129
1130 ctx = blk_mq_get_ctx(q);
320ae51f 1131 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
1132 blk_mq_set_alloc_data(&alloc_data, q,
1133 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1134 rq = __blk_mq_alloc_request(&alloc_data, rw);
1135 ctx = alloc_data.ctx;
1136 hctx = alloc_data.hctx;
320ae51f
JA
1137 }
1138
1139 hctx->queued++;
07068d5b
JA
1140 data->hctx = hctx;
1141 data->ctx = ctx;
1142 return rq;
1143}
1144
1145/*
1146 * Multiple hardware queue variant. This will not use per-process plugs,
1147 * but will attempt to bypass the hctx queueing if we can go straight to
1148 * hardware for SYNC IO.
1149 */
1150static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1151{
1152 const int is_sync = rw_is_sync(bio->bi_rw);
1153 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1154 struct blk_map_ctx data;
1155 struct request *rq;
1156
1157 blk_queue_bounce(q, &bio);
1158
1159 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1160 bio_endio(bio, -EIO);
1161 return;
1162 }
1163
1164 rq = blk_mq_map_request(q, bio, &data);
1165 if (unlikely(!rq))
1166 return;
1167
1168 if (unlikely(is_flush_fua)) {
1169 blk_mq_bio_to_request(rq, bio);
1170 blk_insert_flush(rq);
1171 goto run_queue;
1172 }
1173
1174 if (is_sync) {
1175 int ret;
1176
1177 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1178
1179 /*
1180 * For OK queue, we are done. For error, kill it. Any other
1181 * error (busy), just add it to our list as we previously
1182 * would have done
1183 */
bf572297 1184 ret = q->mq_ops->queue_rq(data.hctx, rq, true);
07068d5b
JA
1185 if (ret == BLK_MQ_RQ_QUEUE_OK)
1186 goto done;
1187 else {
1188 __blk_mq_requeue_request(rq);
1189
1190 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1191 rq->errors = -EIO;
c8a446ad 1192 blk_mq_end_request(rq, rq->errors);
07068d5b
JA
1193 goto done;
1194 }
1195 }
1196 }
1197
1198 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1199 /*
1200 * For a SYNC request, send it to the hardware immediately. For
1201 * an ASYNC request, just ensure that we run it later on. The
1202 * latter allows for merging opportunities and more efficient
1203 * dispatching.
1204 */
1205run_queue:
1206 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1207 }
1208done:
1209 blk_mq_put_ctx(data.ctx);
1210}
1211
1212/*
1213 * Single hardware queue variant. This will attempt to use any per-process
1214 * plug for merging and IO deferral.
1215 */
1216static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1217{
1218 const int is_sync = rw_is_sync(bio->bi_rw);
1219 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1220 unsigned int use_plug, request_count = 0;
1221 struct blk_map_ctx data;
1222 struct request *rq;
1223
1224 /*
1225 * If we have multiple hardware queues, just go directly to
1226 * one of those for sync IO.
1227 */
1228 use_plug = !is_flush_fua && !is_sync;
1229
1230 blk_queue_bounce(q, &bio);
1231
1232 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1233 bio_endio(bio, -EIO);
1234 return;
1235 }
1236
1237 if (use_plug && !blk_queue_nomerges(q) &&
1238 blk_attempt_plug_merge(q, bio, &request_count))
1239 return;
1240
1241 rq = blk_mq_map_request(q, bio, &data);
ff87bcec
JA
1242 if (unlikely(!rq))
1243 return;
320ae51f
JA
1244
1245 if (unlikely(is_flush_fua)) {
1246 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1247 blk_insert_flush(rq);
1248 goto run_queue;
1249 }
1250
1251 /*
1252 * A task plug currently exists. Since this is completely lockless,
1253 * utilize that to temporarily store requests until the task is
1254 * either done or scheduled away.
1255 */
1256 if (use_plug) {
1257 struct blk_plug *plug = current->plug;
1258
1259 if (plug) {
1260 blk_mq_bio_to_request(rq, bio);
92f399c7 1261 if (list_empty(&plug->mq_list))
320ae51f
JA
1262 trace_block_plug(q);
1263 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1264 blk_flush_plug_list(plug, false);
1265 trace_block_plug(q);
1266 }
1267 list_add_tail(&rq->queuelist, &plug->mq_list);
07068d5b 1268 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1269 return;
1270 }
1271 }
1272
07068d5b
JA
1273 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1274 /*
1275 * For a SYNC request, send it to the hardware immediately. For
1276 * an ASYNC request, just ensure that we run it later on. The
1277 * latter allows for merging opportunities and more efficient
1278 * dispatching.
1279 */
1280run_queue:
1281 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1282 }
1283
07068d5b 1284 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1285}
1286
1287/*
1288 * Default mapping to a software queue, since we use one per CPU.
1289 */
1290struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1291{
1292 return q->queue_hw_ctx[q->mq_map[cpu]];
1293}
1294EXPORT_SYMBOL(blk_mq_map_queue);
1295
24d2f903
CH
1296static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1297 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1298{
e9b267d9 1299 struct page *page;
320ae51f 1300
24d2f903 1301 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1302 int i;
320ae51f 1303
24d2f903
CH
1304 for (i = 0; i < tags->nr_tags; i++) {
1305 if (!tags->rqs[i])
e9b267d9 1306 continue;
24d2f903
CH
1307 set->ops->exit_request(set->driver_data, tags->rqs[i],
1308 hctx_idx, i);
a5164405 1309 tags->rqs[i] = NULL;
e9b267d9 1310 }
320ae51f 1311 }
320ae51f 1312
24d2f903
CH
1313 while (!list_empty(&tags->page_list)) {
1314 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1315 list_del_init(&page->lru);
320ae51f
JA
1316 __free_pages(page, page->private);
1317 }
1318
24d2f903 1319 kfree(tags->rqs);
320ae51f 1320
24d2f903 1321 blk_mq_free_tags(tags);
320ae51f
JA
1322}
1323
1324static size_t order_to_size(unsigned int order)
1325{
4ca08500 1326 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1327}
1328
24d2f903
CH
1329static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1330 unsigned int hctx_idx)
320ae51f 1331{
24d2f903 1332 struct blk_mq_tags *tags;
320ae51f
JA
1333 unsigned int i, j, entries_per_page, max_order = 4;
1334 size_t rq_size, left;
1335
24d2f903
CH
1336 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1337 set->numa_node);
1338 if (!tags)
1339 return NULL;
320ae51f 1340
24d2f903
CH
1341 INIT_LIST_HEAD(&tags->page_list);
1342
a5164405
JA
1343 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1344 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1345 set->numa_node);
24d2f903
CH
1346 if (!tags->rqs) {
1347 blk_mq_free_tags(tags);
1348 return NULL;
1349 }
320ae51f
JA
1350
1351 /*
1352 * rq_size is the size of the request plus driver payload, rounded
1353 * to the cacheline size
1354 */
24d2f903 1355 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1356 cache_line_size());
24d2f903 1357 left = rq_size * set->queue_depth;
320ae51f 1358
24d2f903 1359 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1360 int this_order = max_order;
1361 struct page *page;
1362 int to_do;
1363 void *p;
1364
1365 while (left < order_to_size(this_order - 1) && this_order)
1366 this_order--;
1367
1368 do {
a5164405
JA
1369 page = alloc_pages_node(set->numa_node,
1370 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1371 this_order);
320ae51f
JA
1372 if (page)
1373 break;
1374 if (!this_order--)
1375 break;
1376 if (order_to_size(this_order) < rq_size)
1377 break;
1378 } while (1);
1379
1380 if (!page)
24d2f903 1381 goto fail;
320ae51f
JA
1382
1383 page->private = this_order;
24d2f903 1384 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1385
1386 p = page_address(page);
1387 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1388 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1389 left -= to_do * rq_size;
1390 for (j = 0; j < to_do; j++) {
24d2f903 1391 tags->rqs[i] = p;
683d0e12
DH
1392 tags->rqs[i]->atomic_flags = 0;
1393 tags->rqs[i]->cmd_flags = 0;
24d2f903
CH
1394 if (set->ops->init_request) {
1395 if (set->ops->init_request(set->driver_data,
1396 tags->rqs[i], hctx_idx, i,
a5164405
JA
1397 set->numa_node)) {
1398 tags->rqs[i] = NULL;
24d2f903 1399 goto fail;
a5164405 1400 }
e9b267d9
CH
1401 }
1402
320ae51f
JA
1403 p += rq_size;
1404 i++;
1405 }
1406 }
1407
24d2f903 1408 return tags;
320ae51f 1409
24d2f903 1410fail:
24d2f903
CH
1411 blk_mq_free_rq_map(set, tags, hctx_idx);
1412 return NULL;
320ae51f
JA
1413}
1414
1429d7c9
JA
1415static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1416{
1417 kfree(bitmap->map);
1418}
1419
1420static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1421{
1422 unsigned int bpw = 8, total, num_maps, i;
1423
1424 bitmap->bits_per_word = bpw;
1425
1426 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1427 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1428 GFP_KERNEL, node);
1429 if (!bitmap->map)
1430 return -ENOMEM;
1431
1432 bitmap->map_size = num_maps;
1433
1434 total = nr_cpu_ids;
1435 for (i = 0; i < num_maps; i++) {
1436 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1437 total -= bitmap->map[i].depth;
1438 }
1439
1440 return 0;
1441}
1442
484b4061
JA
1443static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1444{
1445 struct request_queue *q = hctx->queue;
1446 struct blk_mq_ctx *ctx;
1447 LIST_HEAD(tmp);
1448
1449 /*
1450 * Move ctx entries to new CPU, if this one is going away.
1451 */
1452 ctx = __blk_mq_get_ctx(q, cpu);
1453
1454 spin_lock(&ctx->lock);
1455 if (!list_empty(&ctx->rq_list)) {
1456 list_splice_init(&ctx->rq_list, &tmp);
1457 blk_mq_hctx_clear_pending(hctx, ctx);
1458 }
1459 spin_unlock(&ctx->lock);
1460
1461 if (list_empty(&tmp))
1462 return NOTIFY_OK;
1463
1464 ctx = blk_mq_get_ctx(q);
1465 spin_lock(&ctx->lock);
1466
1467 while (!list_empty(&tmp)) {
1468 struct request *rq;
1469
1470 rq = list_first_entry(&tmp, struct request, queuelist);
1471 rq->mq_ctx = ctx;
1472 list_move_tail(&rq->queuelist, &ctx->rq_list);
1473 }
1474
1475 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1476 blk_mq_hctx_mark_pending(hctx, ctx);
1477
1478 spin_unlock(&ctx->lock);
1479
1480 blk_mq_run_hw_queue(hctx, true);
1481 blk_mq_put_ctx(ctx);
1482 return NOTIFY_OK;
1483}
1484
1485static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1486{
1487 struct request_queue *q = hctx->queue;
1488 struct blk_mq_tag_set *set = q->tag_set;
1489
1490 if (set->tags[hctx->queue_num])
1491 return NOTIFY_OK;
1492
1493 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1494 if (!set->tags[hctx->queue_num])
1495 return NOTIFY_STOP;
1496
1497 hctx->tags = set->tags[hctx->queue_num];
1498 return NOTIFY_OK;
1499}
1500
1501static int blk_mq_hctx_notify(void *data, unsigned long action,
1502 unsigned int cpu)
1503{
1504 struct blk_mq_hw_ctx *hctx = data;
1505
1506 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1507 return blk_mq_hctx_cpu_offline(hctx, cpu);
1508 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1509 return blk_mq_hctx_cpu_online(hctx, cpu);
1510
1511 return NOTIFY_OK;
1512}
1513
08e98fc6
ML
1514static void blk_mq_exit_hctx(struct request_queue *q,
1515 struct blk_mq_tag_set *set,
1516 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1517{
1518 blk_mq_tag_idle(hctx);
1519
1520 if (set->ops->exit_hctx)
1521 set->ops->exit_hctx(hctx, hctx_idx);
1522
1523 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1524 kfree(hctx->ctxs);
1525 blk_mq_free_bitmap(&hctx->ctx_map);
1526}
1527
624dbe47
ML
1528static void blk_mq_exit_hw_queues(struct request_queue *q,
1529 struct blk_mq_tag_set *set, int nr_queue)
1530{
1531 struct blk_mq_hw_ctx *hctx;
1532 unsigned int i;
1533
1534 queue_for_each_hw_ctx(q, hctx, i) {
1535 if (i == nr_queue)
1536 break;
08e98fc6 1537 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1538 }
624dbe47
ML
1539}
1540
1541static void blk_mq_free_hw_queues(struct request_queue *q,
1542 struct blk_mq_tag_set *set)
1543{
1544 struct blk_mq_hw_ctx *hctx;
1545 unsigned int i;
1546
1547 queue_for_each_hw_ctx(q, hctx, i) {
1548 free_cpumask_var(hctx->cpumask);
cdef54dd 1549 kfree(hctx);
624dbe47
ML
1550 }
1551}
1552
08e98fc6
ML
1553static int blk_mq_init_hctx(struct request_queue *q,
1554 struct blk_mq_tag_set *set,
1555 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1556{
08e98fc6
ML
1557 int node;
1558
1559 node = hctx->numa_node;
1560 if (node == NUMA_NO_NODE)
1561 node = hctx->numa_node = set->numa_node;
1562
1563 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1564 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1565 spin_lock_init(&hctx->lock);
1566 INIT_LIST_HEAD(&hctx->dispatch);
1567 hctx->queue = q;
1568 hctx->queue_num = hctx_idx;
1569 hctx->flags = set->flags;
1570 hctx->cmd_size = set->cmd_size;
1571
1572 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1573 blk_mq_hctx_notify, hctx);
1574 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1575
1576 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1577
1578 /*
08e98fc6
ML
1579 * Allocate space for all possible cpus to avoid allocation at
1580 * runtime
320ae51f 1581 */
08e98fc6
ML
1582 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1583 GFP_KERNEL, node);
1584 if (!hctx->ctxs)
1585 goto unregister_cpu_notifier;
320ae51f 1586
08e98fc6
ML
1587 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1588 goto free_ctxs;
320ae51f 1589
08e98fc6 1590 hctx->nr_ctx = 0;
320ae51f 1591
08e98fc6
ML
1592 if (set->ops->init_hctx &&
1593 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1594 goto free_bitmap;
320ae51f 1595
08e98fc6 1596 return 0;
320ae51f 1597
08e98fc6
ML
1598 free_bitmap:
1599 blk_mq_free_bitmap(&hctx->ctx_map);
1600 free_ctxs:
1601 kfree(hctx->ctxs);
1602 unregister_cpu_notifier:
1603 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
320ae51f 1604
08e98fc6
ML
1605 return -1;
1606}
320ae51f 1607
08e98fc6
ML
1608static int blk_mq_init_hw_queues(struct request_queue *q,
1609 struct blk_mq_tag_set *set)
1610{
1611 struct blk_mq_hw_ctx *hctx;
1612 unsigned int i;
320ae51f 1613
08e98fc6
ML
1614 /*
1615 * Initialize hardware queues
1616 */
1617 queue_for_each_hw_ctx(q, hctx, i) {
1618 if (blk_mq_init_hctx(q, set, hctx, i))
320ae51f
JA
1619 break;
1620 }
1621
1622 if (i == q->nr_hw_queues)
1623 return 0;
1624
1625 /*
1626 * Init failed
1627 */
624dbe47 1628 blk_mq_exit_hw_queues(q, set, i);
320ae51f
JA
1629
1630 return 1;
1631}
1632
1633static void blk_mq_init_cpu_queues(struct request_queue *q,
1634 unsigned int nr_hw_queues)
1635{
1636 unsigned int i;
1637
1638 for_each_possible_cpu(i) {
1639 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1640 struct blk_mq_hw_ctx *hctx;
1641
1642 memset(__ctx, 0, sizeof(*__ctx));
1643 __ctx->cpu = i;
1644 spin_lock_init(&__ctx->lock);
1645 INIT_LIST_HEAD(&__ctx->rq_list);
1646 __ctx->queue = q;
1647
1648 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1649 if (!cpu_online(i))
1650 continue;
1651
e4043dcf
JA
1652 hctx = q->mq_ops->map_queue(q, i);
1653 cpumask_set_cpu(i, hctx->cpumask);
1654 hctx->nr_ctx++;
1655
320ae51f
JA
1656 /*
1657 * Set local node, IFF we have more than one hw queue. If
1658 * not, we remain on the home node of the device
1659 */
1660 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1661 hctx->numa_node = cpu_to_node(i);
1662 }
1663}
1664
1665static void blk_mq_map_swqueue(struct request_queue *q)
1666{
1667 unsigned int i;
1668 struct blk_mq_hw_ctx *hctx;
1669 struct blk_mq_ctx *ctx;
1670
1671 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1672 cpumask_clear(hctx->cpumask);
320ae51f
JA
1673 hctx->nr_ctx = 0;
1674 }
1675
1676 /*
1677 * Map software to hardware queues
1678 */
1679 queue_for_each_ctx(q, ctx, i) {
1680 /* If the cpu isn't online, the cpu is mapped to first hctx */
e4043dcf
JA
1681 if (!cpu_online(i))
1682 continue;
1683
320ae51f 1684 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1685 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1686 ctx->index_hw = hctx->nr_ctx;
1687 hctx->ctxs[hctx->nr_ctx++] = ctx;
1688 }
506e931f
JA
1689
1690 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 1691 /*
a68aafa5
JA
1692 * If no software queues are mapped to this hardware queue,
1693 * disable it and free the request entries.
484b4061
JA
1694 */
1695 if (!hctx->nr_ctx) {
1696 struct blk_mq_tag_set *set = q->tag_set;
1697
1698 if (set->tags[i]) {
1699 blk_mq_free_rq_map(set, set->tags[i], i);
1700 set->tags[i] = NULL;
1701 hctx->tags = NULL;
1702 }
1703 continue;
1704 }
1705
1706 /*
1707 * Initialize batch roundrobin counts
1708 */
506e931f
JA
1709 hctx->next_cpu = cpumask_first(hctx->cpumask);
1710 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1711 }
320ae51f
JA
1712}
1713
0d2602ca
JA
1714static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1715{
1716 struct blk_mq_hw_ctx *hctx;
1717 struct request_queue *q;
1718 bool shared;
1719 int i;
1720
1721 if (set->tag_list.next == set->tag_list.prev)
1722 shared = false;
1723 else
1724 shared = true;
1725
1726 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1727 blk_mq_freeze_queue(q);
1728
1729 queue_for_each_hw_ctx(q, hctx, i) {
1730 if (shared)
1731 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1732 else
1733 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1734 }
1735 blk_mq_unfreeze_queue(q);
1736 }
1737}
1738
1739static void blk_mq_del_queue_tag_set(struct request_queue *q)
1740{
1741 struct blk_mq_tag_set *set = q->tag_set;
1742
0d2602ca
JA
1743 mutex_lock(&set->tag_list_lock);
1744 list_del_init(&q->tag_set_list);
1745 blk_mq_update_tag_set_depth(set);
1746 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
1747}
1748
1749static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1750 struct request_queue *q)
1751{
1752 q->tag_set = set;
1753
1754 mutex_lock(&set->tag_list_lock);
1755 list_add_tail(&q->tag_set_list, &set->tag_list);
1756 blk_mq_update_tag_set_depth(set);
1757 mutex_unlock(&set->tag_list_lock);
1758}
1759
24d2f903 1760struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
320ae51f
JA
1761{
1762 struct blk_mq_hw_ctx **hctxs;
e6cdb092 1763 struct blk_mq_ctx __percpu *ctx;
320ae51f 1764 struct request_queue *q;
f14bbe77 1765 unsigned int *map;
320ae51f
JA
1766 int i;
1767
320ae51f
JA
1768 ctx = alloc_percpu(struct blk_mq_ctx);
1769 if (!ctx)
1770 return ERR_PTR(-ENOMEM);
1771
aedcd72f
JA
1772 /*
1773 * If a crashdump is active, then we are potentially in a very
1774 * memory constrained environment. Limit us to 1 queue and
1775 * 64 tags to prevent using too much memory.
1776 */
1777 if (is_kdump_kernel()) {
1778 set->nr_hw_queues = 1;
1779 set->queue_depth = min(64U, set->queue_depth);
1780 }
1781
24d2f903
CH
1782 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1783 set->numa_node);
320ae51f
JA
1784
1785 if (!hctxs)
1786 goto err_percpu;
1787
f14bbe77
JA
1788 map = blk_mq_make_queue_map(set);
1789 if (!map)
1790 goto err_map;
1791
24d2f903 1792 for (i = 0; i < set->nr_hw_queues; i++) {
f14bbe77
JA
1793 int node = blk_mq_hw_queue_to_node(map, i);
1794
cdef54dd
CH
1795 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1796 GFP_KERNEL, node);
320ae51f
JA
1797 if (!hctxs[i])
1798 goto err_hctxs;
1799
e4043dcf
JA
1800 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1801 goto err_hctxs;
1802
0d2602ca 1803 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 1804 hctxs[i]->numa_node = node;
320ae51f
JA
1805 hctxs[i]->queue_num = i;
1806 }
1807
24d2f903 1808 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
320ae51f
JA
1809 if (!q)
1810 goto err_hctxs;
1811
add703fd 1812 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release))
3d2936f4
ML
1813 goto err_map;
1814
320ae51f
JA
1815 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1816 blk_queue_rq_timeout(q, 30000);
1817
1818 q->nr_queues = nr_cpu_ids;
24d2f903 1819 q->nr_hw_queues = set->nr_hw_queues;
f14bbe77 1820 q->mq_map = map;
320ae51f
JA
1821
1822 q->queue_ctx = ctx;
1823 q->queue_hw_ctx = hctxs;
1824
24d2f903 1825 q->mq_ops = set->ops;
94eddfbe 1826 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1827
05f1dd53
JA
1828 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1829 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1830
1be036e9
CH
1831 q->sg_reserved_size = INT_MAX;
1832
6fca6a61
CH
1833 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1834 INIT_LIST_HEAD(&q->requeue_list);
1835 spin_lock_init(&q->requeue_lock);
1836
07068d5b
JA
1837 if (q->nr_hw_queues > 1)
1838 blk_queue_make_request(q, blk_mq_make_request);
1839 else
1840 blk_queue_make_request(q, blk_sq_make_request);
1841
24d2f903
CH
1842 if (set->timeout)
1843 blk_queue_rq_timeout(q, set->timeout);
320ae51f 1844
eba71768
JA
1845 /*
1846 * Do this after blk_queue_make_request() overrides it...
1847 */
1848 q->nr_requests = set->queue_depth;
1849
24d2f903
CH
1850 if (set->ops->complete)
1851 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 1852
24d2f903 1853 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 1854
24d2f903 1855 if (blk_mq_init_hw_queues(q, set))
1bcb1ead 1856 goto err_hw;
18741986 1857
320ae51f
JA
1858 mutex_lock(&all_q_mutex);
1859 list_add_tail(&q->all_q_node, &all_q_list);
1860 mutex_unlock(&all_q_mutex);
1861
0d2602ca
JA
1862 blk_mq_add_queue_tag_set(set, q);
1863
ba483388
ML
1864 q->fq = blk_alloc_flush_queue(q);
1865 if (!q->fq)
1bcb1ead
ML
1866 goto err_hw_queues;
1867
484b4061
JA
1868 blk_mq_map_swqueue(q);
1869
320ae51f 1870 return q;
18741986 1871
1bcb1ead
ML
1872err_hw_queues:
1873 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 1874err_hw:
320ae51f
JA
1875 blk_cleanup_queue(q);
1876err_hctxs:
f14bbe77 1877 kfree(map);
24d2f903 1878 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
1879 if (!hctxs[i])
1880 break;
e4043dcf 1881 free_cpumask_var(hctxs[i]->cpumask);
cdef54dd 1882 kfree(hctxs[i]);
320ae51f 1883 }
f14bbe77 1884err_map:
320ae51f
JA
1885 kfree(hctxs);
1886err_percpu:
1887 free_percpu(ctx);
1888 return ERR_PTR(-ENOMEM);
1889}
1890EXPORT_SYMBOL(blk_mq_init_queue);
1891
1892void blk_mq_free_queue(struct request_queue *q)
1893{
624dbe47 1894 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1895
0d2602ca
JA
1896 blk_mq_del_queue_tag_set(q);
1897
624dbe47
ML
1898 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1899 blk_mq_free_hw_queues(q, set);
320ae51f 1900
add703fd 1901 percpu_ref_exit(&q->mq_usage_counter);
3d2936f4 1902
320ae51f
JA
1903 free_percpu(q->queue_ctx);
1904 kfree(q->queue_hw_ctx);
1905 kfree(q->mq_map);
1906
1907 q->queue_ctx = NULL;
1908 q->queue_hw_ctx = NULL;
1909 q->mq_map = NULL;
1910
1911 mutex_lock(&all_q_mutex);
1912 list_del_init(&q->all_q_node);
1913 mutex_unlock(&all_q_mutex);
1914}
320ae51f
JA
1915
1916/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1917static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1918{
1919 blk_mq_freeze_queue(q);
1920
67aec14c
JA
1921 blk_mq_sysfs_unregister(q);
1922
320ae51f
JA
1923 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1924
1925 /*
1926 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1927 * we should change hctx numa_node according to new topology (this
1928 * involves free and re-allocate memory, worthy doing?)
1929 */
1930
1931 blk_mq_map_swqueue(q);
1932
67aec14c
JA
1933 blk_mq_sysfs_register(q);
1934
320ae51f
JA
1935 blk_mq_unfreeze_queue(q);
1936}
1937
f618ef7c
PG
1938static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1939 unsigned long action, void *hcpu)
320ae51f
JA
1940{
1941 struct request_queue *q;
1942
1943 /*
9fccfed8
JA
1944 * Before new mappings are established, hotadded cpu might already
1945 * start handling requests. This doesn't break anything as we map
1946 * offline CPUs to first hardware queue. We will re-init the queue
1947 * below to get optimal settings.
320ae51f
JA
1948 */
1949 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1950 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1951 return NOTIFY_OK;
1952
1953 mutex_lock(&all_q_mutex);
1954 list_for_each_entry(q, &all_q_list, all_q_node)
1955 blk_mq_queue_reinit(q);
1956 mutex_unlock(&all_q_mutex);
1957 return NOTIFY_OK;
1958}
1959
a5164405
JA
1960static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1961{
1962 int i;
1963
1964 for (i = 0; i < set->nr_hw_queues; i++) {
1965 set->tags[i] = blk_mq_init_rq_map(set, i);
1966 if (!set->tags[i])
1967 goto out_unwind;
1968 }
1969
1970 return 0;
1971
1972out_unwind:
1973 while (--i >= 0)
1974 blk_mq_free_rq_map(set, set->tags[i], i);
1975
a5164405
JA
1976 return -ENOMEM;
1977}
1978
1979/*
1980 * Allocate the request maps associated with this tag_set. Note that this
1981 * may reduce the depth asked for, if memory is tight. set->queue_depth
1982 * will be updated to reflect the allocated depth.
1983 */
1984static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1985{
1986 unsigned int depth;
1987 int err;
1988
1989 depth = set->queue_depth;
1990 do {
1991 err = __blk_mq_alloc_rq_maps(set);
1992 if (!err)
1993 break;
1994
1995 set->queue_depth >>= 1;
1996 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
1997 err = -ENOMEM;
1998 break;
1999 }
2000 } while (set->queue_depth);
2001
2002 if (!set->queue_depth || err) {
2003 pr_err("blk-mq: failed to allocate request map\n");
2004 return -ENOMEM;
2005 }
2006
2007 if (depth != set->queue_depth)
2008 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2009 depth, set->queue_depth);
2010
2011 return 0;
2012}
2013
a4391c64
JA
2014/*
2015 * Alloc a tag set to be associated with one or more request queues.
2016 * May fail with EINVAL for various error conditions. May adjust the
2017 * requested depth down, if if it too large. In that case, the set
2018 * value will be stored in set->queue_depth.
2019 */
24d2f903
CH
2020int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2021{
24d2f903
CH
2022 if (!set->nr_hw_queues)
2023 return -EINVAL;
a4391c64 2024 if (!set->queue_depth)
24d2f903
CH
2025 return -EINVAL;
2026 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2027 return -EINVAL;
2028
cdef54dd 2029 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
24d2f903
CH
2030 return -EINVAL;
2031
a4391c64
JA
2032 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2033 pr_info("blk-mq: reduced tag depth to %u\n",
2034 BLK_MQ_MAX_DEPTH);
2035 set->queue_depth = BLK_MQ_MAX_DEPTH;
2036 }
24d2f903 2037
48479005
ML
2038 set->tags = kmalloc_node(set->nr_hw_queues *
2039 sizeof(struct blk_mq_tags *),
24d2f903
CH
2040 GFP_KERNEL, set->numa_node);
2041 if (!set->tags)
a5164405 2042 return -ENOMEM;
24d2f903 2043
a5164405
JA
2044 if (blk_mq_alloc_rq_maps(set))
2045 goto enomem;
24d2f903 2046
0d2602ca
JA
2047 mutex_init(&set->tag_list_lock);
2048 INIT_LIST_HEAD(&set->tag_list);
2049
24d2f903 2050 return 0;
a5164405 2051enomem:
5676e7b6
RE
2052 kfree(set->tags);
2053 set->tags = NULL;
24d2f903
CH
2054 return -ENOMEM;
2055}
2056EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2057
2058void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2059{
2060 int i;
2061
484b4061
JA
2062 for (i = 0; i < set->nr_hw_queues; i++) {
2063 if (set->tags[i])
2064 blk_mq_free_rq_map(set, set->tags[i], i);
2065 }
2066
981bd189 2067 kfree(set->tags);
5676e7b6 2068 set->tags = NULL;
24d2f903
CH
2069}
2070EXPORT_SYMBOL(blk_mq_free_tag_set);
2071
e3a2b3f9
JA
2072int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2073{
2074 struct blk_mq_tag_set *set = q->tag_set;
2075 struct blk_mq_hw_ctx *hctx;
2076 int i, ret;
2077
2078 if (!set || nr > set->queue_depth)
2079 return -EINVAL;
2080
2081 ret = 0;
2082 queue_for_each_hw_ctx(q, hctx, i) {
2083 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2084 if (ret)
2085 break;
2086 }
2087
2088 if (!ret)
2089 q->nr_requests = nr;
2090
2091 return ret;
2092}
2093
676141e4
JA
2094void blk_mq_disable_hotplug(void)
2095{
2096 mutex_lock(&all_q_mutex);
2097}
2098
2099void blk_mq_enable_hotplug(void)
2100{
2101 mutex_unlock(&all_q_mutex);
2102}
2103
320ae51f
JA
2104static int __init blk_mq_init(void)
2105{
320ae51f
JA
2106 blk_mq_cpu_init();
2107
add703fd 2108 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
320ae51f
JA
2109
2110 return 0;
2111}
2112subsys_initcall(blk_mq_init);