]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - block/blk-mq.c
brd: remove unused brd_mutex
[thirdparty/kernel/stable.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
cf43e6be 36#include "blk-stat.h"
87760e5e 37#include "blk-wbt.h"
bd166ef1 38#include "blk-mq-sched.h"
320ae51f 39
ea435e1b 40static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
34dbad5d
OS
41static void blk_mq_poll_stats_start(struct request_queue *q);
42static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
720b8ccc
SB
44static int blk_mq_poll_stats_bkt(const struct request *rq)
45{
46 int ddir, bytes, bucket;
47
99c749a4 48 ddir = rq_data_dir(rq);
720b8ccc
SB
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59}
60
320ae51f
JA
61/*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
79f720a7 64static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 65{
79f720a7
JA
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 68 blk_mq_sched_has_work(hctx);
1429d7c9
JA
69}
70
320ae51f
JA
71/*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76{
88459642
OS
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
79}
80
81static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83{
88459642 84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
85}
86
f299b7c7
JA
87struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90};
91
92static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95{
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
b8d62b3a
JA
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
f299b7c7 105 */
b8d62b3a 106 if (rq->part == mi->part)
f299b7c7 107 mi->inflight[0]++;
b8d62b3a
JA
108 if (mi->part->partno)
109 mi->inflight[1]++;
f299b7c7
JA
110 }
111}
112
113void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115{
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
b8d62b3a 118 inflight[0] = inflight[1] = 0;
f299b7c7
JA
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120}
121
1671d522 122void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 123{
4ecd4fef 124 int freeze_depth;
cddd5d17 125
4ecd4fef
CH
126 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
127 if (freeze_depth == 1) {
3ef28e83 128 percpu_ref_kill(&q->q_usage_counter);
055f6e18
ML
129 if (q->mq_ops)
130 blk_mq_run_hw_queues(q, false);
cddd5d17 131 }
f3af020b 132}
1671d522 133EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 134
6bae363e 135void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 136{
3ef28e83 137 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 138}
6bae363e 139EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 140
f91328c4
KB
141int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
142 unsigned long timeout)
143{
144 return wait_event_timeout(q->mq_freeze_wq,
145 percpu_ref_is_zero(&q->q_usage_counter),
146 timeout);
147}
148EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 149
f3af020b
TH
150/*
151 * Guarantee no request is in use, so we can change any data structure of
152 * the queue afterward.
153 */
3ef28e83 154void blk_freeze_queue(struct request_queue *q)
f3af020b 155{
3ef28e83
DW
156 /*
157 * In the !blk_mq case we are only calling this to kill the
158 * q_usage_counter, otherwise this increases the freeze depth
159 * and waits for it to return to zero. For this reason there is
160 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
161 * exported to drivers as the only user for unfreeze is blk_mq.
162 */
1671d522 163 blk_freeze_queue_start(q);
f3af020b
TH
164 blk_mq_freeze_queue_wait(q);
165}
3ef28e83
DW
166
167void blk_mq_freeze_queue(struct request_queue *q)
168{
169 /*
170 * ...just an alias to keep freeze and unfreeze actions balanced
171 * in the blk_mq_* namespace
172 */
173 blk_freeze_queue(q);
174}
c761d96b 175EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 176
b4c6a028 177void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 178{
4ecd4fef 179 int freeze_depth;
320ae51f 180
4ecd4fef
CH
181 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
182 WARN_ON_ONCE(freeze_depth < 0);
183 if (!freeze_depth) {
3ef28e83 184 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 185 wake_up_all(&q->mq_freeze_wq);
add703fd 186 }
320ae51f 187}
b4c6a028 188EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 189
852ec809
BVA
190/*
191 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
192 * mpt3sas driver such that this function can be removed.
193 */
194void blk_mq_quiesce_queue_nowait(struct request_queue *q)
195{
196 unsigned long flags;
197
198 spin_lock_irqsave(q->queue_lock, flags);
199 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
200 spin_unlock_irqrestore(q->queue_lock, flags);
201}
202EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
203
6a83e74d 204/**
69e07c4a 205 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
206 * @q: request queue.
207 *
208 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
209 * callback function is invoked. Once this function is returned, we make
210 * sure no dispatch can happen until the queue is unquiesced via
211 * blk_mq_unquiesce_queue().
6a83e74d
BVA
212 */
213void blk_mq_quiesce_queue(struct request_queue *q)
214{
215 struct blk_mq_hw_ctx *hctx;
216 unsigned int i;
217 bool rcu = false;
218
1d9e9bc6 219 blk_mq_quiesce_queue_nowait(q);
f4560ffe 220
6a83e74d
BVA
221 queue_for_each_hw_ctx(q, hctx, i) {
222 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 223 synchronize_srcu(hctx->queue_rq_srcu);
6a83e74d
BVA
224 else
225 rcu = true;
226 }
227 if (rcu)
228 synchronize_rcu();
229}
230EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
231
e4e73913
ML
232/*
233 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
234 * @q: request queue.
235 *
236 * This function recovers queue into the state before quiescing
237 * which is done by blk_mq_quiesce_queue.
238 */
239void blk_mq_unquiesce_queue(struct request_queue *q)
240{
852ec809
BVA
241 unsigned long flags;
242
243 spin_lock_irqsave(q->queue_lock, flags);
f4560ffe 244 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
852ec809 245 spin_unlock_irqrestore(q->queue_lock, flags);
f4560ffe 246
1d9e9bc6
ML
247 /* dispatch requests which are inserted during quiescing */
248 blk_mq_run_hw_queues(q, true);
e4e73913
ML
249}
250EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
251
aed3ea94
JA
252void blk_mq_wake_waiters(struct request_queue *q)
253{
254 struct blk_mq_hw_ctx *hctx;
255 unsigned int i;
256
257 queue_for_each_hw_ctx(q, hctx, i)
258 if (blk_mq_hw_queue_mapped(hctx))
259 blk_mq_tag_wakeup_all(hctx->tags, true);
260}
261
320ae51f
JA
262bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
263{
264 return blk_mq_has_free_tags(hctx->tags);
265}
266EXPORT_SYMBOL(blk_mq_can_queue);
267
e4cdf1a1
CH
268static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
269 unsigned int tag, unsigned int op)
320ae51f 270{
e4cdf1a1
CH
271 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
272 struct request *rq = tags->static_rqs[tag];
273
c3a148d2
BVA
274 rq->rq_flags = 0;
275
e4cdf1a1
CH
276 if (data->flags & BLK_MQ_REQ_INTERNAL) {
277 rq->tag = -1;
278 rq->internal_tag = tag;
279 } else {
280 if (blk_mq_tag_busy(data->hctx)) {
281 rq->rq_flags = RQF_MQ_INFLIGHT;
282 atomic_inc(&data->hctx->nr_active);
283 }
284 rq->tag = tag;
285 rq->internal_tag = -1;
286 data->hctx->tags->rqs[rq->tag] = rq;
287 }
288
af76e555
CH
289 INIT_LIST_HEAD(&rq->queuelist);
290 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
291 rq->q = data->q;
292 rq->mq_ctx = data->ctx;
ef295ecf 293 rq->cmd_flags = op;
1b6d65a0
BVA
294 if (data->flags & BLK_MQ_REQ_PREEMPT)
295 rq->rq_flags |= RQF_PREEMPT;
e4cdf1a1 296 if (blk_queue_io_stat(data->q))
e8064021 297 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
298 /* do not touch atomic flags, it needs atomic ops against the timer */
299 rq->cpu = -1;
af76e555
CH
300 INIT_HLIST_NODE(&rq->hash);
301 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
302 rq->rq_disk = NULL;
303 rq->part = NULL;
3ee32372 304 rq->start_time = jiffies;
af76e555
CH
305#ifdef CONFIG_BLK_CGROUP
306 rq->rl = NULL;
0fec08b4 307 set_start_time_ns(rq);
af76e555
CH
308 rq->io_start_time_ns = 0;
309#endif
310 rq->nr_phys_segments = 0;
311#if defined(CONFIG_BLK_DEV_INTEGRITY)
312 rq->nr_integrity_segments = 0;
313#endif
af76e555
CH
314 rq->special = NULL;
315 /* tag was already set */
af76e555 316 rq->extra_len = 0;
af76e555 317
af76e555 318 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
319 rq->timeout = 0;
320
af76e555
CH
321 rq->end_io = NULL;
322 rq->end_io_data = NULL;
323 rq->next_rq = NULL;
324
e4cdf1a1
CH
325 data->ctx->rq_dispatched[op_is_sync(op)]++;
326 return rq;
5dee8577
CH
327}
328
d2c0d383
CH
329static struct request *blk_mq_get_request(struct request_queue *q,
330 struct bio *bio, unsigned int op,
331 struct blk_mq_alloc_data *data)
332{
333 struct elevator_queue *e = q->elevator;
334 struct request *rq;
e4cdf1a1 335 unsigned int tag;
21e768b4 336 bool put_ctx_on_error = false;
d2c0d383
CH
337
338 blk_queue_enter_live(q);
339 data->q = q;
21e768b4
BVA
340 if (likely(!data->ctx)) {
341 data->ctx = blk_mq_get_ctx(q);
342 put_ctx_on_error = true;
343 }
d2c0d383
CH
344 if (likely(!data->hctx))
345 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
03a07c92
GR
346 if (op & REQ_NOWAIT)
347 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
348
349 if (e) {
350 data->flags |= BLK_MQ_REQ_INTERNAL;
351
352 /*
353 * Flush requests are special and go directly to the
354 * dispatch list.
355 */
5bbf4e5a
CH
356 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
357 e->type->ops.mq.limit_depth(op, data);
d2c0d383
CH
358 }
359
e4cdf1a1
CH
360 tag = blk_mq_get_tag(data);
361 if (tag == BLK_MQ_TAG_FAIL) {
21e768b4
BVA
362 if (put_ctx_on_error) {
363 blk_mq_put_ctx(data->ctx);
1ad43c00
ML
364 data->ctx = NULL;
365 }
037cebb8
CH
366 blk_queue_exit(q);
367 return NULL;
d2c0d383
CH
368 }
369
e4cdf1a1 370 rq = blk_mq_rq_ctx_init(data, tag, op);
037cebb8
CH
371 if (!op_is_flush(op)) {
372 rq->elv.icq = NULL;
5bbf4e5a 373 if (e && e->type->ops.mq.prepare_request) {
44e8c2bf
CH
374 if (e->type->icq_cache && rq_ioc(bio))
375 blk_mq_sched_assign_ioc(rq, bio);
376
5bbf4e5a
CH
377 e->type->ops.mq.prepare_request(rq, bio);
378 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 379 }
037cebb8
CH
380 }
381 data->hctx->queued++;
382 return rq;
d2c0d383
CH
383}
384
cd6ce148 385struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 386 blk_mq_req_flags_t flags)
320ae51f 387{
5a797e00 388 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 389 struct request *rq;
a492f075 390 int ret;
320ae51f 391
3a0a5299 392 ret = blk_queue_enter(q, flags);
a492f075
JL
393 if (ret)
394 return ERR_PTR(ret);
320ae51f 395
cd6ce148 396 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 397 blk_queue_exit(q);
841bac2c 398
bd166ef1 399 if (!rq)
a492f075 400 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3 401
1ad43c00 402 blk_mq_put_ctx(alloc_data.ctx);
1ad43c00 403
0c4de0f3
CH
404 rq->__data_len = 0;
405 rq->__sector = (sector_t) -1;
406 rq->bio = rq->biotail = NULL;
320ae51f
JA
407 return rq;
408}
4bb659b1 409EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 410
cd6ce148 411struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 412 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 413{
6d2809d5 414 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 415 struct request *rq;
6d2809d5 416 unsigned int cpu;
1f5bd336
ML
417 int ret;
418
419 /*
420 * If the tag allocator sleeps we could get an allocation for a
421 * different hardware context. No need to complicate the low level
422 * allocator for this for the rare use case of a command tied to
423 * a specific queue.
424 */
425 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
426 return ERR_PTR(-EINVAL);
427
428 if (hctx_idx >= q->nr_hw_queues)
429 return ERR_PTR(-EIO);
430
3a0a5299 431 ret = blk_queue_enter(q, flags);
1f5bd336
ML
432 if (ret)
433 return ERR_PTR(ret);
434
c8712c6a
CH
435 /*
436 * Check if the hardware context is actually mapped to anything.
437 * If not tell the caller that it should skip this queue.
438 */
6d2809d5
OS
439 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
440 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
441 blk_queue_exit(q);
442 return ERR_PTR(-EXDEV);
c8712c6a 443 }
6d2809d5
OS
444 cpu = cpumask_first(alloc_data.hctx->cpumask);
445 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 446
cd6ce148 447 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 448 blk_queue_exit(q);
c8712c6a 449
6d2809d5
OS
450 if (!rq)
451 return ERR_PTR(-EWOULDBLOCK);
452
453 return rq;
1f5bd336
ML
454}
455EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
456
6af54051 457void blk_mq_free_request(struct request *rq)
320ae51f 458{
320ae51f 459 struct request_queue *q = rq->q;
6af54051
CH
460 struct elevator_queue *e = q->elevator;
461 struct blk_mq_ctx *ctx = rq->mq_ctx;
462 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
463 const int sched_tag = rq->internal_tag;
464
5bbf4e5a 465 if (rq->rq_flags & RQF_ELVPRIV) {
6af54051
CH
466 if (e && e->type->ops.mq.finish_request)
467 e->type->ops.mq.finish_request(rq);
468 if (rq->elv.icq) {
469 put_io_context(rq->elv.icq->ioc);
470 rq->elv.icq = NULL;
471 }
472 }
320ae51f 473
6af54051 474 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 475 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 476 atomic_dec(&hctx->nr_active);
87760e5e 477
7beb2f84
JA
478 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
479 laptop_io_completion(q->backing_dev_info);
480
87760e5e 481 wbt_done(q->rq_wb, &rq->issue_stat);
0d2602ca 482
85acb3ba
SL
483 if (blk_rq_rl(rq))
484 blk_put_rl(blk_rq_rl(rq));
485
af76e555 486 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 487 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
488 if (rq->tag != -1)
489 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
490 if (sched_tag != -1)
c05f8525 491 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
6d8c6c0f 492 blk_mq_sched_restart(hctx);
3ef28e83 493 blk_queue_exit(q);
320ae51f 494}
1a3b595a 495EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 496
2a842aca 497inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 498{
0d11e6ac
ML
499 blk_account_io_done(rq);
500
91b63639 501 if (rq->end_io) {
87760e5e 502 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 503 rq->end_io(rq, error);
91b63639
CH
504 } else {
505 if (unlikely(blk_bidi_rq(rq)))
506 blk_mq_free_request(rq->next_rq);
320ae51f 507 blk_mq_free_request(rq);
91b63639 508 }
320ae51f 509}
c8a446ad 510EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 511
2a842aca 512void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
513{
514 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
515 BUG();
c8a446ad 516 __blk_mq_end_request(rq, error);
63151a44 517}
c8a446ad 518EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 519
30a91cb4 520static void __blk_mq_complete_request_remote(void *data)
320ae51f 521{
3d6efbf6 522 struct request *rq = data;
320ae51f 523
30a91cb4 524 rq->q->softirq_done_fn(rq);
320ae51f 525}
320ae51f 526
453f8341 527static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
528{
529 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 530 bool shared = false;
320ae51f
JA
531 int cpu;
532
453f8341
CH
533 if (rq->internal_tag != -1)
534 blk_mq_sched_completed_request(rq);
535 if (rq->rq_flags & RQF_STATS) {
536 blk_mq_poll_stats_start(rq->q);
537 blk_stat_add(rq);
538 }
539
38535201 540 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
541 rq->q->softirq_done_fn(rq);
542 return;
543 }
320ae51f
JA
544
545 cpu = get_cpu();
38535201
CH
546 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
547 shared = cpus_share_cache(cpu, ctx->cpu);
548
549 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 550 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
551 rq->csd.info = rq;
552 rq->csd.flags = 0;
c46fff2a 553 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 554 } else {
30a91cb4 555 rq->q->softirq_done_fn(rq);
3d6efbf6 556 }
320ae51f
JA
557 put_cpu();
558}
30a91cb4
CH
559
560/**
561 * blk_mq_complete_request - end I/O on a request
562 * @rq: the request being processed
563 *
564 * Description:
565 * Ends all I/O on a request. It does not handle partial completions.
566 * The actual completion happens out-of-order, through a IPI handler.
567 **/
08e0029a 568void blk_mq_complete_request(struct request *rq)
30a91cb4 569{
95f09684
JA
570 struct request_queue *q = rq->q;
571
572 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 573 return;
08e0029a 574 if (!blk_mark_rq_complete(rq))
ed851860 575 __blk_mq_complete_request(rq);
30a91cb4
CH
576}
577EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 578
973c0191
KB
579int blk_mq_request_started(struct request *rq)
580{
581 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
582}
583EXPORT_SYMBOL_GPL(blk_mq_request_started);
584
e2490073 585void blk_mq_start_request(struct request *rq)
320ae51f
JA
586{
587 struct request_queue *q = rq->q;
588
bd166ef1
JA
589 blk_mq_sched_started_request(rq);
590
320ae51f
JA
591 trace_block_rq_issue(q, rq);
592
cf43e6be 593 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 594 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 595 rq->rq_flags |= RQF_STATS;
87760e5e 596 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
597 }
598
2b8393b4 599 blk_add_timer(rq);
87ee7b11 600
a7af0af3 601 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
538b7534 602
87ee7b11
JA
603 /*
604 * Mark us as started and clear complete. Complete might have been
605 * set if requeue raced with timeout, which then marked it as
606 * complete. So be sure to clear complete again when we start
607 * the request, otherwise we'll ignore the completion event.
a7af0af3
PZ
608 *
609 * Ensure that ->deadline is visible before we set STARTED, such that
610 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
611 * it observes STARTED.
87ee7b11 612 */
a7af0af3
PZ
613 smp_wmb();
614 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
615 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
616 /*
617 * Coherence order guarantees these consecutive stores to a
618 * single variable propagate in the specified order. Thus the
619 * clear_bit() is ordered _after_ the set bit. See
620 * blk_mq_check_expired().
621 *
622 * (the bits must be part of the same byte for this to be
623 * true).
624 */
4b570521 625 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
a7af0af3 626 }
49f5baa5
CH
627
628 if (q->dma_drain_size && blk_rq_bytes(rq)) {
629 /*
630 * Make sure space for the drain appears. We know we can do
631 * this because max_hw_segments has been adjusted to be one
632 * fewer than the device can handle.
633 */
634 rq->nr_phys_segments++;
635 }
320ae51f 636}
e2490073 637EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 638
d9d149a3
ML
639/*
640 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
48b99c9d 641 * flag isn't set yet, so there may be race with timeout handler,
d9d149a3
ML
642 * but given rq->deadline is just set in .queue_rq() under
643 * this situation, the race won't be possible in reality because
644 * rq->timeout should be set as big enough to cover the window
645 * between blk_mq_start_request() called from .queue_rq() and
646 * clearing REQ_ATOM_STARTED here.
647 */
ed0791b2 648static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
649{
650 struct request_queue *q = rq->q;
651
923218f6
ML
652 blk_mq_put_driver_tag(rq);
653
320ae51f 654 trace_block_rq_requeue(q, rq);
87760e5e 655 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 656 blk_mq_sched_requeue_request(rq);
49f5baa5 657
e2490073
CH
658 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
659 if (q->dma_drain_size && blk_rq_bytes(rq))
660 rq->nr_phys_segments--;
661 }
320ae51f
JA
662}
663
2b053aca 664void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 665{
ed0791b2 666 __blk_mq_requeue_request(rq);
ed0791b2 667
ed0791b2 668 BUG_ON(blk_queued_rq(rq));
2b053aca 669 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
670}
671EXPORT_SYMBOL(blk_mq_requeue_request);
672
6fca6a61
CH
673static void blk_mq_requeue_work(struct work_struct *work)
674{
675 struct request_queue *q =
2849450a 676 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
677 LIST_HEAD(rq_list);
678 struct request *rq, *next;
6fca6a61 679
18e9781d 680 spin_lock_irq(&q->requeue_lock);
6fca6a61 681 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 682 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
683
684 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 685 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
686 continue;
687
e8064021 688 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 689 list_del_init(&rq->queuelist);
bd6737f1 690 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
691 }
692
693 while (!list_empty(&rq_list)) {
694 rq = list_entry(rq_list.next, struct request, queuelist);
695 list_del_init(&rq->queuelist);
bd6737f1 696 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
697 }
698
52d7f1b5 699 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
700}
701
2b053aca
BVA
702void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
703 bool kick_requeue_list)
6fca6a61
CH
704{
705 struct request_queue *q = rq->q;
706 unsigned long flags;
707
708 /*
709 * We abuse this flag that is otherwise used by the I/O scheduler to
710 * request head insertation from the workqueue.
711 */
e8064021 712 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
713
714 spin_lock_irqsave(&q->requeue_lock, flags);
715 if (at_head) {
e8064021 716 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
717 list_add(&rq->queuelist, &q->requeue_list);
718 } else {
719 list_add_tail(&rq->queuelist, &q->requeue_list);
720 }
721 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
722
723 if (kick_requeue_list)
724 blk_mq_kick_requeue_list(q);
6fca6a61
CH
725}
726EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
727
728void blk_mq_kick_requeue_list(struct request_queue *q)
729{
2849450a 730 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
731}
732EXPORT_SYMBOL(blk_mq_kick_requeue_list);
733
2849450a
MS
734void blk_mq_delay_kick_requeue_list(struct request_queue *q,
735 unsigned long msecs)
736{
d4acf365
BVA
737 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
738 msecs_to_jiffies(msecs));
2849450a
MS
739}
740EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
741
0e62f51f
JA
742struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
743{
88c7b2b7
JA
744 if (tag < tags->nr_tags) {
745 prefetch(tags->rqs[tag]);
4ee86bab 746 return tags->rqs[tag];
88c7b2b7 747 }
4ee86bab
HR
748
749 return NULL;
24d2f903
CH
750}
751EXPORT_SYMBOL(blk_mq_tag_to_rq);
752
320ae51f 753struct blk_mq_timeout_data {
46f92d42
CH
754 unsigned long next;
755 unsigned int next_set;
320ae51f
JA
756};
757
90415837 758void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 759{
f8a5b122 760 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 761 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
762
763 /*
764 * We know that complete is set at this point. If STARTED isn't set
765 * anymore, then the request isn't active and the "timeout" should
766 * just be ignored. This can happen due to the bitflag ordering.
767 * Timeout first checks if STARTED is set, and if it is, assumes
768 * the request is active. But if we race with completion, then
48b99c9d 769 * both flags will get cleared. So check here again, and ignore
87ee7b11
JA
770 * a timeout event with a request that isn't active.
771 */
46f92d42
CH
772 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
773 return;
87ee7b11 774
46f92d42 775 if (ops->timeout)
0152fb6b 776 ret = ops->timeout(req, reserved);
46f92d42
CH
777
778 switch (ret) {
779 case BLK_EH_HANDLED:
780 __blk_mq_complete_request(req);
781 break;
782 case BLK_EH_RESET_TIMER:
783 blk_add_timer(req);
784 blk_clear_rq_complete(req);
785 break;
786 case BLK_EH_NOT_HANDLED:
787 break;
788 default:
789 printk(KERN_ERR "block: bad eh return: %d\n", ret);
790 break;
791 }
87ee7b11 792}
5b3f25fc 793
81481eb4
CH
794static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
795 struct request *rq, void *priv, bool reserved)
796{
797 struct blk_mq_timeout_data *data = priv;
a7af0af3 798 unsigned long deadline;
87ee7b11 799
95a49603 800 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 801 return;
87ee7b11 802
a7af0af3
PZ
803 /*
804 * Ensures that if we see STARTED we must also see our
805 * up-to-date deadline, see blk_mq_start_request().
806 */
807 smp_rmb();
808
809 deadline = READ_ONCE(rq->deadline);
810
d9d149a3
ML
811 /*
812 * The rq being checked may have been freed and reallocated
813 * out already here, we avoid this race by checking rq->deadline
814 * and REQ_ATOM_COMPLETE flag together:
815 *
816 * - if rq->deadline is observed as new value because of
817 * reusing, the rq won't be timed out because of timing.
818 * - if rq->deadline is observed as previous value,
819 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
820 * because we put a barrier between setting rq->deadline
821 * and clearing the flag in blk_mq_start_request(), so
822 * this rq won't be timed out too.
823 */
a7af0af3
PZ
824 if (time_after_eq(jiffies, deadline)) {
825 if (!blk_mark_rq_complete(rq)) {
826 /*
827 * Again coherence order ensures that consecutive reads
828 * from the same variable must be in that order. This
829 * ensures that if we see COMPLETE clear, we must then
830 * see STARTED set and we'll ignore this timeout.
831 *
832 * (There's also the MB implied by the test_and_clear())
833 */
0152fb6b 834 blk_mq_rq_timed_out(rq, reserved);
a7af0af3
PZ
835 }
836 } else if (!data->next_set || time_after(data->next, deadline)) {
837 data->next = deadline;
46f92d42
CH
838 data->next_set = 1;
839 }
87ee7b11
JA
840}
841
287922eb 842static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 843{
287922eb
CH
844 struct request_queue *q =
845 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
846 struct blk_mq_timeout_data data = {
847 .next = 0,
848 .next_set = 0,
849 };
81481eb4 850 int i;
320ae51f 851
71f79fb3
GKB
852 /* A deadlock might occur if a request is stuck requiring a
853 * timeout at the same time a queue freeze is waiting
854 * completion, since the timeout code would not be able to
855 * acquire the queue reference here.
856 *
857 * That's why we don't use blk_queue_enter here; instead, we use
858 * percpu_ref_tryget directly, because we need to be able to
859 * obtain a reference even in the short window between the queue
860 * starting to freeze, by dropping the first reference in
1671d522 861 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
862 * consumed, marked by the instant q_usage_counter reaches
863 * zero.
864 */
865 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
866 return;
867
0bf6cd5b 868 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 869
81481eb4
CH
870 if (data.next_set) {
871 data.next = blk_rq_timeout(round_jiffies_up(data.next));
872 mod_timer(&q->timeout, data.next);
0d2602ca 873 } else {
0bf6cd5b
CH
874 struct blk_mq_hw_ctx *hctx;
875
f054b56c
ML
876 queue_for_each_hw_ctx(q, hctx, i) {
877 /* the hctx may be unmapped, so check it here */
878 if (blk_mq_hw_queue_mapped(hctx))
879 blk_mq_tag_idle(hctx);
880 }
0d2602ca 881 }
287922eb 882 blk_queue_exit(q);
320ae51f
JA
883}
884
88459642
OS
885struct flush_busy_ctx_data {
886 struct blk_mq_hw_ctx *hctx;
887 struct list_head *list;
888};
889
890static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
891{
892 struct flush_busy_ctx_data *flush_data = data;
893 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
894 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
895
896 sbitmap_clear_bit(sb, bitnr);
897 spin_lock(&ctx->lock);
898 list_splice_tail_init(&ctx->rq_list, flush_data->list);
899 spin_unlock(&ctx->lock);
900 return true;
901}
902
1429d7c9
JA
903/*
904 * Process software queues that have been marked busy, splicing them
905 * to the for-dispatch
906 */
2c3ad667 907void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 908{
88459642
OS
909 struct flush_busy_ctx_data data = {
910 .hctx = hctx,
911 .list = list,
912 };
1429d7c9 913
88459642 914 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 915}
2c3ad667 916EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 917
b347689f
ML
918struct dispatch_rq_data {
919 struct blk_mq_hw_ctx *hctx;
920 struct request *rq;
921};
922
923static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
924 void *data)
925{
926 struct dispatch_rq_data *dispatch_data = data;
927 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
928 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
929
930 spin_lock(&ctx->lock);
931 if (unlikely(!list_empty(&ctx->rq_list))) {
932 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
933 list_del_init(&dispatch_data->rq->queuelist);
934 if (list_empty(&ctx->rq_list))
935 sbitmap_clear_bit(sb, bitnr);
936 }
937 spin_unlock(&ctx->lock);
938
939 return !dispatch_data->rq;
940}
941
942struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
943 struct blk_mq_ctx *start)
944{
945 unsigned off = start ? start->index_hw : 0;
946 struct dispatch_rq_data data = {
947 .hctx = hctx,
948 .rq = NULL,
949 };
950
951 __sbitmap_for_each_set(&hctx->ctx_map, off,
952 dispatch_rq_from_ctx, &data);
953
954 return data.rq;
955}
956
703fd1c0
JA
957static inline unsigned int queued_to_index(unsigned int queued)
958{
959 if (!queued)
960 return 0;
1429d7c9 961
703fd1c0 962 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
963}
964
bd6737f1
JA
965bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
966 bool wait)
bd166ef1
JA
967{
968 struct blk_mq_alloc_data data = {
969 .q = rq->q,
bd166ef1
JA
970 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
971 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
972 };
973
5feeacdd
JA
974 might_sleep_if(wait);
975
81380ca1
OS
976 if (rq->tag != -1)
977 goto done;
bd166ef1 978
415b806d
SG
979 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
980 data.flags |= BLK_MQ_REQ_RESERVED;
981
bd166ef1
JA
982 rq->tag = blk_mq_get_tag(&data);
983 if (rq->tag >= 0) {
200e86b3
JA
984 if (blk_mq_tag_busy(data.hctx)) {
985 rq->rq_flags |= RQF_MQ_INFLIGHT;
986 atomic_inc(&data.hctx->nr_active);
987 }
bd166ef1 988 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
989 }
990
81380ca1
OS
991done:
992 if (hctx)
993 *hctx = data.hctx;
994 return rq->tag != -1;
bd166ef1
JA
995}
996
eb619fdb
JA
997static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
998 int flags, void *key)
da55f2cc
OS
999{
1000 struct blk_mq_hw_ctx *hctx;
1001
1002 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1003
eb619fdb 1004 list_del_init(&wait->entry);
da55f2cc
OS
1005 blk_mq_run_hw_queue(hctx, true);
1006 return 1;
1007}
1008
eb619fdb
JA
1009static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx **hctx,
1010 struct request *rq)
da55f2cc 1011{
eb619fdb
JA
1012 struct blk_mq_hw_ctx *this_hctx = *hctx;
1013 wait_queue_entry_t *wait = &this_hctx->dispatch_wait;
da55f2cc
OS
1014 struct sbq_wait_state *ws;
1015
eb619fdb
JA
1016 if (!list_empty_careful(&wait->entry))
1017 return false;
1018
1019 spin_lock(&this_hctx->lock);
1020 if (!list_empty(&wait->entry)) {
1021 spin_unlock(&this_hctx->lock);
1022 return false;
1023 }
1024
1025 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1026 add_wait_queue(&ws->wait, wait);
1027
da55f2cc 1028 /*
eb619fdb
JA
1029 * It's possible that a tag was freed in the window between the
1030 * allocation failure and adding the hardware queue to the wait
1031 * queue.
da55f2cc 1032 */
eb619fdb
JA
1033 if (!blk_mq_get_driver_tag(rq, hctx, false)) {
1034 spin_unlock(&this_hctx->lock);
da55f2cc 1035 return false;
eb619fdb 1036 }
da55f2cc
OS
1037
1038 /*
eb619fdb
JA
1039 * We got a tag, remove ourselves from the wait queue to ensure
1040 * someone else gets the wakeup.
da55f2cc 1041 */
eb619fdb
JA
1042 spin_lock_irq(&ws->wait.lock);
1043 list_del_init(&wait->entry);
1044 spin_unlock_irq(&ws->wait.lock);
1045 spin_unlock(&this_hctx->lock);
da55f2cc
OS
1046 return true;
1047}
1048
de148297 1049bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
eb619fdb 1050 bool got_budget)
320ae51f 1051{
81380ca1 1052 struct blk_mq_hw_ctx *hctx;
6d6f167c 1053 struct request *rq, *nxt;
eb619fdb 1054 bool no_tag = false;
fc17b653 1055 int errors, queued;
320ae51f 1056
81380ca1
OS
1057 if (list_empty(list))
1058 return false;
1059
de148297
ML
1060 WARN_ON(!list_is_singular(list) && got_budget);
1061
320ae51f
JA
1062 /*
1063 * Now process all the entries, sending them to the driver.
1064 */
93efe981 1065 errors = queued = 0;
81380ca1 1066 do {
74c45052 1067 struct blk_mq_queue_data bd;
fc17b653 1068 blk_status_t ret;
320ae51f 1069
f04c3df3 1070 rq = list_first_entry(list, struct request, queuelist);
bd166ef1 1071 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
3c782d67 1072 /*
da55f2cc 1073 * The initial allocation attempt failed, so we need to
eb619fdb
JA
1074 * rerun the hardware queue when a tag is freed. The
1075 * waitqueue takes care of that. If the queue is run
1076 * before we add this entry back on the dispatch list,
1077 * we'll re-run it below.
3c782d67 1078 */
eb619fdb 1079 if (!blk_mq_dispatch_wait_add(&hctx, rq)) {
de148297
ML
1080 if (got_budget)
1081 blk_mq_put_dispatch_budget(hctx);
eb619fdb 1082 no_tag = true;
de148297
ML
1083 break;
1084 }
1085 }
1086
0c6af1cc
ML
1087 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1088 blk_mq_put_driver_tag(rq);
88022d72 1089 break;
0c6af1cc 1090 }
da55f2cc 1091
320ae51f 1092 list_del_init(&rq->queuelist);
320ae51f 1093
74c45052 1094 bd.rq = rq;
113285b4
JA
1095
1096 /*
1097 * Flag last if we have no more requests, or if we have more
1098 * but can't assign a driver tag to it.
1099 */
1100 if (list_empty(list))
1101 bd.last = true;
1102 else {
113285b4
JA
1103 nxt = list_first_entry(list, struct request, queuelist);
1104 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1105 }
74c45052
JA
1106
1107 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653 1108 if (ret == BLK_STS_RESOURCE) {
6d6f167c
JW
1109 /*
1110 * If an I/O scheduler has been configured and we got a
1111 * driver tag for the next request already, free it again.
1112 */
1113 if (!list_empty(list)) {
1114 nxt = list_first_entry(list, struct request, queuelist);
1115 blk_mq_put_driver_tag(nxt);
1116 }
f04c3df3 1117 list_add(&rq->queuelist, list);
ed0791b2 1118 __blk_mq_requeue_request(rq);
320ae51f 1119 break;
fc17b653
CH
1120 }
1121
1122 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1123 errors++;
2a842aca 1124 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1125 continue;
320ae51f
JA
1126 }
1127
fc17b653 1128 queued++;
81380ca1 1129 } while (!list_empty(list));
320ae51f 1130
703fd1c0 1131 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1132
1133 /*
1134 * Any items that need requeuing? Stuff them into hctx->dispatch,
1135 * that is where we will continue on next queue run.
1136 */
f04c3df3 1137 if (!list_empty(list)) {
320ae51f 1138 spin_lock(&hctx->lock);
c13660a0 1139 list_splice_init(list, &hctx->dispatch);
320ae51f 1140 spin_unlock(&hctx->lock);
f04c3df3 1141
9ba52e58 1142 /*
710c785f
BVA
1143 * If SCHED_RESTART was set by the caller of this function and
1144 * it is no longer set that means that it was cleared by another
1145 * thread and hence that a queue rerun is needed.
9ba52e58 1146 *
eb619fdb
JA
1147 * If 'no_tag' is set, that means that we failed getting
1148 * a driver tag with an I/O scheduler attached. If our dispatch
1149 * waitqueue is no longer active, ensure that we run the queue
1150 * AFTER adding our entries back to the list.
bd166ef1 1151 *
710c785f
BVA
1152 * If no I/O scheduler has been configured it is possible that
1153 * the hardware queue got stopped and restarted before requests
1154 * were pushed back onto the dispatch list. Rerun the queue to
1155 * avoid starvation. Notes:
1156 * - blk_mq_run_hw_queue() checks whether or not a queue has
1157 * been stopped before rerunning a queue.
1158 * - Some but not all block drivers stop a queue before
fc17b653 1159 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1160 * and dm-rq.
bd166ef1 1161 */
eb619fdb
JA
1162 if (!blk_mq_sched_needs_restart(hctx) ||
1163 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1164 blk_mq_run_hw_queue(hctx, true);
320ae51f 1165 }
f04c3df3 1166
93efe981 1167 return (queued + errors) != 0;
f04c3df3
JA
1168}
1169
6a83e74d
BVA
1170static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1171{
1172 int srcu_idx;
1173
b7a71e66
JA
1174 /*
1175 * We should be running this queue from one of the CPUs that
1176 * are mapped to it.
1177 */
6a83e74d
BVA
1178 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1179 cpu_online(hctx->next_cpu));
1180
b7a71e66
JA
1181 /*
1182 * We can't run the queue inline with ints disabled. Ensure that
1183 * we catch bad users of this early.
1184 */
1185 WARN_ON_ONCE(in_interrupt());
1186
6a83e74d
BVA
1187 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1188 rcu_read_lock();
1f460b63 1189 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1190 rcu_read_unlock();
1191 } else {
bf4907c0
JA
1192 might_sleep();
1193
07319678 1194 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1f460b63 1195 blk_mq_sched_dispatch_requests(hctx);
07319678 1196 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
6a83e74d
BVA
1197 }
1198}
1199
506e931f
JA
1200/*
1201 * It'd be great if the workqueue API had a way to pass
1202 * in a mask and had some smarts for more clever placement.
1203 * For now we just round-robin here, switching for every
1204 * BLK_MQ_CPU_WORK_BATCH queued items.
1205 */
1206static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1207{
b657d7e6
CH
1208 if (hctx->queue->nr_hw_queues == 1)
1209 return WORK_CPU_UNBOUND;
506e931f
JA
1210
1211 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1212 int next_cpu;
506e931f
JA
1213
1214 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1215 if (next_cpu >= nr_cpu_ids)
1216 next_cpu = cpumask_first(hctx->cpumask);
1217
1218 hctx->next_cpu = next_cpu;
1219 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1220 }
1221
b657d7e6 1222 return hctx->next_cpu;
506e931f
JA
1223}
1224
7587a5ae
BVA
1225static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1226 unsigned long msecs)
320ae51f 1227{
5435c023
BVA
1228 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1229 return;
1230
1231 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1232 return;
1233
1b792f2f 1234 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1235 int cpu = get_cpu();
1236 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1237 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1238 put_cpu();
398205b8
PB
1239 return;
1240 }
e4043dcf 1241
2a90d4aa 1242 put_cpu();
e4043dcf 1243 }
398205b8 1244
9f993737
JA
1245 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1246 &hctx->run_work,
1247 msecs_to_jiffies(msecs));
7587a5ae
BVA
1248}
1249
1250void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1251{
1252 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1253}
1254EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1255
79f720a7 1256bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 1257{
79f720a7
JA
1258 if (blk_mq_hctx_has_pending(hctx)) {
1259 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1260 return true;
1261 }
1262
1263 return false;
320ae51f 1264}
5b727272 1265EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1266
b94ec296 1267void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1268{
1269 struct blk_mq_hw_ctx *hctx;
1270 int i;
1271
1272 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 1273 if (blk_mq_hctx_stopped(hctx))
320ae51f
JA
1274 continue;
1275
b94ec296 1276 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1277 }
1278}
b94ec296 1279EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1280
fd001443
BVA
1281/**
1282 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1283 * @q: request queue.
1284 *
1285 * The caller is responsible for serializing this function against
1286 * blk_mq_{start,stop}_hw_queue().
1287 */
1288bool blk_mq_queue_stopped(struct request_queue *q)
1289{
1290 struct blk_mq_hw_ctx *hctx;
1291 int i;
1292
1293 queue_for_each_hw_ctx(q, hctx, i)
1294 if (blk_mq_hctx_stopped(hctx))
1295 return true;
1296
1297 return false;
1298}
1299EXPORT_SYMBOL(blk_mq_queue_stopped);
1300
39a70c76
ML
1301/*
1302 * This function is often used for pausing .queue_rq() by driver when
1303 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1304 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1305 *
1306 * We do not guarantee that dispatch can be drained or blocked
1307 * after blk_mq_stop_hw_queue() returns. Please use
1308 * blk_mq_quiesce_queue() for that requirement.
1309 */
2719aa21
JA
1310void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1311{
641a9ed6 1312 cancel_delayed_work(&hctx->run_work);
280d45f6 1313
641a9ed6 1314 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1315}
641a9ed6 1316EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1317
39a70c76
ML
1318/*
1319 * This function is often used for pausing .queue_rq() by driver when
1320 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1321 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1322 *
1323 * We do not guarantee that dispatch can be drained or blocked
1324 * after blk_mq_stop_hw_queues() returns. Please use
1325 * blk_mq_quiesce_queue() for that requirement.
1326 */
2719aa21
JA
1327void blk_mq_stop_hw_queues(struct request_queue *q)
1328{
641a9ed6
ML
1329 struct blk_mq_hw_ctx *hctx;
1330 int i;
1331
1332 queue_for_each_hw_ctx(q, hctx, i)
1333 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1334}
1335EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1336
320ae51f
JA
1337void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1338{
1339 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1340
0ffbce80 1341 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1342}
1343EXPORT_SYMBOL(blk_mq_start_hw_queue);
1344
2f268556
CH
1345void blk_mq_start_hw_queues(struct request_queue *q)
1346{
1347 struct blk_mq_hw_ctx *hctx;
1348 int i;
1349
1350 queue_for_each_hw_ctx(q, hctx, i)
1351 blk_mq_start_hw_queue(hctx);
1352}
1353EXPORT_SYMBOL(blk_mq_start_hw_queues);
1354
ae911c5e
JA
1355void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1356{
1357 if (!blk_mq_hctx_stopped(hctx))
1358 return;
1359
1360 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1361 blk_mq_run_hw_queue(hctx, async);
1362}
1363EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1364
1b4a3258 1365void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1366{
1367 struct blk_mq_hw_ctx *hctx;
1368 int i;
1369
ae911c5e
JA
1370 queue_for_each_hw_ctx(q, hctx, i)
1371 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1372}
1373EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1374
70f4db63 1375static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1376{
1377 struct blk_mq_hw_ctx *hctx;
1378
9f993737 1379 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1380
21c6e939
JA
1381 /*
1382 * If we are stopped, don't run the queue. The exception is if
1383 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1384 * the STOPPED bit and run it.
1385 */
1386 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1387 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1388 return;
7587a5ae 1389
21c6e939
JA
1390 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1391 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1392 }
7587a5ae
BVA
1393
1394 __blk_mq_run_hw_queue(hctx);
1395}
1396
70f4db63
CH
1397
1398void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1399{
5435c023 1400 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
19c66e59 1401 return;
70f4db63 1402
21c6e939
JA
1403 /*
1404 * Stop the hw queue, then modify currently delayed work.
1405 * This should prevent us from running the queue prematurely.
1406 * Mark the queue as auto-clearing STOPPED when it runs.
1407 */
7e79dadc 1408 blk_mq_stop_hw_queue(hctx);
21c6e939
JA
1409 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1410 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1411 &hctx->run_work,
1412 msecs_to_jiffies(msecs));
70f4db63
CH
1413}
1414EXPORT_SYMBOL(blk_mq_delay_queue);
1415
cfd0c552 1416static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1417 struct request *rq,
1418 bool at_head)
320ae51f 1419{
e57690fe
JA
1420 struct blk_mq_ctx *ctx = rq->mq_ctx;
1421
7b607814
BVA
1422 lockdep_assert_held(&ctx->lock);
1423
01b983c9
JA
1424 trace_block_rq_insert(hctx->queue, rq);
1425
72a0a36e
CH
1426 if (at_head)
1427 list_add(&rq->queuelist, &ctx->rq_list);
1428 else
1429 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1430}
4bb659b1 1431
2c3ad667
JA
1432void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1433 bool at_head)
cfd0c552
ML
1434{
1435 struct blk_mq_ctx *ctx = rq->mq_ctx;
1436
7b607814
BVA
1437 lockdep_assert_held(&ctx->lock);
1438
e57690fe 1439 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1440 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1441}
1442
157f377b
JA
1443/*
1444 * Should only be used carefully, when the caller knows we want to
1445 * bypass a potential IO scheduler on the target device.
1446 */
b0850297 1447void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
157f377b
JA
1448{
1449 struct blk_mq_ctx *ctx = rq->mq_ctx;
1450 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1451
1452 spin_lock(&hctx->lock);
1453 list_add_tail(&rq->queuelist, &hctx->dispatch);
1454 spin_unlock(&hctx->lock);
1455
b0850297
ML
1456 if (run_queue)
1457 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1458}
1459
bd166ef1
JA
1460void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1461 struct list_head *list)
320ae51f
JA
1462
1463{
320ae51f
JA
1464 /*
1465 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1466 * offline now
1467 */
1468 spin_lock(&ctx->lock);
1469 while (!list_empty(list)) {
1470 struct request *rq;
1471
1472 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1473 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1474 list_del_init(&rq->queuelist);
e57690fe 1475 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1476 }
cfd0c552 1477 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1478 spin_unlock(&ctx->lock);
320ae51f
JA
1479}
1480
1481static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1482{
1483 struct request *rqa = container_of(a, struct request, queuelist);
1484 struct request *rqb = container_of(b, struct request, queuelist);
1485
1486 return !(rqa->mq_ctx < rqb->mq_ctx ||
1487 (rqa->mq_ctx == rqb->mq_ctx &&
1488 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1489}
1490
1491void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1492{
1493 struct blk_mq_ctx *this_ctx;
1494 struct request_queue *this_q;
1495 struct request *rq;
1496 LIST_HEAD(list);
1497 LIST_HEAD(ctx_list);
1498 unsigned int depth;
1499
1500 list_splice_init(&plug->mq_list, &list);
1501
1502 list_sort(NULL, &list, plug_ctx_cmp);
1503
1504 this_q = NULL;
1505 this_ctx = NULL;
1506 depth = 0;
1507
1508 while (!list_empty(&list)) {
1509 rq = list_entry_rq(list.next);
1510 list_del_init(&rq->queuelist);
1511 BUG_ON(!rq->q);
1512 if (rq->mq_ctx != this_ctx) {
1513 if (this_ctx) {
bd166ef1
JA
1514 trace_block_unplug(this_q, depth, from_schedule);
1515 blk_mq_sched_insert_requests(this_q, this_ctx,
1516 &ctx_list,
1517 from_schedule);
320ae51f
JA
1518 }
1519
1520 this_ctx = rq->mq_ctx;
1521 this_q = rq->q;
1522 depth = 0;
1523 }
1524
1525 depth++;
1526 list_add_tail(&rq->queuelist, &ctx_list);
1527 }
1528
1529 /*
1530 * If 'this_ctx' is set, we know we have entries to complete
1531 * on 'ctx_list'. Do those.
1532 */
1533 if (this_ctx) {
bd166ef1
JA
1534 trace_block_unplug(this_q, depth, from_schedule);
1535 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1536 from_schedule);
320ae51f
JA
1537 }
1538}
1539
1540static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1541{
da8d7f07 1542 blk_init_request_from_bio(rq, bio);
4b570521 1543
85acb3ba
SL
1544 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1545
6e85eaf3 1546 blk_account_io_start(rq, true);
320ae51f
JA
1547}
1548
ab42f35d
ML
1549static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1550 struct blk_mq_ctx *ctx,
1551 struct request *rq)
1552{
1553 spin_lock(&ctx->lock);
1554 __blk_mq_insert_request(hctx, rq, false);
1555 spin_unlock(&ctx->lock);
07068d5b 1556}
14ec77f3 1557
fd2d3326
JA
1558static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1559{
bd166ef1
JA
1560 if (rq->tag != -1)
1561 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1562
1563 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1564}
1565
d964f04a
ML
1566static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1567 struct request *rq,
1568 blk_qc_t *cookie, bool may_sleep)
f984df1f 1569{
f984df1f 1570 struct request_queue *q = rq->q;
f984df1f
SL
1571 struct blk_mq_queue_data bd = {
1572 .rq = rq,
d945a365 1573 .last = true,
f984df1f 1574 };
bd166ef1 1575 blk_qc_t new_cookie;
f06345ad 1576 blk_status_t ret;
d964f04a
ML
1577 bool run_queue = true;
1578
f4560ffe
ML
1579 /* RCU or SRCU read lock is needed before checking quiesced flag */
1580 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a
ML
1581 run_queue = false;
1582 goto insert;
1583 }
f984df1f 1584
bd166ef1 1585 if (q->elevator)
2253efc8
BVA
1586 goto insert;
1587
d964f04a 1588 if (!blk_mq_get_driver_tag(rq, NULL, false))
bd166ef1
JA
1589 goto insert;
1590
88022d72 1591 if (!blk_mq_get_dispatch_budget(hctx)) {
de148297
ML
1592 blk_mq_put_driver_tag(rq);
1593 goto insert;
88022d72 1594 }
de148297 1595
bd166ef1
JA
1596 new_cookie = request_to_qc_t(hctx, rq);
1597
f984df1f
SL
1598 /*
1599 * For OK queue, we are done. For error, kill it. Any other
1600 * error (busy), just add it to our list as we previously
1601 * would have done
1602 */
1603 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653
CH
1604 switch (ret) {
1605 case BLK_STS_OK:
7b371636 1606 *cookie = new_cookie;
2253efc8 1607 return;
fc17b653
CH
1608 case BLK_STS_RESOURCE:
1609 __blk_mq_requeue_request(rq);
1610 goto insert;
1611 default:
7b371636 1612 *cookie = BLK_QC_T_NONE;
fc17b653 1613 blk_mq_end_request(rq, ret);
2253efc8 1614 return;
f984df1f 1615 }
7b371636 1616
2253efc8 1617insert:
d964f04a 1618 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
f984df1f
SL
1619}
1620
5eb6126e
CH
1621static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1622 struct request *rq, blk_qc_t *cookie)
1623{
1624 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1625 rcu_read_lock();
d964f04a 1626 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
5eb6126e
CH
1627 rcu_read_unlock();
1628 } else {
bf4907c0
JA
1629 unsigned int srcu_idx;
1630
1631 might_sleep();
1632
07319678 1633 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
d964f04a 1634 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
07319678 1635 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
5eb6126e
CH
1636 }
1637}
1638
dece1635 1639static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1640{
ef295ecf 1641 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1642 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1643 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1644 struct request *rq;
5eb6126e 1645 unsigned int request_count = 0;
f984df1f 1646 struct blk_plug *plug;
5b3f341f 1647 struct request *same_queue_rq = NULL;
7b371636 1648 blk_qc_t cookie;
87760e5e 1649 unsigned int wb_acct;
07068d5b
JA
1650
1651 blk_queue_bounce(q, &bio);
1652
af67c31f 1653 blk_queue_split(q, &bio);
f36ea50c 1654
e23947bd 1655 if (!bio_integrity_prep(bio))
dece1635 1656 return BLK_QC_T_NONE;
07068d5b 1657
87c279e6
OS
1658 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1659 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1660 return BLK_QC_T_NONE;
f984df1f 1661
bd166ef1
JA
1662 if (blk_mq_sched_bio_merge(q, bio))
1663 return BLK_QC_T_NONE;
1664
87760e5e
JA
1665 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1666
bd166ef1
JA
1667 trace_block_getrq(q, bio, bio->bi_opf);
1668
d2c0d383 1669 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1670 if (unlikely(!rq)) {
1671 __wbt_done(q->rq_wb, wb_acct);
03a07c92
GR
1672 if (bio->bi_opf & REQ_NOWAIT)
1673 bio_wouldblock_error(bio);
dece1635 1674 return BLK_QC_T_NONE;
87760e5e
JA
1675 }
1676
1677 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1678
fd2d3326 1679 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1680
f984df1f 1681 plug = current->plug;
07068d5b 1682 if (unlikely(is_flush_fua)) {
f984df1f 1683 blk_mq_put_ctx(data.ctx);
07068d5b 1684 blk_mq_bio_to_request(rq, bio);
923218f6
ML
1685
1686 /* bypass scheduler for flush rq */
1687 blk_insert_flush(rq);
1688 blk_mq_run_hw_queue(data.hctx, true);
a4d907b6 1689 } else if (plug && q->nr_hw_queues == 1) {
600271d9
SL
1690 struct request *last = NULL;
1691
b00c53e8 1692 blk_mq_put_ctx(data.ctx);
e6c4438b 1693 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1694
1695 /*
1696 * @request_count may become stale because of schedule
1697 * out, so check the list again.
1698 */
1699 if (list_empty(&plug->mq_list))
1700 request_count = 0;
254d259d
CH
1701 else if (blk_queue_nomerges(q))
1702 request_count = blk_plug_queued_count(q);
1703
676d0607 1704 if (!request_count)
e6c4438b 1705 trace_block_plug(q);
600271d9
SL
1706 else
1707 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1708
600271d9
SL
1709 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1710 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1711 blk_flush_plug_list(plug, false);
1712 trace_block_plug(q);
320ae51f 1713 }
b094f89c 1714
e6c4438b 1715 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1716 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1717 blk_mq_bio_to_request(rq, bio);
07068d5b 1718
07068d5b 1719 /*
6a83e74d 1720 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1721 * Otherwise the existing request in the plug list will be
1722 * issued. So the plug list will have one request at most
2299722c
CH
1723 * The plug list might get flushed before this. If that happens,
1724 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1725 */
2299722c
CH
1726 if (list_empty(&plug->mq_list))
1727 same_queue_rq = NULL;
1728 if (same_queue_rq)
1729 list_del_init(&same_queue_rq->queuelist);
1730 list_add_tail(&rq->queuelist, &plug->mq_list);
1731
bf4907c0
JA
1732 blk_mq_put_ctx(data.ctx);
1733
dad7a3be
ML
1734 if (same_queue_rq) {
1735 data.hctx = blk_mq_map_queue(q,
1736 same_queue_rq->mq_ctx->cpu);
2299722c
CH
1737 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1738 &cookie);
dad7a3be 1739 }
a4d907b6 1740 } else if (q->nr_hw_queues > 1 && is_sync) {
bf4907c0 1741 blk_mq_put_ctx(data.ctx);
2299722c 1742 blk_mq_bio_to_request(rq, bio);
2299722c 1743 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
a4d907b6 1744 } else if (q->elevator) {
b00c53e8 1745 blk_mq_put_ctx(data.ctx);
bd166ef1 1746 blk_mq_bio_to_request(rq, bio);
a4d907b6 1747 blk_mq_sched_insert_request(rq, false, true, true, true);
ab42f35d 1748 } else {
b00c53e8 1749 blk_mq_put_ctx(data.ctx);
ab42f35d
ML
1750 blk_mq_bio_to_request(rq, bio);
1751 blk_mq_queue_io(data.hctx, data.ctx, rq);
a4d907b6 1752 blk_mq_run_hw_queue(data.hctx, true);
ab42f35d 1753 }
320ae51f 1754
7b371636 1755 return cookie;
320ae51f
JA
1756}
1757
cc71a6f4
JA
1758void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1759 unsigned int hctx_idx)
95363efd 1760{
e9b267d9 1761 struct page *page;
320ae51f 1762
24d2f903 1763 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1764 int i;
320ae51f 1765
24d2f903 1766 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1767 struct request *rq = tags->static_rqs[i];
1768
1769 if (!rq)
e9b267d9 1770 continue;
d6296d39 1771 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 1772 tags->static_rqs[i] = NULL;
e9b267d9 1773 }
320ae51f 1774 }
320ae51f 1775
24d2f903
CH
1776 while (!list_empty(&tags->page_list)) {
1777 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1778 list_del_init(&page->lru);
f75782e4
CM
1779 /*
1780 * Remove kmemleak object previously allocated in
1781 * blk_mq_init_rq_map().
1782 */
1783 kmemleak_free(page_address(page));
320ae51f
JA
1784 __free_pages(page, page->private);
1785 }
cc71a6f4 1786}
320ae51f 1787
cc71a6f4
JA
1788void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1789{
24d2f903 1790 kfree(tags->rqs);
cc71a6f4 1791 tags->rqs = NULL;
2af8cbe3
JA
1792 kfree(tags->static_rqs);
1793 tags->static_rqs = NULL;
320ae51f 1794
24d2f903 1795 blk_mq_free_tags(tags);
320ae51f
JA
1796}
1797
cc71a6f4
JA
1798struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1799 unsigned int hctx_idx,
1800 unsigned int nr_tags,
1801 unsigned int reserved_tags)
320ae51f 1802{
24d2f903 1803 struct blk_mq_tags *tags;
59f082e4 1804 int node;
320ae51f 1805
59f082e4
SL
1806 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1807 if (node == NUMA_NO_NODE)
1808 node = set->numa_node;
1809
1810 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1811 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1812 if (!tags)
1813 return NULL;
320ae51f 1814
cc71a6f4 1815 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1816 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1817 node);
24d2f903
CH
1818 if (!tags->rqs) {
1819 blk_mq_free_tags(tags);
1820 return NULL;
1821 }
320ae51f 1822
2af8cbe3
JA
1823 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1824 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1825 node);
2af8cbe3
JA
1826 if (!tags->static_rqs) {
1827 kfree(tags->rqs);
1828 blk_mq_free_tags(tags);
1829 return NULL;
1830 }
1831
cc71a6f4
JA
1832 return tags;
1833}
1834
1835static size_t order_to_size(unsigned int order)
1836{
1837 return (size_t)PAGE_SIZE << order;
1838}
1839
1840int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1841 unsigned int hctx_idx, unsigned int depth)
1842{
1843 unsigned int i, j, entries_per_page, max_order = 4;
1844 size_t rq_size, left;
59f082e4
SL
1845 int node;
1846
1847 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1848 if (node == NUMA_NO_NODE)
1849 node = set->numa_node;
cc71a6f4
JA
1850
1851 INIT_LIST_HEAD(&tags->page_list);
1852
320ae51f
JA
1853 /*
1854 * rq_size is the size of the request plus driver payload, rounded
1855 * to the cacheline size
1856 */
24d2f903 1857 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1858 cache_line_size());
cc71a6f4 1859 left = rq_size * depth;
320ae51f 1860
cc71a6f4 1861 for (i = 0; i < depth; ) {
320ae51f
JA
1862 int this_order = max_order;
1863 struct page *page;
1864 int to_do;
1865 void *p;
1866
b3a834b1 1867 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1868 this_order--;
1869
1870 do {
59f082e4 1871 page = alloc_pages_node(node,
36e1f3d1 1872 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1873 this_order);
320ae51f
JA
1874 if (page)
1875 break;
1876 if (!this_order--)
1877 break;
1878 if (order_to_size(this_order) < rq_size)
1879 break;
1880 } while (1);
1881
1882 if (!page)
24d2f903 1883 goto fail;
320ae51f
JA
1884
1885 page->private = this_order;
24d2f903 1886 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1887
1888 p = page_address(page);
f75782e4
CM
1889 /*
1890 * Allow kmemleak to scan these pages as they contain pointers
1891 * to additional allocations like via ops->init_request().
1892 */
36e1f3d1 1893 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1894 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1895 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1896 left -= to_do * rq_size;
1897 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1898 struct request *rq = p;
1899
1900 tags->static_rqs[i] = rq;
24d2f903 1901 if (set->ops->init_request) {
d6296d39 1902 if (set->ops->init_request(set, rq, hctx_idx,
59f082e4 1903 node)) {
2af8cbe3 1904 tags->static_rqs[i] = NULL;
24d2f903 1905 goto fail;
a5164405 1906 }
e9b267d9
CH
1907 }
1908
320ae51f
JA
1909 p += rq_size;
1910 i++;
1911 }
1912 }
cc71a6f4 1913 return 0;
320ae51f 1914
24d2f903 1915fail:
cc71a6f4
JA
1916 blk_mq_free_rqs(set, tags, hctx_idx);
1917 return -ENOMEM;
320ae51f
JA
1918}
1919
e57690fe
JA
1920/*
1921 * 'cpu' is going away. splice any existing rq_list entries from this
1922 * software queue to the hw queue dispatch list, and ensure that it
1923 * gets run.
1924 */
9467f859 1925static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1926{
9467f859 1927 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1928 struct blk_mq_ctx *ctx;
1929 LIST_HEAD(tmp);
1930
9467f859 1931 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1932 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1933
1934 spin_lock(&ctx->lock);
1935 if (!list_empty(&ctx->rq_list)) {
1936 list_splice_init(&ctx->rq_list, &tmp);
1937 blk_mq_hctx_clear_pending(hctx, ctx);
1938 }
1939 spin_unlock(&ctx->lock);
1940
1941 if (list_empty(&tmp))
9467f859 1942 return 0;
484b4061 1943
e57690fe
JA
1944 spin_lock(&hctx->lock);
1945 list_splice_tail_init(&tmp, &hctx->dispatch);
1946 spin_unlock(&hctx->lock);
484b4061
JA
1947
1948 blk_mq_run_hw_queue(hctx, true);
9467f859 1949 return 0;
484b4061
JA
1950}
1951
9467f859 1952static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1953{
9467f859
TG
1954 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1955 &hctx->cpuhp_dead);
484b4061
JA
1956}
1957
c3b4afca 1958/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1959static void blk_mq_exit_hctx(struct request_queue *q,
1960 struct blk_mq_tag_set *set,
1961 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1962{
9c1051aa
OS
1963 blk_mq_debugfs_unregister_hctx(hctx);
1964
08e98fc6
ML
1965 blk_mq_tag_idle(hctx);
1966
f70ced09 1967 if (set->ops->exit_request)
d6296d39 1968 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 1969
93252632
OS
1970 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1971
08e98fc6
ML
1972 if (set->ops->exit_hctx)
1973 set->ops->exit_hctx(hctx, hctx_idx);
1974
6a83e74d 1975 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 1976 cleanup_srcu_struct(hctx->queue_rq_srcu);
6a83e74d 1977
9467f859 1978 blk_mq_remove_cpuhp(hctx);
f70ced09 1979 blk_free_flush_queue(hctx->fq);
88459642 1980 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1981}
1982
624dbe47
ML
1983static void blk_mq_exit_hw_queues(struct request_queue *q,
1984 struct blk_mq_tag_set *set, int nr_queue)
1985{
1986 struct blk_mq_hw_ctx *hctx;
1987 unsigned int i;
1988
1989 queue_for_each_hw_ctx(q, hctx, i) {
1990 if (i == nr_queue)
1991 break;
08e98fc6 1992 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1993 }
624dbe47
ML
1994}
1995
08e98fc6
ML
1996static int blk_mq_init_hctx(struct request_queue *q,
1997 struct blk_mq_tag_set *set,
1998 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1999{
08e98fc6
ML
2000 int node;
2001
2002 node = hctx->numa_node;
2003 if (node == NUMA_NO_NODE)
2004 node = hctx->numa_node = set->numa_node;
2005
9f993737 2006 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2007 spin_lock_init(&hctx->lock);
2008 INIT_LIST_HEAD(&hctx->dispatch);
2009 hctx->queue = q;
2404e607 2010 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2011
9467f859 2012 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
2013
2014 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
2015
2016 /*
08e98fc6
ML
2017 * Allocate space for all possible cpus to avoid allocation at
2018 * runtime
320ae51f 2019 */
08e98fc6
ML
2020 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
2021 GFP_KERNEL, node);
2022 if (!hctx->ctxs)
2023 goto unregister_cpu_notifier;
320ae51f 2024
88459642
OS
2025 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2026 node))
08e98fc6 2027 goto free_ctxs;
320ae51f 2028
08e98fc6 2029 hctx->nr_ctx = 0;
320ae51f 2030
eb619fdb
JA
2031 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2032 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2033
08e98fc6
ML
2034 if (set->ops->init_hctx &&
2035 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2036 goto free_bitmap;
320ae51f 2037
93252632
OS
2038 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2039 goto exit_hctx;
2040
f70ced09
ML
2041 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2042 if (!hctx->fq)
93252632 2043 goto sched_exit_hctx;
320ae51f 2044
f70ced09 2045 if (set->ops->init_request &&
d6296d39
CH
2046 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2047 node))
f70ced09 2048 goto free_fq;
320ae51f 2049
6a83e74d 2050 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 2051 init_srcu_struct(hctx->queue_rq_srcu);
6a83e74d 2052
9c1051aa
OS
2053 blk_mq_debugfs_register_hctx(q, hctx);
2054
08e98fc6 2055 return 0;
320ae51f 2056
f70ced09
ML
2057 free_fq:
2058 kfree(hctx->fq);
93252632
OS
2059 sched_exit_hctx:
2060 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
2061 exit_hctx:
2062 if (set->ops->exit_hctx)
2063 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 2064 free_bitmap:
88459642 2065 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2066 free_ctxs:
2067 kfree(hctx->ctxs);
2068 unregister_cpu_notifier:
9467f859 2069 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
2070 return -1;
2071}
320ae51f 2072
320ae51f
JA
2073static void blk_mq_init_cpu_queues(struct request_queue *q,
2074 unsigned int nr_hw_queues)
2075{
2076 unsigned int i;
2077
2078 for_each_possible_cpu(i) {
2079 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2080 struct blk_mq_hw_ctx *hctx;
2081
320ae51f
JA
2082 __ctx->cpu = i;
2083 spin_lock_init(&__ctx->lock);
2084 INIT_LIST_HEAD(&__ctx->rq_list);
2085 __ctx->queue = q;
2086
4b855ad3
CH
2087 /* If the cpu isn't present, the cpu is mapped to first hctx */
2088 if (!cpu_present(i))
320ae51f
JA
2089 continue;
2090
7d7e0f90 2091 hctx = blk_mq_map_queue(q, i);
e4043dcf 2092
320ae51f
JA
2093 /*
2094 * Set local node, IFF we have more than one hw queue. If
2095 * not, we remain on the home node of the device
2096 */
2097 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 2098 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
2099 }
2100}
2101
cc71a6f4
JA
2102static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2103{
2104 int ret = 0;
2105
2106 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2107 set->queue_depth, set->reserved_tags);
2108 if (!set->tags[hctx_idx])
2109 return false;
2110
2111 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2112 set->queue_depth);
2113 if (!ret)
2114 return true;
2115
2116 blk_mq_free_rq_map(set->tags[hctx_idx]);
2117 set->tags[hctx_idx] = NULL;
2118 return false;
2119}
2120
2121static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2122 unsigned int hctx_idx)
2123{
bd166ef1
JA
2124 if (set->tags[hctx_idx]) {
2125 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2126 blk_mq_free_rq_map(set->tags[hctx_idx]);
2127 set->tags[hctx_idx] = NULL;
2128 }
cc71a6f4
JA
2129}
2130
4b855ad3 2131static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2132{
d1b1cea1 2133 unsigned int i, hctx_idx;
320ae51f
JA
2134 struct blk_mq_hw_ctx *hctx;
2135 struct blk_mq_ctx *ctx;
2a34c087 2136 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2137
60de074b
AM
2138 /*
2139 * Avoid others reading imcomplete hctx->cpumask through sysfs
2140 */
2141 mutex_lock(&q->sysfs_lock);
2142
320ae51f 2143 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2144 cpumask_clear(hctx->cpumask);
320ae51f
JA
2145 hctx->nr_ctx = 0;
2146 }
2147
2148 /*
4b855ad3
CH
2149 * Map software to hardware queues.
2150 *
2151 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2152 */
4b855ad3 2153 for_each_present_cpu(i) {
d1b1cea1
GKB
2154 hctx_idx = q->mq_map[i];
2155 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2156 if (!set->tags[hctx_idx] &&
2157 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2158 /*
2159 * If tags initialization fail for some hctx,
2160 * that hctx won't be brought online. In this
2161 * case, remap the current ctx to hctx[0] which
2162 * is guaranteed to always have tags allocated
2163 */
cc71a6f4 2164 q->mq_map[i] = 0;
d1b1cea1
GKB
2165 }
2166
897bb0c7 2167 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2168 hctx = blk_mq_map_queue(q, i);
868f2f0b 2169
e4043dcf 2170 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2171 ctx->index_hw = hctx->nr_ctx;
2172 hctx->ctxs[hctx->nr_ctx++] = ctx;
2173 }
506e931f 2174
60de074b
AM
2175 mutex_unlock(&q->sysfs_lock);
2176
506e931f 2177 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2178 /*
a68aafa5
JA
2179 * If no software queues are mapped to this hardware queue,
2180 * disable it and free the request entries.
484b4061
JA
2181 */
2182 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2183 /* Never unmap queue 0. We need it as a
2184 * fallback in case of a new remap fails
2185 * allocation
2186 */
cc71a6f4
JA
2187 if (i && set->tags[i])
2188 blk_mq_free_map_and_requests(set, i);
2189
2a34c087 2190 hctx->tags = NULL;
484b4061
JA
2191 continue;
2192 }
2193
2a34c087
ML
2194 hctx->tags = set->tags[i];
2195 WARN_ON(!hctx->tags);
2196
889fa31f
CY
2197 /*
2198 * Set the map size to the number of mapped software queues.
2199 * This is more accurate and more efficient than looping
2200 * over all possibly mapped software queues.
2201 */
88459642 2202 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2203
484b4061
JA
2204 /*
2205 * Initialize batch roundrobin counts
2206 */
506e931f
JA
2207 hctx->next_cpu = cpumask_first(hctx->cpumask);
2208 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2209 }
320ae51f
JA
2210}
2211
8e8320c9
JA
2212/*
2213 * Caller needs to ensure that we're either frozen/quiesced, or that
2214 * the queue isn't live yet.
2215 */
2404e607 2216static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2217{
2218 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2219 int i;
2220
2404e607 2221 queue_for_each_hw_ctx(q, hctx, i) {
8e8320c9
JA
2222 if (shared) {
2223 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2224 atomic_inc(&q->shared_hctx_restart);
2404e607 2225 hctx->flags |= BLK_MQ_F_TAG_SHARED;
8e8320c9
JA
2226 } else {
2227 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2228 atomic_dec(&q->shared_hctx_restart);
2404e607 2229 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
8e8320c9 2230 }
2404e607
JM
2231 }
2232}
2233
8e8320c9
JA
2234static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2235 bool shared)
2404e607
JM
2236{
2237 struct request_queue *q;
0d2602ca 2238
705cda97
BVA
2239 lockdep_assert_held(&set->tag_list_lock);
2240
0d2602ca
JA
2241 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2242 blk_mq_freeze_queue(q);
2404e607 2243 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2244 blk_mq_unfreeze_queue(q);
2245 }
2246}
2247
2248static void blk_mq_del_queue_tag_set(struct request_queue *q)
2249{
2250 struct blk_mq_tag_set *set = q->tag_set;
2251
0d2602ca 2252 mutex_lock(&set->tag_list_lock);
705cda97
BVA
2253 list_del_rcu(&q->tag_set_list);
2254 INIT_LIST_HEAD(&q->tag_set_list);
2404e607
JM
2255 if (list_is_singular(&set->tag_list)) {
2256 /* just transitioned to unshared */
2257 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2258 /* update existing queue */
2259 blk_mq_update_tag_set_depth(set, false);
2260 }
0d2602ca 2261 mutex_unlock(&set->tag_list_lock);
705cda97
BVA
2262
2263 synchronize_rcu();
0d2602ca
JA
2264}
2265
2266static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2267 struct request_queue *q)
2268{
2269 q->tag_set = set;
2270
2271 mutex_lock(&set->tag_list_lock);
2404e607
JM
2272
2273 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2274 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2275 set->flags |= BLK_MQ_F_TAG_SHARED;
2276 /* update existing queue */
2277 blk_mq_update_tag_set_depth(set, true);
2278 }
2279 if (set->flags & BLK_MQ_F_TAG_SHARED)
2280 queue_set_hctx_shared(q, true);
705cda97 2281 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2282
0d2602ca
JA
2283 mutex_unlock(&set->tag_list_lock);
2284}
2285
e09aae7e
ML
2286/*
2287 * It is the actual release handler for mq, but we do it from
2288 * request queue's release handler for avoiding use-after-free
2289 * and headache because q->mq_kobj shouldn't have been introduced,
2290 * but we can't group ctx/kctx kobj without it.
2291 */
2292void blk_mq_release(struct request_queue *q)
2293{
2294 struct blk_mq_hw_ctx *hctx;
2295 unsigned int i;
2296
2297 /* hctx kobj stays in hctx */
c3b4afca
ML
2298 queue_for_each_hw_ctx(q, hctx, i) {
2299 if (!hctx)
2300 continue;
6c8b232e 2301 kobject_put(&hctx->kobj);
c3b4afca 2302 }
e09aae7e 2303
a723bab3
AM
2304 q->mq_map = NULL;
2305
e09aae7e
ML
2306 kfree(q->queue_hw_ctx);
2307
7ea5fe31
ML
2308 /*
2309 * release .mq_kobj and sw queue's kobject now because
2310 * both share lifetime with request queue.
2311 */
2312 blk_mq_sysfs_deinit(q);
2313
e09aae7e
ML
2314 free_percpu(q->queue_ctx);
2315}
2316
24d2f903 2317struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2318{
2319 struct request_queue *uninit_q, *q;
2320
2321 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2322 if (!uninit_q)
2323 return ERR_PTR(-ENOMEM);
2324
2325 q = blk_mq_init_allocated_queue(set, uninit_q);
2326 if (IS_ERR(q))
2327 blk_cleanup_queue(uninit_q);
2328
2329 return q;
2330}
2331EXPORT_SYMBOL(blk_mq_init_queue);
2332
07319678
BVA
2333static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2334{
2335 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2336
2337 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2338 __alignof__(struct blk_mq_hw_ctx)) !=
2339 sizeof(struct blk_mq_hw_ctx));
2340
2341 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2342 hw_ctx_size += sizeof(struct srcu_struct);
2343
2344 return hw_ctx_size;
2345}
2346
868f2f0b
KB
2347static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2348 struct request_queue *q)
320ae51f 2349{
868f2f0b
KB
2350 int i, j;
2351 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2352
868f2f0b 2353 blk_mq_sysfs_unregister(q);
24d2f903 2354 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2355 int node;
f14bbe77 2356
868f2f0b
KB
2357 if (hctxs[i])
2358 continue;
2359
2360 node = blk_mq_hw_queue_to_node(q->mq_map, i);
07319678 2361 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
cdef54dd 2362 GFP_KERNEL, node);
320ae51f 2363 if (!hctxs[i])
868f2f0b 2364 break;
320ae51f 2365
a86073e4 2366 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2367 node)) {
2368 kfree(hctxs[i]);
2369 hctxs[i] = NULL;
2370 break;
2371 }
e4043dcf 2372
0d2602ca 2373 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2374 hctxs[i]->numa_node = node;
320ae51f 2375 hctxs[i]->queue_num = i;
868f2f0b
KB
2376
2377 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2378 free_cpumask_var(hctxs[i]->cpumask);
2379 kfree(hctxs[i]);
2380 hctxs[i] = NULL;
2381 break;
2382 }
2383 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2384 }
868f2f0b
KB
2385 for (j = i; j < q->nr_hw_queues; j++) {
2386 struct blk_mq_hw_ctx *hctx = hctxs[j];
2387
2388 if (hctx) {
cc71a6f4
JA
2389 if (hctx->tags)
2390 blk_mq_free_map_and_requests(set, j);
868f2f0b 2391 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2392 kobject_put(&hctx->kobj);
868f2f0b
KB
2393 hctxs[j] = NULL;
2394
2395 }
2396 }
2397 q->nr_hw_queues = i;
2398 blk_mq_sysfs_register(q);
2399}
2400
2401struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2402 struct request_queue *q)
2403{
66841672
ML
2404 /* mark the queue as mq asap */
2405 q->mq_ops = set->ops;
2406
34dbad5d 2407 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2408 blk_mq_poll_stats_bkt,
2409 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2410 if (!q->poll_cb)
2411 goto err_exit;
2412
868f2f0b
KB
2413 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2414 if (!q->queue_ctx)
c7de5726 2415 goto err_exit;
868f2f0b 2416
737f98cf
ML
2417 /* init q->mq_kobj and sw queues' kobjects */
2418 blk_mq_sysfs_init(q);
2419
868f2f0b
KB
2420 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2421 GFP_KERNEL, set->numa_node);
2422 if (!q->queue_hw_ctx)
2423 goto err_percpu;
2424
bdd17e75 2425 q->mq_map = set->mq_map;
868f2f0b
KB
2426
2427 blk_mq_realloc_hw_ctxs(set, q);
2428 if (!q->nr_hw_queues)
2429 goto err_hctxs;
320ae51f 2430
287922eb 2431 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2432 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2433
2434 q->nr_queues = nr_cpu_ids;
320ae51f 2435
94eddfbe 2436 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2437
05f1dd53
JA
2438 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2439 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2440
1be036e9
CH
2441 q->sg_reserved_size = INT_MAX;
2442
2849450a 2443 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2444 INIT_LIST_HEAD(&q->requeue_list);
2445 spin_lock_init(&q->requeue_lock);
2446
254d259d 2447 blk_queue_make_request(q, blk_mq_make_request);
ea435e1b
CH
2448 if (q->mq_ops->poll)
2449 q->poll_fn = blk_mq_poll;
07068d5b 2450
eba71768
JA
2451 /*
2452 * Do this after blk_queue_make_request() overrides it...
2453 */
2454 q->nr_requests = set->queue_depth;
2455
64f1c21e
JA
2456 /*
2457 * Default to classic polling
2458 */
2459 q->poll_nsec = -1;
2460
24d2f903
CH
2461 if (set->ops->complete)
2462 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2463
24d2f903 2464 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2465 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2466 blk_mq_map_swqueue(q);
4593fdbe 2467
d3484991
JA
2468 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2469 int ret;
2470
2471 ret = blk_mq_sched_init(q);
2472 if (ret)
2473 return ERR_PTR(ret);
2474 }
2475
320ae51f 2476 return q;
18741986 2477
320ae51f 2478err_hctxs:
868f2f0b 2479 kfree(q->queue_hw_ctx);
320ae51f 2480err_percpu:
868f2f0b 2481 free_percpu(q->queue_ctx);
c7de5726
ML
2482err_exit:
2483 q->mq_ops = NULL;
320ae51f
JA
2484 return ERR_PTR(-ENOMEM);
2485}
b62c21b7 2486EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2487
2488void blk_mq_free_queue(struct request_queue *q)
2489{
624dbe47 2490 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2491
0d2602ca 2492 blk_mq_del_queue_tag_set(q);
624dbe47 2493 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2494}
320ae51f
JA
2495
2496/* Basically redo blk_mq_init_queue with queue frozen */
4b855ad3 2497static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f 2498{
4ecd4fef 2499 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2500
9c1051aa 2501 blk_mq_debugfs_unregister_hctxs(q);
67aec14c
JA
2502 blk_mq_sysfs_unregister(q);
2503
320ae51f
JA
2504 /*
2505 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2506 * we should change hctx numa_node according to new topology (this
2507 * involves free and re-allocate memory, worthy doing?)
2508 */
2509
4b855ad3 2510 blk_mq_map_swqueue(q);
320ae51f 2511
67aec14c 2512 blk_mq_sysfs_register(q);
9c1051aa 2513 blk_mq_debugfs_register_hctxs(q);
320ae51f
JA
2514}
2515
a5164405
JA
2516static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2517{
2518 int i;
2519
cc71a6f4
JA
2520 for (i = 0; i < set->nr_hw_queues; i++)
2521 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2522 goto out_unwind;
a5164405
JA
2523
2524 return 0;
2525
2526out_unwind:
2527 while (--i >= 0)
cc71a6f4 2528 blk_mq_free_rq_map(set->tags[i]);
a5164405 2529
a5164405
JA
2530 return -ENOMEM;
2531}
2532
2533/*
2534 * Allocate the request maps associated with this tag_set. Note that this
2535 * may reduce the depth asked for, if memory is tight. set->queue_depth
2536 * will be updated to reflect the allocated depth.
2537 */
2538static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2539{
2540 unsigned int depth;
2541 int err;
2542
2543 depth = set->queue_depth;
2544 do {
2545 err = __blk_mq_alloc_rq_maps(set);
2546 if (!err)
2547 break;
2548
2549 set->queue_depth >>= 1;
2550 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2551 err = -ENOMEM;
2552 break;
2553 }
2554 } while (set->queue_depth);
2555
2556 if (!set->queue_depth || err) {
2557 pr_err("blk-mq: failed to allocate request map\n");
2558 return -ENOMEM;
2559 }
2560
2561 if (depth != set->queue_depth)
2562 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2563 depth, set->queue_depth);
2564
2565 return 0;
2566}
2567
ebe8bddb
OS
2568static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2569{
2570 if (set->ops->map_queues)
2571 return set->ops->map_queues(set);
2572 else
2573 return blk_mq_map_queues(set);
2574}
2575
a4391c64
JA
2576/*
2577 * Alloc a tag set to be associated with one or more request queues.
2578 * May fail with EINVAL for various error conditions. May adjust the
2579 * requested depth down, if if it too large. In that case, the set
2580 * value will be stored in set->queue_depth.
2581 */
24d2f903
CH
2582int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2583{
da695ba2
CH
2584 int ret;
2585
205fb5f5
BVA
2586 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2587
24d2f903
CH
2588 if (!set->nr_hw_queues)
2589 return -EINVAL;
a4391c64 2590 if (!set->queue_depth)
24d2f903
CH
2591 return -EINVAL;
2592 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2593 return -EINVAL;
2594
7d7e0f90 2595 if (!set->ops->queue_rq)
24d2f903
CH
2596 return -EINVAL;
2597
de148297
ML
2598 if (!set->ops->get_budget ^ !set->ops->put_budget)
2599 return -EINVAL;
2600
a4391c64
JA
2601 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2602 pr_info("blk-mq: reduced tag depth to %u\n",
2603 BLK_MQ_MAX_DEPTH);
2604 set->queue_depth = BLK_MQ_MAX_DEPTH;
2605 }
24d2f903 2606
6637fadf
SL
2607 /*
2608 * If a crashdump is active, then we are potentially in a very
2609 * memory constrained environment. Limit us to 1 queue and
2610 * 64 tags to prevent using too much memory.
2611 */
2612 if (is_kdump_kernel()) {
2613 set->nr_hw_queues = 1;
2614 set->queue_depth = min(64U, set->queue_depth);
2615 }
868f2f0b
KB
2616 /*
2617 * There is no use for more h/w queues than cpus.
2618 */
2619 if (set->nr_hw_queues > nr_cpu_ids)
2620 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2621
868f2f0b 2622 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2623 GFP_KERNEL, set->numa_node);
2624 if (!set->tags)
a5164405 2625 return -ENOMEM;
24d2f903 2626
da695ba2
CH
2627 ret = -ENOMEM;
2628 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2629 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2630 if (!set->mq_map)
2631 goto out_free_tags;
2632
ebe8bddb 2633 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2634 if (ret)
2635 goto out_free_mq_map;
2636
2637 ret = blk_mq_alloc_rq_maps(set);
2638 if (ret)
bdd17e75 2639 goto out_free_mq_map;
24d2f903 2640
0d2602ca
JA
2641 mutex_init(&set->tag_list_lock);
2642 INIT_LIST_HEAD(&set->tag_list);
2643
24d2f903 2644 return 0;
bdd17e75
CH
2645
2646out_free_mq_map:
2647 kfree(set->mq_map);
2648 set->mq_map = NULL;
2649out_free_tags:
5676e7b6
RE
2650 kfree(set->tags);
2651 set->tags = NULL;
da695ba2 2652 return ret;
24d2f903
CH
2653}
2654EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2655
2656void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2657{
2658 int i;
2659
cc71a6f4
JA
2660 for (i = 0; i < nr_cpu_ids; i++)
2661 blk_mq_free_map_and_requests(set, i);
484b4061 2662
bdd17e75
CH
2663 kfree(set->mq_map);
2664 set->mq_map = NULL;
2665
981bd189 2666 kfree(set->tags);
5676e7b6 2667 set->tags = NULL;
24d2f903
CH
2668}
2669EXPORT_SYMBOL(blk_mq_free_tag_set);
2670
e3a2b3f9
JA
2671int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2672{
2673 struct blk_mq_tag_set *set = q->tag_set;
2674 struct blk_mq_hw_ctx *hctx;
2675 int i, ret;
2676
bd166ef1 2677 if (!set)
e3a2b3f9
JA
2678 return -EINVAL;
2679
70f36b60 2680 blk_mq_freeze_queue(q);
70f36b60 2681
e3a2b3f9
JA
2682 ret = 0;
2683 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2684 if (!hctx->tags)
2685 continue;
bd166ef1
JA
2686 /*
2687 * If we're using an MQ scheduler, just update the scheduler
2688 * queue depth. This is similar to what the old code would do.
2689 */
70f36b60 2690 if (!hctx->sched_tags) {
c2e82a23 2691 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
2692 false);
2693 } else {
2694 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2695 nr, true);
2696 }
e3a2b3f9
JA
2697 if (ret)
2698 break;
2699 }
2700
2701 if (!ret)
2702 q->nr_requests = nr;
2703
70f36b60 2704 blk_mq_unfreeze_queue(q);
70f36b60 2705
e3a2b3f9
JA
2706 return ret;
2707}
2708
e4dc2b32
KB
2709static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2710 int nr_hw_queues)
868f2f0b
KB
2711{
2712 struct request_queue *q;
2713
705cda97
BVA
2714 lockdep_assert_held(&set->tag_list_lock);
2715
868f2f0b
KB
2716 if (nr_hw_queues > nr_cpu_ids)
2717 nr_hw_queues = nr_cpu_ids;
2718 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2719 return;
2720
2721 list_for_each_entry(q, &set->tag_list, tag_set_list)
2722 blk_mq_freeze_queue(q);
2723
2724 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2725 blk_mq_update_queue_map(set);
868f2f0b
KB
2726 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2727 blk_mq_realloc_hw_ctxs(set, q);
4b855ad3 2728 blk_mq_queue_reinit(q);
868f2f0b
KB
2729 }
2730
2731 list_for_each_entry(q, &set->tag_list, tag_set_list)
2732 blk_mq_unfreeze_queue(q);
2733}
e4dc2b32
KB
2734
2735void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2736{
2737 mutex_lock(&set->tag_list_lock);
2738 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2739 mutex_unlock(&set->tag_list_lock);
2740}
868f2f0b
KB
2741EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2742
34dbad5d
OS
2743/* Enable polling stats and return whether they were already enabled. */
2744static bool blk_poll_stats_enable(struct request_queue *q)
2745{
2746 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2747 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2748 return true;
2749 blk_stat_add_callback(q, q->poll_cb);
2750 return false;
2751}
2752
2753static void blk_mq_poll_stats_start(struct request_queue *q)
2754{
2755 /*
2756 * We don't arm the callback if polling stats are not enabled or the
2757 * callback is already active.
2758 */
2759 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2760 blk_stat_is_active(q->poll_cb))
2761 return;
2762
2763 blk_stat_activate_msecs(q->poll_cb, 100);
2764}
2765
2766static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2767{
2768 struct request_queue *q = cb->data;
720b8ccc 2769 int bucket;
34dbad5d 2770
720b8ccc
SB
2771 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2772 if (cb->stat[bucket].nr_samples)
2773 q->poll_stat[bucket] = cb->stat[bucket];
2774 }
34dbad5d
OS
2775}
2776
64f1c21e
JA
2777static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2778 struct blk_mq_hw_ctx *hctx,
2779 struct request *rq)
2780{
64f1c21e 2781 unsigned long ret = 0;
720b8ccc 2782 int bucket;
64f1c21e
JA
2783
2784 /*
2785 * If stats collection isn't on, don't sleep but turn it on for
2786 * future users
2787 */
34dbad5d 2788 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2789 return 0;
2790
64f1c21e
JA
2791 /*
2792 * As an optimistic guess, use half of the mean service time
2793 * for this type of request. We can (and should) make this smarter.
2794 * For instance, if the completion latencies are tight, we can
2795 * get closer than just half the mean. This is especially
2796 * important on devices where the completion latencies are longer
720b8ccc
SB
2797 * than ~10 usec. We do use the stats for the relevant IO size
2798 * if available which does lead to better estimates.
64f1c21e 2799 */
720b8ccc
SB
2800 bucket = blk_mq_poll_stats_bkt(rq);
2801 if (bucket < 0)
2802 return ret;
2803
2804 if (q->poll_stat[bucket].nr_samples)
2805 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
2806
2807 return ret;
2808}
2809
06426adf 2810static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2811 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2812 struct request *rq)
2813{
2814 struct hrtimer_sleeper hs;
2815 enum hrtimer_mode mode;
64f1c21e 2816 unsigned int nsecs;
06426adf
JA
2817 ktime_t kt;
2818
64f1c21e
JA
2819 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2820 return false;
2821
2822 /*
2823 * poll_nsec can be:
2824 *
2825 * -1: don't ever hybrid sleep
2826 * 0: use half of prev avg
2827 * >0: use this specific value
2828 */
2829 if (q->poll_nsec == -1)
2830 return false;
2831 else if (q->poll_nsec > 0)
2832 nsecs = q->poll_nsec;
2833 else
2834 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2835
2836 if (!nsecs)
06426adf
JA
2837 return false;
2838
2839 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2840
2841 /*
2842 * This will be replaced with the stats tracking code, using
2843 * 'avg_completion_time / 2' as the pre-sleep target.
2844 */
8b0e1953 2845 kt = nsecs;
06426adf
JA
2846
2847 mode = HRTIMER_MODE_REL;
2848 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2849 hrtimer_set_expires(&hs.timer, kt);
2850
2851 hrtimer_init_sleeper(&hs, current);
2852 do {
2853 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2854 break;
2855 set_current_state(TASK_UNINTERRUPTIBLE);
2856 hrtimer_start_expires(&hs.timer, mode);
2857 if (hs.task)
2858 io_schedule();
2859 hrtimer_cancel(&hs.timer);
2860 mode = HRTIMER_MODE_ABS;
2861 } while (hs.task && !signal_pending(current));
2862
2863 __set_current_state(TASK_RUNNING);
2864 destroy_hrtimer_on_stack(&hs.timer);
2865 return true;
2866}
2867
bbd7bb70
JA
2868static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2869{
2870 struct request_queue *q = hctx->queue;
2871 long state;
2872
06426adf
JA
2873 /*
2874 * If we sleep, have the caller restart the poll loop to reset
2875 * the state. Like for the other success return cases, the
2876 * caller is responsible for checking if the IO completed. If
2877 * the IO isn't complete, we'll get called again and will go
2878 * straight to the busy poll loop.
2879 */
64f1c21e 2880 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2881 return true;
2882
bbd7bb70
JA
2883 hctx->poll_considered++;
2884
2885 state = current->state;
2886 while (!need_resched()) {
2887 int ret;
2888
2889 hctx->poll_invoked++;
2890
2891 ret = q->mq_ops->poll(hctx, rq->tag);
2892 if (ret > 0) {
2893 hctx->poll_success++;
2894 set_current_state(TASK_RUNNING);
2895 return true;
2896 }
2897
2898 if (signal_pending_state(state, current))
2899 set_current_state(TASK_RUNNING);
2900
2901 if (current->state == TASK_RUNNING)
2902 return true;
2903 if (ret < 0)
2904 break;
2905 cpu_relax();
2906 }
2907
2908 return false;
2909}
2910
ea435e1b 2911static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
bbd7bb70
JA
2912{
2913 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
2914 struct request *rq;
2915
ea435e1b 2916 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
bbd7bb70
JA
2917 return false;
2918
bbd7bb70 2919 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2920 if (!blk_qc_t_is_internal(cookie))
2921 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3a07bb1d 2922 else {
bd166ef1 2923 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3a07bb1d
JA
2924 /*
2925 * With scheduling, if the request has completed, we'll
2926 * get a NULL return here, as we clear the sched tag when
2927 * that happens. The request still remains valid, like always,
2928 * so we should be safe with just the NULL check.
2929 */
2930 if (!rq)
2931 return false;
2932 }
bbd7bb70
JA
2933
2934 return __blk_mq_poll(hctx, rq);
2935}
bbd7bb70 2936
320ae51f
JA
2937static int __init blk_mq_init(void)
2938{
fc13457f
JA
2939 /*
2940 * See comment in block/blk.h rq_atomic_flags enum
2941 */
2942 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
2943 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
2944
9467f859
TG
2945 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2946 blk_mq_hctx_notify_dead);
320ae51f
JA
2947 return 0;
2948}
2949subsys_initcall(blk_mq_init);