]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - block/blk-mq.c
blk-mq: blk_mq_requeue_work() doesn't need to save IRQ flags
[thirdparty/kernel/stable.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
cf43e6be 36#include "blk-stat.h"
87760e5e 37#include "blk-wbt.h"
bd166ef1 38#include "blk-mq-sched.h"
320ae51f 39
34dbad5d
OS
40static void blk_mq_poll_stats_start(struct request_queue *q);
41static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
42
720b8ccc
SB
43static int blk_mq_poll_stats_bkt(const struct request *rq)
44{
45 int ddir, bytes, bucket;
46
99c749a4 47 ddir = rq_data_dir(rq);
720b8ccc
SB
48 bytes = blk_rq_bytes(rq);
49
50 bucket = ddir + 2*(ilog2(bytes) - 9);
51
52 if (bucket < 0)
53 return -1;
54 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
55 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
56
57 return bucket;
58}
59
320ae51f
JA
60/*
61 * Check if any of the ctx's have pending work in this hardware queue
62 */
50e1dab8 63bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 64{
bd166ef1
JA
65 return sbitmap_any_bit_set(&hctx->ctx_map) ||
66 !list_empty_careful(&hctx->dispatch) ||
67 blk_mq_sched_has_work(hctx);
1429d7c9
JA
68}
69
320ae51f
JA
70/*
71 * Mark this ctx as having pending work in this hardware queue
72 */
73static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75{
88459642
OS
76 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
77 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
78}
79
80static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82{
88459642 83 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
84}
85
1671d522 86void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 87{
4ecd4fef 88 int freeze_depth;
cddd5d17 89
4ecd4fef
CH
90 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
91 if (freeze_depth == 1) {
3ef28e83 92 percpu_ref_kill(&q->q_usage_counter);
b94ec296 93 blk_mq_run_hw_queues(q, false);
cddd5d17 94 }
f3af020b 95}
1671d522 96EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 97
6bae363e 98void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 99{
3ef28e83 100 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 101}
6bae363e 102EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 103
f91328c4
KB
104int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
105 unsigned long timeout)
106{
107 return wait_event_timeout(q->mq_freeze_wq,
108 percpu_ref_is_zero(&q->q_usage_counter),
109 timeout);
110}
111EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 112
f3af020b
TH
113/*
114 * Guarantee no request is in use, so we can change any data structure of
115 * the queue afterward.
116 */
3ef28e83 117void blk_freeze_queue(struct request_queue *q)
f3af020b 118{
3ef28e83
DW
119 /*
120 * In the !blk_mq case we are only calling this to kill the
121 * q_usage_counter, otherwise this increases the freeze depth
122 * and waits for it to return to zero. For this reason there is
123 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
124 * exported to drivers as the only user for unfreeze is blk_mq.
125 */
1671d522 126 blk_freeze_queue_start(q);
f3af020b
TH
127 blk_mq_freeze_queue_wait(q);
128}
3ef28e83
DW
129
130void blk_mq_freeze_queue(struct request_queue *q)
131{
132 /*
133 * ...just an alias to keep freeze and unfreeze actions balanced
134 * in the blk_mq_* namespace
135 */
136 blk_freeze_queue(q);
137}
c761d96b 138EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 139
b4c6a028 140void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 141{
4ecd4fef 142 int freeze_depth;
320ae51f 143
4ecd4fef
CH
144 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
145 WARN_ON_ONCE(freeze_depth < 0);
146 if (!freeze_depth) {
3ef28e83 147 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 148 wake_up_all(&q->mq_freeze_wq);
add703fd 149 }
320ae51f 150}
b4c6a028 151EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 152
852ec809
BVA
153/*
154 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
155 * mpt3sas driver such that this function can be removed.
156 */
157void blk_mq_quiesce_queue_nowait(struct request_queue *q)
158{
159 unsigned long flags;
160
161 spin_lock_irqsave(q->queue_lock, flags);
162 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
163 spin_unlock_irqrestore(q->queue_lock, flags);
164}
165EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
166
6a83e74d 167/**
69e07c4a 168 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
169 * @q: request queue.
170 *
171 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
172 * callback function is invoked. Once this function is returned, we make
173 * sure no dispatch can happen until the queue is unquiesced via
174 * blk_mq_unquiesce_queue().
6a83e74d
BVA
175 */
176void blk_mq_quiesce_queue(struct request_queue *q)
177{
178 struct blk_mq_hw_ctx *hctx;
179 unsigned int i;
180 bool rcu = false;
181
1d9e9bc6 182 blk_mq_quiesce_queue_nowait(q);
f4560ffe 183
6a83e74d
BVA
184 queue_for_each_hw_ctx(q, hctx, i) {
185 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 186 synchronize_srcu(hctx->queue_rq_srcu);
6a83e74d
BVA
187 else
188 rcu = true;
189 }
190 if (rcu)
191 synchronize_rcu();
192}
193EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
194
e4e73913
ML
195/*
196 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
197 * @q: request queue.
198 *
199 * This function recovers queue into the state before quiescing
200 * which is done by blk_mq_quiesce_queue.
201 */
202void blk_mq_unquiesce_queue(struct request_queue *q)
203{
852ec809
BVA
204 unsigned long flags;
205
206 spin_lock_irqsave(q->queue_lock, flags);
f4560ffe 207 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
852ec809 208 spin_unlock_irqrestore(q->queue_lock, flags);
f4560ffe 209
1d9e9bc6
ML
210 /* dispatch requests which are inserted during quiescing */
211 blk_mq_run_hw_queues(q, true);
e4e73913
ML
212}
213EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
214
aed3ea94
JA
215void blk_mq_wake_waiters(struct request_queue *q)
216{
217 struct blk_mq_hw_ctx *hctx;
218 unsigned int i;
219
220 queue_for_each_hw_ctx(q, hctx, i)
221 if (blk_mq_hw_queue_mapped(hctx))
222 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
223
224 /*
225 * If we are called because the queue has now been marked as
226 * dying, we need to ensure that processes currently waiting on
227 * the queue are notified as well.
228 */
229 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
230}
231
320ae51f
JA
232bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
233{
234 return blk_mq_has_free_tags(hctx->tags);
235}
236EXPORT_SYMBOL(blk_mq_can_queue);
237
e4cdf1a1
CH
238static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
239 unsigned int tag, unsigned int op)
320ae51f 240{
e4cdf1a1
CH
241 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
242 struct request *rq = tags->static_rqs[tag];
243
c3a148d2
BVA
244 rq->rq_flags = 0;
245
e4cdf1a1
CH
246 if (data->flags & BLK_MQ_REQ_INTERNAL) {
247 rq->tag = -1;
248 rq->internal_tag = tag;
249 } else {
250 if (blk_mq_tag_busy(data->hctx)) {
251 rq->rq_flags = RQF_MQ_INFLIGHT;
252 atomic_inc(&data->hctx->nr_active);
253 }
254 rq->tag = tag;
255 rq->internal_tag = -1;
256 data->hctx->tags->rqs[rq->tag] = rq;
257 }
258
af76e555
CH
259 INIT_LIST_HEAD(&rq->queuelist);
260 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
261 rq->q = data->q;
262 rq->mq_ctx = data->ctx;
ef295ecf 263 rq->cmd_flags = op;
e4cdf1a1 264 if (blk_queue_io_stat(data->q))
e8064021 265 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
266 /* do not touch atomic flags, it needs atomic ops against the timer */
267 rq->cpu = -1;
af76e555
CH
268 INIT_HLIST_NODE(&rq->hash);
269 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
270 rq->rq_disk = NULL;
271 rq->part = NULL;
3ee32372 272 rq->start_time = jiffies;
af76e555
CH
273#ifdef CONFIG_BLK_CGROUP
274 rq->rl = NULL;
0fec08b4 275 set_start_time_ns(rq);
af76e555
CH
276 rq->io_start_time_ns = 0;
277#endif
278 rq->nr_phys_segments = 0;
279#if defined(CONFIG_BLK_DEV_INTEGRITY)
280 rq->nr_integrity_segments = 0;
281#endif
af76e555
CH
282 rq->special = NULL;
283 /* tag was already set */
af76e555 284 rq->extra_len = 0;
af76e555 285
af76e555 286 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
287 rq->timeout = 0;
288
af76e555
CH
289 rq->end_io = NULL;
290 rq->end_io_data = NULL;
291 rq->next_rq = NULL;
292
e4cdf1a1
CH
293 data->ctx->rq_dispatched[op_is_sync(op)]++;
294 return rq;
5dee8577
CH
295}
296
d2c0d383
CH
297static struct request *blk_mq_get_request(struct request_queue *q,
298 struct bio *bio, unsigned int op,
299 struct blk_mq_alloc_data *data)
300{
301 struct elevator_queue *e = q->elevator;
302 struct request *rq;
e4cdf1a1 303 unsigned int tag;
d2c0d383
CH
304
305 blk_queue_enter_live(q);
306 data->q = q;
307 if (likely(!data->ctx))
308 data->ctx = blk_mq_get_ctx(q);
309 if (likely(!data->hctx))
310 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
03a07c92
GR
311 if (op & REQ_NOWAIT)
312 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
313
314 if (e) {
315 data->flags |= BLK_MQ_REQ_INTERNAL;
316
317 /*
318 * Flush requests are special and go directly to the
319 * dispatch list.
320 */
5bbf4e5a
CH
321 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
322 e->type->ops.mq.limit_depth(op, data);
d2c0d383
CH
323 }
324
e4cdf1a1
CH
325 tag = blk_mq_get_tag(data);
326 if (tag == BLK_MQ_TAG_FAIL) {
037cebb8
CH
327 blk_queue_exit(q);
328 return NULL;
d2c0d383
CH
329 }
330
e4cdf1a1 331 rq = blk_mq_rq_ctx_init(data, tag, op);
037cebb8
CH
332 if (!op_is_flush(op)) {
333 rq->elv.icq = NULL;
5bbf4e5a 334 if (e && e->type->ops.mq.prepare_request) {
44e8c2bf
CH
335 if (e->type->icq_cache && rq_ioc(bio))
336 blk_mq_sched_assign_ioc(rq, bio);
337
5bbf4e5a
CH
338 e->type->ops.mq.prepare_request(rq, bio);
339 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 340 }
037cebb8
CH
341 }
342 data->hctx->queued++;
343 return rq;
d2c0d383
CH
344}
345
cd6ce148 346struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
6f3b0e8b 347 unsigned int flags)
320ae51f 348{
5a797e00 349 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 350 struct request *rq;
a492f075 351 int ret;
320ae51f 352
6f3b0e8b 353 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
354 if (ret)
355 return ERR_PTR(ret);
320ae51f 356
cd6ce148 357 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
841bac2c 358
bd166ef1
JA
359 blk_mq_put_ctx(alloc_data.ctx);
360 blk_queue_exit(q);
361
362 if (!rq)
a492f075 363 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
364
365 rq->__data_len = 0;
366 rq->__sector = (sector_t) -1;
367 rq->bio = rq->biotail = NULL;
320ae51f
JA
368 return rq;
369}
4bb659b1 370EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 371
cd6ce148
BVA
372struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
373 unsigned int op, unsigned int flags, unsigned int hctx_idx)
1f5bd336 374{
6d2809d5 375 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 376 struct request *rq;
6d2809d5 377 unsigned int cpu;
1f5bd336
ML
378 int ret;
379
380 /*
381 * If the tag allocator sleeps we could get an allocation for a
382 * different hardware context. No need to complicate the low level
383 * allocator for this for the rare use case of a command tied to
384 * a specific queue.
385 */
386 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
387 return ERR_PTR(-EINVAL);
388
389 if (hctx_idx >= q->nr_hw_queues)
390 return ERR_PTR(-EIO);
391
392 ret = blk_queue_enter(q, true);
393 if (ret)
394 return ERR_PTR(ret);
395
c8712c6a
CH
396 /*
397 * Check if the hardware context is actually mapped to anything.
398 * If not tell the caller that it should skip this queue.
399 */
6d2809d5
OS
400 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
401 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
402 blk_queue_exit(q);
403 return ERR_PTR(-EXDEV);
c8712c6a 404 }
6d2809d5
OS
405 cpu = cpumask_first(alloc_data.hctx->cpumask);
406 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 407
cd6ce148 408 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
c8712c6a 409
c8712c6a 410 blk_queue_exit(q);
6d2809d5
OS
411
412 if (!rq)
413 return ERR_PTR(-EWOULDBLOCK);
414
415 return rq;
1f5bd336
ML
416}
417EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
418
6af54051 419void blk_mq_free_request(struct request *rq)
320ae51f 420{
320ae51f 421 struct request_queue *q = rq->q;
6af54051
CH
422 struct elevator_queue *e = q->elevator;
423 struct blk_mq_ctx *ctx = rq->mq_ctx;
424 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
425 const int sched_tag = rq->internal_tag;
426
5bbf4e5a 427 if (rq->rq_flags & RQF_ELVPRIV) {
6af54051
CH
428 if (e && e->type->ops.mq.finish_request)
429 e->type->ops.mq.finish_request(rq);
430 if (rq->elv.icq) {
431 put_io_context(rq->elv.icq->ioc);
432 rq->elv.icq = NULL;
433 }
434 }
320ae51f 435
6af54051 436 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 437 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 438 atomic_dec(&hctx->nr_active);
87760e5e
JA
439
440 wbt_done(q->rq_wb, &rq->issue_stat);
0d2602ca 441
af76e555 442 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 443 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
444 if (rq->tag != -1)
445 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
446 if (sched_tag != -1)
c05f8525 447 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
6d8c6c0f 448 blk_mq_sched_restart(hctx);
3ef28e83 449 blk_queue_exit(q);
320ae51f 450}
1a3b595a 451EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 452
2a842aca 453inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 454{
0d11e6ac
ML
455 blk_account_io_done(rq);
456
91b63639 457 if (rq->end_io) {
87760e5e 458 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 459 rq->end_io(rq, error);
91b63639
CH
460 } else {
461 if (unlikely(blk_bidi_rq(rq)))
462 blk_mq_free_request(rq->next_rq);
320ae51f 463 blk_mq_free_request(rq);
91b63639 464 }
320ae51f 465}
c8a446ad 466EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 467
2a842aca 468void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
469{
470 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
471 BUG();
c8a446ad 472 __blk_mq_end_request(rq, error);
63151a44 473}
c8a446ad 474EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 475
30a91cb4 476static void __blk_mq_complete_request_remote(void *data)
320ae51f 477{
3d6efbf6 478 struct request *rq = data;
320ae51f 479
30a91cb4 480 rq->q->softirq_done_fn(rq);
320ae51f 481}
320ae51f 482
453f8341 483static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
484{
485 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 486 bool shared = false;
320ae51f
JA
487 int cpu;
488
453f8341
CH
489 if (rq->internal_tag != -1)
490 blk_mq_sched_completed_request(rq);
491 if (rq->rq_flags & RQF_STATS) {
492 blk_mq_poll_stats_start(rq->q);
493 blk_stat_add(rq);
494 }
495
38535201 496 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
497 rq->q->softirq_done_fn(rq);
498 return;
499 }
320ae51f
JA
500
501 cpu = get_cpu();
38535201
CH
502 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
503 shared = cpus_share_cache(cpu, ctx->cpu);
504
505 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 506 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
507 rq->csd.info = rq;
508 rq->csd.flags = 0;
c46fff2a 509 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 510 } else {
30a91cb4 511 rq->q->softirq_done_fn(rq);
3d6efbf6 512 }
320ae51f
JA
513 put_cpu();
514}
30a91cb4
CH
515
516/**
517 * blk_mq_complete_request - end I/O on a request
518 * @rq: the request being processed
519 *
520 * Description:
521 * Ends all I/O on a request. It does not handle partial completions.
522 * The actual completion happens out-of-order, through a IPI handler.
523 **/
08e0029a 524void blk_mq_complete_request(struct request *rq)
30a91cb4 525{
95f09684
JA
526 struct request_queue *q = rq->q;
527
528 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 529 return;
08e0029a 530 if (!blk_mark_rq_complete(rq))
ed851860 531 __blk_mq_complete_request(rq);
30a91cb4
CH
532}
533EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 534
973c0191
KB
535int blk_mq_request_started(struct request *rq)
536{
537 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
538}
539EXPORT_SYMBOL_GPL(blk_mq_request_started);
540
e2490073 541void blk_mq_start_request(struct request *rq)
320ae51f
JA
542{
543 struct request_queue *q = rq->q;
544
bd166ef1
JA
545 blk_mq_sched_started_request(rq);
546
320ae51f
JA
547 trace_block_rq_issue(q, rq);
548
cf43e6be 549 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 550 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 551 rq->rq_flags |= RQF_STATS;
87760e5e 552 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
553 }
554
2b8393b4 555 blk_add_timer(rq);
87ee7b11 556
538b7534
JA
557 /*
558 * Ensure that ->deadline is visible before set the started
559 * flag and clear the completed flag.
560 */
561 smp_mb__before_atomic();
562
87ee7b11
JA
563 /*
564 * Mark us as started and clear complete. Complete might have been
565 * set if requeue raced with timeout, which then marked it as
566 * complete. So be sure to clear complete again when we start
567 * the request, otherwise we'll ignore the completion event.
568 */
4b570521
JA
569 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
570 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
571 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
572 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
573
574 if (q->dma_drain_size && blk_rq_bytes(rq)) {
575 /*
576 * Make sure space for the drain appears. We know we can do
577 * this because max_hw_segments has been adjusted to be one
578 * fewer than the device can handle.
579 */
580 rq->nr_phys_segments++;
581 }
320ae51f 582}
e2490073 583EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 584
d9d149a3
ML
585/*
586 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
48b99c9d 587 * flag isn't set yet, so there may be race with timeout handler,
d9d149a3
ML
588 * but given rq->deadline is just set in .queue_rq() under
589 * this situation, the race won't be possible in reality because
590 * rq->timeout should be set as big enough to cover the window
591 * between blk_mq_start_request() called from .queue_rq() and
592 * clearing REQ_ATOM_STARTED here.
593 */
ed0791b2 594static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
595{
596 struct request_queue *q = rq->q;
597
598 trace_block_rq_requeue(q, rq);
87760e5e 599 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 600 blk_mq_sched_requeue_request(rq);
49f5baa5 601
e2490073
CH
602 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
603 if (q->dma_drain_size && blk_rq_bytes(rq))
604 rq->nr_phys_segments--;
605 }
320ae51f
JA
606}
607
2b053aca 608void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 609{
ed0791b2 610 __blk_mq_requeue_request(rq);
ed0791b2 611
ed0791b2 612 BUG_ON(blk_queued_rq(rq));
2b053aca 613 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
614}
615EXPORT_SYMBOL(blk_mq_requeue_request);
616
6fca6a61
CH
617static void blk_mq_requeue_work(struct work_struct *work)
618{
619 struct request_queue *q =
2849450a 620 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
621 LIST_HEAD(rq_list);
622 struct request *rq, *next;
6fca6a61 623
18e9781d 624 spin_lock_irq(&q->requeue_lock);
6fca6a61 625 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 626 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
627
628 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 629 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
630 continue;
631
e8064021 632 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 633 list_del_init(&rq->queuelist);
bd6737f1 634 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
635 }
636
637 while (!list_empty(&rq_list)) {
638 rq = list_entry(rq_list.next, struct request, queuelist);
639 list_del_init(&rq->queuelist);
bd6737f1 640 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
641 }
642
52d7f1b5 643 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
644}
645
2b053aca
BVA
646void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
647 bool kick_requeue_list)
6fca6a61
CH
648{
649 struct request_queue *q = rq->q;
650 unsigned long flags;
651
652 /*
653 * We abuse this flag that is otherwise used by the I/O scheduler to
654 * request head insertation from the workqueue.
655 */
e8064021 656 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
657
658 spin_lock_irqsave(&q->requeue_lock, flags);
659 if (at_head) {
e8064021 660 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
661 list_add(&rq->queuelist, &q->requeue_list);
662 } else {
663 list_add_tail(&rq->queuelist, &q->requeue_list);
664 }
665 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
666
667 if (kick_requeue_list)
668 blk_mq_kick_requeue_list(q);
6fca6a61
CH
669}
670EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
671
672void blk_mq_kick_requeue_list(struct request_queue *q)
673{
2849450a 674 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
675}
676EXPORT_SYMBOL(blk_mq_kick_requeue_list);
677
2849450a
MS
678void blk_mq_delay_kick_requeue_list(struct request_queue *q,
679 unsigned long msecs)
680{
681 kblockd_schedule_delayed_work(&q->requeue_work,
682 msecs_to_jiffies(msecs));
683}
684EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
685
0e62f51f
JA
686struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
687{
88c7b2b7
JA
688 if (tag < tags->nr_tags) {
689 prefetch(tags->rqs[tag]);
4ee86bab 690 return tags->rqs[tag];
88c7b2b7 691 }
4ee86bab
HR
692
693 return NULL;
24d2f903
CH
694}
695EXPORT_SYMBOL(blk_mq_tag_to_rq);
696
320ae51f 697struct blk_mq_timeout_data {
46f92d42
CH
698 unsigned long next;
699 unsigned int next_set;
320ae51f
JA
700};
701
90415837 702void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 703{
f8a5b122 704 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 705 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
706
707 /*
708 * We know that complete is set at this point. If STARTED isn't set
709 * anymore, then the request isn't active and the "timeout" should
710 * just be ignored. This can happen due to the bitflag ordering.
711 * Timeout first checks if STARTED is set, and if it is, assumes
712 * the request is active. But if we race with completion, then
48b99c9d 713 * both flags will get cleared. So check here again, and ignore
87ee7b11
JA
714 * a timeout event with a request that isn't active.
715 */
46f92d42
CH
716 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
717 return;
87ee7b11 718
46f92d42 719 if (ops->timeout)
0152fb6b 720 ret = ops->timeout(req, reserved);
46f92d42
CH
721
722 switch (ret) {
723 case BLK_EH_HANDLED:
724 __blk_mq_complete_request(req);
725 break;
726 case BLK_EH_RESET_TIMER:
727 blk_add_timer(req);
728 blk_clear_rq_complete(req);
729 break;
730 case BLK_EH_NOT_HANDLED:
731 break;
732 default:
733 printk(KERN_ERR "block: bad eh return: %d\n", ret);
734 break;
735 }
87ee7b11 736}
5b3f25fc 737
81481eb4
CH
738static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
739 struct request *rq, void *priv, bool reserved)
740{
741 struct blk_mq_timeout_data *data = priv;
87ee7b11 742
95a49603 743 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 744 return;
87ee7b11 745
d9d149a3
ML
746 /*
747 * The rq being checked may have been freed and reallocated
748 * out already here, we avoid this race by checking rq->deadline
749 * and REQ_ATOM_COMPLETE flag together:
750 *
751 * - if rq->deadline is observed as new value because of
752 * reusing, the rq won't be timed out because of timing.
753 * - if rq->deadline is observed as previous value,
754 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
755 * because we put a barrier between setting rq->deadline
756 * and clearing the flag in blk_mq_start_request(), so
757 * this rq won't be timed out too.
758 */
46f92d42
CH
759 if (time_after_eq(jiffies, rq->deadline)) {
760 if (!blk_mark_rq_complete(rq))
0152fb6b 761 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
762 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
763 data->next = rq->deadline;
764 data->next_set = 1;
765 }
87ee7b11
JA
766}
767
287922eb 768static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 769{
287922eb
CH
770 struct request_queue *q =
771 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
772 struct blk_mq_timeout_data data = {
773 .next = 0,
774 .next_set = 0,
775 };
81481eb4 776 int i;
320ae51f 777
71f79fb3
GKB
778 /* A deadlock might occur if a request is stuck requiring a
779 * timeout at the same time a queue freeze is waiting
780 * completion, since the timeout code would not be able to
781 * acquire the queue reference here.
782 *
783 * That's why we don't use blk_queue_enter here; instead, we use
784 * percpu_ref_tryget directly, because we need to be able to
785 * obtain a reference even in the short window between the queue
786 * starting to freeze, by dropping the first reference in
1671d522 787 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
788 * consumed, marked by the instant q_usage_counter reaches
789 * zero.
790 */
791 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
792 return;
793
0bf6cd5b 794 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 795
81481eb4
CH
796 if (data.next_set) {
797 data.next = blk_rq_timeout(round_jiffies_up(data.next));
798 mod_timer(&q->timeout, data.next);
0d2602ca 799 } else {
0bf6cd5b
CH
800 struct blk_mq_hw_ctx *hctx;
801
f054b56c
ML
802 queue_for_each_hw_ctx(q, hctx, i) {
803 /* the hctx may be unmapped, so check it here */
804 if (blk_mq_hw_queue_mapped(hctx))
805 blk_mq_tag_idle(hctx);
806 }
0d2602ca 807 }
287922eb 808 blk_queue_exit(q);
320ae51f
JA
809}
810
88459642
OS
811struct flush_busy_ctx_data {
812 struct blk_mq_hw_ctx *hctx;
813 struct list_head *list;
814};
815
816static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
817{
818 struct flush_busy_ctx_data *flush_data = data;
819 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
820 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
821
822 sbitmap_clear_bit(sb, bitnr);
823 spin_lock(&ctx->lock);
824 list_splice_tail_init(&ctx->rq_list, flush_data->list);
825 spin_unlock(&ctx->lock);
826 return true;
827}
828
1429d7c9
JA
829/*
830 * Process software queues that have been marked busy, splicing them
831 * to the for-dispatch
832 */
2c3ad667 833void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 834{
88459642
OS
835 struct flush_busy_ctx_data data = {
836 .hctx = hctx,
837 .list = list,
838 };
1429d7c9 839
88459642 840 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 841}
2c3ad667 842EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 843
703fd1c0
JA
844static inline unsigned int queued_to_index(unsigned int queued)
845{
846 if (!queued)
847 return 0;
1429d7c9 848
703fd1c0 849 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
850}
851
bd6737f1
JA
852bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
853 bool wait)
bd166ef1
JA
854{
855 struct blk_mq_alloc_data data = {
856 .q = rq->q,
bd166ef1
JA
857 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
858 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
859 };
860
5feeacdd
JA
861 might_sleep_if(wait);
862
81380ca1
OS
863 if (rq->tag != -1)
864 goto done;
bd166ef1 865
415b806d
SG
866 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
867 data.flags |= BLK_MQ_REQ_RESERVED;
868
bd166ef1
JA
869 rq->tag = blk_mq_get_tag(&data);
870 if (rq->tag >= 0) {
200e86b3
JA
871 if (blk_mq_tag_busy(data.hctx)) {
872 rq->rq_flags |= RQF_MQ_INFLIGHT;
873 atomic_inc(&data.hctx->nr_active);
874 }
bd166ef1 875 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
876 }
877
81380ca1
OS
878done:
879 if (hctx)
880 *hctx = data.hctx;
881 return rq->tag != -1;
bd166ef1
JA
882}
883
113285b4
JA
884static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
885 struct request *rq)
99cf1dc5 886{
99cf1dc5
JA
887 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
888 rq->tag = -1;
889
890 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
891 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
892 atomic_dec(&hctx->nr_active);
893 }
894}
895
113285b4
JA
896static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
897 struct request *rq)
898{
899 if (rq->tag == -1 || rq->internal_tag == -1)
900 return;
901
902 __blk_mq_put_driver_tag(hctx, rq);
903}
904
905static void blk_mq_put_driver_tag(struct request *rq)
906{
907 struct blk_mq_hw_ctx *hctx;
908
909 if (rq->tag == -1 || rq->internal_tag == -1)
910 return;
911
912 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
913 __blk_mq_put_driver_tag(hctx, rq);
914}
915
bd166ef1
JA
916/*
917 * If we fail getting a driver tag because all the driver tags are already
918 * assigned and on the dispatch list, BUT the first entry does not have a
919 * tag, then we could deadlock. For that case, move entries with assigned
920 * driver tags to the front, leaving the set of tagged requests in the
921 * same order, and the untagged set in the same order.
922 */
923static bool reorder_tags_to_front(struct list_head *list)
924{
925 struct request *rq, *tmp, *first = NULL;
926
927 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
928 if (rq == first)
929 break;
930 if (rq->tag != -1) {
931 list_move(&rq->queuelist, list);
932 if (!first)
933 first = rq;
934 }
935 }
936
937 return first != NULL;
938}
939
ac6424b9 940static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
da55f2cc
OS
941 void *key)
942{
943 struct blk_mq_hw_ctx *hctx;
944
945 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
946
2055da97 947 list_del(&wait->entry);
da55f2cc
OS
948 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
949 blk_mq_run_hw_queue(hctx, true);
950 return 1;
951}
952
953static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
954{
955 struct sbq_wait_state *ws;
956
957 /*
958 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
959 * The thread which wins the race to grab this bit adds the hardware
960 * queue to the wait queue.
961 */
962 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
963 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
964 return false;
965
966 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
967 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
968
969 /*
970 * As soon as this returns, it's no longer safe to fiddle with
971 * hctx->dispatch_wait, since a completion can wake up the wait queue
972 * and unlock the bit.
973 */
974 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
975 return true;
976}
977
81380ca1 978bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
320ae51f 979{
81380ca1 980 struct blk_mq_hw_ctx *hctx;
320ae51f 981 struct request *rq;
fc17b653 982 int errors, queued;
320ae51f 983
81380ca1
OS
984 if (list_empty(list))
985 return false;
986
320ae51f
JA
987 /*
988 * Now process all the entries, sending them to the driver.
989 */
93efe981 990 errors = queued = 0;
81380ca1 991 do {
74c45052 992 struct blk_mq_queue_data bd;
fc17b653 993 blk_status_t ret;
320ae51f 994
f04c3df3 995 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
996 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
997 if (!queued && reorder_tags_to_front(list))
998 continue;
3c782d67
JA
999
1000 /*
da55f2cc
OS
1001 * The initial allocation attempt failed, so we need to
1002 * rerun the hardware queue when a tag is freed.
3c782d67 1003 */
807b1041
OS
1004 if (!blk_mq_dispatch_wait_add(hctx))
1005 break;
1006
1007 /*
1008 * It's possible that a tag was freed in the window
1009 * between the allocation failure and adding the
1010 * hardware queue to the wait queue.
1011 */
1012 if (!blk_mq_get_driver_tag(rq, &hctx, false))
3c782d67 1013 break;
bd166ef1 1014 }
da55f2cc 1015
320ae51f 1016 list_del_init(&rq->queuelist);
320ae51f 1017
74c45052 1018 bd.rq = rq;
113285b4
JA
1019
1020 /*
1021 * Flag last if we have no more requests, or if we have more
1022 * but can't assign a driver tag to it.
1023 */
1024 if (list_empty(list))
1025 bd.last = true;
1026 else {
1027 struct request *nxt;
1028
1029 nxt = list_first_entry(list, struct request, queuelist);
1030 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1031 }
74c45052
JA
1032
1033 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653 1034 if (ret == BLK_STS_RESOURCE) {
113285b4 1035 blk_mq_put_driver_tag_hctx(hctx, rq);
f04c3df3 1036 list_add(&rq->queuelist, list);
ed0791b2 1037 __blk_mq_requeue_request(rq);
320ae51f 1038 break;
fc17b653
CH
1039 }
1040
1041 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1042 errors++;
2a842aca 1043 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1044 continue;
320ae51f
JA
1045 }
1046
fc17b653 1047 queued++;
81380ca1 1048 } while (!list_empty(list));
320ae51f 1049
703fd1c0 1050 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1051
1052 /*
1053 * Any items that need requeuing? Stuff them into hctx->dispatch,
1054 * that is where we will continue on next queue run.
1055 */
f04c3df3 1056 if (!list_empty(list)) {
113285b4 1057 /*
710c785f
BVA
1058 * If an I/O scheduler has been configured and we got a driver
1059 * tag for the next request already, free it again.
113285b4
JA
1060 */
1061 rq = list_first_entry(list, struct request, queuelist);
1062 blk_mq_put_driver_tag(rq);
1063
320ae51f 1064 spin_lock(&hctx->lock);
c13660a0 1065 list_splice_init(list, &hctx->dispatch);
320ae51f 1066 spin_unlock(&hctx->lock);
f04c3df3 1067
9ba52e58 1068 /*
710c785f
BVA
1069 * If SCHED_RESTART was set by the caller of this function and
1070 * it is no longer set that means that it was cleared by another
1071 * thread and hence that a queue rerun is needed.
9ba52e58 1072 *
710c785f
BVA
1073 * If TAG_WAITING is set that means that an I/O scheduler has
1074 * been configured and another thread is waiting for a driver
1075 * tag. To guarantee fairness, do not rerun this hardware queue
1076 * but let the other thread grab the driver tag.
bd166ef1 1077 *
710c785f
BVA
1078 * If no I/O scheduler has been configured it is possible that
1079 * the hardware queue got stopped and restarted before requests
1080 * were pushed back onto the dispatch list. Rerun the queue to
1081 * avoid starvation. Notes:
1082 * - blk_mq_run_hw_queue() checks whether or not a queue has
1083 * been stopped before rerunning a queue.
1084 * - Some but not all block drivers stop a queue before
fc17b653 1085 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1086 * and dm-rq.
bd166ef1 1087 */
da55f2cc
OS
1088 if (!blk_mq_sched_needs_restart(hctx) &&
1089 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
bd166ef1 1090 blk_mq_run_hw_queue(hctx, true);
320ae51f 1091 }
f04c3df3 1092
93efe981 1093 return (queued + errors) != 0;
f04c3df3
JA
1094}
1095
6a83e74d
BVA
1096static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1097{
1098 int srcu_idx;
1099
1100 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1101 cpu_online(hctx->next_cpu));
1102
1103 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1104 rcu_read_lock();
bd166ef1 1105 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1106 rcu_read_unlock();
1107 } else {
bf4907c0
JA
1108 might_sleep();
1109
07319678 1110 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
bd166ef1 1111 blk_mq_sched_dispatch_requests(hctx);
07319678 1112 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
6a83e74d
BVA
1113 }
1114}
1115
506e931f
JA
1116/*
1117 * It'd be great if the workqueue API had a way to pass
1118 * in a mask and had some smarts for more clever placement.
1119 * For now we just round-robin here, switching for every
1120 * BLK_MQ_CPU_WORK_BATCH queued items.
1121 */
1122static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1123{
b657d7e6
CH
1124 if (hctx->queue->nr_hw_queues == 1)
1125 return WORK_CPU_UNBOUND;
506e931f
JA
1126
1127 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1128 int next_cpu;
506e931f
JA
1129
1130 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1131 if (next_cpu >= nr_cpu_ids)
1132 next_cpu = cpumask_first(hctx->cpumask);
1133
1134 hctx->next_cpu = next_cpu;
1135 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1136 }
1137
b657d7e6 1138 return hctx->next_cpu;
506e931f
JA
1139}
1140
7587a5ae
BVA
1141static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1142 unsigned long msecs)
320ae51f 1143{
5435c023
BVA
1144 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1145 return;
1146
1147 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1148 return;
1149
1b792f2f 1150 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1151 int cpu = get_cpu();
1152 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1153 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1154 put_cpu();
398205b8
PB
1155 return;
1156 }
e4043dcf 1157
2a90d4aa 1158 put_cpu();
e4043dcf 1159 }
398205b8 1160
9f993737
JA
1161 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1162 &hctx->run_work,
1163 msecs_to_jiffies(msecs));
7587a5ae
BVA
1164}
1165
1166void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1167{
1168 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1169}
1170EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1171
1172void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1173{
1174 __blk_mq_delay_run_hw_queue(hctx, async, 0);
320ae51f 1175}
5b727272 1176EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1177
b94ec296 1178void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1179{
1180 struct blk_mq_hw_ctx *hctx;
1181 int i;
1182
1183 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1184 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1185 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1186 continue;
1187
b94ec296 1188 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1189 }
1190}
b94ec296 1191EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1192
fd001443
BVA
1193/**
1194 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1195 * @q: request queue.
1196 *
1197 * The caller is responsible for serializing this function against
1198 * blk_mq_{start,stop}_hw_queue().
1199 */
1200bool blk_mq_queue_stopped(struct request_queue *q)
1201{
1202 struct blk_mq_hw_ctx *hctx;
1203 int i;
1204
1205 queue_for_each_hw_ctx(q, hctx, i)
1206 if (blk_mq_hctx_stopped(hctx))
1207 return true;
1208
1209 return false;
1210}
1211EXPORT_SYMBOL(blk_mq_queue_stopped);
1212
39a70c76
ML
1213/*
1214 * This function is often used for pausing .queue_rq() by driver when
1215 * there isn't enough resource or some conditions aren't satisfied, and
1216 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1217 *
1218 * We do not guarantee that dispatch can be drained or blocked
1219 * after blk_mq_stop_hw_queue() returns. Please use
1220 * blk_mq_quiesce_queue() for that requirement.
1221 */
2719aa21
JA
1222void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1223{
641a9ed6 1224 cancel_delayed_work(&hctx->run_work);
280d45f6 1225
641a9ed6 1226 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1227}
641a9ed6 1228EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1229
39a70c76
ML
1230/*
1231 * This function is often used for pausing .queue_rq() by driver when
1232 * there isn't enough resource or some conditions aren't satisfied, and
1233 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1234 *
1235 * We do not guarantee that dispatch can be drained or blocked
1236 * after blk_mq_stop_hw_queues() returns. Please use
1237 * blk_mq_quiesce_queue() for that requirement.
1238 */
2719aa21
JA
1239void blk_mq_stop_hw_queues(struct request_queue *q)
1240{
641a9ed6
ML
1241 struct blk_mq_hw_ctx *hctx;
1242 int i;
1243
1244 queue_for_each_hw_ctx(q, hctx, i)
1245 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1246}
1247EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1248
320ae51f
JA
1249void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1250{
1251 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1252
0ffbce80 1253 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1254}
1255EXPORT_SYMBOL(blk_mq_start_hw_queue);
1256
2f268556
CH
1257void blk_mq_start_hw_queues(struct request_queue *q)
1258{
1259 struct blk_mq_hw_ctx *hctx;
1260 int i;
1261
1262 queue_for_each_hw_ctx(q, hctx, i)
1263 blk_mq_start_hw_queue(hctx);
1264}
1265EXPORT_SYMBOL(blk_mq_start_hw_queues);
1266
ae911c5e
JA
1267void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1268{
1269 if (!blk_mq_hctx_stopped(hctx))
1270 return;
1271
1272 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1273 blk_mq_run_hw_queue(hctx, async);
1274}
1275EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1276
1b4a3258 1277void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1278{
1279 struct blk_mq_hw_ctx *hctx;
1280 int i;
1281
ae911c5e
JA
1282 queue_for_each_hw_ctx(q, hctx, i)
1283 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1284}
1285EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1286
70f4db63 1287static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1288{
1289 struct blk_mq_hw_ctx *hctx;
1290
9f993737 1291 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1292
21c6e939
JA
1293 /*
1294 * If we are stopped, don't run the queue. The exception is if
1295 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1296 * the STOPPED bit and run it.
1297 */
1298 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1299 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1300 return;
7587a5ae 1301
21c6e939
JA
1302 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1303 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1304 }
7587a5ae
BVA
1305
1306 __blk_mq_run_hw_queue(hctx);
1307}
1308
70f4db63
CH
1309
1310void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1311{
5435c023 1312 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
19c66e59 1313 return;
70f4db63 1314
21c6e939
JA
1315 /*
1316 * Stop the hw queue, then modify currently delayed work.
1317 * This should prevent us from running the queue prematurely.
1318 * Mark the queue as auto-clearing STOPPED when it runs.
1319 */
7e79dadc 1320 blk_mq_stop_hw_queue(hctx);
21c6e939
JA
1321 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1322 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1323 &hctx->run_work,
1324 msecs_to_jiffies(msecs));
70f4db63
CH
1325}
1326EXPORT_SYMBOL(blk_mq_delay_queue);
1327
cfd0c552 1328static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1329 struct request *rq,
1330 bool at_head)
320ae51f 1331{
e57690fe
JA
1332 struct blk_mq_ctx *ctx = rq->mq_ctx;
1333
7b607814
BVA
1334 lockdep_assert_held(&ctx->lock);
1335
01b983c9
JA
1336 trace_block_rq_insert(hctx->queue, rq);
1337
72a0a36e
CH
1338 if (at_head)
1339 list_add(&rq->queuelist, &ctx->rq_list);
1340 else
1341 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1342}
4bb659b1 1343
2c3ad667
JA
1344void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1345 bool at_head)
cfd0c552
ML
1346{
1347 struct blk_mq_ctx *ctx = rq->mq_ctx;
1348
7b607814
BVA
1349 lockdep_assert_held(&ctx->lock);
1350
e57690fe 1351 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1352 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1353}
1354
bd166ef1
JA
1355void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1356 struct list_head *list)
320ae51f
JA
1357
1358{
320ae51f
JA
1359 /*
1360 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1361 * offline now
1362 */
1363 spin_lock(&ctx->lock);
1364 while (!list_empty(list)) {
1365 struct request *rq;
1366
1367 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1368 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1369 list_del_init(&rq->queuelist);
e57690fe 1370 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1371 }
cfd0c552 1372 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1373 spin_unlock(&ctx->lock);
320ae51f
JA
1374}
1375
1376static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1377{
1378 struct request *rqa = container_of(a, struct request, queuelist);
1379 struct request *rqb = container_of(b, struct request, queuelist);
1380
1381 return !(rqa->mq_ctx < rqb->mq_ctx ||
1382 (rqa->mq_ctx == rqb->mq_ctx &&
1383 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1384}
1385
1386void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1387{
1388 struct blk_mq_ctx *this_ctx;
1389 struct request_queue *this_q;
1390 struct request *rq;
1391 LIST_HEAD(list);
1392 LIST_HEAD(ctx_list);
1393 unsigned int depth;
1394
1395 list_splice_init(&plug->mq_list, &list);
1396
1397 list_sort(NULL, &list, plug_ctx_cmp);
1398
1399 this_q = NULL;
1400 this_ctx = NULL;
1401 depth = 0;
1402
1403 while (!list_empty(&list)) {
1404 rq = list_entry_rq(list.next);
1405 list_del_init(&rq->queuelist);
1406 BUG_ON(!rq->q);
1407 if (rq->mq_ctx != this_ctx) {
1408 if (this_ctx) {
bd166ef1
JA
1409 trace_block_unplug(this_q, depth, from_schedule);
1410 blk_mq_sched_insert_requests(this_q, this_ctx,
1411 &ctx_list,
1412 from_schedule);
320ae51f
JA
1413 }
1414
1415 this_ctx = rq->mq_ctx;
1416 this_q = rq->q;
1417 depth = 0;
1418 }
1419
1420 depth++;
1421 list_add_tail(&rq->queuelist, &ctx_list);
1422 }
1423
1424 /*
1425 * If 'this_ctx' is set, we know we have entries to complete
1426 * on 'ctx_list'. Do those.
1427 */
1428 if (this_ctx) {
bd166ef1
JA
1429 trace_block_unplug(this_q, depth, from_schedule);
1430 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1431 from_schedule);
320ae51f
JA
1432 }
1433}
1434
1435static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1436{
da8d7f07 1437 blk_init_request_from_bio(rq, bio);
4b570521 1438
6e85eaf3 1439 blk_account_io_start(rq, true);
320ae51f
JA
1440}
1441
274a5843
JA
1442static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1443{
1444 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1445 !blk_queue_nomerges(hctx->queue);
1446}
1447
ab42f35d
ML
1448static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1449 struct blk_mq_ctx *ctx,
1450 struct request *rq)
1451{
1452 spin_lock(&ctx->lock);
1453 __blk_mq_insert_request(hctx, rq, false);
1454 spin_unlock(&ctx->lock);
07068d5b 1455}
14ec77f3 1456
fd2d3326
JA
1457static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1458{
bd166ef1
JA
1459 if (rq->tag != -1)
1460 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1461
1462 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1463}
1464
d964f04a
ML
1465static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1466 struct request *rq,
1467 blk_qc_t *cookie, bool may_sleep)
f984df1f 1468{
f984df1f 1469 struct request_queue *q = rq->q;
f984df1f
SL
1470 struct blk_mq_queue_data bd = {
1471 .rq = rq,
d945a365 1472 .last = true,
f984df1f 1473 };
bd166ef1 1474 blk_qc_t new_cookie;
f06345ad 1475 blk_status_t ret;
d964f04a
ML
1476 bool run_queue = true;
1477
f4560ffe
ML
1478 /* RCU or SRCU read lock is needed before checking quiesced flag */
1479 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a
ML
1480 run_queue = false;
1481 goto insert;
1482 }
f984df1f 1483
bd166ef1 1484 if (q->elevator)
2253efc8
BVA
1485 goto insert;
1486
d964f04a 1487 if (!blk_mq_get_driver_tag(rq, NULL, false))
bd166ef1
JA
1488 goto insert;
1489
1490 new_cookie = request_to_qc_t(hctx, rq);
1491
f984df1f
SL
1492 /*
1493 * For OK queue, we are done. For error, kill it. Any other
1494 * error (busy), just add it to our list as we previously
1495 * would have done
1496 */
1497 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653
CH
1498 switch (ret) {
1499 case BLK_STS_OK:
7b371636 1500 *cookie = new_cookie;
2253efc8 1501 return;
fc17b653
CH
1502 case BLK_STS_RESOURCE:
1503 __blk_mq_requeue_request(rq);
1504 goto insert;
1505 default:
7b371636 1506 *cookie = BLK_QC_T_NONE;
fc17b653 1507 blk_mq_end_request(rq, ret);
2253efc8 1508 return;
f984df1f 1509 }
7b371636 1510
2253efc8 1511insert:
d964f04a 1512 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
f984df1f
SL
1513}
1514
5eb6126e
CH
1515static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1516 struct request *rq, blk_qc_t *cookie)
1517{
1518 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1519 rcu_read_lock();
d964f04a 1520 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
5eb6126e
CH
1521 rcu_read_unlock();
1522 } else {
bf4907c0
JA
1523 unsigned int srcu_idx;
1524
1525 might_sleep();
1526
07319678 1527 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
d964f04a 1528 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
07319678 1529 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
5eb6126e
CH
1530 }
1531}
1532
dece1635 1533static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1534{
ef295ecf 1535 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1536 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1537 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1538 struct request *rq;
5eb6126e 1539 unsigned int request_count = 0;
f984df1f 1540 struct blk_plug *plug;
5b3f341f 1541 struct request *same_queue_rq = NULL;
7b371636 1542 blk_qc_t cookie;
87760e5e 1543 unsigned int wb_acct;
07068d5b
JA
1544
1545 blk_queue_bounce(q, &bio);
1546
af67c31f 1547 blk_queue_split(q, &bio);
f36ea50c 1548
e23947bd 1549 if (!bio_integrity_prep(bio))
dece1635 1550 return BLK_QC_T_NONE;
07068d5b 1551
87c279e6
OS
1552 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1553 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1554 return BLK_QC_T_NONE;
f984df1f 1555
bd166ef1
JA
1556 if (blk_mq_sched_bio_merge(q, bio))
1557 return BLK_QC_T_NONE;
1558
87760e5e
JA
1559 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1560
bd166ef1
JA
1561 trace_block_getrq(q, bio, bio->bi_opf);
1562
d2c0d383 1563 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1564 if (unlikely(!rq)) {
1565 __wbt_done(q->rq_wb, wb_acct);
03a07c92
GR
1566 if (bio->bi_opf & REQ_NOWAIT)
1567 bio_wouldblock_error(bio);
dece1635 1568 return BLK_QC_T_NONE;
87760e5e
JA
1569 }
1570
1571 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1572
fd2d3326 1573 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1574
f984df1f 1575 plug = current->plug;
07068d5b 1576 if (unlikely(is_flush_fua)) {
f984df1f 1577 blk_mq_put_ctx(data.ctx);
07068d5b 1578 blk_mq_bio_to_request(rq, bio);
a4d907b6
CH
1579 if (q->elevator) {
1580 blk_mq_sched_insert_request(rq, false, true, true,
1581 true);
6a83e74d 1582 } else {
a4d907b6
CH
1583 blk_insert_flush(rq);
1584 blk_mq_run_hw_queue(data.hctx, true);
6a83e74d 1585 }
a4d907b6 1586 } else if (plug && q->nr_hw_queues == 1) {
600271d9
SL
1587 struct request *last = NULL;
1588
b00c53e8 1589 blk_mq_put_ctx(data.ctx);
e6c4438b 1590 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1591
1592 /*
1593 * @request_count may become stale because of schedule
1594 * out, so check the list again.
1595 */
1596 if (list_empty(&plug->mq_list))
1597 request_count = 0;
254d259d
CH
1598 else if (blk_queue_nomerges(q))
1599 request_count = blk_plug_queued_count(q);
1600
676d0607 1601 if (!request_count)
e6c4438b 1602 trace_block_plug(q);
600271d9
SL
1603 else
1604 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1605
600271d9
SL
1606 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1607 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1608 blk_flush_plug_list(plug, false);
1609 trace_block_plug(q);
320ae51f 1610 }
b094f89c 1611
e6c4438b 1612 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1613 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1614 blk_mq_bio_to_request(rq, bio);
07068d5b 1615
07068d5b 1616 /*
6a83e74d 1617 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1618 * Otherwise the existing request in the plug list will be
1619 * issued. So the plug list will have one request at most
2299722c
CH
1620 * The plug list might get flushed before this. If that happens,
1621 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1622 */
2299722c
CH
1623 if (list_empty(&plug->mq_list))
1624 same_queue_rq = NULL;
1625 if (same_queue_rq)
1626 list_del_init(&same_queue_rq->queuelist);
1627 list_add_tail(&rq->queuelist, &plug->mq_list);
1628
bf4907c0
JA
1629 blk_mq_put_ctx(data.ctx);
1630
dad7a3be
ML
1631 if (same_queue_rq) {
1632 data.hctx = blk_mq_map_queue(q,
1633 same_queue_rq->mq_ctx->cpu);
2299722c
CH
1634 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1635 &cookie);
dad7a3be 1636 }
a4d907b6 1637 } else if (q->nr_hw_queues > 1 && is_sync) {
bf4907c0 1638 blk_mq_put_ctx(data.ctx);
2299722c 1639 blk_mq_bio_to_request(rq, bio);
2299722c 1640 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
a4d907b6 1641 } else if (q->elevator) {
b00c53e8 1642 blk_mq_put_ctx(data.ctx);
bd166ef1 1643 blk_mq_bio_to_request(rq, bio);
a4d907b6 1644 blk_mq_sched_insert_request(rq, false, true, true, true);
ab42f35d 1645 } else {
b00c53e8 1646 blk_mq_put_ctx(data.ctx);
ab42f35d
ML
1647 blk_mq_bio_to_request(rq, bio);
1648 blk_mq_queue_io(data.hctx, data.ctx, rq);
a4d907b6 1649 blk_mq_run_hw_queue(data.hctx, true);
ab42f35d 1650 }
320ae51f 1651
7b371636 1652 return cookie;
320ae51f
JA
1653}
1654
cc71a6f4
JA
1655void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1656 unsigned int hctx_idx)
95363efd 1657{
e9b267d9 1658 struct page *page;
320ae51f 1659
24d2f903 1660 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1661 int i;
320ae51f 1662
24d2f903 1663 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1664 struct request *rq = tags->static_rqs[i];
1665
1666 if (!rq)
e9b267d9 1667 continue;
d6296d39 1668 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 1669 tags->static_rqs[i] = NULL;
e9b267d9 1670 }
320ae51f 1671 }
320ae51f 1672
24d2f903
CH
1673 while (!list_empty(&tags->page_list)) {
1674 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1675 list_del_init(&page->lru);
f75782e4
CM
1676 /*
1677 * Remove kmemleak object previously allocated in
1678 * blk_mq_init_rq_map().
1679 */
1680 kmemleak_free(page_address(page));
320ae51f
JA
1681 __free_pages(page, page->private);
1682 }
cc71a6f4 1683}
320ae51f 1684
cc71a6f4
JA
1685void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1686{
24d2f903 1687 kfree(tags->rqs);
cc71a6f4 1688 tags->rqs = NULL;
2af8cbe3
JA
1689 kfree(tags->static_rqs);
1690 tags->static_rqs = NULL;
320ae51f 1691
24d2f903 1692 blk_mq_free_tags(tags);
320ae51f
JA
1693}
1694
cc71a6f4
JA
1695struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1696 unsigned int hctx_idx,
1697 unsigned int nr_tags,
1698 unsigned int reserved_tags)
320ae51f 1699{
24d2f903 1700 struct blk_mq_tags *tags;
59f082e4 1701 int node;
320ae51f 1702
59f082e4
SL
1703 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1704 if (node == NUMA_NO_NODE)
1705 node = set->numa_node;
1706
1707 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1708 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1709 if (!tags)
1710 return NULL;
320ae51f 1711
cc71a6f4 1712 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1713 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1714 node);
24d2f903
CH
1715 if (!tags->rqs) {
1716 blk_mq_free_tags(tags);
1717 return NULL;
1718 }
320ae51f 1719
2af8cbe3
JA
1720 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1721 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1722 node);
2af8cbe3
JA
1723 if (!tags->static_rqs) {
1724 kfree(tags->rqs);
1725 blk_mq_free_tags(tags);
1726 return NULL;
1727 }
1728
cc71a6f4
JA
1729 return tags;
1730}
1731
1732static size_t order_to_size(unsigned int order)
1733{
1734 return (size_t)PAGE_SIZE << order;
1735}
1736
1737int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1738 unsigned int hctx_idx, unsigned int depth)
1739{
1740 unsigned int i, j, entries_per_page, max_order = 4;
1741 size_t rq_size, left;
59f082e4
SL
1742 int node;
1743
1744 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1745 if (node == NUMA_NO_NODE)
1746 node = set->numa_node;
cc71a6f4
JA
1747
1748 INIT_LIST_HEAD(&tags->page_list);
1749
320ae51f
JA
1750 /*
1751 * rq_size is the size of the request plus driver payload, rounded
1752 * to the cacheline size
1753 */
24d2f903 1754 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1755 cache_line_size());
cc71a6f4 1756 left = rq_size * depth;
320ae51f 1757
cc71a6f4 1758 for (i = 0; i < depth; ) {
320ae51f
JA
1759 int this_order = max_order;
1760 struct page *page;
1761 int to_do;
1762 void *p;
1763
b3a834b1 1764 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1765 this_order--;
1766
1767 do {
59f082e4 1768 page = alloc_pages_node(node,
36e1f3d1 1769 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1770 this_order);
320ae51f
JA
1771 if (page)
1772 break;
1773 if (!this_order--)
1774 break;
1775 if (order_to_size(this_order) < rq_size)
1776 break;
1777 } while (1);
1778
1779 if (!page)
24d2f903 1780 goto fail;
320ae51f
JA
1781
1782 page->private = this_order;
24d2f903 1783 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1784
1785 p = page_address(page);
f75782e4
CM
1786 /*
1787 * Allow kmemleak to scan these pages as they contain pointers
1788 * to additional allocations like via ops->init_request().
1789 */
36e1f3d1 1790 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1791 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1792 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1793 left -= to_do * rq_size;
1794 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1795 struct request *rq = p;
1796
1797 tags->static_rqs[i] = rq;
24d2f903 1798 if (set->ops->init_request) {
d6296d39 1799 if (set->ops->init_request(set, rq, hctx_idx,
59f082e4 1800 node)) {
2af8cbe3 1801 tags->static_rqs[i] = NULL;
24d2f903 1802 goto fail;
a5164405 1803 }
e9b267d9
CH
1804 }
1805
320ae51f
JA
1806 p += rq_size;
1807 i++;
1808 }
1809 }
cc71a6f4 1810 return 0;
320ae51f 1811
24d2f903 1812fail:
cc71a6f4
JA
1813 blk_mq_free_rqs(set, tags, hctx_idx);
1814 return -ENOMEM;
320ae51f
JA
1815}
1816
e57690fe
JA
1817/*
1818 * 'cpu' is going away. splice any existing rq_list entries from this
1819 * software queue to the hw queue dispatch list, and ensure that it
1820 * gets run.
1821 */
9467f859 1822static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1823{
9467f859 1824 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1825 struct blk_mq_ctx *ctx;
1826 LIST_HEAD(tmp);
1827
9467f859 1828 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1829 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1830
1831 spin_lock(&ctx->lock);
1832 if (!list_empty(&ctx->rq_list)) {
1833 list_splice_init(&ctx->rq_list, &tmp);
1834 blk_mq_hctx_clear_pending(hctx, ctx);
1835 }
1836 spin_unlock(&ctx->lock);
1837
1838 if (list_empty(&tmp))
9467f859 1839 return 0;
484b4061 1840
e57690fe
JA
1841 spin_lock(&hctx->lock);
1842 list_splice_tail_init(&tmp, &hctx->dispatch);
1843 spin_unlock(&hctx->lock);
484b4061
JA
1844
1845 blk_mq_run_hw_queue(hctx, true);
9467f859 1846 return 0;
484b4061
JA
1847}
1848
9467f859 1849static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1850{
9467f859
TG
1851 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1852 &hctx->cpuhp_dead);
484b4061
JA
1853}
1854
c3b4afca 1855/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1856static void blk_mq_exit_hctx(struct request_queue *q,
1857 struct blk_mq_tag_set *set,
1858 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1859{
9c1051aa
OS
1860 blk_mq_debugfs_unregister_hctx(hctx);
1861
08e98fc6
ML
1862 blk_mq_tag_idle(hctx);
1863
f70ced09 1864 if (set->ops->exit_request)
d6296d39 1865 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 1866
93252632
OS
1867 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1868
08e98fc6
ML
1869 if (set->ops->exit_hctx)
1870 set->ops->exit_hctx(hctx, hctx_idx);
1871
6a83e74d 1872 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 1873 cleanup_srcu_struct(hctx->queue_rq_srcu);
6a83e74d 1874
9467f859 1875 blk_mq_remove_cpuhp(hctx);
f70ced09 1876 blk_free_flush_queue(hctx->fq);
88459642 1877 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1878}
1879
624dbe47
ML
1880static void blk_mq_exit_hw_queues(struct request_queue *q,
1881 struct blk_mq_tag_set *set, int nr_queue)
1882{
1883 struct blk_mq_hw_ctx *hctx;
1884 unsigned int i;
1885
1886 queue_for_each_hw_ctx(q, hctx, i) {
1887 if (i == nr_queue)
1888 break;
08e98fc6 1889 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1890 }
624dbe47
ML
1891}
1892
08e98fc6
ML
1893static int blk_mq_init_hctx(struct request_queue *q,
1894 struct blk_mq_tag_set *set,
1895 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1896{
08e98fc6
ML
1897 int node;
1898
1899 node = hctx->numa_node;
1900 if (node == NUMA_NO_NODE)
1901 node = hctx->numa_node = set->numa_node;
1902
9f993737 1903 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1904 spin_lock_init(&hctx->lock);
1905 INIT_LIST_HEAD(&hctx->dispatch);
1906 hctx->queue = q;
2404e607 1907 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1908
9467f859 1909 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1910
1911 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1912
1913 /*
08e98fc6
ML
1914 * Allocate space for all possible cpus to avoid allocation at
1915 * runtime
320ae51f 1916 */
08e98fc6
ML
1917 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1918 GFP_KERNEL, node);
1919 if (!hctx->ctxs)
1920 goto unregister_cpu_notifier;
320ae51f 1921
88459642
OS
1922 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1923 node))
08e98fc6 1924 goto free_ctxs;
320ae51f 1925
08e98fc6 1926 hctx->nr_ctx = 0;
320ae51f 1927
08e98fc6
ML
1928 if (set->ops->init_hctx &&
1929 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1930 goto free_bitmap;
320ae51f 1931
93252632
OS
1932 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1933 goto exit_hctx;
1934
f70ced09
ML
1935 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1936 if (!hctx->fq)
93252632 1937 goto sched_exit_hctx;
320ae51f 1938
f70ced09 1939 if (set->ops->init_request &&
d6296d39
CH
1940 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1941 node))
f70ced09 1942 goto free_fq;
320ae51f 1943
6a83e74d 1944 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 1945 init_srcu_struct(hctx->queue_rq_srcu);
6a83e74d 1946
9c1051aa
OS
1947 blk_mq_debugfs_register_hctx(q, hctx);
1948
08e98fc6 1949 return 0;
320ae51f 1950
f70ced09
ML
1951 free_fq:
1952 kfree(hctx->fq);
93252632
OS
1953 sched_exit_hctx:
1954 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
1955 exit_hctx:
1956 if (set->ops->exit_hctx)
1957 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1958 free_bitmap:
88459642 1959 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1960 free_ctxs:
1961 kfree(hctx->ctxs);
1962 unregister_cpu_notifier:
9467f859 1963 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
1964 return -1;
1965}
320ae51f 1966
320ae51f
JA
1967static void blk_mq_init_cpu_queues(struct request_queue *q,
1968 unsigned int nr_hw_queues)
1969{
1970 unsigned int i;
1971
1972 for_each_possible_cpu(i) {
1973 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1974 struct blk_mq_hw_ctx *hctx;
1975
320ae51f
JA
1976 __ctx->cpu = i;
1977 spin_lock_init(&__ctx->lock);
1978 INIT_LIST_HEAD(&__ctx->rq_list);
1979 __ctx->queue = q;
1980
4b855ad3
CH
1981 /* If the cpu isn't present, the cpu is mapped to first hctx */
1982 if (!cpu_present(i))
320ae51f
JA
1983 continue;
1984
7d7e0f90 1985 hctx = blk_mq_map_queue(q, i);
e4043dcf 1986
320ae51f
JA
1987 /*
1988 * Set local node, IFF we have more than one hw queue. If
1989 * not, we remain on the home node of the device
1990 */
1991 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1992 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
1993 }
1994}
1995
cc71a6f4
JA
1996static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1997{
1998 int ret = 0;
1999
2000 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2001 set->queue_depth, set->reserved_tags);
2002 if (!set->tags[hctx_idx])
2003 return false;
2004
2005 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2006 set->queue_depth);
2007 if (!ret)
2008 return true;
2009
2010 blk_mq_free_rq_map(set->tags[hctx_idx]);
2011 set->tags[hctx_idx] = NULL;
2012 return false;
2013}
2014
2015static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2016 unsigned int hctx_idx)
2017{
bd166ef1
JA
2018 if (set->tags[hctx_idx]) {
2019 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2020 blk_mq_free_rq_map(set->tags[hctx_idx]);
2021 set->tags[hctx_idx] = NULL;
2022 }
cc71a6f4
JA
2023}
2024
4b855ad3 2025static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2026{
d1b1cea1 2027 unsigned int i, hctx_idx;
320ae51f
JA
2028 struct blk_mq_hw_ctx *hctx;
2029 struct blk_mq_ctx *ctx;
2a34c087 2030 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2031
60de074b
AM
2032 /*
2033 * Avoid others reading imcomplete hctx->cpumask through sysfs
2034 */
2035 mutex_lock(&q->sysfs_lock);
2036
320ae51f 2037 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2038 cpumask_clear(hctx->cpumask);
320ae51f
JA
2039 hctx->nr_ctx = 0;
2040 }
2041
2042 /*
4b855ad3
CH
2043 * Map software to hardware queues.
2044 *
2045 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2046 */
4b855ad3 2047 for_each_present_cpu(i) {
d1b1cea1
GKB
2048 hctx_idx = q->mq_map[i];
2049 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2050 if (!set->tags[hctx_idx] &&
2051 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2052 /*
2053 * If tags initialization fail for some hctx,
2054 * that hctx won't be brought online. In this
2055 * case, remap the current ctx to hctx[0] which
2056 * is guaranteed to always have tags allocated
2057 */
cc71a6f4 2058 q->mq_map[i] = 0;
d1b1cea1
GKB
2059 }
2060
897bb0c7 2061 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2062 hctx = blk_mq_map_queue(q, i);
868f2f0b 2063
e4043dcf 2064 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2065 ctx->index_hw = hctx->nr_ctx;
2066 hctx->ctxs[hctx->nr_ctx++] = ctx;
2067 }
506e931f 2068
60de074b
AM
2069 mutex_unlock(&q->sysfs_lock);
2070
506e931f 2071 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2072 /*
a68aafa5
JA
2073 * If no software queues are mapped to this hardware queue,
2074 * disable it and free the request entries.
484b4061
JA
2075 */
2076 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2077 /* Never unmap queue 0. We need it as a
2078 * fallback in case of a new remap fails
2079 * allocation
2080 */
cc71a6f4
JA
2081 if (i && set->tags[i])
2082 blk_mq_free_map_and_requests(set, i);
2083
2a34c087 2084 hctx->tags = NULL;
484b4061
JA
2085 continue;
2086 }
2087
2a34c087
ML
2088 hctx->tags = set->tags[i];
2089 WARN_ON(!hctx->tags);
2090
889fa31f
CY
2091 /*
2092 * Set the map size to the number of mapped software queues.
2093 * This is more accurate and more efficient than looping
2094 * over all possibly mapped software queues.
2095 */
88459642 2096 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2097
484b4061
JA
2098 /*
2099 * Initialize batch roundrobin counts
2100 */
506e931f
JA
2101 hctx->next_cpu = cpumask_first(hctx->cpumask);
2102 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2103 }
320ae51f
JA
2104}
2105
8e8320c9
JA
2106/*
2107 * Caller needs to ensure that we're either frozen/quiesced, or that
2108 * the queue isn't live yet.
2109 */
2404e607 2110static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2111{
2112 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2113 int i;
2114
2404e607 2115 queue_for_each_hw_ctx(q, hctx, i) {
8e8320c9
JA
2116 if (shared) {
2117 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2118 atomic_inc(&q->shared_hctx_restart);
2404e607 2119 hctx->flags |= BLK_MQ_F_TAG_SHARED;
8e8320c9
JA
2120 } else {
2121 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2122 atomic_dec(&q->shared_hctx_restart);
2404e607 2123 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
8e8320c9 2124 }
2404e607
JM
2125 }
2126}
2127
8e8320c9
JA
2128static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2129 bool shared)
2404e607
JM
2130{
2131 struct request_queue *q;
0d2602ca 2132
705cda97
BVA
2133 lockdep_assert_held(&set->tag_list_lock);
2134
0d2602ca
JA
2135 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2136 blk_mq_freeze_queue(q);
2404e607 2137 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2138 blk_mq_unfreeze_queue(q);
2139 }
2140}
2141
2142static void blk_mq_del_queue_tag_set(struct request_queue *q)
2143{
2144 struct blk_mq_tag_set *set = q->tag_set;
2145
0d2602ca 2146 mutex_lock(&set->tag_list_lock);
705cda97
BVA
2147 list_del_rcu(&q->tag_set_list);
2148 INIT_LIST_HEAD(&q->tag_set_list);
2404e607
JM
2149 if (list_is_singular(&set->tag_list)) {
2150 /* just transitioned to unshared */
2151 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2152 /* update existing queue */
2153 blk_mq_update_tag_set_depth(set, false);
2154 }
0d2602ca 2155 mutex_unlock(&set->tag_list_lock);
705cda97
BVA
2156
2157 synchronize_rcu();
0d2602ca
JA
2158}
2159
2160static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2161 struct request_queue *q)
2162{
2163 q->tag_set = set;
2164
2165 mutex_lock(&set->tag_list_lock);
2404e607
JM
2166
2167 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2168 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2169 set->flags |= BLK_MQ_F_TAG_SHARED;
2170 /* update existing queue */
2171 blk_mq_update_tag_set_depth(set, true);
2172 }
2173 if (set->flags & BLK_MQ_F_TAG_SHARED)
2174 queue_set_hctx_shared(q, true);
705cda97 2175 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2176
0d2602ca
JA
2177 mutex_unlock(&set->tag_list_lock);
2178}
2179
e09aae7e
ML
2180/*
2181 * It is the actual release handler for mq, but we do it from
2182 * request queue's release handler for avoiding use-after-free
2183 * and headache because q->mq_kobj shouldn't have been introduced,
2184 * but we can't group ctx/kctx kobj without it.
2185 */
2186void blk_mq_release(struct request_queue *q)
2187{
2188 struct blk_mq_hw_ctx *hctx;
2189 unsigned int i;
2190
2191 /* hctx kobj stays in hctx */
c3b4afca
ML
2192 queue_for_each_hw_ctx(q, hctx, i) {
2193 if (!hctx)
2194 continue;
6c8b232e 2195 kobject_put(&hctx->kobj);
c3b4afca 2196 }
e09aae7e 2197
a723bab3
AM
2198 q->mq_map = NULL;
2199
e09aae7e
ML
2200 kfree(q->queue_hw_ctx);
2201
7ea5fe31
ML
2202 /*
2203 * release .mq_kobj and sw queue's kobject now because
2204 * both share lifetime with request queue.
2205 */
2206 blk_mq_sysfs_deinit(q);
2207
e09aae7e
ML
2208 free_percpu(q->queue_ctx);
2209}
2210
24d2f903 2211struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2212{
2213 struct request_queue *uninit_q, *q;
2214
2215 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2216 if (!uninit_q)
2217 return ERR_PTR(-ENOMEM);
2218
2219 q = blk_mq_init_allocated_queue(set, uninit_q);
2220 if (IS_ERR(q))
2221 blk_cleanup_queue(uninit_q);
2222
2223 return q;
2224}
2225EXPORT_SYMBOL(blk_mq_init_queue);
2226
07319678
BVA
2227static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2228{
2229 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2230
2231 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2232 __alignof__(struct blk_mq_hw_ctx)) !=
2233 sizeof(struct blk_mq_hw_ctx));
2234
2235 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2236 hw_ctx_size += sizeof(struct srcu_struct);
2237
2238 return hw_ctx_size;
2239}
2240
868f2f0b
KB
2241static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2242 struct request_queue *q)
320ae51f 2243{
868f2f0b
KB
2244 int i, j;
2245 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2246
868f2f0b 2247 blk_mq_sysfs_unregister(q);
24d2f903 2248 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2249 int node;
f14bbe77 2250
868f2f0b
KB
2251 if (hctxs[i])
2252 continue;
2253
2254 node = blk_mq_hw_queue_to_node(q->mq_map, i);
07319678 2255 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
cdef54dd 2256 GFP_KERNEL, node);
320ae51f 2257 if (!hctxs[i])
868f2f0b 2258 break;
320ae51f 2259
a86073e4 2260 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2261 node)) {
2262 kfree(hctxs[i]);
2263 hctxs[i] = NULL;
2264 break;
2265 }
e4043dcf 2266
0d2602ca 2267 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2268 hctxs[i]->numa_node = node;
320ae51f 2269 hctxs[i]->queue_num = i;
868f2f0b
KB
2270
2271 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2272 free_cpumask_var(hctxs[i]->cpumask);
2273 kfree(hctxs[i]);
2274 hctxs[i] = NULL;
2275 break;
2276 }
2277 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2278 }
868f2f0b
KB
2279 for (j = i; j < q->nr_hw_queues; j++) {
2280 struct blk_mq_hw_ctx *hctx = hctxs[j];
2281
2282 if (hctx) {
cc71a6f4
JA
2283 if (hctx->tags)
2284 blk_mq_free_map_and_requests(set, j);
868f2f0b 2285 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2286 kobject_put(&hctx->kobj);
868f2f0b
KB
2287 hctxs[j] = NULL;
2288
2289 }
2290 }
2291 q->nr_hw_queues = i;
2292 blk_mq_sysfs_register(q);
2293}
2294
2295struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2296 struct request_queue *q)
2297{
66841672
ML
2298 /* mark the queue as mq asap */
2299 q->mq_ops = set->ops;
2300
34dbad5d 2301 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2302 blk_mq_poll_stats_bkt,
2303 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2304 if (!q->poll_cb)
2305 goto err_exit;
2306
868f2f0b
KB
2307 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2308 if (!q->queue_ctx)
c7de5726 2309 goto err_exit;
868f2f0b 2310
737f98cf
ML
2311 /* init q->mq_kobj and sw queues' kobjects */
2312 blk_mq_sysfs_init(q);
2313
868f2f0b
KB
2314 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2315 GFP_KERNEL, set->numa_node);
2316 if (!q->queue_hw_ctx)
2317 goto err_percpu;
2318
bdd17e75 2319 q->mq_map = set->mq_map;
868f2f0b
KB
2320
2321 blk_mq_realloc_hw_ctxs(set, q);
2322 if (!q->nr_hw_queues)
2323 goto err_hctxs;
320ae51f 2324
287922eb 2325 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2326 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2327
2328 q->nr_queues = nr_cpu_ids;
320ae51f 2329
94eddfbe 2330 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2331
05f1dd53
JA
2332 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2333 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2334
1be036e9
CH
2335 q->sg_reserved_size = INT_MAX;
2336
2849450a 2337 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2338 INIT_LIST_HEAD(&q->requeue_list);
2339 spin_lock_init(&q->requeue_lock);
2340
254d259d 2341 blk_queue_make_request(q, blk_mq_make_request);
07068d5b 2342
eba71768
JA
2343 /*
2344 * Do this after blk_queue_make_request() overrides it...
2345 */
2346 q->nr_requests = set->queue_depth;
2347
64f1c21e
JA
2348 /*
2349 * Default to classic polling
2350 */
2351 q->poll_nsec = -1;
2352
24d2f903
CH
2353 if (set->ops->complete)
2354 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2355
24d2f903 2356 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2357 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2358 blk_mq_map_swqueue(q);
4593fdbe 2359
d3484991
JA
2360 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2361 int ret;
2362
2363 ret = blk_mq_sched_init(q);
2364 if (ret)
2365 return ERR_PTR(ret);
2366 }
2367
320ae51f 2368 return q;
18741986 2369
320ae51f 2370err_hctxs:
868f2f0b 2371 kfree(q->queue_hw_ctx);
320ae51f 2372err_percpu:
868f2f0b 2373 free_percpu(q->queue_ctx);
c7de5726
ML
2374err_exit:
2375 q->mq_ops = NULL;
320ae51f
JA
2376 return ERR_PTR(-ENOMEM);
2377}
b62c21b7 2378EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2379
2380void blk_mq_free_queue(struct request_queue *q)
2381{
624dbe47 2382 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2383
0d2602ca 2384 blk_mq_del_queue_tag_set(q);
624dbe47 2385 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2386}
320ae51f
JA
2387
2388/* Basically redo blk_mq_init_queue with queue frozen */
4b855ad3 2389static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f 2390{
4ecd4fef 2391 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2392
9c1051aa 2393 blk_mq_debugfs_unregister_hctxs(q);
67aec14c
JA
2394 blk_mq_sysfs_unregister(q);
2395
320ae51f
JA
2396 /*
2397 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2398 * we should change hctx numa_node according to new topology (this
2399 * involves free and re-allocate memory, worthy doing?)
2400 */
2401
4b855ad3 2402 blk_mq_map_swqueue(q);
320ae51f 2403
67aec14c 2404 blk_mq_sysfs_register(q);
9c1051aa 2405 blk_mq_debugfs_register_hctxs(q);
320ae51f
JA
2406}
2407
a5164405
JA
2408static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2409{
2410 int i;
2411
cc71a6f4
JA
2412 for (i = 0; i < set->nr_hw_queues; i++)
2413 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2414 goto out_unwind;
a5164405
JA
2415
2416 return 0;
2417
2418out_unwind:
2419 while (--i >= 0)
cc71a6f4 2420 blk_mq_free_rq_map(set->tags[i]);
a5164405 2421
a5164405
JA
2422 return -ENOMEM;
2423}
2424
2425/*
2426 * Allocate the request maps associated with this tag_set. Note that this
2427 * may reduce the depth asked for, if memory is tight. set->queue_depth
2428 * will be updated to reflect the allocated depth.
2429 */
2430static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2431{
2432 unsigned int depth;
2433 int err;
2434
2435 depth = set->queue_depth;
2436 do {
2437 err = __blk_mq_alloc_rq_maps(set);
2438 if (!err)
2439 break;
2440
2441 set->queue_depth >>= 1;
2442 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2443 err = -ENOMEM;
2444 break;
2445 }
2446 } while (set->queue_depth);
2447
2448 if (!set->queue_depth || err) {
2449 pr_err("blk-mq: failed to allocate request map\n");
2450 return -ENOMEM;
2451 }
2452
2453 if (depth != set->queue_depth)
2454 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2455 depth, set->queue_depth);
2456
2457 return 0;
2458}
2459
ebe8bddb
OS
2460static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2461{
2462 if (set->ops->map_queues)
2463 return set->ops->map_queues(set);
2464 else
2465 return blk_mq_map_queues(set);
2466}
2467
a4391c64
JA
2468/*
2469 * Alloc a tag set to be associated with one or more request queues.
2470 * May fail with EINVAL for various error conditions. May adjust the
2471 * requested depth down, if if it too large. In that case, the set
2472 * value will be stored in set->queue_depth.
2473 */
24d2f903
CH
2474int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2475{
da695ba2
CH
2476 int ret;
2477
205fb5f5
BVA
2478 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2479
24d2f903
CH
2480 if (!set->nr_hw_queues)
2481 return -EINVAL;
a4391c64 2482 if (!set->queue_depth)
24d2f903
CH
2483 return -EINVAL;
2484 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2485 return -EINVAL;
2486
7d7e0f90 2487 if (!set->ops->queue_rq)
24d2f903
CH
2488 return -EINVAL;
2489
a4391c64
JA
2490 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2491 pr_info("blk-mq: reduced tag depth to %u\n",
2492 BLK_MQ_MAX_DEPTH);
2493 set->queue_depth = BLK_MQ_MAX_DEPTH;
2494 }
24d2f903 2495
6637fadf
SL
2496 /*
2497 * If a crashdump is active, then we are potentially in a very
2498 * memory constrained environment. Limit us to 1 queue and
2499 * 64 tags to prevent using too much memory.
2500 */
2501 if (is_kdump_kernel()) {
2502 set->nr_hw_queues = 1;
2503 set->queue_depth = min(64U, set->queue_depth);
2504 }
868f2f0b
KB
2505 /*
2506 * There is no use for more h/w queues than cpus.
2507 */
2508 if (set->nr_hw_queues > nr_cpu_ids)
2509 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2510
868f2f0b 2511 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2512 GFP_KERNEL, set->numa_node);
2513 if (!set->tags)
a5164405 2514 return -ENOMEM;
24d2f903 2515
da695ba2
CH
2516 ret = -ENOMEM;
2517 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2518 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2519 if (!set->mq_map)
2520 goto out_free_tags;
2521
ebe8bddb 2522 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2523 if (ret)
2524 goto out_free_mq_map;
2525
2526 ret = blk_mq_alloc_rq_maps(set);
2527 if (ret)
bdd17e75 2528 goto out_free_mq_map;
24d2f903 2529
0d2602ca
JA
2530 mutex_init(&set->tag_list_lock);
2531 INIT_LIST_HEAD(&set->tag_list);
2532
24d2f903 2533 return 0;
bdd17e75
CH
2534
2535out_free_mq_map:
2536 kfree(set->mq_map);
2537 set->mq_map = NULL;
2538out_free_tags:
5676e7b6
RE
2539 kfree(set->tags);
2540 set->tags = NULL;
da695ba2 2541 return ret;
24d2f903
CH
2542}
2543EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2544
2545void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2546{
2547 int i;
2548
cc71a6f4
JA
2549 for (i = 0; i < nr_cpu_ids; i++)
2550 blk_mq_free_map_and_requests(set, i);
484b4061 2551
bdd17e75
CH
2552 kfree(set->mq_map);
2553 set->mq_map = NULL;
2554
981bd189 2555 kfree(set->tags);
5676e7b6 2556 set->tags = NULL;
24d2f903
CH
2557}
2558EXPORT_SYMBOL(blk_mq_free_tag_set);
2559
e3a2b3f9
JA
2560int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2561{
2562 struct blk_mq_tag_set *set = q->tag_set;
2563 struct blk_mq_hw_ctx *hctx;
2564 int i, ret;
2565
bd166ef1 2566 if (!set)
e3a2b3f9
JA
2567 return -EINVAL;
2568
70f36b60 2569 blk_mq_freeze_queue(q);
70f36b60 2570
e3a2b3f9
JA
2571 ret = 0;
2572 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2573 if (!hctx->tags)
2574 continue;
bd166ef1
JA
2575 /*
2576 * If we're using an MQ scheduler, just update the scheduler
2577 * queue depth. This is similar to what the old code would do.
2578 */
70f36b60
JA
2579 if (!hctx->sched_tags) {
2580 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2581 min(nr, set->queue_depth),
2582 false);
2583 } else {
2584 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2585 nr, true);
2586 }
e3a2b3f9
JA
2587 if (ret)
2588 break;
2589 }
2590
2591 if (!ret)
2592 q->nr_requests = nr;
2593
70f36b60 2594 blk_mq_unfreeze_queue(q);
70f36b60 2595
e3a2b3f9
JA
2596 return ret;
2597}
2598
e4dc2b32
KB
2599static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2600 int nr_hw_queues)
868f2f0b
KB
2601{
2602 struct request_queue *q;
2603
705cda97
BVA
2604 lockdep_assert_held(&set->tag_list_lock);
2605
868f2f0b
KB
2606 if (nr_hw_queues > nr_cpu_ids)
2607 nr_hw_queues = nr_cpu_ids;
2608 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2609 return;
2610
2611 list_for_each_entry(q, &set->tag_list, tag_set_list)
2612 blk_mq_freeze_queue(q);
2613
2614 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2615 blk_mq_update_queue_map(set);
868f2f0b
KB
2616 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2617 blk_mq_realloc_hw_ctxs(set, q);
4b855ad3 2618 blk_mq_queue_reinit(q);
868f2f0b
KB
2619 }
2620
2621 list_for_each_entry(q, &set->tag_list, tag_set_list)
2622 blk_mq_unfreeze_queue(q);
2623}
e4dc2b32
KB
2624
2625void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2626{
2627 mutex_lock(&set->tag_list_lock);
2628 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2629 mutex_unlock(&set->tag_list_lock);
2630}
868f2f0b
KB
2631EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2632
34dbad5d
OS
2633/* Enable polling stats and return whether they were already enabled. */
2634static bool blk_poll_stats_enable(struct request_queue *q)
2635{
2636 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2637 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2638 return true;
2639 blk_stat_add_callback(q, q->poll_cb);
2640 return false;
2641}
2642
2643static void blk_mq_poll_stats_start(struct request_queue *q)
2644{
2645 /*
2646 * We don't arm the callback if polling stats are not enabled or the
2647 * callback is already active.
2648 */
2649 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2650 blk_stat_is_active(q->poll_cb))
2651 return;
2652
2653 blk_stat_activate_msecs(q->poll_cb, 100);
2654}
2655
2656static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2657{
2658 struct request_queue *q = cb->data;
720b8ccc 2659 int bucket;
34dbad5d 2660
720b8ccc
SB
2661 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2662 if (cb->stat[bucket].nr_samples)
2663 q->poll_stat[bucket] = cb->stat[bucket];
2664 }
34dbad5d
OS
2665}
2666
64f1c21e
JA
2667static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2668 struct blk_mq_hw_ctx *hctx,
2669 struct request *rq)
2670{
64f1c21e 2671 unsigned long ret = 0;
720b8ccc 2672 int bucket;
64f1c21e
JA
2673
2674 /*
2675 * If stats collection isn't on, don't sleep but turn it on for
2676 * future users
2677 */
34dbad5d 2678 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2679 return 0;
2680
64f1c21e
JA
2681 /*
2682 * As an optimistic guess, use half of the mean service time
2683 * for this type of request. We can (and should) make this smarter.
2684 * For instance, if the completion latencies are tight, we can
2685 * get closer than just half the mean. This is especially
2686 * important on devices where the completion latencies are longer
720b8ccc
SB
2687 * than ~10 usec. We do use the stats for the relevant IO size
2688 * if available which does lead to better estimates.
64f1c21e 2689 */
720b8ccc
SB
2690 bucket = blk_mq_poll_stats_bkt(rq);
2691 if (bucket < 0)
2692 return ret;
2693
2694 if (q->poll_stat[bucket].nr_samples)
2695 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
2696
2697 return ret;
2698}
2699
06426adf 2700static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2701 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2702 struct request *rq)
2703{
2704 struct hrtimer_sleeper hs;
2705 enum hrtimer_mode mode;
64f1c21e 2706 unsigned int nsecs;
06426adf
JA
2707 ktime_t kt;
2708
64f1c21e
JA
2709 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2710 return false;
2711
2712 /*
2713 * poll_nsec can be:
2714 *
2715 * -1: don't ever hybrid sleep
2716 * 0: use half of prev avg
2717 * >0: use this specific value
2718 */
2719 if (q->poll_nsec == -1)
2720 return false;
2721 else if (q->poll_nsec > 0)
2722 nsecs = q->poll_nsec;
2723 else
2724 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2725
2726 if (!nsecs)
06426adf
JA
2727 return false;
2728
2729 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2730
2731 /*
2732 * This will be replaced with the stats tracking code, using
2733 * 'avg_completion_time / 2' as the pre-sleep target.
2734 */
8b0e1953 2735 kt = nsecs;
06426adf
JA
2736
2737 mode = HRTIMER_MODE_REL;
2738 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2739 hrtimer_set_expires(&hs.timer, kt);
2740
2741 hrtimer_init_sleeper(&hs, current);
2742 do {
2743 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2744 break;
2745 set_current_state(TASK_UNINTERRUPTIBLE);
2746 hrtimer_start_expires(&hs.timer, mode);
2747 if (hs.task)
2748 io_schedule();
2749 hrtimer_cancel(&hs.timer);
2750 mode = HRTIMER_MODE_ABS;
2751 } while (hs.task && !signal_pending(current));
2752
2753 __set_current_state(TASK_RUNNING);
2754 destroy_hrtimer_on_stack(&hs.timer);
2755 return true;
2756}
2757
bbd7bb70
JA
2758static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2759{
2760 struct request_queue *q = hctx->queue;
2761 long state;
2762
06426adf
JA
2763 /*
2764 * If we sleep, have the caller restart the poll loop to reset
2765 * the state. Like for the other success return cases, the
2766 * caller is responsible for checking if the IO completed. If
2767 * the IO isn't complete, we'll get called again and will go
2768 * straight to the busy poll loop.
2769 */
64f1c21e 2770 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2771 return true;
2772
bbd7bb70
JA
2773 hctx->poll_considered++;
2774
2775 state = current->state;
2776 while (!need_resched()) {
2777 int ret;
2778
2779 hctx->poll_invoked++;
2780
2781 ret = q->mq_ops->poll(hctx, rq->tag);
2782 if (ret > 0) {
2783 hctx->poll_success++;
2784 set_current_state(TASK_RUNNING);
2785 return true;
2786 }
2787
2788 if (signal_pending_state(state, current))
2789 set_current_state(TASK_RUNNING);
2790
2791 if (current->state == TASK_RUNNING)
2792 return true;
2793 if (ret < 0)
2794 break;
2795 cpu_relax();
2796 }
2797
2798 return false;
2799}
2800
2801bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2802{
2803 struct blk_mq_hw_ctx *hctx;
2804 struct blk_plug *plug;
2805 struct request *rq;
2806
2807 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2808 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2809 return false;
2810
2811 plug = current->plug;
2812 if (plug)
2813 blk_flush_plug_list(plug, false);
2814
2815 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2816 if (!blk_qc_t_is_internal(cookie))
2817 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3a07bb1d 2818 else {
bd166ef1 2819 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3a07bb1d
JA
2820 /*
2821 * With scheduling, if the request has completed, we'll
2822 * get a NULL return here, as we clear the sched tag when
2823 * that happens. The request still remains valid, like always,
2824 * so we should be safe with just the NULL check.
2825 */
2826 if (!rq)
2827 return false;
2828 }
bbd7bb70
JA
2829
2830 return __blk_mq_poll(hctx, rq);
2831}
2832EXPORT_SYMBOL_GPL(blk_mq_poll);
2833
320ae51f
JA
2834static int __init blk_mq_init(void)
2835{
9467f859
TG
2836 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2837 blk_mq_hctx_notify_dead);
320ae51f
JA
2838 return 0;
2839}
2840subsys_initcall(blk_mq_init);