]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - block/blk-mq.c
blk-mq: dont assume rq->errors is set when returning an error from ->queue_rq
[thirdparty/kernel/stable.git] / block / blk-mq.c
CommitLineData
320ae51f
JA
1#include <linux/kernel.h>
2#include <linux/module.h>
3#include <linux/backing-dev.h>
4#include <linux/bio.h>
5#include <linux/blkdev.h>
6#include <linux/mm.h>
7#include <linux/init.h>
8#include <linux/slab.h>
9#include <linux/workqueue.h>
10#include <linux/smp.h>
11#include <linux/llist.h>
12#include <linux/list_sort.h>
13#include <linux/cpu.h>
14#include <linux/cache.h>
15#include <linux/sched/sysctl.h>
16#include <linux/delay.h>
17
18#include <trace/events/block.h>
19
20#include <linux/blk-mq.h>
21#include "blk.h"
22#include "blk-mq.h"
23#include "blk-mq-tag.h"
24
25static DEFINE_MUTEX(all_q_mutex);
26static LIST_HEAD(all_q_list);
27
28static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
320ae51f
JA
30static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
32{
33 return per_cpu_ptr(q->queue_ctx, cpu);
34}
35
36/*
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
41 */
42static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43{
44 return __blk_mq_get_ctx(q, get_cpu());
45}
46
47static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48{
49 put_cpu();
50}
51
52/*
53 * Check if any of the ctx's have pending work in this hardware queue
54 */
55static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56{
57 unsigned int i;
58
59 for (i = 0; i < hctx->nr_ctx_map; i++)
60 if (hctx->ctx_map[i])
61 return true;
62
63 return false;
64}
65
66/*
67 * Mark this ctx as having pending work in this hardware queue
68 */
69static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 struct blk_mq_ctx *ctx)
71{
72 if (!test_bit(ctx->index_hw, hctx->ctx_map))
73 set_bit(ctx->index_hw, hctx->ctx_map);
74}
75
76static struct request *blk_mq_alloc_rq(struct blk_mq_hw_ctx *hctx, gfp_t gfp,
77 bool reserved)
78{
79 struct request *rq;
80 unsigned int tag;
81
82 tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
83 if (tag != BLK_MQ_TAG_FAIL) {
84 rq = hctx->rqs[tag];
85 rq->tag = tag;
86
87 return rq;
88 }
89
90 return NULL;
91}
92
93static int blk_mq_queue_enter(struct request_queue *q)
94{
95 int ret;
96
97 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
98 smp_wmb();
99 /* we have problems to freeze the queue if it's initializing */
100 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
101 return 0;
102
103 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
104
105 spin_lock_irq(q->queue_lock);
106 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
43a5e4e2
ML
107 !blk_queue_bypass(q) || blk_queue_dying(q),
108 *q->queue_lock);
320ae51f 109 /* inc usage with lock hold to avoid freeze_queue runs here */
43a5e4e2 110 if (!ret && !blk_queue_dying(q))
320ae51f 111 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
43a5e4e2
ML
112 else if (blk_queue_dying(q))
113 ret = -ENODEV;
320ae51f
JA
114 spin_unlock_irq(q->queue_lock);
115
116 return ret;
117}
118
119static void blk_mq_queue_exit(struct request_queue *q)
120{
121 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
122}
123
43a5e4e2
ML
124static void __blk_mq_drain_queue(struct request_queue *q)
125{
126 while (true) {
127 s64 count;
128
129 spin_lock_irq(q->queue_lock);
130 count = percpu_counter_sum(&q->mq_usage_counter);
131 spin_unlock_irq(q->queue_lock);
132
133 if (count == 0)
134 break;
135 blk_mq_run_queues(q, false);
136 msleep(10);
137 }
138}
139
320ae51f
JA
140/*
141 * Guarantee no request is in use, so we can change any data structure of
142 * the queue afterward.
143 */
144static void blk_mq_freeze_queue(struct request_queue *q)
145{
146 bool drain;
147
148 spin_lock_irq(q->queue_lock);
149 drain = !q->bypass_depth++;
150 queue_flag_set(QUEUE_FLAG_BYPASS, q);
151 spin_unlock_irq(q->queue_lock);
152
43a5e4e2
ML
153 if (drain)
154 __blk_mq_drain_queue(q);
155}
320ae51f 156
43a5e4e2
ML
157void blk_mq_drain_queue(struct request_queue *q)
158{
159 __blk_mq_drain_queue(q);
320ae51f
JA
160}
161
162static void blk_mq_unfreeze_queue(struct request_queue *q)
163{
164 bool wake = false;
165
166 spin_lock_irq(q->queue_lock);
167 if (!--q->bypass_depth) {
168 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
169 wake = true;
170 }
171 WARN_ON_ONCE(q->bypass_depth < 0);
172 spin_unlock_irq(q->queue_lock);
173 if (wake)
174 wake_up_all(&q->mq_freeze_wq);
175}
176
177bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
178{
179 return blk_mq_has_free_tags(hctx->tags);
180}
181EXPORT_SYMBOL(blk_mq_can_queue);
182
94eddfbe
JA
183static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
184 struct request *rq, unsigned int rw_flags)
320ae51f 185{
94eddfbe
JA
186 if (blk_queue_io_stat(q))
187 rw_flags |= REQ_IO_STAT;
188
320ae51f
JA
189 rq->mq_ctx = ctx;
190 rq->cmd_flags = rw_flags;
0fec08b4
ML
191 rq->start_time = jiffies;
192 set_start_time_ns(rq);
320ae51f
JA
193 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
194}
195
196static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
18741986 197 gfp_t gfp, bool reserved)
320ae51f 198{
18741986 199 return blk_mq_alloc_rq(hctx, gfp, reserved);
320ae51f
JA
200}
201
202static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
203 int rw, gfp_t gfp,
204 bool reserved)
205{
206 struct request *rq;
207
208 do {
209 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
210 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
211
18741986 212 rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved);
320ae51f 213 if (rq) {
94eddfbe 214 blk_mq_rq_ctx_init(q, ctx, rq, rw);
320ae51f 215 break;
959a35f1 216 }
320ae51f
JA
217
218 blk_mq_put_ctx(ctx);
959a35f1
JM
219 if (!(gfp & __GFP_WAIT))
220 break;
221
320ae51f
JA
222 __blk_mq_run_hw_queue(hctx);
223 blk_mq_wait_for_tags(hctx->tags);
224 } while (1);
225
226 return rq;
227}
228
18741986 229struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
320ae51f
JA
230{
231 struct request *rq;
232
233 if (blk_mq_queue_enter(q))
234 return NULL;
235
18741986 236 rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
959a35f1
JM
237 if (rq)
238 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
239 return rq;
240}
241
242struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
243 gfp_t gfp)
244{
245 struct request *rq;
246
247 if (blk_mq_queue_enter(q))
248 return NULL;
249
250 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
959a35f1
JM
251 if (rq)
252 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
253 return rq;
254}
255EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
256
257/*
258 * Re-init and set pdu, if we have it
259 */
18741986 260void blk_mq_rq_init(struct blk_mq_hw_ctx *hctx, struct request *rq)
320ae51f
JA
261{
262 blk_rq_init(hctx->queue, rq);
263
264 if (hctx->cmd_size)
265 rq->special = blk_mq_rq_to_pdu(rq);
266}
267
268static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
269 struct blk_mq_ctx *ctx, struct request *rq)
270{
271 const int tag = rq->tag;
272 struct request_queue *q = rq->q;
273
274 blk_mq_rq_init(hctx, rq);
275 blk_mq_put_tag(hctx->tags, tag);
276
277 blk_mq_queue_exit(q);
278}
279
280void blk_mq_free_request(struct request *rq)
281{
282 struct blk_mq_ctx *ctx = rq->mq_ctx;
283 struct blk_mq_hw_ctx *hctx;
284 struct request_queue *q = rq->q;
285
286 ctx->rq_completed[rq_is_sync(rq)]++;
287
288 hctx = q->mq_ops->map_queue(q, ctx->cpu);
289 __blk_mq_free_request(hctx, ctx, rq);
290}
291
292static void blk_mq_bio_endio(struct request *rq, struct bio *bio, int error)
293{
294 if (error)
295 clear_bit(BIO_UPTODATE, &bio->bi_flags);
296 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
297 error = -EIO;
298
299 if (unlikely(rq->cmd_flags & REQ_QUIET))
300 set_bit(BIO_QUIET, &bio->bi_flags);
301
302 /* don't actually finish bio if it's part of flush sequence */
303 if (!(rq->cmd_flags & REQ_FLUSH_SEQ))
304 bio_endio(bio, error);
305}
306
30a91cb4 307void blk_mq_end_io(struct request *rq, int error)
320ae51f
JA
308{
309 struct bio *bio = rq->bio;
310 unsigned int bytes = 0;
311
312 trace_block_rq_complete(rq->q, rq);
313
314 while (bio) {
315 struct bio *next = bio->bi_next;
316
317 bio->bi_next = NULL;
4f024f37 318 bytes += bio->bi_iter.bi_size;
320ae51f
JA
319 blk_mq_bio_endio(rq, bio, error);
320 bio = next;
321 }
322
323 blk_account_io_completion(rq, bytes);
324
0d11e6ac
ML
325 blk_account_io_done(rq);
326
320ae51f
JA
327 if (rq->end_io)
328 rq->end_io(rq, error);
329 else
330 blk_mq_free_request(rq);
320ae51f 331}
30a91cb4 332EXPORT_SYMBOL(blk_mq_end_io);
320ae51f 333
30a91cb4 334static void __blk_mq_complete_request_remote(void *data)
320ae51f 335{
3d6efbf6 336 struct request *rq = data;
320ae51f 337
30a91cb4 338 rq->q->softirq_done_fn(rq);
320ae51f 339}
320ae51f 340
30a91cb4 341void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
342{
343 struct blk_mq_ctx *ctx = rq->mq_ctx;
344 int cpu;
345
30a91cb4
CH
346 if (!ctx->ipi_redirect) {
347 rq->q->softirq_done_fn(rq);
348 return;
349 }
320ae51f
JA
350
351 cpu = get_cpu();
3d6efbf6 352 if (cpu != ctx->cpu && cpu_online(ctx->cpu)) {
30a91cb4 353 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
354 rq->csd.info = rq;
355 rq->csd.flags = 0;
356 __smp_call_function_single(ctx->cpu, &rq->csd, 0);
357 } else {
30a91cb4 358 rq->q->softirq_done_fn(rq);
3d6efbf6 359 }
320ae51f
JA
360 put_cpu();
361}
30a91cb4
CH
362
363/**
364 * blk_mq_complete_request - end I/O on a request
365 * @rq: the request being processed
366 *
367 * Description:
368 * Ends all I/O on a request. It does not handle partial completions.
369 * The actual completion happens out-of-order, through a IPI handler.
370 **/
371void blk_mq_complete_request(struct request *rq)
372{
373 if (unlikely(blk_should_fake_timeout(rq->q)))
374 return;
375 if (!blk_mark_rq_complete(rq))
376 __blk_mq_complete_request(rq);
377}
378EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f
JA
379
380static void blk_mq_start_request(struct request *rq)
381{
382 struct request_queue *q = rq->q;
383
384 trace_block_rq_issue(q, rq);
385
386 /*
387 * Just mark start time and set the started bit. Due to memory
388 * ordering, we know we'll see the correct deadline as long as
389 * REQ_ATOMIC_STARTED is seen.
390 */
391 rq->deadline = jiffies + q->rq_timeout;
392 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
393}
394
395static void blk_mq_requeue_request(struct request *rq)
396{
397 struct request_queue *q = rq->q;
398
399 trace_block_rq_requeue(q, rq);
400 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
401}
402
403struct blk_mq_timeout_data {
404 struct blk_mq_hw_ctx *hctx;
405 unsigned long *next;
406 unsigned int *next_set;
407};
408
409static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
410{
411 struct blk_mq_timeout_data *data = __data;
412 struct blk_mq_hw_ctx *hctx = data->hctx;
413 unsigned int tag;
414
415 /* It may not be in flight yet (this is where
416 * the REQ_ATOMIC_STARTED flag comes in). The requests are
417 * statically allocated, so we know it's always safe to access the
418 * memory associated with a bit offset into ->rqs[].
419 */
420 tag = 0;
421 do {
422 struct request *rq;
423
424 tag = find_next_zero_bit(free_tags, hctx->queue_depth, tag);
425 if (tag >= hctx->queue_depth)
426 break;
427
428 rq = hctx->rqs[tag++];
429
430 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
431 continue;
432
433 blk_rq_check_expired(rq, data->next, data->next_set);
434 } while (1);
435}
436
437static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
438 unsigned long *next,
439 unsigned int *next_set)
440{
441 struct blk_mq_timeout_data data = {
442 .hctx = hctx,
443 .next = next,
444 .next_set = next_set,
445 };
446
447 /*
448 * Ask the tagging code to iterate busy requests, so we can
449 * check them for timeout.
450 */
451 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
452}
453
454static void blk_mq_rq_timer(unsigned long data)
455{
456 struct request_queue *q = (struct request_queue *) data;
457 struct blk_mq_hw_ctx *hctx;
458 unsigned long next = 0;
459 int i, next_set = 0;
460
461 queue_for_each_hw_ctx(q, hctx, i)
462 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
463
464 if (next_set)
465 mod_timer(&q->timeout, round_jiffies_up(next));
466}
467
468/*
469 * Reverse check our software queue for entries that we could potentially
470 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
471 * too much time checking for merges.
472 */
473static bool blk_mq_attempt_merge(struct request_queue *q,
474 struct blk_mq_ctx *ctx, struct bio *bio)
475{
476 struct request *rq;
477 int checked = 8;
478
479 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
480 int el_ret;
481
482 if (!checked--)
483 break;
484
485 if (!blk_rq_merge_ok(rq, bio))
486 continue;
487
488 el_ret = blk_try_merge(rq, bio);
489 if (el_ret == ELEVATOR_BACK_MERGE) {
490 if (bio_attempt_back_merge(q, rq, bio)) {
491 ctx->rq_merged++;
492 return true;
493 }
494 break;
495 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
496 if (bio_attempt_front_merge(q, rq, bio)) {
497 ctx->rq_merged++;
498 return true;
499 }
500 break;
501 }
502 }
503
504 return false;
505}
506
507void blk_mq_add_timer(struct request *rq)
508{
509 __blk_add_timer(rq, NULL);
510}
511
512/*
513 * Run this hardware queue, pulling any software queues mapped to it in.
514 * Note that this function currently has various problems around ordering
515 * of IO. In particular, we'd like FIFO behaviour on handling existing
516 * items on the hctx->dispatch list. Ignore that for now.
517 */
518static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
519{
520 struct request_queue *q = hctx->queue;
521 struct blk_mq_ctx *ctx;
522 struct request *rq;
523 LIST_HEAD(rq_list);
524 int bit, queued;
525
526 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
527 return;
528
529 hctx->run++;
530
531 /*
532 * Touch any software queue that has pending entries.
533 */
534 for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
535 clear_bit(bit, hctx->ctx_map);
536 ctx = hctx->ctxs[bit];
537 BUG_ON(bit != ctx->index_hw);
538
539 spin_lock(&ctx->lock);
540 list_splice_tail_init(&ctx->rq_list, &rq_list);
541 spin_unlock(&ctx->lock);
542 }
543
544 /*
545 * If we have previous entries on our dispatch list, grab them
546 * and stuff them at the front for more fair dispatch.
547 */
548 if (!list_empty_careful(&hctx->dispatch)) {
549 spin_lock(&hctx->lock);
550 if (!list_empty(&hctx->dispatch))
551 list_splice_init(&hctx->dispatch, &rq_list);
552 spin_unlock(&hctx->lock);
553 }
554
555 /*
556 * Delete and return all entries from our dispatch list
557 */
558 queued = 0;
559
560 /*
561 * Now process all the entries, sending them to the driver.
562 */
563 while (!list_empty(&rq_list)) {
564 int ret;
565
566 rq = list_first_entry(&rq_list, struct request, queuelist);
567 list_del_init(&rq->queuelist);
568 blk_mq_start_request(rq);
569
4f7f418c
CH
570 if (q->dma_drain_size && blk_rq_bytes(rq)) {
571 /*
572 * make sure space for the drain appears we
573 * know we can do this because max_hw_segments
574 * has been adjusted to be one fewer than the
575 * device can handle
576 */
577 rq->nr_phys_segments++;
578 }
579
320ae51f
JA
580 /*
581 * Last request in the series. Flag it as such, this
582 * enables drivers to know when IO should be kicked off,
583 * if they don't do it on a per-request basis.
584 *
585 * Note: the flag isn't the only condition drivers
586 * should do kick off. If drive is busy, the last
587 * request might not have the bit set.
588 */
589 if (list_empty(&rq_list))
590 rq->cmd_flags |= REQ_END;
591
592 ret = q->mq_ops->queue_rq(hctx, rq);
593 switch (ret) {
594 case BLK_MQ_RQ_QUEUE_OK:
595 queued++;
596 continue;
597 case BLK_MQ_RQ_QUEUE_BUSY:
598 /*
599 * FIXME: we should have a mechanism to stop the queue
600 * like blk_stop_queue, otherwise we will waste cpu
601 * time
602 */
603 list_add(&rq->queuelist, &rq_list);
604 blk_mq_requeue_request(rq);
605 break;
606 default:
607 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 608 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 609 rq->errors = -EIO;
320ae51f
JA
610 blk_mq_end_io(rq, rq->errors);
611 break;
612 }
613
614 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
615 break;
616 }
617
618 if (!queued)
619 hctx->dispatched[0]++;
620 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
621 hctx->dispatched[ilog2(queued) + 1]++;
622
623 /*
624 * Any items that need requeuing? Stuff them into hctx->dispatch,
625 * that is where we will continue on next queue run.
626 */
627 if (!list_empty(&rq_list)) {
628 spin_lock(&hctx->lock);
629 list_splice(&rq_list, &hctx->dispatch);
630 spin_unlock(&hctx->lock);
631 }
632}
633
634void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
635{
636 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
637 return;
638
639 if (!async)
640 __blk_mq_run_hw_queue(hctx);
641 else {
642 struct request_queue *q = hctx->queue;
643
644 kblockd_schedule_delayed_work(q, &hctx->delayed_work, 0);
645 }
646}
647
648void blk_mq_run_queues(struct request_queue *q, bool async)
649{
650 struct blk_mq_hw_ctx *hctx;
651 int i;
652
653 queue_for_each_hw_ctx(q, hctx, i) {
654 if ((!blk_mq_hctx_has_pending(hctx) &&
655 list_empty_careful(&hctx->dispatch)) ||
656 test_bit(BLK_MQ_S_STOPPED, &hctx->flags))
657 continue;
658
659 blk_mq_run_hw_queue(hctx, async);
660 }
661}
662EXPORT_SYMBOL(blk_mq_run_queues);
663
664void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
665{
666 cancel_delayed_work(&hctx->delayed_work);
667 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
668}
669EXPORT_SYMBOL(blk_mq_stop_hw_queue);
670
280d45f6
CH
671void blk_mq_stop_hw_queues(struct request_queue *q)
672{
673 struct blk_mq_hw_ctx *hctx;
674 int i;
675
676 queue_for_each_hw_ctx(q, hctx, i)
677 blk_mq_stop_hw_queue(hctx);
678}
679EXPORT_SYMBOL(blk_mq_stop_hw_queues);
680
320ae51f
JA
681void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
682{
683 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
684 __blk_mq_run_hw_queue(hctx);
685}
686EXPORT_SYMBOL(blk_mq_start_hw_queue);
687
688void blk_mq_start_stopped_hw_queues(struct request_queue *q)
689{
690 struct blk_mq_hw_ctx *hctx;
691 int i;
692
693 queue_for_each_hw_ctx(q, hctx, i) {
694 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
695 continue;
696
697 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
698 blk_mq_run_hw_queue(hctx, true);
699 }
700}
701EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
702
703static void blk_mq_work_fn(struct work_struct *work)
704{
705 struct blk_mq_hw_ctx *hctx;
706
707 hctx = container_of(work, struct blk_mq_hw_ctx, delayed_work.work);
708 __blk_mq_run_hw_queue(hctx);
709}
710
711static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 712 struct request *rq, bool at_head)
320ae51f
JA
713{
714 struct blk_mq_ctx *ctx = rq->mq_ctx;
715
01b983c9
JA
716 trace_block_rq_insert(hctx->queue, rq);
717
72a0a36e
CH
718 if (at_head)
719 list_add(&rq->queuelist, &ctx->rq_list);
720 else
721 list_add_tail(&rq->queuelist, &ctx->rq_list);
320ae51f
JA
722 blk_mq_hctx_mark_pending(hctx, ctx);
723
724 /*
725 * We do this early, to ensure we are on the right CPU.
726 */
727 blk_mq_add_timer(rq);
728}
729
730void blk_mq_insert_request(struct request_queue *q, struct request *rq,
72a0a36e 731 bool at_head, bool run_queue)
320ae51f
JA
732{
733 struct blk_mq_hw_ctx *hctx;
734 struct blk_mq_ctx *ctx, *current_ctx;
735
736 ctx = rq->mq_ctx;
737 hctx = q->mq_ops->map_queue(q, ctx->cpu);
738
739 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) {
740 blk_insert_flush(rq);
741 } else {
742 current_ctx = blk_mq_get_ctx(q);
743
744 if (!cpu_online(ctx->cpu)) {
745 ctx = current_ctx;
746 hctx = q->mq_ops->map_queue(q, ctx->cpu);
747 rq->mq_ctx = ctx;
748 }
749 spin_lock(&ctx->lock);
72a0a36e 750 __blk_mq_insert_request(hctx, rq, at_head);
320ae51f
JA
751 spin_unlock(&ctx->lock);
752
753 blk_mq_put_ctx(current_ctx);
754 }
755
756 if (run_queue)
757 __blk_mq_run_hw_queue(hctx);
758}
759EXPORT_SYMBOL(blk_mq_insert_request);
760
761/*
762 * This is a special version of blk_mq_insert_request to bypass FLUSH request
763 * check. Should only be used internally.
764 */
765void blk_mq_run_request(struct request *rq, bool run_queue, bool async)
766{
767 struct request_queue *q = rq->q;
768 struct blk_mq_hw_ctx *hctx;
769 struct blk_mq_ctx *ctx, *current_ctx;
770
771 current_ctx = blk_mq_get_ctx(q);
772
773 ctx = rq->mq_ctx;
774 if (!cpu_online(ctx->cpu)) {
775 ctx = current_ctx;
776 rq->mq_ctx = ctx;
777 }
778 hctx = q->mq_ops->map_queue(q, ctx->cpu);
779
780 /* ctx->cpu might be offline */
781 spin_lock(&ctx->lock);
72a0a36e 782 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
783 spin_unlock(&ctx->lock);
784
785 blk_mq_put_ctx(current_ctx);
786
787 if (run_queue)
788 blk_mq_run_hw_queue(hctx, async);
789}
790
791static void blk_mq_insert_requests(struct request_queue *q,
792 struct blk_mq_ctx *ctx,
793 struct list_head *list,
794 int depth,
795 bool from_schedule)
796
797{
798 struct blk_mq_hw_ctx *hctx;
799 struct blk_mq_ctx *current_ctx;
800
801 trace_block_unplug(q, depth, !from_schedule);
802
803 current_ctx = blk_mq_get_ctx(q);
804
805 if (!cpu_online(ctx->cpu))
806 ctx = current_ctx;
807 hctx = q->mq_ops->map_queue(q, ctx->cpu);
808
809 /*
810 * preemption doesn't flush plug list, so it's possible ctx->cpu is
811 * offline now
812 */
813 spin_lock(&ctx->lock);
814 while (!list_empty(list)) {
815 struct request *rq;
816
817 rq = list_first_entry(list, struct request, queuelist);
818 list_del_init(&rq->queuelist);
819 rq->mq_ctx = ctx;
72a0a36e 820 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
821 }
822 spin_unlock(&ctx->lock);
823
824 blk_mq_put_ctx(current_ctx);
825
826 blk_mq_run_hw_queue(hctx, from_schedule);
827}
828
829static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
830{
831 struct request *rqa = container_of(a, struct request, queuelist);
832 struct request *rqb = container_of(b, struct request, queuelist);
833
834 return !(rqa->mq_ctx < rqb->mq_ctx ||
835 (rqa->mq_ctx == rqb->mq_ctx &&
836 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
837}
838
839void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
840{
841 struct blk_mq_ctx *this_ctx;
842 struct request_queue *this_q;
843 struct request *rq;
844 LIST_HEAD(list);
845 LIST_HEAD(ctx_list);
846 unsigned int depth;
847
848 list_splice_init(&plug->mq_list, &list);
849
850 list_sort(NULL, &list, plug_ctx_cmp);
851
852 this_q = NULL;
853 this_ctx = NULL;
854 depth = 0;
855
856 while (!list_empty(&list)) {
857 rq = list_entry_rq(list.next);
858 list_del_init(&rq->queuelist);
859 BUG_ON(!rq->q);
860 if (rq->mq_ctx != this_ctx) {
861 if (this_ctx) {
862 blk_mq_insert_requests(this_q, this_ctx,
863 &ctx_list, depth,
864 from_schedule);
865 }
866
867 this_ctx = rq->mq_ctx;
868 this_q = rq->q;
869 depth = 0;
870 }
871
872 depth++;
873 list_add_tail(&rq->queuelist, &ctx_list);
874 }
875
876 /*
877 * If 'this_ctx' is set, we know we have entries to complete
878 * on 'ctx_list'. Do those.
879 */
880 if (this_ctx) {
881 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
882 from_schedule);
883 }
884}
885
886static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
887{
888 init_request_from_bio(rq, bio);
889 blk_account_io_start(rq, 1);
890}
891
892static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
893{
894 struct blk_mq_hw_ctx *hctx;
895 struct blk_mq_ctx *ctx;
896 const int is_sync = rw_is_sync(bio->bi_rw);
897 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
898 int rw = bio_data_dir(bio);
899 struct request *rq;
900 unsigned int use_plug, request_count = 0;
901
902 /*
903 * If we have multiple hardware queues, just go directly to
904 * one of those for sync IO.
905 */
906 use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
907
908 blk_queue_bounce(q, &bio);
909
14ec77f3
NB
910 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
911 bio_endio(bio, -EIO);
912 return;
913 }
914
320ae51f
JA
915 if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
916 return;
917
918 if (blk_mq_queue_enter(q)) {
919 bio_endio(bio, -EIO);
920 return;
921 }
922
923 ctx = blk_mq_get_ctx(q);
924 hctx = q->mq_ops->map_queue(q, ctx->cpu);
925
926 trace_block_getrq(q, bio, rw);
18741986 927 rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false);
320ae51f 928 if (likely(rq))
18741986 929 blk_mq_rq_ctx_init(q, ctx, rq, rw);
320ae51f
JA
930 else {
931 blk_mq_put_ctx(ctx);
932 trace_block_sleeprq(q, bio, rw);
18741986
CH
933 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
934 false);
320ae51f
JA
935 ctx = rq->mq_ctx;
936 hctx = q->mq_ops->map_queue(q, ctx->cpu);
937 }
938
939 hctx->queued++;
940
941 if (unlikely(is_flush_fua)) {
942 blk_mq_bio_to_request(rq, bio);
943 blk_mq_put_ctx(ctx);
944 blk_insert_flush(rq);
945 goto run_queue;
946 }
947
948 /*
949 * A task plug currently exists. Since this is completely lockless,
950 * utilize that to temporarily store requests until the task is
951 * either done or scheduled away.
952 */
953 if (use_plug) {
954 struct blk_plug *plug = current->plug;
955
956 if (plug) {
957 blk_mq_bio_to_request(rq, bio);
92f399c7 958 if (list_empty(&plug->mq_list))
320ae51f
JA
959 trace_block_plug(q);
960 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
961 blk_flush_plug_list(plug, false);
962 trace_block_plug(q);
963 }
964 list_add_tail(&rq->queuelist, &plug->mq_list);
965 blk_mq_put_ctx(ctx);
966 return;
967 }
968 }
969
970 spin_lock(&ctx->lock);
971
972 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
973 blk_mq_attempt_merge(q, ctx, bio))
974 __blk_mq_free_request(hctx, ctx, rq);
975 else {
976 blk_mq_bio_to_request(rq, bio);
72a0a36e 977 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
978 }
979
980 spin_unlock(&ctx->lock);
981 blk_mq_put_ctx(ctx);
982
983 /*
984 * For a SYNC request, send it to the hardware immediately. For an
985 * ASYNC request, just ensure that we run it later on. The latter
986 * allows for merging opportunities and more efficient dispatching.
987 */
988run_queue:
989 blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
990}
991
992/*
993 * Default mapping to a software queue, since we use one per CPU.
994 */
995struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
996{
997 return q->queue_hw_ctx[q->mq_map[cpu]];
998}
999EXPORT_SYMBOL(blk_mq_map_queue);
1000
1001struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_reg *reg,
1002 unsigned int hctx_index)
1003{
1004 return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
1005 GFP_KERNEL | __GFP_ZERO, reg->numa_node);
1006}
1007EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1008
1009void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1010 unsigned int hctx_index)
1011{
1012 kfree(hctx);
1013}
1014EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1015
1016static void blk_mq_hctx_notify(void *data, unsigned long action,
1017 unsigned int cpu)
1018{
1019 struct blk_mq_hw_ctx *hctx = data;
1020 struct blk_mq_ctx *ctx;
1021 LIST_HEAD(tmp);
1022
1023 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1024 return;
1025
1026 /*
1027 * Move ctx entries to new CPU, if this one is going away.
1028 */
1029 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1030
1031 spin_lock(&ctx->lock);
1032 if (!list_empty(&ctx->rq_list)) {
1033 list_splice_init(&ctx->rq_list, &tmp);
1034 clear_bit(ctx->index_hw, hctx->ctx_map);
1035 }
1036 spin_unlock(&ctx->lock);
1037
1038 if (list_empty(&tmp))
1039 return;
1040
1041 ctx = blk_mq_get_ctx(hctx->queue);
1042 spin_lock(&ctx->lock);
1043
1044 while (!list_empty(&tmp)) {
1045 struct request *rq;
1046
1047 rq = list_first_entry(&tmp, struct request, queuelist);
1048 rq->mq_ctx = ctx;
1049 list_move_tail(&rq->queuelist, &ctx->rq_list);
1050 }
1051
1052 blk_mq_hctx_mark_pending(hctx, ctx);
1053
1054 spin_unlock(&ctx->lock);
1055 blk_mq_put_ctx(ctx);
1056}
1057
1058static void blk_mq_init_hw_commands(struct blk_mq_hw_ctx *hctx,
1059 void (*init)(void *, struct blk_mq_hw_ctx *,
1060 struct request *, unsigned int),
1061 void *data)
1062{
1063 unsigned int i;
1064
1065 for (i = 0; i < hctx->queue_depth; i++) {
1066 struct request *rq = hctx->rqs[i];
1067
1068 init(data, hctx, rq, i);
1069 }
1070}
1071
1072void blk_mq_init_commands(struct request_queue *q,
1073 void (*init)(void *, struct blk_mq_hw_ctx *,
1074 struct request *, unsigned int),
1075 void *data)
1076{
1077 struct blk_mq_hw_ctx *hctx;
1078 unsigned int i;
1079
1080 queue_for_each_hw_ctx(q, hctx, i)
1081 blk_mq_init_hw_commands(hctx, init, data);
1082}
1083EXPORT_SYMBOL(blk_mq_init_commands);
1084
1085static void blk_mq_free_rq_map(struct blk_mq_hw_ctx *hctx)
1086{
1087 struct page *page;
1088
1089 while (!list_empty(&hctx->page_list)) {
6753471c
DH
1090 page = list_first_entry(&hctx->page_list, struct page, lru);
1091 list_del_init(&page->lru);
320ae51f
JA
1092 __free_pages(page, page->private);
1093 }
1094
1095 kfree(hctx->rqs);
1096
1097 if (hctx->tags)
1098 blk_mq_free_tags(hctx->tags);
1099}
1100
1101static size_t order_to_size(unsigned int order)
1102{
1103 size_t ret = PAGE_SIZE;
1104
1105 while (order--)
1106 ret *= 2;
1107
1108 return ret;
1109}
1110
1111static int blk_mq_init_rq_map(struct blk_mq_hw_ctx *hctx,
1112 unsigned int reserved_tags, int node)
1113{
1114 unsigned int i, j, entries_per_page, max_order = 4;
1115 size_t rq_size, left;
1116
1117 INIT_LIST_HEAD(&hctx->page_list);
1118
1119 hctx->rqs = kmalloc_node(hctx->queue_depth * sizeof(struct request *),
1120 GFP_KERNEL, node);
1121 if (!hctx->rqs)
1122 return -ENOMEM;
1123
1124 /*
1125 * rq_size is the size of the request plus driver payload, rounded
1126 * to the cacheline size
1127 */
1128 rq_size = round_up(sizeof(struct request) + hctx->cmd_size,
1129 cache_line_size());
1130 left = rq_size * hctx->queue_depth;
1131
1132 for (i = 0; i < hctx->queue_depth;) {
1133 int this_order = max_order;
1134 struct page *page;
1135 int to_do;
1136 void *p;
1137
1138 while (left < order_to_size(this_order - 1) && this_order)
1139 this_order--;
1140
1141 do {
1142 page = alloc_pages_node(node, GFP_KERNEL, this_order);
1143 if (page)
1144 break;
1145 if (!this_order--)
1146 break;
1147 if (order_to_size(this_order) < rq_size)
1148 break;
1149 } while (1);
1150
1151 if (!page)
1152 break;
1153
1154 page->private = this_order;
6753471c 1155 list_add_tail(&page->lru, &hctx->page_list);
320ae51f
JA
1156
1157 p = page_address(page);
1158 entries_per_page = order_to_size(this_order) / rq_size;
1159 to_do = min(entries_per_page, hctx->queue_depth - i);
1160 left -= to_do * rq_size;
1161 for (j = 0; j < to_do; j++) {
1162 hctx->rqs[i] = p;
1163 blk_mq_rq_init(hctx, hctx->rqs[i]);
1164 p += rq_size;
1165 i++;
1166 }
1167 }
1168
1169 if (i < (reserved_tags + BLK_MQ_TAG_MIN))
1170 goto err_rq_map;
1171 else if (i != hctx->queue_depth) {
1172 hctx->queue_depth = i;
1173 pr_warn("%s: queue depth set to %u because of low memory\n",
1174 __func__, i);
1175 }
1176
1177 hctx->tags = blk_mq_init_tags(hctx->queue_depth, reserved_tags, node);
1178 if (!hctx->tags) {
1179err_rq_map:
1180 blk_mq_free_rq_map(hctx);
1181 return -ENOMEM;
1182 }
1183
1184 return 0;
1185}
1186
1187static int blk_mq_init_hw_queues(struct request_queue *q,
1188 struct blk_mq_reg *reg, void *driver_data)
1189{
1190 struct blk_mq_hw_ctx *hctx;
1191 unsigned int i, j;
1192
1193 /*
1194 * Initialize hardware queues
1195 */
1196 queue_for_each_hw_ctx(q, hctx, i) {
1197 unsigned int num_maps;
1198 int node;
1199
1200 node = hctx->numa_node;
1201 if (node == NUMA_NO_NODE)
1202 node = hctx->numa_node = reg->numa_node;
1203
1204 INIT_DELAYED_WORK(&hctx->delayed_work, blk_mq_work_fn);
1205 spin_lock_init(&hctx->lock);
1206 INIT_LIST_HEAD(&hctx->dispatch);
1207 hctx->queue = q;
1208 hctx->queue_num = i;
1209 hctx->flags = reg->flags;
1210 hctx->queue_depth = reg->queue_depth;
1211 hctx->cmd_size = reg->cmd_size;
1212
1213 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1214 blk_mq_hctx_notify, hctx);
1215 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1216
1217 if (blk_mq_init_rq_map(hctx, reg->reserved_tags, node))
1218 break;
1219
1220 /*
1221 * Allocate space for all possible cpus to avoid allocation in
1222 * runtime
1223 */
1224 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1225 GFP_KERNEL, node);
1226 if (!hctx->ctxs)
1227 break;
1228
1229 num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1230 hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1231 GFP_KERNEL, node);
1232 if (!hctx->ctx_map)
1233 break;
1234
1235 hctx->nr_ctx_map = num_maps;
1236 hctx->nr_ctx = 0;
1237
1238 if (reg->ops->init_hctx &&
1239 reg->ops->init_hctx(hctx, driver_data, i))
1240 break;
1241 }
1242
1243 if (i == q->nr_hw_queues)
1244 return 0;
1245
1246 /*
1247 * Init failed
1248 */
1249 queue_for_each_hw_ctx(q, hctx, j) {
1250 if (i == j)
1251 break;
1252
1253 if (reg->ops->exit_hctx)
1254 reg->ops->exit_hctx(hctx, j);
1255
1256 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1257 blk_mq_free_rq_map(hctx);
1258 kfree(hctx->ctxs);
1259 }
1260
1261 return 1;
1262}
1263
1264static void blk_mq_init_cpu_queues(struct request_queue *q,
1265 unsigned int nr_hw_queues)
1266{
1267 unsigned int i;
1268
1269 for_each_possible_cpu(i) {
1270 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1271 struct blk_mq_hw_ctx *hctx;
1272
1273 memset(__ctx, 0, sizeof(*__ctx));
1274 __ctx->cpu = i;
1275 spin_lock_init(&__ctx->lock);
1276 INIT_LIST_HEAD(&__ctx->rq_list);
1277 __ctx->queue = q;
1278
1279 /* If the cpu isn't online, the cpu is mapped to first hctx */
1280 hctx = q->mq_ops->map_queue(q, i);
1281 hctx->nr_ctx++;
1282
1283 if (!cpu_online(i))
1284 continue;
1285
1286 /*
1287 * Set local node, IFF we have more than one hw queue. If
1288 * not, we remain on the home node of the device
1289 */
1290 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1291 hctx->numa_node = cpu_to_node(i);
1292 }
1293}
1294
1295static void blk_mq_map_swqueue(struct request_queue *q)
1296{
1297 unsigned int i;
1298 struct blk_mq_hw_ctx *hctx;
1299 struct blk_mq_ctx *ctx;
1300
1301 queue_for_each_hw_ctx(q, hctx, i) {
1302 hctx->nr_ctx = 0;
1303 }
1304
1305 /*
1306 * Map software to hardware queues
1307 */
1308 queue_for_each_ctx(q, ctx, i) {
1309 /* If the cpu isn't online, the cpu is mapped to first hctx */
1310 hctx = q->mq_ops->map_queue(q, i);
1311 ctx->index_hw = hctx->nr_ctx;
1312 hctx->ctxs[hctx->nr_ctx++] = ctx;
1313 }
1314}
1315
1316struct request_queue *blk_mq_init_queue(struct blk_mq_reg *reg,
1317 void *driver_data)
1318{
1319 struct blk_mq_hw_ctx **hctxs;
1320 struct blk_mq_ctx *ctx;
1321 struct request_queue *q;
1322 int i;
1323
1324 if (!reg->nr_hw_queues ||
1325 !reg->ops->queue_rq || !reg->ops->map_queue ||
1326 !reg->ops->alloc_hctx || !reg->ops->free_hctx)
1327 return ERR_PTR(-EINVAL);
1328
1329 if (!reg->queue_depth)
1330 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1331 else if (reg->queue_depth > BLK_MQ_MAX_DEPTH) {
1332 pr_err("blk-mq: queuedepth too large (%u)\n", reg->queue_depth);
1333 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1334 }
1335
1336 if (reg->queue_depth < (reg->reserved_tags + BLK_MQ_TAG_MIN))
1337 return ERR_PTR(-EINVAL);
1338
1339 ctx = alloc_percpu(struct blk_mq_ctx);
1340 if (!ctx)
1341 return ERR_PTR(-ENOMEM);
1342
1343 hctxs = kmalloc_node(reg->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1344 reg->numa_node);
1345
1346 if (!hctxs)
1347 goto err_percpu;
1348
1349 for (i = 0; i < reg->nr_hw_queues; i++) {
1350 hctxs[i] = reg->ops->alloc_hctx(reg, i);
1351 if (!hctxs[i])
1352 goto err_hctxs;
1353
1354 hctxs[i]->numa_node = NUMA_NO_NODE;
1355 hctxs[i]->queue_num = i;
1356 }
1357
1358 q = blk_alloc_queue_node(GFP_KERNEL, reg->numa_node);
1359 if (!q)
1360 goto err_hctxs;
1361
1362 q->mq_map = blk_mq_make_queue_map(reg);
1363 if (!q->mq_map)
1364 goto err_map;
1365
1366 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1367 blk_queue_rq_timeout(q, 30000);
1368
1369 q->nr_queues = nr_cpu_ids;
1370 q->nr_hw_queues = reg->nr_hw_queues;
1371
1372 q->queue_ctx = ctx;
1373 q->queue_hw_ctx = hctxs;
1374
1375 q->mq_ops = reg->ops;
94eddfbe 1376 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1377
1be036e9
CH
1378 q->sg_reserved_size = INT_MAX;
1379
320ae51f
JA
1380 blk_queue_make_request(q, blk_mq_make_request);
1381 blk_queue_rq_timed_out(q, reg->ops->timeout);
1382 if (reg->timeout)
1383 blk_queue_rq_timeout(q, reg->timeout);
1384
30a91cb4
CH
1385 if (reg->ops->complete)
1386 blk_queue_softirq_done(q, reg->ops->complete);
1387
320ae51f
JA
1388 blk_mq_init_flush(q);
1389 blk_mq_init_cpu_queues(q, reg->nr_hw_queues);
1390
18741986
CH
1391 q->flush_rq = kzalloc(round_up(sizeof(struct request) + reg->cmd_size,
1392 cache_line_size()), GFP_KERNEL);
1393 if (!q->flush_rq)
320ae51f
JA
1394 goto err_hw;
1395
18741986
CH
1396 if (blk_mq_init_hw_queues(q, reg, driver_data))
1397 goto err_flush_rq;
1398
320ae51f
JA
1399 blk_mq_map_swqueue(q);
1400
1401 mutex_lock(&all_q_mutex);
1402 list_add_tail(&q->all_q_node, &all_q_list);
1403 mutex_unlock(&all_q_mutex);
1404
1405 return q;
18741986
CH
1406
1407err_flush_rq:
1408 kfree(q->flush_rq);
320ae51f
JA
1409err_hw:
1410 kfree(q->mq_map);
1411err_map:
1412 blk_cleanup_queue(q);
1413err_hctxs:
1414 for (i = 0; i < reg->nr_hw_queues; i++) {
1415 if (!hctxs[i])
1416 break;
1417 reg->ops->free_hctx(hctxs[i], i);
1418 }
1419 kfree(hctxs);
1420err_percpu:
1421 free_percpu(ctx);
1422 return ERR_PTR(-ENOMEM);
1423}
1424EXPORT_SYMBOL(blk_mq_init_queue);
1425
1426void blk_mq_free_queue(struct request_queue *q)
1427{
1428 struct blk_mq_hw_ctx *hctx;
1429 int i;
1430
1431 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f
JA
1432 kfree(hctx->ctx_map);
1433 kfree(hctx->ctxs);
1434 blk_mq_free_rq_map(hctx);
1435 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1436 if (q->mq_ops->exit_hctx)
1437 q->mq_ops->exit_hctx(hctx, i);
1438 q->mq_ops->free_hctx(hctx, i);
1439 }
1440
1441 free_percpu(q->queue_ctx);
1442 kfree(q->queue_hw_ctx);
1443 kfree(q->mq_map);
1444
1445 q->queue_ctx = NULL;
1446 q->queue_hw_ctx = NULL;
1447 q->mq_map = NULL;
1448
1449 mutex_lock(&all_q_mutex);
1450 list_del_init(&q->all_q_node);
1451 mutex_unlock(&all_q_mutex);
1452}
320ae51f
JA
1453
1454/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1455static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1456{
1457 blk_mq_freeze_queue(q);
1458
1459 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1460
1461 /*
1462 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1463 * we should change hctx numa_node according to new topology (this
1464 * involves free and re-allocate memory, worthy doing?)
1465 */
1466
1467 blk_mq_map_swqueue(q);
1468
1469 blk_mq_unfreeze_queue(q);
1470}
1471
f618ef7c
PG
1472static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1473 unsigned long action, void *hcpu)
320ae51f
JA
1474{
1475 struct request_queue *q;
1476
1477 /*
1478 * Before new mapping is established, hotadded cpu might already start
1479 * handling requests. This doesn't break anything as we map offline
1480 * CPUs to first hardware queue. We will re-init queue below to get
1481 * optimal settings.
1482 */
1483 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1484 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1485 return NOTIFY_OK;
1486
1487 mutex_lock(&all_q_mutex);
1488 list_for_each_entry(q, &all_q_list, all_q_node)
1489 blk_mq_queue_reinit(q);
1490 mutex_unlock(&all_q_mutex);
1491 return NOTIFY_OK;
1492}
1493
1494static int __init blk_mq_init(void)
1495{
320ae51f
JA
1496 blk_mq_cpu_init();
1497
1498 /* Must be called after percpu_counter_hotcpu_callback() */
1499 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1500
1501 return 0;
1502}
1503subsys_initcall(blk_mq_init);