]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - block/blk-mq.c
blk-mq: fix leak of hctx->ctx_map
[thirdparty/kernel/stable.git] / block / blk-mq.c
CommitLineData
320ae51f
JA
1#include <linux/kernel.h>
2#include <linux/module.h>
3#include <linux/backing-dev.h>
4#include <linux/bio.h>
5#include <linux/blkdev.h>
6#include <linux/mm.h>
7#include <linux/init.h>
8#include <linux/slab.h>
9#include <linux/workqueue.h>
10#include <linux/smp.h>
11#include <linux/llist.h>
12#include <linux/list_sort.h>
13#include <linux/cpu.h>
14#include <linux/cache.h>
15#include <linux/sched/sysctl.h>
16#include <linux/delay.h>
17
18#include <trace/events/block.h>
19
20#include <linux/blk-mq.h>
21#include "blk.h"
22#include "blk-mq.h"
23#include "blk-mq-tag.h"
24
25static DEFINE_MUTEX(all_q_mutex);
26static LIST_HEAD(all_q_list);
27
28static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
320ae51f
JA
30static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
32{
33 return per_cpu_ptr(q->queue_ctx, cpu);
34}
35
36/*
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
41 */
42static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43{
44 return __blk_mq_get_ctx(q, get_cpu());
45}
46
47static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48{
49 put_cpu();
50}
51
52/*
53 * Check if any of the ctx's have pending work in this hardware queue
54 */
55static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56{
57 unsigned int i;
58
1429d7c9
JA
59 for (i = 0; i < hctx->ctx_map.map_size; i++)
60 if (hctx->ctx_map.map[i].word)
320ae51f
JA
61 return true;
62
63 return false;
64}
65
1429d7c9
JA
66static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
67 struct blk_mq_ctx *ctx)
68{
69 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
70}
71
72#define CTX_TO_BIT(hctx, ctx) \
73 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
74
320ae51f
JA
75/*
76 * Mark this ctx as having pending work in this hardware queue
77 */
78static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
79 struct blk_mq_ctx *ctx)
80{
1429d7c9
JA
81 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
82
83 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
84 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
85}
86
87static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
88 struct blk_mq_ctx *ctx)
89{
90 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
91
92 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
93}
94
081241e5 95static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
4bb659b1 96 struct blk_mq_ctx *ctx,
081241e5 97 gfp_t gfp, bool reserved)
320ae51f
JA
98{
99 struct request *rq;
100 unsigned int tag;
101
0d2602ca 102 tag = blk_mq_get_tag(hctx, &ctx->last_tag, gfp, reserved);
320ae51f 103 if (tag != BLK_MQ_TAG_FAIL) {
24d2f903 104 rq = hctx->tags->rqs[tag];
0d2602ca
JA
105
106 rq->cmd_flags = 0;
107 if (blk_mq_tag_busy(hctx)) {
108 rq->cmd_flags = REQ_MQ_INFLIGHT;
109 atomic_inc(&hctx->nr_active);
110 }
111
320ae51f 112 rq->tag = tag;
320ae51f
JA
113 return rq;
114 }
115
116 return NULL;
117}
118
119static int blk_mq_queue_enter(struct request_queue *q)
120{
121 int ret;
122
123 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
124 smp_wmb();
125 /* we have problems to freeze the queue if it's initializing */
126 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
127 return 0;
128
129 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
130
131 spin_lock_irq(q->queue_lock);
132 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
43a5e4e2
ML
133 !blk_queue_bypass(q) || blk_queue_dying(q),
134 *q->queue_lock);
320ae51f 135 /* inc usage with lock hold to avoid freeze_queue runs here */
43a5e4e2 136 if (!ret && !blk_queue_dying(q))
320ae51f 137 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
43a5e4e2
ML
138 else if (blk_queue_dying(q))
139 ret = -ENODEV;
320ae51f
JA
140 spin_unlock_irq(q->queue_lock);
141
142 return ret;
143}
144
145static void blk_mq_queue_exit(struct request_queue *q)
146{
147 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
148}
149
43a5e4e2
ML
150static void __blk_mq_drain_queue(struct request_queue *q)
151{
152 while (true) {
153 s64 count;
154
155 spin_lock_irq(q->queue_lock);
156 count = percpu_counter_sum(&q->mq_usage_counter);
157 spin_unlock_irq(q->queue_lock);
158
159 if (count == 0)
160 break;
161 blk_mq_run_queues(q, false);
162 msleep(10);
163 }
164}
165
320ae51f
JA
166/*
167 * Guarantee no request is in use, so we can change any data structure of
168 * the queue afterward.
169 */
170static void blk_mq_freeze_queue(struct request_queue *q)
171{
172 bool drain;
173
174 spin_lock_irq(q->queue_lock);
175 drain = !q->bypass_depth++;
176 queue_flag_set(QUEUE_FLAG_BYPASS, q);
177 spin_unlock_irq(q->queue_lock);
178
43a5e4e2
ML
179 if (drain)
180 __blk_mq_drain_queue(q);
181}
320ae51f 182
43a5e4e2
ML
183void blk_mq_drain_queue(struct request_queue *q)
184{
185 __blk_mq_drain_queue(q);
320ae51f
JA
186}
187
188static void blk_mq_unfreeze_queue(struct request_queue *q)
189{
190 bool wake = false;
191
192 spin_lock_irq(q->queue_lock);
193 if (!--q->bypass_depth) {
194 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
195 wake = true;
196 }
197 WARN_ON_ONCE(q->bypass_depth < 0);
198 spin_unlock_irq(q->queue_lock);
199 if (wake)
200 wake_up_all(&q->mq_freeze_wq);
201}
202
203bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
204{
205 return blk_mq_has_free_tags(hctx->tags);
206}
207EXPORT_SYMBOL(blk_mq_can_queue);
208
94eddfbe
JA
209static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
210 struct request *rq, unsigned int rw_flags)
320ae51f 211{
94eddfbe
JA
212 if (blk_queue_io_stat(q))
213 rw_flags |= REQ_IO_STAT;
214
af76e555
CH
215 INIT_LIST_HEAD(&rq->queuelist);
216 /* csd/requeue_work/fifo_time is initialized before use */
217 rq->q = q;
320ae51f 218 rq->mq_ctx = ctx;
0d2602ca 219 rq->cmd_flags |= rw_flags;
af76e555
CH
220 rq->cmd_type = 0;
221 /* do not touch atomic flags, it needs atomic ops against the timer */
222 rq->cpu = -1;
223 rq->__data_len = 0;
224 rq->__sector = (sector_t) -1;
225 rq->bio = NULL;
226 rq->biotail = NULL;
227 INIT_HLIST_NODE(&rq->hash);
228 RB_CLEAR_NODE(&rq->rb_node);
229 memset(&rq->flush, 0, max(sizeof(rq->flush), sizeof(rq->elv)));
230 rq->rq_disk = NULL;
231 rq->part = NULL;
0fec08b4 232 rq->start_time = jiffies;
af76e555
CH
233#ifdef CONFIG_BLK_CGROUP
234 rq->rl = NULL;
0fec08b4 235 set_start_time_ns(rq);
af76e555
CH
236 rq->io_start_time_ns = 0;
237#endif
238 rq->nr_phys_segments = 0;
239#if defined(CONFIG_BLK_DEV_INTEGRITY)
240 rq->nr_integrity_segments = 0;
241#endif
242 rq->ioprio = 0;
243 rq->special = NULL;
244 /* tag was already set */
245 rq->errors = 0;
246 memset(rq->__cmd, 0, sizeof(rq->__cmd));
247 rq->cmd = rq->__cmd;
248 rq->cmd_len = BLK_MAX_CDB;
249
250 rq->extra_len = 0;
251 rq->sense_len = 0;
252 rq->resid_len = 0;
253 rq->sense = NULL;
254
255 rq->deadline = 0;
256 INIT_LIST_HEAD(&rq->timeout_list);
257 rq->timeout = 0;
258 rq->retries = 0;
259 rq->end_io = NULL;
260 rq->end_io_data = NULL;
261 rq->next_rq = NULL;
262
320ae51f
JA
263 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
264}
265
320ae51f
JA
266static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
267 int rw, gfp_t gfp,
268 bool reserved)
269{
270 struct request *rq;
271
272 do {
273 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
274 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
275
4bb659b1
JA
276 rq = __blk_mq_alloc_request(hctx, ctx, gfp & ~__GFP_WAIT,
277 reserved);
320ae51f 278 if (rq) {
94eddfbe 279 blk_mq_rq_ctx_init(q, ctx, rq, rw);
320ae51f 280 break;
959a35f1 281 }
320ae51f 282
e4043dcf
JA
283 if (gfp & __GFP_WAIT) {
284 __blk_mq_run_hw_queue(hctx);
285 blk_mq_put_ctx(ctx);
286 } else {
287 blk_mq_put_ctx(ctx);
959a35f1 288 break;
e4043dcf 289 }
959a35f1 290
0d2602ca 291 blk_mq_wait_for_tags(hctx, reserved);
320ae51f
JA
292 } while (1);
293
294 return rq;
295}
296
18741986 297struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
320ae51f
JA
298{
299 struct request *rq;
300
301 if (blk_mq_queue_enter(q))
302 return NULL;
303
18741986 304 rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
959a35f1
JM
305 if (rq)
306 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
307 return rq;
308}
4bb659b1 309EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f
JA
310
311struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
312 gfp_t gfp)
313{
314 struct request *rq;
315
316 if (blk_mq_queue_enter(q))
317 return NULL;
318
319 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
959a35f1
JM
320 if (rq)
321 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
322 return rq;
323}
324EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
325
320ae51f
JA
326static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
327 struct blk_mq_ctx *ctx, struct request *rq)
328{
329 const int tag = rq->tag;
330 struct request_queue *q = rq->q;
331
0d2602ca
JA
332 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
333 atomic_dec(&hctx->nr_active);
334
af76e555 335 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 336 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
320ae51f
JA
337 blk_mq_queue_exit(q);
338}
339
340void blk_mq_free_request(struct request *rq)
341{
342 struct blk_mq_ctx *ctx = rq->mq_ctx;
343 struct blk_mq_hw_ctx *hctx;
344 struct request_queue *q = rq->q;
345
346 ctx->rq_completed[rq_is_sync(rq)]++;
347
348 hctx = q->mq_ops->map_queue(q, ctx->cpu);
349 __blk_mq_free_request(hctx, ctx, rq);
350}
351
8727af4b
CH
352/*
353 * Clone all relevant state from a request that has been put on hold in
354 * the flush state machine into the preallocated flush request that hangs
355 * off the request queue.
356 *
357 * For a driver the flush request should be invisible, that's why we are
358 * impersonating the original request here.
359 */
360void blk_mq_clone_flush_request(struct request *flush_rq,
361 struct request *orig_rq)
362{
363 struct blk_mq_hw_ctx *hctx =
364 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
365
366 flush_rq->mq_ctx = orig_rq->mq_ctx;
367 flush_rq->tag = orig_rq->tag;
368 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
369 hctx->cmd_size);
370}
371
63151a44 372inline void __blk_mq_end_io(struct request *rq, int error)
320ae51f 373{
0d11e6ac
ML
374 blk_account_io_done(rq);
375
91b63639 376 if (rq->end_io) {
320ae51f 377 rq->end_io(rq, error);
91b63639
CH
378 } else {
379 if (unlikely(blk_bidi_rq(rq)))
380 blk_mq_free_request(rq->next_rq);
320ae51f 381 blk_mq_free_request(rq);
91b63639 382 }
320ae51f 383}
63151a44
CH
384EXPORT_SYMBOL(__blk_mq_end_io);
385
386void blk_mq_end_io(struct request *rq, int error)
387{
388 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
389 BUG();
390 __blk_mq_end_io(rq, error);
391}
392EXPORT_SYMBOL(blk_mq_end_io);
320ae51f 393
30a91cb4 394static void __blk_mq_complete_request_remote(void *data)
320ae51f 395{
3d6efbf6 396 struct request *rq = data;
320ae51f 397
30a91cb4 398 rq->q->softirq_done_fn(rq);
320ae51f 399}
320ae51f 400
30a91cb4 401void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
402{
403 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 404 bool shared = false;
320ae51f
JA
405 int cpu;
406
38535201 407 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
408 rq->q->softirq_done_fn(rq);
409 return;
410 }
320ae51f
JA
411
412 cpu = get_cpu();
38535201
CH
413 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
414 shared = cpus_share_cache(cpu, ctx->cpu);
415
416 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 417 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
418 rq->csd.info = rq;
419 rq->csd.flags = 0;
c46fff2a 420 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 421 } else {
30a91cb4 422 rq->q->softirq_done_fn(rq);
3d6efbf6 423 }
320ae51f
JA
424 put_cpu();
425}
30a91cb4
CH
426
427/**
428 * blk_mq_complete_request - end I/O on a request
429 * @rq: the request being processed
430 *
431 * Description:
432 * Ends all I/O on a request. It does not handle partial completions.
433 * The actual completion happens out-of-order, through a IPI handler.
434 **/
435void blk_mq_complete_request(struct request *rq)
436{
437 if (unlikely(blk_should_fake_timeout(rq->q)))
438 return;
439 if (!blk_mark_rq_complete(rq))
440 __blk_mq_complete_request(rq);
441}
442EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 443
49f5baa5 444static void blk_mq_start_request(struct request *rq, bool last)
320ae51f
JA
445{
446 struct request_queue *q = rq->q;
447
448 trace_block_rq_issue(q, rq);
449
742ee69b 450 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
451 if (unlikely(blk_bidi_rq(rq)))
452 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 453
320ae51f
JA
454 /*
455 * Just mark start time and set the started bit. Due to memory
456 * ordering, we know we'll see the correct deadline as long as
c22d9d8a
JA
457 * REQ_ATOMIC_STARTED is seen. Use the default queue timeout,
458 * unless one has been set in the request.
320ae51f 459 */
c22d9d8a
JA
460 if (!rq->timeout)
461 rq->deadline = jiffies + q->rq_timeout;
462 else
463 rq->deadline = jiffies + rq->timeout;
87ee7b11
JA
464
465 /*
466 * Mark us as started and clear complete. Complete might have been
467 * set if requeue raced with timeout, which then marked it as
468 * complete. So be sure to clear complete again when we start
469 * the request, otherwise we'll ignore the completion event.
470 */
320ae51f 471 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
87ee7b11 472 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
473
474 if (q->dma_drain_size && blk_rq_bytes(rq)) {
475 /*
476 * Make sure space for the drain appears. We know we can do
477 * this because max_hw_segments has been adjusted to be one
478 * fewer than the device can handle.
479 */
480 rq->nr_phys_segments++;
481 }
482
483 /*
484 * Flag the last request in the series so that drivers know when IO
485 * should be kicked off, if they don't do it on a per-request basis.
486 *
487 * Note: the flag isn't the only condition drivers should do kick off.
488 * If drive is busy, the last request might not have the bit set.
489 */
490 if (last)
491 rq->cmd_flags |= REQ_END;
320ae51f
JA
492}
493
ed0791b2 494static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
495{
496 struct request_queue *q = rq->q;
497
498 trace_block_rq_requeue(q, rq);
499 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
49f5baa5
CH
500
501 rq->cmd_flags &= ~REQ_END;
502
503 if (q->dma_drain_size && blk_rq_bytes(rq))
504 rq->nr_phys_segments--;
320ae51f
JA
505}
506
ed0791b2
CH
507void blk_mq_requeue_request(struct request *rq)
508{
ed0791b2
CH
509 __blk_mq_requeue_request(rq);
510 blk_clear_rq_complete(rq);
511
ed0791b2
CH
512 BUG_ON(blk_queued_rq(rq));
513 blk_mq_insert_request(rq, true, true, false);
514}
515EXPORT_SYMBOL(blk_mq_requeue_request);
516
24d2f903
CH
517struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
518{
519 return tags->rqs[tag];
520}
521EXPORT_SYMBOL(blk_mq_tag_to_rq);
522
320ae51f
JA
523struct blk_mq_timeout_data {
524 struct blk_mq_hw_ctx *hctx;
525 unsigned long *next;
526 unsigned int *next_set;
527};
528
529static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
530{
531 struct blk_mq_timeout_data *data = __data;
532 struct blk_mq_hw_ctx *hctx = data->hctx;
533 unsigned int tag;
534
535 /* It may not be in flight yet (this is where
536 * the REQ_ATOMIC_STARTED flag comes in). The requests are
537 * statically allocated, so we know it's always safe to access the
538 * memory associated with a bit offset into ->rqs[].
539 */
540 tag = 0;
541 do {
542 struct request *rq;
543
24d2f903
CH
544 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
545 if (tag >= hctx->tags->nr_tags)
320ae51f
JA
546 break;
547
24d2f903
CH
548 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
549 if (rq->q != hctx->queue)
550 continue;
320ae51f
JA
551 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
552 continue;
553
554 blk_rq_check_expired(rq, data->next, data->next_set);
555 } while (1);
556}
557
558static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
559 unsigned long *next,
560 unsigned int *next_set)
561{
562 struct blk_mq_timeout_data data = {
563 .hctx = hctx,
564 .next = next,
565 .next_set = next_set,
566 };
567
568 /*
569 * Ask the tagging code to iterate busy requests, so we can
570 * check them for timeout.
571 */
572 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
573}
574
87ee7b11
JA
575static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
576{
577 struct request_queue *q = rq->q;
578
579 /*
580 * We know that complete is set at this point. If STARTED isn't set
581 * anymore, then the request isn't active and the "timeout" should
582 * just be ignored. This can happen due to the bitflag ordering.
583 * Timeout first checks if STARTED is set, and if it is, assumes
584 * the request is active. But if we race with completion, then
585 * we both flags will get cleared. So check here again, and ignore
586 * a timeout event with a request that isn't active.
587 */
588 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
589 return BLK_EH_NOT_HANDLED;
590
591 if (!q->mq_ops->timeout)
592 return BLK_EH_RESET_TIMER;
593
594 return q->mq_ops->timeout(rq);
595}
596
320ae51f
JA
597static void blk_mq_rq_timer(unsigned long data)
598{
599 struct request_queue *q = (struct request_queue *) data;
600 struct blk_mq_hw_ctx *hctx;
601 unsigned long next = 0;
602 int i, next_set = 0;
603
484b4061
JA
604 queue_for_each_hw_ctx(q, hctx, i) {
605 /*
606 * If not software queues are currently mapped to this
607 * hardware queue, there's nothing to check
608 */
609 if (!hctx->nr_ctx || !hctx->tags)
610 continue;
611
320ae51f 612 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
484b4061 613 }
320ae51f 614
0d2602ca
JA
615 if (next_set) {
616 next = blk_rq_timeout(round_jiffies_up(next));
617 mod_timer(&q->timeout, next);
618 } else {
619 queue_for_each_hw_ctx(q, hctx, i)
620 blk_mq_tag_idle(hctx);
621 }
320ae51f
JA
622}
623
624/*
625 * Reverse check our software queue for entries that we could potentially
626 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
627 * too much time checking for merges.
628 */
629static bool blk_mq_attempt_merge(struct request_queue *q,
630 struct blk_mq_ctx *ctx, struct bio *bio)
631{
632 struct request *rq;
633 int checked = 8;
634
635 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
636 int el_ret;
637
638 if (!checked--)
639 break;
640
641 if (!blk_rq_merge_ok(rq, bio))
642 continue;
643
644 el_ret = blk_try_merge(rq, bio);
645 if (el_ret == ELEVATOR_BACK_MERGE) {
646 if (bio_attempt_back_merge(q, rq, bio)) {
647 ctx->rq_merged++;
648 return true;
649 }
650 break;
651 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
652 if (bio_attempt_front_merge(q, rq, bio)) {
653 ctx->rq_merged++;
654 return true;
655 }
656 break;
657 }
658 }
659
660 return false;
661}
662
1429d7c9
JA
663/*
664 * Process software queues that have been marked busy, splicing them
665 * to the for-dispatch
666 */
667static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
668{
669 struct blk_mq_ctx *ctx;
670 int i;
671
672 for (i = 0; i < hctx->ctx_map.map_size; i++) {
673 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
674 unsigned int off, bit;
675
676 if (!bm->word)
677 continue;
678
679 bit = 0;
680 off = i * hctx->ctx_map.bits_per_word;
681 do {
682 bit = find_next_bit(&bm->word, bm->depth, bit);
683 if (bit >= bm->depth)
684 break;
685
686 ctx = hctx->ctxs[bit + off];
687 clear_bit(bit, &bm->word);
688 spin_lock(&ctx->lock);
689 list_splice_tail_init(&ctx->rq_list, list);
690 spin_unlock(&ctx->lock);
691
692 bit++;
693 } while (1);
694 }
695}
696
320ae51f
JA
697/*
698 * Run this hardware queue, pulling any software queues mapped to it in.
699 * Note that this function currently has various problems around ordering
700 * of IO. In particular, we'd like FIFO behaviour on handling existing
701 * items on the hctx->dispatch list. Ignore that for now.
702 */
703static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
704{
705 struct request_queue *q = hctx->queue;
320ae51f
JA
706 struct request *rq;
707 LIST_HEAD(rq_list);
1429d7c9 708 int queued;
320ae51f 709
fd1270d5 710 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 711
5d12f905 712 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
713 return;
714
715 hctx->run++;
716
717 /*
718 * Touch any software queue that has pending entries.
719 */
1429d7c9 720 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
721
722 /*
723 * If we have previous entries on our dispatch list, grab them
724 * and stuff them at the front for more fair dispatch.
725 */
726 if (!list_empty_careful(&hctx->dispatch)) {
727 spin_lock(&hctx->lock);
728 if (!list_empty(&hctx->dispatch))
729 list_splice_init(&hctx->dispatch, &rq_list);
730 spin_unlock(&hctx->lock);
731 }
732
320ae51f
JA
733 /*
734 * Now process all the entries, sending them to the driver.
735 */
1429d7c9 736 queued = 0;
320ae51f
JA
737 while (!list_empty(&rq_list)) {
738 int ret;
739
740 rq = list_first_entry(&rq_list, struct request, queuelist);
741 list_del_init(&rq->queuelist);
320ae51f 742
49f5baa5 743 blk_mq_start_request(rq, list_empty(&rq_list));
320ae51f
JA
744
745 ret = q->mq_ops->queue_rq(hctx, rq);
746 switch (ret) {
747 case BLK_MQ_RQ_QUEUE_OK:
748 queued++;
749 continue;
750 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 751 list_add(&rq->queuelist, &rq_list);
ed0791b2 752 __blk_mq_requeue_request(rq);
320ae51f
JA
753 break;
754 default:
755 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 756 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 757 rq->errors = -EIO;
320ae51f
JA
758 blk_mq_end_io(rq, rq->errors);
759 break;
760 }
761
762 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
763 break;
764 }
765
766 if (!queued)
767 hctx->dispatched[0]++;
768 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
769 hctx->dispatched[ilog2(queued) + 1]++;
770
771 /*
772 * Any items that need requeuing? Stuff them into hctx->dispatch,
773 * that is where we will continue on next queue run.
774 */
775 if (!list_empty(&rq_list)) {
776 spin_lock(&hctx->lock);
777 list_splice(&rq_list, &hctx->dispatch);
778 spin_unlock(&hctx->lock);
779 }
780}
781
506e931f
JA
782/*
783 * It'd be great if the workqueue API had a way to pass
784 * in a mask and had some smarts for more clever placement.
785 * For now we just round-robin here, switching for every
786 * BLK_MQ_CPU_WORK_BATCH queued items.
787 */
788static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
789{
790 int cpu = hctx->next_cpu;
791
792 if (--hctx->next_cpu_batch <= 0) {
793 int next_cpu;
794
795 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
796 if (next_cpu >= nr_cpu_ids)
797 next_cpu = cpumask_first(hctx->cpumask);
798
799 hctx->next_cpu = next_cpu;
800 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
801 }
802
803 return cpu;
804}
805
320ae51f
JA
806void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
807{
5d12f905 808 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
809 return;
810
e4043dcf 811 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
320ae51f 812 __blk_mq_run_hw_queue(hctx);
e4043dcf 813 else if (hctx->queue->nr_hw_queues == 1)
70f4db63 814 kblockd_schedule_delayed_work(&hctx->run_work, 0);
e4043dcf
JA
815 else {
816 unsigned int cpu;
817
506e931f 818 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63 819 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
e4043dcf 820 }
320ae51f
JA
821}
822
823void blk_mq_run_queues(struct request_queue *q, bool async)
824{
825 struct blk_mq_hw_ctx *hctx;
826 int i;
827
828 queue_for_each_hw_ctx(q, hctx, i) {
829 if ((!blk_mq_hctx_has_pending(hctx) &&
830 list_empty_careful(&hctx->dispatch)) ||
5d12f905 831 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
832 continue;
833
e4043dcf 834 preempt_disable();
320ae51f 835 blk_mq_run_hw_queue(hctx, async);
e4043dcf 836 preempt_enable();
320ae51f
JA
837 }
838}
839EXPORT_SYMBOL(blk_mq_run_queues);
840
841void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
842{
70f4db63
CH
843 cancel_delayed_work(&hctx->run_work);
844 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
845 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
846}
847EXPORT_SYMBOL(blk_mq_stop_hw_queue);
848
280d45f6
CH
849void blk_mq_stop_hw_queues(struct request_queue *q)
850{
851 struct blk_mq_hw_ctx *hctx;
852 int i;
853
854 queue_for_each_hw_ctx(q, hctx, i)
855 blk_mq_stop_hw_queue(hctx);
856}
857EXPORT_SYMBOL(blk_mq_stop_hw_queues);
858
320ae51f
JA
859void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
860{
861 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf
JA
862
863 preempt_disable();
320ae51f 864 __blk_mq_run_hw_queue(hctx);
e4043dcf 865 preempt_enable();
320ae51f
JA
866}
867EXPORT_SYMBOL(blk_mq_start_hw_queue);
868
2f268556
CH
869void blk_mq_start_hw_queues(struct request_queue *q)
870{
871 struct blk_mq_hw_ctx *hctx;
872 int i;
873
874 queue_for_each_hw_ctx(q, hctx, i)
875 blk_mq_start_hw_queue(hctx);
876}
877EXPORT_SYMBOL(blk_mq_start_hw_queues);
878
879
1b4a3258 880void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
881{
882 struct blk_mq_hw_ctx *hctx;
883 int i;
884
885 queue_for_each_hw_ctx(q, hctx, i) {
886 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
887 continue;
888
889 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 890 preempt_disable();
1b4a3258 891 blk_mq_run_hw_queue(hctx, async);
e4043dcf 892 preempt_enable();
320ae51f
JA
893 }
894}
895EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
896
70f4db63 897static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
898{
899 struct blk_mq_hw_ctx *hctx;
900
70f4db63 901 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 902
320ae51f
JA
903 __blk_mq_run_hw_queue(hctx);
904}
905
70f4db63
CH
906static void blk_mq_delay_work_fn(struct work_struct *work)
907{
908 struct blk_mq_hw_ctx *hctx;
909
910 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
911
912 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
913 __blk_mq_run_hw_queue(hctx);
914}
915
916void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
917{
918 unsigned long tmo = msecs_to_jiffies(msecs);
919
920 if (hctx->queue->nr_hw_queues == 1)
921 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
922 else {
923 unsigned int cpu;
924
506e931f 925 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63
CH
926 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
927 }
928}
929EXPORT_SYMBOL(blk_mq_delay_queue);
930
320ae51f 931static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 932 struct request *rq, bool at_head)
320ae51f
JA
933{
934 struct blk_mq_ctx *ctx = rq->mq_ctx;
935
01b983c9
JA
936 trace_block_rq_insert(hctx->queue, rq);
937
72a0a36e
CH
938 if (at_head)
939 list_add(&rq->queuelist, &ctx->rq_list);
940 else
941 list_add_tail(&rq->queuelist, &ctx->rq_list);
4bb659b1 942
320ae51f
JA
943 blk_mq_hctx_mark_pending(hctx, ctx);
944
945 /*
946 * We do this early, to ensure we are on the right CPU.
947 */
87ee7b11 948 blk_add_timer(rq);
320ae51f
JA
949}
950
eeabc850
CH
951void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
952 bool async)
320ae51f 953{
eeabc850 954 struct request_queue *q = rq->q;
320ae51f 955 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
956 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
957
958 current_ctx = blk_mq_get_ctx(q);
959 if (!cpu_online(ctx->cpu))
960 rq->mq_ctx = ctx = current_ctx;
320ae51f 961
320ae51f
JA
962 hctx = q->mq_ops->map_queue(q, ctx->cpu);
963
eeabc850
CH
964 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
965 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
320ae51f
JA
966 blk_insert_flush(rq);
967 } else {
320ae51f 968 spin_lock(&ctx->lock);
72a0a36e 969 __blk_mq_insert_request(hctx, rq, at_head);
320ae51f 970 spin_unlock(&ctx->lock);
320ae51f
JA
971 }
972
320ae51f
JA
973 if (run_queue)
974 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
975
976 blk_mq_put_ctx(current_ctx);
320ae51f
JA
977}
978
979static void blk_mq_insert_requests(struct request_queue *q,
980 struct blk_mq_ctx *ctx,
981 struct list_head *list,
982 int depth,
983 bool from_schedule)
984
985{
986 struct blk_mq_hw_ctx *hctx;
987 struct blk_mq_ctx *current_ctx;
988
989 trace_block_unplug(q, depth, !from_schedule);
990
991 current_ctx = blk_mq_get_ctx(q);
992
993 if (!cpu_online(ctx->cpu))
994 ctx = current_ctx;
995 hctx = q->mq_ops->map_queue(q, ctx->cpu);
996
997 /*
998 * preemption doesn't flush plug list, so it's possible ctx->cpu is
999 * offline now
1000 */
1001 spin_lock(&ctx->lock);
1002 while (!list_empty(list)) {
1003 struct request *rq;
1004
1005 rq = list_first_entry(list, struct request, queuelist);
1006 list_del_init(&rq->queuelist);
1007 rq->mq_ctx = ctx;
72a0a36e 1008 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
1009 }
1010 spin_unlock(&ctx->lock);
1011
320ae51f 1012 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 1013 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1014}
1015
1016static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1017{
1018 struct request *rqa = container_of(a, struct request, queuelist);
1019 struct request *rqb = container_of(b, struct request, queuelist);
1020
1021 return !(rqa->mq_ctx < rqb->mq_ctx ||
1022 (rqa->mq_ctx == rqb->mq_ctx &&
1023 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1024}
1025
1026void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1027{
1028 struct blk_mq_ctx *this_ctx;
1029 struct request_queue *this_q;
1030 struct request *rq;
1031 LIST_HEAD(list);
1032 LIST_HEAD(ctx_list);
1033 unsigned int depth;
1034
1035 list_splice_init(&plug->mq_list, &list);
1036
1037 list_sort(NULL, &list, plug_ctx_cmp);
1038
1039 this_q = NULL;
1040 this_ctx = NULL;
1041 depth = 0;
1042
1043 while (!list_empty(&list)) {
1044 rq = list_entry_rq(list.next);
1045 list_del_init(&rq->queuelist);
1046 BUG_ON(!rq->q);
1047 if (rq->mq_ctx != this_ctx) {
1048 if (this_ctx) {
1049 blk_mq_insert_requests(this_q, this_ctx,
1050 &ctx_list, depth,
1051 from_schedule);
1052 }
1053
1054 this_ctx = rq->mq_ctx;
1055 this_q = rq->q;
1056 depth = 0;
1057 }
1058
1059 depth++;
1060 list_add_tail(&rq->queuelist, &ctx_list);
1061 }
1062
1063 /*
1064 * If 'this_ctx' is set, we know we have entries to complete
1065 * on 'ctx_list'. Do those.
1066 */
1067 if (this_ctx) {
1068 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1069 from_schedule);
1070 }
1071}
1072
1073static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1074{
1075 init_request_from_bio(rq, bio);
1076 blk_account_io_start(rq, 1);
1077}
1078
07068d5b
JA
1079static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1080 struct blk_mq_ctx *ctx,
1081 struct request *rq, struct bio *bio)
320ae51f 1082{
07068d5b 1083 struct request_queue *q = hctx->queue;
320ae51f 1084
07068d5b
JA
1085 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1086 blk_mq_bio_to_request(rq, bio);
1087 spin_lock(&ctx->lock);
1088insert_rq:
1089 __blk_mq_insert_request(hctx, rq, false);
1090 spin_unlock(&ctx->lock);
1091 return false;
1092 } else {
1093 spin_lock(&ctx->lock);
1094 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1095 blk_mq_bio_to_request(rq, bio);
1096 goto insert_rq;
1097 }
320ae51f 1098
07068d5b
JA
1099 spin_unlock(&ctx->lock);
1100 __blk_mq_free_request(hctx, ctx, rq);
1101 return true;
14ec77f3 1102 }
07068d5b 1103}
14ec77f3 1104
07068d5b
JA
1105struct blk_map_ctx {
1106 struct blk_mq_hw_ctx *hctx;
1107 struct blk_mq_ctx *ctx;
1108};
1109
1110static struct request *blk_mq_map_request(struct request_queue *q,
1111 struct bio *bio,
1112 struct blk_map_ctx *data)
1113{
1114 struct blk_mq_hw_ctx *hctx;
1115 struct blk_mq_ctx *ctx;
1116 struct request *rq;
1117 int rw = bio_data_dir(bio);
320ae51f 1118
07068d5b 1119 if (unlikely(blk_mq_queue_enter(q))) {
320ae51f 1120 bio_endio(bio, -EIO);
07068d5b 1121 return NULL;
320ae51f
JA
1122 }
1123
1124 ctx = blk_mq_get_ctx(q);
1125 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1126
07068d5b 1127 if (rw_is_sync(bio->bi_rw))
27fbf4e8 1128 rw |= REQ_SYNC;
07068d5b 1129
320ae51f 1130 trace_block_getrq(q, bio, rw);
4bb659b1 1131 rq = __blk_mq_alloc_request(hctx, ctx, GFP_ATOMIC, false);
320ae51f 1132 if (likely(rq))
18741986 1133 blk_mq_rq_ctx_init(q, ctx, rq, rw);
320ae51f
JA
1134 else {
1135 blk_mq_put_ctx(ctx);
1136 trace_block_sleeprq(q, bio, rw);
18741986
CH
1137 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
1138 false);
320ae51f
JA
1139 ctx = rq->mq_ctx;
1140 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1141 }
1142
1143 hctx->queued++;
07068d5b
JA
1144 data->hctx = hctx;
1145 data->ctx = ctx;
1146 return rq;
1147}
1148
1149/*
1150 * Multiple hardware queue variant. This will not use per-process plugs,
1151 * but will attempt to bypass the hctx queueing if we can go straight to
1152 * hardware for SYNC IO.
1153 */
1154static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1155{
1156 const int is_sync = rw_is_sync(bio->bi_rw);
1157 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1158 struct blk_map_ctx data;
1159 struct request *rq;
1160
1161 blk_queue_bounce(q, &bio);
1162
1163 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1164 bio_endio(bio, -EIO);
1165 return;
1166 }
1167
1168 rq = blk_mq_map_request(q, bio, &data);
1169 if (unlikely(!rq))
1170 return;
1171
1172 if (unlikely(is_flush_fua)) {
1173 blk_mq_bio_to_request(rq, bio);
1174 blk_insert_flush(rq);
1175 goto run_queue;
1176 }
1177
1178 if (is_sync) {
1179 int ret;
1180
1181 blk_mq_bio_to_request(rq, bio);
1182 blk_mq_start_request(rq, true);
1183
1184 /*
1185 * For OK queue, we are done. For error, kill it. Any other
1186 * error (busy), just add it to our list as we previously
1187 * would have done
1188 */
1189 ret = q->mq_ops->queue_rq(data.hctx, rq);
1190 if (ret == BLK_MQ_RQ_QUEUE_OK)
1191 goto done;
1192 else {
1193 __blk_mq_requeue_request(rq);
1194
1195 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1196 rq->errors = -EIO;
1197 blk_mq_end_io(rq, rq->errors);
1198 goto done;
1199 }
1200 }
1201 }
1202
1203 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1204 /*
1205 * For a SYNC request, send it to the hardware immediately. For
1206 * an ASYNC request, just ensure that we run it later on. The
1207 * latter allows for merging opportunities and more efficient
1208 * dispatching.
1209 */
1210run_queue:
1211 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1212 }
1213done:
1214 blk_mq_put_ctx(data.ctx);
1215}
1216
1217/*
1218 * Single hardware queue variant. This will attempt to use any per-process
1219 * plug for merging and IO deferral.
1220 */
1221static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1222{
1223 const int is_sync = rw_is_sync(bio->bi_rw);
1224 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1225 unsigned int use_plug, request_count = 0;
1226 struct blk_map_ctx data;
1227 struct request *rq;
1228
1229 /*
1230 * If we have multiple hardware queues, just go directly to
1231 * one of those for sync IO.
1232 */
1233 use_plug = !is_flush_fua && !is_sync;
1234
1235 blk_queue_bounce(q, &bio);
1236
1237 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1238 bio_endio(bio, -EIO);
1239 return;
1240 }
1241
1242 if (use_plug && !blk_queue_nomerges(q) &&
1243 blk_attempt_plug_merge(q, bio, &request_count))
1244 return;
1245
1246 rq = blk_mq_map_request(q, bio, &data);
320ae51f
JA
1247
1248 if (unlikely(is_flush_fua)) {
1249 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1250 blk_insert_flush(rq);
1251 goto run_queue;
1252 }
1253
1254 /*
1255 * A task plug currently exists. Since this is completely lockless,
1256 * utilize that to temporarily store requests until the task is
1257 * either done or scheduled away.
1258 */
1259 if (use_plug) {
1260 struct blk_plug *plug = current->plug;
1261
1262 if (plug) {
1263 blk_mq_bio_to_request(rq, bio);
92f399c7 1264 if (list_empty(&plug->mq_list))
320ae51f
JA
1265 trace_block_plug(q);
1266 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1267 blk_flush_plug_list(plug, false);
1268 trace_block_plug(q);
1269 }
1270 list_add_tail(&rq->queuelist, &plug->mq_list);
07068d5b 1271 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1272 return;
1273 }
1274 }
1275
07068d5b
JA
1276 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1277 /*
1278 * For a SYNC request, send it to the hardware immediately. For
1279 * an ASYNC request, just ensure that we run it later on. The
1280 * latter allows for merging opportunities and more efficient
1281 * dispatching.
1282 */
1283run_queue:
1284 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1285 }
1286
07068d5b 1287 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1288}
1289
1290/*
1291 * Default mapping to a software queue, since we use one per CPU.
1292 */
1293struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1294{
1295 return q->queue_hw_ctx[q->mq_map[cpu]];
1296}
1297EXPORT_SYMBOL(blk_mq_map_queue);
1298
24d2f903 1299struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set,
320ae51f
JA
1300 unsigned int hctx_index)
1301{
4bb659b1
JA
1302 return kzalloc_node(sizeof(struct blk_mq_hw_ctx), GFP_KERNEL,
1303 set->numa_node);
320ae51f
JA
1304}
1305EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1306
1307void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1308 unsigned int hctx_index)
1309{
1310 kfree(hctx);
1311}
1312EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1313
24d2f903
CH
1314static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1315 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1316{
e9b267d9 1317 struct page *page;
320ae51f 1318
24d2f903 1319 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1320 int i;
320ae51f 1321
24d2f903
CH
1322 for (i = 0; i < tags->nr_tags; i++) {
1323 if (!tags->rqs[i])
e9b267d9 1324 continue;
24d2f903
CH
1325 set->ops->exit_request(set->driver_data, tags->rqs[i],
1326 hctx_idx, i);
e9b267d9 1327 }
320ae51f 1328 }
320ae51f 1329
24d2f903
CH
1330 while (!list_empty(&tags->page_list)) {
1331 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1332 list_del_init(&page->lru);
320ae51f
JA
1333 __free_pages(page, page->private);
1334 }
1335
24d2f903 1336 kfree(tags->rqs);
320ae51f 1337
24d2f903 1338 blk_mq_free_tags(tags);
320ae51f
JA
1339}
1340
1341static size_t order_to_size(unsigned int order)
1342{
4ca08500 1343 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1344}
1345
24d2f903
CH
1346static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1347 unsigned int hctx_idx)
320ae51f 1348{
24d2f903 1349 struct blk_mq_tags *tags;
320ae51f
JA
1350 unsigned int i, j, entries_per_page, max_order = 4;
1351 size_t rq_size, left;
1352
24d2f903
CH
1353 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1354 set->numa_node);
1355 if (!tags)
1356 return NULL;
320ae51f 1357
24d2f903
CH
1358 INIT_LIST_HEAD(&tags->page_list);
1359
1360 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1361 GFP_KERNEL, set->numa_node);
1362 if (!tags->rqs) {
1363 blk_mq_free_tags(tags);
1364 return NULL;
1365 }
320ae51f
JA
1366
1367 /*
1368 * rq_size is the size of the request plus driver payload, rounded
1369 * to the cacheline size
1370 */
24d2f903 1371 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1372 cache_line_size());
24d2f903 1373 left = rq_size * set->queue_depth;
320ae51f 1374
24d2f903 1375 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1376 int this_order = max_order;
1377 struct page *page;
1378 int to_do;
1379 void *p;
1380
1381 while (left < order_to_size(this_order - 1) && this_order)
1382 this_order--;
1383
1384 do {
24d2f903
CH
1385 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1386 this_order);
320ae51f
JA
1387 if (page)
1388 break;
1389 if (!this_order--)
1390 break;
1391 if (order_to_size(this_order) < rq_size)
1392 break;
1393 } while (1);
1394
1395 if (!page)
24d2f903 1396 goto fail;
320ae51f
JA
1397
1398 page->private = this_order;
24d2f903 1399 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1400
1401 p = page_address(page);
1402 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1403 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1404 left -= to_do * rq_size;
1405 for (j = 0; j < to_do; j++) {
24d2f903
CH
1406 tags->rqs[i] = p;
1407 if (set->ops->init_request) {
1408 if (set->ops->init_request(set->driver_data,
1409 tags->rqs[i], hctx_idx, i,
1410 set->numa_node))
1411 goto fail;
e9b267d9
CH
1412 }
1413
320ae51f
JA
1414 p += rq_size;
1415 i++;
1416 }
1417 }
1418
24d2f903 1419 return tags;
320ae51f 1420
24d2f903
CH
1421fail:
1422 pr_warn("%s: failed to allocate requests\n", __func__);
1423 blk_mq_free_rq_map(set, tags, hctx_idx);
1424 return NULL;
320ae51f
JA
1425}
1426
1429d7c9
JA
1427static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1428{
1429 kfree(bitmap->map);
1430}
1431
1432static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1433{
1434 unsigned int bpw = 8, total, num_maps, i;
1435
1436 bitmap->bits_per_word = bpw;
1437
1438 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1439 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1440 GFP_KERNEL, node);
1441 if (!bitmap->map)
1442 return -ENOMEM;
1443
1444 bitmap->map_size = num_maps;
1445
1446 total = nr_cpu_ids;
1447 for (i = 0; i < num_maps; i++) {
1448 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1449 total -= bitmap->map[i].depth;
1450 }
1451
1452 return 0;
1453}
1454
484b4061
JA
1455static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1456{
1457 struct request_queue *q = hctx->queue;
1458 struct blk_mq_ctx *ctx;
1459 LIST_HEAD(tmp);
1460
1461 /*
1462 * Move ctx entries to new CPU, if this one is going away.
1463 */
1464 ctx = __blk_mq_get_ctx(q, cpu);
1465
1466 spin_lock(&ctx->lock);
1467 if (!list_empty(&ctx->rq_list)) {
1468 list_splice_init(&ctx->rq_list, &tmp);
1469 blk_mq_hctx_clear_pending(hctx, ctx);
1470 }
1471 spin_unlock(&ctx->lock);
1472
1473 if (list_empty(&tmp))
1474 return NOTIFY_OK;
1475
1476 ctx = blk_mq_get_ctx(q);
1477 spin_lock(&ctx->lock);
1478
1479 while (!list_empty(&tmp)) {
1480 struct request *rq;
1481
1482 rq = list_first_entry(&tmp, struct request, queuelist);
1483 rq->mq_ctx = ctx;
1484 list_move_tail(&rq->queuelist, &ctx->rq_list);
1485 }
1486
1487 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1488 blk_mq_hctx_mark_pending(hctx, ctx);
1489
1490 spin_unlock(&ctx->lock);
1491
1492 blk_mq_run_hw_queue(hctx, true);
1493 blk_mq_put_ctx(ctx);
1494 return NOTIFY_OK;
1495}
1496
1497static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1498{
1499 struct request_queue *q = hctx->queue;
1500 struct blk_mq_tag_set *set = q->tag_set;
1501
1502 if (set->tags[hctx->queue_num])
1503 return NOTIFY_OK;
1504
1505 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1506 if (!set->tags[hctx->queue_num])
1507 return NOTIFY_STOP;
1508
1509 hctx->tags = set->tags[hctx->queue_num];
1510 return NOTIFY_OK;
1511}
1512
1513static int blk_mq_hctx_notify(void *data, unsigned long action,
1514 unsigned int cpu)
1515{
1516 struct blk_mq_hw_ctx *hctx = data;
1517
1518 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1519 return blk_mq_hctx_cpu_offline(hctx, cpu);
1520 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1521 return blk_mq_hctx_cpu_online(hctx, cpu);
1522
1523 return NOTIFY_OK;
1524}
1525
320ae51f 1526static int blk_mq_init_hw_queues(struct request_queue *q,
24d2f903 1527 struct blk_mq_tag_set *set)
320ae51f
JA
1528{
1529 struct blk_mq_hw_ctx *hctx;
1530 unsigned int i, j;
1531
1532 /*
1533 * Initialize hardware queues
1534 */
1535 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f
JA
1536 int node;
1537
1538 node = hctx->numa_node;
1539 if (node == NUMA_NO_NODE)
24d2f903 1540 node = hctx->numa_node = set->numa_node;
320ae51f 1541
70f4db63
CH
1542 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1543 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
320ae51f
JA
1544 spin_lock_init(&hctx->lock);
1545 INIT_LIST_HEAD(&hctx->dispatch);
1546 hctx->queue = q;
1547 hctx->queue_num = i;
24d2f903
CH
1548 hctx->flags = set->flags;
1549 hctx->cmd_size = set->cmd_size;
320ae51f
JA
1550
1551 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1552 blk_mq_hctx_notify, hctx);
1553 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1554
24d2f903 1555 hctx->tags = set->tags[i];
320ae51f
JA
1556
1557 /*
1558 * Allocate space for all possible cpus to avoid allocation in
1559 * runtime
1560 */
1561 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1562 GFP_KERNEL, node);
1563 if (!hctx->ctxs)
1564 break;
1565
1429d7c9 1566 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
320ae51f
JA
1567 break;
1568
320ae51f
JA
1569 hctx->nr_ctx = 0;
1570
24d2f903
CH
1571 if (set->ops->init_hctx &&
1572 set->ops->init_hctx(hctx, set->driver_data, i))
320ae51f
JA
1573 break;
1574 }
1575
1576 if (i == q->nr_hw_queues)
1577 return 0;
1578
1579 /*
1580 * Init failed
1581 */
1582 queue_for_each_hw_ctx(q, hctx, j) {
1583 if (i == j)
1584 break;
1585
24d2f903
CH
1586 if (set->ops->exit_hctx)
1587 set->ops->exit_hctx(hctx, j);
320ae51f
JA
1588
1589 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
320ae51f 1590 kfree(hctx->ctxs);
1429d7c9 1591 blk_mq_free_bitmap(&hctx->ctx_map);
320ae51f
JA
1592 }
1593
1594 return 1;
1595}
1596
1597static void blk_mq_init_cpu_queues(struct request_queue *q,
1598 unsigned int nr_hw_queues)
1599{
1600 unsigned int i;
1601
1602 for_each_possible_cpu(i) {
1603 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1604 struct blk_mq_hw_ctx *hctx;
1605
1606 memset(__ctx, 0, sizeof(*__ctx));
1607 __ctx->cpu = i;
1608 spin_lock_init(&__ctx->lock);
1609 INIT_LIST_HEAD(&__ctx->rq_list);
1610 __ctx->queue = q;
1611
1612 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1613 if (!cpu_online(i))
1614 continue;
1615
e4043dcf
JA
1616 hctx = q->mq_ops->map_queue(q, i);
1617 cpumask_set_cpu(i, hctx->cpumask);
1618 hctx->nr_ctx++;
1619
320ae51f
JA
1620 /*
1621 * Set local node, IFF we have more than one hw queue. If
1622 * not, we remain on the home node of the device
1623 */
1624 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1625 hctx->numa_node = cpu_to_node(i);
1626 }
1627}
1628
1629static void blk_mq_map_swqueue(struct request_queue *q)
1630{
1631 unsigned int i;
1632 struct blk_mq_hw_ctx *hctx;
1633 struct blk_mq_ctx *ctx;
1634
1635 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1636 cpumask_clear(hctx->cpumask);
320ae51f
JA
1637 hctx->nr_ctx = 0;
1638 }
1639
1640 /*
1641 * Map software to hardware queues
1642 */
1643 queue_for_each_ctx(q, ctx, i) {
1644 /* If the cpu isn't online, the cpu is mapped to first hctx */
e4043dcf
JA
1645 if (!cpu_online(i))
1646 continue;
1647
320ae51f 1648 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1649 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1650 ctx->index_hw = hctx->nr_ctx;
1651 hctx->ctxs[hctx->nr_ctx++] = ctx;
1652 }
506e931f
JA
1653
1654 queue_for_each_hw_ctx(q, hctx, i) {
484b4061
JA
1655 /*
1656 * If not software queues are mapped to this hardware queue,
1657 * disable it and free the request entries
1658 */
1659 if (!hctx->nr_ctx) {
1660 struct blk_mq_tag_set *set = q->tag_set;
1661
1662 if (set->tags[i]) {
1663 blk_mq_free_rq_map(set, set->tags[i], i);
1664 set->tags[i] = NULL;
1665 hctx->tags = NULL;
1666 }
1667 continue;
1668 }
1669
1670 /*
1671 * Initialize batch roundrobin counts
1672 */
506e931f
JA
1673 hctx->next_cpu = cpumask_first(hctx->cpumask);
1674 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1675 }
320ae51f
JA
1676}
1677
0d2602ca
JA
1678static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1679{
1680 struct blk_mq_hw_ctx *hctx;
1681 struct request_queue *q;
1682 bool shared;
1683 int i;
1684
1685 if (set->tag_list.next == set->tag_list.prev)
1686 shared = false;
1687 else
1688 shared = true;
1689
1690 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1691 blk_mq_freeze_queue(q);
1692
1693 queue_for_each_hw_ctx(q, hctx, i) {
1694 if (shared)
1695 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1696 else
1697 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1698 }
1699 blk_mq_unfreeze_queue(q);
1700 }
1701}
1702
1703static void blk_mq_del_queue_tag_set(struct request_queue *q)
1704{
1705 struct blk_mq_tag_set *set = q->tag_set;
1706
1707 blk_mq_freeze_queue(q);
1708
1709 mutex_lock(&set->tag_list_lock);
1710 list_del_init(&q->tag_set_list);
1711 blk_mq_update_tag_set_depth(set);
1712 mutex_unlock(&set->tag_list_lock);
1713
1714 blk_mq_unfreeze_queue(q);
1715}
1716
1717static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1718 struct request_queue *q)
1719{
1720 q->tag_set = set;
1721
1722 mutex_lock(&set->tag_list_lock);
1723 list_add_tail(&q->tag_set_list, &set->tag_list);
1724 blk_mq_update_tag_set_depth(set);
1725 mutex_unlock(&set->tag_list_lock);
1726}
1727
24d2f903 1728struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
320ae51f
JA
1729{
1730 struct blk_mq_hw_ctx **hctxs;
1731 struct blk_mq_ctx *ctx;
1732 struct request_queue *q;
1733 int i;
1734
320ae51f
JA
1735 ctx = alloc_percpu(struct blk_mq_ctx);
1736 if (!ctx)
1737 return ERR_PTR(-ENOMEM);
1738
24d2f903
CH
1739 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1740 set->numa_node);
320ae51f
JA
1741
1742 if (!hctxs)
1743 goto err_percpu;
1744
24d2f903
CH
1745 for (i = 0; i < set->nr_hw_queues; i++) {
1746 hctxs[i] = set->ops->alloc_hctx(set, i);
320ae51f
JA
1747 if (!hctxs[i])
1748 goto err_hctxs;
1749
e4043dcf
JA
1750 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1751 goto err_hctxs;
1752
0d2602ca 1753 atomic_set(&hctxs[i]->nr_active, 0);
320ae51f
JA
1754 hctxs[i]->numa_node = NUMA_NO_NODE;
1755 hctxs[i]->queue_num = i;
1756 }
1757
24d2f903 1758 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
320ae51f
JA
1759 if (!q)
1760 goto err_hctxs;
1761
24d2f903 1762 q->mq_map = blk_mq_make_queue_map(set);
320ae51f
JA
1763 if (!q->mq_map)
1764 goto err_map;
1765
1766 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1767 blk_queue_rq_timeout(q, 30000);
1768
1769 q->nr_queues = nr_cpu_ids;
24d2f903 1770 q->nr_hw_queues = set->nr_hw_queues;
320ae51f
JA
1771
1772 q->queue_ctx = ctx;
1773 q->queue_hw_ctx = hctxs;
1774
24d2f903 1775 q->mq_ops = set->ops;
94eddfbe 1776 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1777
1be036e9
CH
1778 q->sg_reserved_size = INT_MAX;
1779
07068d5b
JA
1780 if (q->nr_hw_queues > 1)
1781 blk_queue_make_request(q, blk_mq_make_request);
1782 else
1783 blk_queue_make_request(q, blk_sq_make_request);
1784
87ee7b11 1785 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
24d2f903
CH
1786 if (set->timeout)
1787 blk_queue_rq_timeout(q, set->timeout);
320ae51f 1788
eba71768
JA
1789 /*
1790 * Do this after blk_queue_make_request() overrides it...
1791 */
1792 q->nr_requests = set->queue_depth;
1793
24d2f903
CH
1794 if (set->ops->complete)
1795 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 1796
320ae51f 1797 blk_mq_init_flush(q);
24d2f903 1798 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 1799
24d2f903
CH
1800 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1801 set->cmd_size, cache_line_size()),
1802 GFP_KERNEL);
18741986 1803 if (!q->flush_rq)
320ae51f
JA
1804 goto err_hw;
1805
24d2f903 1806 if (blk_mq_init_hw_queues(q, set))
18741986
CH
1807 goto err_flush_rq;
1808
320ae51f
JA
1809 mutex_lock(&all_q_mutex);
1810 list_add_tail(&q->all_q_node, &all_q_list);
1811 mutex_unlock(&all_q_mutex);
1812
0d2602ca
JA
1813 blk_mq_add_queue_tag_set(set, q);
1814
484b4061
JA
1815 blk_mq_map_swqueue(q);
1816
320ae51f 1817 return q;
18741986
CH
1818
1819err_flush_rq:
1820 kfree(q->flush_rq);
320ae51f
JA
1821err_hw:
1822 kfree(q->mq_map);
1823err_map:
1824 blk_cleanup_queue(q);
1825err_hctxs:
24d2f903 1826 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
1827 if (!hctxs[i])
1828 break;
e4043dcf 1829 free_cpumask_var(hctxs[i]->cpumask);
24d2f903 1830 set->ops->free_hctx(hctxs[i], i);
320ae51f
JA
1831 }
1832 kfree(hctxs);
1833err_percpu:
1834 free_percpu(ctx);
1835 return ERR_PTR(-ENOMEM);
1836}
1837EXPORT_SYMBOL(blk_mq_init_queue);
1838
1839void blk_mq_free_queue(struct request_queue *q)
1840{
1841 struct blk_mq_hw_ctx *hctx;
1842 int i;
1843
0d2602ca
JA
1844 blk_mq_del_queue_tag_set(q);
1845
320ae51f 1846 queue_for_each_hw_ctx(q, hctx, i) {
19c5d84f 1847 blk_mq_tag_idle(hctx);
320ae51f 1848 kfree(hctx->ctxs);
1f9f07e9 1849 blk_mq_free_bitmap(&hctx->ctx_map);
320ae51f
JA
1850 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1851 if (q->mq_ops->exit_hctx)
1852 q->mq_ops->exit_hctx(hctx, i);
e4043dcf 1853 free_cpumask_var(hctx->cpumask);
320ae51f
JA
1854 q->mq_ops->free_hctx(hctx, i);
1855 }
1856
1857 free_percpu(q->queue_ctx);
1858 kfree(q->queue_hw_ctx);
1859 kfree(q->mq_map);
1860
1861 q->queue_ctx = NULL;
1862 q->queue_hw_ctx = NULL;
1863 q->mq_map = NULL;
1864
1865 mutex_lock(&all_q_mutex);
1866 list_del_init(&q->all_q_node);
1867 mutex_unlock(&all_q_mutex);
1868}
320ae51f
JA
1869
1870/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1871static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1872{
1873 blk_mq_freeze_queue(q);
1874
1875 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1876
1877 /*
1878 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1879 * we should change hctx numa_node according to new topology (this
1880 * involves free and re-allocate memory, worthy doing?)
1881 */
1882
1883 blk_mq_map_swqueue(q);
1884
1885 blk_mq_unfreeze_queue(q);
1886}
1887
f618ef7c
PG
1888static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1889 unsigned long action, void *hcpu)
320ae51f
JA
1890{
1891 struct request_queue *q;
1892
1893 /*
9fccfed8
JA
1894 * Before new mappings are established, hotadded cpu might already
1895 * start handling requests. This doesn't break anything as we map
1896 * offline CPUs to first hardware queue. We will re-init the queue
1897 * below to get optimal settings.
320ae51f
JA
1898 */
1899 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1900 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1901 return NOTIFY_OK;
1902
1903 mutex_lock(&all_q_mutex);
1904 list_for_each_entry(q, &all_q_list, all_q_node)
1905 blk_mq_queue_reinit(q);
1906 mutex_unlock(&all_q_mutex);
1907 return NOTIFY_OK;
1908}
1909
24d2f903
CH
1910int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1911{
1912 int i;
1913
1914 if (!set->nr_hw_queues)
1915 return -EINVAL;
1916 if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
1917 return -EINVAL;
1918 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1919 return -EINVAL;
1920
1921 if (!set->nr_hw_queues ||
1922 !set->ops->queue_rq || !set->ops->map_queue ||
1923 !set->ops->alloc_hctx || !set->ops->free_hctx)
1924 return -EINVAL;
1925
1926
48479005
ML
1927 set->tags = kmalloc_node(set->nr_hw_queues *
1928 sizeof(struct blk_mq_tags *),
24d2f903
CH
1929 GFP_KERNEL, set->numa_node);
1930 if (!set->tags)
1931 goto out;
1932
1933 for (i = 0; i < set->nr_hw_queues; i++) {
1934 set->tags[i] = blk_mq_init_rq_map(set, i);
1935 if (!set->tags[i])
1936 goto out_unwind;
1937 }
1938
0d2602ca
JA
1939 mutex_init(&set->tag_list_lock);
1940 INIT_LIST_HEAD(&set->tag_list);
1941
24d2f903
CH
1942 return 0;
1943
1944out_unwind:
1945 while (--i >= 0)
1946 blk_mq_free_rq_map(set, set->tags[i], i);
1947out:
1948 return -ENOMEM;
1949}
1950EXPORT_SYMBOL(blk_mq_alloc_tag_set);
1951
1952void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
1953{
1954 int i;
1955
484b4061
JA
1956 for (i = 0; i < set->nr_hw_queues; i++) {
1957 if (set->tags[i])
1958 blk_mq_free_rq_map(set, set->tags[i], i);
1959 }
1960
981bd189 1961 kfree(set->tags);
24d2f903
CH
1962}
1963EXPORT_SYMBOL(blk_mq_free_tag_set);
1964
e3a2b3f9
JA
1965int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
1966{
1967 struct blk_mq_tag_set *set = q->tag_set;
1968 struct blk_mq_hw_ctx *hctx;
1969 int i, ret;
1970
1971 if (!set || nr > set->queue_depth)
1972 return -EINVAL;
1973
1974 ret = 0;
1975 queue_for_each_hw_ctx(q, hctx, i) {
1976 ret = blk_mq_tag_update_depth(hctx->tags, nr);
1977 if (ret)
1978 break;
1979 }
1980
1981 if (!ret)
1982 q->nr_requests = nr;
1983
1984 return ret;
1985}
1986
676141e4
JA
1987void blk_mq_disable_hotplug(void)
1988{
1989 mutex_lock(&all_q_mutex);
1990}
1991
1992void blk_mq_enable_hotplug(void)
1993{
1994 mutex_unlock(&all_q_mutex);
1995}
1996
320ae51f
JA
1997static int __init blk_mq_init(void)
1998{
320ae51f
JA
1999 blk_mq_cpu_init();
2000
2001 /* Must be called after percpu_counter_hotcpu_callback() */
2002 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
2003
2004 return 0;
2005}
2006subsys_initcall(blk_mq_init);