]> git.ipfire.org Git - people/arne_f/kernel.git/blame - block/blk-mq.c
ktime: Get rid of the union
[people/arne_f/kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
23#include <linux/delay.h>
aedcd72f 24#include <linux/crash_dump.h>
88c7b2b7 25#include <linux/prefetch.h>
320ae51f
JA
26
27#include <trace/events/block.h>
28
29#include <linux/blk-mq.h>
30#include "blk.h"
31#include "blk-mq.h"
32#include "blk-mq-tag.h"
cf43e6be 33#include "blk-stat.h"
87760e5e 34#include "blk-wbt.h"
320ae51f
JA
35
36static DEFINE_MUTEX(all_q_mutex);
37static LIST_HEAD(all_q_list);
38
320ae51f
JA
39/*
40 * Check if any of the ctx's have pending work in this hardware queue
41 */
42static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
43{
88459642 44 return sbitmap_any_bit_set(&hctx->ctx_map);
1429d7c9
JA
45}
46
320ae51f
JA
47/*
48 * Mark this ctx as having pending work in this hardware queue
49 */
50static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52{
88459642
OS
53 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
54 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
55}
56
57static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
58 struct blk_mq_ctx *ctx)
59{
88459642 60 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
61}
62
b4c6a028 63void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 64{
4ecd4fef 65 int freeze_depth;
cddd5d17 66
4ecd4fef
CH
67 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
68 if (freeze_depth == 1) {
3ef28e83 69 percpu_ref_kill(&q->q_usage_counter);
b94ec296 70 blk_mq_run_hw_queues(q, false);
cddd5d17 71 }
f3af020b 72}
b4c6a028 73EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
f3af020b
TH
74
75static void blk_mq_freeze_queue_wait(struct request_queue *q)
76{
3ef28e83 77 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2
ML
78}
79
f3af020b
TH
80/*
81 * Guarantee no request is in use, so we can change any data structure of
82 * the queue afterward.
83 */
3ef28e83 84void blk_freeze_queue(struct request_queue *q)
f3af020b 85{
3ef28e83
DW
86 /*
87 * In the !blk_mq case we are only calling this to kill the
88 * q_usage_counter, otherwise this increases the freeze depth
89 * and waits for it to return to zero. For this reason there is
90 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
91 * exported to drivers as the only user for unfreeze is blk_mq.
92 */
f3af020b
TH
93 blk_mq_freeze_queue_start(q);
94 blk_mq_freeze_queue_wait(q);
95}
3ef28e83
DW
96
97void blk_mq_freeze_queue(struct request_queue *q)
98{
99 /*
100 * ...just an alias to keep freeze and unfreeze actions balanced
101 * in the blk_mq_* namespace
102 */
103 blk_freeze_queue(q);
104}
c761d96b 105EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 106
b4c6a028 107void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 108{
4ecd4fef 109 int freeze_depth;
320ae51f 110
4ecd4fef
CH
111 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
112 WARN_ON_ONCE(freeze_depth < 0);
113 if (!freeze_depth) {
3ef28e83 114 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 115 wake_up_all(&q->mq_freeze_wq);
add703fd 116 }
320ae51f 117}
b4c6a028 118EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 119
6a83e74d
BVA
120/**
121 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
122 * @q: request queue.
123 *
124 * Note: this function does not prevent that the struct request end_io()
125 * callback function is invoked. Additionally, it is not prevented that
126 * new queue_rq() calls occur unless the queue has been stopped first.
127 */
128void blk_mq_quiesce_queue(struct request_queue *q)
129{
130 struct blk_mq_hw_ctx *hctx;
131 unsigned int i;
132 bool rcu = false;
133
134 blk_mq_stop_hw_queues(q);
135
136 queue_for_each_hw_ctx(q, hctx, i) {
137 if (hctx->flags & BLK_MQ_F_BLOCKING)
138 synchronize_srcu(&hctx->queue_rq_srcu);
139 else
140 rcu = true;
141 }
142 if (rcu)
143 synchronize_rcu();
144}
145EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
146
aed3ea94
JA
147void blk_mq_wake_waiters(struct request_queue *q)
148{
149 struct blk_mq_hw_ctx *hctx;
150 unsigned int i;
151
152 queue_for_each_hw_ctx(q, hctx, i)
153 if (blk_mq_hw_queue_mapped(hctx))
154 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
155
156 /*
157 * If we are called because the queue has now been marked as
158 * dying, we need to ensure that processes currently waiting on
159 * the queue are notified as well.
160 */
161 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
162}
163
320ae51f
JA
164bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
165{
166 return blk_mq_has_free_tags(hctx->tags);
167}
168EXPORT_SYMBOL(blk_mq_can_queue);
169
94eddfbe 170static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
ef295ecf 171 struct request *rq, unsigned int op)
320ae51f 172{
af76e555
CH
173 INIT_LIST_HEAD(&rq->queuelist);
174 /* csd/requeue_work/fifo_time is initialized before use */
175 rq->q = q;
320ae51f 176 rq->mq_ctx = ctx;
ef295ecf 177 rq->cmd_flags = op;
e8064021
CH
178 if (blk_queue_io_stat(q))
179 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
180 /* do not touch atomic flags, it needs atomic ops against the timer */
181 rq->cpu = -1;
af76e555
CH
182 INIT_HLIST_NODE(&rq->hash);
183 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
184 rq->rq_disk = NULL;
185 rq->part = NULL;
3ee32372 186 rq->start_time = jiffies;
af76e555
CH
187#ifdef CONFIG_BLK_CGROUP
188 rq->rl = NULL;
0fec08b4 189 set_start_time_ns(rq);
af76e555
CH
190 rq->io_start_time_ns = 0;
191#endif
192 rq->nr_phys_segments = 0;
193#if defined(CONFIG_BLK_DEV_INTEGRITY)
194 rq->nr_integrity_segments = 0;
195#endif
af76e555
CH
196 rq->special = NULL;
197 /* tag was already set */
198 rq->errors = 0;
af76e555 199
6f4a1626
TB
200 rq->cmd = rq->__cmd;
201
af76e555
CH
202 rq->extra_len = 0;
203 rq->sense_len = 0;
204 rq->resid_len = 0;
205 rq->sense = NULL;
206
af76e555 207 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
208 rq->timeout = 0;
209
af76e555
CH
210 rq->end_io = NULL;
211 rq->end_io_data = NULL;
212 rq->next_rq = NULL;
213
ef295ecf 214 ctx->rq_dispatched[op_is_sync(op)]++;
320ae51f
JA
215}
216
5dee8577 217static struct request *
ef295ecf 218__blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op)
5dee8577
CH
219{
220 struct request *rq;
221 unsigned int tag;
222
cb96a42c 223 tag = blk_mq_get_tag(data);
5dee8577 224 if (tag != BLK_MQ_TAG_FAIL) {
cb96a42c 225 rq = data->hctx->tags->rqs[tag];
5dee8577 226
cb96a42c 227 if (blk_mq_tag_busy(data->hctx)) {
e8064021 228 rq->rq_flags = RQF_MQ_INFLIGHT;
cb96a42c 229 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
230 }
231
232 rq->tag = tag;
ef295ecf 233 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
5dee8577
CH
234 return rq;
235 }
236
237 return NULL;
238}
239
6f3b0e8b
CH
240struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
241 unsigned int flags)
320ae51f 242{
d852564f
CH
243 struct blk_mq_ctx *ctx;
244 struct blk_mq_hw_ctx *hctx;
320ae51f 245 struct request *rq;
cb96a42c 246 struct blk_mq_alloc_data alloc_data;
a492f075 247 int ret;
320ae51f 248
6f3b0e8b 249 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
250 if (ret)
251 return ERR_PTR(ret);
320ae51f 252
d852564f 253 ctx = blk_mq_get_ctx(q);
7d7e0f90 254 hctx = blk_mq_map_queue(q, ctx->cpu);
6f3b0e8b 255 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
ef295ecf 256 rq = __blk_mq_alloc_request(&alloc_data, rw);
d852564f 257 blk_mq_put_ctx(ctx);
841bac2c 258
c76541a9 259 if (!rq) {
3ef28e83 260 blk_queue_exit(q);
a492f075 261 return ERR_PTR(-EWOULDBLOCK);
c76541a9 262 }
0c4de0f3
CH
263
264 rq->__data_len = 0;
265 rq->__sector = (sector_t) -1;
266 rq->bio = rq->biotail = NULL;
320ae51f
JA
267 return rq;
268}
4bb659b1 269EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 270
1f5bd336
ML
271struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
272 unsigned int flags, unsigned int hctx_idx)
273{
274 struct blk_mq_hw_ctx *hctx;
275 struct blk_mq_ctx *ctx;
276 struct request *rq;
277 struct blk_mq_alloc_data alloc_data;
278 int ret;
279
280 /*
281 * If the tag allocator sleeps we could get an allocation for a
282 * different hardware context. No need to complicate the low level
283 * allocator for this for the rare use case of a command tied to
284 * a specific queue.
285 */
286 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
287 return ERR_PTR(-EINVAL);
288
289 if (hctx_idx >= q->nr_hw_queues)
290 return ERR_PTR(-EIO);
291
292 ret = blk_queue_enter(q, true);
293 if (ret)
294 return ERR_PTR(ret);
295
c8712c6a
CH
296 /*
297 * Check if the hardware context is actually mapped to anything.
298 * If not tell the caller that it should skip this queue.
299 */
1f5bd336 300 hctx = q->queue_hw_ctx[hctx_idx];
c8712c6a
CH
301 if (!blk_mq_hw_queue_mapped(hctx)) {
302 ret = -EXDEV;
303 goto out_queue_exit;
304 }
1f5bd336
ML
305 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
306
307 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
ef295ecf 308 rq = __blk_mq_alloc_request(&alloc_data, rw);
1f5bd336 309 if (!rq) {
c8712c6a
CH
310 ret = -EWOULDBLOCK;
311 goto out_queue_exit;
1f5bd336
ML
312 }
313
314 return rq;
c8712c6a
CH
315
316out_queue_exit:
317 blk_queue_exit(q);
318 return ERR_PTR(ret);
1f5bd336
ML
319}
320EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
321
320ae51f
JA
322static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
323 struct blk_mq_ctx *ctx, struct request *rq)
324{
325 const int tag = rq->tag;
326 struct request_queue *q = rq->q;
327
e8064021 328 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 329 atomic_dec(&hctx->nr_active);
87760e5e
JA
330
331 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 332 rq->rq_flags = 0;
0d2602ca 333
af76e555 334 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 335 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
40aabb67 336 blk_mq_put_tag(hctx, ctx, tag);
3ef28e83 337 blk_queue_exit(q);
320ae51f
JA
338}
339
7c7f2f2b 340void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
320ae51f
JA
341{
342 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
343
344 ctx->rq_completed[rq_is_sync(rq)]++;
320ae51f 345 __blk_mq_free_request(hctx, ctx, rq);
7c7f2f2b
JA
346
347}
348EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
349
350void blk_mq_free_request(struct request *rq)
351{
7d7e0f90 352 blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
320ae51f 353}
1a3b595a 354EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 355
c8a446ad 356inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 357{
0d11e6ac
ML
358 blk_account_io_done(rq);
359
91b63639 360 if (rq->end_io) {
87760e5e 361 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 362 rq->end_io(rq, error);
91b63639
CH
363 } else {
364 if (unlikely(blk_bidi_rq(rq)))
365 blk_mq_free_request(rq->next_rq);
320ae51f 366 blk_mq_free_request(rq);
91b63639 367 }
320ae51f 368}
c8a446ad 369EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 370
c8a446ad 371void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
372{
373 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
374 BUG();
c8a446ad 375 __blk_mq_end_request(rq, error);
63151a44 376}
c8a446ad 377EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 378
30a91cb4 379static void __blk_mq_complete_request_remote(void *data)
320ae51f 380{
3d6efbf6 381 struct request *rq = data;
320ae51f 382
30a91cb4 383 rq->q->softirq_done_fn(rq);
320ae51f 384}
320ae51f 385
ed851860 386static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
387{
388 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 389 bool shared = false;
320ae51f
JA
390 int cpu;
391
38535201 392 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
393 rq->q->softirq_done_fn(rq);
394 return;
395 }
320ae51f
JA
396
397 cpu = get_cpu();
38535201
CH
398 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
399 shared = cpus_share_cache(cpu, ctx->cpu);
400
401 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 402 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
403 rq->csd.info = rq;
404 rq->csd.flags = 0;
c46fff2a 405 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 406 } else {
30a91cb4 407 rq->q->softirq_done_fn(rq);
3d6efbf6 408 }
320ae51f
JA
409 put_cpu();
410}
30a91cb4 411
cf43e6be
JA
412static void blk_mq_stat_add(struct request *rq)
413{
414 if (rq->rq_flags & RQF_STATS) {
415 /*
416 * We could rq->mq_ctx here, but there's less of a risk
417 * of races if we have the completion event add the stats
418 * to the local software queue.
419 */
420 struct blk_mq_ctx *ctx;
421
422 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
423 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
424 }
425}
426
1fa8cc52 427static void __blk_mq_complete_request(struct request *rq)
ed851860
JA
428{
429 struct request_queue *q = rq->q;
430
cf43e6be
JA
431 blk_mq_stat_add(rq);
432
ed851860 433 if (!q->softirq_done_fn)
c8a446ad 434 blk_mq_end_request(rq, rq->errors);
ed851860
JA
435 else
436 blk_mq_ipi_complete_request(rq);
437}
438
30a91cb4
CH
439/**
440 * blk_mq_complete_request - end I/O on a request
441 * @rq: the request being processed
442 *
443 * Description:
444 * Ends all I/O on a request. It does not handle partial completions.
445 * The actual completion happens out-of-order, through a IPI handler.
446 **/
f4829a9b 447void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 448{
95f09684
JA
449 struct request_queue *q = rq->q;
450
451 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 452 return;
f4829a9b
CH
453 if (!blk_mark_rq_complete(rq)) {
454 rq->errors = error;
ed851860 455 __blk_mq_complete_request(rq);
f4829a9b 456 }
30a91cb4
CH
457}
458EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 459
973c0191
KB
460int blk_mq_request_started(struct request *rq)
461{
462 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
463}
464EXPORT_SYMBOL_GPL(blk_mq_request_started);
465
e2490073 466void blk_mq_start_request(struct request *rq)
320ae51f
JA
467{
468 struct request_queue *q = rq->q;
469
470 trace_block_rq_issue(q, rq);
471
742ee69b 472 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
473 if (unlikely(blk_bidi_rq(rq)))
474 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 475
cf43e6be
JA
476 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
477 blk_stat_set_issue_time(&rq->issue_stat);
478 rq->rq_flags |= RQF_STATS;
87760e5e 479 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
480 }
481
2b8393b4 482 blk_add_timer(rq);
87ee7b11 483
538b7534
JA
484 /*
485 * Ensure that ->deadline is visible before set the started
486 * flag and clear the completed flag.
487 */
488 smp_mb__before_atomic();
489
87ee7b11
JA
490 /*
491 * Mark us as started and clear complete. Complete might have been
492 * set if requeue raced with timeout, which then marked it as
493 * complete. So be sure to clear complete again when we start
494 * the request, otherwise we'll ignore the completion event.
495 */
4b570521
JA
496 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
497 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
498 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
499 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
500
501 if (q->dma_drain_size && blk_rq_bytes(rq)) {
502 /*
503 * Make sure space for the drain appears. We know we can do
504 * this because max_hw_segments has been adjusted to be one
505 * fewer than the device can handle.
506 */
507 rq->nr_phys_segments++;
508 }
320ae51f 509}
e2490073 510EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 511
ed0791b2 512static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
513{
514 struct request_queue *q = rq->q;
515
516 trace_block_rq_requeue(q, rq);
87760e5e 517 wbt_requeue(q->rq_wb, &rq->issue_stat);
49f5baa5 518
e2490073
CH
519 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
520 if (q->dma_drain_size && blk_rq_bytes(rq))
521 rq->nr_phys_segments--;
522 }
320ae51f
JA
523}
524
2b053aca 525void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 526{
ed0791b2 527 __blk_mq_requeue_request(rq);
ed0791b2 528
ed0791b2 529 BUG_ON(blk_queued_rq(rq));
2b053aca 530 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
531}
532EXPORT_SYMBOL(blk_mq_requeue_request);
533
6fca6a61
CH
534static void blk_mq_requeue_work(struct work_struct *work)
535{
536 struct request_queue *q =
2849450a 537 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
538 LIST_HEAD(rq_list);
539 struct request *rq, *next;
540 unsigned long flags;
541
542 spin_lock_irqsave(&q->requeue_lock, flags);
543 list_splice_init(&q->requeue_list, &rq_list);
544 spin_unlock_irqrestore(&q->requeue_lock, flags);
545
546 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 547 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
548 continue;
549
e8064021 550 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61
CH
551 list_del_init(&rq->queuelist);
552 blk_mq_insert_request(rq, true, false, false);
553 }
554
555 while (!list_empty(&rq_list)) {
556 rq = list_entry(rq_list.next, struct request, queuelist);
557 list_del_init(&rq->queuelist);
558 blk_mq_insert_request(rq, false, false, false);
559 }
560
52d7f1b5 561 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
562}
563
2b053aca
BVA
564void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
565 bool kick_requeue_list)
6fca6a61
CH
566{
567 struct request_queue *q = rq->q;
568 unsigned long flags;
569
570 /*
571 * We abuse this flag that is otherwise used by the I/O scheduler to
572 * request head insertation from the workqueue.
573 */
e8064021 574 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
575
576 spin_lock_irqsave(&q->requeue_lock, flags);
577 if (at_head) {
e8064021 578 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
579 list_add(&rq->queuelist, &q->requeue_list);
580 } else {
581 list_add_tail(&rq->queuelist, &q->requeue_list);
582 }
583 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
584
585 if (kick_requeue_list)
586 blk_mq_kick_requeue_list(q);
6fca6a61
CH
587}
588EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
589
590void blk_mq_kick_requeue_list(struct request_queue *q)
591{
2849450a 592 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
593}
594EXPORT_SYMBOL(blk_mq_kick_requeue_list);
595
2849450a
MS
596void blk_mq_delay_kick_requeue_list(struct request_queue *q,
597 unsigned long msecs)
598{
599 kblockd_schedule_delayed_work(&q->requeue_work,
600 msecs_to_jiffies(msecs));
601}
602EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
603
1885b24d
JA
604void blk_mq_abort_requeue_list(struct request_queue *q)
605{
606 unsigned long flags;
607 LIST_HEAD(rq_list);
608
609 spin_lock_irqsave(&q->requeue_lock, flags);
610 list_splice_init(&q->requeue_list, &rq_list);
611 spin_unlock_irqrestore(&q->requeue_lock, flags);
612
613 while (!list_empty(&rq_list)) {
614 struct request *rq;
615
616 rq = list_first_entry(&rq_list, struct request, queuelist);
617 list_del_init(&rq->queuelist);
618 rq->errors = -EIO;
619 blk_mq_end_request(rq, rq->errors);
620 }
621}
622EXPORT_SYMBOL(blk_mq_abort_requeue_list);
623
0e62f51f
JA
624struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
625{
88c7b2b7
JA
626 if (tag < tags->nr_tags) {
627 prefetch(tags->rqs[tag]);
4ee86bab 628 return tags->rqs[tag];
88c7b2b7 629 }
4ee86bab
HR
630
631 return NULL;
24d2f903
CH
632}
633EXPORT_SYMBOL(blk_mq_tag_to_rq);
634
320ae51f 635struct blk_mq_timeout_data {
46f92d42
CH
636 unsigned long next;
637 unsigned int next_set;
320ae51f
JA
638};
639
90415837 640void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 641{
46f92d42
CH
642 struct blk_mq_ops *ops = req->q->mq_ops;
643 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
644
645 /*
646 * We know that complete is set at this point. If STARTED isn't set
647 * anymore, then the request isn't active and the "timeout" should
648 * just be ignored. This can happen due to the bitflag ordering.
649 * Timeout first checks if STARTED is set, and if it is, assumes
650 * the request is active. But if we race with completion, then
651 * we both flags will get cleared. So check here again, and ignore
652 * a timeout event with a request that isn't active.
653 */
46f92d42
CH
654 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
655 return;
87ee7b11 656
46f92d42 657 if (ops->timeout)
0152fb6b 658 ret = ops->timeout(req, reserved);
46f92d42
CH
659
660 switch (ret) {
661 case BLK_EH_HANDLED:
662 __blk_mq_complete_request(req);
663 break;
664 case BLK_EH_RESET_TIMER:
665 blk_add_timer(req);
666 blk_clear_rq_complete(req);
667 break;
668 case BLK_EH_NOT_HANDLED:
669 break;
670 default:
671 printk(KERN_ERR "block: bad eh return: %d\n", ret);
672 break;
673 }
87ee7b11 674}
5b3f25fc 675
81481eb4
CH
676static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
677 struct request *rq, void *priv, bool reserved)
678{
679 struct blk_mq_timeout_data *data = priv;
87ee7b11 680
eb130dbf
KB
681 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
682 /*
683 * If a request wasn't started before the queue was
684 * marked dying, kill it here or it'll go unnoticed.
685 */
a59e0f57
KB
686 if (unlikely(blk_queue_dying(rq->q))) {
687 rq->errors = -EIO;
688 blk_mq_end_request(rq, rq->errors);
689 }
46f92d42 690 return;
eb130dbf 691 }
87ee7b11 692
46f92d42
CH
693 if (time_after_eq(jiffies, rq->deadline)) {
694 if (!blk_mark_rq_complete(rq))
0152fb6b 695 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
696 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
697 data->next = rq->deadline;
698 data->next_set = 1;
699 }
87ee7b11
JA
700}
701
287922eb 702static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 703{
287922eb
CH
704 struct request_queue *q =
705 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
706 struct blk_mq_timeout_data data = {
707 .next = 0,
708 .next_set = 0,
709 };
81481eb4 710 int i;
320ae51f 711
71f79fb3
GKB
712 /* A deadlock might occur if a request is stuck requiring a
713 * timeout at the same time a queue freeze is waiting
714 * completion, since the timeout code would not be able to
715 * acquire the queue reference here.
716 *
717 * That's why we don't use blk_queue_enter here; instead, we use
718 * percpu_ref_tryget directly, because we need to be able to
719 * obtain a reference even in the short window between the queue
720 * starting to freeze, by dropping the first reference in
721 * blk_mq_freeze_queue_start, and the moment the last request is
722 * consumed, marked by the instant q_usage_counter reaches
723 * zero.
724 */
725 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
726 return;
727
0bf6cd5b 728 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 729
81481eb4
CH
730 if (data.next_set) {
731 data.next = blk_rq_timeout(round_jiffies_up(data.next));
732 mod_timer(&q->timeout, data.next);
0d2602ca 733 } else {
0bf6cd5b
CH
734 struct blk_mq_hw_ctx *hctx;
735
f054b56c
ML
736 queue_for_each_hw_ctx(q, hctx, i) {
737 /* the hctx may be unmapped, so check it here */
738 if (blk_mq_hw_queue_mapped(hctx))
739 blk_mq_tag_idle(hctx);
740 }
0d2602ca 741 }
287922eb 742 blk_queue_exit(q);
320ae51f
JA
743}
744
745/*
746 * Reverse check our software queue for entries that we could potentially
747 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
748 * too much time checking for merges.
749 */
750static bool blk_mq_attempt_merge(struct request_queue *q,
751 struct blk_mq_ctx *ctx, struct bio *bio)
752{
753 struct request *rq;
754 int checked = 8;
755
756 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
757 int el_ret;
758
759 if (!checked--)
760 break;
761
762 if (!blk_rq_merge_ok(rq, bio))
763 continue;
764
765 el_ret = blk_try_merge(rq, bio);
766 if (el_ret == ELEVATOR_BACK_MERGE) {
767 if (bio_attempt_back_merge(q, rq, bio)) {
768 ctx->rq_merged++;
769 return true;
770 }
771 break;
772 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
773 if (bio_attempt_front_merge(q, rq, bio)) {
774 ctx->rq_merged++;
775 return true;
776 }
777 break;
778 }
779 }
780
781 return false;
782}
783
88459642
OS
784struct flush_busy_ctx_data {
785 struct blk_mq_hw_ctx *hctx;
786 struct list_head *list;
787};
788
789static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
790{
791 struct flush_busy_ctx_data *flush_data = data;
792 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
793 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
794
795 sbitmap_clear_bit(sb, bitnr);
796 spin_lock(&ctx->lock);
797 list_splice_tail_init(&ctx->rq_list, flush_data->list);
798 spin_unlock(&ctx->lock);
799 return true;
800}
801
1429d7c9
JA
802/*
803 * Process software queues that have been marked busy, splicing them
804 * to the for-dispatch
805 */
806static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
807{
88459642
OS
808 struct flush_busy_ctx_data data = {
809 .hctx = hctx,
810 .list = list,
811 };
1429d7c9 812
88459642 813 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 814}
1429d7c9 815
703fd1c0
JA
816static inline unsigned int queued_to_index(unsigned int queued)
817{
818 if (!queued)
819 return 0;
1429d7c9 820
703fd1c0 821 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
822}
823
f04c3df3 824bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
320ae51f
JA
825{
826 struct request_queue *q = hctx->queue;
320ae51f 827 struct request *rq;
74c45052
JA
828 LIST_HEAD(driver_list);
829 struct list_head *dptr;
f04c3df3 830 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
320ae51f 831
74c45052
JA
832 /*
833 * Start off with dptr being NULL, so we start the first request
834 * immediately, even if we have more pending.
835 */
836 dptr = NULL;
837
320ae51f
JA
838 /*
839 * Now process all the entries, sending them to the driver.
840 */
1429d7c9 841 queued = 0;
f04c3df3 842 while (!list_empty(list)) {
74c45052 843 struct blk_mq_queue_data bd;
320ae51f 844
f04c3df3 845 rq = list_first_entry(list, struct request, queuelist);
320ae51f 846 list_del_init(&rq->queuelist);
320ae51f 847
74c45052
JA
848 bd.rq = rq;
849 bd.list = dptr;
f04c3df3 850 bd.last = list_empty(list);
74c45052
JA
851
852 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
853 switch (ret) {
854 case BLK_MQ_RQ_QUEUE_OK:
855 queued++;
52b9c330 856 break;
320ae51f 857 case BLK_MQ_RQ_QUEUE_BUSY:
f04c3df3 858 list_add(&rq->queuelist, list);
ed0791b2 859 __blk_mq_requeue_request(rq);
320ae51f
JA
860 break;
861 default:
862 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 863 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 864 rq->errors = -EIO;
c8a446ad 865 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
866 break;
867 }
868
869 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
870 break;
74c45052
JA
871
872 /*
873 * We've done the first request. If we have more than 1
874 * left in the list, set dptr to defer issue.
875 */
f04c3df3 876 if (!dptr && list->next != list->prev)
74c45052 877 dptr = &driver_list;
320ae51f
JA
878 }
879
703fd1c0 880 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
881
882 /*
883 * Any items that need requeuing? Stuff them into hctx->dispatch,
884 * that is where we will continue on next queue run.
885 */
f04c3df3 886 if (!list_empty(list)) {
320ae51f 887 spin_lock(&hctx->lock);
f04c3df3 888 list_splice(list, &hctx->dispatch);
320ae51f 889 spin_unlock(&hctx->lock);
f04c3df3 890
9ba52e58
SL
891 /*
892 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
893 * it's possible the queue is stopped and restarted again
894 * before this. Queue restart will dispatch requests. And since
895 * requests in rq_list aren't added into hctx->dispatch yet,
896 * the requests in rq_list might get lost.
897 *
898 * blk_mq_run_hw_queue() already checks the STOPPED bit
899 **/
900 blk_mq_run_hw_queue(hctx, true);
320ae51f 901 }
f04c3df3
JA
902
903 return ret != BLK_MQ_RQ_QUEUE_BUSY;
904}
905
906/*
907 * Run this hardware queue, pulling any software queues mapped to it in.
908 * Note that this function currently has various problems around ordering
909 * of IO. In particular, we'd like FIFO behaviour on handling existing
910 * items on the hctx->dispatch list. Ignore that for now.
911 */
912static void blk_mq_process_rq_list(struct blk_mq_hw_ctx *hctx)
913{
914 LIST_HEAD(rq_list);
915 LIST_HEAD(driver_list);
916
917 if (unlikely(blk_mq_hctx_stopped(hctx)))
918 return;
919
920 hctx->run++;
921
922 /*
923 * Touch any software queue that has pending entries.
924 */
925 flush_busy_ctxs(hctx, &rq_list);
926
927 /*
928 * If we have previous entries on our dispatch list, grab them
929 * and stuff them at the front for more fair dispatch.
930 */
931 if (!list_empty_careful(&hctx->dispatch)) {
932 spin_lock(&hctx->lock);
933 if (!list_empty(&hctx->dispatch))
934 list_splice_init(&hctx->dispatch, &rq_list);
935 spin_unlock(&hctx->lock);
936 }
937
938 blk_mq_dispatch_rq_list(hctx, &rq_list);
320ae51f
JA
939}
940
6a83e74d
BVA
941static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
942{
943 int srcu_idx;
944
945 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
946 cpu_online(hctx->next_cpu));
947
948 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
949 rcu_read_lock();
950 blk_mq_process_rq_list(hctx);
951 rcu_read_unlock();
952 } else {
953 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
954 blk_mq_process_rq_list(hctx);
955 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
956 }
957}
958
506e931f
JA
959/*
960 * It'd be great if the workqueue API had a way to pass
961 * in a mask and had some smarts for more clever placement.
962 * For now we just round-robin here, switching for every
963 * BLK_MQ_CPU_WORK_BATCH queued items.
964 */
965static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
966{
b657d7e6
CH
967 if (hctx->queue->nr_hw_queues == 1)
968 return WORK_CPU_UNBOUND;
506e931f
JA
969
970 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 971 int next_cpu;
506e931f
JA
972
973 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
974 if (next_cpu >= nr_cpu_ids)
975 next_cpu = cpumask_first(hctx->cpumask);
976
977 hctx->next_cpu = next_cpu;
978 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
979 }
980
b657d7e6 981 return hctx->next_cpu;
506e931f
JA
982}
983
320ae51f
JA
984void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
985{
5d1b25c1
BVA
986 if (unlikely(blk_mq_hctx_stopped(hctx) ||
987 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
988 return;
989
1b792f2f 990 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
991 int cpu = get_cpu();
992 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 993 __blk_mq_run_hw_queue(hctx);
2a90d4aa 994 put_cpu();
398205b8
PB
995 return;
996 }
e4043dcf 997
2a90d4aa 998 put_cpu();
e4043dcf 999 }
398205b8 1000
27489a3c 1001 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
320ae51f
JA
1002}
1003
b94ec296 1004void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1005{
1006 struct blk_mq_hw_ctx *hctx;
1007 int i;
1008
1009 queue_for_each_hw_ctx(q, hctx, i) {
1010 if ((!blk_mq_hctx_has_pending(hctx) &&
1011 list_empty_careful(&hctx->dispatch)) ||
5d1b25c1 1012 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1013 continue;
1014
b94ec296 1015 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1016 }
1017}
b94ec296 1018EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1019
fd001443
BVA
1020/**
1021 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1022 * @q: request queue.
1023 *
1024 * The caller is responsible for serializing this function against
1025 * blk_mq_{start,stop}_hw_queue().
1026 */
1027bool blk_mq_queue_stopped(struct request_queue *q)
1028{
1029 struct blk_mq_hw_ctx *hctx;
1030 int i;
1031
1032 queue_for_each_hw_ctx(q, hctx, i)
1033 if (blk_mq_hctx_stopped(hctx))
1034 return true;
1035
1036 return false;
1037}
1038EXPORT_SYMBOL(blk_mq_queue_stopped);
1039
320ae51f
JA
1040void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1041{
27489a3c 1042 cancel_work(&hctx->run_work);
70f4db63 1043 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
1044 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1045}
1046EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1047
280d45f6
CH
1048void blk_mq_stop_hw_queues(struct request_queue *q)
1049{
1050 struct blk_mq_hw_ctx *hctx;
1051 int i;
1052
1053 queue_for_each_hw_ctx(q, hctx, i)
1054 blk_mq_stop_hw_queue(hctx);
1055}
1056EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1057
320ae51f
JA
1058void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1059{
1060 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1061
0ffbce80 1062 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1063}
1064EXPORT_SYMBOL(blk_mq_start_hw_queue);
1065
2f268556
CH
1066void blk_mq_start_hw_queues(struct request_queue *q)
1067{
1068 struct blk_mq_hw_ctx *hctx;
1069 int i;
1070
1071 queue_for_each_hw_ctx(q, hctx, i)
1072 blk_mq_start_hw_queue(hctx);
1073}
1074EXPORT_SYMBOL(blk_mq_start_hw_queues);
1075
ae911c5e
JA
1076void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1077{
1078 if (!blk_mq_hctx_stopped(hctx))
1079 return;
1080
1081 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1082 blk_mq_run_hw_queue(hctx, async);
1083}
1084EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1085
1b4a3258 1086void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1087{
1088 struct blk_mq_hw_ctx *hctx;
1089 int i;
1090
ae911c5e
JA
1091 queue_for_each_hw_ctx(q, hctx, i)
1092 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1093}
1094EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1095
70f4db63 1096static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1097{
1098 struct blk_mq_hw_ctx *hctx;
1099
27489a3c 1100 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
e4043dcf 1101
320ae51f
JA
1102 __blk_mq_run_hw_queue(hctx);
1103}
1104
70f4db63
CH
1105static void blk_mq_delay_work_fn(struct work_struct *work)
1106{
1107 struct blk_mq_hw_ctx *hctx;
1108
1109 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1110
1111 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1112 __blk_mq_run_hw_queue(hctx);
1113}
1114
1115void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1116{
19c66e59
ML
1117 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1118 return;
70f4db63 1119
b657d7e6
CH
1120 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1121 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
1122}
1123EXPORT_SYMBOL(blk_mq_delay_queue);
1124
cfd0c552 1125static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1126 struct request *rq,
1127 bool at_head)
320ae51f 1128{
e57690fe
JA
1129 struct blk_mq_ctx *ctx = rq->mq_ctx;
1130
01b983c9
JA
1131 trace_block_rq_insert(hctx->queue, rq);
1132
72a0a36e
CH
1133 if (at_head)
1134 list_add(&rq->queuelist, &ctx->rq_list);
1135 else
1136 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1137}
4bb659b1 1138
cfd0c552
ML
1139static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1140 struct request *rq, bool at_head)
1141{
1142 struct blk_mq_ctx *ctx = rq->mq_ctx;
1143
e57690fe 1144 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1145 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1146}
1147
eeabc850 1148void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
e57690fe 1149 bool async)
320ae51f 1150{
e57690fe 1151 struct blk_mq_ctx *ctx = rq->mq_ctx;
eeabc850 1152 struct request_queue *q = rq->q;
7d7e0f90 1153 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
320ae51f 1154
a57a178a
CH
1155 spin_lock(&ctx->lock);
1156 __blk_mq_insert_request(hctx, rq, at_head);
1157 spin_unlock(&ctx->lock);
320ae51f 1158
320ae51f
JA
1159 if (run_queue)
1160 blk_mq_run_hw_queue(hctx, async);
1161}
1162
1163static void blk_mq_insert_requests(struct request_queue *q,
1164 struct blk_mq_ctx *ctx,
1165 struct list_head *list,
1166 int depth,
1167 bool from_schedule)
1168
1169{
7d7e0f90 1170 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
320ae51f
JA
1171
1172 trace_block_unplug(q, depth, !from_schedule);
1173
320ae51f
JA
1174 /*
1175 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1176 * offline now
1177 */
1178 spin_lock(&ctx->lock);
1179 while (!list_empty(list)) {
1180 struct request *rq;
1181
1182 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1183 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1184 list_del_init(&rq->queuelist);
e57690fe 1185 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1186 }
cfd0c552 1187 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1188 spin_unlock(&ctx->lock);
1189
320ae51f
JA
1190 blk_mq_run_hw_queue(hctx, from_schedule);
1191}
1192
1193static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1194{
1195 struct request *rqa = container_of(a, struct request, queuelist);
1196 struct request *rqb = container_of(b, struct request, queuelist);
1197
1198 return !(rqa->mq_ctx < rqb->mq_ctx ||
1199 (rqa->mq_ctx == rqb->mq_ctx &&
1200 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1201}
1202
1203void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1204{
1205 struct blk_mq_ctx *this_ctx;
1206 struct request_queue *this_q;
1207 struct request *rq;
1208 LIST_HEAD(list);
1209 LIST_HEAD(ctx_list);
1210 unsigned int depth;
1211
1212 list_splice_init(&plug->mq_list, &list);
1213
1214 list_sort(NULL, &list, plug_ctx_cmp);
1215
1216 this_q = NULL;
1217 this_ctx = NULL;
1218 depth = 0;
1219
1220 while (!list_empty(&list)) {
1221 rq = list_entry_rq(list.next);
1222 list_del_init(&rq->queuelist);
1223 BUG_ON(!rq->q);
1224 if (rq->mq_ctx != this_ctx) {
1225 if (this_ctx) {
1226 blk_mq_insert_requests(this_q, this_ctx,
1227 &ctx_list, depth,
1228 from_schedule);
1229 }
1230
1231 this_ctx = rq->mq_ctx;
1232 this_q = rq->q;
1233 depth = 0;
1234 }
1235
1236 depth++;
1237 list_add_tail(&rq->queuelist, &ctx_list);
1238 }
1239
1240 /*
1241 * If 'this_ctx' is set, we know we have entries to complete
1242 * on 'ctx_list'. Do those.
1243 */
1244 if (this_ctx) {
1245 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1246 from_schedule);
1247 }
1248}
1249
1250static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1251{
1252 init_request_from_bio(rq, bio);
4b570521 1253
6e85eaf3 1254 blk_account_io_start(rq, true);
320ae51f
JA
1255}
1256
274a5843
JA
1257static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1258{
1259 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1260 !blk_queue_nomerges(hctx->queue);
1261}
1262
07068d5b
JA
1263static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1264 struct blk_mq_ctx *ctx,
1265 struct request *rq, struct bio *bio)
320ae51f 1266{
e18378a6 1267 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1268 blk_mq_bio_to_request(rq, bio);
1269 spin_lock(&ctx->lock);
1270insert_rq:
1271 __blk_mq_insert_request(hctx, rq, false);
1272 spin_unlock(&ctx->lock);
1273 return false;
1274 } else {
274a5843
JA
1275 struct request_queue *q = hctx->queue;
1276
07068d5b
JA
1277 spin_lock(&ctx->lock);
1278 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1279 blk_mq_bio_to_request(rq, bio);
1280 goto insert_rq;
1281 }
320ae51f 1282
07068d5b
JA
1283 spin_unlock(&ctx->lock);
1284 __blk_mq_free_request(hctx, ctx, rq);
1285 return true;
14ec77f3 1286 }
07068d5b 1287}
14ec77f3 1288
07068d5b
JA
1289static struct request *blk_mq_map_request(struct request_queue *q,
1290 struct bio *bio,
2552e3f8 1291 struct blk_mq_alloc_data *data)
07068d5b
JA
1292{
1293 struct blk_mq_hw_ctx *hctx;
1294 struct blk_mq_ctx *ctx;
1295 struct request *rq;
320ae51f 1296
3ef28e83 1297 blk_queue_enter_live(q);
320ae51f 1298 ctx = blk_mq_get_ctx(q);
7d7e0f90 1299 hctx = blk_mq_map_queue(q, ctx->cpu);
320ae51f 1300
ef295ecf 1301 trace_block_getrq(q, bio, bio->bi_opf);
2552e3f8 1302 blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
ef295ecf 1303 rq = __blk_mq_alloc_request(data, bio->bi_opf);
320ae51f 1304
7dd2fb68 1305 data->hctx->queued++;
07068d5b
JA
1306 return rq;
1307}
1308
066a4a73 1309static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
f984df1f
SL
1310{
1311 int ret;
1312 struct request_queue *q = rq->q;
066a4a73 1313 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
f984df1f
SL
1314 struct blk_mq_queue_data bd = {
1315 .rq = rq,
1316 .list = NULL,
1317 .last = 1
1318 };
7b371636 1319 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
f984df1f 1320
2253efc8
BVA
1321 if (blk_mq_hctx_stopped(hctx))
1322 goto insert;
1323
f984df1f
SL
1324 /*
1325 * For OK queue, we are done. For error, kill it. Any other
1326 * error (busy), just add it to our list as we previously
1327 * would have done
1328 */
1329 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1330 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1331 *cookie = new_cookie;
2253efc8 1332 return;
7b371636 1333 }
f984df1f 1334
7b371636
JA
1335 __blk_mq_requeue_request(rq);
1336
1337 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1338 *cookie = BLK_QC_T_NONE;
1339 rq->errors = -EIO;
1340 blk_mq_end_request(rq, rq->errors);
2253efc8 1341 return;
f984df1f 1342 }
7b371636 1343
2253efc8
BVA
1344insert:
1345 blk_mq_insert_request(rq, false, true, true);
f984df1f
SL
1346}
1347
07068d5b
JA
1348/*
1349 * Multiple hardware queue variant. This will not use per-process plugs,
1350 * but will attempt to bypass the hctx queueing if we can go straight to
1351 * hardware for SYNC IO.
1352 */
dece1635 1353static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1354{
ef295ecf 1355 const int is_sync = op_is_sync(bio->bi_opf);
1eff9d32 1356 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
2552e3f8 1357 struct blk_mq_alloc_data data;
07068d5b 1358 struct request *rq;
6a83e74d 1359 unsigned int request_count = 0, srcu_idx;
f984df1f 1360 struct blk_plug *plug;
5b3f341f 1361 struct request *same_queue_rq = NULL;
7b371636 1362 blk_qc_t cookie;
87760e5e 1363 unsigned int wb_acct;
07068d5b
JA
1364
1365 blk_queue_bounce(q, &bio);
1366
1367 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1368 bio_io_error(bio);
dece1635 1369 return BLK_QC_T_NONE;
07068d5b
JA
1370 }
1371
54efd50b
KO
1372 blk_queue_split(q, &bio, q->bio_split);
1373
87c279e6
OS
1374 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1375 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1376 return BLK_QC_T_NONE;
f984df1f 1377
87760e5e
JA
1378 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1379
07068d5b 1380 rq = blk_mq_map_request(q, bio, &data);
87760e5e
JA
1381 if (unlikely(!rq)) {
1382 __wbt_done(q->rq_wb, wb_acct);
dece1635 1383 return BLK_QC_T_NONE;
87760e5e
JA
1384 }
1385
1386 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1387
7b371636 1388 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
07068d5b
JA
1389
1390 if (unlikely(is_flush_fua)) {
1391 blk_mq_bio_to_request(rq, bio);
1392 blk_insert_flush(rq);
1393 goto run_queue;
1394 }
1395
f984df1f 1396 plug = current->plug;
e167dfb5
JA
1397 /*
1398 * If the driver supports defer issued based on 'last', then
1399 * queue it up like normal since we can potentially save some
1400 * CPU this way.
1401 */
f984df1f
SL
1402 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1403 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1404 struct request *old_rq = NULL;
07068d5b
JA
1405
1406 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1407
1408 /*
6a83e74d 1409 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1410 * Otherwise the existing request in the plug list will be
1411 * issued. So the plug list will have one request at most
07068d5b 1412 */
f984df1f 1413 if (plug) {
5b3f341f
SL
1414 /*
1415 * The plug list might get flushed before this. If that
b094f89c
JA
1416 * happens, same_queue_rq is invalid and plug list is
1417 * empty
1418 */
5b3f341f
SL
1419 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1420 old_rq = same_queue_rq;
f984df1f 1421 list_del_init(&old_rq->queuelist);
07068d5b 1422 }
f984df1f
SL
1423 list_add_tail(&rq->queuelist, &plug->mq_list);
1424 } else /* is_sync */
1425 old_rq = rq;
1426 blk_mq_put_ctx(data.ctx);
1427 if (!old_rq)
7b371636 1428 goto done;
6a83e74d
BVA
1429
1430 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1431 rcu_read_lock();
066a4a73 1432 blk_mq_try_issue_directly(old_rq, &cookie);
6a83e74d
BVA
1433 rcu_read_unlock();
1434 } else {
1435 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
066a4a73 1436 blk_mq_try_issue_directly(old_rq, &cookie);
6a83e74d
BVA
1437 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1438 }
7b371636 1439 goto done;
07068d5b
JA
1440 }
1441
1442 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1443 /*
1444 * For a SYNC request, send it to the hardware immediately. For
1445 * an ASYNC request, just ensure that we run it later on. The
1446 * latter allows for merging opportunities and more efficient
1447 * dispatching.
1448 */
1449run_queue:
1450 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1451 }
07068d5b 1452 blk_mq_put_ctx(data.ctx);
7b371636
JA
1453done:
1454 return cookie;
07068d5b
JA
1455}
1456
1457/*
1458 * Single hardware queue variant. This will attempt to use any per-process
1459 * plug for merging and IO deferral.
1460 */
dece1635 1461static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1462{
ef295ecf 1463 const int is_sync = op_is_sync(bio->bi_opf);
1eff9d32 1464 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
e6c4438b
JM
1465 struct blk_plug *plug;
1466 unsigned int request_count = 0;
2552e3f8 1467 struct blk_mq_alloc_data data;
07068d5b 1468 struct request *rq;
7b371636 1469 blk_qc_t cookie;
87760e5e 1470 unsigned int wb_acct;
07068d5b 1471
07068d5b
JA
1472 blk_queue_bounce(q, &bio);
1473
1474 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1475 bio_io_error(bio);
dece1635 1476 return BLK_QC_T_NONE;
07068d5b
JA
1477 }
1478
54efd50b
KO
1479 blk_queue_split(q, &bio, q->bio_split);
1480
87c279e6
OS
1481 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1482 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1483 return BLK_QC_T_NONE;
1484 } else
1485 request_count = blk_plug_queued_count(q);
07068d5b 1486
87760e5e
JA
1487 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1488
07068d5b 1489 rq = blk_mq_map_request(q, bio, &data);
87760e5e
JA
1490 if (unlikely(!rq)) {
1491 __wbt_done(q->rq_wb, wb_acct);
dece1635 1492 return BLK_QC_T_NONE;
87760e5e
JA
1493 }
1494
1495 wbt_track(&rq->issue_stat, wb_acct);
320ae51f 1496
7b371636 1497 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
320ae51f
JA
1498
1499 if (unlikely(is_flush_fua)) {
1500 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1501 blk_insert_flush(rq);
1502 goto run_queue;
1503 }
1504
1505 /*
1506 * A task plug currently exists. Since this is completely lockless,
1507 * utilize that to temporarily store requests until the task is
1508 * either done or scheduled away.
1509 */
e6c4438b
JM
1510 plug = current->plug;
1511 if (plug) {
600271d9
SL
1512 struct request *last = NULL;
1513
e6c4438b 1514 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1515
1516 /*
1517 * @request_count may become stale because of schedule
1518 * out, so check the list again.
1519 */
1520 if (list_empty(&plug->mq_list))
1521 request_count = 0;
676d0607 1522 if (!request_count)
e6c4438b 1523 trace_block_plug(q);
600271d9
SL
1524 else
1525 last = list_entry_rq(plug->mq_list.prev);
b094f89c
JA
1526
1527 blk_mq_put_ctx(data.ctx);
1528
600271d9
SL
1529 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1530 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1531 blk_flush_plug_list(plug, false);
1532 trace_block_plug(q);
320ae51f 1533 }
b094f89c 1534
e6c4438b 1535 list_add_tail(&rq->queuelist, &plug->mq_list);
7b371636 1536 return cookie;
320ae51f
JA
1537 }
1538
07068d5b
JA
1539 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1540 /*
1541 * For a SYNC request, send it to the hardware immediately. For
1542 * an ASYNC request, just ensure that we run it later on. The
1543 * latter allows for merging opportunities and more efficient
1544 * dispatching.
1545 */
1546run_queue:
1547 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1548 }
1549
07068d5b 1550 blk_mq_put_ctx(data.ctx);
7b371636 1551 return cookie;
320ae51f
JA
1552}
1553
24d2f903
CH
1554static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1555 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1556{
e9b267d9 1557 struct page *page;
320ae51f 1558
24d2f903 1559 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1560 int i;
320ae51f 1561
24d2f903
CH
1562 for (i = 0; i < tags->nr_tags; i++) {
1563 if (!tags->rqs[i])
e9b267d9 1564 continue;
24d2f903
CH
1565 set->ops->exit_request(set->driver_data, tags->rqs[i],
1566 hctx_idx, i);
a5164405 1567 tags->rqs[i] = NULL;
e9b267d9 1568 }
320ae51f 1569 }
320ae51f 1570
24d2f903
CH
1571 while (!list_empty(&tags->page_list)) {
1572 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1573 list_del_init(&page->lru);
f75782e4
CM
1574 /*
1575 * Remove kmemleak object previously allocated in
1576 * blk_mq_init_rq_map().
1577 */
1578 kmemleak_free(page_address(page));
320ae51f
JA
1579 __free_pages(page, page->private);
1580 }
1581
24d2f903 1582 kfree(tags->rqs);
320ae51f 1583
24d2f903 1584 blk_mq_free_tags(tags);
320ae51f
JA
1585}
1586
1587static size_t order_to_size(unsigned int order)
1588{
4ca08500 1589 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1590}
1591
24d2f903
CH
1592static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1593 unsigned int hctx_idx)
320ae51f 1594{
24d2f903 1595 struct blk_mq_tags *tags;
320ae51f
JA
1596 unsigned int i, j, entries_per_page, max_order = 4;
1597 size_t rq_size, left;
1598
24d2f903 1599 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
24391c0d
SL
1600 set->numa_node,
1601 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1602 if (!tags)
1603 return NULL;
320ae51f 1604
24d2f903
CH
1605 INIT_LIST_HEAD(&tags->page_list);
1606
a5164405 1607 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
36e1f3d1 1608 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
a5164405 1609 set->numa_node);
24d2f903
CH
1610 if (!tags->rqs) {
1611 blk_mq_free_tags(tags);
1612 return NULL;
1613 }
320ae51f
JA
1614
1615 /*
1616 * rq_size is the size of the request plus driver payload, rounded
1617 * to the cacheline size
1618 */
24d2f903 1619 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1620 cache_line_size());
24d2f903 1621 left = rq_size * set->queue_depth;
320ae51f 1622
24d2f903 1623 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1624 int this_order = max_order;
1625 struct page *page;
1626 int to_do;
1627 void *p;
1628
b3a834b1 1629 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1630 this_order--;
1631
1632 do {
a5164405 1633 page = alloc_pages_node(set->numa_node,
36e1f3d1 1634 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1635 this_order);
320ae51f
JA
1636 if (page)
1637 break;
1638 if (!this_order--)
1639 break;
1640 if (order_to_size(this_order) < rq_size)
1641 break;
1642 } while (1);
1643
1644 if (!page)
24d2f903 1645 goto fail;
320ae51f
JA
1646
1647 page->private = this_order;
24d2f903 1648 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1649
1650 p = page_address(page);
f75782e4
CM
1651 /*
1652 * Allow kmemleak to scan these pages as they contain pointers
1653 * to additional allocations like via ops->init_request().
1654 */
36e1f3d1 1655 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1656 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1657 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1658 left -= to_do * rq_size;
1659 for (j = 0; j < to_do; j++) {
24d2f903
CH
1660 tags->rqs[i] = p;
1661 if (set->ops->init_request) {
1662 if (set->ops->init_request(set->driver_data,
1663 tags->rqs[i], hctx_idx, i,
a5164405
JA
1664 set->numa_node)) {
1665 tags->rqs[i] = NULL;
24d2f903 1666 goto fail;
a5164405 1667 }
e9b267d9
CH
1668 }
1669
320ae51f
JA
1670 p += rq_size;
1671 i++;
1672 }
1673 }
24d2f903 1674 return tags;
320ae51f 1675
24d2f903 1676fail:
24d2f903
CH
1677 blk_mq_free_rq_map(set, tags, hctx_idx);
1678 return NULL;
320ae51f
JA
1679}
1680
e57690fe
JA
1681/*
1682 * 'cpu' is going away. splice any existing rq_list entries from this
1683 * software queue to the hw queue dispatch list, and ensure that it
1684 * gets run.
1685 */
9467f859 1686static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1687{
9467f859 1688 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1689 struct blk_mq_ctx *ctx;
1690 LIST_HEAD(tmp);
1691
9467f859 1692 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1693 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1694
1695 spin_lock(&ctx->lock);
1696 if (!list_empty(&ctx->rq_list)) {
1697 list_splice_init(&ctx->rq_list, &tmp);
1698 blk_mq_hctx_clear_pending(hctx, ctx);
1699 }
1700 spin_unlock(&ctx->lock);
1701
1702 if (list_empty(&tmp))
9467f859 1703 return 0;
484b4061 1704
e57690fe
JA
1705 spin_lock(&hctx->lock);
1706 list_splice_tail_init(&tmp, &hctx->dispatch);
1707 spin_unlock(&hctx->lock);
484b4061
JA
1708
1709 blk_mq_run_hw_queue(hctx, true);
9467f859 1710 return 0;
484b4061
JA
1711}
1712
9467f859 1713static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1714{
9467f859
TG
1715 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1716 &hctx->cpuhp_dead);
484b4061
JA
1717}
1718
c3b4afca 1719/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1720static void blk_mq_exit_hctx(struct request_queue *q,
1721 struct blk_mq_tag_set *set,
1722 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1723{
f70ced09
ML
1724 unsigned flush_start_tag = set->queue_depth;
1725
08e98fc6
ML
1726 blk_mq_tag_idle(hctx);
1727
f70ced09
ML
1728 if (set->ops->exit_request)
1729 set->ops->exit_request(set->driver_data,
1730 hctx->fq->flush_rq, hctx_idx,
1731 flush_start_tag + hctx_idx);
1732
08e98fc6
ML
1733 if (set->ops->exit_hctx)
1734 set->ops->exit_hctx(hctx, hctx_idx);
1735
6a83e74d
BVA
1736 if (hctx->flags & BLK_MQ_F_BLOCKING)
1737 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1738
9467f859 1739 blk_mq_remove_cpuhp(hctx);
f70ced09 1740 blk_free_flush_queue(hctx->fq);
88459642 1741 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1742}
1743
624dbe47
ML
1744static void blk_mq_exit_hw_queues(struct request_queue *q,
1745 struct blk_mq_tag_set *set, int nr_queue)
1746{
1747 struct blk_mq_hw_ctx *hctx;
1748 unsigned int i;
1749
1750 queue_for_each_hw_ctx(q, hctx, i) {
1751 if (i == nr_queue)
1752 break;
08e98fc6 1753 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1754 }
624dbe47
ML
1755}
1756
1757static void blk_mq_free_hw_queues(struct request_queue *q,
1758 struct blk_mq_tag_set *set)
1759{
1760 struct blk_mq_hw_ctx *hctx;
1761 unsigned int i;
1762
e09aae7e 1763 queue_for_each_hw_ctx(q, hctx, i)
624dbe47 1764 free_cpumask_var(hctx->cpumask);
624dbe47
ML
1765}
1766
08e98fc6
ML
1767static int blk_mq_init_hctx(struct request_queue *q,
1768 struct blk_mq_tag_set *set,
1769 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1770{
08e98fc6 1771 int node;
f70ced09 1772 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1773
1774 node = hctx->numa_node;
1775 if (node == NUMA_NO_NODE)
1776 node = hctx->numa_node = set->numa_node;
1777
27489a3c 1778 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1779 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1780 spin_lock_init(&hctx->lock);
1781 INIT_LIST_HEAD(&hctx->dispatch);
1782 hctx->queue = q;
1783 hctx->queue_num = hctx_idx;
2404e607 1784 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1785
9467f859 1786 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1787
1788 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1789
1790 /*
08e98fc6
ML
1791 * Allocate space for all possible cpus to avoid allocation at
1792 * runtime
320ae51f 1793 */
08e98fc6
ML
1794 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1795 GFP_KERNEL, node);
1796 if (!hctx->ctxs)
1797 goto unregister_cpu_notifier;
320ae51f 1798
88459642
OS
1799 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1800 node))
08e98fc6 1801 goto free_ctxs;
320ae51f 1802
08e98fc6 1803 hctx->nr_ctx = 0;
320ae51f 1804
08e98fc6
ML
1805 if (set->ops->init_hctx &&
1806 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1807 goto free_bitmap;
320ae51f 1808
f70ced09
ML
1809 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1810 if (!hctx->fq)
1811 goto exit_hctx;
320ae51f 1812
f70ced09
ML
1813 if (set->ops->init_request &&
1814 set->ops->init_request(set->driver_data,
1815 hctx->fq->flush_rq, hctx_idx,
1816 flush_start_tag + hctx_idx, node))
1817 goto free_fq;
320ae51f 1818
6a83e74d
BVA
1819 if (hctx->flags & BLK_MQ_F_BLOCKING)
1820 init_srcu_struct(&hctx->queue_rq_srcu);
1821
08e98fc6 1822 return 0;
320ae51f 1823
f70ced09
ML
1824 free_fq:
1825 kfree(hctx->fq);
1826 exit_hctx:
1827 if (set->ops->exit_hctx)
1828 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1829 free_bitmap:
88459642 1830 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1831 free_ctxs:
1832 kfree(hctx->ctxs);
1833 unregister_cpu_notifier:
9467f859 1834 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
1835 return -1;
1836}
320ae51f 1837
320ae51f
JA
1838static void blk_mq_init_cpu_queues(struct request_queue *q,
1839 unsigned int nr_hw_queues)
1840{
1841 unsigned int i;
1842
1843 for_each_possible_cpu(i) {
1844 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1845 struct blk_mq_hw_ctx *hctx;
1846
1847 memset(__ctx, 0, sizeof(*__ctx));
1848 __ctx->cpu = i;
1849 spin_lock_init(&__ctx->lock);
1850 INIT_LIST_HEAD(&__ctx->rq_list);
1851 __ctx->queue = q;
cf43e6be
JA
1852 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1853 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
320ae51f
JA
1854
1855 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1856 if (!cpu_online(i))
1857 continue;
1858
7d7e0f90 1859 hctx = blk_mq_map_queue(q, i);
e4043dcf 1860
320ae51f
JA
1861 /*
1862 * Set local node, IFF we have more than one hw queue. If
1863 * not, we remain on the home node of the device
1864 */
1865 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1866 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
1867 }
1868}
1869
5778322e
AM
1870static void blk_mq_map_swqueue(struct request_queue *q,
1871 const struct cpumask *online_mask)
320ae51f 1872{
d1b1cea1 1873 unsigned int i, hctx_idx;
320ae51f
JA
1874 struct blk_mq_hw_ctx *hctx;
1875 struct blk_mq_ctx *ctx;
2a34c087 1876 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1877
60de074b
AM
1878 /*
1879 * Avoid others reading imcomplete hctx->cpumask through sysfs
1880 */
1881 mutex_lock(&q->sysfs_lock);
1882
320ae51f 1883 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1884 cpumask_clear(hctx->cpumask);
320ae51f
JA
1885 hctx->nr_ctx = 0;
1886 }
1887
1888 /*
1889 * Map software to hardware queues
1890 */
897bb0c7 1891 for_each_possible_cpu(i) {
320ae51f 1892 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 1893 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
1894 continue;
1895
d1b1cea1
GKB
1896 hctx_idx = q->mq_map[i];
1897 /* unmapped hw queue can be remapped after CPU topo changed */
1898 if (!set->tags[hctx_idx]) {
1899 set->tags[hctx_idx] = blk_mq_init_rq_map(set, hctx_idx);
1900
1901 /*
1902 * If tags initialization fail for some hctx,
1903 * that hctx won't be brought online. In this
1904 * case, remap the current ctx to hctx[0] which
1905 * is guaranteed to always have tags allocated
1906 */
1907 if (!set->tags[hctx_idx])
1908 q->mq_map[i] = 0;
1909 }
1910
897bb0c7 1911 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 1912 hctx = blk_mq_map_queue(q, i);
868f2f0b 1913
e4043dcf 1914 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1915 ctx->index_hw = hctx->nr_ctx;
1916 hctx->ctxs[hctx->nr_ctx++] = ctx;
1917 }
506e931f 1918
60de074b
AM
1919 mutex_unlock(&q->sysfs_lock);
1920
506e931f 1921 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 1922 /*
a68aafa5
JA
1923 * If no software queues are mapped to this hardware queue,
1924 * disable it and free the request entries.
484b4061
JA
1925 */
1926 if (!hctx->nr_ctx) {
d1b1cea1
GKB
1927 /* Never unmap queue 0. We need it as a
1928 * fallback in case of a new remap fails
1929 * allocation
1930 */
1931 if (i && set->tags[i]) {
484b4061
JA
1932 blk_mq_free_rq_map(set, set->tags[i], i);
1933 set->tags[i] = NULL;
484b4061 1934 }
2a34c087 1935 hctx->tags = NULL;
484b4061
JA
1936 continue;
1937 }
1938
2a34c087
ML
1939 hctx->tags = set->tags[i];
1940 WARN_ON(!hctx->tags);
1941
889fa31f
CY
1942 /*
1943 * Set the map size to the number of mapped software queues.
1944 * This is more accurate and more efficient than looping
1945 * over all possibly mapped software queues.
1946 */
88459642 1947 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 1948
484b4061
JA
1949 /*
1950 * Initialize batch roundrobin counts
1951 */
506e931f
JA
1952 hctx->next_cpu = cpumask_first(hctx->cpumask);
1953 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1954 }
320ae51f
JA
1955}
1956
2404e607 1957static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
1958{
1959 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
1960 int i;
1961
2404e607
JM
1962 queue_for_each_hw_ctx(q, hctx, i) {
1963 if (shared)
1964 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1965 else
1966 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1967 }
1968}
1969
1970static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1971{
1972 struct request_queue *q;
0d2602ca
JA
1973
1974 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1975 blk_mq_freeze_queue(q);
2404e607 1976 queue_set_hctx_shared(q, shared);
0d2602ca
JA
1977 blk_mq_unfreeze_queue(q);
1978 }
1979}
1980
1981static void blk_mq_del_queue_tag_set(struct request_queue *q)
1982{
1983 struct blk_mq_tag_set *set = q->tag_set;
1984
0d2602ca
JA
1985 mutex_lock(&set->tag_list_lock);
1986 list_del_init(&q->tag_set_list);
2404e607
JM
1987 if (list_is_singular(&set->tag_list)) {
1988 /* just transitioned to unshared */
1989 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1990 /* update existing queue */
1991 blk_mq_update_tag_set_depth(set, false);
1992 }
0d2602ca 1993 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
1994}
1995
1996static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1997 struct request_queue *q)
1998{
1999 q->tag_set = set;
2000
2001 mutex_lock(&set->tag_list_lock);
2404e607
JM
2002
2003 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2004 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2005 set->flags |= BLK_MQ_F_TAG_SHARED;
2006 /* update existing queue */
2007 blk_mq_update_tag_set_depth(set, true);
2008 }
2009 if (set->flags & BLK_MQ_F_TAG_SHARED)
2010 queue_set_hctx_shared(q, true);
0d2602ca 2011 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 2012
0d2602ca
JA
2013 mutex_unlock(&set->tag_list_lock);
2014}
2015
e09aae7e
ML
2016/*
2017 * It is the actual release handler for mq, but we do it from
2018 * request queue's release handler for avoiding use-after-free
2019 * and headache because q->mq_kobj shouldn't have been introduced,
2020 * but we can't group ctx/kctx kobj without it.
2021 */
2022void blk_mq_release(struct request_queue *q)
2023{
2024 struct blk_mq_hw_ctx *hctx;
2025 unsigned int i;
2026
2027 /* hctx kobj stays in hctx */
c3b4afca
ML
2028 queue_for_each_hw_ctx(q, hctx, i) {
2029 if (!hctx)
2030 continue;
2031 kfree(hctx->ctxs);
e09aae7e 2032 kfree(hctx);
c3b4afca 2033 }
e09aae7e 2034
a723bab3
AM
2035 q->mq_map = NULL;
2036
e09aae7e
ML
2037 kfree(q->queue_hw_ctx);
2038
2039 /* ctx kobj stays in queue_ctx */
2040 free_percpu(q->queue_ctx);
2041}
2042
24d2f903 2043struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2044{
2045 struct request_queue *uninit_q, *q;
2046
2047 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2048 if (!uninit_q)
2049 return ERR_PTR(-ENOMEM);
2050
2051 q = blk_mq_init_allocated_queue(set, uninit_q);
2052 if (IS_ERR(q))
2053 blk_cleanup_queue(uninit_q);
2054
2055 return q;
2056}
2057EXPORT_SYMBOL(blk_mq_init_queue);
2058
868f2f0b
KB
2059static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2060 struct request_queue *q)
320ae51f 2061{
868f2f0b
KB
2062 int i, j;
2063 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2064
868f2f0b 2065 blk_mq_sysfs_unregister(q);
24d2f903 2066 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2067 int node;
f14bbe77 2068
868f2f0b
KB
2069 if (hctxs[i])
2070 continue;
2071
2072 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2073 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2074 GFP_KERNEL, node);
320ae51f 2075 if (!hctxs[i])
868f2f0b 2076 break;
320ae51f 2077
a86073e4 2078 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2079 node)) {
2080 kfree(hctxs[i]);
2081 hctxs[i] = NULL;
2082 break;
2083 }
e4043dcf 2084
0d2602ca 2085 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2086 hctxs[i]->numa_node = node;
320ae51f 2087 hctxs[i]->queue_num = i;
868f2f0b
KB
2088
2089 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2090 free_cpumask_var(hctxs[i]->cpumask);
2091 kfree(hctxs[i]);
2092 hctxs[i] = NULL;
2093 break;
2094 }
2095 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2096 }
868f2f0b
KB
2097 for (j = i; j < q->nr_hw_queues; j++) {
2098 struct blk_mq_hw_ctx *hctx = hctxs[j];
2099
2100 if (hctx) {
2101 if (hctx->tags) {
2102 blk_mq_free_rq_map(set, hctx->tags, j);
2103 set->tags[j] = NULL;
2104 }
2105 blk_mq_exit_hctx(q, set, hctx, j);
2106 free_cpumask_var(hctx->cpumask);
2107 kobject_put(&hctx->kobj);
2108 kfree(hctx->ctxs);
2109 kfree(hctx);
2110 hctxs[j] = NULL;
2111
2112 }
2113 }
2114 q->nr_hw_queues = i;
2115 blk_mq_sysfs_register(q);
2116}
2117
2118struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2119 struct request_queue *q)
2120{
66841672
ML
2121 /* mark the queue as mq asap */
2122 q->mq_ops = set->ops;
2123
868f2f0b
KB
2124 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2125 if (!q->queue_ctx)
c7de5726 2126 goto err_exit;
868f2f0b
KB
2127
2128 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2129 GFP_KERNEL, set->numa_node);
2130 if (!q->queue_hw_ctx)
2131 goto err_percpu;
2132
bdd17e75 2133 q->mq_map = set->mq_map;
868f2f0b
KB
2134
2135 blk_mq_realloc_hw_ctxs(set, q);
2136 if (!q->nr_hw_queues)
2137 goto err_hctxs;
320ae51f 2138
287922eb 2139 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2140 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2141
2142 q->nr_queues = nr_cpu_ids;
320ae51f 2143
94eddfbe 2144 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2145
05f1dd53
JA
2146 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2147 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2148
1be036e9
CH
2149 q->sg_reserved_size = INT_MAX;
2150
2849450a 2151 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2152 INIT_LIST_HEAD(&q->requeue_list);
2153 spin_lock_init(&q->requeue_lock);
2154
07068d5b
JA
2155 if (q->nr_hw_queues > 1)
2156 blk_queue_make_request(q, blk_mq_make_request);
2157 else
2158 blk_queue_make_request(q, blk_sq_make_request);
2159
eba71768
JA
2160 /*
2161 * Do this after blk_queue_make_request() overrides it...
2162 */
2163 q->nr_requests = set->queue_depth;
2164
64f1c21e
JA
2165 /*
2166 * Default to classic polling
2167 */
2168 q->poll_nsec = -1;
2169
24d2f903
CH
2170 if (set->ops->complete)
2171 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2172
24d2f903 2173 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2174
5778322e 2175 get_online_cpus();
320ae51f 2176 mutex_lock(&all_q_mutex);
320ae51f 2177
4593fdbe 2178 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2179 blk_mq_add_queue_tag_set(set, q);
5778322e 2180 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2181
4593fdbe 2182 mutex_unlock(&all_q_mutex);
5778322e 2183 put_online_cpus();
4593fdbe 2184
320ae51f 2185 return q;
18741986 2186
320ae51f 2187err_hctxs:
868f2f0b 2188 kfree(q->queue_hw_ctx);
320ae51f 2189err_percpu:
868f2f0b 2190 free_percpu(q->queue_ctx);
c7de5726
ML
2191err_exit:
2192 q->mq_ops = NULL;
320ae51f
JA
2193 return ERR_PTR(-ENOMEM);
2194}
b62c21b7 2195EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2196
2197void blk_mq_free_queue(struct request_queue *q)
2198{
624dbe47 2199 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2200
0e626368
AM
2201 mutex_lock(&all_q_mutex);
2202 list_del_init(&q->all_q_node);
2203 mutex_unlock(&all_q_mutex);
2204
87760e5e
JA
2205 wbt_exit(q);
2206
0d2602ca
JA
2207 blk_mq_del_queue_tag_set(q);
2208
624dbe47
ML
2209 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2210 blk_mq_free_hw_queues(q, set);
320ae51f 2211}
320ae51f
JA
2212
2213/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2214static void blk_mq_queue_reinit(struct request_queue *q,
2215 const struct cpumask *online_mask)
320ae51f 2216{
4ecd4fef 2217 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2218
67aec14c
JA
2219 blk_mq_sysfs_unregister(q);
2220
320ae51f
JA
2221 /*
2222 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2223 * we should change hctx numa_node according to new topology (this
2224 * involves free and re-allocate memory, worthy doing?)
2225 */
2226
5778322e 2227 blk_mq_map_swqueue(q, online_mask);
320ae51f 2228
67aec14c 2229 blk_mq_sysfs_register(q);
320ae51f
JA
2230}
2231
65d5291e
SAS
2232/*
2233 * New online cpumask which is going to be set in this hotplug event.
2234 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2235 * one-by-one and dynamically allocating this could result in a failure.
2236 */
2237static struct cpumask cpuhp_online_new;
2238
2239static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2240{
2241 struct request_queue *q;
320ae51f
JA
2242
2243 mutex_lock(&all_q_mutex);
f3af020b
TH
2244 /*
2245 * We need to freeze and reinit all existing queues. Freezing
2246 * involves synchronous wait for an RCU grace period and doing it
2247 * one by one may take a long time. Start freezing all queues in
2248 * one swoop and then wait for the completions so that freezing can
2249 * take place in parallel.
2250 */
2251 list_for_each_entry(q, &all_q_list, all_q_node)
2252 blk_mq_freeze_queue_start(q);
415d3dab 2253 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2254 blk_mq_freeze_queue_wait(q);
2255
320ae51f 2256 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2257 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2258
2259 list_for_each_entry(q, &all_q_list, all_q_node)
2260 blk_mq_unfreeze_queue(q);
2261
320ae51f 2262 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2263}
2264
2265static int blk_mq_queue_reinit_dead(unsigned int cpu)
2266{
97a32864 2267 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2268 blk_mq_queue_reinit_work();
2269 return 0;
2270}
2271
2272/*
2273 * Before hotadded cpu starts handling requests, new mappings must be
2274 * established. Otherwise, these requests in hw queue might never be
2275 * dispatched.
2276 *
2277 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2278 * for CPU0, and ctx1 for CPU1).
2279 *
2280 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2281 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2282 *
2283 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
2284 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2285 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
2286 * is ignored.
2287 */
2288static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2289{
2290 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2291 cpumask_set_cpu(cpu, &cpuhp_online_new);
2292 blk_mq_queue_reinit_work();
2293 return 0;
320ae51f
JA
2294}
2295
a5164405
JA
2296static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2297{
2298 int i;
2299
2300 for (i = 0; i < set->nr_hw_queues; i++) {
2301 set->tags[i] = blk_mq_init_rq_map(set, i);
2302 if (!set->tags[i])
2303 goto out_unwind;
2304 }
2305
2306 return 0;
2307
2308out_unwind:
2309 while (--i >= 0)
2310 blk_mq_free_rq_map(set, set->tags[i], i);
2311
a5164405
JA
2312 return -ENOMEM;
2313}
2314
2315/*
2316 * Allocate the request maps associated with this tag_set. Note that this
2317 * may reduce the depth asked for, if memory is tight. set->queue_depth
2318 * will be updated to reflect the allocated depth.
2319 */
2320static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2321{
2322 unsigned int depth;
2323 int err;
2324
2325 depth = set->queue_depth;
2326 do {
2327 err = __blk_mq_alloc_rq_maps(set);
2328 if (!err)
2329 break;
2330
2331 set->queue_depth >>= 1;
2332 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2333 err = -ENOMEM;
2334 break;
2335 }
2336 } while (set->queue_depth);
2337
2338 if (!set->queue_depth || err) {
2339 pr_err("blk-mq: failed to allocate request map\n");
2340 return -ENOMEM;
2341 }
2342
2343 if (depth != set->queue_depth)
2344 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2345 depth, set->queue_depth);
2346
2347 return 0;
2348}
2349
a4391c64
JA
2350/*
2351 * Alloc a tag set to be associated with one or more request queues.
2352 * May fail with EINVAL for various error conditions. May adjust the
2353 * requested depth down, if if it too large. In that case, the set
2354 * value will be stored in set->queue_depth.
2355 */
24d2f903
CH
2356int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2357{
da695ba2
CH
2358 int ret;
2359
205fb5f5
BVA
2360 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2361
24d2f903
CH
2362 if (!set->nr_hw_queues)
2363 return -EINVAL;
a4391c64 2364 if (!set->queue_depth)
24d2f903
CH
2365 return -EINVAL;
2366 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2367 return -EINVAL;
2368
7d7e0f90 2369 if (!set->ops->queue_rq)
24d2f903
CH
2370 return -EINVAL;
2371
a4391c64
JA
2372 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2373 pr_info("blk-mq: reduced tag depth to %u\n",
2374 BLK_MQ_MAX_DEPTH);
2375 set->queue_depth = BLK_MQ_MAX_DEPTH;
2376 }
24d2f903 2377
6637fadf
SL
2378 /*
2379 * If a crashdump is active, then we are potentially in a very
2380 * memory constrained environment. Limit us to 1 queue and
2381 * 64 tags to prevent using too much memory.
2382 */
2383 if (is_kdump_kernel()) {
2384 set->nr_hw_queues = 1;
2385 set->queue_depth = min(64U, set->queue_depth);
2386 }
868f2f0b
KB
2387 /*
2388 * There is no use for more h/w queues than cpus.
2389 */
2390 if (set->nr_hw_queues > nr_cpu_ids)
2391 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2392
868f2f0b 2393 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2394 GFP_KERNEL, set->numa_node);
2395 if (!set->tags)
a5164405 2396 return -ENOMEM;
24d2f903 2397
da695ba2
CH
2398 ret = -ENOMEM;
2399 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2400 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2401 if (!set->mq_map)
2402 goto out_free_tags;
2403
da695ba2
CH
2404 if (set->ops->map_queues)
2405 ret = set->ops->map_queues(set);
2406 else
2407 ret = blk_mq_map_queues(set);
2408 if (ret)
2409 goto out_free_mq_map;
2410
2411 ret = blk_mq_alloc_rq_maps(set);
2412 if (ret)
bdd17e75 2413 goto out_free_mq_map;
24d2f903 2414
0d2602ca
JA
2415 mutex_init(&set->tag_list_lock);
2416 INIT_LIST_HEAD(&set->tag_list);
2417
24d2f903 2418 return 0;
bdd17e75
CH
2419
2420out_free_mq_map:
2421 kfree(set->mq_map);
2422 set->mq_map = NULL;
2423out_free_tags:
5676e7b6
RE
2424 kfree(set->tags);
2425 set->tags = NULL;
da695ba2 2426 return ret;
24d2f903
CH
2427}
2428EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2429
2430void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2431{
2432 int i;
2433
868f2f0b 2434 for (i = 0; i < nr_cpu_ids; i++) {
f42d79ab 2435 if (set->tags[i])
484b4061
JA
2436 blk_mq_free_rq_map(set, set->tags[i], i);
2437 }
2438
bdd17e75
CH
2439 kfree(set->mq_map);
2440 set->mq_map = NULL;
2441
981bd189 2442 kfree(set->tags);
5676e7b6 2443 set->tags = NULL;
24d2f903
CH
2444}
2445EXPORT_SYMBOL(blk_mq_free_tag_set);
2446
e3a2b3f9
JA
2447int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2448{
2449 struct blk_mq_tag_set *set = q->tag_set;
2450 struct blk_mq_hw_ctx *hctx;
2451 int i, ret;
2452
2453 if (!set || nr > set->queue_depth)
2454 return -EINVAL;
2455
2456 ret = 0;
2457 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2458 if (!hctx->tags)
2459 continue;
e3a2b3f9
JA
2460 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2461 if (ret)
2462 break;
2463 }
2464
2465 if (!ret)
2466 q->nr_requests = nr;
2467
2468 return ret;
2469}
2470
868f2f0b
KB
2471void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2472{
2473 struct request_queue *q;
2474
2475 if (nr_hw_queues > nr_cpu_ids)
2476 nr_hw_queues = nr_cpu_ids;
2477 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2478 return;
2479
2480 list_for_each_entry(q, &set->tag_list, tag_set_list)
2481 blk_mq_freeze_queue(q);
2482
2483 set->nr_hw_queues = nr_hw_queues;
2484 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2485 blk_mq_realloc_hw_ctxs(set, q);
2486
2487 if (q->nr_hw_queues > 1)
2488 blk_queue_make_request(q, blk_mq_make_request);
2489 else
2490 blk_queue_make_request(q, blk_sq_make_request);
2491
2492 blk_mq_queue_reinit(q, cpu_online_mask);
2493 }
2494
2495 list_for_each_entry(q, &set->tag_list, tag_set_list)
2496 blk_mq_unfreeze_queue(q);
2497}
2498EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2499
64f1c21e
JA
2500static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2501 struct blk_mq_hw_ctx *hctx,
2502 struct request *rq)
2503{
2504 struct blk_rq_stat stat[2];
2505 unsigned long ret = 0;
2506
2507 /*
2508 * If stats collection isn't on, don't sleep but turn it on for
2509 * future users
2510 */
2511 if (!blk_stat_enable(q))
2512 return 0;
2513
2514 /*
2515 * We don't have to do this once per IO, should optimize this
2516 * to just use the current window of stats until it changes
2517 */
2518 memset(&stat, 0, sizeof(stat));
2519 blk_hctx_stat_get(hctx, stat);
2520
2521 /*
2522 * As an optimistic guess, use half of the mean service time
2523 * for this type of request. We can (and should) make this smarter.
2524 * For instance, if the completion latencies are tight, we can
2525 * get closer than just half the mean. This is especially
2526 * important on devices where the completion latencies are longer
2527 * than ~10 usec.
2528 */
2529 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2530 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2531 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2532 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2533
2534 return ret;
2535}
2536
06426adf 2537static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2538 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2539 struct request *rq)
2540{
2541 struct hrtimer_sleeper hs;
2542 enum hrtimer_mode mode;
64f1c21e 2543 unsigned int nsecs;
06426adf
JA
2544 ktime_t kt;
2545
64f1c21e
JA
2546 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2547 return false;
2548
2549 /*
2550 * poll_nsec can be:
2551 *
2552 * -1: don't ever hybrid sleep
2553 * 0: use half of prev avg
2554 * >0: use this specific value
2555 */
2556 if (q->poll_nsec == -1)
2557 return false;
2558 else if (q->poll_nsec > 0)
2559 nsecs = q->poll_nsec;
2560 else
2561 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2562
2563 if (!nsecs)
06426adf
JA
2564 return false;
2565
2566 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2567
2568 /*
2569 * This will be replaced with the stats tracking code, using
2570 * 'avg_completion_time / 2' as the pre-sleep target.
2571 */
64f1c21e 2572 kt = ktime_set(0, nsecs);
06426adf
JA
2573
2574 mode = HRTIMER_MODE_REL;
2575 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2576 hrtimer_set_expires(&hs.timer, kt);
2577
2578 hrtimer_init_sleeper(&hs, current);
2579 do {
2580 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2581 break;
2582 set_current_state(TASK_UNINTERRUPTIBLE);
2583 hrtimer_start_expires(&hs.timer, mode);
2584 if (hs.task)
2585 io_schedule();
2586 hrtimer_cancel(&hs.timer);
2587 mode = HRTIMER_MODE_ABS;
2588 } while (hs.task && !signal_pending(current));
2589
2590 __set_current_state(TASK_RUNNING);
2591 destroy_hrtimer_on_stack(&hs.timer);
2592 return true;
2593}
2594
bbd7bb70
JA
2595static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2596{
2597 struct request_queue *q = hctx->queue;
2598 long state;
2599
06426adf
JA
2600 /*
2601 * If we sleep, have the caller restart the poll loop to reset
2602 * the state. Like for the other success return cases, the
2603 * caller is responsible for checking if the IO completed. If
2604 * the IO isn't complete, we'll get called again and will go
2605 * straight to the busy poll loop.
2606 */
64f1c21e 2607 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2608 return true;
2609
bbd7bb70
JA
2610 hctx->poll_considered++;
2611
2612 state = current->state;
2613 while (!need_resched()) {
2614 int ret;
2615
2616 hctx->poll_invoked++;
2617
2618 ret = q->mq_ops->poll(hctx, rq->tag);
2619 if (ret > 0) {
2620 hctx->poll_success++;
2621 set_current_state(TASK_RUNNING);
2622 return true;
2623 }
2624
2625 if (signal_pending_state(state, current))
2626 set_current_state(TASK_RUNNING);
2627
2628 if (current->state == TASK_RUNNING)
2629 return true;
2630 if (ret < 0)
2631 break;
2632 cpu_relax();
2633 }
2634
2635 return false;
2636}
2637
2638bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2639{
2640 struct blk_mq_hw_ctx *hctx;
2641 struct blk_plug *plug;
2642 struct request *rq;
2643
2644 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2645 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2646 return false;
2647
2648 plug = current->plug;
2649 if (plug)
2650 blk_flush_plug_list(plug, false);
2651
2652 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2653 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2654
2655 return __blk_mq_poll(hctx, rq);
2656}
2657EXPORT_SYMBOL_GPL(blk_mq_poll);
2658
676141e4
JA
2659void blk_mq_disable_hotplug(void)
2660{
2661 mutex_lock(&all_q_mutex);
2662}
2663
2664void blk_mq_enable_hotplug(void)
2665{
2666 mutex_unlock(&all_q_mutex);
2667}
2668
320ae51f
JA
2669static int __init blk_mq_init(void)
2670{
9467f859
TG
2671 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2672 blk_mq_hctx_notify_dead);
320ae51f 2673
65d5291e
SAS
2674 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2675 blk_mq_queue_reinit_prepare,
2676 blk_mq_queue_reinit_dead);
320ae51f
JA
2677 return 0;
2678}
2679subsys_initcall(blk_mq_init);