]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - block/blk-mq.c
block: only allow polling if a poll queue_map exists
[thirdparty/kernel/stable.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
986d413b 36#include "blk-pm.h"
cf43e6be 37#include "blk-stat.h"
bd166ef1 38#include "blk-mq-sched.h"
c1c80384 39#include "blk-rq-qos.h"
320ae51f 40
34dbad5d
OS
41static void blk_mq_poll_stats_start(struct request_queue *q);
42static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
720b8ccc
SB
44static int blk_mq_poll_stats_bkt(const struct request *rq)
45{
46 int ddir, bytes, bucket;
47
99c749a4 48 ddir = rq_data_dir(rq);
720b8ccc
SB
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59}
60
320ae51f
JA
61/*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
79f720a7 64static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 65{
79f720a7
JA
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 68 blk_mq_sched_has_work(hctx);
1429d7c9
JA
69}
70
320ae51f
JA
71/*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76{
f31967f0
JA
77 const int bit = ctx->index_hw[hctx->type];
78
79 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
80 sbitmap_set_bit(&hctx->ctx_map, bit);
1429d7c9
JA
81}
82
83static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84 struct blk_mq_ctx *ctx)
85{
f31967f0
JA
86 const int bit = ctx->index_hw[hctx->type];
87
88 sbitmap_clear_bit(&hctx->ctx_map, bit);
320ae51f
JA
89}
90
f299b7c7
JA
91struct mq_inflight {
92 struct hd_struct *part;
93 unsigned int *inflight;
94};
95
7baa8572 96static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
f299b7c7
JA
97 struct request *rq, void *priv,
98 bool reserved)
99{
100 struct mq_inflight *mi = priv;
101
6131837b
OS
102 /*
103 * index[0] counts the specific partition that was asked for. index[1]
104 * counts the ones that are active on the whole device, so increment
105 * that if mi->part is indeed a partition, and not a whole device.
106 */
107 if (rq->part == mi->part)
108 mi->inflight[0]++;
109 if (mi->part->partno)
110 mi->inflight[1]++;
7baa8572
JA
111
112 return true;
f299b7c7
JA
113}
114
115void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
116 unsigned int inflight[2])
117{
118 struct mq_inflight mi = { .part = part, .inflight = inflight, };
119
b8d62b3a 120 inflight[0] = inflight[1] = 0;
f299b7c7
JA
121 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
122}
123
7baa8572 124static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
bf0ddaba
OS
125 struct request *rq, void *priv,
126 bool reserved)
127{
128 struct mq_inflight *mi = priv;
129
130 if (rq->part == mi->part)
131 mi->inflight[rq_data_dir(rq)]++;
7baa8572
JA
132
133 return true;
bf0ddaba
OS
134}
135
136void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
137 unsigned int inflight[2])
138{
139 struct mq_inflight mi = { .part = part, .inflight = inflight, };
140
141 inflight[0] = inflight[1] = 0;
142 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
143}
144
1671d522 145void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 146{
4ecd4fef 147 int freeze_depth;
cddd5d17 148
4ecd4fef
CH
149 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
150 if (freeze_depth == 1) {
3ef28e83 151 percpu_ref_kill(&q->q_usage_counter);
344e9ffc 152 if (queue_is_mq(q))
055f6e18 153 blk_mq_run_hw_queues(q, false);
cddd5d17 154 }
f3af020b 155}
1671d522 156EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 157
6bae363e 158void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 159{
3ef28e83 160 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 161}
6bae363e 162EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 163
f91328c4
KB
164int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
165 unsigned long timeout)
166{
167 return wait_event_timeout(q->mq_freeze_wq,
168 percpu_ref_is_zero(&q->q_usage_counter),
169 timeout);
170}
171EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 172
f3af020b
TH
173/*
174 * Guarantee no request is in use, so we can change any data structure of
175 * the queue afterward.
176 */
3ef28e83 177void blk_freeze_queue(struct request_queue *q)
f3af020b 178{
3ef28e83
DW
179 /*
180 * In the !blk_mq case we are only calling this to kill the
181 * q_usage_counter, otherwise this increases the freeze depth
182 * and waits for it to return to zero. For this reason there is
183 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
184 * exported to drivers as the only user for unfreeze is blk_mq.
185 */
1671d522 186 blk_freeze_queue_start(q);
f3af020b
TH
187 blk_mq_freeze_queue_wait(q);
188}
3ef28e83
DW
189
190void blk_mq_freeze_queue(struct request_queue *q)
191{
192 /*
193 * ...just an alias to keep freeze and unfreeze actions balanced
194 * in the blk_mq_* namespace
195 */
196 blk_freeze_queue(q);
197}
c761d96b 198EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 199
b4c6a028 200void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 201{
4ecd4fef 202 int freeze_depth;
320ae51f 203
4ecd4fef
CH
204 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
205 WARN_ON_ONCE(freeze_depth < 0);
206 if (!freeze_depth) {
bdd63160 207 percpu_ref_resurrect(&q->q_usage_counter);
320ae51f 208 wake_up_all(&q->mq_freeze_wq);
add703fd 209 }
320ae51f 210}
b4c6a028 211EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 212
852ec809
BVA
213/*
214 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
215 * mpt3sas driver such that this function can be removed.
216 */
217void blk_mq_quiesce_queue_nowait(struct request_queue *q)
218{
8814ce8a 219 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
852ec809
BVA
220}
221EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
222
6a83e74d 223/**
69e07c4a 224 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
225 * @q: request queue.
226 *
227 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
228 * callback function is invoked. Once this function is returned, we make
229 * sure no dispatch can happen until the queue is unquiesced via
230 * blk_mq_unquiesce_queue().
6a83e74d
BVA
231 */
232void blk_mq_quiesce_queue(struct request_queue *q)
233{
234 struct blk_mq_hw_ctx *hctx;
235 unsigned int i;
236 bool rcu = false;
237
1d9e9bc6 238 blk_mq_quiesce_queue_nowait(q);
f4560ffe 239
6a83e74d
BVA
240 queue_for_each_hw_ctx(q, hctx, i) {
241 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 242 synchronize_srcu(hctx->srcu);
6a83e74d
BVA
243 else
244 rcu = true;
245 }
246 if (rcu)
247 synchronize_rcu();
248}
249EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250
e4e73913
ML
251/*
252 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253 * @q: request queue.
254 *
255 * This function recovers queue into the state before quiescing
256 * which is done by blk_mq_quiesce_queue.
257 */
258void blk_mq_unquiesce_queue(struct request_queue *q)
259{
8814ce8a 260 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
f4560ffe 261
1d9e9bc6
ML
262 /* dispatch requests which are inserted during quiescing */
263 blk_mq_run_hw_queues(q, true);
e4e73913
ML
264}
265EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
266
aed3ea94
JA
267void blk_mq_wake_waiters(struct request_queue *q)
268{
269 struct blk_mq_hw_ctx *hctx;
270 unsigned int i;
271
272 queue_for_each_hw_ctx(q, hctx, i)
273 if (blk_mq_hw_queue_mapped(hctx))
274 blk_mq_tag_wakeup_all(hctx->tags, true);
275}
276
320ae51f
JA
277bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
278{
279 return blk_mq_has_free_tags(hctx->tags);
280}
281EXPORT_SYMBOL(blk_mq_can_queue);
282
fe1f4526
JA
283/*
284 * Only need start/end time stamping if we have stats enabled, or using
285 * an IO scheduler.
286 */
287static inline bool blk_mq_need_time_stamp(struct request *rq)
288{
289 return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
290}
291
e4cdf1a1
CH
292static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
293 unsigned int tag, unsigned int op)
320ae51f 294{
e4cdf1a1
CH
295 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
296 struct request *rq = tags->static_rqs[tag];
bf9ae8c5 297 req_flags_t rq_flags = 0;
c3a148d2 298
e4cdf1a1
CH
299 if (data->flags & BLK_MQ_REQ_INTERNAL) {
300 rq->tag = -1;
301 rq->internal_tag = tag;
302 } else {
d263ed99 303 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
bf9ae8c5 304 rq_flags = RQF_MQ_INFLIGHT;
e4cdf1a1
CH
305 atomic_inc(&data->hctx->nr_active);
306 }
307 rq->tag = tag;
308 rq->internal_tag = -1;
309 data->hctx->tags->rqs[rq->tag] = rq;
310 }
311
af76e555 312 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
313 rq->q = data->q;
314 rq->mq_ctx = data->ctx;
ea4f995e 315 rq->mq_hctx = data->hctx;
bf9ae8c5 316 rq->rq_flags = rq_flags;
ef295ecf 317 rq->cmd_flags = op;
1b6d65a0
BVA
318 if (data->flags & BLK_MQ_REQ_PREEMPT)
319 rq->rq_flags |= RQF_PREEMPT;
e4cdf1a1 320 if (blk_queue_io_stat(data->q))
e8064021 321 rq->rq_flags |= RQF_IO_STAT;
7c3fb70f 322 INIT_LIST_HEAD(&rq->queuelist);
af76e555
CH
323 INIT_HLIST_NODE(&rq->hash);
324 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
325 rq->rq_disk = NULL;
326 rq->part = NULL;
fe1f4526
JA
327 if (blk_mq_need_time_stamp(rq))
328 rq->start_time_ns = ktime_get_ns();
329 else
330 rq->start_time_ns = 0;
544ccc8d 331 rq->io_start_time_ns = 0;
af76e555
CH
332 rq->nr_phys_segments = 0;
333#if defined(CONFIG_BLK_DEV_INTEGRITY)
334 rq->nr_integrity_segments = 0;
335#endif
af76e555
CH
336 rq->special = NULL;
337 /* tag was already set */
af76e555 338 rq->extra_len = 0;
079076b3 339 WRITE_ONCE(rq->deadline, 0);
af76e555 340
f6be4fb4
JA
341 rq->timeout = 0;
342
af76e555
CH
343 rq->end_io = NULL;
344 rq->end_io_data = NULL;
345 rq->next_rq = NULL;
346
e4cdf1a1 347 data->ctx->rq_dispatched[op_is_sync(op)]++;
12f5b931 348 refcount_set(&rq->ref, 1);
e4cdf1a1 349 return rq;
5dee8577
CH
350}
351
d2c0d383 352static struct request *blk_mq_get_request(struct request_queue *q,
f9afca4d
JA
353 struct bio *bio,
354 struct blk_mq_alloc_data *data)
d2c0d383
CH
355{
356 struct elevator_queue *e = q->elevator;
357 struct request *rq;
e4cdf1a1 358 unsigned int tag;
21e768b4 359 bool put_ctx_on_error = false;
d2c0d383
CH
360
361 blk_queue_enter_live(q);
362 data->q = q;
21e768b4
BVA
363 if (likely(!data->ctx)) {
364 data->ctx = blk_mq_get_ctx(q);
365 put_ctx_on_error = true;
366 }
d2c0d383 367 if (likely(!data->hctx))
f9afca4d
JA
368 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
369 data->ctx->cpu);
370 if (data->cmd_flags & REQ_NOWAIT)
03a07c92 371 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
372
373 if (e) {
374 data->flags |= BLK_MQ_REQ_INTERNAL;
375
376 /*
377 * Flush requests are special and go directly to the
17a51199
JA
378 * dispatch list. Don't include reserved tags in the
379 * limiting, as it isn't useful.
d2c0d383 380 */
f9afca4d
JA
381 if (!op_is_flush(data->cmd_flags) &&
382 e->type->ops.limit_depth &&
17a51199 383 !(data->flags & BLK_MQ_REQ_RESERVED))
f9afca4d 384 e->type->ops.limit_depth(data->cmd_flags, data);
d263ed99
JW
385 } else {
386 blk_mq_tag_busy(data->hctx);
d2c0d383
CH
387 }
388
e4cdf1a1
CH
389 tag = blk_mq_get_tag(data);
390 if (tag == BLK_MQ_TAG_FAIL) {
21e768b4
BVA
391 if (put_ctx_on_error) {
392 blk_mq_put_ctx(data->ctx);
1ad43c00
ML
393 data->ctx = NULL;
394 }
037cebb8
CH
395 blk_queue_exit(q);
396 return NULL;
d2c0d383
CH
397 }
398
f9afca4d
JA
399 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
400 if (!op_is_flush(data->cmd_flags)) {
037cebb8 401 rq->elv.icq = NULL;
f9cd4bfe 402 if (e && e->type->ops.prepare_request) {
e2b3fa5a
DLM
403 if (e->type->icq_cache)
404 blk_mq_sched_assign_ioc(rq);
44e8c2bf 405
f9cd4bfe 406 e->type->ops.prepare_request(rq, bio);
5bbf4e5a 407 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 408 }
037cebb8
CH
409 }
410 data->hctx->queued++;
411 return rq;
d2c0d383
CH
412}
413
cd6ce148 414struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 415 blk_mq_req_flags_t flags)
320ae51f 416{
f9afca4d 417 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
bd166ef1 418 struct request *rq;
a492f075 419 int ret;
320ae51f 420
3a0a5299 421 ret = blk_queue_enter(q, flags);
a492f075
JL
422 if (ret)
423 return ERR_PTR(ret);
320ae51f 424
f9afca4d 425 rq = blk_mq_get_request(q, NULL, &alloc_data);
3280d66a 426 blk_queue_exit(q);
841bac2c 427
bd166ef1 428 if (!rq)
a492f075 429 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3 430
1ad43c00 431 blk_mq_put_ctx(alloc_data.ctx);
1ad43c00 432
0c4de0f3
CH
433 rq->__data_len = 0;
434 rq->__sector = (sector_t) -1;
435 rq->bio = rq->biotail = NULL;
320ae51f
JA
436 return rq;
437}
4bb659b1 438EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 439
cd6ce148 440struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 441 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 442{
f9afca4d 443 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
1f5bd336 444 struct request *rq;
6d2809d5 445 unsigned int cpu;
1f5bd336
ML
446 int ret;
447
448 /*
449 * If the tag allocator sleeps we could get an allocation for a
450 * different hardware context. No need to complicate the low level
451 * allocator for this for the rare use case of a command tied to
452 * a specific queue.
453 */
454 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
455 return ERR_PTR(-EINVAL);
456
457 if (hctx_idx >= q->nr_hw_queues)
458 return ERR_PTR(-EIO);
459
3a0a5299 460 ret = blk_queue_enter(q, flags);
1f5bd336
ML
461 if (ret)
462 return ERR_PTR(ret);
463
c8712c6a
CH
464 /*
465 * Check if the hardware context is actually mapped to anything.
466 * If not tell the caller that it should skip this queue.
467 */
6d2809d5
OS
468 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
469 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
470 blk_queue_exit(q);
471 return ERR_PTR(-EXDEV);
c8712c6a 472 }
20e4d813 473 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
6d2809d5 474 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 475
f9afca4d 476 rq = blk_mq_get_request(q, NULL, &alloc_data);
3280d66a 477 blk_queue_exit(q);
c8712c6a 478
6d2809d5
OS
479 if (!rq)
480 return ERR_PTR(-EWOULDBLOCK);
481
482 return rq;
1f5bd336
ML
483}
484EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
485
12f5b931
KB
486static void __blk_mq_free_request(struct request *rq)
487{
488 struct request_queue *q = rq->q;
489 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 490 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
12f5b931
KB
491 const int sched_tag = rq->internal_tag;
492
986d413b 493 blk_pm_mark_last_busy(rq);
ea4f995e 494 rq->mq_hctx = NULL;
12f5b931
KB
495 if (rq->tag != -1)
496 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
497 if (sched_tag != -1)
498 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
499 blk_mq_sched_restart(hctx);
500 blk_queue_exit(q);
501}
502
6af54051 503void blk_mq_free_request(struct request *rq)
320ae51f 504{
320ae51f 505 struct request_queue *q = rq->q;
6af54051
CH
506 struct elevator_queue *e = q->elevator;
507 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 508 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
6af54051 509
5bbf4e5a 510 if (rq->rq_flags & RQF_ELVPRIV) {
f9cd4bfe
JA
511 if (e && e->type->ops.finish_request)
512 e->type->ops.finish_request(rq);
6af54051
CH
513 if (rq->elv.icq) {
514 put_io_context(rq->elv.icq->ioc);
515 rq->elv.icq = NULL;
516 }
517 }
320ae51f 518
6af54051 519 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 520 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 521 atomic_dec(&hctx->nr_active);
87760e5e 522
7beb2f84
JA
523 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
524 laptop_io_completion(q->backing_dev_info);
525
a7905043 526 rq_qos_done(q, rq);
0d2602ca 527
12f5b931
KB
528 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
529 if (refcount_dec_and_test(&rq->ref))
530 __blk_mq_free_request(rq);
320ae51f 531}
1a3b595a 532EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 533
2a842aca 534inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 535{
fe1f4526
JA
536 u64 now = 0;
537
538 if (blk_mq_need_time_stamp(rq))
539 now = ktime_get_ns();
522a7775 540
4bc6339a
OS
541 if (rq->rq_flags & RQF_STATS) {
542 blk_mq_poll_stats_start(rq->q);
522a7775 543 blk_stat_add(rq, now);
4bc6339a
OS
544 }
545
ed88660a
OS
546 if (rq->internal_tag != -1)
547 blk_mq_sched_completed_request(rq, now);
548
522a7775 549 blk_account_io_done(rq, now);
0d11e6ac 550
91b63639 551 if (rq->end_io) {
a7905043 552 rq_qos_done(rq->q, rq);
320ae51f 553 rq->end_io(rq, error);
91b63639
CH
554 } else {
555 if (unlikely(blk_bidi_rq(rq)))
556 blk_mq_free_request(rq->next_rq);
320ae51f 557 blk_mq_free_request(rq);
91b63639 558 }
320ae51f 559}
c8a446ad 560EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 561
2a842aca 562void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
563{
564 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
565 BUG();
c8a446ad 566 __blk_mq_end_request(rq, error);
63151a44 567}
c8a446ad 568EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 569
30a91cb4 570static void __blk_mq_complete_request_remote(void *data)
320ae51f 571{
3d6efbf6 572 struct request *rq = data;
c7bb9ad1 573 struct request_queue *q = rq->q;
320ae51f 574
c7bb9ad1 575 q->mq_ops->complete(rq);
320ae51f 576}
320ae51f 577
453f8341 578static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
579{
580 struct blk_mq_ctx *ctx = rq->mq_ctx;
c7bb9ad1 581 struct request_queue *q = rq->q;
38535201 582 bool shared = false;
320ae51f
JA
583 int cpu;
584
af78ff7c 585 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
36e76539
ML
586 /*
587 * Most of single queue controllers, there is only one irq vector
588 * for handling IO completion, and the only irq's affinity is set
589 * as all possible CPUs. On most of ARCHs, this affinity means the
590 * irq is handled on one specific CPU.
591 *
592 * So complete IO reqeust in softirq context in case of single queue
593 * for not degrading IO performance by irqsoff latency.
594 */
c7bb9ad1 595 if (q->nr_hw_queues == 1) {
36e76539
ML
596 __blk_complete_request(rq);
597 return;
598 }
599
4ab32bf3
JA
600 /*
601 * For a polled request, always complete locallly, it's pointless
602 * to redirect the completion.
603 */
604 if ((rq->cmd_flags & REQ_HIPRI) ||
605 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
c7bb9ad1 606 q->mq_ops->complete(rq);
30a91cb4
CH
607 return;
608 }
320ae51f
JA
609
610 cpu = get_cpu();
c7bb9ad1 611 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
38535201
CH
612 shared = cpus_share_cache(cpu, ctx->cpu);
613
614 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 615 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
616 rq->csd.info = rq;
617 rq->csd.flags = 0;
c46fff2a 618 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 619 } else {
c7bb9ad1 620 q->mq_ops->complete(rq);
3d6efbf6 621 }
320ae51f
JA
622 put_cpu();
623}
30a91cb4 624
04ced159 625static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
b7435db8 626 __releases(hctx->srcu)
04ced159
JA
627{
628 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
629 rcu_read_unlock();
630 else
05707b64 631 srcu_read_unlock(hctx->srcu, srcu_idx);
04ced159
JA
632}
633
634static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
b7435db8 635 __acquires(hctx->srcu)
04ced159 636{
08b5a6e2
JA
637 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
638 /* shut up gcc false positive */
639 *srcu_idx = 0;
04ced159 640 rcu_read_lock();
08b5a6e2 641 } else
05707b64 642 *srcu_idx = srcu_read_lock(hctx->srcu);
04ced159
JA
643}
644
30a91cb4
CH
645/**
646 * blk_mq_complete_request - end I/O on a request
647 * @rq: the request being processed
648 *
649 * Description:
650 * Ends all I/O on a request. It does not handle partial completions.
651 * The actual completion happens out-of-order, through a IPI handler.
652 **/
16c15eb1 653bool blk_mq_complete_request(struct request *rq)
30a91cb4 654{
12f5b931 655 if (unlikely(blk_should_fake_timeout(rq->q)))
16c15eb1 656 return false;
12f5b931 657 __blk_mq_complete_request(rq);
16c15eb1 658 return true;
30a91cb4
CH
659}
660EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 661
973c0191
KB
662int blk_mq_request_started(struct request *rq)
663{
5a61c363 664 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
973c0191
KB
665}
666EXPORT_SYMBOL_GPL(blk_mq_request_started);
667
e2490073 668void blk_mq_start_request(struct request *rq)
320ae51f
JA
669{
670 struct request_queue *q = rq->q;
671
bd166ef1
JA
672 blk_mq_sched_started_request(rq);
673
320ae51f
JA
674 trace_block_rq_issue(q, rq);
675
cf43e6be 676 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
544ccc8d
OS
677 rq->io_start_time_ns = ktime_get_ns();
678#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
679 rq->throtl_size = blk_rq_sectors(rq);
680#endif
cf43e6be 681 rq->rq_flags |= RQF_STATS;
a7905043 682 rq_qos_issue(q, rq);
cf43e6be
JA
683 }
684
1d9bd516 685 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
538b7534 686
1d9bd516 687 blk_add_timer(rq);
12f5b931 688 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
49f5baa5
CH
689
690 if (q->dma_drain_size && blk_rq_bytes(rq)) {
691 /*
692 * Make sure space for the drain appears. We know we can do
693 * this because max_hw_segments has been adjusted to be one
694 * fewer than the device can handle.
695 */
696 rq->nr_phys_segments++;
697 }
320ae51f 698}
e2490073 699EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 700
ed0791b2 701static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
702{
703 struct request_queue *q = rq->q;
704
923218f6
ML
705 blk_mq_put_driver_tag(rq);
706
320ae51f 707 trace_block_rq_requeue(q, rq);
a7905043 708 rq_qos_requeue(q, rq);
49f5baa5 709
12f5b931
KB
710 if (blk_mq_request_started(rq)) {
711 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
da661267 712 rq->rq_flags &= ~RQF_TIMED_OUT;
e2490073
CH
713 if (q->dma_drain_size && blk_rq_bytes(rq))
714 rq->nr_phys_segments--;
715 }
320ae51f
JA
716}
717
2b053aca 718void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 719{
ed0791b2 720 __blk_mq_requeue_request(rq);
ed0791b2 721
105976f5
ML
722 /* this request will be re-inserted to io scheduler queue */
723 blk_mq_sched_requeue_request(rq);
724
7d692330 725 BUG_ON(!list_empty(&rq->queuelist));
2b053aca 726 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
727}
728EXPORT_SYMBOL(blk_mq_requeue_request);
729
6fca6a61
CH
730static void blk_mq_requeue_work(struct work_struct *work)
731{
732 struct request_queue *q =
2849450a 733 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
734 LIST_HEAD(rq_list);
735 struct request *rq, *next;
6fca6a61 736
18e9781d 737 spin_lock_irq(&q->requeue_lock);
6fca6a61 738 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 739 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
740
741 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 742 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
743 continue;
744
e8064021 745 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 746 list_del_init(&rq->queuelist);
9e97d295 747 blk_mq_sched_insert_request(rq, true, false, false);
6fca6a61
CH
748 }
749
750 while (!list_empty(&rq_list)) {
751 rq = list_entry(rq_list.next, struct request, queuelist);
752 list_del_init(&rq->queuelist);
9e97d295 753 blk_mq_sched_insert_request(rq, false, false, false);
6fca6a61
CH
754 }
755
52d7f1b5 756 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
757}
758
2b053aca
BVA
759void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
760 bool kick_requeue_list)
6fca6a61
CH
761{
762 struct request_queue *q = rq->q;
763 unsigned long flags;
764
765 /*
766 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 767 * request head insertion from the workqueue.
6fca6a61 768 */
e8064021 769 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
770
771 spin_lock_irqsave(&q->requeue_lock, flags);
772 if (at_head) {
e8064021 773 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
774 list_add(&rq->queuelist, &q->requeue_list);
775 } else {
776 list_add_tail(&rq->queuelist, &q->requeue_list);
777 }
778 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
779
780 if (kick_requeue_list)
781 blk_mq_kick_requeue_list(q);
6fca6a61
CH
782}
783EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
784
785void blk_mq_kick_requeue_list(struct request_queue *q)
786{
ae943d20 787 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
6fca6a61
CH
788}
789EXPORT_SYMBOL(blk_mq_kick_requeue_list);
790
2849450a
MS
791void blk_mq_delay_kick_requeue_list(struct request_queue *q,
792 unsigned long msecs)
793{
d4acf365
BVA
794 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
795 msecs_to_jiffies(msecs));
2849450a
MS
796}
797EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
798
0e62f51f
JA
799struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
800{
88c7b2b7
JA
801 if (tag < tags->nr_tags) {
802 prefetch(tags->rqs[tag]);
4ee86bab 803 return tags->rqs[tag];
88c7b2b7 804 }
4ee86bab
HR
805
806 return NULL;
24d2f903
CH
807}
808EXPORT_SYMBOL(blk_mq_tag_to_rq);
809
ae879912
JA
810static bool blk_mq_check_busy(struct blk_mq_hw_ctx *hctx, struct request *rq,
811 void *priv, bool reserved)
812{
813 /*
814 * If we find a request, we know the queue is busy. Return false
815 * to stop the iteration.
816 */
817 if (rq->q == hctx->queue) {
818 bool *busy = priv;
819
820 *busy = true;
821 return false;
822 }
823
824 return true;
825}
826
827bool blk_mq_queue_busy(struct request_queue *q)
828{
829 bool busy = false;
830
831 blk_mq_queue_tag_busy_iter(q, blk_mq_check_busy, &busy);
832 return busy;
833}
834EXPORT_SYMBOL_GPL(blk_mq_queue_busy);
835
358f70da 836static void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 837{
da661267 838 req->rq_flags |= RQF_TIMED_OUT;
d1210d5a
CH
839 if (req->q->mq_ops->timeout) {
840 enum blk_eh_timer_return ret;
841
842 ret = req->q->mq_ops->timeout(req, reserved);
843 if (ret == BLK_EH_DONE)
844 return;
845 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
46f92d42 846 }
d1210d5a
CH
847
848 blk_add_timer(req);
87ee7b11 849}
5b3f25fc 850
12f5b931 851static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
81481eb4 852{
12f5b931 853 unsigned long deadline;
87ee7b11 854
12f5b931
KB
855 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
856 return false;
da661267
CH
857 if (rq->rq_flags & RQF_TIMED_OUT)
858 return false;
a7af0af3 859
079076b3 860 deadline = READ_ONCE(rq->deadline);
12f5b931
KB
861 if (time_after_eq(jiffies, deadline))
862 return true;
a7af0af3 863
12f5b931
KB
864 if (*next == 0)
865 *next = deadline;
866 else if (time_after(*next, deadline))
867 *next = deadline;
868 return false;
87ee7b11
JA
869}
870
7baa8572 871static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1d9bd516
TH
872 struct request *rq, void *priv, bool reserved)
873{
12f5b931
KB
874 unsigned long *next = priv;
875
876 /*
877 * Just do a quick check if it is expired before locking the request in
878 * so we're not unnecessarilly synchronizing across CPUs.
879 */
880 if (!blk_mq_req_expired(rq, next))
7baa8572 881 return true;
12f5b931
KB
882
883 /*
884 * We have reason to believe the request may be expired. Take a
885 * reference on the request to lock this request lifetime into its
886 * currently allocated context to prevent it from being reallocated in
887 * the event the completion by-passes this timeout handler.
888 *
889 * If the reference was already released, then the driver beat the
890 * timeout handler to posting a natural completion.
891 */
892 if (!refcount_inc_not_zero(&rq->ref))
7baa8572 893 return true;
12f5b931 894
1d9bd516 895 /*
12f5b931
KB
896 * The request is now locked and cannot be reallocated underneath the
897 * timeout handler's processing. Re-verify this exact request is truly
898 * expired; if it is not expired, then the request was completed and
899 * reallocated as a new request.
1d9bd516 900 */
12f5b931 901 if (blk_mq_req_expired(rq, next))
1d9bd516 902 blk_mq_rq_timed_out(rq, reserved);
12f5b931
KB
903 if (refcount_dec_and_test(&rq->ref))
904 __blk_mq_free_request(rq);
7baa8572
JA
905
906 return true;
1d9bd516
TH
907}
908
287922eb 909static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 910{
287922eb
CH
911 struct request_queue *q =
912 container_of(work, struct request_queue, timeout_work);
12f5b931 913 unsigned long next = 0;
1d9bd516 914 struct blk_mq_hw_ctx *hctx;
81481eb4 915 int i;
320ae51f 916
71f79fb3
GKB
917 /* A deadlock might occur if a request is stuck requiring a
918 * timeout at the same time a queue freeze is waiting
919 * completion, since the timeout code would not be able to
920 * acquire the queue reference here.
921 *
922 * That's why we don't use blk_queue_enter here; instead, we use
923 * percpu_ref_tryget directly, because we need to be able to
924 * obtain a reference even in the short window between the queue
925 * starting to freeze, by dropping the first reference in
1671d522 926 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
927 * consumed, marked by the instant q_usage_counter reaches
928 * zero.
929 */
930 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
931 return;
932
12f5b931 933 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
320ae51f 934
12f5b931
KB
935 if (next != 0) {
936 mod_timer(&q->timeout, next);
0d2602ca 937 } else {
fcd36c36
BVA
938 /*
939 * Request timeouts are handled as a forward rolling timer. If
940 * we end up here it means that no requests are pending and
941 * also that no request has been pending for a while. Mark
942 * each hctx as idle.
943 */
f054b56c
ML
944 queue_for_each_hw_ctx(q, hctx, i) {
945 /* the hctx may be unmapped, so check it here */
946 if (blk_mq_hw_queue_mapped(hctx))
947 blk_mq_tag_idle(hctx);
948 }
0d2602ca 949 }
287922eb 950 blk_queue_exit(q);
320ae51f
JA
951}
952
88459642
OS
953struct flush_busy_ctx_data {
954 struct blk_mq_hw_ctx *hctx;
955 struct list_head *list;
956};
957
958static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
959{
960 struct flush_busy_ctx_data *flush_data = data;
961 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
962 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
963
88459642
OS
964 spin_lock(&ctx->lock);
965 list_splice_tail_init(&ctx->rq_list, flush_data->list);
e9a99a63 966 sbitmap_clear_bit(sb, bitnr);
88459642
OS
967 spin_unlock(&ctx->lock);
968 return true;
969}
970
1429d7c9
JA
971/*
972 * Process software queues that have been marked busy, splicing them
973 * to the for-dispatch
974 */
2c3ad667 975void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 976{
88459642
OS
977 struct flush_busy_ctx_data data = {
978 .hctx = hctx,
979 .list = list,
980 };
1429d7c9 981
88459642 982 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 983}
2c3ad667 984EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 985
b347689f
ML
986struct dispatch_rq_data {
987 struct blk_mq_hw_ctx *hctx;
988 struct request *rq;
989};
990
991static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
992 void *data)
993{
994 struct dispatch_rq_data *dispatch_data = data;
995 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
996 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
997
998 spin_lock(&ctx->lock);
b4f6f38d 999 if (!list_empty(&ctx->rq_list)) {
b347689f
ML
1000 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1001 list_del_init(&dispatch_data->rq->queuelist);
1002 if (list_empty(&ctx->rq_list))
1003 sbitmap_clear_bit(sb, bitnr);
1004 }
1005 spin_unlock(&ctx->lock);
1006
1007 return !dispatch_data->rq;
1008}
1009
1010struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1011 struct blk_mq_ctx *start)
1012{
f31967f0 1013 unsigned off = start ? start->index_hw[hctx->type] : 0;
b347689f
ML
1014 struct dispatch_rq_data data = {
1015 .hctx = hctx,
1016 .rq = NULL,
1017 };
1018
1019 __sbitmap_for_each_set(&hctx->ctx_map, off,
1020 dispatch_rq_from_ctx, &data);
1021
1022 return data.rq;
1023}
1024
703fd1c0
JA
1025static inline unsigned int queued_to_index(unsigned int queued)
1026{
1027 if (!queued)
1028 return 0;
1429d7c9 1029
703fd1c0 1030 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
1031}
1032
8ab6bb9e 1033bool blk_mq_get_driver_tag(struct request *rq)
bd166ef1
JA
1034{
1035 struct blk_mq_alloc_data data = {
1036 .q = rq->q,
ea4f995e 1037 .hctx = rq->mq_hctx,
8ab6bb9e 1038 .flags = BLK_MQ_REQ_NOWAIT,
f9afca4d 1039 .cmd_flags = rq->cmd_flags,
bd166ef1 1040 };
d263ed99 1041 bool shared;
5feeacdd 1042
81380ca1
OS
1043 if (rq->tag != -1)
1044 goto done;
bd166ef1 1045
415b806d
SG
1046 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1047 data.flags |= BLK_MQ_REQ_RESERVED;
1048
d263ed99 1049 shared = blk_mq_tag_busy(data.hctx);
bd166ef1
JA
1050 rq->tag = blk_mq_get_tag(&data);
1051 if (rq->tag >= 0) {
d263ed99 1052 if (shared) {
200e86b3
JA
1053 rq->rq_flags |= RQF_MQ_INFLIGHT;
1054 atomic_inc(&data.hctx->nr_active);
1055 }
bd166ef1 1056 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
1057 }
1058
81380ca1 1059done:
81380ca1 1060 return rq->tag != -1;
bd166ef1
JA
1061}
1062
eb619fdb
JA
1063static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1064 int flags, void *key)
da55f2cc
OS
1065{
1066 struct blk_mq_hw_ctx *hctx;
1067
1068 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1069
5815839b 1070 spin_lock(&hctx->dispatch_wait_lock);
eb619fdb 1071 list_del_init(&wait->entry);
5815839b
ML
1072 spin_unlock(&hctx->dispatch_wait_lock);
1073
da55f2cc
OS
1074 blk_mq_run_hw_queue(hctx, true);
1075 return 1;
1076}
1077
f906a6a0
JA
1078/*
1079 * Mark us waiting for a tag. For shared tags, this involves hooking us into
ee3e4de5
BVA
1080 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1081 * restart. For both cases, take care to check the condition again after
f906a6a0
JA
1082 * marking us as waiting.
1083 */
2278d69f 1084static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
f906a6a0 1085 struct request *rq)
da55f2cc 1086{
5815839b 1087 struct wait_queue_head *wq;
f906a6a0
JA
1088 wait_queue_entry_t *wait;
1089 bool ret;
da55f2cc 1090
2278d69f
ML
1091 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1092 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1093 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
f906a6a0 1094
c27d53fb
BVA
1095 /*
1096 * It's possible that a tag was freed in the window between the
1097 * allocation failure and adding the hardware queue to the wait
1098 * queue.
1099 *
1100 * Don't clear RESTART here, someone else could have set it.
1101 * At most this will cost an extra queue run.
1102 */
8ab6bb9e 1103 return blk_mq_get_driver_tag(rq);
eb619fdb 1104 }
eb619fdb 1105
2278d69f 1106 wait = &hctx->dispatch_wait;
c27d53fb
BVA
1107 if (!list_empty_careful(&wait->entry))
1108 return false;
1109
5815839b
ML
1110 wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1111
1112 spin_lock_irq(&wq->lock);
1113 spin_lock(&hctx->dispatch_wait_lock);
c27d53fb 1114 if (!list_empty(&wait->entry)) {
5815839b
ML
1115 spin_unlock(&hctx->dispatch_wait_lock);
1116 spin_unlock_irq(&wq->lock);
c27d53fb 1117 return false;
eb619fdb
JA
1118 }
1119
5815839b
ML
1120 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1121 __add_wait_queue(wq, wait);
c27d53fb 1122
da55f2cc 1123 /*
eb619fdb
JA
1124 * It's possible that a tag was freed in the window between the
1125 * allocation failure and adding the hardware queue to the wait
1126 * queue.
da55f2cc 1127 */
8ab6bb9e 1128 ret = blk_mq_get_driver_tag(rq);
c27d53fb 1129 if (!ret) {
5815839b
ML
1130 spin_unlock(&hctx->dispatch_wait_lock);
1131 spin_unlock_irq(&wq->lock);
c27d53fb 1132 return false;
eb619fdb 1133 }
c27d53fb
BVA
1134
1135 /*
1136 * We got a tag, remove ourselves from the wait queue to ensure
1137 * someone else gets the wakeup.
1138 */
c27d53fb 1139 list_del_init(&wait->entry);
5815839b
ML
1140 spin_unlock(&hctx->dispatch_wait_lock);
1141 spin_unlock_irq(&wq->lock);
c27d53fb
BVA
1142
1143 return true;
da55f2cc
OS
1144}
1145
6e768717
ML
1146#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1147#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1148/*
1149 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1150 * - EWMA is one simple way to compute running average value
1151 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1152 * - take 4 as factor for avoiding to get too small(0) result, and this
1153 * factor doesn't matter because EWMA decreases exponentially
1154 */
1155static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1156{
1157 unsigned int ewma;
1158
1159 if (hctx->queue->elevator)
1160 return;
1161
1162 ewma = hctx->dispatch_busy;
1163
1164 if (!ewma && !busy)
1165 return;
1166
1167 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1168 if (busy)
1169 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1170 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1171
1172 hctx->dispatch_busy = ewma;
1173}
1174
86ff7c2a
ML
1175#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1176
1f57f8d4
JA
1177/*
1178 * Returns true if we did some work AND can potentially do more.
1179 */
de148297 1180bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
eb619fdb 1181 bool got_budget)
320ae51f 1182{
81380ca1 1183 struct blk_mq_hw_ctx *hctx;
6d6f167c 1184 struct request *rq, *nxt;
eb619fdb 1185 bool no_tag = false;
fc17b653 1186 int errors, queued;
86ff7c2a 1187 blk_status_t ret = BLK_STS_OK;
320ae51f 1188
81380ca1
OS
1189 if (list_empty(list))
1190 return false;
1191
de148297
ML
1192 WARN_ON(!list_is_singular(list) && got_budget);
1193
320ae51f
JA
1194 /*
1195 * Now process all the entries, sending them to the driver.
1196 */
93efe981 1197 errors = queued = 0;
81380ca1 1198 do {
74c45052 1199 struct blk_mq_queue_data bd;
320ae51f 1200
f04c3df3 1201 rq = list_first_entry(list, struct request, queuelist);
0bca799b 1202
ea4f995e 1203 hctx = rq->mq_hctx;
0bca799b
ML
1204 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1205 break;
1206
8ab6bb9e 1207 if (!blk_mq_get_driver_tag(rq)) {
3c782d67 1208 /*
da55f2cc 1209 * The initial allocation attempt failed, so we need to
eb619fdb
JA
1210 * rerun the hardware queue when a tag is freed. The
1211 * waitqueue takes care of that. If the queue is run
1212 * before we add this entry back on the dispatch list,
1213 * we'll re-run it below.
3c782d67 1214 */
2278d69f 1215 if (!blk_mq_mark_tag_wait(hctx, rq)) {
0bca799b 1216 blk_mq_put_dispatch_budget(hctx);
f906a6a0
JA
1217 /*
1218 * For non-shared tags, the RESTART check
1219 * will suffice.
1220 */
1221 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1222 no_tag = true;
de148297
ML
1223 break;
1224 }
1225 }
1226
320ae51f 1227 list_del_init(&rq->queuelist);
320ae51f 1228
74c45052 1229 bd.rq = rq;
113285b4
JA
1230
1231 /*
1232 * Flag last if we have no more requests, or if we have more
1233 * but can't assign a driver tag to it.
1234 */
1235 if (list_empty(list))
1236 bd.last = true;
1237 else {
113285b4 1238 nxt = list_first_entry(list, struct request, queuelist);
8ab6bb9e 1239 bd.last = !blk_mq_get_driver_tag(nxt);
113285b4 1240 }
74c45052
JA
1241
1242 ret = q->mq_ops->queue_rq(hctx, &bd);
86ff7c2a 1243 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
6d6f167c
JW
1244 /*
1245 * If an I/O scheduler has been configured and we got a
ff821d27
JA
1246 * driver tag for the next request already, free it
1247 * again.
6d6f167c
JW
1248 */
1249 if (!list_empty(list)) {
1250 nxt = list_first_entry(list, struct request, queuelist);
1251 blk_mq_put_driver_tag(nxt);
1252 }
f04c3df3 1253 list_add(&rq->queuelist, list);
ed0791b2 1254 __blk_mq_requeue_request(rq);
320ae51f 1255 break;
fc17b653
CH
1256 }
1257
1258 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1259 errors++;
2a842aca 1260 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1261 continue;
320ae51f
JA
1262 }
1263
fc17b653 1264 queued++;
81380ca1 1265 } while (!list_empty(list));
320ae51f 1266
703fd1c0 1267 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1268
1269 /*
1270 * Any items that need requeuing? Stuff them into hctx->dispatch,
1271 * that is where we will continue on next queue run.
1272 */
f04c3df3 1273 if (!list_empty(list)) {
86ff7c2a
ML
1274 bool needs_restart;
1275
d666ba98
JA
1276 /*
1277 * If we didn't flush the entire list, we could have told
1278 * the driver there was more coming, but that turned out to
1279 * be a lie.
1280 */
1281 if (q->mq_ops->commit_rqs)
1282 q->mq_ops->commit_rqs(hctx);
1283
320ae51f 1284 spin_lock(&hctx->lock);
c13660a0 1285 list_splice_init(list, &hctx->dispatch);
320ae51f 1286 spin_unlock(&hctx->lock);
f04c3df3 1287
9ba52e58 1288 /*
710c785f
BVA
1289 * If SCHED_RESTART was set by the caller of this function and
1290 * it is no longer set that means that it was cleared by another
1291 * thread and hence that a queue rerun is needed.
9ba52e58 1292 *
eb619fdb
JA
1293 * If 'no_tag' is set, that means that we failed getting
1294 * a driver tag with an I/O scheduler attached. If our dispatch
1295 * waitqueue is no longer active, ensure that we run the queue
1296 * AFTER adding our entries back to the list.
bd166ef1 1297 *
710c785f
BVA
1298 * If no I/O scheduler has been configured it is possible that
1299 * the hardware queue got stopped and restarted before requests
1300 * were pushed back onto the dispatch list. Rerun the queue to
1301 * avoid starvation. Notes:
1302 * - blk_mq_run_hw_queue() checks whether or not a queue has
1303 * been stopped before rerunning a queue.
1304 * - Some but not all block drivers stop a queue before
fc17b653 1305 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1306 * and dm-rq.
86ff7c2a
ML
1307 *
1308 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1309 * bit is set, run queue after a delay to avoid IO stalls
1310 * that could otherwise occur if the queue is idle.
bd166ef1 1311 */
86ff7c2a
ML
1312 needs_restart = blk_mq_sched_needs_restart(hctx);
1313 if (!needs_restart ||
eb619fdb 1314 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1315 blk_mq_run_hw_queue(hctx, true);
86ff7c2a
ML
1316 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1317 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1f57f8d4 1318
6e768717 1319 blk_mq_update_dispatch_busy(hctx, true);
1f57f8d4 1320 return false;
6e768717
ML
1321 } else
1322 blk_mq_update_dispatch_busy(hctx, false);
f04c3df3 1323
1f57f8d4
JA
1324 /*
1325 * If the host/device is unable to accept more work, inform the
1326 * caller of that.
1327 */
1328 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1329 return false;
1330
93efe981 1331 return (queued + errors) != 0;
f04c3df3
JA
1332}
1333
6a83e74d
BVA
1334static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1335{
1336 int srcu_idx;
1337
b7a71e66
JA
1338 /*
1339 * We should be running this queue from one of the CPUs that
1340 * are mapped to it.
7df938fb
ML
1341 *
1342 * There are at least two related races now between setting
1343 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1344 * __blk_mq_run_hw_queue():
1345 *
1346 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1347 * but later it becomes online, then this warning is harmless
1348 * at all
1349 *
1350 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1351 * but later it becomes offline, then the warning can't be
1352 * triggered, and we depend on blk-mq timeout handler to
1353 * handle dispatched requests to this hctx
b7a71e66 1354 */
7df938fb
ML
1355 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1356 cpu_online(hctx->next_cpu)) {
1357 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1358 raw_smp_processor_id(),
1359 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1360 dump_stack();
1361 }
6a83e74d 1362
b7a71e66
JA
1363 /*
1364 * We can't run the queue inline with ints disabled. Ensure that
1365 * we catch bad users of this early.
1366 */
1367 WARN_ON_ONCE(in_interrupt());
1368
04ced159 1369 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1370
04ced159
JA
1371 hctx_lock(hctx, &srcu_idx);
1372 blk_mq_sched_dispatch_requests(hctx);
1373 hctx_unlock(hctx, srcu_idx);
6a83e74d
BVA
1374}
1375
f82ddf19
ML
1376static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1377{
1378 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1379
1380 if (cpu >= nr_cpu_ids)
1381 cpu = cpumask_first(hctx->cpumask);
1382 return cpu;
1383}
1384
506e931f
JA
1385/*
1386 * It'd be great if the workqueue API had a way to pass
1387 * in a mask and had some smarts for more clever placement.
1388 * For now we just round-robin here, switching for every
1389 * BLK_MQ_CPU_WORK_BATCH queued items.
1390 */
1391static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1392{
7bed4595 1393 bool tried = false;
476f8c98 1394 int next_cpu = hctx->next_cpu;
7bed4595 1395
b657d7e6
CH
1396 if (hctx->queue->nr_hw_queues == 1)
1397 return WORK_CPU_UNBOUND;
506e931f
JA
1398
1399 if (--hctx->next_cpu_batch <= 0) {
7bed4595 1400select_cpu:
476f8c98 1401 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
20e4d813 1402 cpu_online_mask);
506e931f 1403 if (next_cpu >= nr_cpu_ids)
f82ddf19 1404 next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
1405 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1406 }
1407
7bed4595
ML
1408 /*
1409 * Do unbound schedule if we can't find a online CPU for this hctx,
1410 * and it should only happen in the path of handling CPU DEAD.
1411 */
476f8c98 1412 if (!cpu_online(next_cpu)) {
7bed4595
ML
1413 if (!tried) {
1414 tried = true;
1415 goto select_cpu;
1416 }
1417
1418 /*
1419 * Make sure to re-select CPU next time once after CPUs
1420 * in hctx->cpumask become online again.
1421 */
476f8c98 1422 hctx->next_cpu = next_cpu;
7bed4595
ML
1423 hctx->next_cpu_batch = 1;
1424 return WORK_CPU_UNBOUND;
1425 }
476f8c98
ML
1426
1427 hctx->next_cpu = next_cpu;
1428 return next_cpu;
506e931f
JA
1429}
1430
7587a5ae
BVA
1431static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1432 unsigned long msecs)
320ae51f 1433{
5435c023 1434 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1435 return;
1436
1b792f2f 1437 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1438 int cpu = get_cpu();
1439 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1440 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1441 put_cpu();
398205b8
PB
1442 return;
1443 }
e4043dcf 1444
2a90d4aa 1445 put_cpu();
e4043dcf 1446 }
398205b8 1447
ae943d20
BVA
1448 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1449 msecs_to_jiffies(msecs));
7587a5ae
BVA
1450}
1451
1452void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1453{
1454 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1455}
1456EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1457
79f720a7 1458bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 1459{
24f5a90f
ML
1460 int srcu_idx;
1461 bool need_run;
1462
1463 /*
1464 * When queue is quiesced, we may be switching io scheduler, or
1465 * updating nr_hw_queues, or other things, and we can't run queue
1466 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1467 *
1468 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1469 * quiesced.
1470 */
04ced159
JA
1471 hctx_lock(hctx, &srcu_idx);
1472 need_run = !blk_queue_quiesced(hctx->queue) &&
1473 blk_mq_hctx_has_pending(hctx);
1474 hctx_unlock(hctx, srcu_idx);
24f5a90f
ML
1475
1476 if (need_run) {
79f720a7
JA
1477 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1478 return true;
1479 }
1480
1481 return false;
320ae51f 1482}
5b727272 1483EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1484
b94ec296 1485void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1486{
1487 struct blk_mq_hw_ctx *hctx;
1488 int i;
1489
1490 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 1491 if (blk_mq_hctx_stopped(hctx))
320ae51f
JA
1492 continue;
1493
b94ec296 1494 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1495 }
1496}
b94ec296 1497EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1498
fd001443
BVA
1499/**
1500 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1501 * @q: request queue.
1502 *
1503 * The caller is responsible for serializing this function against
1504 * blk_mq_{start,stop}_hw_queue().
1505 */
1506bool blk_mq_queue_stopped(struct request_queue *q)
1507{
1508 struct blk_mq_hw_ctx *hctx;
1509 int i;
1510
1511 queue_for_each_hw_ctx(q, hctx, i)
1512 if (blk_mq_hctx_stopped(hctx))
1513 return true;
1514
1515 return false;
1516}
1517EXPORT_SYMBOL(blk_mq_queue_stopped);
1518
39a70c76
ML
1519/*
1520 * This function is often used for pausing .queue_rq() by driver when
1521 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1522 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1523 *
1524 * We do not guarantee that dispatch can be drained or blocked
1525 * after blk_mq_stop_hw_queue() returns. Please use
1526 * blk_mq_quiesce_queue() for that requirement.
1527 */
2719aa21
JA
1528void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1529{
641a9ed6 1530 cancel_delayed_work(&hctx->run_work);
280d45f6 1531
641a9ed6 1532 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1533}
641a9ed6 1534EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1535
39a70c76
ML
1536/*
1537 * This function is often used for pausing .queue_rq() by driver when
1538 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1539 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1540 *
1541 * We do not guarantee that dispatch can be drained or blocked
1542 * after blk_mq_stop_hw_queues() returns. Please use
1543 * blk_mq_quiesce_queue() for that requirement.
1544 */
2719aa21
JA
1545void blk_mq_stop_hw_queues(struct request_queue *q)
1546{
641a9ed6
ML
1547 struct blk_mq_hw_ctx *hctx;
1548 int i;
1549
1550 queue_for_each_hw_ctx(q, hctx, i)
1551 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1552}
1553EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1554
320ae51f
JA
1555void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1556{
1557 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1558
0ffbce80 1559 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1560}
1561EXPORT_SYMBOL(blk_mq_start_hw_queue);
1562
2f268556
CH
1563void blk_mq_start_hw_queues(struct request_queue *q)
1564{
1565 struct blk_mq_hw_ctx *hctx;
1566 int i;
1567
1568 queue_for_each_hw_ctx(q, hctx, i)
1569 blk_mq_start_hw_queue(hctx);
1570}
1571EXPORT_SYMBOL(blk_mq_start_hw_queues);
1572
ae911c5e
JA
1573void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1574{
1575 if (!blk_mq_hctx_stopped(hctx))
1576 return;
1577
1578 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1579 blk_mq_run_hw_queue(hctx, async);
1580}
1581EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1582
1b4a3258 1583void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1584{
1585 struct blk_mq_hw_ctx *hctx;
1586 int i;
1587
ae911c5e
JA
1588 queue_for_each_hw_ctx(q, hctx, i)
1589 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1590}
1591EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1592
70f4db63 1593static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1594{
1595 struct blk_mq_hw_ctx *hctx;
1596
9f993737 1597 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1598
21c6e939 1599 /*
15fe8a90 1600 * If we are stopped, don't run the queue.
21c6e939 1601 */
15fe8a90 1602 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
0196d6b4 1603 return;
7587a5ae
BVA
1604
1605 __blk_mq_run_hw_queue(hctx);
1606}
1607
cfd0c552 1608static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1609 struct request *rq,
1610 bool at_head)
320ae51f 1611{
e57690fe
JA
1612 struct blk_mq_ctx *ctx = rq->mq_ctx;
1613
7b607814
BVA
1614 lockdep_assert_held(&ctx->lock);
1615
01b983c9
JA
1616 trace_block_rq_insert(hctx->queue, rq);
1617
72a0a36e
CH
1618 if (at_head)
1619 list_add(&rq->queuelist, &ctx->rq_list);
1620 else
1621 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1622}
4bb659b1 1623
2c3ad667
JA
1624void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1625 bool at_head)
cfd0c552
ML
1626{
1627 struct blk_mq_ctx *ctx = rq->mq_ctx;
1628
7b607814
BVA
1629 lockdep_assert_held(&ctx->lock);
1630
e57690fe 1631 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1632 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1633}
1634
157f377b
JA
1635/*
1636 * Should only be used carefully, when the caller knows we want to
1637 * bypass a potential IO scheduler on the target device.
1638 */
b0850297 1639void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
157f377b 1640{
ea4f995e 1641 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
157f377b
JA
1642
1643 spin_lock(&hctx->lock);
1644 list_add_tail(&rq->queuelist, &hctx->dispatch);
1645 spin_unlock(&hctx->lock);
1646
b0850297
ML
1647 if (run_queue)
1648 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1649}
1650
bd166ef1
JA
1651void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1652 struct list_head *list)
320ae51f
JA
1653
1654{
3f0cedc7
ML
1655 struct request *rq;
1656
320ae51f
JA
1657 /*
1658 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1659 * offline now
1660 */
3f0cedc7 1661 list_for_each_entry(rq, list, queuelist) {
e57690fe 1662 BUG_ON(rq->mq_ctx != ctx);
3f0cedc7 1663 trace_block_rq_insert(hctx->queue, rq);
320ae51f 1664 }
3f0cedc7
ML
1665
1666 spin_lock(&ctx->lock);
1667 list_splice_tail_init(list, &ctx->rq_list);
cfd0c552 1668 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1669 spin_unlock(&ctx->lock);
320ae51f
JA
1670}
1671
3110fc79 1672static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
320ae51f
JA
1673{
1674 struct request *rqa = container_of(a, struct request, queuelist);
1675 struct request *rqb = container_of(b, struct request, queuelist);
1676
3110fc79
JA
1677 if (rqa->mq_ctx < rqb->mq_ctx)
1678 return -1;
1679 else if (rqa->mq_ctx > rqb->mq_ctx)
1680 return 1;
1681 else if (rqa->mq_hctx < rqb->mq_hctx)
1682 return -1;
1683 else if (rqa->mq_hctx > rqb->mq_hctx)
1684 return 1;
1685
1686 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
320ae51f
JA
1687}
1688
1689void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1690{
67cae4c9 1691 struct blk_mq_hw_ctx *this_hctx;
320ae51f
JA
1692 struct blk_mq_ctx *this_ctx;
1693 struct request_queue *this_q;
1694 struct request *rq;
1695 LIST_HEAD(list);
67cae4c9 1696 LIST_HEAD(rq_list);
320ae51f
JA
1697 unsigned int depth;
1698
1699 list_splice_init(&plug->mq_list, &list);
5f0ed774 1700 plug->rq_count = 0;
320ae51f 1701
ce5b009c
JA
1702 if (plug->rq_count > 2 && plug->multiple_queues)
1703 list_sort(NULL, &list, plug_rq_cmp);
320ae51f
JA
1704
1705 this_q = NULL;
67cae4c9 1706 this_hctx = NULL;
320ae51f
JA
1707 this_ctx = NULL;
1708 depth = 0;
1709
1710 while (!list_empty(&list)) {
1711 rq = list_entry_rq(list.next);
1712 list_del_init(&rq->queuelist);
1713 BUG_ON(!rq->q);
67cae4c9
JA
1714 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1715 if (this_hctx) {
587562d0 1716 trace_block_unplug(this_q, depth, !from_schedule);
67cae4c9
JA
1717 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1718 &rq_list,
bd166ef1 1719 from_schedule);
320ae51f
JA
1720 }
1721
320ae51f 1722 this_q = rq->q;
67cae4c9
JA
1723 this_ctx = rq->mq_ctx;
1724 this_hctx = rq->mq_hctx;
320ae51f
JA
1725 depth = 0;
1726 }
1727
1728 depth++;
67cae4c9 1729 list_add_tail(&rq->queuelist, &rq_list);
320ae51f
JA
1730 }
1731
1732 /*
67cae4c9
JA
1733 * If 'this_hctx' is set, we know we have entries to complete
1734 * on 'rq_list'. Do those.
320ae51f 1735 */
67cae4c9 1736 if (this_hctx) {
587562d0 1737 trace_block_unplug(this_q, depth, !from_schedule);
67cae4c9 1738 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
bd166ef1 1739 from_schedule);
320ae51f
JA
1740 }
1741}
1742
1743static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1744{
da8d7f07 1745 blk_init_request_from_bio(rq, bio);
4b570521 1746
6e85eaf3 1747 blk_account_io_start(rq, true);
320ae51f
JA
1748}
1749
fd2d3326
JA
1750static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1751{
bd166ef1
JA
1752 if (rq->tag != -1)
1753 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1754
1755 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1756}
1757
0f95549c
MS
1758static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1759 struct request *rq,
be94f058 1760 blk_qc_t *cookie, bool last)
f984df1f 1761{
f984df1f 1762 struct request_queue *q = rq->q;
f984df1f
SL
1763 struct blk_mq_queue_data bd = {
1764 .rq = rq,
be94f058 1765 .last = last,
f984df1f 1766 };
bd166ef1 1767 blk_qc_t new_cookie;
f06345ad 1768 blk_status_t ret;
0f95549c
MS
1769
1770 new_cookie = request_to_qc_t(hctx, rq);
1771
1772 /*
1773 * For OK queue, we are done. For error, caller may kill it.
1774 * Any other error (busy), just add it to our list as we
1775 * previously would have done.
1776 */
1777 ret = q->mq_ops->queue_rq(hctx, &bd);
1778 switch (ret) {
1779 case BLK_STS_OK:
6ce3dd6e 1780 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1781 *cookie = new_cookie;
1782 break;
1783 case BLK_STS_RESOURCE:
86ff7c2a 1784 case BLK_STS_DEV_RESOURCE:
6ce3dd6e 1785 blk_mq_update_dispatch_busy(hctx, true);
0f95549c
MS
1786 __blk_mq_requeue_request(rq);
1787 break;
1788 default:
6ce3dd6e 1789 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1790 *cookie = BLK_QC_T_NONE;
1791 break;
1792 }
1793
1794 return ret;
1795}
1796
0f95549c
MS
1797static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1798 struct request *rq,
396eaf21 1799 blk_qc_t *cookie,
be94f058 1800 bool bypass_insert, bool last)
0f95549c
MS
1801{
1802 struct request_queue *q = rq->q;
d964f04a
ML
1803 bool run_queue = true;
1804
23d4ee19
ML
1805 /*
1806 * RCU or SRCU read lock is needed before checking quiesced flag.
1807 *
1808 * When queue is stopped or quiesced, ignore 'bypass_insert' from
c77ff7fd 1809 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
23d4ee19
ML
1810 * and avoid driver to try to dispatch again.
1811 */
f4560ffe 1812 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a 1813 run_queue = false;
23d4ee19 1814 bypass_insert = false;
d964f04a
ML
1815 goto insert;
1816 }
f984df1f 1817
396eaf21 1818 if (q->elevator && !bypass_insert)
2253efc8
BVA
1819 goto insert;
1820
0bca799b 1821 if (!blk_mq_get_dispatch_budget(hctx))
bd166ef1
JA
1822 goto insert;
1823
8ab6bb9e 1824 if (!blk_mq_get_driver_tag(rq)) {
0bca799b 1825 blk_mq_put_dispatch_budget(hctx);
de148297 1826 goto insert;
88022d72 1827 }
de148297 1828
be94f058 1829 return __blk_mq_issue_directly(hctx, rq, cookie, last);
2253efc8 1830insert:
396eaf21
ML
1831 if (bypass_insert)
1832 return BLK_STS_RESOURCE;
0f95549c 1833
23d4ee19 1834 blk_mq_sched_insert_request(rq, false, run_queue, false);
0f95549c 1835 return BLK_STS_OK;
f984df1f
SL
1836}
1837
5eb6126e
CH
1838static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1839 struct request *rq, blk_qc_t *cookie)
1840{
0f95549c 1841 blk_status_t ret;
04ced159 1842 int srcu_idx;
bf4907c0 1843
04ced159 1844 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1845
04ced159 1846 hctx_lock(hctx, &srcu_idx);
0f95549c 1847
be94f058 1848 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
86ff7c2a 1849 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
23d4ee19 1850 blk_mq_sched_insert_request(rq, false, true, false);
0f95549c
MS
1851 else if (ret != BLK_STS_OK)
1852 blk_mq_end_request(rq, ret);
1853
04ced159 1854 hctx_unlock(hctx, srcu_idx);
5eb6126e
CH
1855}
1856
be94f058 1857blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
396eaf21
ML
1858{
1859 blk_status_t ret;
1860 int srcu_idx;
1861 blk_qc_t unused_cookie;
ea4f995e 1862 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
396eaf21
ML
1863
1864 hctx_lock(hctx, &srcu_idx);
be94f058 1865 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
396eaf21
ML
1866 hctx_unlock(hctx, srcu_idx);
1867
1868 return ret;
5eb6126e
CH
1869}
1870
6ce3dd6e
ML
1871void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1872 struct list_head *list)
1873{
1874 while (!list_empty(list)) {
1875 blk_status_t ret;
1876 struct request *rq = list_first_entry(list, struct request,
1877 queuelist);
1878
1879 list_del_init(&rq->queuelist);
be94f058 1880 ret = blk_mq_request_issue_directly(rq, list_empty(list));
6ce3dd6e 1881 if (ret != BLK_STS_OK) {
8824f622
ML
1882 if (ret == BLK_STS_RESOURCE ||
1883 ret == BLK_STS_DEV_RESOURCE) {
1884 list_add(&rq->queuelist, list);
1885 break;
1886 }
1887 blk_mq_end_request(rq, ret);
6ce3dd6e
ML
1888 }
1889 }
d666ba98
JA
1890
1891 /*
1892 * If we didn't flush the entire list, we could have told
1893 * the driver there was more coming, but that turned out to
1894 * be a lie.
1895 */
1896 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1897 hctx->queue->mq_ops->commit_rqs(hctx);
6ce3dd6e
ML
1898}
1899
ce5b009c
JA
1900static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1901{
1902 list_add_tail(&rq->queuelist, &plug->mq_list);
1903 plug->rq_count++;
1904 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1905 struct request *tmp;
1906
1907 tmp = list_first_entry(&plug->mq_list, struct request,
1908 queuelist);
1909 if (tmp->q != rq->q)
1910 plug->multiple_queues = true;
1911 }
1912}
1913
dece1635 1914static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1915{
ef295ecf 1916 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1917 const int is_flush_fua = op_is_flush(bio->bi_opf);
f9afca4d 1918 struct blk_mq_alloc_data data = { .flags = 0, .cmd_flags = bio->bi_opf };
07068d5b 1919 struct request *rq;
f984df1f 1920 struct blk_plug *plug;
5b3f341f 1921 struct request *same_queue_rq = NULL;
7b371636 1922 blk_qc_t cookie;
07068d5b
JA
1923
1924 blk_queue_bounce(q, &bio);
1925
af67c31f 1926 blk_queue_split(q, &bio);
f36ea50c 1927
e23947bd 1928 if (!bio_integrity_prep(bio))
dece1635 1929 return BLK_QC_T_NONE;
07068d5b 1930
87c279e6 1931 if (!is_flush_fua && !blk_queue_nomerges(q) &&
5f0ed774 1932 blk_attempt_plug_merge(q, bio, &same_queue_rq))
87c279e6 1933 return BLK_QC_T_NONE;
f984df1f 1934
bd166ef1
JA
1935 if (blk_mq_sched_bio_merge(q, bio))
1936 return BLK_QC_T_NONE;
1937
d5337560 1938 rq_qos_throttle(q, bio);
87760e5e 1939
f9afca4d 1940 rq = blk_mq_get_request(q, bio, &data);
87760e5e 1941 if (unlikely(!rq)) {
c1c80384 1942 rq_qos_cleanup(q, bio);
03a07c92
GR
1943 if (bio->bi_opf & REQ_NOWAIT)
1944 bio_wouldblock_error(bio);
dece1635 1945 return BLK_QC_T_NONE;
87760e5e
JA
1946 }
1947
d6f1dda2
XW
1948 trace_block_getrq(q, bio, bio->bi_opf);
1949
c1c80384 1950 rq_qos_track(q, rq, bio);
07068d5b 1951
fd2d3326 1952 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1953
f984df1f 1954 plug = current->plug;
07068d5b 1955 if (unlikely(is_flush_fua)) {
f984df1f 1956 blk_mq_put_ctx(data.ctx);
07068d5b 1957 blk_mq_bio_to_request(rq, bio);
923218f6
ML
1958
1959 /* bypass scheduler for flush rq */
1960 blk_insert_flush(rq);
1961 blk_mq_run_hw_queue(data.hctx, true);
b2c5d16b
JA
1962 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1963 /*
1964 * Use plugging if we have a ->commit_rqs() hook as well, as
1965 * we know the driver uses bd->last in a smart fashion.
1966 */
5f0ed774 1967 unsigned int request_count = plug->rq_count;
600271d9
SL
1968 struct request *last = NULL;
1969
b00c53e8 1970 blk_mq_put_ctx(data.ctx);
e6c4438b 1971 blk_mq_bio_to_request(rq, bio);
0a6219a9 1972
676d0607 1973 if (!request_count)
e6c4438b 1974 trace_block_plug(q);
600271d9
SL
1975 else
1976 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1977
600271d9
SL
1978 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1979 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1980 blk_flush_plug_list(plug, false);
1981 trace_block_plug(q);
320ae51f 1982 }
b094f89c 1983
ce5b009c 1984 blk_add_rq_to_plug(plug, rq);
2299722c 1985 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1986 blk_mq_bio_to_request(rq, bio);
07068d5b 1987
07068d5b 1988 /*
6a83e74d 1989 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1990 * Otherwise the existing request in the plug list will be
1991 * issued. So the plug list will have one request at most
2299722c
CH
1992 * The plug list might get flushed before this. If that happens,
1993 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1994 */
2299722c
CH
1995 if (list_empty(&plug->mq_list))
1996 same_queue_rq = NULL;
4711b573 1997 if (same_queue_rq) {
2299722c 1998 list_del_init(&same_queue_rq->queuelist);
4711b573
JA
1999 plug->rq_count--;
2000 }
ce5b009c 2001 blk_add_rq_to_plug(plug, rq);
2299722c 2002
bf4907c0
JA
2003 blk_mq_put_ctx(data.ctx);
2004
dad7a3be 2005 if (same_queue_rq) {
ea4f995e 2006 data.hctx = same_queue_rq->mq_hctx;
2299722c
CH
2007 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2008 &cookie);
dad7a3be 2009 }
6ce3dd6e
ML
2010 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2011 !data.hctx->dispatch_busy)) {
bf4907c0 2012 blk_mq_put_ctx(data.ctx);
2299722c 2013 blk_mq_bio_to_request(rq, bio);
2299722c 2014 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
ab42f35d 2015 } else {
b00c53e8 2016 blk_mq_put_ctx(data.ctx);
ab42f35d 2017 blk_mq_bio_to_request(rq, bio);
8fa9f556 2018 blk_mq_sched_insert_request(rq, false, true, true);
ab42f35d 2019 }
320ae51f 2020
7b371636 2021 return cookie;
320ae51f
JA
2022}
2023
cc71a6f4
JA
2024void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2025 unsigned int hctx_idx)
95363efd 2026{
e9b267d9 2027 struct page *page;
320ae51f 2028
24d2f903 2029 if (tags->rqs && set->ops->exit_request) {
e9b267d9 2030 int i;
320ae51f 2031
24d2f903 2032 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
2033 struct request *rq = tags->static_rqs[i];
2034
2035 if (!rq)
e9b267d9 2036 continue;
d6296d39 2037 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 2038 tags->static_rqs[i] = NULL;
e9b267d9 2039 }
320ae51f 2040 }
320ae51f 2041
24d2f903
CH
2042 while (!list_empty(&tags->page_list)) {
2043 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 2044 list_del_init(&page->lru);
f75782e4
CM
2045 /*
2046 * Remove kmemleak object previously allocated in
2047 * blk_mq_init_rq_map().
2048 */
2049 kmemleak_free(page_address(page));
320ae51f
JA
2050 __free_pages(page, page->private);
2051 }
cc71a6f4 2052}
320ae51f 2053
cc71a6f4
JA
2054void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2055{
24d2f903 2056 kfree(tags->rqs);
cc71a6f4 2057 tags->rqs = NULL;
2af8cbe3
JA
2058 kfree(tags->static_rqs);
2059 tags->static_rqs = NULL;
320ae51f 2060
24d2f903 2061 blk_mq_free_tags(tags);
320ae51f
JA
2062}
2063
cc71a6f4
JA
2064struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2065 unsigned int hctx_idx,
2066 unsigned int nr_tags,
2067 unsigned int reserved_tags)
320ae51f 2068{
24d2f903 2069 struct blk_mq_tags *tags;
59f082e4 2070 int node;
320ae51f 2071
ed76e329 2072 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
59f082e4
SL
2073 if (node == NUMA_NO_NODE)
2074 node = set->numa_node;
2075
2076 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 2077 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
2078 if (!tags)
2079 return NULL;
320ae51f 2080
590b5b7d 2081 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
36e1f3d1 2082 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 2083 node);
24d2f903
CH
2084 if (!tags->rqs) {
2085 blk_mq_free_tags(tags);
2086 return NULL;
2087 }
320ae51f 2088
590b5b7d
KC
2089 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2090 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2091 node);
2af8cbe3
JA
2092 if (!tags->static_rqs) {
2093 kfree(tags->rqs);
2094 blk_mq_free_tags(tags);
2095 return NULL;
2096 }
2097
cc71a6f4
JA
2098 return tags;
2099}
2100
2101static size_t order_to_size(unsigned int order)
2102{
2103 return (size_t)PAGE_SIZE << order;
2104}
2105
1d9bd516
TH
2106static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2107 unsigned int hctx_idx, int node)
2108{
2109 int ret;
2110
2111 if (set->ops->init_request) {
2112 ret = set->ops->init_request(set, rq, hctx_idx, node);
2113 if (ret)
2114 return ret;
2115 }
2116
12f5b931 2117 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1d9bd516
TH
2118 return 0;
2119}
2120
cc71a6f4
JA
2121int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2122 unsigned int hctx_idx, unsigned int depth)
2123{
2124 unsigned int i, j, entries_per_page, max_order = 4;
2125 size_t rq_size, left;
59f082e4
SL
2126 int node;
2127
ed76e329 2128 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
59f082e4
SL
2129 if (node == NUMA_NO_NODE)
2130 node = set->numa_node;
cc71a6f4
JA
2131
2132 INIT_LIST_HEAD(&tags->page_list);
2133
320ae51f
JA
2134 /*
2135 * rq_size is the size of the request plus driver payload, rounded
2136 * to the cacheline size
2137 */
24d2f903 2138 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 2139 cache_line_size());
cc71a6f4 2140 left = rq_size * depth;
320ae51f 2141
cc71a6f4 2142 for (i = 0; i < depth; ) {
320ae51f
JA
2143 int this_order = max_order;
2144 struct page *page;
2145 int to_do;
2146 void *p;
2147
b3a834b1 2148 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
2149 this_order--;
2150
2151 do {
59f082e4 2152 page = alloc_pages_node(node,
36e1f3d1 2153 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 2154 this_order);
320ae51f
JA
2155 if (page)
2156 break;
2157 if (!this_order--)
2158 break;
2159 if (order_to_size(this_order) < rq_size)
2160 break;
2161 } while (1);
2162
2163 if (!page)
24d2f903 2164 goto fail;
320ae51f
JA
2165
2166 page->private = this_order;
24d2f903 2167 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
2168
2169 p = page_address(page);
f75782e4
CM
2170 /*
2171 * Allow kmemleak to scan these pages as they contain pointers
2172 * to additional allocations like via ops->init_request().
2173 */
36e1f3d1 2174 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 2175 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 2176 to_do = min(entries_per_page, depth - i);
320ae51f
JA
2177 left -= to_do * rq_size;
2178 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
2179 struct request *rq = p;
2180
2181 tags->static_rqs[i] = rq;
1d9bd516
TH
2182 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2183 tags->static_rqs[i] = NULL;
2184 goto fail;
e9b267d9
CH
2185 }
2186
320ae51f
JA
2187 p += rq_size;
2188 i++;
2189 }
2190 }
cc71a6f4 2191 return 0;
320ae51f 2192
24d2f903 2193fail:
cc71a6f4
JA
2194 blk_mq_free_rqs(set, tags, hctx_idx);
2195 return -ENOMEM;
320ae51f
JA
2196}
2197
e57690fe
JA
2198/*
2199 * 'cpu' is going away. splice any existing rq_list entries from this
2200 * software queue to the hw queue dispatch list, and ensure that it
2201 * gets run.
2202 */
9467f859 2203static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 2204{
9467f859 2205 struct blk_mq_hw_ctx *hctx;
484b4061
JA
2206 struct blk_mq_ctx *ctx;
2207 LIST_HEAD(tmp);
2208
9467f859 2209 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 2210 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
2211
2212 spin_lock(&ctx->lock);
2213 if (!list_empty(&ctx->rq_list)) {
2214 list_splice_init(&ctx->rq_list, &tmp);
2215 blk_mq_hctx_clear_pending(hctx, ctx);
2216 }
2217 spin_unlock(&ctx->lock);
2218
2219 if (list_empty(&tmp))
9467f859 2220 return 0;
484b4061 2221
e57690fe
JA
2222 spin_lock(&hctx->lock);
2223 list_splice_tail_init(&tmp, &hctx->dispatch);
2224 spin_unlock(&hctx->lock);
484b4061
JA
2225
2226 blk_mq_run_hw_queue(hctx, true);
9467f859 2227 return 0;
484b4061
JA
2228}
2229
9467f859 2230static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 2231{
9467f859
TG
2232 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2233 &hctx->cpuhp_dead);
484b4061
JA
2234}
2235
c3b4afca 2236/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
2237static void blk_mq_exit_hctx(struct request_queue *q,
2238 struct blk_mq_tag_set *set,
2239 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2240{
8ab0b7dc
ML
2241 if (blk_mq_hw_queue_mapped(hctx))
2242 blk_mq_tag_idle(hctx);
08e98fc6 2243
f70ced09 2244 if (set->ops->exit_request)
d6296d39 2245 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 2246
08e98fc6
ML
2247 if (set->ops->exit_hctx)
2248 set->ops->exit_hctx(hctx, hctx_idx);
2249
6a83e74d 2250 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2251 cleanup_srcu_struct(hctx->srcu);
6a83e74d 2252
9467f859 2253 blk_mq_remove_cpuhp(hctx);
f70ced09 2254 blk_free_flush_queue(hctx->fq);
88459642 2255 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2256}
2257
624dbe47
ML
2258static void blk_mq_exit_hw_queues(struct request_queue *q,
2259 struct blk_mq_tag_set *set, int nr_queue)
2260{
2261 struct blk_mq_hw_ctx *hctx;
2262 unsigned int i;
2263
2264 queue_for_each_hw_ctx(q, hctx, i) {
2265 if (i == nr_queue)
2266 break;
477e19de 2267 blk_mq_debugfs_unregister_hctx(hctx);
08e98fc6 2268 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 2269 }
624dbe47
ML
2270}
2271
08e98fc6
ML
2272static int blk_mq_init_hctx(struct request_queue *q,
2273 struct blk_mq_tag_set *set,
2274 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 2275{
08e98fc6
ML
2276 int node;
2277
2278 node = hctx->numa_node;
2279 if (node == NUMA_NO_NODE)
2280 node = hctx->numa_node = set->numa_node;
2281
9f993737 2282 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2283 spin_lock_init(&hctx->lock);
2284 INIT_LIST_HEAD(&hctx->dispatch);
2285 hctx->queue = q;
2404e607 2286 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2287
9467f859 2288 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
2289
2290 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
2291
2292 /*
08e98fc6
ML
2293 * Allocate space for all possible cpus to avoid allocation at
2294 * runtime
320ae51f 2295 */
d904bfa7 2296 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
5b202853 2297 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
08e98fc6
ML
2298 if (!hctx->ctxs)
2299 goto unregister_cpu_notifier;
320ae51f 2300
5b202853
JW
2301 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2302 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
08e98fc6 2303 goto free_ctxs;
320ae51f 2304
08e98fc6 2305 hctx->nr_ctx = 0;
320ae51f 2306
5815839b 2307 spin_lock_init(&hctx->dispatch_wait_lock);
eb619fdb
JA
2308 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2309 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2310
08e98fc6
ML
2311 if (set->ops->init_hctx &&
2312 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2313 goto free_bitmap;
320ae51f 2314
5b202853
JW
2315 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2316 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
f70ced09 2317 if (!hctx->fq)
d48ece20 2318 goto exit_hctx;
320ae51f 2319
1d9bd516 2320 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
f70ced09 2321 goto free_fq;
320ae51f 2322
6a83e74d 2323 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2324 init_srcu_struct(hctx->srcu);
6a83e74d 2325
08e98fc6 2326 return 0;
320ae51f 2327
f70ced09
ML
2328 free_fq:
2329 kfree(hctx->fq);
2330 exit_hctx:
2331 if (set->ops->exit_hctx)
2332 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 2333 free_bitmap:
88459642 2334 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2335 free_ctxs:
2336 kfree(hctx->ctxs);
2337 unregister_cpu_notifier:
9467f859 2338 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
2339 return -1;
2340}
320ae51f 2341
320ae51f
JA
2342static void blk_mq_init_cpu_queues(struct request_queue *q,
2343 unsigned int nr_hw_queues)
2344{
b3c661b1
JA
2345 struct blk_mq_tag_set *set = q->tag_set;
2346 unsigned int i, j;
320ae51f
JA
2347
2348 for_each_possible_cpu(i) {
2349 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2350 struct blk_mq_hw_ctx *hctx;
2351
320ae51f
JA
2352 __ctx->cpu = i;
2353 spin_lock_init(&__ctx->lock);
2354 INIT_LIST_HEAD(&__ctx->rq_list);
2355 __ctx->queue = q;
2356
320ae51f
JA
2357 /*
2358 * Set local node, IFF we have more than one hw queue. If
2359 * not, we remain on the home node of the device
2360 */
b3c661b1
JA
2361 for (j = 0; j < set->nr_maps; j++) {
2362 hctx = blk_mq_map_queue_type(q, j, i);
2363 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2364 hctx->numa_node = local_memory_node(cpu_to_node(i));
2365 }
320ae51f
JA
2366 }
2367}
2368
cc71a6f4
JA
2369static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2370{
2371 int ret = 0;
2372
2373 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2374 set->queue_depth, set->reserved_tags);
2375 if (!set->tags[hctx_idx])
2376 return false;
2377
2378 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2379 set->queue_depth);
2380 if (!ret)
2381 return true;
2382
2383 blk_mq_free_rq_map(set->tags[hctx_idx]);
2384 set->tags[hctx_idx] = NULL;
2385 return false;
2386}
2387
2388static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2389 unsigned int hctx_idx)
2390{
4e6db0f2 2391 if (set->tags && set->tags[hctx_idx]) {
bd166ef1
JA
2392 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2393 blk_mq_free_rq_map(set->tags[hctx_idx]);
2394 set->tags[hctx_idx] = NULL;
2395 }
cc71a6f4
JA
2396}
2397
4b855ad3 2398static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2399{
b3c661b1 2400 unsigned int i, j, hctx_idx;
320ae51f
JA
2401 struct blk_mq_hw_ctx *hctx;
2402 struct blk_mq_ctx *ctx;
2a34c087 2403 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2404
60de074b
AM
2405 /*
2406 * Avoid others reading imcomplete hctx->cpumask through sysfs
2407 */
2408 mutex_lock(&q->sysfs_lock);
2409
320ae51f 2410 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2411 cpumask_clear(hctx->cpumask);
320ae51f 2412 hctx->nr_ctx = 0;
d416c92c 2413 hctx->dispatch_from = NULL;
320ae51f
JA
2414 }
2415
2416 /*
4b855ad3 2417 * Map software to hardware queues.
4412efec
ML
2418 *
2419 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2420 */
20e4d813 2421 for_each_possible_cpu(i) {
ed76e329 2422 hctx_idx = set->map[0].mq_map[i];
4412efec
ML
2423 /* unmapped hw queue can be remapped after CPU topo changed */
2424 if (!set->tags[hctx_idx] &&
2425 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2426 /*
2427 * If tags initialization fail for some hctx,
2428 * that hctx won't be brought online. In this
2429 * case, remap the current ctx to hctx[0] which
2430 * is guaranteed to always have tags allocated
2431 */
ed76e329 2432 set->map[0].mq_map[i] = 0;
4412efec
ML
2433 }
2434
897bb0c7 2435 ctx = per_cpu_ptr(q->queue_ctx, i);
b3c661b1
JA
2436 for (j = 0; j < set->nr_maps; j++) {
2437 hctx = blk_mq_map_queue_type(q, j, i);
f31967f0 2438
b3c661b1
JA
2439 /*
2440 * If the CPU is already set in the mask, then we've
2441 * mapped this one already. This can happen if
2442 * devices share queues across queue maps.
2443 */
2444 if (cpumask_test_cpu(i, hctx->cpumask))
2445 continue;
2446
2447 cpumask_set_cpu(i, hctx->cpumask);
2448 hctx->type = j;
2449 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2450 hctx->ctxs[hctx->nr_ctx++] = ctx;
2451
2452 /*
2453 * If the nr_ctx type overflows, we have exceeded the
2454 * amount of sw queues we can support.
2455 */
2456 BUG_ON(!hctx->nr_ctx);
2457 }
320ae51f 2458 }
506e931f 2459
60de074b
AM
2460 mutex_unlock(&q->sysfs_lock);
2461
506e931f 2462 queue_for_each_hw_ctx(q, hctx, i) {
4412efec
ML
2463 /*
2464 * If no software queues are mapped to this hardware queue,
2465 * disable it and free the request entries.
2466 */
2467 if (!hctx->nr_ctx) {
2468 /* Never unmap queue 0. We need it as a
2469 * fallback in case of a new remap fails
2470 * allocation
2471 */
2472 if (i && set->tags[i])
2473 blk_mq_free_map_and_requests(set, i);
2474
2475 hctx->tags = NULL;
2476 continue;
2477 }
484b4061 2478
2a34c087
ML
2479 hctx->tags = set->tags[i];
2480 WARN_ON(!hctx->tags);
2481
889fa31f
CY
2482 /*
2483 * Set the map size to the number of mapped software queues.
2484 * This is more accurate and more efficient than looping
2485 * over all possibly mapped software queues.
2486 */
88459642 2487 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2488
484b4061
JA
2489 /*
2490 * Initialize batch roundrobin counts
2491 */
f82ddf19 2492 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
2493 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2494 }
320ae51f
JA
2495}
2496
8e8320c9
JA
2497/*
2498 * Caller needs to ensure that we're either frozen/quiesced, or that
2499 * the queue isn't live yet.
2500 */
2404e607 2501static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2502{
2503 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2504 int i;
2505
2404e607 2506 queue_for_each_hw_ctx(q, hctx, i) {
97889f9a 2507 if (shared)
2404e607 2508 hctx->flags |= BLK_MQ_F_TAG_SHARED;
97889f9a 2509 else
2404e607
JM
2510 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2511 }
2512}
2513
8e8320c9
JA
2514static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2515 bool shared)
2404e607
JM
2516{
2517 struct request_queue *q;
0d2602ca 2518
705cda97
BVA
2519 lockdep_assert_held(&set->tag_list_lock);
2520
0d2602ca
JA
2521 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2522 blk_mq_freeze_queue(q);
2404e607 2523 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2524 blk_mq_unfreeze_queue(q);
2525 }
2526}
2527
2528static void blk_mq_del_queue_tag_set(struct request_queue *q)
2529{
2530 struct blk_mq_tag_set *set = q->tag_set;
2531
0d2602ca 2532 mutex_lock(&set->tag_list_lock);
705cda97 2533 list_del_rcu(&q->tag_set_list);
2404e607
JM
2534 if (list_is_singular(&set->tag_list)) {
2535 /* just transitioned to unshared */
2536 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2537 /* update existing queue */
2538 blk_mq_update_tag_set_depth(set, false);
2539 }
0d2602ca 2540 mutex_unlock(&set->tag_list_lock);
a347c7ad 2541 INIT_LIST_HEAD(&q->tag_set_list);
0d2602ca
JA
2542}
2543
2544static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2545 struct request_queue *q)
2546{
0d2602ca 2547 mutex_lock(&set->tag_list_lock);
2404e607 2548
ff821d27
JA
2549 /*
2550 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2551 */
2552 if (!list_empty(&set->tag_list) &&
2553 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2404e607
JM
2554 set->flags |= BLK_MQ_F_TAG_SHARED;
2555 /* update existing queue */
2556 blk_mq_update_tag_set_depth(set, true);
2557 }
2558 if (set->flags & BLK_MQ_F_TAG_SHARED)
2559 queue_set_hctx_shared(q, true);
705cda97 2560 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2561
0d2602ca
JA
2562 mutex_unlock(&set->tag_list_lock);
2563}
2564
1db4909e
ML
2565/* All allocations will be freed in release handler of q->mq_kobj */
2566static int blk_mq_alloc_ctxs(struct request_queue *q)
2567{
2568 struct blk_mq_ctxs *ctxs;
2569 int cpu;
2570
2571 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2572 if (!ctxs)
2573 return -ENOMEM;
2574
2575 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2576 if (!ctxs->queue_ctx)
2577 goto fail;
2578
2579 for_each_possible_cpu(cpu) {
2580 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2581 ctx->ctxs = ctxs;
2582 }
2583
2584 q->mq_kobj = &ctxs->kobj;
2585 q->queue_ctx = ctxs->queue_ctx;
2586
2587 return 0;
2588 fail:
2589 kfree(ctxs);
2590 return -ENOMEM;
2591}
2592
e09aae7e
ML
2593/*
2594 * It is the actual release handler for mq, but we do it from
2595 * request queue's release handler for avoiding use-after-free
2596 * and headache because q->mq_kobj shouldn't have been introduced,
2597 * but we can't group ctx/kctx kobj without it.
2598 */
2599void blk_mq_release(struct request_queue *q)
2600{
2601 struct blk_mq_hw_ctx *hctx;
2602 unsigned int i;
2603
2604 /* hctx kobj stays in hctx */
c3b4afca
ML
2605 queue_for_each_hw_ctx(q, hctx, i) {
2606 if (!hctx)
2607 continue;
6c8b232e 2608 kobject_put(&hctx->kobj);
c3b4afca 2609 }
e09aae7e
ML
2610
2611 kfree(q->queue_hw_ctx);
2612
7ea5fe31
ML
2613 /*
2614 * release .mq_kobj and sw queue's kobject now because
2615 * both share lifetime with request queue.
2616 */
2617 blk_mq_sysfs_deinit(q);
e09aae7e
ML
2618}
2619
24d2f903 2620struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2621{
2622 struct request_queue *uninit_q, *q;
2623
6d469642 2624 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
b62c21b7
MS
2625 if (!uninit_q)
2626 return ERR_PTR(-ENOMEM);
2627
2628 q = blk_mq_init_allocated_queue(set, uninit_q);
2629 if (IS_ERR(q))
2630 blk_cleanup_queue(uninit_q);
2631
2632 return q;
2633}
2634EXPORT_SYMBOL(blk_mq_init_queue);
2635
9316a9ed
JA
2636/*
2637 * Helper for setting up a queue with mq ops, given queue depth, and
2638 * the passed in mq ops flags.
2639 */
2640struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2641 const struct blk_mq_ops *ops,
2642 unsigned int queue_depth,
2643 unsigned int set_flags)
2644{
2645 struct request_queue *q;
2646 int ret;
2647
2648 memset(set, 0, sizeof(*set));
2649 set->ops = ops;
2650 set->nr_hw_queues = 1;
b3c661b1 2651 set->nr_maps = 1;
9316a9ed
JA
2652 set->queue_depth = queue_depth;
2653 set->numa_node = NUMA_NO_NODE;
2654 set->flags = set_flags;
2655
2656 ret = blk_mq_alloc_tag_set(set);
2657 if (ret)
2658 return ERR_PTR(ret);
2659
2660 q = blk_mq_init_queue(set);
2661 if (IS_ERR(q)) {
2662 blk_mq_free_tag_set(set);
2663 return q;
2664 }
2665
2666 return q;
2667}
2668EXPORT_SYMBOL(blk_mq_init_sq_queue);
2669
07319678
BVA
2670static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2671{
2672 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2673
05707b64 2674 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
07319678
BVA
2675 __alignof__(struct blk_mq_hw_ctx)) !=
2676 sizeof(struct blk_mq_hw_ctx));
2677
2678 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2679 hw_ctx_size += sizeof(struct srcu_struct);
2680
2681 return hw_ctx_size;
2682}
2683
34d11ffa
JW
2684static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2685 struct blk_mq_tag_set *set, struct request_queue *q,
2686 int hctx_idx, int node)
2687{
2688 struct blk_mq_hw_ctx *hctx;
2689
2690 hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2691 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2692 node);
2693 if (!hctx)
2694 return NULL;
2695
2696 if (!zalloc_cpumask_var_node(&hctx->cpumask,
2697 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2698 node)) {
2699 kfree(hctx);
2700 return NULL;
2701 }
2702
2703 atomic_set(&hctx->nr_active, 0);
2704 hctx->numa_node = node;
2705 hctx->queue_num = hctx_idx;
2706
2707 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2708 free_cpumask_var(hctx->cpumask);
2709 kfree(hctx);
2710 return NULL;
2711 }
2712 blk_mq_hctx_kobj_init(hctx);
2713
2714 return hctx;
2715}
2716
868f2f0b
KB
2717static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2718 struct request_queue *q)
320ae51f 2719{
e01ad46d 2720 int i, j, end;
868f2f0b 2721 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2722
fb350e0a
ML
2723 /* protect against switching io scheduler */
2724 mutex_lock(&q->sysfs_lock);
24d2f903 2725 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2726 int node;
34d11ffa 2727 struct blk_mq_hw_ctx *hctx;
868f2f0b 2728
ed76e329 2729 node = blk_mq_hw_queue_to_node(&set->map[0], i);
34d11ffa
JW
2730 /*
2731 * If the hw queue has been mapped to another numa node,
2732 * we need to realloc the hctx. If allocation fails, fallback
2733 * to use the previous one.
2734 */
2735 if (hctxs[i] && (hctxs[i]->numa_node == node))
2736 continue;
868f2f0b 2737
34d11ffa
JW
2738 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2739 if (hctx) {
2740 if (hctxs[i]) {
2741 blk_mq_exit_hctx(q, set, hctxs[i], i);
2742 kobject_put(&hctxs[i]->kobj);
2743 }
2744 hctxs[i] = hctx;
2745 } else {
2746 if (hctxs[i])
2747 pr_warn("Allocate new hctx on node %d fails,\
2748 fallback to previous one on node %d\n",
2749 node, hctxs[i]->numa_node);
2750 else
2751 break;
868f2f0b 2752 }
320ae51f 2753 }
e01ad46d
JW
2754 /*
2755 * Increasing nr_hw_queues fails. Free the newly allocated
2756 * hctxs and keep the previous q->nr_hw_queues.
2757 */
2758 if (i != set->nr_hw_queues) {
2759 j = q->nr_hw_queues;
2760 end = i;
2761 } else {
2762 j = i;
2763 end = q->nr_hw_queues;
2764 q->nr_hw_queues = set->nr_hw_queues;
2765 }
34d11ffa 2766
e01ad46d 2767 for (; j < end; j++) {
868f2f0b
KB
2768 struct blk_mq_hw_ctx *hctx = hctxs[j];
2769
2770 if (hctx) {
cc71a6f4
JA
2771 if (hctx->tags)
2772 blk_mq_free_map_and_requests(set, j);
868f2f0b 2773 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2774 kobject_put(&hctx->kobj);
868f2f0b
KB
2775 hctxs[j] = NULL;
2776
2777 }
2778 }
fb350e0a 2779 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
2780}
2781
392546ae
JA
2782/*
2783 * Maximum number of hardware queues we support. For single sets, we'll never
2784 * have more than the CPUs (software queues). For multiple sets, the tag_set
2785 * user may have set ->nr_hw_queues larger.
2786 */
2787static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2788{
2789 if (set->nr_maps == 1)
2790 return nr_cpu_ids;
2791
2792 return max(set->nr_hw_queues, nr_cpu_ids);
2793}
2794
868f2f0b
KB
2795struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2796 struct request_queue *q)
2797{
66841672
ML
2798 /* mark the queue as mq asap */
2799 q->mq_ops = set->ops;
2800
34dbad5d 2801 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2802 blk_mq_poll_stats_bkt,
2803 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2804 if (!q->poll_cb)
2805 goto err_exit;
2806
1db4909e 2807 if (blk_mq_alloc_ctxs(q))
c7de5726 2808 goto err_exit;
868f2f0b 2809
737f98cf
ML
2810 /* init q->mq_kobj and sw queues' kobjects */
2811 blk_mq_sysfs_init(q);
2812
392546ae
JA
2813 q->nr_queues = nr_hw_queues(set);
2814 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
868f2f0b
KB
2815 GFP_KERNEL, set->numa_node);
2816 if (!q->queue_hw_ctx)
1db4909e 2817 goto err_sys_init;
868f2f0b 2818
868f2f0b
KB
2819 blk_mq_realloc_hw_ctxs(set, q);
2820 if (!q->nr_hw_queues)
2821 goto err_hctxs;
320ae51f 2822
287922eb 2823 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2824 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f 2825
a8908939 2826 q->tag_set = set;
320ae51f 2827
94eddfbe 2828 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2829
05f1dd53 2830 if (!(set->flags & BLK_MQ_F_SG_MERGE))
57d74df9 2831 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
05f1dd53 2832
1be036e9
CH
2833 q->sg_reserved_size = INT_MAX;
2834
2849450a 2835 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2836 INIT_LIST_HEAD(&q->requeue_list);
2837 spin_lock_init(&q->requeue_lock);
2838
254d259d 2839 blk_queue_make_request(q, blk_mq_make_request);
07068d5b 2840
eba71768
JA
2841 /*
2842 * Do this after blk_queue_make_request() overrides it...
2843 */
2844 q->nr_requests = set->queue_depth;
2845
64f1c21e
JA
2846 /*
2847 * Default to classic polling
2848 */
2849 q->poll_nsec = -1;
2850
24d2f903 2851 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2852 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2853 blk_mq_map_swqueue(q);
4593fdbe 2854
d3484991
JA
2855 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2856 int ret;
2857
131d08e1 2858 ret = elevator_init_mq(q);
d3484991
JA
2859 if (ret)
2860 return ERR_PTR(ret);
2861 }
2862
320ae51f 2863 return q;
18741986 2864
320ae51f 2865err_hctxs:
868f2f0b 2866 kfree(q->queue_hw_ctx);
1db4909e
ML
2867err_sys_init:
2868 blk_mq_sysfs_deinit(q);
c7de5726
ML
2869err_exit:
2870 q->mq_ops = NULL;
320ae51f
JA
2871 return ERR_PTR(-ENOMEM);
2872}
b62c21b7 2873EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2874
2875void blk_mq_free_queue(struct request_queue *q)
2876{
624dbe47 2877 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2878
0d2602ca 2879 blk_mq_del_queue_tag_set(q);
624dbe47 2880 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2881}
320ae51f 2882
a5164405
JA
2883static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2884{
2885 int i;
2886
cc71a6f4
JA
2887 for (i = 0; i < set->nr_hw_queues; i++)
2888 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2889 goto out_unwind;
a5164405
JA
2890
2891 return 0;
2892
2893out_unwind:
2894 while (--i >= 0)
cc71a6f4 2895 blk_mq_free_rq_map(set->tags[i]);
a5164405 2896
a5164405
JA
2897 return -ENOMEM;
2898}
2899
2900/*
2901 * Allocate the request maps associated with this tag_set. Note that this
2902 * may reduce the depth asked for, if memory is tight. set->queue_depth
2903 * will be updated to reflect the allocated depth.
2904 */
2905static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2906{
2907 unsigned int depth;
2908 int err;
2909
2910 depth = set->queue_depth;
2911 do {
2912 err = __blk_mq_alloc_rq_maps(set);
2913 if (!err)
2914 break;
2915
2916 set->queue_depth >>= 1;
2917 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2918 err = -ENOMEM;
2919 break;
2920 }
2921 } while (set->queue_depth);
2922
2923 if (!set->queue_depth || err) {
2924 pr_err("blk-mq: failed to allocate request map\n");
2925 return -ENOMEM;
2926 }
2927
2928 if (depth != set->queue_depth)
2929 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2930 depth, set->queue_depth);
2931
2932 return 0;
2933}
2934
ebe8bddb
OS
2935static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2936{
7d4901a9 2937 if (set->ops->map_queues) {
b3c661b1
JA
2938 int i;
2939
7d4901a9
ML
2940 /*
2941 * transport .map_queues is usually done in the following
2942 * way:
2943 *
2944 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2945 * mask = get_cpu_mask(queue)
2946 * for_each_cpu(cpu, mask)
b3c661b1 2947 * set->map[x].mq_map[cpu] = queue;
7d4901a9
ML
2948 * }
2949 *
2950 * When we need to remap, the table has to be cleared for
2951 * killing stale mapping since one CPU may not be mapped
2952 * to any hw queue.
2953 */
b3c661b1
JA
2954 for (i = 0; i < set->nr_maps; i++)
2955 blk_mq_clear_mq_map(&set->map[i]);
7d4901a9 2956
ebe8bddb 2957 return set->ops->map_queues(set);
b3c661b1
JA
2958 } else {
2959 BUG_ON(set->nr_maps > 1);
ed76e329 2960 return blk_mq_map_queues(&set->map[0]);
b3c661b1 2961 }
ebe8bddb
OS
2962}
2963
a4391c64
JA
2964/*
2965 * Alloc a tag set to be associated with one or more request queues.
2966 * May fail with EINVAL for various error conditions. May adjust the
c018c84f 2967 * requested depth down, if it's too large. In that case, the set
a4391c64
JA
2968 * value will be stored in set->queue_depth.
2969 */
24d2f903
CH
2970int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2971{
b3c661b1 2972 int i, ret;
da695ba2 2973
205fb5f5
BVA
2974 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2975
24d2f903
CH
2976 if (!set->nr_hw_queues)
2977 return -EINVAL;
a4391c64 2978 if (!set->queue_depth)
24d2f903
CH
2979 return -EINVAL;
2980 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2981 return -EINVAL;
2982
7d7e0f90 2983 if (!set->ops->queue_rq)
24d2f903
CH
2984 return -EINVAL;
2985
de148297
ML
2986 if (!set->ops->get_budget ^ !set->ops->put_budget)
2987 return -EINVAL;
2988
a4391c64
JA
2989 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2990 pr_info("blk-mq: reduced tag depth to %u\n",
2991 BLK_MQ_MAX_DEPTH);
2992 set->queue_depth = BLK_MQ_MAX_DEPTH;
2993 }
24d2f903 2994
b3c661b1
JA
2995 if (!set->nr_maps)
2996 set->nr_maps = 1;
2997 else if (set->nr_maps > HCTX_MAX_TYPES)
2998 return -EINVAL;
2999
6637fadf
SL
3000 /*
3001 * If a crashdump is active, then we are potentially in a very
3002 * memory constrained environment. Limit us to 1 queue and
3003 * 64 tags to prevent using too much memory.
3004 */
3005 if (is_kdump_kernel()) {
3006 set->nr_hw_queues = 1;
3007 set->queue_depth = min(64U, set->queue_depth);
3008 }
868f2f0b 3009 /*
392546ae
JA
3010 * There is no use for more h/w queues than cpus if we just have
3011 * a single map
868f2f0b 3012 */
392546ae 3013 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
868f2f0b 3014 set->nr_hw_queues = nr_cpu_ids;
6637fadf 3015
392546ae 3016 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
24d2f903
CH
3017 GFP_KERNEL, set->numa_node);
3018 if (!set->tags)
a5164405 3019 return -ENOMEM;
24d2f903 3020
da695ba2 3021 ret = -ENOMEM;
b3c661b1
JA
3022 for (i = 0; i < set->nr_maps; i++) {
3023 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3024 sizeof(struct blk_mq_queue_map),
3025 GFP_KERNEL, set->numa_node);
3026 if (!set->map[i].mq_map)
3027 goto out_free_mq_map;
3028 set->map[i].nr_queues = set->nr_hw_queues;
3029 }
bdd17e75 3030
ebe8bddb 3031 ret = blk_mq_update_queue_map(set);
da695ba2
CH
3032 if (ret)
3033 goto out_free_mq_map;
3034
3035 ret = blk_mq_alloc_rq_maps(set);
3036 if (ret)
bdd17e75 3037 goto out_free_mq_map;
24d2f903 3038
0d2602ca
JA
3039 mutex_init(&set->tag_list_lock);
3040 INIT_LIST_HEAD(&set->tag_list);
3041
24d2f903 3042 return 0;
bdd17e75
CH
3043
3044out_free_mq_map:
b3c661b1
JA
3045 for (i = 0; i < set->nr_maps; i++) {
3046 kfree(set->map[i].mq_map);
3047 set->map[i].mq_map = NULL;
3048 }
5676e7b6
RE
3049 kfree(set->tags);
3050 set->tags = NULL;
da695ba2 3051 return ret;
24d2f903
CH
3052}
3053EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3054
3055void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3056{
b3c661b1 3057 int i, j;
24d2f903 3058
392546ae 3059 for (i = 0; i < nr_hw_queues(set); i++)
cc71a6f4 3060 blk_mq_free_map_and_requests(set, i);
484b4061 3061
b3c661b1
JA
3062 for (j = 0; j < set->nr_maps; j++) {
3063 kfree(set->map[j].mq_map);
3064 set->map[j].mq_map = NULL;
3065 }
bdd17e75 3066
981bd189 3067 kfree(set->tags);
5676e7b6 3068 set->tags = NULL;
24d2f903
CH
3069}
3070EXPORT_SYMBOL(blk_mq_free_tag_set);
3071
e3a2b3f9
JA
3072int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3073{
3074 struct blk_mq_tag_set *set = q->tag_set;
3075 struct blk_mq_hw_ctx *hctx;
3076 int i, ret;
3077
bd166ef1 3078 if (!set)
e3a2b3f9
JA
3079 return -EINVAL;
3080
70f36b60 3081 blk_mq_freeze_queue(q);
24f5a90f 3082 blk_mq_quiesce_queue(q);
70f36b60 3083
e3a2b3f9
JA
3084 ret = 0;
3085 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
3086 if (!hctx->tags)
3087 continue;
bd166ef1
JA
3088 /*
3089 * If we're using an MQ scheduler, just update the scheduler
3090 * queue depth. This is similar to what the old code would do.
3091 */
70f36b60 3092 if (!hctx->sched_tags) {
c2e82a23 3093 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
3094 false);
3095 } else {
3096 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3097 nr, true);
3098 }
e3a2b3f9
JA
3099 if (ret)
3100 break;
3101 }
3102
3103 if (!ret)
3104 q->nr_requests = nr;
3105
24f5a90f 3106 blk_mq_unquiesce_queue(q);
70f36b60 3107 blk_mq_unfreeze_queue(q);
70f36b60 3108
e3a2b3f9
JA
3109 return ret;
3110}
3111
d48ece20
JW
3112/*
3113 * request_queue and elevator_type pair.
3114 * It is just used by __blk_mq_update_nr_hw_queues to cache
3115 * the elevator_type associated with a request_queue.
3116 */
3117struct blk_mq_qe_pair {
3118 struct list_head node;
3119 struct request_queue *q;
3120 struct elevator_type *type;
3121};
3122
3123/*
3124 * Cache the elevator_type in qe pair list and switch the
3125 * io scheduler to 'none'
3126 */
3127static bool blk_mq_elv_switch_none(struct list_head *head,
3128 struct request_queue *q)
3129{
3130 struct blk_mq_qe_pair *qe;
3131
3132 if (!q->elevator)
3133 return true;
3134
3135 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3136 if (!qe)
3137 return false;
3138
3139 INIT_LIST_HEAD(&qe->node);
3140 qe->q = q;
3141 qe->type = q->elevator->type;
3142 list_add(&qe->node, head);
3143
3144 mutex_lock(&q->sysfs_lock);
3145 /*
3146 * After elevator_switch_mq, the previous elevator_queue will be
3147 * released by elevator_release. The reference of the io scheduler
3148 * module get by elevator_get will also be put. So we need to get
3149 * a reference of the io scheduler module here to prevent it to be
3150 * removed.
3151 */
3152 __module_get(qe->type->elevator_owner);
3153 elevator_switch_mq(q, NULL);
3154 mutex_unlock(&q->sysfs_lock);
3155
3156 return true;
3157}
3158
3159static void blk_mq_elv_switch_back(struct list_head *head,
3160 struct request_queue *q)
3161{
3162 struct blk_mq_qe_pair *qe;
3163 struct elevator_type *t = NULL;
3164
3165 list_for_each_entry(qe, head, node)
3166 if (qe->q == q) {
3167 t = qe->type;
3168 break;
3169 }
3170
3171 if (!t)
3172 return;
3173
3174 list_del(&qe->node);
3175 kfree(qe);
3176
3177 mutex_lock(&q->sysfs_lock);
3178 elevator_switch_mq(q, t);
3179 mutex_unlock(&q->sysfs_lock);
3180}
3181
e4dc2b32
KB
3182static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3183 int nr_hw_queues)
868f2f0b
KB
3184{
3185 struct request_queue *q;
d48ece20 3186 LIST_HEAD(head);
e01ad46d 3187 int prev_nr_hw_queues;
868f2f0b 3188
705cda97
BVA
3189 lockdep_assert_held(&set->tag_list_lock);
3190
392546ae 3191 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
868f2f0b
KB
3192 nr_hw_queues = nr_cpu_ids;
3193 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3194 return;
3195
3196 list_for_each_entry(q, &set->tag_list, tag_set_list)
3197 blk_mq_freeze_queue(q);
f5bbbbe4
JW
3198 /*
3199 * Sync with blk_mq_queue_tag_busy_iter.
3200 */
3201 synchronize_rcu();
d48ece20
JW
3202 /*
3203 * Switch IO scheduler to 'none', cleaning up the data associated
3204 * with the previous scheduler. We will switch back once we are done
3205 * updating the new sw to hw queue mappings.
3206 */
3207 list_for_each_entry(q, &set->tag_list, tag_set_list)
3208 if (!blk_mq_elv_switch_none(&head, q))
3209 goto switch_back;
868f2f0b 3210
477e19de
JW
3211 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3212 blk_mq_debugfs_unregister_hctxs(q);
3213 blk_mq_sysfs_unregister(q);
3214 }
3215
e01ad46d 3216 prev_nr_hw_queues = set->nr_hw_queues;
868f2f0b 3217 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 3218 blk_mq_update_queue_map(set);
e01ad46d 3219fallback:
868f2f0b
KB
3220 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3221 blk_mq_realloc_hw_ctxs(set, q);
e01ad46d
JW
3222 if (q->nr_hw_queues != set->nr_hw_queues) {
3223 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3224 nr_hw_queues, prev_nr_hw_queues);
3225 set->nr_hw_queues = prev_nr_hw_queues;
ed76e329 3226 blk_mq_map_queues(&set->map[0]);
e01ad46d
JW
3227 goto fallback;
3228 }
477e19de
JW
3229 blk_mq_map_swqueue(q);
3230 }
3231
3232 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3233 blk_mq_sysfs_register(q);
3234 blk_mq_debugfs_register_hctxs(q);
868f2f0b
KB
3235 }
3236
d48ece20
JW
3237switch_back:
3238 list_for_each_entry(q, &set->tag_list, tag_set_list)
3239 blk_mq_elv_switch_back(&head, q);
3240
868f2f0b
KB
3241 list_for_each_entry(q, &set->tag_list, tag_set_list)
3242 blk_mq_unfreeze_queue(q);
3243}
e4dc2b32
KB
3244
3245void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3246{
3247 mutex_lock(&set->tag_list_lock);
3248 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3249 mutex_unlock(&set->tag_list_lock);
3250}
868f2f0b
KB
3251EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3252
34dbad5d
OS
3253/* Enable polling stats and return whether they were already enabled. */
3254static bool blk_poll_stats_enable(struct request_queue *q)
3255{
3256 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
7dfdbc73 3257 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
34dbad5d
OS
3258 return true;
3259 blk_stat_add_callback(q, q->poll_cb);
3260 return false;
3261}
3262
3263static void blk_mq_poll_stats_start(struct request_queue *q)
3264{
3265 /*
3266 * We don't arm the callback if polling stats are not enabled or the
3267 * callback is already active.
3268 */
3269 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3270 blk_stat_is_active(q->poll_cb))
3271 return;
3272
3273 blk_stat_activate_msecs(q->poll_cb, 100);
3274}
3275
3276static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3277{
3278 struct request_queue *q = cb->data;
720b8ccc 3279 int bucket;
34dbad5d 3280
720b8ccc
SB
3281 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3282 if (cb->stat[bucket].nr_samples)
3283 q->poll_stat[bucket] = cb->stat[bucket];
3284 }
34dbad5d
OS
3285}
3286
64f1c21e
JA
3287static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3288 struct blk_mq_hw_ctx *hctx,
3289 struct request *rq)
3290{
64f1c21e 3291 unsigned long ret = 0;
720b8ccc 3292 int bucket;
64f1c21e
JA
3293
3294 /*
3295 * If stats collection isn't on, don't sleep but turn it on for
3296 * future users
3297 */
34dbad5d 3298 if (!blk_poll_stats_enable(q))
64f1c21e
JA
3299 return 0;
3300
64f1c21e
JA
3301 /*
3302 * As an optimistic guess, use half of the mean service time
3303 * for this type of request. We can (and should) make this smarter.
3304 * For instance, if the completion latencies are tight, we can
3305 * get closer than just half the mean. This is especially
3306 * important on devices where the completion latencies are longer
720b8ccc
SB
3307 * than ~10 usec. We do use the stats for the relevant IO size
3308 * if available which does lead to better estimates.
64f1c21e 3309 */
720b8ccc
SB
3310 bucket = blk_mq_poll_stats_bkt(rq);
3311 if (bucket < 0)
3312 return ret;
3313
3314 if (q->poll_stat[bucket].nr_samples)
3315 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
3316
3317 return ret;
3318}
3319
06426adf 3320static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 3321 struct blk_mq_hw_ctx *hctx,
06426adf
JA
3322 struct request *rq)
3323{
3324 struct hrtimer_sleeper hs;
3325 enum hrtimer_mode mode;
64f1c21e 3326 unsigned int nsecs;
06426adf
JA
3327 ktime_t kt;
3328
76a86f9d 3329 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
64f1c21e
JA
3330 return false;
3331
3332 /*
1052b8ac 3333 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
64f1c21e 3334 *
64f1c21e
JA
3335 * 0: use half of prev avg
3336 * >0: use this specific value
3337 */
1052b8ac 3338 if (q->poll_nsec > 0)
64f1c21e
JA
3339 nsecs = q->poll_nsec;
3340 else
3341 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3342
3343 if (!nsecs)
06426adf
JA
3344 return false;
3345
76a86f9d 3346 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
06426adf
JA
3347
3348 /*
3349 * This will be replaced with the stats tracking code, using
3350 * 'avg_completion_time / 2' as the pre-sleep target.
3351 */
8b0e1953 3352 kt = nsecs;
06426adf
JA
3353
3354 mode = HRTIMER_MODE_REL;
3355 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3356 hrtimer_set_expires(&hs.timer, kt);
3357
3358 hrtimer_init_sleeper(&hs, current);
3359 do {
5a61c363 3360 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
06426adf
JA
3361 break;
3362 set_current_state(TASK_UNINTERRUPTIBLE);
3363 hrtimer_start_expires(&hs.timer, mode);
3364 if (hs.task)
3365 io_schedule();
3366 hrtimer_cancel(&hs.timer);
3367 mode = HRTIMER_MODE_ABS;
3368 } while (hs.task && !signal_pending(current));
3369
3370 __set_current_state(TASK_RUNNING);
3371 destroy_hrtimer_on_stack(&hs.timer);
3372 return true;
3373}
3374
1052b8ac
JA
3375static bool blk_mq_poll_hybrid(struct request_queue *q,
3376 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
bbd7bb70 3377{
1052b8ac
JA
3378 struct request *rq;
3379
3380 if (q->poll_nsec == -1)
3381 return false;
3382
3383 if (!blk_qc_t_is_internal(cookie))
3384 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3385 else {
3386 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3387 /*
3388 * With scheduling, if the request has completed, we'll
3389 * get a NULL return here, as we clear the sched tag when
3390 * that happens. The request still remains valid, like always,
3391 * so we should be safe with just the NULL check.
3392 */
3393 if (!rq)
3394 return false;
3395 }
3396
3397 return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3398}
3399
529262d5
CH
3400/**
3401 * blk_poll - poll for IO completions
3402 * @q: the queue
3403 * @cookie: cookie passed back at IO submission time
3404 * @spin: whether to spin for completions
3405 *
3406 * Description:
3407 * Poll for completions on the passed in queue. Returns number of
3408 * completed entries found. If @spin is true, then blk_poll will continue
3409 * looping until at least one completion is found, unless the task is
3410 * otherwise marked running (or we need to reschedule).
3411 */
3412int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
1052b8ac
JA
3413{
3414 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
3415 long state;
3416
529262d5
CH
3417 if (!blk_qc_t_valid(cookie) ||
3418 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
1052b8ac
JA
3419 return 0;
3420
529262d5
CH
3421 if (current->plug)
3422 blk_flush_plug_list(current->plug, false);
3423
1052b8ac
JA
3424 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3425
06426adf
JA
3426 /*
3427 * If we sleep, have the caller restart the poll loop to reset
3428 * the state. Like for the other success return cases, the
3429 * caller is responsible for checking if the IO completed. If
3430 * the IO isn't complete, we'll get called again and will go
3431 * straight to the busy poll loop.
3432 */
1052b8ac 3433 if (blk_mq_poll_hybrid(q, hctx, cookie))
85f4d4b6 3434 return 1;
06426adf 3435
bbd7bb70
JA
3436 hctx->poll_considered++;
3437
3438 state = current->state;
aa61bec3 3439 do {
bbd7bb70
JA
3440 int ret;
3441
3442 hctx->poll_invoked++;
3443
9743139c 3444 ret = q->mq_ops->poll(hctx);
bbd7bb70
JA
3445 if (ret > 0) {
3446 hctx->poll_success++;
849a3700 3447 __set_current_state(TASK_RUNNING);
85f4d4b6 3448 return ret;
bbd7bb70
JA
3449 }
3450
3451 if (signal_pending_state(state, current))
849a3700 3452 __set_current_state(TASK_RUNNING);
bbd7bb70
JA
3453
3454 if (current->state == TASK_RUNNING)
85f4d4b6 3455 return 1;
0a1b8b87 3456 if (ret < 0 || !spin)
bbd7bb70
JA
3457 break;
3458 cpu_relax();
aa61bec3 3459 } while (!need_resched());
bbd7bb70 3460
67b4110f 3461 __set_current_state(TASK_RUNNING);
85f4d4b6 3462 return 0;
bbd7bb70 3463}
529262d5 3464EXPORT_SYMBOL_GPL(blk_poll);
bbd7bb70 3465
9cf2bab6
JA
3466unsigned int blk_mq_rq_cpu(struct request *rq)
3467{
3468 return rq->mq_ctx->cpu;
3469}
3470EXPORT_SYMBOL(blk_mq_rq_cpu);
3471
320ae51f
JA
3472static int __init blk_mq_init(void)
3473{
9467f859
TG
3474 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3475 blk_mq_hctx_notify_dead);
320ae51f
JA
3476 return 0;
3477}
3478subsys_initcall(blk_mq_init);